WorldWideScience

Sample records for hot water systems

  1. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  2. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  3. Design data brochure: Solar hot water system

    Science.gov (United States)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  4. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  5. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  6. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  7. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  8. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  9. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  10. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  11. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  12. Neutral sodium/bicarbonate/sulfate hot waters in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, W.A.J. (Dept. of Industrial and Scientific Research, Wairakei, New Zealand); Klyen, L.E.; Rhode, M.

    1980-03-01

    The least understood thermal water is a near neutral water which contains varying amounts of bicarbonate and sulfate as the major anions, low concentrations of chloride (< 30 ppM) and sodium as the major cation. In the past this water has been referred to as a sodium bicarbonate water but present studies suggest that the quantities of bicarbonate and sulfate in this water type are frequently of the same order. Of particular interest is the distribution and position of the sodium/bicarbonate/sulfate water in the same and different systems. Many hot springs in Indonesia, for example, discharge water of this composition. Present studies indicate that this water type can originate from high temperature reservoirs which form the secondary steam heated part of a normal high temperature geothermal system. The hydrological conditions producing these waters in geothermal systems are investigated and the relationship between the water type and vapor dominated systems is discussed. It is suggested that the major water type occurring in the so called vapor dominated parts of geothermal systems is this water. The water does not simply represent steam condensate, rather it consists essentially of meteoric water which has been steam heated. The water composition results from the interaction of carbon dioxide and hydrogen sulfide with meteoric water and the rocks confining this water in the aquifer.

  13. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  14. Preliminary design package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, Val; Aspinwall, David B.

    1977-12-01

    The information necessary to evaluate the preliminary design of the Solar Engineering and Manufacturing Company's (SEMCO) solar hot water system is presented. This package includes technical information, schematics, drawings and brochures. This system, being developed by SEMCO, consists of the following subsystems: collector, storage, transport, control, auxiliary energy, and Government-furnished site data acquisition. The two units being manufactured will be installed at Loxahatchee, Florida, and Macon, Georgia.

  15. Energy efficiency of a solar domestic hot water system

    Science.gov (United States)

    Zukowski, Miroslaw

    2017-11-01

    The solar domestic hot water (SDHW) system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.

  16. Solar Hot Water System Matter in Turkey (Mersin Case

    Directory of Open Access Journals (Sweden)

    Müjgan ŞEREFHANOĞLU SÖZEN

    2010-01-01

    Full Text Available When the effects of sustainability on the construction sector have been taken into consideration, solar active systems on buildings emerge as an important design issue in the context of renewal energy usage. Solar hot water systems such as those widely used in Turkey are inefficient and have a negative effect on a building’s aesthetic and the urban view in general because of the poor quality of installation. Natural circulated open loop systems are commonly used, particularly in the south of Turkey, as they are highly economical and require no regulation to install. Solar hot water systems tend to be clustered together on the roofs, causing visual pollution, and this situation arises largely because are not considered part of the architectural design. It is therefore important to consider the negative effects of such systems in the form of treatment studies. This study aims to determine the positive effects that will be gained by the renovation of solar hot water systems in Mersin, a city in the southern region of Turkey.

  17. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Abdulmula, Ahmed Mohamed Omer; Sopian, Kamaruzzaman; Haj Othman, Mohd Yosof

    2006-01-01

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  18. Solar heating and hot water system installed at Listerhill, Alabama

    Science.gov (United States)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  19. Installation package for a domestic solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    The installation of two prototype solar heating and hot water systems is described. The systems consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy.

  20. Numerical Simulation of a Solar Domestic Hot Water System

    International Nuclear Information System (INIS)

    Mongibello, L; Graditi, G; Bianco, N; Di Somma, M; Naso, V

    2014-01-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed

  1. Numerical Simulation of a Solar Domestic Hot Water System

    Science.gov (United States)

    Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.

    2014-11-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.

  2. Motel solar-hot-water system with nonpressurized storage--Jacksonville, Florida

    Science.gov (United States)

    1981-01-01

    Modular roof-mounted copper-plated arrays collect solar energy; heated water drains from them into 1,000 gallon nonpressurized storage tank which supplies energy to existing pressurized motel hot water lines. System provides 65 percent of hot water demand. Report described systems parts and operation, maintenance, and performance and provides warranty information.

  3. Feasibility analysis of domestic hot water systems using TRNSYS

    International Nuclear Information System (INIS)

    Gill, G.S.; Fung, A.S.

    2008-01-01

    A study was conducted in which 17 conventional and solar-based domestic hot water (DHW) systems were simulated using the TRYNSYS simulation model, and their results were compared. According to Natural Resources Canada, DHW heating currently accounts for 25 per cent of Canadian residential energy consumption and 25 per cent of Canadian residential greenhouse gas (GHG) emissions. The objective of this simulation study was to investigate the fuel consumption of DHW systems, their GHG emissions and 30-year life cycle costs. Another aspect of the study was to model and analyze the effect of time of use (TOU) electricity pricing which was developed by the Ontario Energy Board (OEB) to provide stable and predictable electricity pricing. TOU electricity pricing also promotes energy conservation. In addition, the TOU electricity price charged per kilowatt-hour changes throughout the day to reflect the changes in cost to produce electricity at different times of the day. The Ontario government plans to equip all homes and businesses with smart meters using TOU pricing by 2010. Therefore, this study also investigated the effects of the TOU feature by optimizing its use in the effort to reduce overall energy costs and greenhouse gas (GHG) emissions. The results revealed that a DHW system with solar pre-heat and electrical back-up is the best system for energy conservation and GHG reduction. The best system in terms of 30-year life cycle cost is a high efficiency DHW system with an on demand modulating gas combo boiler with gray water heat recovery. 23 refs., 7 tabs., 8 figs

  4. System design package for SIMS prototype system 3, solar heating and domestic hot water

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using liquid flat plat collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system. The SIMS Prototype Heating and Hot Water System, Model Number 3 has been installed in a residence at Glendo State Park, Glendo, Wyoming.

  5. Design package for a complete residential solar space heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  6. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  7. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    Science.gov (United States)

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  8. Solar heating and hot water system installed at Cherry Hill, New Jersey

    Science.gov (United States)

    1979-01-01

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  9. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    Science.gov (United States)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  10. Water Quality Study on the Hot and Cold Water Supply Systems at Vietnamese Hotels

    Directory of Open Access Journals (Sweden)

    Kanako Toyosada

    2017-04-01

    Full Text Available This study was conducted as part of the Joint Crediting Mechanism (JCM of the Japanese Ministry of Economy, Trade and Industry, and the Ministry of the Environment project’s preparation in Vietnam. Samples were taken from hot and cold water supplies from guest rooms’ faucets in 12 hotels in Hanoi city, Vietnam, and 13 hotels in Japan for comparison. A simple water quality measurement and determination of Legionella was carried out. The results showed that residual effective chlorine—which guarantees bactericidal properties—was not detected in tap water supplied in hotel rooms in Vietnam, and nitrite (an indicator of water pollution was detected in 40% of buildings. In the hotels in Japan, the prescribed residual chlorine concentration met the prescribed levels, and nitrite was not detected. Additionally, while there was no Legionella detected in the Japanese cases, it was detected in most of the Vietnamese hotels, which were found to manage the hot water storage tank at low temperatures of 40–50 °C. It was found that there were deficiencies in cold and hot water supply quality, and that there was no effective system in place for building operation maintenance and management.

  11. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  12. System design package for IBM system one: solar heating and domestic hot water

    Science.gov (United States)

    1977-01-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage. The system was designed for installation into a single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system was packaged for evaluation of the system with information sufficient to assemble a similar system.

  13. System Design Package for SIMS Prototype System 3, Solar Heating and Domestic Hot Water

    Science.gov (United States)

    1978-01-01

    A collation of documents and drawings are presented that describe a prototype solar heating and hot water system using liquid flat plate collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system.

  14. Solar hot water system installed at Las Vegas, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The solar hot water system installed at LaQuinta Motor Inn Inc., at Las Vegas, Nevada is described. The Inn is a three-story building with a flat roof for installation of the solar panels. The system consists of 1200 square feet of liquid flat plate collectors, a 2500 gallon insulated vertical steel storage tank, two heat exchangers and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  15. About economy of fuel and energy resources in the hot water supply system

    Science.gov (United States)

    Rotov, P. V.; Sivukhin, A. A.; Zhukov, D. A.; Zhukova, A. V.

    2017-11-01

    The assessment of the power efficiency realized in the current of heat supply system of technology of regulation of loading of the hot water supply system, considering unevenness consumption of hot water is executed. For the purpose of definition the applicability boundary of realized technology comparative analysis of indicators of the effectiveness of its work within the possible range of the parameters of regulations. Developed a software application “The calculation of the total economy of fuel and energy resources in the hot water supply system when you change of the parameters of regulations”, which allows on the basis of multivariate calculations analyses of their results, to choose the optimum mode of operation heat supply system and to assess the effectiveness of load regulation in the hot water supply system.

  16. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  17. Life cycle assessment of domestic heat pump hot water systems in Australia

    Directory of Open Access Journals (Sweden)

    Moore Andrew D.

    2017-01-01

    Full Text Available Water heating accounts for 23% of residential energy consumption in Australia, and, as over half is provided by electric water heaters, is a significant source of greenhouse gas emissions. Due to inclusion in rebate schemes heat pump water heating systems are becoming increasingly popular, but do they result in lower greenhouse gas emissions? This study follows on from a previous life cycle assessment study of domestic hot water systems to include heat pump systems. The streamlined life cycle assessment approach used focused on the use phase of the life cycle, which was found in the previous study to be where the majority of global warming potential (GWP impacts occurred. Data was collected from an Australian heat pump manufacturer and was modelled assuming installation within Australian climate zone 3 (AS/NZS 4234:2011. Several scenarios were investigated for the heat pumps including different sources of electricity (grid, photovoltaic solar modules, and batteries and the use of solar thermal panels. It was found that due to their higher efficiency heat pump hot water systems can result in significantly lower GWP than electric storage hot water systems. Further, solar thermal heat pump systems can have lower GWP than solar electric hot water systems that use conventional electric boosting. Additionally, the contributions of HFC refrigerants to GWP can be significant so the use of alternative refrigerants is recommended. Heat pumps combined with PV and battery technology can achieve the lowest GWP of all domestic hot water systems.

  18. Energy Requirement and Comfort of Gas- and Electric-powered Hot-water Systems

    International Nuclear Information System (INIS)

    Luedemann, B.; Schmitz, G.

    1999-01-01

    In view of the continuous reduction in the specific heating energy demand of new buildings the power demand for hot-water supply increasingly dominates the heating supply of residential buildings. Furthermore, the German energy-savings-regulation 2000 (ESVO) is intended to evaluate the techniques installed such as domestic heating or hot-water supply within an overall energetic view of the building. Planning advice for domestic heating, ventilation and hot-water systems in gas-heated, low-energy buildings has therefore been developed in a common research project of the Technical University of Hamburg Harburg (TUHH) and four energy supply companies. In this article different gas-or electricity-based hot-water systems in one family houses and multiple family houses are compared with one another with regard to the aspects of comfort and power requirements considering the user's behaviour. (author)

  19. Higher contamination rate than usual. Treatment and disinfection of water in hot whirlpool systems

    Energy Technology Data Exchange (ETDEWEB)

    Herschman, W

    1985-10-01

    Hot whirlpools must meet the hygienic standards set in the Federal Law Concerning Prevention of Epidemics of 18 Dec 1979. The low water volume of whirlpool systems and the extraordinary contamination rate in uninterrupted operation require a specific water treatment and disinfestation technology to make up for the poor buffer capacity of the low water volume. (orig./BWI).

  20. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  1. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  2. Residential solar hot water

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    This report examines the feasibility of using solar energy to preheat domestic water coming from the city supply at a temperature of approximately 4{degree}C. Four solar collectors totalling 7 m{sup 2} were installed on a support structure facing south at an angle of 60{degree} from the horizontal. The system worked most efficiently in the spring and early summer when the combination of long hours of sunshine, clean air and clear skies allowed for maximum availability of solar radiation. Performance dropped in late summer and fall mainly due to cloudier weather conditions. The average temperature in the storage tank over the 10 months of operation was 42{degree}C, ranging from a high of 83{degree}C in July to a low of 6{degree}C in November. The system provided a total of 7.1 GJ, which is approximately one-third the annual requirement for domestic hot water heating. At the present time domestic use of solar energy to heat water does not appear to be economically viable. High capital costs are the main problem. As a solar system with present day technology can only be expected to meet half to two-thirds of the hot water energy demand the savings are not sufficient for the system to pay for itself within a few years. 5 figs.

  3. The occurrence of legionalla in hot water distribution systems of some Finnish apartment and office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zacheus, O M; Kuittinen, M H; Martikainen, P J [National Public Health Institute, Dept. Environ. Hyg. and Toxicol., Kuopio (FI)

    1991-01-01

    A project concerning the effect of water temperature and water quality on the microbiology of hot water distribution systems in Finnish apartment and office buildings was started in 1989. Here we report preliminary results on the occurrence of legionella. Samples were taken from showerpipes and from hot water mains before and after calorifiers of 17 buildings. Water temperature in the showerpipes ranged from 39 to 55 deg. C. Water temperature before calorifiers ranged from 40 to 52 deg. C and after them from 39 to 59 deg. C. Water temperature did not explain well the occurrence of legionalla. Legionalla pneumophila was isolated from six systems. The isolates were serogroups 1, 5 and 6. Legionella concentrations in positive samples ranged from 100 to 350 000 CFU/l. Highest concentrations of legionalla were obtained from showerpipes and hot water mains before calorifiers. Four legionella positive distribution systems were decontaminated by raising the water temperature to 60-70 deg. C and cleaning taps and showerheads, and flushing them twice a day. The numbers of legionellas in the hot water mains fell below detection limit (50 CFU/l) and their numbers also decreased in showerpipes. Decontamination failed in some parts of the distribution systems where water temperature remained below 60 deg. C. (author) 26 refs.

  4. Solar heating and hot water system installed at Cherry Hill, New Jersey. [Hotels

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-16

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system went into operation November 8, 1978 and is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are General Electric Company liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  5. System design package for SIMS Prototype System 4, solar heating and domestic hot water

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air type solar energy collection techniques. The system consists of a modular designed prepackaged solar unit containing solar collctors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with inforation sufficient to assemble a similar system. The prepackage solar unit has been installed at the Mississippi Power and Light Company, Training Facilities, Clinton, Mississippi.

  6. Solar heating and domestic hot water system installed at North Dallas High School

    Science.gov (United States)

    1980-01-01

    The solar energy system located at the North Dallas High School, Dallas, Texas is discussed. The system is designed as a retrofit in a three story with basement, concrete frame high school building. Extracts from the site files, specification references for solar modification to existing building heating and domestic hot water systems, drawings, installation, operation and maintenance instructions are included.

  7. Solar heating and hot water system installed at Alderson Broaddus College, Philippi, West Virginia

    Science.gov (United States)

    1981-01-01

    Data needed necessary to evaluate the design and operation of a solar energy heating and hot water system installed in a commercial application are presented. The information includes system descriptions, acceptance test data, schematics, as built drawing, problems encountered, all solutions and photographs of the system at various stages of completion.

  8. Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    This study focus on the analysis, modeling and simulation of solar domestic hot water(DHW) systems. Problems related to the system operation such as input weather data and hot water load conditions are also investigated.In order to investigate the heat loss as part of the total heat load, dynamic...... model of distribution network is developed and simulations are carried out for typical designed circulation type of distribution networks. For dynamic simulation of thermosyphon and drain-back solar DHW systems, thermosyphon loop model and drain-back tank model are put forward. Based on the simulations...

  9. Cold-Climate Solar Domestic Hot Water Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Salasovich, J.; Hillman, T.

    2005-11-01

    The Solar Heating and Lighting Sub-program has set the key goal to reduce the cost of saved energy [Csav, defined as (total cost, $)/(total discounted savings, kWh_thermal)] for solar domestic water heaters (SDWH) by at least 50%. To determine if this goal is attainable and prioritize R&D for cold-climate SDWH, life-cycle analyses were done with hypothetical lower-cost components in glycol, drainback, and thermosiphon systems. Balance-of-system (BOS, everything but the collector) measures included replacing metal components with polymeric versions and system simplification. With all BOS measures in place, Csav could be reduced more than 50% with a low-cost, selectively-coated, glazed polymeric collector, and slightly less than 50% with either a conventional selective metal-glass or a non-selective glazed polymer collector. The largest percent reduction in Csav comes from replacing conventional pressurized solar storage tanks and metal heat exchangers with un-pressurized polymer tanks with immersed polymer heat exchangers, which could be developed with relatively low-risk R&D.

  10. Energy behavior of solar hot water systems under different conditions

    International Nuclear Information System (INIS)

    Fuentes Lombá, Osmanys; Torres Ten, Alonso; Arzuaga Machado, Yusnel; Hernández, Massipe J. Raúl; Cueva Gonzales, Wagner

    2017-01-01

    By means of numerical simulations in TRNSYS v14 the influence of the solar absorption area of a system for heating water with solar energy, composed by a flat solar collector and a tank thermo-accumulator, on its energy efficiency. For the study, the solar collectors EDWARDS, ISOFOTÓN 1, ISOFOTÓN 2, MADE, ROLDAN and IBERSOLAR of absorption area 2, 1,9, 1,88, 2, 1,9 and 2,3 m2 respectively were chosen. For each collector, the energy performance was simulated for one year, setting 200 L for the accumulation volume and 50 °C for the intake temperature. Despite the different characteristics of each collector, their behavior is quite similar showing a very mature technology. (author)

  11. OUT Success Stories: Solar Hot Water Technology

    International Nuclear Information System (INIS)

    Clyne, R.

    2000-01-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building

  12. OUT Success Stories: Solar Hot Water Technology

    Science.gov (United States)

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  13. Radiological performance of hot water layer system in open pool type reactor

    Directory of Open Access Journals (Sweden)

    Amr Abdelhady

    2013-06-01

    Full Text Available The paper presents the calculated dose rate carried out by using MicroShield code to show the importance of hot water layer system (HWL in 22 MW open pool type reactor from the radiation protection safety point of view. The paper presents the dose rate profiles over the pool surface in normal and abnormal operations of HWL system. The results show that, in case of losing the hot water layer effect, the radiation dose rate profiles over the pool surface will increase from values lower than the worker permissible dose limits to values very higher than the permissible dose limits.

  14. Radiological performance of hot water layer system in open pool type reactor

    OpenAIRE

    Amr Abdelhady

    2013-01-01

    The paper presents the calculated dose rate carried out by using MicroShield code to show the importance of hot water layer system (HWL) in 22 MW open pool type reactor from the radiation protection safety point of view. The paper presents the dose rate profiles over the pool surface in normal and abnormal operations of HWL system. The results show that, in case of losing the hot water layer effect, the radiation dose rate profiles over the pool surface will increase from values lower than th...

  15. The Development of a Roof Integrated Solar Hot Water System

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Infrastructure and DER Dept.; Moss, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Solar Technologies Dept.; Palomino, G. Ernest [Salt River Project (SRP), Tempe, AZ (United States)

    2006-09-01

    The Salt River Project (SRP), in conjunction with Sandia National Laboratories (SNL) and Energy Laboratories, Inc. (ELI), collaborated to develop, test, and evaluate an advanced solar water-heating product for new homes. SRP and SNL collaborated under a Department of Energy Cooperative Research and Development Agreement (CRADA), with ELI as SRP's industry partner. The project has resulted in the design and development of the Roof Integrated Thermal Siphon (RITH) system, an innovative product that features complete roof integration, a storage tank in the back of the collector and below the roofline, easy installation by homebuilders, and a low installed cost. SRP's market research guided the design, and the laboratory tests conducted at SNL provided information used to refine the design of field test units and indicated that the RITH concept is viable. ELI provided design and construction expertise and is currently configured to manufacture the units. This final report for the project provides all of the pertinent and available materials connected to the project including market research studies, the design features and development of the system, and the testing and evaluation conducted at SNL and at a model home test site in Phoenix, Arizona.

  16. Solar heating and hot water system installed at Charlotte Memorial Hospital, Charlotte, North Carolina

    Science.gov (United States)

    1981-01-01

    Detailed information regarding the design and installation of a heating and hot water system in a commercial application is given. This information includes descriptions of system and building, design philosophy, control logic operation modes, design and installation drawing and a brief description of problems encountered and their solutions.

  17. Analysis of systems for hot water supply with solar energy utilization

    International Nuclear Information System (INIS)

    Zlateva, M.

    2001-01-01

    The results from the analysis of the hot water consumption of a group of hotels in the Black See resort Albena are presented. Structural schemes of hot water solar systems with flat plate collectors have been synthesized. By the synthesis have been analyzed the type of the consumers, the operating period, the existing heating plants, the auxiliary energy source - electricity. The change of the solar fraction by different performance of the system have been investigated. A comparative analysis of the alternative solutions has been fulfilled. The most advantageous solution has been chosen on the basis of the evaluation of the pay-back period, the life cycle savings and the benefit-cost ratio. The effect of the changing economic characteristics on the economic efficiency have been investigated. The risk for the investments has been examined. It had been proved that for the conditions in Bulgarian Black See region the use of solar energy for hot water producing is economic reasonable. (author)

  18. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures.

    Science.gov (United States)

    Wadowsky, R M; Yee, R B; Mezmar, L; Wing, E J; Dowling, J N

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pneumophila serogroups 1, 5, and 6 were recovered from plumbing fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54 degrees C, but not in those maintained at 71 and 77 degrees C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated.

  19. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wadowsky, R.M.; Yee, R.B.; Mezmar, L.; Wing, E.J.; Dowling, J.N.

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions, and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pnenumophila serogroups 1.5, and 6 were recovered from plubming fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54/sup 0/C, but not in those maintained at 71 and 77/sup 0/C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated.

  20. Smart solar domestic hot water systems. Development and test; Intelligente solvarmeanlaeg. Udvikling og afproevning

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, E.; Knudsen, S.; Furbo, S.; Vejen, N.K.

    2001-07-01

    The purpose of the project described in this report is to develop and test smart solar domestic hot water systems (SDHW systems) where the energy supply from the auxiliary energy supply system is controlled in a flexible way fitted to the hot water consumption in such a way, that the SDHW systems are suitable for large as well as small hot water demands. In a smart SDHW system the auxiliary energy supply system is controlled in a smart way. The auxiliary energy supply system heats up the water in the hot water tank from the top and only the hot water volume needed by the consumers is heated. Further the water is heated immediately before tapping. The control system includes a number of temperature sensors which cover the temperatures in the auxiliary heated volume. Based on these temperatures the energy content in the hot water tank is calculated. Only water heated to a temperature above 50 deg. C contributes to the total energy content in the hot water tank. Furhter the control system includes a timer that only allows the auxiliary energy supply system to be active in certain time periods and only if the energy content in the hot water tank is lower than wanted. In this way the water in the tank is heated immediately before the expected time of tapping and only the hot water volume needed is heated. The report is divided into five main sections. The sections deals with: Developing and testing storage tanks, laboratory test of SDHW systems based on some of the developed storage tanks, validation of simulation programs for smart solar heating systems, optimisation of system design and control strategy and measurements on two smart SDHW systems installed in single family houses. In all the developed hot water tanks, attempt is made to heat the water in the tank from the top of the tank and not as in traditional tanks where the water is heated from the lowest level of the auxiliary energy supply system, normally a helix or a electrical heating element placed in the

  1. Investigation and Construction of a Thermosyphoning Solar Hot Water System

    Science.gov (United States)

    Johnson, Harvey

    1978-01-01

    Describes how a thermosyphoning solar water heater capable of heating 110 kilogram of water to 80 degree Celsius and maintaining this temperature for 24 hours was constructed by four students in the fifth form of Sekolah Date Abdul Razak, Seremban, Malaysia in 1976. (HM)

  2. Solar heating and hot water system installed at Saint Louis, Missouri

    Science.gov (United States)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  3. Verification test report on a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information is provided on the development, qualification and acceptance verification of commercial solar heating and hot water systems and components. The verification includes the performances, the efficiences and the various methods used, such as similarity, analysis, inspection, test, etc., that are applicable to satisfying the verification requirements.

  4. Development of equipment for in situ studies of biofilm in hot water systems

    DEFF Research Database (Denmark)

    Bagh, Lene Karen; Albrechtsen, Hans-Jørgen; Arvin, Erik

    1999-01-01

    New equipment was developed for in situ studies of biofilms in hot water tanks and hot water pipes under normal operation and pressure. Sampling ports were installed in the wall of a hot water tank and through these operating shafts were inserted with a test plug in the end. The surface of the test...

  5. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  6. Solar heating systems for heating and hot water

    Energy Technology Data Exchange (ETDEWEB)

    Schnaith, G; Dittrich, K

    1980-07-01

    Deutsche Bundesbahn has shown an interest in solar heating systems, too. The items discussed include the useful radiation energy, design features of collectors, heat carrier media, safeguards and profitability studies. The system installed by Deutsche Bundesbahn in the social services building of the Munich-Laim railway workshop is described. In conclusion, the test results of the first few months of service are given. In order to obtain unambiguous results, it appears indispensable to arrange for an additional total trial period of not less than two years and to conduct tests also on further systems presently under construction.

  7. Looking beyond installation: Why households struggle to make the most of solar hot water systems

    International Nuclear Information System (INIS)

    Gill, Nicholas; Osman, Peter; Head, Lesley; Voyer, Michelle; Harada, Theresa; Waitt, Gordon; Gibson, Chris

    2015-01-01

    This paper examines household responses to sustainability issues and adoption of energy saving technologies. Our example of solar hot water systems highlights the complexity and variability of responses to low-carbon technologies. While SHW systems have the potential to provide the majority of household hot water and to lower carbon emissions, little research has been done to investigate how SHW systems are integrated into everyday life. We draw on cultural understandings of the household to identify passive and active users of SHW systems and utilize a model that illustrates how technology use is dependent on inter-relations between cultural norms, systems of provision, the material elements of homes, and practice. A key finding is that households can be ill-prepared to make the most of their SHW systems and lack post-installation support to do so. Thus, informed and efficient use of SHW systems is hit and miss. Current policy is largely aimed at subsidizing purchase and installation on the assumption that this is sufficient for emission reduction goals. Our analysis provides evidence to the contrary. Areas we highlight for policy and practice improvement are independent pre-purchase advice, installation quality, and practical guidance on system operation and interaction with patterns of hot water use. - Highlights: • We interview Australian households about their experience with SHW systems. • We identify active and passive users of SHW. Active users tend to be dissatisfied with their system. • Passive users tend to be satisfied but have relatively inefficient systems. • Householders struggle to integrate hot water use and system operation, compromising efficiency. • Policy should encompass pre and post-installation support as much as incentives to install.

  8. Solar hot water system installed at Quality Inn, Key West, Florida

    Science.gov (United States)

    1980-04-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  9. Study on Thermal Performance Assessment of Solar Hot Water Systems in Malaysia

    Directory of Open Access Journals (Sweden)

    Sulaiman Shaharin Anwar

    2014-07-01

    Full Text Available Solar Hot Water Systems (SHWS are gaining popularity in Malaysia due to increasing cost of electricity and also awareness of environmental issues related to the use of fossil fuels. The introduction of solar hot water systems in Malaysia is an indication that it has potential market. However, there is a need for a proper methodology for rating the energy performance of these systems. The main objective of this study is to assess the thermal performance of several SHWS subject to four different locations in Malaysia using combined direct measurement and computer modelling using the TRNSYS simulation program. The results showed distinct differences in performance of the systems as a result of locations and manufacturers. The findings could be used further in developing an acceptable rating system for SHWS in Malaysia.

  10. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  11. Solar hot water systems application to the solar building test facility and the Tech House

    Science.gov (United States)

    Goble, R. L.; Jensen, R. N.; Basford, R. C.

    1976-01-01

    Projects which relate to the current national thrust toward demonstrating applied solar energy are discussed. The first project has as its primary objective the application of a system comprised of a flat plate collector field, an absorption air conditioning system, and a hot water heating system to satisfy most of the annual cooling and heating requirements of a large commercial office building. The other project addresses the application of solar collector technology to the heating and hot water requirements of a domestic residence. In this case, however, the solar system represents only one of several important technology items, the primary objective for the project being the application of space technology to the American home.

  12. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-07-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  13. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation Industry Team (BSC), Somerville, MA (United States)

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  14. Prototype Solar Domestic Hot Water Systems (A collation of Quarterly Reports)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    This report is a collection of quarterly reports from Solar Engineering and Manufacturing Company (SEMCO) covering the period from November 1976 through September 1977. SEMCO, under NASA/MSFC Contract NAS8-32248, is developing two prototype solar domestic hot water systems consisting of the following subsystems: collector, storage, control, transport, and auxiliary energy. These two systems are being installed at sites in Loxahatchee, Florida (OTS-27) and Macon, Georgia (OTS-28).

  15. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E. [Alliance for Residential Building Innovation, Davis, CA (United States); Hoeschele, E. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  16. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  17. Energy saving type area hot water supply system using heat of hot waste water from the sludge center as hot source for hot water; New energy rokko airando CITY. Surajjisenta karano onhaisuinetsu wo kyuyuyo netsugen ni riyosuru sho energy gata chiiki onsui kyokyu system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Heat source of area hot water supply system in Rokko island City (man-made island) is heat of combustion at the sludge center (sludge incineration plant) in this island. Dehydrated sludge cakes (230ton/day) brought from seven sewage disposal plants in Kobe City is combusted (850degC) in the fluid bed hearth. Combustion gas washed in the scrubber, hot waste water after the washing give heat into heat transfer water in the first heat exchanger. Temperature being 64degC in summer and about 50degC in winter, this heat transfer water is sent into the second heat exchanger at every condominium building throughout the pipe line system circulating in the area. At each home, gas heater and hot water supply devices fitted, additional combustion is not necessary in summer but is used according to demand in other seasons. This hot water supply service has been carried out since 1988 and at present has been used by 3600 homes. Amount of supplying hot water being about 3000cu.m/day, saving is calculated roughly as 60% of gas for hot water supply. Fee for this system is 1500/yen/month uniformly for each home. 14 figs.

  18. Sanitary hot water consumption patterns in commercial and industrial sectors in South Africa: Impact on heating system design

    International Nuclear Information System (INIS)

    Rankin, R.; Rousseau, P.G.

    2006-01-01

    A large amount of individual sanitary hot water consumers are present in the South African residential sector. This led to several studies being done on hot water consumption patterns in this sector. Large amounts of sanitary hot water are also consumed in the commercial sector in buildings such as hotels and in large residences such as those found in the mining industry. The daily profiles of sanitary hot water consumption are not related to any technical process but rather to human behavior and varying ambient conditions. The consumption of sanitary hot water, therefore, represents a challenge to the electrical utility because it is an energy demand that remains one of the biggest contributors to the undesirable high morning and afternoon peaks imposed on the national electricity supply grid. It also represents a challenge to sanitary hot water system designers because the amount of hot water as well as the daily profile in which it is consumed impacts significantly on system design. This paper deals with hot water consumption in the commercial and industrial sectors. In the commercial sector, we look at hotels and in the industrial sector at large mining residences. Both of them are served by centralized hot water systems. Measured results from the systems are compared to data obtained from previous publications. A comparison is also made to illustrate the impact that these differences will have on sanitary hot water system design. Simulations are conducted for these systems using a simulation program developed in previous studies. The results clearly show significant differences in the required heating and storage capacity for the new profiles. A twin peak profile obtained from previous studies in the residential sector was used up to now in studies of heating demand and system design in commercial buildings. The results shown here illustrate the sanitary hot water consumption profile differs significantly from the twin peaks profile with a very high morning

  19. Simulation programs for ph.D. study of analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The design of solar domestic hot water (DHW) systems is a complex process, due to characteristics inherent in the solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. One of the main objects of the Ph.D. study of `Analysis, Modelling and optimum Design of Solar Domestic Hot Water Systems` is to develop and verify programs for carrying out the simulation and evaluation of the dynamic performance of solar DHW systems. During this study, simulation programs for hot water distribution networks and for certain types of solar DHW systems were developed. (au)

  20. Hot water reticulation

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, S. K.

    1977-10-15

    Hot water reticulation (district heating) is an established method of energy supply within cities in many countries. It is based on the fact that heat can often be obtained cheaply in bulk, and that the resultant savings can, in suitable circumstances, justify the investment in a reticulation network of insulated pipes to distribute the heat to many consumers in the form of hot water or occasionally steam. The heat can be used by domestic, commercial, and industrial consumers for space heating and water heating, and by industries for process heat. The costs of supplying domestic consumers can be determined by considering an average residential area, but industrial and commercial consumers are so varied in their requirements that every proposal must be treated independently. Fixed costs, variable costs, total costs, and demand and resource constraints are discussed.

  1. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  2. Solar heating and hot water system installed at James Hurst Elementary School, Portsmouth, Virginia

    Science.gov (United States)

    1981-01-01

    Solar heating and a hot water system installed in an elementary school in Portsmouth, Virginia are examined. The building is zoned into four heating/cooling areas. Each area is equipped with an air handling unit that is monitored and controlled by central control and monitoring system. The solar system for the building uses a collector area of 3,630 sq. ft. of flat plate liquid collectors, and a 6,000 gallon storage tank. System descriptions, maintenance reports, detailed component specifications, and design drawings to evaluate this solar system are reported.

  3. Potential application of solar thermal systems for hot water production in Hong Kong

    International Nuclear Information System (INIS)

    Li Hong; Yang Hongxing

    2009-01-01

    This paper presents the evaluation results of conventional solar water heater (SWH) systems and solar assisted heat pump (SAHP) systems for hot water production in Hong Kong. An economic comparison and global warming impact analysis are conducted among the two kinds of solar thermal systems and traditional water heating systems (i.e. electric water heaters and towngas water heaters). The economic comparison results show that solar thermal systems have greater economic benefits than traditional water heating systems. In addition, conventional SWH systems are comparable with the SAHP systems when solar fractions are above 50%. Besides, analysis on the sensitivity of the total equivalent warming impact (TEWI) indicates that the towngas boosted SWH system has the greatest potential in greenhouse gas emission reduction with various solar collector areas and the electricity boosted SWH system has the comparative TEWI with the SAHP systems if its solar fraction is above 50%. As for SAHP systems, the solar assisted air source heat pump (SA-ASHP) system has the least global warming impact. Based on all investigation results, suggestions are given on the selection of solar thermal systems for applications in Hong Kong

  4. Effects of Disinfection on Legionella spp., Eukarya, and Biofilms in a Hot Water System

    Science.gov (United States)

    Moletta-Denat, Marina; Frère, Jacques; Onillon, Séverine; Trouilhé, Marie-Cécile; Robine, Enric

    2012-01-01

    Legionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics of Legionella and eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenic Legionella species remained after the heat shock and chemical treatments (Legionella pneumophila and Legionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebae sp., Vannella sp., and Hartmanella vermiformis) and after the first heat shock treatment, but only H. vermiformis remained. However, another protozoan affiliated with Alveolata, which is known as a host cell for Legionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effective Legionella disinfection may be dependent on the elimination of these important microbial components. We suggest that eradicating Legionella in hot water networks requires better study of bacterial and eukaryal species associated with Legionella in biofilms. PMID:22820326

  5. Primary energy consumption of the dwelling with solar hot water system and biomass boiler

    International Nuclear Information System (INIS)

    Berković-Šubić, Mihaela; Rauch, Martina; Dović, Damir; Andrassy, Mladen

    2014-01-01

    Highlights: • Methodology for determing delivered and primary energy is developed. • Conventional and solar hot water system are analyzed. • Influence of system components, heat losses and energy consumption is explored. • Savings when using solar system in delivered energy is 30% and in primary 75%. • Dwelling with higher Q H,nd has 60% shorter payback period. - Abstract: This paper presents a new methodology, based on the energy performance of buildings Directive related European norms. It is developed to overcome ambiguities and incompleteness of these standards in determining the delivered and primary energy. The available procedures from the present “Algorithm for determining the energy demands and efficiency of technical systems in buildings”, normally used for energy performance certification of buildings, also allow detailed analyzes of the influence of particular system components on the overall system energy efficiency. The calculation example is given for a Croatian reference dwelling, equipped with a solar hot water system, backed up with a biomass boiler for space heating and domestic hot water purposes as a part of the dwelling energy performance certification. Calculations were performed for two cases corresponding to different levels of the dwelling thermal insulation with an appropriate heating system capacity, in order to investigate the influence of the building heat losses on the system design and energy consumption. The results are compared against those obtained for the conventional system with a gas boiler in terms of the primary energy consumption as well as of investment and operating costs. These results indicate great reduction in both delivered and primary energy consumption when a solar system with biomass boiler is used instead of the conventional one. Higher savings are obtained in the case of the dwelling with higher energy need for space heating. Such dwellings also have a shorter payback period than the ones with

  6. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Ansanelli, Eric [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Henderson, Hugh [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Varshney, Kapil [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions

    2016-06-23

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  7. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh; Varshney, Kapil

    2016-06-03

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  8. Sanitary hot water; Eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Cegibat, the information-recommendation agency of Gaz de France for building engineering professionals, has organized this conference meeting on sanitary hot water to present the solutions proposed by Gaz de France to meet its clients requirements in terms of water quality, comfort, energy conservation and respect of the environment: quantitative aspects of the hot water needs, qualitative aspects, presentation of the Dolce Vita offer for residential buildings, gas water heaters and boilers, combined solar-thermal/natural gas solutions, key-specifications of hot water distribution systems, testimony: implementation of a gas hot water reservoir and two accumulation boilers in an apartment building for young workers. (J.S.)

  9. Simulation Programs for Ph.D. Study of Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    The design of solar domestic hot water system is a complex process, due to characteristics inherent in solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. This report presents the detaile...... programs or units that were developed in the Ph.D study of " Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems"....

  10. Microbial growth in domestic hot water systems with special emphasis on connections to district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Frederiksen, S [Lund Institute of Technology, Dept. of Heat and Power Engineering, Lund (SE); Krongaard Kristensen, K [Regional Food and Hygiene Authority, Koebenhavns Amt Vest, Glostrup (DK)

    1991-01-01

    It is by now well-estalished that domestic hot water systems often harbour Legionella bacteria. Measurements into a number of Danish systems have revealed many other bacteria, among them the thermophilic species Thermus, which is predominantly found on heating coils, where local temperatures are higher. This bacterium not only hampers heat transfer due to fouling, but may also be pathogenic, due to release of endotoxins. Its presence may explain a wide spectrum of symptoms experienced by people after hot baths, such as rashes and itching. The paper summarizes these findings, and on this basis engineering and microbiological considerations are presented in an effort to find ways of future control strategies that go beyond Legionella prevention. Special attention is given to district heating connections, in which low supply and return temperatures are generally wanted in the primary circuit. (author) 16 refs.

  11. Simulation of hybrid ground-coupled heat pump with domestic hot water heating systems using HVACSIM+

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ping; Yang, Hongxing [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Spitler, Jeffrey D. [School of Mechanical Engineering, Oklahoma State University (United States); Fang, Zhaohong [Ground Source Heat Pump Research Center, Shandong University of Architecture and Engineering, Jinan (China)

    2008-07-01

    A hybrid ground-coupled heat pump (HGCHP) with domestic hot water (DHW) supply system has been proposed in this paper for space cooling/heating and DHW supply for residential buildings in hot-climate areas. A simulation model for this hybrid system is established within the HVACSIM+ environment. A sample system, applied for a small residential apartment located in Hong Kong, is hourly simulated in a typical meteorological year. The conventional GCHP system and an electric heater for DHW supply are also modeled and simulated on an hourly basis within the HVACSIM+ for comparison purpose. The results obtained from this case study show that the HGCHP system can effectively alleviate the imbalanced loads of the ground heat exchanger (GHE) and can offer almost 95% DHW demand. The energy saving for DHW heating is about 70% compared with an electric heater. This proposed scheme, i.e. the HGCHP with DHW supply, is suitable to residential buildings in hot-climate areas, such as in Hong Kong. (author)

  12. Development of domestic hot water systems in Costa Rica from solar energy

    International Nuclear Information System (INIS)

    Lizana-Moreno, Fernando

    2015-01-01

    A software tool is developed to implement the solar domestic hot water systems (DHW) in Costa Rica and to replace the electric water heating equipment. A database with information from the solar radiation is elaborated for different locations in Costa Rica. A manual of design DHW solar systems is realized for the country. An DHW solar system is designed for the type of average building the of country. A software is implemented to calculate the parameters and dimensions necessary for the solar installation of DHW, using the F-Chart method; in addition, the information of the mentioned database is included. A financial analysis is elaborated of the DHW solar systems in Costa Rica. The strategies are proposed for the implementation of DHW solar systems in Costa Rica [es

  13. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    Science.gov (United States)

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  14. Performance analysis of solar cogeneration system with different integration strategies for potable water and domestic hot water production

    International Nuclear Information System (INIS)

    Uday Kumar, N.T.; Mohan, Gowtham; Martin, Andrew

    2016-01-01

    Highlights: • Solar driven cogeneration system integrating membrane distillation technology is developed. • System utilizes solar thermal energy for the operations without auxiliary heaters. • Three different system integrations are experimentally investigated in UAE. • Economical benefits of solar cogeneration system is also reported. - Abstract: A novel solar thermal cogeneration system featuring the provision of potable water with membrane distillation in combination with domestic hot water supply has been developed and experimentally analyzed. The system integrates evacuated tube collectors, thermal storage, membrane distillation unit, and heat exchangers with the overall goals of maximizing the two outputs while minimizing costs for the given design conditions. Experiments were conducted during one month’s operation at AURAK’s facility in UAE, with average peak global irradiation levels of 650 W/m"2. System performance was determined for three integration strategies, all utilizing brackish water (typical conductivity of 20,000 μs/cm) as a feedstock: Thermal store integration (TSI), which resembles a conventional indirect solar domestic hot water system; Direct solar integration (DSI) connecting collectors directly to the membrane distillation unit without thermal storage; and Direct solar with thermal store integration (DSTSI), a combination of these two approaches. The DSTSI strategy offered the best performance given its operational flexibility. Here the maximum distillate productivity was 43 L/day for a total gross solar collector area of 96 m"2. In terms of simultaneous hot water production, 277 kWh/day was achieved with this configuration. An economic analysis shows that the DSTSI strategy has a payback period of 3.9 years with net cumulative savings of $325,000 during the 20 year system lifetime.

  15. High performance in low-flow solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M.

    1997-12-31

    Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

  16. Analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The object of this study was dynamic modeling, simulation and optimum design of solar DHW (domestic hot water) systems, with respect to different whether conditions, and accurate dynamic behaviour of the heat load. Special attention was paid to systems with thermosyphon and drain-back design. The solar radiation in Beijing (China) and in Denmark are analyzed both by theoretical calculations and the analysis of long-term measurements. Based on the weather data from the Beijing Meteorological Station during the period of 1981-1993, a Beijing Test Reference Year has been formulated by means of statistical analysis. A brief introduction about the Danish Test Reference Year and the Design Reference Year is also presented. In order to investigate the heat loss as a part of the total heat load, dynamic models for distribution networks have been developed, and simulations have been carried out for typically designed distribution networks of the circulation type. The influence of operation parameters such as the tank outlet temperature, the hot-water load and the load pattern, on the heat loss from the distribution networks in presented. It was found that the tank outlet temperature has a significant influence on the heat loss from a circulation type of distribution network, while the hot-water load and the load pattern have no obvious effect. Dynamic models of drain-back tanks, both as a separated tank and combined with a mantle tank, have been developed and presented. Models of the other basic components commonly used in solar DHW systems, such as flat-plate collectors, connection pipes, storage tanks with a heat exchanger spiral, and controllers, are also described. (LN) 66 refs.

  17. Emergency cooling system with hot-water jet pumps for nuclear reactors

    International Nuclear Information System (INIS)

    Reinsch, A.O.W.

    1977-01-01

    The ECCS for a PWR or BWR uses hot-water jet pumps to remove the thermal energy generated in the reactor vessel and stored in the water. The hot water expands in the nozzle part (Laval nozzle) of the jet pump and sucks in coolant (borated water) coming from a storage tank containing subcooled water. This water is mixing with the hot water/steam mixture from the Laval nozzle. The steam is condensed. The kinetic energy of the water is converted into a pressure increase which is sufficient to feed the water into the reactor vessel. The emergency cooling may further be helped by a jet condenser also operating according to the principle of a jet pump and condensing the steam generated in the reactor vessel. (DG) [de

  18. Economic Model Predictive Control for Hot Water Based Heating Systems in Smart Buildings

    DEFF Research Database (Denmark)

    Awadelrahman, M. A. Ahmed; Zong, Yi; Li, Hongwei

    2017-01-01

    This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank...... as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load...

  19. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  20. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    Science.gov (United States)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  1. Optimization of Photovoltaic Self-consumption using Domestic Hot Water Systems

    Directory of Open Access Journals (Sweden)

    Ângelo Casaleiro

    2018-06-01

    Full Text Available Electrified domestic hot water systems, being deferrable loads, are an important demand side management tool and thus have the potential to enhance photovoltaic self-consumption. This study addresses the energy and economic performance of photovoltaic self-consumption by using a typical Portuguese dwelling. Five system configurations were simulated: a gas boiler (with/without battery and an electric boiler (without demand management and with genetic and heuristic optimization. A sensitivity analysis on photovoltaic capacity shows the optimum photovoltaic sizing to be in the range 1.0 to 2.5 kWp. The gas boiler scenario and the heuristic scenario present the best levelized cost of energy, respectively, for the lower and higher photovoltaic capacities. The use of a battery shows the highest levelized cost of energy and the heuristic scenario shows the highest solar fraction (56.9%. Results also highlight the great potential on increasing photovoltaic size when coupled with electrified domestic hot water systems, to accommodate higher solar fractions and achieve lower costs, through energy management.

  2. Solar heating and hot water system installed at Municipal Building complex, Abbeville, South Carolina

    Science.gov (United States)

    1979-01-01

    Information on the solar energy system installed at the new municipal building for the City of Abbeville, SC is presented, including a description of solar energy system and buildings, lessons learned, and recommendations. The solar space heating system is a direct air heating system. The flat roof collector panel was sized to provide 75% of the heating requirement based on an average day in January. The collectors used are job-built with two layers of filon corrugated fiberglass FRP panels cross lapped make up the cover. The storage consists of a pit filled with washed 3/4 in - 1 1/2 in diameter crushed granite stone. The air handler includes the air handling mechanism, motorized dampers, air circulating blower, sensors, control relays and mode control unit. Solar heating of water is provided only those times when the hot air in the collector is exhausted to the outside.

  3. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  4. Development of hot water supply system for a small district heating reactor

    International Nuclear Information System (INIS)

    Murase, Toshihiko; Narabayashi, Tadashi; Shimazu, Yoichiro

    2007-01-01

    On the earth, there are many environmental problems. For example, rapid increase of world population causes the enormous consumption of fossil fuel and emission of CO 2 into the global air. Now, mankaind faced to deal with these serious problems. One solution for these problems is utilization of nuclear reactors. Currently, about 65% of thermal output of a nuclear reactor is thrown away to the sea or the atmosphere through a turbine condenser. When a hot-water pipeline from a nuclear plant will be constructed, the exhaust heat from nuclear reactor will able to be utilized. Therefore, authors began to study nuclear power plant system for district heating. This reactor is based on a PWR plant. Its thermal output is 10 MWth and its electrical output is 3.4 MW. The nuclear plant supply electricity and heat for 2000 to 3000 houses. The plant aim to supply all the energy for the adjacent pepole's life, for example, heat, electricity and hydrogen for fuel battery car. This total-energy supply system assumed to be built in Northern area such as Hokkaido in Japan. In order to develop an optimum thermal design method for the system, heat transport experiments and thermal-hydraulic calculations were carried out. Using a metal pipe covered with foam-polyurethane thermal insulator, feed-water temperature and return-water temperature was measured to evaluate heat loss. As the result, the heat loss from the hot-water temperature was very little. The thermal-hydraulic calculation method was verified and applied to actual pipeline size calculation. The result of heat loss calculation will be 0.2degC/5 km. considering these results, the best pipe specification was obtained. (author)

  5. Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production

    International Nuclear Information System (INIS)

    Pei Gang; Fu Huide; Ji Jie; Chow Tintai; Zhang Tao

    2012-01-01

    Highlights: ► A novel heat pipe photovoltaic/thermal system with freeze protection was proposed. ► A detailed annual simulation model for the HP-PV/T system was presented. ► Annual performance of HP-PV/T was predicted and analyzed under different condition. - Abstract: Heat-pipe photovoltaic/thermal (HP-PV/T) systems can simultaneously provide electrical and thermal energy. Compared with traditional water-type photovoltaic/thermal systems, HP-PV/T systems can be used in cold regions without being frozen with the aid of a carefully selected heat-pipe working fluid. The current research presents a detailed simulation model of the HP-PV/T system. Using this model, the annual electrical and thermal behavior of the HP-PV/T system used in three typical climate areas of China, namely, Hong Kong, Lhasa, and Beijing, are predicted and analyzed. Two HP-PV/T systems, with and without auxiliary heating equipment, are studied annually under four different kinds of hot-water load per unit collecting area (64.5, 77.4, 90.3, and 103.2 kg/m 2 ).

  6. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  7. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  8. Design and installation of a hot water layer system at the Tehran research reactor

    Directory of Open Access Journals (Sweden)

    Mirmohammadi Sayedeh Leila

    2013-01-01

    Full Text Available A hot water layer system (HWLS is a novel system for reducing radioactivity under research reactor containment. This system is particularly useful in pool-type research reactors or other light water reactors with an open pool surface. The main purpose of a HWLS is to provide more protection for operators and reactor personnel against undesired doses due to the radio- activity of the primary loop. This radioactivity originates mainly from the induced radioactivity contained within the cooling water or probable minute leaks of fuel elements. More importantly, the bothersome radioactivity is progressively proportional to reactor power and, thus, the HWLS is a partial solution for mitigating such problems when power upgrading is planned. Following a series of tests and checks for different parameters, a HWLS has been built and put into operation at the Tehran research reactor in 2009. It underwent a series of comprehensive tests for a period of 6 months. Within this time-frame, it was realized that the HWLS could provide a better protection for reactor personnel against prevailing radiation under containment. The system is especially suitable in cases of abnormality, e. g. the spread of fission products due to fuel failure, because it prevents the mixing of pollutants developed deep in the pool with the upper layer and thus mitigates widespread leakage of radioactivity.

  9. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...

  10. ACCOUNTING FOR NONUNIFORMITY OF WATER CONSUMPTION IN THE EXHAUST AIR HEAT RECLAMATION SYSTEMS FOR HOT WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Samarin Oleg Dmitrievich

    2017-03-01

    Full Text Available This article is devoted to assessment of the influence of variation of daily hot water consumption on the predicted energy effect by using heat recovery of exhaust air in typical exhaust ventilation systems of the most commonly used flat buildings during their switch to the mechanical induction for the pre-heating of water for hot water supply. It outlines the general principle of the organization of this method of energy saving and presents the basic equations of heat transfer in the heat exchanger. The article proposes a simplified method of accounting for changes in the heat transfer coefficient of air-to-water heat exchanger with fluctuations of water demand using existing dependencies for this coefficient from the rate flow of heating and heated fluid through the device. It presents observations to identify the parameters of the real changes of water consumption during the day with the main quantitative characteristics of normally distributed random variables. Calculation of thermal efficiency of the heat exchange equipment using dimensionless parameters through the number of heat transfer under the optimal opposing scheme of fluid motion is completed under conditions of variable water flow rate for the type residential building of the П3-1/16 series using the Monte Carlo method for numerical modeling of stochastic processes. The estimation of the influence of fluctuation of the current water consumption on the instantaneous thermal efficiency factor of the heat exchanger and the total energy consumption of the building is given, and it is shown that the error of said calculation using average daily parameters is within the margin of usual engineering calculation.

  11. High pressure, low pressure and hot water heating systems in hospitals. Hochdruck-, Niederdruck- und Warmwasserheizungsanlagen im Krankenhaus

    Energy Technology Data Exchange (ETDEWEB)

    Riedle, K [H. Riedle GmbH, Wiesbaden (Germany)

    1994-07-01

    In hospital nowadays the limitation of the use of steam boilers and their direct supply network to the possible minimum is aimed at when the heating system is exchanged or retrofitted. Independent of the fact whether high pressure or low pressure steam or hot water is used the optimum water treatment should be carried out with a minimum of chemical substances. Here hydroquinone, neutralizing amines, carbohydrazide, sodium sulphite and tannins can be used. The dimensioning of hot water heating circuits is shown with examples. (BWI)

  12. Experimental and simulation validation of ABHE for disinfection of Legionella in hot water systems

    International Nuclear Information System (INIS)

    Altorkmany, Lobna; Kharseh, Mohamad; Ljung, Anna-Lena; Staffan Lundström, T.

    2017-01-01

    Highlights: • ABHE system can supply a continues thermal treatment of water with saving energy. • Mathematical and experimental validation of ABHE performance are presented. • EES-based model is developed to simulate ABHE system. • Energy saving by ABHE is proved for different initial working parameters. - Abstract: The work refers to an innovative system inspired by nature that mimics the thermoregulation system that exists in animals. This method, which is called Anti Bacteria Heat Exchanger (ABHE), is proposed to achieve continuous thermal disinfection of bacteria in hot water systems with high energy efficiency. In particular, this study aims to demonstrate the opportunity to gain energy by means of recovering heat over a plate heat exchanger. Firstly, the thermodynamics of the ABHE is clarified to define the ABHE specification. Secondly, a first prototype of an ABHE is built with a specific configuration based on simplicity regarding design and construction. Thirdly, an experimental test is carried out. Finally, a computer model is built to simulate the ABHE system and the experimental data is used to validate the model. The experimental results indicate that the performance of the ABHE system is strongly dependent on the flow rate, while the supplied temperature has less effect. Experimental and simulation data show a large potential for saving energy of this thermal disinfection method by recovering heat. To exemplify, when supplying water at a flow rate of 5 kg/min and at a temperature of 50 °C, the heat recovery is about 1.5 kW while the required pumping power is 1 W. This means that the pressure drop is very small compared to the energy recovered and consequently high saving in total cost is promising.

  13. Thermal performance of small solar domestic hot water systems in theory, in the laboratory and in practice

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    for poor thermal performances of systems tested in practice are given. Based on theoretical calculations the negative impact on the thermal performance, due to a large number of different parameter variations are given. Recommendations for future developments of small solar domestic hot water systems...

  14. A gas production system from methane hydrate layers by hot water injection and BHP control with radial horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, T.; Ono, S.; Iwamoto, A.; Sugai, Y.; Sasaki, K. [Kyushu Univ., Fukuoka, Fukuoka (Japan)

    2010-07-01

    Reservoir characterization of methane hydrate (MH) bearing turbidite channel in the eastern Nankai Trough, in Japan has been performed to develop a gas production strategy. This paper proposed a gas production system from methane hydrate (MH) sediment layers by combining the hot water injection method and bottom hole pressure control at the production well using radial horizontal wells. Numerical simulations of the cylindrical homogeneous MH layer model were performed in order to evaluate gas production characteristics by the depressurization method with bottom hole pressure control. In addition, the effects of numerical block modeling and averaging physical properties of MH layers were presented. According to numerical simulations, combining the existing production system with hot water injection and bottom hole pressure control results in an outward expansion of the hot water chamber from the center of the MH layer with continuous gas production. 10 refs., 15 figs.

  15. Impact of chlorinated disinfection on copper corrosion in hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J. Castillo [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France); Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Hamdani, F. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Creus, J., E-mail: jcreus@univ-lr.fr [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Touzain, S. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Correc, O. [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France)

    2014-09-30

    Highlights: • Impact of disinfectant treatment on the durability of copper pipes. • Synergy between disinfectant concentration and temperature. • Pitting corrosion of copper associated to the corrosion products formation on copper. - Abstract: In France, hot water quality control inside buildings is occasionally ensured by disinfection treatments using temperature increases or addition of sodium hypochlorite (between 0.5 ppm and 1 ppm residual free chlorine). This disinfectant is a strong oxidiser and it could interact with metallic pipes usually used in hot water systems. This work deals with the study of the impact of these treatments on the durability of copper pipes. The objective of this work was to investigate the influence of sodium hypochlorite concentration and temperature on the copper corrosion mechanism. Copper samples were tested under dynamic and static conditions of ageing with sodium hypochlorite solutions ranging from 0 to 100 ppm with temperature at 50 °C and 70 °C. The efficiency of a corrosion inhibitor was investigated in dynamic conditions. Visual observations and analytical analyses of the internal surface of samples was studied at different ageing duration. Corrosion products were characterised by X-ray diffraction and Raman spectroscopy. Temperature and disinfectant were found to considerably affect the copper corrosion mechanism. Surprisingly, the corrosiveness of the solution was higher at lower temperatures. The temperature influences the nature of corrosion products. The protection efficiency is then strongly depend on the nature of the corrosion products formed at the surface of copper samples exposed to the aggressive solutions containing different concentration of disinfectant.

  16. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  17. System design package for SIMS prototype system 4, solar heating and domestic hot water

    Science.gov (United States)

    1978-01-01

    The system consisted of a modular designed prepackaged solar unit, containing solar collectors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping, and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system were packaged for evaluation.

  18. Optimization of China's centralized domestic hot water system by applying Danish elements

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric

    2014-01-01

    Regardless of where they are in the world, people depend on a reliable and sufficient supply of domestic hot water (DHW) for daily use. Some countries that have district heating (DH) infrastructure, such as Denmark and China, combine spacing heating (SH) and DHW together, with the aim of having...

  19. Justify of implementation of a hot water layer system in swimming pool research reactor IEA-R1m

    International Nuclear Information System (INIS)

    Toyoda, Eduardo Yoshio; Gordon, Ana Maria Pinho Leite; Sordi, Gian-Maria A.A.

    2001-01-01

    The IPEN/CNEN-SP has a swimming pool research reactor (IEA-R1m) in operation since 1957 at 2 MW. In 1998, after some modifications, its nominal power increased to 5 MW. Among these modifications some adaptations had to be accomplished in the radiological protection and operational procedure. The present work aim to study the need of implementation of a hot water layer in order to reduce the dose in the workers in the vicinity of the reactor swimming pool. Applying the principles of radioprotection optimization, it was concluded that the decision of the construction of one hot water layer system in the reactor swimming pool, is not necessary. (author)

  20. DESIGN AND ANALYSIS OF THE SNS CCL HOT MODEL WATER COOLING SYSTEM USING THE SINDA/FLUINT NETWORK MODELING TOOL

    Energy Technology Data Exchange (ETDEWEB)

    C. AMMERMAN; J. BERNARDIN

    1999-11-01

    This report presents results for design and analysis of the hot model water cooling system for the Spallation Neutron Source (SNS) coupled-cavity linac (CCL). The hot model, when completed, will include segments for both the CCL and coupled-cavity drift-tube linac (CCDTL). The scope of this report encompasses the modeling effort for the CCL portion of the hot model. This modeling effort employed the SINDA/FLUINT network modeling tool. This report begins with an introduction of the SNS hot model and network modeling using SINDA/FLUINT. Next, the development and operation of the SINDA/FLUINT model are discussed. Finally, the results of the SINDA/FLUINT modeling effort are presented and discussed.

  1. FY1999 Meeting of The Society of Heating, Air-Conditioning and Sanitary Engineering of Japan. Hot water supply system; 1999 nendo gakujutsu koenkai gaiyo. Kyuto

    Energy Technology Data Exchange (ETDEWEB)

    Oze, H. [Toyo University, Tokyo (Japan)

    1999-12-05

    G-5 and 6 measure and investigate actual state of use of hot water supply systems in dormitories used by persons living alone without their families and by unmarried persons to collect fundamental data. G-5 considers how hot water is used, by making a questionnaire survey on the subject houses, and identifies the consumption trend of heat, water and hot water in the hot water supply systems as a whole. G-6 selected eleven houses from among the houses discussed in the previous report to identify the trend of use of hot water by each house. Also, quantity of hot water used in every day of the week is estimated. G-7 discusses methods for estimating water temperatures at faucets of water pipes from the water sources. This is intended to raise the accuracy of tap water temperature conversion coefficient by districts used for calculating estimated heat quantity as a parameter 'hot water supply energy consumption coefficient' to evaluate energy saving performance of a hot water supply facility. G-8 performs numerical simulations changing different parameters in the hot water supply piping system by using a heat loss calculation model for the existing household hot water supply piping. It executes evaluation on energy conservation performance of each model. G-9 estimates efficiency of instantaneous household gas hot water supply devices, not only on thermal efficiency of devices during steady state combustion, but also on non-steady state such as start-up, and discusses methods to derive actual efficiency by using calculations. (translated by NEDO)

  2. Investigation of a solar heating system for space heating and domestic hot water supply for Sol&Træ A.m.b.a

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility.......A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility....

  3. Investigation of a low flow solar heating system for space heating and domestic hot water supply for Aidt Miljø A/S

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1997-01-01

    A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility.......A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility....

  4. The effect of payback time on solar hot water systems diffusion: the case of Greece

    International Nuclear Information System (INIS)

    Sidiras, Dimitrios K.; Koukios, Emmanuel G.

    2005-01-01

    The effect of the payback time on the spectacular diffusion of solar hot water systems (SHWS) in Greece was investigated in this work. The time pattern of the diffusion of flat plate solar collectors since its first appearance in 1974 shows that the diffusion rate grew exponentially at first, with the annual sales figure reaching 185,000 m 2 in the mid-80s. A rapid decline of the growth rate, down to the present annual sales level followed. By the year 2000, more than 2,000,000 m 2 of collectors had been installed. The economic behaviour of the main type of users (households and hotels) was found to have undergone two stages: in one of them, 1978-2002, the change of sales is in agreement with a change in economic feasibility, measured by payback time, while in the other, the early growth stage, 1974-1977, the demand grew despite a negative economic trend, obviously because of non-economic factors. The role of tax deduction, which is the most influential incentive, has been rather instrumental in the growth period 1978-1989, but lost its significance thereafter. This incentive has been withdrawn since the beginning of 1993

  5. The effect of payback time on solar hot water systems diffusion: the case of Greece

    International Nuclear Information System (INIS)

    Sidiras, D.K.; Koukios, E.G.

    2005-01-01

    The effect of the payback time on the spectacular diffusion of solar hot water systems (SHWS) in Greece was investigated in this work. The time pattern of the diffusion of flat plate solar collectors since its first appearance in 1974 shows that the diffusion rate grew exponentially at first, with the annual sales figure reaching 185,000 m 2 in the mid-80s. A rapid decline of the growth rate, down to the present annual sales level followed. By the year 2000, more than 2,000,000 m 2 of collectors had been installed. The economic behaviour of the main type of users (households and hotels) was found to have undergone two stages: in one of them, 1978-2002, the change of sales is in agreement with a change in economic feasibility, measured by payback time, while in the other, the early growth stage, 1974-1977, the demand grew despite a negative economic trend, obviously because of non-economic factors. The role of tax deduction, which is the most influential incentive, has been rather instrumental in the growth period 1978-1989, but lost its significance thereafter. This incentive has been withdrawn since the beginning of 1993. [Author

  6. Longevity characteristics of flat solar water-heating collectors in hot-water-supply systems. Part 1. Procedure for calculating collector thermal output

    International Nuclear Information System (INIS)

    Avezova, N.R.; Ruziev, O. S.; Suleimanov, Sh. I.; Avezov, R. R.; Vakhidov, A.

    2013-01-01

    A procedure for calculating longevity indices (daily and monthly variations and, hence, annual thermal output) of flat solar water-heating collectors, amount of conditional fuel saved per year by using solar energy, and cost of solar fuel and thermal energy generated in hot-water-supply systems is described. (authors)

  7. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  8. Impact on a utility, utility customers and the environment of an ensemble of solar domestic hot water systems

    International Nuclear Information System (INIS)

    Cragan, K.E.; Klein, S.A.; Beckman, W.A.

    1995-01-01

    The benefits of the installation of a large number of solar domestic hot water (SDHW) systems are identified and quantified. The benefits of SDHW systems include reduced energy use, reduced electrical demand, and reduced pollution. The avoided emissions, capacity contribution, energy and demand savings were evaluated using the power generation schedules, emissions data and annual hourly load profiles from a Wisconsin utility. It is shown that each six square meter solar water heater system can save annually: 3,560 kWh of energy, 0.66 kW of peak demand, and over four tons of pollution

  9. Test and evaluation of Fern Engineering Company, Incorporated, solar heating and hot water system. [structural design criteria and system effectiveness

    Science.gov (United States)

    1979-01-01

    Tests, test results, examination and evaluation by Underwriters Laboratory, Inc., of a single family solar heating and hot water system consisting of collector, storage, control, transport, and data acquisition are presented. The structural characteristics of the solar flat plate collectors were evaluated according to snow and wind loads indicated in various building codes to determine their suitability for use both Michigan and Pennsylvania where prototype systems were installed. The flame spread classification of the thermal insulation is discussed and the fire tests conducted on components are described. The operation and dielectrics withstand tests of the energy transport module indicate the module is capable of rated air delivery. Tests of the control panel indicate the relay coil temperatures exceed the temperature limits allowed for the insulating materials involved.

  10. Experimental test of a hot water storage system including a macro-encapsulated phase change material (PCM)

    Science.gov (United States)

    Mongibello, L.; Atrigna, M.; Bianco, N.; Di Somma, M.; Graditi, G.; Risi, N.

    2017-01-01

    Thermal energy storage systems (TESs) are of fundamental importance for many energetic systems, essentially because they permit a certain degree of decoupling between the heat or cold production and the use of the heat or cold produced. In the last years, many works have analysed the addition of a PCM inside a hot water storage tank, as it can allow a reduction of the size of the storage tank due to the possibility of storing thermal energy as latent heat, and as a consequence its cost and encumbrance. The present work focuses on experimental tests realized by means of an indoor facility in order to analyse the dynamic behaviour of a hot water storage tank including PCM modules during a charging phase. A commercial bio-based PCM has been used for the purpose, with a melting temperature of 58°C. The experimental results relative to the hot water tank including the PCM modules are presented in terms of temporal evolution of the axial temperature profile, heat transfer and stored energy, and are compared with the ones obtained by using only water as energy storage material. Interesting insights, relative to the estimation of the percentage of melted PCM at the end of the experimental test, are presented and discussed.

  11. Structural evaluation report of piping and support structure for design-changed hot-water layer system

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    1998-05-01

    After hot-water layer system had been installed, the verification tests to reduce the radiation level at the top of reactor pool were performed many times. The major goal of this report is to assess the structural integrity on the piping and the support structures of design-changed hot-water layer system. The piping stress analysis was performed by using ADLPIPE program for the pump suction line and the pump discharge line subjected to dead weight, pressure, thermal expansion and seismic loadings. The stress analysis of the support structure was carried out using the reaction forces obtained from the piping stress analysis. The results of structural evaluation for the pipings and the support structures showed that the structural acceptance criteria were satisfied, in compliance with ASME, subsection ND for the piping and subsection NF for the support structures. Therefore based on the results of the analysis and the design, the structural integrity on the piping and the support structures of design-changed hot-water system was proved. (author). 9 refs., 9 tabs., 14 figs

  12. Simulation of the solar hot water systems diffusion: the case of Greece

    International Nuclear Information System (INIS)

    Sidiras, D.; Koukios, E.

    2004-01-01

    The main object of this paper is the documentation and study of the main factors behind the spectacular diffusion of solar energy use for domestic hot water production in Greece. The time pattern of the diffusion of flat-plate solar collectors since its 'out of the blue' first appearance in 1974, shows that the diffusion rate grew exponentially at first, with the annual sales figure reaching 91,000 m 2 by 1980. A rate slow down in the early 1980s was followed by a brief period of explosive growth, with the annual sales figure reaching its peak value of more than 185,000 m 2 in mid-1980s. A rapid decline of the growth rate down to the present annual sales level followed. The installed solar collectors pattern has the characteristic form of an S-shape curve, representing the overall penetration of the flat-plate solar collector use for domestic hot water production in the Greek economy and society. This evolution has gone through an inflection point around 1987, i.e. at a time when about 1,000,000 m 2 of collectors had already been installed. By the year 2000, about 2,070,000 m 2 of collectors had been installed, with a tendency to level off by 2010, unless some the present conditions determining this phenomenon change. (author)

  13. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  14. Heavy metal accumulation in hot water tanks in a region experiencing coal waste pollution and comparison between regional water systems

    Energy Technology Data Exchange (ETDEWEB)

    Wigginton, A.; McSpirit, S.; Sims, C.D. [University of Kentucky, Lexington, KY (United States). Dept. of Biology

    2007-10-15

    In 2000, a coal slurry impoundment failure in Martin County, Kentucky, caused concerns about contaminants entering municipal water supplies. Water samples taken from impacted and reference area hot water tanks often exceeded US EPA drinking water guidelines. Concentrations of As, Cd, Cr, Cu, Fe, Mn, and Pb had maxima of 119; 51.9; 154; 170,000; 976,000; 8,710; and 12,700 {mu}g/L, respectively. Significantly different metal accumulation between counties indicated this procedure's utility for assessing long-term municipal water quality. Correlations between metal concentrations were strong and consistent for As, Ba, Cd, Cr, Co, and Fe indicating that some metals accumulate proportionally with others.

  15. BC SEA Solar Hot Water Acceleration project

    Energy Technology Data Exchange (ETDEWEB)

    Harris, N.C. [BC Sustainable Energy Association, Victoria, BC (Canada)

    2005-07-01

    Although solar hot water heating is an environmentally responsible technology that reduces fossil fuel consumption and helps mitigate global climate change, there are many barriers to its widespread use. Each year, domestic water heating contributes nearly 6 million tonnes of carbon dioxide towards Canada's greenhouse gas emissions. The installation of solar water heaters can eliminate up to 2 tonnes of carbon dioxide emissions per household. The BC SEA Solar Hot Water Acceleration project was launched in an effort to demonstrate that the technology has the potential to be widely used in homes and businesses across British Columbia. One of the main barriers to the widespread use of solar hot water heating is the initial cost of the system. Lack of public awareness and understanding of the technology are other barriers. However, other jurisdictions around the world have demonstrated that the use of renewables are the product of conscious policy decisions, including low-cost financing and other subsidies that have created demand for these technologies. To this end, the BC SEA Solar Hot Water Acceleration project will test the potential for the rapid acceleration of solar water heating in pilot communities where barriers are removed. The objective of the project is to install 100 solar water systems in homes and 25 in businesses and institutions in communities in British Columbia by July 2007. The project will explore the financial barriers to the installation of solar hot water systems and produce an action plan to reduce these barriers. In addition to leading by example, the project will help the solar energy marketplace, mitigate climate change and improve energy efficiency.

  16. Retrofitted Solar Domestic Hot Water Systems for Swedish Single-Family Houses—Evaluation of a Prototype and Life-Cycle Cost Analysis

    Directory of Open Access Journals (Sweden)

    Luis Ricardo Bernardo

    2016-11-01

    Full Text Available According to recent technology road maps, system cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. Previous studies have investigated such retrofitting, using theoretical simulations and laboratory tests, but no actual installations were made and tested in practice. This article describes the installation, measured performance and cost effectiveness of a retrofitting solution that converts existing domestic hot water heaters to a solar domestic hot water system. The measured performance is characterised by the monthly and annual solar fractions. The cost effectiveness is evaluated by a life-cycle cost analysis, comparing the retrofitted system to a conventional solar domestic hot water system and the case without any solar heating system. Measurements showed that approximately 50% of the 5000 kWh/year of domestic hot water consumption was saved by the retrofitted system in south Sweden. Such savings are in agreement with previous estimations and are comparable to the energy savings when using a conventional solar domestic hot water system. The life-cycle cost analysis showed that, according to the assumptions and given climate, the return on investment of the retrofitted system is approximately 17 years, while a conventional system does not reach profitability during its lifetime of 25 years.

  17. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  18. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  19. Alternative solutions for inhibiting Legionella in domestic hot water systems based on low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2015-01-01

    Abstract District heating is a cost-effective way of providing heat to high heat density areas. Low-temperature district heating (LTDH) is a promising way to make district heating more energy-efficient and adaptable to well-insulated buildings with low heating demand in the future. However, one c...... systems. They have the additional benefit of reducing the heat loss of the hot water system. The alternative design solutions both enrich our options for water sanitation and improve the energy efficiency of our energy systems....... concern is the multiplication of Legionella due to insufficient temperature elevation with low-temperature supply. The aim of this study was to find optimal solutions to this dilemma for specific situations. The solutions were of two types: alternative system designs and various methods of sterilization...... methods, thermal treatment, ionization, chlorine, chlorine dioxide, ultraviolet light, photocatalysis and filtration are discussed as the most frequently used methods in hot water systems. The characteristics, efficacy and operation methods of LTDH using the solutions investigated are documented...

  20. Potential Energy Flexibility for a Hot-Water Based Heating System in Smart Buildings Via Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Ahmed, Awadelrahman M. A.; Zong, Yi; Mihet-Popa, Lucian

    2017-01-01

    This paper studies the potential of shifting the heating energy consumption in a residential building to low price periods based on varying electricity price signals suing Economic Model Predictive Control strategy. The investigated heating system consists of a heat pump incorporated with a hot...... water tank as active thermal energy storage, where two optimization problems are integrated together to optimize both the heat pump electricity consumption and the building heating consumption. A sensitivity analysis for the system flexibility is examined. The results revealed that the proposed...

  1. A run-around heat exchanger system to improve the energy efficiency of a home appliance using hot water

    International Nuclear Information System (INIS)

    Park, Jae Sung; Jacobi, Anthony M.

    2009-01-01

    A significant portion of the energy consumed by many home appliances using hot water is used to heat cold supply water. Such home appliances generally are supplied water at a temperature lower than the ambient temperature, and the supply water is normally heated to its maximum operating temperature, often using natural gas or an electrical heater. In some cases, it is possible to pre-heat the supply water and save energy that would normally be consumed by the natural gas or electrical heater. In order to save the energy consumed by an appliance using water heater, a run-around heat exchanger system is used to transfer heat from the ambient to the water before an electrical heater is energized. A simple model to predict the performance of this system is developed and validated, and the model is used to explore design and operating issues relevant to the run-around heat exchanger system. Despite the additional power consumption by the fan and pump of the run-around heat exchanger system, the experimental data and analysis show that for some systems the overall energy efficiency of the appliance can be improved, saving about 6% of the energy used by the baseline machine.

  2. Environmental performance evaluation of hot water supplying systems for domestic use

    OpenAIRE

    Luiz Alexandre Kulay; Rafael Selvaggio Viñas; Ivanildo Hespanhol

    2015-01-01

    The consumption profile of Brazilian citizens is changing as alternatives are sought to reduce costs. A major focus of this change of attitude involves expenditures for electricity, particularly in relation to water heating systems. The manufacturers of these devices add value to their products beyond price. A usual strategy is the enhancement of the environmental performance of the product. This study compared four water heating systems: electric, gas, solar and hybrid, using an environmenta...

  3. Retrofitting Domestic Hot Water Heaters for Solar Water Heating Systems in Single-Family Houses in a Cold Climate: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Björn Karlsson

    2012-10-01

    Full Text Available One of the biggest obstacles to economic profitability of solar water heating systems is the investment cost. Retrofitting existing domestic hot water heaters when a new solar hot water system is installed can reduce both the installation and material costs. In this study, retrofitting existing water heaters for solar water heating systems in Swedish single-family houses was theoretically investigated using the TRNSYS software. Four simulation models using forced circulation flow with different system configurations and control strategies were simulated and analysed in the study. A comparison with a standard solar thermal system was also presented based on the annual solar fraction. The simulation results indicate that the retrofitting configuration achieving the highest annual performance consists of a system where the existing tank is used as storage for the solar heat and a smaller tank with a heater is added in series to make sure that the required outlet temperature can be met. An external heat exchanger is used between the collector circuit and the existing tank. For this retrofitted system an annual solar fraction of 50.5% was achieved. A conventional solar thermal system using a standard solar tank achieves a comparable performance for the same total storage volume, collector area and reference conditions.

  4. Efficacy of thermal treatment and copper-silver ionization for controlling Legionella pneumophila in high-volume hot water plumbing systems in hospitals.

    Science.gov (United States)

    Mietzner, S; Schwille, R C; Farley, A; Wald, E R; Ge, J H; States, S J; Libert, T; Wadowsky, R M; Miuetzner, S

    1997-12-01

    Thermal treatment and copper-silver ionization are often used for controlling Legionella pneumophila in high-volume hospital plumbing systems, although the comparative efficacies of these measures in high-volume systems are unknown. Thermal treatment of a hot water circuit was accomplished by flushing hot water (> 60 degrees C) through distal fixtures for 10 minutes. Copper-silver ionization was conducted in three circuits by installing units into return lines immediately upstream from hot water tanks. Recovery rates of L. pneumophila were monitored by culturing swab samples from faucets. Concentrations of copper and silver in water samples were determined by atomic absorption spectrophotometry. Four heat-flush treatments failed to provide long-term control of L. pneumophila. In contrast, ionization treatment reduced the rate of recovery of L. pneumophila from 108 faucets from 72% to 2% within 1 month and maintained effective control for at least 22 months. Only three samples (1.9%) of hot water from faucets exceeded Environmental Protection Agency standards for silver, and none exceeded the standards for copper. Of 24 samples obtained from hot water tanks, 42% and 50% exceeded the silver and copper standards, respectively. Copper-silver ionization effectively controls L. pneumophila in high-volume plumbing systems and is superior to thermal treatment; however, high concentrations of copper and silver can accumulate at the bottom of hot water tanks.

  5. A New System to Estimate and Reduce Electrical Energy Consumption of Domestic Hot Water in Spain

    Directory of Open Access Journals (Sweden)

    Alberto Gutierrez-Escolar

    2014-10-01

    Full Text Available Energy consumption rose about 28% over the 2001 to 2011 period in the Spanish residential sector. In this environment, domestic hot water (DHW represents the second highest energy demand. There are several methodologies to estimate DHW consumption, but each methodology uses different inputs and some of them are based on obsolete data. DHW energy consumption estimation is a key tool to plan modifications that could enhance this consumption and we decided to update the methodologies. We studied DHW consumption with data from 10 apartments in the same building during 18 months. As a result of the study, we updated one chosen methodology, adapting it to the current situation. One of the challenges to improve efficiency of DHW use is that most of people are not aware of how it is consumed in their homes. To help this information to reach consumers, we developed a website to allow users to estimate the final electrical energy needed for DHW. The site uses three estimation methodologies and chooses the best fit based on information given by the users. Finally, the application provides users with recommendations and tips to reduce their DHW consumption while still maintaining the desired comfort level.

  6. Occurrence of Legionella in hot water systems of single-family residences in suburbs of two German cities with special reference to solar and district heating.

    Science.gov (United States)

    Mathys, Werner; Stanke, Juliane; Harmuth, Margarita; Junge-Mathys, Elisabeth

    2008-03-01

    A total of 452 samples from hot water systems of randomly selected single family residences in the suburbs of two German cities were analysed for the occurrence of Legionella. Technical data were documented using a standardized questionnaire to evaluate possible factors promoting the growth of the bacterium in these small plumbing systems. All houses were supplied with treated groundwater from public water works. Drinking water quality was within the limits specified in the German regulations for drinking water and the water was not chlorinated. The results showed that plumbing systems in private houses that provided hot water from instantaneous water heaters were free of Legionella compared with a prevalence of 12% in houses with storage tanks and recirculating hot water where maximum counts of Legionella reached 100,000 CFU/100ml. The presence of L. pneumophila accounted for 93.9% of all Legionella positive specimens of which 71.8% belonged to serogroup 1. The volume of the storage tank, interrupting circulation for several hours daily and intermittently raising hot water temperatures to >60 degrees C had no influence on Legionella counts. Plumbing systems with copper pipes were more frequently contaminated than those made of synthetic materials or galvanized steel. An inhibitory effect due to copper was not present. Newly constructed systems (water preparation had a marked influence. More than 50% of all houses using district heating systems were colonized by Legionella. Their significantly lower hot water temperature is thought to be the key factor leading to intensified growth of Legionella. Although hot water systems using solar energy to supplement conventional hot water supplies operate at temperatures 3 degrees C lower than conventional systems, this technique does not seem to promote proliferation of the bacterium. Our data show convincingly that the temperature of the hot water is probably the most important or perhaps the only determinant factor for

  7. Optimal operation by dynamic programming in a solar/electric hot-water system; Taiyonetsu/denryoku kyuto system no doteki keikakuho ni yoru saiteki un`yo

    Energy Technology Data Exchange (ETDEWEB)

    Edo, S; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    With regard to utilization of a solar/electric hot-water system, a discussion was given by using a dynamic programming method on operation of a system which minimizes power charge. The discussed system is an installation in a welfare facility accommodating 100 persons, where solar heat is stored in a heat storage tank from a heat collector, and utilized for hot water supply. If the solar heat is insufficient for required hot water quantity, the water is heated by using an electric heater. The discussion compared the system operation using the dynamic programming method with the following two systems: the operation method 1, which does not utilize insolation forecast and the operation method 2, in which insolation forecast is utilized and late-night electric power is utilized for heating water in shortage. As a result of the calculation, the operation using the dynamic programming method conducts heat storage by utilizing the late-night power even if insolation is sufficient in winter in order to suppress heating by utilizing late-night power for days with less insolation. Thus, suppression is given on excessive utilization of day-time power and on rise in annual maximum power demand. It was found that the present system reduces power consumption by 37.7% when compared with the operation method 1, and 22.7% when compared even with the operation method 2. 3 refs., 5 figs., 3 tabs.

  8. Environmental performance evaluation of hot water supplying systems for domestic use

    Directory of Open Access Journals (Sweden)

    Luiz Alexandre Kulay

    2015-04-01

    Full Text Available The consumption profile of Brazilian citizens is changing as alternatives are sought to reduce costs. A major focus of this change of attitude involves expenditures for electricity, particularly in relation to water heating systems. The manufacturers of these devices add value to their products beyond price. A usual strategy is the enhancement of the environmental performance of the product. This study compared four water heating systems: electric, gas, solar and hybrid, using an environmental perspective. The systems were operated under similar conditions. The analysis was conducted by using the Life Cycle Assessment technique, for the impact categories of Climate Change, Acidification Eutrophication and Water, Metal and Fossil Resource depletion. The results indicated that the electric and hybrid systems are less harmful to the environment for all the impact categories under analysis. On the other hand, the gas system provided the worst performance of the group. The solar heating system was penalized due to its dependence on electricity to operate under the conditions in which the study was conducted.

  9. Avoidance of damages in hot water heating systems. Part 1. Corrosion and hot water - locating; Vermeidung von Schaeden in Warmwasserheizungen. Teil 1. Korrosion und Heizungswasser - eine Standortbestimmung

    Energy Technology Data Exchange (ETDEWEB)

    Lapp, I.; Hannemann, M.

    2003-01-01

    In the following article the most important working fluids are presented, their influence on heating systems as also the most important water treatment possibilities are shown. (GL) [German] Praktisch in jeder Heizung wird Wasser als Waermetraeger verwendet. Aus diesem Grunde ist es in jedem Fall ratsam, die Eigenschaften dieses speziellen Waermetraegers, seine Wechselwirkungen mit den Heizungswerkstoffen und andere Besonderheiten zu kennen. In dem folgenden Artikel werden die wichtigsten Eigenschaften gebraeuchlicher Waesser und deren Auswirkungen auf die Heizungsanlagen dargelegt sowie die wichtigsten Behandlungsverfahren vorgestellt. (orig.)

  10. Heating and Domestic Hot Water Systems in Buildings Supplied by Low-Temperature District Heating

    DEFF Research Database (Denmark)

    Brand, Marek

    solutions simply redirect the bypassed water back to the DH network without additional cooling, but bypassed water can instead be redirected to floor heating in the bathroom to be further cooled and thus reduce heat loss from the DH network while improving comfort for occupants and still ensure fast DHW...... increased risk of Legionella if the DH substation and DHW system are designed for the low-temperature supply conditions. To ensure the fast provision of DHW during non-heating periods, the supply service pipe should be kept warm, preferably with the bypass solution redirecting the bypass flow to bathroom...... temperature. To accord with the literature, the modelling of internal heat gains reflected the improved efficiency of equipment by reduction of value from 5W/m2 to 4.2W/m2, also modelled as intermittent heat gains based on a realistic week schedule. Furthermore, the indoor set-point temperature was increased...

  11. Retrofitting Conventional Electric Domestic Hot Water Heaters to Solar Water Heating Systems in Single-Family Houses—Model Validation and Optimization

    Directory of Open Access Journals (Sweden)

    Luis R. Bernardo

    2013-02-01

    Full Text Available System cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. In this study, the TRNSYS simulation models of the retrofitting solar thermal system were validated against measurements. Results show that the validated models are in good agreement with measurements. On an annual basis a deviation of 2.5% out of 1099 kWh was obtained between the auxiliary energy from results and from the simulation model for a complete system. Using the validated model a system optimization was carried out with respect to control strategies for auxiliary heating, heat losses and volume of auxiliary storage. A sensitivity analysis was carried out regarding different volumes of retrofitted hot water boiler, DHW profiles and climates. It was estimated that, with adequate improvements, extended annual solar fractions of 60%, 78% and 81% can be achieved for Lund (Sweden, Lisbon (Portugal and Lusaka (Zambia, respectively. The correspondent collector area was 6, 4 and 3 m2, respectively. The studied retrofitted system achieves a comparable performance with conventional solar thermal systems with the potential to reduce the investment cost.

  12. Numerical analysis and scale experiment design of the hot water layer system of the Brazilian Multipurpose Reactor (RMB reactor)

    International Nuclear Information System (INIS)

    Schweizer, Fernando Lage Araújo

    2014-01-01

    The Brazilian Multipurpose Reactor (RMB) consists in a 30 MW open pool research reactor and its design is currently in development. The RMB is intended to produce a neutron flux applied at material irradiation for radioisotope production and materials and nuclear fuel tests. The reactor is immersed in a deep water pool needed for radiation shielding and thermal protection. A heating and purifying system is applied in research reactors with high thermal power in order to create a Hot Water Layer (HWL) on the pool top preventing that contaminated water from the reactor core neighboring reaches its surface reducing the room radiation dose rate. This dissertation presents a study of the HWL behavior during the reactor operation first hours where perturbations due to the cooling system and pool heating induce a mixing flow in the HWL reducing its protection. Numerical simulations using the CFD code CFX 14.0 have been performed for theoretical dose rate estimation during reactor operation, for a 1/10 scaled down model using dimensional analysis and mesh testing as an initial verification of the commercial code application. Equipment and sensor needed for an experimental bench project were defined by the CFD numerical simulation. (author)

  13. Solar heating, cooling, and hot water systems installed at Richland, Washington

    Science.gov (United States)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  14. Thermal disinfection of hotels, hospitals, and athletic venues hot water distribution systems contaminated by Legionella species.

    Science.gov (United States)

    Mouchtouri, Varvara; Velonakis, Emmanuel; Hadjichristodoulou, Christos

    2007-11-01

    Legionella spp. (> or = 500 cfu liter(-1)) were detected in 92 of 497 water distribution systems (WDS) examined. Thermal disinfection was applied at 33 WDS. After the first and second application of the disinfection procedure, 15 (45.4%) and 3 (9%) positive for remedial actions WDS were found, respectively. Legionella pneumophila was more resistant to thermal disinfection than Legionella non-pneumophila spp. (relative risk [RR]=5.4, 95% confidence intervals [CI]=1-35). WDS of hotels with oil heater were more easily disinfected than those with electrical or solar heater (RR=0.4 95% CI=0.2-0.8). Thermal disinfection seems not to be efficient enough to eliminate legionellae, unless repeatedly applied and in combination with extended heat flushing, and faucets chlorine disinfection.

  15. Legionella contamination in hot water systems of hospitals, nursing homes, hotels, factories and spas in Tuscany-Italy

    Directory of Open Access Journals (Sweden)

    Antonella Lo Nostro

    2011-03-01

    Full Text Available

    Abstract Following the report of many cases of Legionnaires’ disease associated with accommodation facilities such as hotels, spas, workplaces, hospitals and nursing homes, we verified if Legionella pneumophila and Legionella spp. were present in some of those structures in Tuscany, in order to estimate the species and serogroups in circulation. Legionella pneumophila serogroup 1 (30.9% was the most frequently isolated species along with serogroups 3 (16.1% and 6 (13.3%; these three serogroups are identified, in literature, as those most responsible for Legionnaires’ disease (LD. Studying all analyzed structures, we found some parts of the water system where Legionella concentration was higher than 103CFU/L, indicated, in Italy, as the maximum admitted concentration value above which a decontamination treatment is necessary when one or more cases of healthcare-acquired Legionnaires’ disease are observed. Moreover disinfection is recommended in any case when counts exceed 104CFU/L.
    Consequently, in order to prevent cases of Legionnaires’ disease, a continuous surveillance of the water
    systems of all accommodation facilities is necessary, with particular attention to hospitals and nursing
    homes where immunocompromised patients lodge, so as to promptly estimate the presence of the pathogen and consequently plan the most suitable intervention activities. We concluded that, in any structure, a continuous surveillance and disinfecting treatment of water systems is necessary. Moreover, after any disinfection treatment the temperature of the hot water flowing in the system must be necessarily maintained near 51°C in order to minimize the probability of recontamination from Legionella and limit the
    risk of LD in consumers.

  16. Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE

    Directory of Open Access Journals (Sweden)

    Nutakki Tirumala Uday Kumar

    2017-04-01

    Full Text Available Water is the most desirable and sparse resource in Gulf cooperation council (GCC region. Utilization of point-of-use (POU water treatment devices has been gaining huge market recently due to increase in knowledge of urban population on health related issues over contaminants in decentralized water distribution networks. However, there is no foolproof way of knowing whether the treated water is free of contaminants harmful for drinking and hence reliance on certified bottled water has increased worldwide. The bottling process right from treatment to delivery is highly unsustainable due to huge energy demand along the supply chain. As a step towards sustainability, we investigated various ways of coupling of membrane distillation (MD process with solar domestic heaters for co-production of domestic heat and pure water. Performance dynamics of various integration techniques have been evaluated and appropriate configuration has been identified for real scale application. A solar combi MD (SCMD system is experimentally tested for single household application for production 20 L/day of pure water and 250 L/day of hot water simultaneously without any auxiliary heating device. The efficiency of co-production system is compared with individual operation of solar heaters and solar membrane distillation.

  17. Standard Guide for On-Site Inspection and Verification of Operation of Solar Domestic Hot Water Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This guide covers procedures and test methods for conducting an on-site inspection and acceptance test of an installed domestic hot water system (DHW) using flat plate, concentrating-type collectors or tank absorber systems. 1.2 It is intended as a simple and economical acceptance test to be performed by the system installer or an independent tester to verify that critical components of the system are functioning and to acquire baseline data reflecting overall short term system heat output. 1.3 This guide is not intended to generate accurate measurements of system performance (see ASHRAE standard 95-1981 for a laboratory test) or thermal efficiency. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine th...

  18. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...... loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tank....

  19. Solar-powered hot-air system

    Science.gov (United States)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  20. Distribution of sequence-based types of legionella pneumophila serogroup 1 strains isolated from cooling towers, hot springs, and potable water systems in China.

    Science.gov (United States)

    Qin, Tian; Zhou, Haijian; Ren, Hongyu; Guan, Hong; Li, Machao; Zhu, Bingqing; Shao, Zhujun

    2014-04-01

    Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n = 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons among L. pneumophila strains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmental L. pneumophila serogroup 1 isolates, similar to its prevalence in Japan and South Korea.

  1. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi

    2010-10-01

    Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

  2. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single household

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan

    2014-01-01

    In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit of deliver......In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit...... of delivering hot water for the household and returning the coldest fluid back to SOFC heat recovery heat-exchanger. A model of the SOFC system is developed to determine the energy required to meet the hourly average electric load of the residence. The model evaluates the amount of heat generated and the amount...... of heat used for thermal loads of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation is used to size the SOFC system and storage heat tank to provide energy for a small...

  3. Review of Various Solutions for avoiding critical levels of Legionella Bacteria in Domestic Hot Water System

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2013-01-01

    , electric boiler, compact heat exchanger, water filter, chlorine dioxide, Monochloramine, UV sterilization, copper and silver electrodes. The implementary conditions, effect, limits as well as economic performance of them are demonstrated. For buildings with complicated networks and large volume, chemical...

  4. Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama

    Science.gov (United States)

    1980-01-01

    The solar energy system installed at the Huntsville Senior Citizen Center is described. Detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are presented.

  5. Technical comparison of domestic hot water system which used in China and Denmark

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric

    2014-01-01

    and environmentally friendly energy-consumption system, such as Denmark and China. Nevertheless, the development of DHW networks in these two countries differs significantly. This article detailed the comparisons in technical aspect: common preparation methods of DHW through district heating was introduced in China...... and Denmark with the analysis on temperature level, hygienic situation of DHW system, circular system, flow capacity and heat metering....

  6. Domestic hot water storage: Balancing thermal and sanitary performance

    International Nuclear Information System (INIS)

    Armstrong, P.; Ager, D.; Thompson, I.; McCulloch, M.

    2014-01-01

    Thermal stratification within hot water tanks maximises the availability of stored energy and facilitates optimal use of both conventional and renewable energy sources. However, stratified tanks are also associated with the proliferation of pathogenic bacteria, such as Legionella, due to the hospitable temperatures that arise during operation. Sanitary measures, aimed at homogenising the temperature distribution throughout the tank, have been proposed; such measures reduce the effective energy storage capability that is otherwise available. Here we quantify the conflict that arises between thermodynamic performance and bacterial sterilisation within 10 real world systems. Whilst perfect stratification enhances the recovery of hot water and reduces heat losses, water samples revealed significant bacterial growth attributable to stratification (P<0.01). Temperature measurements indicated that users were exposed to potentially unsanitary water as a result. De-stratifying a system to sterilise bacteria led to a 19% reduction in effective hot water storage capability. Increasing the tank size to compensate for this loss would lead to an 11% increase in energy consumed through standing heat losses. Policymakers, seeking to utilise hot water tanks as demand response assets, should consider monitoring and control systems that prevent exposures to unsanitary hot water. - Highlights: • Domestic hot water tanks are a potential demand side asset for power networks. • A preference for bacterial growth in stratified hot water tanks has been observed. • Temperatures in base of electric hot water tanks hospitable to Legionella. • Potential exposures to unsanitary water observed. • De-stratifying a tank to sterilise leads to reduced energy storage capability

  7. Domestic hot water use study, multi-family building energy monitoring and analysis for DHW system sizing criteria development

    International Nuclear Information System (INIS)

    Goldner, F.S.

    1993-01-01

    Thirty New York City multifamily building combined steam heating and domestic hot water (DHW) plants were instrumented for monitoring (mostly hourly) apartment, outdoor, boiler and DHW temperatures and burner on-off times. In nine of these buildings, which had been upgraded, additional data collected were: stack temperature, DHW flow in 15-minute increments, oil ampersand boiler make-up water flows, and DHW temperature before and after the mixing (tempering) valve and on the circulating return line. The project's objectives are to develop comprehensive operating data on combined DHW and heating systems to be used in system design and specifications and for improving operating procedures. DHW requirements in multi-family buildings are currently calculated on the basis of questionable standards. These new, more precise DHW flow data result in a better basis for sizing than existed heretofore. There is a critical need for improved specifications and performance in newly constructed and renovated buildings. Better system choices among various instantaneous generation and storage scenarios will result in savings derived from smaller initial equipment investments as well as more energy efficient operations. The data being generated define figures for DHW energy use so that more reliable and accurate predictions of savings can be calculated. This paper presents DHW demand patterns, seasonal variations, weekday vs. weekend consumption, consumption vs. occupancy levels, coincidence of 15- and 60-minute demand periods, and average vs. peak demand levels. This project is sponsored by New York State Energy Research and Development Authority (NYSERDA). The results of this research are being reviewed for inclusion in a revision of DHW guidelines for the next edition of the ASHRAE Handbook

  8. Fiscal 1974 Sunshine Project result report. Research on solar cooling/heating and hot water supply system; 1974 nendo taiyonetsu reidanbo kyuto system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report describes the fiscal 1974 research result on solar cooling/heating and hot water supply system. This 3- year project from fiscal 1974 to 1976 aims to predict the share of solar energy in future cooling/heating and hot water supply energy demand, and develop simulation technology. The project surveys and analyzes current domestic and overseas development states, and studies various systems to obtain characteristics of every system, pursuit an optimum implementation, and establish a diffusion plan. Future energy consumptions and prices are predicted in relation to energy saving, and the utilization impact of solar energy is analyzed. Study is also made on diffusion plan, profitability and performance evaluation method. Among these schedules, in fiscal 1974 based on the survey and analysis on previous domestic and overseas development states, features and problems were arranged every system and application. The basic study on system simulation, and rough feasibility study on solar heat systems by conventional technique were carried out. The basic data on performance evaluation standards were also prepared. (NEDO)

  9. Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump

    International Nuclear Information System (INIS)

    Wu, Wei; You, Tian; Wang, Baolong; Shi, Wenxing; Li, Xianting

    2014-01-01

    Highlights: • A combined heating/cooling/DHW system based on GSAHP is proposed in cold regions. • The soil imbalance is effectively reduced and soil temperature can be kept stable. • 20% and 15% of condensation/absorption heat is recovered by GSAHP to produce DHW. • The combined system can improve the primary energy efficiency by 23.6% and 44.4%. - Abstract: The amount of energy used for heating and domestic hot water (DHW) is very high and will keep increasing. The conventional ground source electrical heat pump used in heating-dominated buildings has the problems of thermal imbalance, decrease of soil temperature, and deterioration of heating performance. Ground source absorption heat pump (GSAHP) is advantageous in both imbalance reduction and primary energy efficiency (PEE) improvement; however, the imbalance is still unacceptable in the warmer parts of cold regions. A combined heating/cooling/DHW (HCD) system based on GSAHP is proposed to overcome this problem. The GSAHPs using generator absorber heat exchange (GAX) and single-effect (SE) cycles are simulated to obtain the performance under various working conditions. Different HCD systems in Beijing and Shenyang are simulated comparatively in TRNSYS, based on which the thermal imbalance, soil temperature, heat recovery, and energy efficiency are analyzed. Results show that GSAHP–GAX–HCD is suitable for Beijing and GSAHP–SE–HCD is suitable for Shenyang. The imbalance ratio can be reduced to −14.8% in Beijing and to 6.0% in Shenyang with an annual soil temperature variation of only 0.5 °C and 0.1 °C. Furthermore, about 20% and 15% of the total condensation/absorption heat is recovered to produce DHW, and the PEE can reach 1.516 in Beijing and 1.163 in Shenyang. The combined HCD systems can achieve a PEE improvement of 23.6% and 44.4% compared with the normal heating/cooling systems

  10. Getting into hot water Problematizing hot water service demand: The case of Old Cairo

    Science.gov (United States)

    Culhane, Thomas Henry

    -help strategies, the greater flexibility they provide may lead to superior long-term outcomes in a time of uncertain and rising energy and commodities prices and an increasing availability of new, less expensive, increasingly modular, and more efficient technologies that are easier for individual households to install and use, especially if the State or non-governmental institutions can provide implementation support. The descriptive statistics and the multivariate models obtained through the analysis of the data gathered in the surveys show that while purchase price and running costs for dedicated water heating systems are considerations for families desiring hot water, the infrastructural demands of modern appliances vis a vis a consumer's given built environment and the historical/cultural legacy of the consumer's past hot water choices and practices are often more important determinants of the kind of water heating used and desired today. Our study shows, for example, that while higher income is associated with owning a water heater in a simple model with few explanatory variables (Model 3) it's significance disappears when controlling for Ethnicity and infrastructural elements (Model 1). This might suggest that while within communities there is a point at which making more money implies a shift to consumer "modernity", overall the availability of more money in these neighborhoods as a whole doesn't guarantee that the utility promised by modern appliances will be realized. A similar point can be made about formal education levels, which appear insignificant in our models. Policy that aimed merely at sending more kids to school would not address the great deficiencies that many Egyptian schools are noted for. There is no guarantee that merely expanding Egypt's "universal education" policy to include children who have fallen through the cracks would help increase consumer awareness or consumer choice. On the other hand both water availability and presence of hot water pipes, as

  11. Solar-heating and hot water system--St. Louis, Missouri

    Science.gov (United States)

    1981-01-01

    Sunlight supplies about half heat energy needs of small office. System includes six tilt-adjustable commercial collectors and 1,000 gallon energy storage tank. Report contains description of system and components, drawings and photographs, manufacturer's data, and related material.

  12. Testing of Solar Heated Domestic Hot Water System for Solahart Scandinavia ApS

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1997-01-01

    The solar heating system marketed by Solahart Scandinavia ApS was tested in the Institutes test facility for SDHWsystems. The test results are described in the report.......The solar heating system marketed by Solahart Scandinavia ApS was tested in the Institutes test facility for SDHWsystems. The test results are described in the report....

  13. SOLCOST. Solar Hot Water Handbook. A Simplified Design Method for Sizing and Costing Residential and Commercial Solar Service Hot Water Systems. Second Edition.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet offers a preview of information services available from Solcost, a research and development project. The first section explains that Solcost calculates system and costs performance for solar heated and cooled new and retrofit constructions, such as residential buildings and single zone commercial buildings. For a typical analysis,…

  14. Experimental analysis of solar thermal integrated MD system for cogeneration of drinking water and hot water for single family villa in dubai using flat plate and evacuated tube solar collectors

    DEFF Research Database (Denmark)

    Asim, Muhammad; Imran, Muhammad; Leung, Michael K.H.

    2017-01-01

    This paper presents the experimental analysis performed on solar thermal integrated membrane distillation (MD) system using flat plate and evacuated tube collectors. The system will be utilized for cogeneration of drinking water and domestic hot water for single family in Dubai comprising of four...... to five members. Experiments have been performed in Ras Al Khaimah Research and Innovation Centre (RAKRIC) facility. The experimental setup has been installed to achieve the required production of 15–25 L/d of drinking water and 250 L/d of hot water for domestic purposes. Experiments have been performed...

  15. Development of a Performance Calculation Program for Solar Domestic Hot Water Systems with Improved Prediction of Thermal Stratification

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Li, Zhe

    2016-01-01

    The transient fluid flow and heat transfer in a hot water tank during cooling caused by standby heat loss were investigated by computational fluid dynamics (CFD) calculations and by thermal measurements in previous investigation. It is elucidated how thermal stratification in the tank is influenced...... by the natural convection and how the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions....

  16. Simulation of the interaction of a solar domestic hot water tank system with a compact plate heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Nizami, D.J.; Lightstone, M.F. [McMaster Univ., Hamilton, ON (Canada). Dept. of Mechanical Engineering; Harrison, S.; Cruickshank, C. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering

    2008-08-15

    An external natural convection heat exchanger (NCHE) was used as an alternative to forced convection for transferring energy from solar collector loops to a hot water storage tank. A computational fluid dynamics (CFD) program was used to predict interactions between the natural convection-driven side-arm heat exchanger and a hot water storage tank. A solar domestic hot water tank with a vertical compact plate natural convection heat exchanger was modelled. In addition, the heat exchanger was modelled as a section of pipe with high flow resistance and a volumetric energy source. Transient analyses were conducted and the CFD model was then compared with data obtained from laboratory experiments. Simulations were conducted on the fluid domain in order to investigate the influence of the flow on the thermal stratification in the tank, the heat transfer inside the tank, and the natural convection in the tank loop. Buoyancy for an incompressible fluid with constant fluid properties was modelled using a Boussinesq approximation. Temperature distributions were measured as a function of time. Results of the study indicated that assuming a constant thermal expansion coefficient in evaluation buoyancy forces for a wide range of operating temperatures did not result in accurate predictions. Future studies will model natural convection with a full buoyancy model. 11 refs., 2 tabs., 5 figs.

  17. TOTAL AND HOT-WATER EXTRACTABLE CARBON RELATIONSHIP IN CHERNOZEM SOIL UNDER DIFFERENT CROPPING SYSTEMS AND LAND USE

    Directory of Open Access Journals (Sweden)

    Srdjan Šeremešić

    2013-12-01

    Full Text Available A study was conducted to determine the hot water extractable organic carbon (HWOC in 9 arable and 3 non arable soil samples on Haplic Chernozem. The hot water extractable carbon represents assimilative component of the total organic matter (OM that could contain readily available nutrients for plant growth. The obtained fraction of organic carbon (C makes up only a small percentage of the soil OM and directly reflects the changes in the rhizosphere. This labile fraction of the organic matter was separated by hot water extraction at 80°C. In our study the HWOC content in different samples ranged from 125 mg g-1 to 226 mg g-1. On the plots that are under native vegetation, higher values were determined (316 mg g-1 to 388 mg g-1. Whereas samples from arable soils were lower in HWOC. It was found that this extraction method can be successfully used to explain the dynamics of the soil OM. Soil samples with lower content of the total OM had lower HWOC content, indicating that the preservation of the OM depends on the renewal of its labile fractions.

  18. Collective solar hot water: best practices

    International Nuclear Information System (INIS)

    Beutin, Philippe; Grouzard, Patrice; Coroller, Francoise

    2005-10-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a collection of good practices concerning the selection and installation of collective solar water heating systems in France. A first note presents the Garantie de Resultats solaires (GRS - Guarantee of Solar Results), a kind of certification that gives a long term guarantee of the annual solar energy produced quantity as a function of the hot water consumption. An overview of the collective solar market is given, followed by informations on the financial incentives for feasibility studies and installations, the technical design and optimization of a collective solar project, its economic assessment, etc. Numerous examples of collective of solar heating operations in collective buildings are presented, in various regions of France, in the east (Alsace), the center (Auvergne, Ile de France (Paris region)), and the south (Languedoc-Roussillon, Midi-Pyrennes, PACA), giving technical data, financing, partnerships, etc

  19. Cost-effectiveness optimization of a solar hot water heater with integrated storage system

    International Nuclear Information System (INIS)

    Kamaruzzaman Sopian; Syahri, M.; Shahrir, A.; Mohd Yusof Othman; Baharuddin Yatim

    2006-01-01

    Solar processes are generally characterized by high first cost and low operating costs. Therefore, the basic economic problem is one of comparing an initial known investment with estimated future operating cost. This paper present the cost-benefit ratio of solar collector with integrated storage system. Evaluation of the annual cost (AC) and the annual energy gain (AEG) of the collector are performed and the ratio of AC/AEG or the cost benefit ratio is presented for difference combination of mass flow rate, solar collector length and channel depth. Using these cost-effectiveness curves, the user can select optimum design features, which correspond to minimum AC/AEG

  20. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  1. Hybrid solar-PLG system for industrial scale steam and hot water generation; Sistema hibrido solar-GLP para geracao de vapor e agua quente em escala industrial

    Energy Technology Data Exchange (ETDEWEB)

    Saidel, Marco A.; Monteiro, Marcio D.; Gimenes, Andre L.V.; Fujii, Ricardo J. [Universidade de Sao Paulo (GEPEA/EPUSP), SP (Brazil). Dept. Engenharia Energia e Automacao Eletricas. Grupo de Energia], e-mail: saidel@pea.usp.br, e-mail: marcio.monteiro@poli.usp.br, e-mail: gimenes@gmail.com, e-mail: fujii@gmail.com

    2008-07-01

    This paper presents an initiative conceived for attending to objectives of the PUREFA (Program for Rational Use of Energy and Alternative Sources) of the Sao Paulo university, Brazil. The indicative consists of the implantation of a solar collector system for pre-heating of the water used in the production of the steam consumed at the university restaurant, with a production of 5800 meals per day. This system (auxiliary to the original steam boiler) pre-heats the water of the boiler minimizing the energy expenses for the production of steam and hot water.

  2. Hot Spot Removal System: System description

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  3. Hot Spot Removal System: System description

    International Nuclear Information System (INIS)

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System''s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section

  4. Solar action: solar hot water in The Netherlands

    International Nuclear Information System (INIS)

    Van de Water, Adrie

    2001-01-01

    This paper focuses on the use of solar hot water systems in the Netherlands, and reports on the Dutch Solar Domestic Hot Water System agreement signed in 1999 and set up to enhance the development of the market for solar domestic hot water (SDHW) systems and their application as a sustainable energy source. The Dutch Thermal Solar Energy Programme's objectives and goals, the subsidy schemes for thermal solar energy administered by Senter - an agency of the Ministry of Economic Affairs (MEA), and the project-based and individual approaches to boosting the sales of SDHW systems are examined. Large system sales, the targeting of consumers via a national campaign, and national publicity using the slogan 'Sustainable energy. Goes without saying' commissioned by the MEA are discussed along with the support shown by the Dutch power distribution companies for SDHW systems, marketing aspects, and the outlook for sales of SDHW systems

  5. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Science.gov (United States)

    Baron, Julianne L; Vikram, Amit; Duda, Scott; Stout, Janet E; Bibby, Kyle

    2014-01-01

    Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  6. A study of a desuperheater heat recovery system complete with a reversibly used water cooling tower (RUWCT) for hot water supply

    Science.gov (United States)

    Tan, Kunxiong

    Recovering heat rejected from the condenser in a refrigeration system to generate service hot water for buildings is commonly seen in both tropics and subtropics. This study included a critical literature review on heat recovery from air-conditioning/refrigeration systems, with particular emphasis on the direct condenser heat recovery and its related mathematical simulation models. The review identified many applications of desuperheaters to small-scaled residential air-conditioning or heat pump units. The heat and mass transfer characteristics of a RUWCT have been studied in detail, which is based on the theory of direct contact heat and mass transfer between moist air and water. The thesis reports on the differences in the heat and mass transfer process that takes place in a RUWCT, a standard water cooling tower and a spray room. A corrective factor that accounts for the change of chilled water mass flow rate is incorporated into the theoretical analysis of a RUWCT. The algorithms developed from the theoretical analysis are capable of predicting the heat exchange capacity of a RUWCT at any operating conditions. This theoretical analysis is the first of its kind. Extensive field experimental work on the heat and mass transfer characteristics of a RUWCT has been carried out in a hotel building in Haikou, Hainan province of China, where the RUWCT is installed. Results from the experimental work indicate that the theoretical analysis can represent the heat and mass transfer characteristics in a RUWCT with an acceptable accuracy. A numerical analysis for a RUWCT is undertaken to determine both air and water states at intermediate horizontal sections along the tower height. Field experimental data confirm that the predicted air and water conditions at the tower inlet and outlet are of acceptable accuracy. A steady-state mathematical model is developed to simulate the operational performance of a water chiller plant complete with a desuperheater heat recovery system and

  7. Analysis and comparison of methods for the preparation of domestic hot water from district heating system, selected renewable and non-renewable sources in low-energy buildings

    Directory of Open Access Journals (Sweden)

    Knapik Maciej

    2018-01-01

    Full Text Available The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.

  8. Analysis and comparison of methods for the preparation of domestic hot water from district heating system, selected renewable and non-renewable sources in low-energy buildings

    Science.gov (United States)

    Knapik, Maciej

    2018-02-01

    The article presents an economic analysis and comparison of selected (district heating, natural gas, heat pump with renewable energy sources) methods for the preparation of domestic hot water in a building with low energy demand. In buildings of this type increased demand of energy for domestic hot water preparation in relation to the total energy demand can be observed. As a result, the proposed solutions allow to further lower energy demand by using the renewable energy sources. This article presents the results of numerical analysis and calculations performed mainly in MATLAB software, based on typical meteorological years. The results showed that system with heat pump and renewable energy sources Is comparable with district heating system.

  9. Investigation and optimisation of heat storage tanks for low-flow SDHW systems[Solar Domestic Hot Water

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Soeren

    2004-07-01

    This thesis, 'Investigation and optimisation of heat storage tanks for low-flow SDHW systems', describes a study of the heat transfer and flow structure in vertical mantle heat exchangers for low-flow Solar Domestic Hot Water (SDHW) systems. The heat storage is a key component in SDHW systems and the vertical mantle heat exchanger is one of the most promising heat storage designs for low-flow SDHW systems. The study was carried out using a combination of experimental and numerical methods. Thermal experiments of mantle heat exchangers with different mantle inlet designs showed that the mantle inlet port with advantage can be located a distance from the top of the mantle. Consequently, the mantle heat exchangers marketed today can be improved by changing the mantle inlet position. The heat transfer and flow structure in mantle heat exchangers are rather complex and the thermal experiments were followed by investigations by means of advanced experimental and numerical techniques such as Particle Image Velocimetry (PIV) and Computational Fluid Dynamics (CFD). Using a transparent glass mantle tank, experimental flow visualisation was carried out with a PIV system. The flow structures inside the mantle and inside the tank were visualised and then compared with the flow structures predicted by CFD-models. The investigations showed that the CFD-models were able to model the flow in the mantle and in the tank correctly. The CFD-models were also validated by means of thermal experiments with a steel mantle tank. With the verified CFD-models, a parameter analysis was carried out for differently designed mantle heat exchangers for different typical conditions to reveal how the mantle tank parameters influence the flow structure and heat transfer in mantle heat exchangers. The heat transfer in the mantle near the mantle inlet port showed to be in the mixed convection regime, and as the distance from the inlet increased, natural convection started to dominate. The

  10. Effective use of thermal energy at both hot and cold side of thermoelectric module for developing efficient thermoelectric water distillation system

    International Nuclear Information System (INIS)

    Al-Madhhachi, Hayder; Min, Gao

    2017-01-01

    Highlights: • New distillation process using thermoelectric to assist evaporation/condensation. • Novel thermoelectric distillation system with reduced specific energy consumption. • Freshwater production by thermoelectrically assisted evaporation and condensation. - Abstract: An efficient thermoelectric distillation system has been designed and constructed for production of drinkable water. The unique design of this system is to use the heat from hot side of the thermoelectric module for water evaporation and the cold side for vapour condensation simultaneously. This novel design significantly reduces energy consumption and improves the system performance. The results of experiments show that the average water production is 28.5 mL/h with a specific energy consumption of 0.00114 kW h/mL in an evaporation chamber filled with 10 × 10 × 30 mm"3 of water. This is significantly lower than the energy consumption required by other existing thermoelectric distillation systems. The results also show that a maximum temperature difference between the hot and cold side of the thermoelectric module is 42.3 °C, which led to temperature increases of 26.4 °C and 8.4 °C in water and vapour, respectively.

  11. Validation of a simulation method for forced circulation type of solar domestic hot water heating systems; Kyosei junkangata taiyonetsu kyuto system simulation hoho no kensho

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M; Udagawa, M [Kogakuin University, Tokyo (Japan); Matsumoto, T [Yazaki Corp., Tokyo (Japan)

    1996-10-27

    Simulation of solar hot water systems using element model was conducted, in which computation of the convergence of apparatus characteristic values was performed every hour. For each apparatus, the outlet temperature was made a function of the inlet temperature on the basis of the heat balance, from which a simultaneous equation was derived and then solved for the determination of the outlet temperature for the computation of the quantity of heat collected by each apparatus. The actually measured system comprises a planar solar collector, heat storage tank, and heat collector piping. The measurement involved a direct heat collecting system with the medium running from the heat storage tank bottom layer, through the solar collector, and then back to the heat storage tank third layer, and an indirect heat collector system with a heat exchanger provided at the heat storage tank bottom layer. There was no substantial difference between the direct type and the indirect type with respect to the solar collector inlet and outlet temperatures, quantity of heat collected, and the fluctuation in heat storage tank inside temperature distribution relative to time. Difference occurred between the two in tank water temperature distribution, however, when water was extracted in great volume at a time. The quantity of the heat collected by each of the two and the daily integration of the same differed but a little from computed values. 4 refs., 6 figs., 4 tabs.

  12. Natural radioactivity in hot and mineral waters in Syria

    International Nuclear Information System (INIS)

    Othman, I.; Abbass, M.; Kattan, Z.

    1994-08-01

    A study of water chemistry and radioactivity of hot and mineral ground waters was conducted in Syria in order to determine the natural radioactivity levels as well as the mobility process of major radionuclides in the studied systems. The water samples were collected generally from carbonate and basaltic aquifer systems. The chemistry of groundwaters was a reflection of the rock type, while no relationship was found between the radionuclide activities and water temperatures. The increase of 222 Rn concentration in hot and mineral waters was accompanied by a similar increase of the concentration of its patent radionuclides (U t ot and 226 Ra). In parallel, the relative increase of 222 Rn concentration was correlated significantly with the presence of the large faults systems prevailing in the studied areas (Palmyrides and Great African Faults Systems). In all the cases, the radionuclide activity levels were below the maximum contaminant levels given for drinking water and health effects. (author). 11 refs., 7 figs., 8 tabs

  13. Models of hot stellar systems

    International Nuclear Information System (INIS)

    Van Albada, T.S.

    1986-01-01

    Elliptical galaxies consist almost entirely of stars. Sites of recent star formation are rare, and most stars are believed to be several billion years old, perhaps as old as the Universe itself (--10/sup 10/ yrs). Stellar motions in ellipticals show a modest amount of circulation about the center of the system, but most support against the force of gravity is provided by random motions; for this reason ellipticals are called 'hot' stellar systems. Spiral galaxies usually also contain an appreciable amount of gas (--10%, mainly atomic hydrogen) and new stars are continually being formed out of this gas, especially in the spiral arms. In contrast to ellipticals, support against gravity in spiral galaxies comes almost entirely from rotation; random motions of the stars with respect to rotation are small. Consequently, spiral galaxies are called 'cold' stellar systems. Other than in hot systems, in cold systems the collective response of stars to variations in the force field is an essential part of the dynamics. The present overview is limited to mathematical models of hot systems. Computational methods are also discussed

  14. Performance analysis of proposed hybrid air conditioning and humidification–dehumidification systems for energy saving and water production in hot and dry climatic regions

    International Nuclear Information System (INIS)

    Nada, S.A.; Elattar, H.F.; Fouda, A.

    2015-01-01

    Highlights: • Integrative air-conditioning (A/C) and humidification–dehumidification desalination systems are proposed. • Effects of operating parameters on the proposed systems are investigated. • System configurations that have the highest fresh water production rate, power saving and total cost saving are identified. - Abstract: Performance of integrative air-conditioning (A/C) and humidification–dehumidification desalination systems proposed for hot and dry climatic regions is theoretically investigated. The proposed systems aim to energy saving and systems utilization in fresh water production. Four systems with evaporative cooler and heat recovery units located at different locations are proposed, analyzed and evaluated at different operating parameters (fresh air ratio, supply air temperature and outside air wet bulb temperature). Other two basic systems are used as reference systems in proposed systems assessment. Fresh water production rate, A/C cooling capacity, A/C electrical power consumption, saving in power consumptions and total cost saving (TCS) parameters are used for systems evaluations and comparisons. The results show that (i) the fresh water production rates of the proposed systems increase with increasing fresh air ratio, supply air temperature and outdoor wet bulb temperature, (ii) powers saving of the proposed systems increase with increasing fresh air ratio and supply air temperature and decreasing of the outdoor air wet bulb temperature, (iii) locating the evaporative cooling after the fresh air mixing remarkably increases water production rate, and (vi) incorporating heat recovery in the air conditioning systems with evaporative cooling may adversely affect both of the water production rate and the total cost saving of the system. Comparison study has been presented to identify systems configurations that have the highest fresh water production rate, highest power saving and highest total cost saving. Numerical correlations for

  15. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Directory of Open Access Journals (Sweden)

    Julianne L Baron

    Full Text Available Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  16. Hot water, fresh beer, and salt

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1990-01-01

    In the ''hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO 2 ) provided you first (a) get rid of much of the excess CO 2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ''Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally

  17. Hot water, fresh beer, and salt

    Science.gov (United States)

    Crawford, Frank S.

    1990-11-01

    In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.

  18. Physical and chemical parameter correlations with technical and technological characteristics of heating systems and the presence of Legionella spp. in the hot water supply.

    Science.gov (United States)

    Rakić, Anita; Štambuk-Giljanović, Nives

    2016-02-01

    The purpose of this study was to evaluate the prevalence of Legionella spp. and compare the quality of hot water between four facilities for accommodation located in Southern Croatia (the Split-Dalmatian County). The research included data collection on the technical and technological characteristics in the period from 2009 to 2012. The survey included a type of construction material for the distribution and internal networks, heating system water heater type, and water consumption. Changes in water quality were monitored by determination of the physical and chemical parameters (temperature, pH, free chlorine residual concentrations, iron, zinc, copper and manganese) in the samples, as well as the presence and concentration of bacteria Legionella spp. The temperature is an important factor for the development of biofilms, and it is in negative correlation with the appearance of Legionella spp. Positive correlations between the Fe and Zn concentrations and Legionella spp. were established, while the inhibitory effect of a higher Cu concentration on the Legionella spp. concentration was proven. Legionella spp. were identified in 38/126 (30.2%) of the water samples from the heating system with zinc-coated pipes, as well as in 78/299 (26.1%) of the samples from systems with plastic pipes. A similar number of Legionella spp. positive samples were established regardless of the type of the water heating system (central or independent). The study confirms the necessity of regular microbial contamination monitoring of the drinking water distribution systems (DWDSs).

  19. Water chemistry management during hot functional test

    International Nuclear Information System (INIS)

    Yokoyama, Jiro; Kanda, Tomio; Kagawa, Masaru

    1988-01-01

    To reduce radiation exposure in light water reactor, it is important decrease radioactive corrosion product which is a radiation source. One of the countermeasures is to improve water quality during plant trial operation to form a stable oxide film and to minimize metal release to the coolant at the beginning of commercial operation. This study reviews the optimum water quality conditions to form a chromium rich oxide film during hot functional test (HFT) that is thought to be stable under the PWR condition and reduce the release of Ni that is the source of Co-58, the main radiation source of exposure. (author)

  20. 21 CFR 880.6085 - Hot/cold water bottle.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold water...

  1. Experimental Validation of a Domestic Stratified Hot Water Tank Model in Modelica for Annual Performance Assessment

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2015-01-01

    The use of stratified hot water tanks in solar energy systems - including ORC systems - as well as heat pump systems is paramount for a better performance of these systems. However, the availability of effective and reliable models to predict the annual performance of stratified hot water tanks...

  2. NORTH PORTAL - HOT WATER CALCULATION - CHANGE HOUSE FACILITY NO.5008

    International Nuclear Information System (INIS)

    Blackstone, R.

    1996-01-01

    The purpose of this design analysis and calculation is to determine the demand for hot water and to size the supply main piping for the Change House Facility No.5008 in accordance with the Uniform Plumbing Code (UPC) (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540. The method used for the calculations is based on Section 4.4.1. The first step is to determine the maximum pressure drop between the most remote plumbing fixture and the main supply. The pressure drop for the hot water system is based on the total length of the supply piping from the cold water supply source through the water heater to the most remote hot water outlet. Equivalent fixture units are then assigned using Section 4.4.1. For hot water, the values are reduced by 25 percent in accordance with the UPC. The demand load in gpm is then determined based on the number of fixture units. The demand load and the pressure drop between the source and the most remote fixture is used to determine the pipe size and the corresponding friction losses for a given flow velocity not to exceed 10 feet/second

  3. Report on achievements in fiscal 1973 in studies of technologies to develop and utilize resources and preserve national land. Study on hot water systems in geothermal areas; 1973 nendo chinetsu chiiki no nessuikei ni kansuru kenkyu seika chukan hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    It is important for geothermal energy to develop and utilize it in a rational manner. To achieve the objective, hot water systems must be studied comprehensively and elucidated from the standpoint of the systems as a whole. The present study, standing on this viewpoint, is intended to elucidate hot water systems and establish a survey method thereon. Fiscal 1973 has selected four areas (northern Hachimantai, southern Hachimantai, Onikubi and Kuju areas) as the model study fields, and used as the main field the Onikubi area, which clearly shows the structural catchment basin. Studies were performed in this area on hydraulic hot flow rates, isotopic geology, and reservoirs. In the hydraulic hot flow rate study, the amount of rainfall, amount of flowing water, and amount of hot spring water flow-out were observed continually. In the isotopic geology study, hydrogen in hot spring water and underground water, and composition of oxygen isotope were analyzed. Estimation was made from the result thereof on water balance, heat balance, and underground residence time. In the study of reservoirs, measurements were performed inside the wells, and estimation was made on locations and sizes of the reservoirs by surveying distribution of transformed minerals and cracks. (NEDO)

  4. Thermal water of the Yugawara Hot Spring

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Y; Ogino, K; Nagatsuka, Y; Hirota, S; Kokaji, F; Takahashi, S; Sugimoto, M

    1963-03-01

    The Yugawara Hot Spring is located in the bottom of the dissected creata of the Yugawara volcano. Natural hot spring water ran dry almost twenty five years ago, and thermal water is now pumped up by means of deep drill holes. The hydrorogy of the thermal water was studied from both geochemical and geophysical points of view. Two types of thermal water, sodium chloride and calcium sulfate, are recognized. Sodium chloride is predominant in the high temperature area and low in the surrounding low temperature area. Calcium sulfate predominates in the low temperature area. Sodium chloride is probably derived from deep magmatic emanations as indicated in the high Li content. Sulfate ion seems to originate from oxidation of pyrite whose impregnation took place in the ancient activity of the Yugawara volcano. The content of Ca is stoichiometrically comparable with SO/sub 4//sup 2 -/. It is suggested that sulfuric acid derived from the oxidation of pyrite attacks calcite formed during the hydrothermal alteration of rocks. Some consideration of well logging in the geothermal area is also discussed. Temperature measurement in recharging of cold water is applicable to the logging of drill holes as well as the electric logging.

  5. Hot sanitary water production with CO_2 heat pumps: Effect of control strategy on system performance and stratification inside the storage tank

    International Nuclear Information System (INIS)

    Tammaro, M.; Mauro, A.W.; Montagud, C.; Corberán, J.M.; Mastrullo, R.

    2016-01-01

    In this work three different control strategies for the production of sanitary hot water by means of an electric heat pump working with CO_2 are investigated. The heat pump is a prototype, here modelled in the vapour-compression software package IMST-ART. By simulating this model, the performance of the heat pump is correlated to the boundary conditions and is scaled to different sizes, namely 1, 1.5, and 2 times larger than the reference system. After having chosen an application for which the load profile of sanitary hot water during the year is known, these heat pumps are simulated in a TRNSYS16 model where the production of sanitary hot water and the consumption are buffered by the presence of a tank. Key parameter in guaranteeing comfort and good performance of the system is the stratification inside the storage tank. The size of the tank necessary to keep a certain level of comfort at the user is then determined through a parametric analysis for each size of the heat pump. The energetic performance is also evaluated for each system in terms of seasonal performance factor. Then, the results obtained are compared with a different system where the heat pump is equipped with an inverter and the circulation pump follows a different control logic. The size of the tank and the seasonal performance factor are therefore determined in this case too. Moreover, a “night&day” control logic is compared to these first two options to have a baseline of comparison in terms of volume of storage needed to guarantee a same level of comfort and performance. To provide information also on the running costs, a parametric analysis was run varying the type of control, the heat pump and the tank sizes for different load profiles. The results show that the size of the heat pump has a significant effect on the comfort of the user, which usually leads to oversizing of the storage tank when the load profile is unknown. With regard to this, the results obtained for the alternative

  6. Sugar cane bagasse prehydrolysis using hot water

    Directory of Open Access Journals (Sweden)

    D. Abril

    2012-03-01

    Full Text Available Results are presented on the hot water prehydrolysis of sugar cane bagasse for obtaining ethanol by fermentation. The experimental study consisted of the determination of the effect of temperature and time of prehydrolysis on the extraction of hemicelluloses, with the objective of selecting the best operating conditions that lead to increased yield of extraction with a low formation of inhibitors. The study, carried out in a pilot plant scale rotational digester, using a 3² experimental design at temperatures of 150-190ºC and times of 60-90 min, showed that it is possible to perform the hot water prehydrolysis process between 180-190ºC in times of 60-82 min, yielding concentrations of xylose > 35 g/L, furfural < 2.5 g/L, phenols from soluble lignin < 1.5 g/L, and concentrations < 3.0 g/L of hemicelluloses in the cellolignin residue. These parameters of temperature and prehydrolysis time could be used for the study of the later hydrolysis and fermentation stages of ethanol production from sugar cane bagasse.

  7. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  8. Data from Sustainability Base Characterizing Hot Water Pump Differential Pressure Spikes for ACCEPT

    Data.gov (United States)

    National Aeronautics and Space Administration — During the heating season in Sustainability Base, a critical alarm associated with a hot water pump circulating heating water for the radiative system which...

  9. Avoidance of damage in hot water heating systems. Part 2. Corrosion and water, a status report; Vermeidung von Schaeden in Warmwasserheizungen. Teil 2. Korrosion und Heizungswasser - eine Standortbestimmung

    Energy Technology Data Exchange (ETDEWEB)

    Lapp, H.; Hannemann, M. [Deutsche Erfinderverband fuer Muenchen und Oberbayern (Germany); Deutsche Gewerbeverband fuer Markt Schwaben und die Region (Germany)

    2003-02-01

    Water is used in nearly every heating system, so it is important to know about the characteristics of this important heat carrier, its interactions with heating system materials, and other aspects. The contribution presents the main characteristics of common waters, their effects on heating systems, and common water treatement methods. [German] Praktisch in jeder Heizung wird Wasser als Waermetraeger verwendet. Aus diesem Grunde ist es in jedem Fall ratsam, die Eigenschaften dieses speziellen Waermetraegers, seine Wechselwirkungen mit den Heizungswerkstoffen und andere Besonderheiten zu kennen. In dem folgenden Artikel werden die wichtigsten Eigenschaften gebraeuchlicher Waesser und deren Auswirkungen auf die Heizungsanlagen dargelegt sowie die wichtigsten Behandlungsverfahren vorgestellt. (orig.)

  10. Field testing hot water temperature reduction as an energy-saving measure--does the Legionella presence change in a clinic's plumbing system?

    Science.gov (United States)

    Völker, Sebastian; Kistemann, Thomas

    2015-01-01

    Legionella spp. represent a significant health risk for humans. To ensure hygienically safe drinking water, technical guidelines recommend a central potable water hot (PWH) supply temperature of at least 60°C at the calorifier. In a clinic building we monitored whether slightly lowered temperatures in the PWH system led to a systemic change in the growth of these pathogens. In four separate phases we tested different scenarios concerning PWH supply temperatures and disinfection with chlorine dioxide (ClO2). In each phase, we took 5 sets of samples at 17 representative sampling points in the building's drinking water plumbing system. In total we collected 476 samples from the PWH system. All samples were tested (culture-based) for Legionella spp. and serogroups. Additionally, quantitative parameters at each sampling point were collected, which could possibly be associated with the presence of Legionella spp. (Pseudomonas aeruginsoa, heterotrophic plate count at 20°C and 36°C, temperatures, time until constant temperatures were reached, and chlorine dioxide concentration). The presence of Legionella spp. showed no significant reactions after reducing the PWH supply temperature from 63°C to 60°C and 57°C, as long as disinfection with ClO2 was maintained. After omitting the disinfectant, the PWH system showed statistically significant growth rates at 57°C. PWH temperatures which are permanently lowered to less than recommended values should be carefully accompanied by frequent testing, a thorough evaluation of the building's drinking water plumbing system, and hygiene expertise.

  11. Hot water glows directly to the consumer

    International Nuclear Information System (INIS)

    Decken; Fedders; Hohlein.

    1980-01-01

    The supply of industry and households with heat is a central problem of our economy. With the background of a crisis-affected oil supply the long term ensured heat supply with nuclear power plants is a discussible alternative. The long distance transfer of heat in the form of hot water, that is heated in nuclear power plants and led over a long-distance heating pipeline network to the consumers is limited by the inevitable heat losses. For the bridging of long distances between heat source and consumer and for the supply of heat at a high temperature level the long-distance transport by the Eva-Adam-principle has clear advantages. (orig.) [de

  12. Solar heating still in the early stages. Changes for hot water production - VDI meeting 'Efficient heating systems'

    Energy Technology Data Exchange (ETDEWEB)

    Goehringer, P

    1976-10-01

    More and more realism replaces the initial euphoria concerning the discussion on solar heating. Not only the possibilities are considered these days, but also the limits of this still controversial way of heating. This impression was deepened by a meeting of the VDI-Gesellschaft Technische Gebaeudeausruestung (Society for the technical equipment of buildings) held in Bonn. The heating of water with solar energy during the summer is viewed optimistically by the experts - as far as space heating is concerned, the sun collector is conceded only a very modest position in Central Europe within integrated heating systems. It is true that solar technology in the USA is already very sophisticated and economically feasible in many cases; however, techniques cannot be adopted unconditionally for Europe, as the average values of global solar radiation are much lower here. Thus, different technologies will be required.

  13. STRATEGY WATER-BASED CONDENSER : An Experimental Scale Model for Hybrid Passive Cooling Systems to Improve Indoor Temperature and Hot Water Utilities in Surabaya-Indonesia

    Directory of Open Access Journals (Sweden)

    Danny Santoso Mintorogo

    2003-01-01

    Full Text Available This paper makes a case of energy saving research, to system water-based condenser for the use of energy efficient with involvement of forced fluid hybrid passive cooling and water heating in building systems. Our argument is based on the fact that series of water copper pipes are to be cooled enough by nocturnal radiant cooling of the night cool air to lower the indoor air temperature at the daytime. We describe the model of working to which we use and to which we believe that series of cool water copper pipes as evaporator allows effectively reducing the energy used for indoor cooling and for water heating utilization. We then measure the model indoor temperature, and water temperature inside the series of copper pipes. Kinds of water coolant used for cooling are an essential factor. Finally, we will discuss some of the achieving of the effective cooled water, setting up the pipes water-based condenser hybrid system on the top of the outside roof as well as setting up the evaporator coils at ceiling. Abstract in Bahasa Indonesia : Penulisan ini merupakan suatu penelitian pada golongan sistem penghematan energi yang berupakan kondensor dengan bahan media air dengan bantuan tenaga gerak pompa atau tanpa tenaga pompa air. Pipa-pipa yang berisi air yang diletakkan diatas atap terbuka untuk mendapatkan air yang dingin melalui proses konduksi, konveksi, dan radiasi dari udara alami sepanjang malam, dimana media air yang telah dingin tersebut untuk dimanfaatkan sebagai media pendingin ruangan dengan melalukan ke pipa-pipa dalam ruangan--diatas plafon, sebagai evapurator. Selain media air akan diteliti air pendingin radiator (water coolent apakah akan mendapatkan efek pendinginan yang melebihi media air. Juga akan diteliti cara proses mendapatkan media air dingin, yaitu proses dengan air tenang (still water dan air bergerak (forced fluid, sistim mana yang lebih efektif dalam mendapatkan media air dingin dan percepatan mendapatkan air dingin. Kata

  14. Forecasting HotWater Consumption in Residential Houses

    Directory of Open Access Journals (Sweden)

    Linas Gelažanskas

    2015-11-01

    Full Text Available An increased number of intermittent renewables poses a threat to the system balance. As a result, new tools and concepts, like advanced demand-side management and smart grid technologies, are required for the demand to meet supply. There is a need for higher consumer awareness and automatic response to a shortage or surplus of electricity. The distributed water heater can be considered as one of the most energy-intensive devices, where its energy demand is shiftable in time without influencing the comfort level. Tailored hot water usage predictions and advanced control techniques could enable these devices to supply ancillary energy balancing services. The paper analyses a set of hot water consumption data from residential dwellings. This work is an important foundation for the development of a demand-side management strategy based on hot water consumption forecasting at the level of individual residential houses. Various forecasting models, such as exponential smoothing, seasonal autoregressive integrated moving average, seasonal decomposition and a combination of them, are fitted to test different prediction techniques. These models outperform the chosen benchmark models (mean, naive and seasonal naive and show better performance measure values. The results suggest that seasonal decomposition of the time series plays the most significant part in the accuracy of forecasting.

  15. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  16. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  17. Simulation study on single family house with solar floor and domestic hot water heating system by EESLISM; EESLISM ni yoru taiyonetsu danbo kyuto jutaku no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Roh, H; Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Indoor thermal conditions and energy performance were simulated, by the aid of EESLISM as a common simulation program for indoor thermal conditions and energy systems, for an actual two-storied single family house equipped with solar-heated floors and a domestic hot water (DHW) heating system, in order to investigate applicability of the simulation program. The house, built in Shibuya Ward in Tokyo, has a total floor area of 164m{sup 2}, with a living room, dining room and study heated by the solar system for a total floor area of 35m{sup 2}. A heat-storage tank is provided, dedicated to the DHW system. The solar collector is of flat type, with selectively light-absorbing planes, having a total collector area of 11.46m{sup 2}. The operating conditions of the floor-heating and DHW systems are almost reproduced. It is necessary to take surrounding conditions into consideration; solar radiation in daytime will be overestimated if adjacent buildings are neglected to give higher temperature in the space and on the wall on the south than the observed level. 6 refs., 5 figs., 1 tab.

  18. YACON INULIN LEACHING DURING HOT WATER BLANCHING

    Directory of Open Access Journals (Sweden)

    Caroline Fenner Scher

    2015-10-01

    Full Text Available ABSTRACTYacon roots contain inulin, which has prebiotic properties and it may be used as sucrose or fat substitutes. However, inulin is very soluble in water. The loss of this important nutrient during blanching is caused mainly by diffusion or leaching, which might be diminished if blanching temperature - time conditions are correctly employed. The aim of this study was to determine the leaching of the sugars inulin, glucose and fructose, present in yacon roots, during hot water blanching under different time/temperature conditions. The samples were cleaned and peeled and cut into geometric forms of 1.75 ± 0.35 mm thick disks. A complete factorial experimental design was used, and the treatments of the samples were compared using the Tukey test. The results indicated that the time and temperature were significant in the dissolution of the sugars. The lowest inulin losses occurred at temperatures and times lower than 60 ºC and 3 minutes. For all temperatures, the lowest glucose and fructose losses were obtained at time lower than 3 and 5 minutes, respectively.

  19. Legionella contamination in hot water of Italian hotels.

    Science.gov (United States)

    Borella, Paola; Montagna, Maria Teresa; Stampi, Serena; Stancanelli, Giovanna; Romano-Spica, Vincenzo; Triassi, Maria; Marchesi, Isabella; Bargellini, Annalisa; Tatò, Daniela; Napoli, Christian; Zanetti, Franca; Leoni, Erica; Moro, Matteo; Scaltriti, Stefania; Ribera D'Alcalà, Gabriella; Santarpia, Rosalba; Boccia, Stefania

    2005-10-01

    A cross-sectional multicenter survey of Italian hotels was conducted to investigate Legionella spp. contamination of hot water. Chemical parameters (hardness, free chlorine concentration, and trace element concentrations), water systems, and building characteristics were evaluated to study risk factors for colonization. The hot water systems of Italian hotels were strongly colonized by Legionella; 75% of the buildings examined and 60% of the water samples were contaminated, mainly at levels of > or =10(3) CFU liter(-1), and Legionella pneumophila was the most frequently isolated species (87%). L. pneumophila serogroup 1 was isolated from 45.8% of the contaminated sites and from 32.5% of the hotels examined. When a multivariate logistic model was used, only hotel age was associated with contamination, but the risk factors differed depending on the contaminating species and serogroup. Soft water with higher chlorine levels and higher temperatures were associated with L. pneumophila serogroup 1 colonization, whereas the opposite was observed for serogroups 2 to 14. In conclusion, Italian hotels, particularly those located in old buildings, represent a major source of risk for Legionnaires' disease due to the high frequency of Legionella contamination, high germ concentration, and major L. pneumophila serogroup 1 colonization. The possible role of chlorine in favoring the survival of Legionella species is discussed.

  20. Closed bioregenerative life support systems: Applicability to hot deserts

    Science.gov (United States)

    Polyakov, Yuriy S.; Musaev, Ibrahim; Polyakov, Sergey V.

    2010-09-01

    Water scarcity in hot deserts, which cover about one-fifth of the Earth's land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for

  1. Domestic hot water and solar energy in Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Hand, F; Asare, B; Haslett, J

    1977-01-01

    Two systems are discussed which involve the use of solar energy to supply domestic hot-water requirements and their usefulness in Ireland is examined. The systems are evaluated for thermal performance and cost-effectiveness by the use of a computer simulation model of a system involving a typical commercially available solar panel. It is shown that such systems may be economically justified when compared with electricity, but only if the water supply is directly heated by solar panels and only if the installed cost of such panels is low. Further, it appears that the system performance is relatively insensitive to the panel orientation and consequently that retro-fit installations on existing houses are unlikely to cause difficulties.

  2. Long-distance heat transport by hot water

    International Nuclear Information System (INIS)

    Munser, H.; Reetz, B.

    1990-01-01

    From the analysis of the centralized heat supply in the GDR energy-economical and ecological indispensable developments of long-distance heat systems in conurbation are derived. The heat extraction from a nuclear power plant combined with long- distance hot-water transport over about 110 kilometres is investigated and presented as a possibility to perspective base load heat demands for the district around Dresden. By help of industrial-economic, hydraulic and thermic evaluations of first design variants of the transit system the acceptance of this ecologic and energetic preferred solution is proved and requirements for its realization are shown

  3. Cascade Utilization of Energy in Solar Photovoltaic Hot Water System%太阳能光伏热水系统的能量梯级利用

    Institute of Scientific and Technical Information of China (English)

    关欣; 王艳迪; 向勇涛; 郭志波

    2012-01-01

    为了实现太阳能光伏发电系统中用于冷却太阳能电池的低品位热能利用,本文提出了太阳能光伏热水系统。通过对单体光伏光热系统(PV/T)的实验研究表明,在单体PV/T放置角度为30°,流量为200 L/h时,集热效率可达到最大值65.6%,系统的平均发电效率为14.3%,瞬时综合效率最大为83%,达到了能量的梯级利用。%To realize the use of low-grade thermal energy after cooling solar cells in solar photovoltaic systems,this paper puts forward a solar photovoltaic hot water system(PV/T).The experiment of the PV/T system shows,at the condition that inclination is 30°,and flow rate is 200 L/h,the maximum heat-collecting efficiency can be achieved at 65.6%and the average power generation efficiency is 14.3%, the maximum instantaneous overall efficiency is 83%,which realize the cascade utilization of energy.

  4. Hot Water Bathing Impairs Training Adaptation in Elite Teen Archers.

    Science.gov (United States)

    Hung, Ta-Cheng; Liao, Yi-Hung; Tsai, Yung-Shen; Ferguson-Stegall, Lisa; Kuo, Chia-Hua; Chen, Chung-Yu

    2018-04-30

    Despite heat imposes considerable physiological stress to human body, hot water immersion remains as a popular relaxation modality for athletes. Here we examined the lingering effect of hot tub relaxation after training on performance-associated measures and dehydroepiandrosterone sulfate (DHEA-S) in junior archers. Ten national level archers, aged 16.6 ± 0.3 years (M = 8, F = 2), participated in a randomized counter-balanced crossover study after baseline measurements. In particular, half participants were assigned to the hot water immersion (HOT) group, whereas another halves were assigned to the untreated control (CON) group. Crossover trial was conducted following a 2-week washout period. During the HOT trial, participants immersed in hot water for 30 min at 40°C, 1 h after training, twice a week (every 3 days) for 2 weeks. Participants during CON trial sat at the same environment without hot water after training. Performance-associated measures and salivary DHEA-S were determined 3 days after the last HOT session. We found that the HOT intervention significantly decreased shooting performance (CON: -4%; HOT: -22%, P HOT: -16%, P HOT: -60%, P < 0.05) of archers, compared with untreated CON trial. No group differences were found in motor unit recruitment (root mean square electromyography, RMS EMG) of arm muscles during aiming, autonomic nervous activity (sympathetic and vagal powers of heart rate variability, HRV), and plasma cortisol levels after treatments. Our data suggest that physiological adaptation against heat exposure takes away the sources needed for normal training adaptation specific to shooting performance in archers.

  5. Solar hot-water generation and heating - Kombi-Kompakt+

    International Nuclear Information System (INIS)

    Haller, M.; Vogelsanger, P.

    2005-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes new testing facilities at the Institute for Solar Technology in Rapperswil, Switzerland, that allow the testing of solar systems the whole year through. The systems tested feature the combined generation of heat for hot water storage vessels and heat for space heating. The test method used, the Concise Cycle Test (CCT) is described. The results of tests made on a large number of systems demonstrate that it is especially important to have a test system that allows the solar market to be protected from unsatisfactory systems. Good co-operation with manufactures is noted. As the test method includes tests with secondary energy sources such as oil or gas, certain problems in this area were discovered and corrected. Further tests are to be made with systems using biomass as a secondary source of heat

  6. Modelling and multi-scenario analysis for electric heat tracing system combined with low temperature district heating for domestic hot water supply

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    Low temperature district heating (LTDH) is a cost-efficient way of supplying space heating and domestic hot water (DHW) for buildings in urban areas. However, there is concern that the potential hygiene problems (Legionella) might occur if LTDH is implemented, especially for large buildings...... performance on heat loss saving, and it also gave benefits to district heating network by sharing part of the heating load....

  7. Classifying hot water chemistry: Application of MULTIVARIATE STATISTICS

    OpenAIRE

    Sumintadireja, Prihadi; Irawan, Dasapta Erwin; Rezky, Yuanno; Gio, Prana Ugiana; Agustin, Anggita

    2016-01-01

    This file is the dataset for the following paper "Classifying hot water chemistry: Application of MULTIVARIATE STATISTICS". Authors: Prihadi Sumintadireja1, Dasapta Erwin Irawan1, Yuano Rezky2, Prana Ugiana Gio3, Anggita Agustin1

  8. Nickel Chloride Promoted Glaser Coupling Reaction in Hot Water

    Institute of Scientific and Technical Information of China (English)

    Pin Hua LI; Lei WANG; Min WANG; Jin Can YAN

    2004-01-01

    A Glaser coupling reaction of terminal alkynes in the presence of nickel chloride without any organics and bases in hot water has been developed, which produces the corresponding homo-coupling products in good yields.

  9. Evaluation of filters in RSPCS (Reactor Service Pool Cooling System) and HWL (Hot Water Layer) in OPAL research reactor at ANSTO (Australian Nuclear Science and Technology Organization) using Gamma Spectrometry System and Liquid Scintillation Counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jim In; Foy, Robin; Jung, Seong Moon; Park, Hyeon Suk; Ye, Sung Joon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Australian Nuclear Science and Technology Organization(ANSTO) has a research reactor, OPAL (Open Pool Australian Lightwater reactor) which is a state-of-art 20 MW reactor for various purposes. In OPAL reactor, there are many kinds of radionuclides produced from various reactions in pool water and those should be identified and quantified for the safe use of OPAL. To do that, it is essential to check the efficiency of filters which are able to remove the radioactive substance from the reactor pool water. There are two main water circuits in OPAL which are RSPCS (Reactor Service Pool Cooling System) and HWL (Hot Water Layer) water circuits. The reactor service pool is connected to the reactor pool via a transfer canal and provides a working area and storage space for the spent and other materials. Also, HWL is the upper part of the reactor pool water and it minimize radiation dose rates at the pool surface. We collected water samples from these circuits and measured the radioactivity by using Gamma Spectrometry System (GSS) and Liquid Scintillation Counter (LSC) to evaluate the filters. We could evaluate the efficiency of filters in RSPCS and HWL in OPAL research reactor. Through the measurements of radioactivity using GSS and LSC, we could conclude that there is likely to be no alpha emitter in water samples, and for beta and gamma activity, there are very big differences between inlet and outlet results, so every filter is working efficiently to remove the radioactive substance.

  10. Domestic Hot Water Usage in Hotels; Tappvarmvattenanvaendning paa hotell

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Stefan; Werner, Sven [FVB Sverige AB, Vaesteraas (Sweden); Sandberg, Martin; Wahlstroem, Aasa [Swedish National Testing and Research Inst., Boraas (Sweden)

    2004-06-01

    Historically, design curves for domestic hot water, have been well sized and therefore also the components oversized. The Swedish district heating companies have noticed this and some companies replace large valves with customer-required valves, which give several advantages. There are several reasons why valves and heat exchangers can be customer-required and still the customers demand for hot water comfort can be fulfilled. The domestic hot water flow is composed, the taps are often short, large simultaneous taps are not very likely. Also, the dimensioning flows occur in the winter period, while the components are dimensioned for the summer case. The water pipes level off temporary temperature drops and the user seldom notices these because water with 55 deg C is not used in the tap. For residential buildings there are dimensioning recommendations on domestic hot water flow, but not for hotels. The purpose of this project has been to evaluate the domestic hot water use in relation to size and number of occupied beds. If the patterns of the chosen hotels coincide regarding to the sizes, dimensioning curves for domestic hot water use can be suggested. They can be used when hotels, or buildings with the same use pattern, are being built or restored. Measurements on 3 hotels with different sizes have been made. The hotels have 36, 52 and 158 rooms. The hotels are situated in the cities of Boraas and Kinna in Sweden. A short period of measurements from another hotel in the city of Gaevle (199 rooms) has also been included in this project. The measurements show that large hot water taps in hotels are rare and short. For the hotels, relative, cumulative relative frequencies and likely extreme values have been estimated. For residential buildings, The Swedish District Heating Association have recommendations for dimensioned domestic hot water flows. Formerly, these recommendations have been levelled so a cumulative relative frequency of 1 %, is reached, i.e. 99 % of all

  11. Hot spots and hot moments in riparian zones: Potential for improved water quality management

    Science.gov (United States)

    Philippe Vidon; Craig Allan; Douglas Burns; Tim P. Duval; Noel Gurwick; Shreeram Inamdar; Richard Lowrance; Judy Okay; Durelle Scott; Stephen Sebestyen

    2010-01-01

    Biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. These heterogeneous processes have recently been conceptualized as "hot spots and moments" of retention, degradation, or production. Nevertheless, studies investigating...

  12. Washing Habits and Machine with Intake of hot and cold Water

    DEFF Research Database (Denmark)

    Christensen, Bente Lis; Nørgaard, Jørgen

    1997-01-01

    with slightly adapted washing habits, or 17% of normal today. If the heat is supplied from combined heat and power production as in the actual experiment, CO2-emission is reduced by 81%. With hot water from oil or gas heaters the reduction will be slightly lower, while with solar hot water it will be larger.......Domestic washing machines typically spend around 80% of the electricity on heating water. Most of this can be replaced by more appropriate heat sources like district heat from combined heat and power production, or gas heating system. In recent years some washing machine manufacturers have marketed...... machines which can take in both hot and cold water and mix it to the temperature wanted. Such one machine has been tested in daily household use over 5 months, with habits of very few hot water washes. The result is an electricity consumption corresponding to 67 kWh per year for an average household...

  13. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system; 1976 nendo taiyonetsu reidanbo kyuto system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1974-76 research result on solar cooling/heating and hot water supply systems. Research was made on survey and analysis of current R and D states, system analysis, energy impact analysis, installation sites of solar collectors, diffusion policy, profitability, and performance evaluation method. Main research results obtained are as follows. The effect of solar cooling/heating and hot water supply on the Japanese energy demand in 2000 is estimated to be 13% for residences and 5% for the other buildings. Environment pollution derived from solar cooling/heating is extremely less than that from conventional energy quantitatively. The facility cost is estimated to be probably 27,000yen/m{sup 2} in collector cost, and nearly 100,000yen/t in heat storage tank cost. As design data for solar cooling/heating systems, the estimation method of heat collection for every solar radiation rank, performance comparison of honeycomb type collectors, and various data for air heat collection systems are presented. (NEDO)

  14. Hot water treatments delay cold-induced banana peel blackening

    NARCIS (Netherlands)

    Promyou, S.; Ketsa, S.; Doorn, van W.G.

    2008-01-01

    Banana fruit of cv. Gros Michel (Musa acuminata, AAA Group, locally called cv. Hom Thong) and cv. Namwa (Musa x paradisiaca, ABB Group) were immersed for 5, 10 and 15 min in water at 42 degrees C, or in water at 25 degrees C (control), and were then stored at 4 degrees C. Hot water treatment for 15

  15. Modeling of Possible Conditions for Origin of First Organic Forms in hot Mineral Water

    OpenAIRE

    Ignat Ignatov; Oleg Mosin

    2014-01-01

    The composition of water, its temperature and pH value was analyzed in experiments with modelling of primary hydrosphere and possible conditions for origin of first organic forms in hot mineral water. For this aim the authors performed experiments with hot mineral and seawater from Bulgaria by IR-spectrometry (DNES-method). As model systems were used cactus juice of Echinopsis pachanoi and Mediterranean jellyfish Cotylorhiza tuberculata. It was considered the reactions of condensation and deh...

  16. Origin of life and living matter in hot mineral water

    OpenAIRE

    Ignatov, Ignat; Mosin, Oleg

    2013-01-01

    In this review the composition of water and isotopic structure of water during a process of origin of life is submitted. The data obtained testify that life maintenance depends on physical-chemical properties of water and external factors – temperature and рН. Hot mineral alkaline water, which interacts with CaCO 3 is closest to these conditions. Next in line with regard to quality is sea and mountain water.

  17. Development of hot water utilizing power plants in fiscal 1999. Development of binary cycle power plant (Development of system to detect well bottom information when geothermal hot water is excavated); 1999 nendo nessui riyo hatsuden plant nado kaihatsu seika hokokusho. Binary cycle hatsuden plant no kaihatsu (chinetsusei kussakuji kotei joho kenchi system no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Developmental research has been performed on the MWD system to identify on the real time basis the information about well bottom when geothermal hot water is excavated (azimuth, inclination, pressure and temperature). This paper summarizes the achievements in fiscal 1999. In the developmental research on the detection device, attempts were made in improving the zonde, and enhancing its heat resisting performance. In addition, data were acquired on electronics parts as a result of the heat resistance identifying test. For the on-the-ground devices, improvement was made to add the experiment analyzing program with a program to remove the downhole motor pressure noise. The pressure noise during excavation in the actual wells was collected. In the analyzing system, use of PC, improvement, and operation check were performed on the well trace projecting and indicating system. Operation of the well trace estimating system was checked by using the actual data in order to prepare the operation manual. With regard to the well evaluation supporting system, improvement, operation check and that by using the actual data were executed on the PC version temperature analyzing system. Performance of the zonde was verified by the actual geothermal well test. (NEDO)

  18. Microbial ecology of hot desert edaphic systems.

    Science.gov (United States)

    Makhalanyane, Thulani P; Valverde, Angel; Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Cowan, Don A

    2015-03-01

    A significant proportion of the Earth's surface is desert or in the process of desertification. The extreme environmental conditions that characterize these areas result in a surface that is essentially barren, with a limited range of higher plants and animals. Microbial communities are probably the dominant drivers of these systems, mediating key ecosystem processes. In this review, we examine the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly. We also assess the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms. We conclude by discussing current gaps in our understanding of the microbiology of hot deserts and suggest fruitful avenues for future research. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Effect of insolation forecasting error on reduction of electricity charges for solar hot water system; Taiyonetsu kyuto system no denki ryokin sakugen koka ni oyobosu nissharyo yosoku gosa no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan)

    1996-10-27

    A solar hot water system can be economically operated if inexpensive midnight power is purchased to cover the shortage of solar energy predicted for the following day. Investigations were conducted because error in insolation prediction affects the system operation and electric charge reduction effect. The target temperature of the heat accumulation tank at every predetermined time point is calculated on the previous evening in consideration of predicted insolation so that the water will be as hot as prescribed at the feeding time on the following day. Midnight power is used for uniform heating to attain the target temperature for 7 o`clock on the following morning. The uniform heating continues from 8 o`clock to the feeding time, this time using solar energy and daytime power to attain the target temperature. Accordingly, the division between the midnight power and daytime power is determined in view of the target temperature for 7 o`clock on the following morning, which target temperature is so set that the charge will be the minimum by optimizing the allocation of the above-said two. When the insolation prediction error rate is beyond 30%, the electric charge grows higher as the rate rises. But, when the rate is not higher than 30%, the charge is little affected by a rise in the rate. 5 refs., 10 figs., 1 tab.

  20. Application of elements of systems for solar heating and hot water supply in medical planning modules and submodules; Prilagane na elementi na sistemi za slynchevo otoplenie i dostavyane na topla voda v meditsinski planirovychni moduli i podmoduli

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrova, L. [Civil Engineering Higher School, Sofia (Bulgaria)

    2011-07-01

    Here is reviewed the application of some characteristic elements of well-known innovative solutions of systems for solar heating and hot water supply in buildings - in medical modules and submodules in extreme situations - natural disaster, industrial average or military conflict. Also are given exemplary schemes of situation of the characteristic elements of the planning schemes of selected modules in accordance with the dimensions of the refrigeration chambers. (author)

  1. Modeling patterns of hot water use in households

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J.D.; Liu, Xiaomin; McMahon, J.E. [and others

    1996-11-01

    This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

  2. Modeling patterns of hot water use in households

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

    1996-01-01

    This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

  3. Measurements of hot water service consumptions: temperature influence

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, R.; Vallat, D.; Cyssau, R. (COSTIC, Saint Remy-les-Chevreuse (France))

    This article presents a campaign of measurements of which the aim is the observation of consumptions, for individual installations equiped with a hot water tank. The study takes an interest in the temperature of the water in the tank and the instantaneous power of the generator. The instrumentation, the installations and the results of this campaign are presented in this paper. The conclusion is the ''economic'' temperature of hot sanitary water is below 60/sup 0/C but above 55/sup 0/C.

  4. Lanthanoid abundance of some neutral hot spring waters in Japan

    International Nuclear Information System (INIS)

    Kikawada, Yoshikazu; Oi, Takao; Honda, Teruyuki

    1999-01-01

    Contents of lanthanoids (Ln's) in some neutral hot spring waters as well as in acidic hot spring waters were determined by neutron activation analysis. It was found that a higher pH resulted in lower concentrations of Ln's; the value of correlation coefficient (r) between the logarithm of the concentration of Sm ([Sm]), chosen as the representative of Ln's, and the logarithm of pH was -0.90. The sum of [Al] and [Fe] was strongly correlated with [Ln]'s in the pH range of 1.3 and 8.8; the correlation was expressed as log[Sm] = 0.893 log([Al] + [Fe]) - 5.45 with the r value of 0.98. The sum of [Al] and [Fe] was thus a good measure of the Ln contents in acidic and neutral hot spring waters. The Ln abundance patterns of neutral hot spring waters with normal CO 2 concentrations had concave shapes with relative depletion in the middle-heavy Ln's and seemed to reflect the solubility of Ln carbonates. The neutral hot spring water with a high CO 2 content of 1,800 ppm showed a Ln pattern with a relative enrichment in the heavy Ln's and seemed to reflect the solubility of Ln's observed for CO 2 -rich solutions. (author)

  5. Upgrading of biomass by carbonization in hot compressed water

    Directory of Open Access Journals (Sweden)

    Wiwut Tanthapanichakoon

    2006-09-01

    Full Text Available Carbonization of biomass (corn cob in hot compressed water was performed using a small bomb reactor at temperature 300-350ºC and pressure 10-18 MPa for 30 min. Then, the solid product or biochar was subjected to various analyses in order to investigate the effects of the carbonization in hot compressed water on the characteristics of the biochar. It was found that the yield of biochar carbonized in hot compressed water at 350ºC and pressure of 10 MPa for 30 min was 44.7%, whereas the yield of biochar carbonized in nitrogen atmosphere at 350ºC is 36.4%. Based on the information obtained from the elemental analyses of the biochar, it was found that the oxygen functional groups in the corn cob were selectively decomposed during the carbonization in hot compressed water. The pyrolysis and combustion behaviors of the biochar were found to be affected significantly by the carbonization in hot compressed water.

  6. Sporadic Legionnaires' disease: the role of domestic electric hot-water tanks.

    Science.gov (United States)

    Dufresne, S F; Locas, M C; Duchesne, A; Restieri, C; Ismaïl, J; Lefebvre, B; Labbé, A C; Dion, R; Plante, M; Laverdière, M

    2012-01-01

    Sporadic community-acquired legionellosis (SCAL) can be acquired through contaminated aerosols from residential potable water. Electricity-dependent hot-water tanks are widely used in the province of Quebec (Canada) and have been shown to be frequently contaminated with Legionella spp. We prospectively investigated the homes of culture-proven SCAL patients from Quebec in order to establish the proportion of patients whose domestic potable hot-water system was contaminated with the same Legionella isolate that caused their pneumonia. Water samples were collected in each patient's home. Environmental and clinical isolates were compared using pulsed-field gel electrophoresis. Thirty-six patients were enrolled into the study. Legionella was recovered in 12/36 (33%) homes. The residential and clinical isolates were found to be microbiologically related in 5/36 (14%) patients. Contaminated electricity-heated domestic hot-water systems contribute to the acquisition of SCAL. The proportion is similar to previous reports, but may be underestimated.

  7. DBP formation in hot and cold water across a simulated distribution system: effect of incubation time, heating time, pH, chlorine dose, and incubation temperature.

    Science.gov (United States)

    Liu, Boning; Reckhow, David A

    2013-10-15

    This paper demonstrates that disinfection byproducts (DBP) concentration profiles in heated water were quite different from the DBP concentrations in the cold tap water. Chloroform concentrations in the heated water remained constant or even decreased slightly with increasing distribution system water age. The amount of dichloroacetic acid (DCAA) was much higher in the heated water than in the cold water; however, the maximum levels in heated water with different distribution system water ages did not differ substantially. The levels of trichloroacetic acid (TCAA) in the heated water were similar to the TCAA levels in the tap water, and a slight reduction was observed after the tap water was heated for 24 h. Regardless of water age, significant reductions of nonregulated DBPs were observed after the tap water was heated for 24 h. For tap water with lower water ages, there were significant increases in dichloroacetonitrile (DCAN), chloropicrin (CP), and 1,1-dichloropropane (1,1-DCP) after a short period of heating. Heating of the tap water with low pH led to a more significant increase of chloroform and a more significant short-term increase of DCAN. High pH accelerated the loss of the nonregulated DBPs in the heated water. The results indicated that as the chlorine doses increased, levels of chloroform and DCAA in the heated water increased significantly. However, for TCAA, the thermally induced increase in concentration was only notable for the chlorinated water with very high chlorine dose. Finally, heating may lead to higher DBP concentrations in chlorinated water with lower distribution system temperatures.

  8. Experimental Investigation of the Hot Water Layer Effect on Upward Flow Open Pool Reactor Operability

    International Nuclear Information System (INIS)

    Abou Elmaaty, T.

    2014-01-01

    The open pool reactor offers a high degree of reliability in the handling and manoeuvring, the replacement of reactor internal components and the suing of vertical irradiation channels. The protection of both the operators and the reactor hall environment against radiation hazards is considered a matter of interest. So, a hot water layer is implemented above many of the research reactors main pool, especially those whose flow direction is upward flow. An experimental work was carried out to ensure the operability of the upward flow open pool research reactor with / without the hot water layer. The performed experiment showed that, the hot water layer is produced an inverse buoyant force make the water to diffuse downward against the ordinary natural circulation from the reactor core. An upward flow - open pool research reactor (with a power greater than 20 M watt) could not wok without a hot water layer. The high temperature of the hot water layer surface could release a considerable amount of water vapour into the reactor hall, so a heat and mass transfer model is built based on the measured hot water layer surface temperature to calculate the amount of released water vapour during the reactor operating period. The effects of many parameters like the ambient air temperature, the reactor hall relative humidity and the speed of the pushed air layer above the top pool end on the evaporation rate is studied. The current study showed that, the hot water layer system is considered an efficient shielding system against Gamma radiation for open pool upward flow reactor and that system should be operated before the reactor start up by a suitable period of time. While, the heat and mass transfer model results showed that, the amount of the released water vapour is increased as a result of both the increase in hot water layer surface temperature and the increase in air layer speed. As the increase in hot water layer surface temperature could produce a good operability

  9. Experimental Investigation of the Hot Water Layer Effect on Upward Flow Open Pool Reactor Operability

    International Nuclear Information System (INIS)

    Abou Elmaaty, T.

    2015-01-01

    The open pool reactor offers a high degree of reliability in the handling and manoeuvring, the replacement of reactor internal components and the swing of vertical irradiation channels. The protection of both the operators and the reactor hall environment against radiation hazards is considered a matter of interest. So, a hot water layer implemented above many of the research reactors main pool, especially those whose flow direction is upward flow. An experimental work was carried out to ensure the operability of the upward flow open pool research reactor with / without the hot water layer. The performed experiment showed that, the hot water layer produced an inverse buoyant force making the water to diffuse downward against the ordinary natural circulation from the reactor core. An upward flow-open pool research reactor (with a power greater than 20 Mw) could not wok without a hot water layer. The high temperature of the hot water layer surface could release a considerable amount of water vapour into the reactor hall, so a heat and mass transfer model is built based on the measured hot water layer surface temperature to calculate the amount of released water vapour during the reactor operating period. The effects of many parameters like the ambient air temperature, the reactor hall relative humidity and the speed of the pushed air layer above the top pool end on the evaporation rate is studied. The current study showed that, the hot water layer system is considered an efficient shielding system against gamma radiation for open pool upward flow reactor and that system should be operated before the reactor start up by a suitable period of time. While, the heat and mass transfer model results showed that, the amount of the released water vapour is increased as a result of both the increase in hot water layer surface temperature and the increase in air layer speed. As the increase in hot water layer surface temperature could produce a good operability conditions from

  10. Emission of Air Pollutants in the Hot Water Production

    Science.gov (United States)

    Krzysztof, Nowak; Maria, Bukowska; Danuta, Proszak-Miąsik; Sławomir, Rabczak

    2017-10-01

    The result of the deteriorating condition of the environment and climate change is to increase the efficient use of fuel and energy and the rational use of energy resources. Great potential for reducing consumption of fossil fuels are stuck in heating systems ranging from generation, transmission and distribution and ending with the recipients rationalize their consumption of heat. Efficient production of heat is obtained during optimal boiler load. The boiler type WR operates with the highest efficiency of 80-85%, the rate of fuel consumption is the lowest, and the process is close to complete combustion. In such conditions to the atmosphere are emitted mainly: SO2, CO2 and NOX. Pollutants such as CO, CH4, HF, HCl, NH3, etc., are the result of incomplete and imperfect combustion, that is, when the boiler is working inefficiently [1-3]. Measurements of pollutant concentrations were performed using an analyzer FTIR Gasmet DX4000. Fourier Transform Infrared Spectroscopy is a technique of measuring that allows a very precise identification of qualitative and quantitative range of compounds, including gaseous pollutants. Device used to measure the concentrations of gaseous pollutants allow determining the amount of carbon, sulphur and nitrogen compounds, which measurement is not defined any rules, including chlorine compounds, hydrogen, methane, ammonia and volatile organic compounds. In this publication presents part of the literature the use of heat for domestic hot water production in summer and heating demand in winter. Described the characteristics of the water boilers WR type used for heating. Presents the results study of the emissions in the production of hot water for the summer and winter seasons.

  11. Recovery of energy from geothermal brine and other hot water sources

    Science.gov (United States)

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  12. 14 CFR 25.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 25.961...

  13. The impact of the hot tap water load pattern in the industrial hall on the energy yield from solar collectors

    Science.gov (United States)

    Fidorów-Kaprawyl, Natalia; Dudkiewicz, Edyta

    2017-11-01

    The systems using solar energy, popular in Poland, can be used to supply hot water for the installation used by employees of industrial halls. In manufacturing plants, employing a large number of people, the demand for hot water is practically constant throughout the year and is characterized by periodic use at the end of each work shift. Dynamics of the hot water consumption depends on the number of shifts as well as working days and holidays. Additionally the maximum hot tap water demand occurs in the whole period of installation operation. In polish climatic conditions the solar collectors' systems have the largest capacity in the summer, while in winter they need to be assisted. Beside that the supply of renewable energy is uneven and depends on weather conditions. In the paper the one-hour step analysis concerning the dependence of the load pattern of the hot tap water preparation system on the energy yield from solar collectors had been performed.

  14. Application of solar energy to the supply of hot water for textile dyeing. Final report, CDRL/PA 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-01

    The design plan for a solar process hot water system for a textile dye beck at Riegel Textile Corporation's LaFrance, South Carolina, facilities is presented. The solar system consists of 396 GE model TC 100 evacuated tube collector modules arranged in a ground mounted array with a total collector area of 6680 square feet. The system includes an 8000-gallon hot water storage tank. Systems analyses, specification sheets, performance data, and an economic evaluation of the proposed system are presented. (WHK)

  15. FY 1977 Annual report on Sunshine Project results. Research on solar energy systems for air conditioning and hot water supply; 1977 nendo taiyo netsu reidanbo kyuto system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at research and development of utilization of solar energy for air conditioning and hot water supply, as part of the researches on systems under Sunshine Project for utilization of solar energy. This project is focused on the research items, selected from those pursued by the 3-year project beginning in FY1974 as the ones considered to be important for the future diffusion and promotion of the systems for utilization of solar energy. The 3-year project has produced the software and hardware results, based on development of the devices and construction of a solar house. At this stage of time, it is pointed out that studies on economic viability of the system, development of the software for diffusion of the solar systems, and development of new, more suitable systems and methods for utilization of solar energy are important. In this fiscal year, the four themes (studies on economic viability of the conceptual solar system designs, simplified methods for designing the systems, evaluation of system performance, and studies on energy-saving effects and economic viability) are taken up, viewed from development of the software for diffusion and promotion of the systems for utilizing solar energy, based on the results obtained by the previous 3-year project. (NEDO)

  16. Cooling Grapple System for FMEF hot cell

    International Nuclear Information System (INIS)

    Semmens, L.S.; Frandsen, G.B.; Tome, R.

    1983-01-01

    A Cooling Grapple System was designed and built to handle fuel assemblies within the FMEF hot cell. The variety of functions for which it is designed makes it unique from grapples presently in use. The Cooling Grapple can positively grip and transport assemblies vertically, retrieve assemblies from molten sodium where six inches of grapple tip is submerged, cool 7 kw assemblies in argon, and service an in-cell area of 372 m 2 (4000 ft 2 ). Novel and improved operating and maintenance features were incorporated in the design including a shear pin and mechanical catcher system to prevent overloading the grapple while allowing additional reaction time for crane shutdown

  17. Solar Hot Water Heating by Natural Convection.

    Science.gov (United States)

    Noble, Richard D.

    1983-01-01

    Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)

  18. Effects of sulphuric acid and hot water treatments on seed ...

    African Journals Online (AJOL)

    A study was carried out to investigate the effects of sulphuric acid and hot water treatments on the germination of Tamarind (Tamarindus indica L). Seeds were placed on moistened filter papers in 28 cm diameter Petri dishes under laboratory condition for germination. 330 seeds of T. indica (10 seeds per Petri dish) with ...

  19. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based on t...

  20. Investigations on stratification devices for hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Hampel, Matthias

    2008-01-01

    The significance of the thermal stratification for the energy efficiency of small solar-thermal hot water heat stores is pointed out. Exemplary the thermal stratification build-up with devices already marketed as well as with devices still in development has been investigated experimentally...

  1. Effects of Hot Water Treatment and Temperature on Seedling ...

    African Journals Online (AJOL)

    An experiment was conducted at the Faculty of Agriculture, University of Maiduguri, to study the effect of hot water treatment and temperature on the morphological characteristics of Arabic gum. The experiment was laid out in a Randomized Complete Block Design in a factorial arrangement. The treatments included a ...

  2. Investigation on Kombiterm GE Domestic Hot Water Tank

    DEFF Research Database (Denmark)

    Heller, Alfred; Heuer, Andreas Walter

    1996-01-01

    Investigation of a hot water tank with a high heat exchanger spiral with a small pipe diameter in the upper part of the heat exchanger spiral and a large pipe diameter in the lower part of the heat exchanger spiral in cooperation with Kãhler&Breum Beholder- og Maskinfabrik K/S. First preprint of ...

  3. The effect of hot water injection on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Haugwitz, Christian; Jacobsen, Peter Sally Munch

    2014-01-01

    Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We present an analysis of literature data in combination with new short-term flow through permeability experiments in order to address physical and physico-chemical mechanisms that can alter...

  4. Metagenomic analysis of bacterial diversity of Siloam hot water ...

    African Journals Online (AJOL)

    The bacterial diversity of Siloam hot water spring was determined using 454 pyrosequencing of two 16S rRNA variable regions V1-3 and V4-7. Analysis of the community DNA revealed that the phyla Proteobacteria, Cyanobacteria, Bacteriodetes, Planctomycetes, Firmicutes, Chloroflexi and Verrucomicrobia were the most ...

  5. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  6. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  7. Advantages using inlet stratification devices in solar domestic hot water storage tanks

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Bava, Federico

    2017-01-01

    performances of two solar domestic hot water systems are presented. One system is a traditional high flow system with a heat exchanger spiral in the tank. The other system is a low flow system with an external heat exchanger and a newly developed inlet stratifier from EyeCular Technologies ApS installed......The thermal performance of a domestic hot water system is strongly affected by whether the storage tank is stratified or not. Thermal stratification can be built up in a solar storage tank if the heated water from the solar collectors enters the tank through an inlet stratifier.Measured thermal...... with the stratification device has a higher thermal performance compared to the system with the heat exchanger spiral inside the tank.The relative performance (defined as the ratio between the net utilized solar energy of the low flow system and the net utilized solar energy of the high flow system), is a function...

  8. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for multiple dwelling); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This R and D was intended to develop the following technologies for the purpose of putting into practice an innovative system that performs cooling/heating and hot-water supply for a multiple dwelling economically by solar energy: development of equipment constituting solar cooling/heating and hot-water supply system, and development of a system which uses such equipment and which is inexpensive and safe as well as easy for inspection and maintenance. In fiscal 1979, a study was implemented in which emphasis was placed on the experiment of a test housing with a solar cooling/heating and hot-water supply system incorporated for the purpose of proving the results of the research since fiscal 1974. In the overall flow of this project, the following research contents were partially performed or being performed successively during the period of seven years. (1) Examination of various methods, (2) Development of thermally driven freezer, (3) High performance heat collecter, (4) Heat storage device, (5) Types of multiple dwelling suitable for solar energy utilization, (6) Construction of experimental multiple dwelling, (7) Experiment in houses actually in use by people, (8) Confirmation of system improvements and results on the basis of experimental measurements, and (9) Evaluation as a solar system for multiple dwelling. (NEDO)

  9. Application of waterproof breathable fabric in thermal protective clothing exposed to hot water and steam

    Science.gov (United States)

    Su, Y.; Li, R.; Song, G.; Li, J.

    2017-10-01

    A hot water and steam tester was used to examine thermal protective performance of waterproof and breathable fabric against hot water and steam hazards. Time to cause skin burn and thermal energy absorbed by skin during exposure and cooling phases was employed to characterize the effect of configuration, placing order and properties of waterproof and breathable fabric on the thermal protective performance. The difference of thermal protective performance due to hot water and steam hazards was discussed. The result showed that the configuration of waterproof and breathable fabric presented a significant effect on the thermal protective performance of single- and double-layer fabric system, while the difference between different configurations in steam hazard was greater than that in hot water hazard. The waterproof and breathable fabric as outer layer provided better protection than that as inner layer. Increasing thickness and moisture regain improved the thermal protective performance of fabric system. Additionally, the thermal energy absorbed by skin during the cooling phase was affected by configuration, thickness and moisture regain of fabric. The findings will provide technical data to improve performance of thermal protective clothing in hot water and steam hazards.

  10. Long term performance of a solar floor and hot water heating house; Taiyonetsu yukadanbo kyuto jutaku no choki seino

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Outlined herein are measured energy consumption followed for 12 years for a totally electrified solar house with a floor-heating and hot-water heating system. In the solar system, hot water generated by the solar collector is sent, via a surge tank, to a living room, dining room and study to heat their concrete floors, and recycled back to the collector after heating the heat-storage tank for hot water supply. The collector is of plate type, consisting of 6 units, each with a white glass sheet as the heat-collecting membrane for selectively absorbing heat. Its total heat-collecting area is 11.4m{sup 2}. Long-term performance of the solar system installed for floor and hot-water heating in a totally electrified solar house, is analyzed by the measured results collected for 12 years. The house consumes secondary energy of 11.7MWh/year on the average, which is approximately 20% lower that that required for a house of the equivalent size. The solar system has been operated smoothly, to supply 46 and 35% of the required heat for hot-water and floor heating. It is however estimated that annual heat loss reaches 34% in the hot-water heating system, including that in the electric hot-water generator, and prevention of heat loss is one of the major themes for the future system designs. 4 refs., 5 figs.

  11. Entrance Effects in Solar Hot Water Stores

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    2003-01-01

    A theoretical and experimental analysis of water jets entering a solar storage tank is performed. CFD calculations of three inlet designs with different inlet flow rates were carried out to illustrate the varying behaviour of the thermal conditions in a solar store. The results showed the impact ...... in an analysis using the first and second law of thermodynamics. The results showed how the entropy changes and the exergy changes in the storage during the draw-offs influenced by the Richardson number, the volume draw-off and the initial tank conditions....

  12. Evaporation heat transfer of hot water from horizontal free service

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ebihara, Y.; Hirota, T.; Murase, M.

    2011-01-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35 o C ~ 65 o C. Cold air was approximately 25 o C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  13. Evaporation heat transfer of hot water from horizontal free service

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Y.; Ebihara, Y.; Hirota, T. [Shinshu Univ., Ueda, Nagano (Japan); Murase, M. [INSS, Mihama-cho, Fukui (Japan)

    2011-07-01

    Evaporation heat transfer from the hot water flow to the cold air flow in a horizontal duct was examined. Hot water was in the range of 35{sup o}C ~ 65{sup o}C. Cold air was approximately 25{sup o}C. The air velocity was varied from 0.0656 m/s ~ 1.41 m/s. The heat transfer rate from the water flow to the air flow became large with an increase in the air velocity. The higher the water temperature was, the larger the heat transfer rate was. When the total heat flux from water to the air flow is divided into two terms; the evaporation term and the forced flow convection term, the evaporation term dominate main part and that is about 90 ~ 80 % of the total heat flux. The measured values of the evaporation term and the forced flow convection term were larger than the predicted because of the effect of the diffusion of evaporated vapor. The correlation to predict the heat transfer from the hot water flow to the cold air flow with the evaporation was developed by modifying the laminar flow mass transfer correlation and the laminar forced convection heat transfer correlation. Good results were obtained. (author)

  14. Economic efficiency of solar hot water policy in New Zealand

    International Nuclear Information System (INIS)

    Gillingham, Kenneth

    2009-01-01

    New Zealand has recently followed the path of several other countries in promoting solar hot water (SHW) systems in the effort to reduce greenhouse gas emissions, yet the economic efficiency of large-scale policies to encourage SHW remains a pressing question for policymakers. This paper develops an economic framework to examine policies to promote SHW in New Zealand, including the current information, training, and subsidy policy. The economic framework points to environmental, energy security, and average-cost electricity retail pricing market failures as motivation for SHW policy, with the global climate change externality the most important of these. The results indicate that domestic SHW systems are close to being financially attractive from a consumer perspective, but a more substantial subsidy policy would be necessary for SHW to appeal to a wider audience. Such a policy is far more likely to have positive net benefits than a policy of mandating SHW on all homes or all new homes in New Zealand, and could be justified on economic efficiency grounds under reasonable assumptions. However, this result reverses under an economy-wide carbon trading system that internalizes the environmental externality.

  15. Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seitzler, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-01

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.

  16. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Electric hot water supply boilers. 63.25-3 Section 63.25... water supply boilers. (a) Electric hot water supply boilers that have a capacity not greater than 454... section except the periodic testing required by paragraph (j) of this section. Electric hot water supply...

  17. Final report : testing and evaluation for solar hot water reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); He, Hongbo (University of New Mexico, Albuquerque, NM); Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Burch, Jay (National Renewable Energy Laboratory, Golden CO)

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  18. The analysis of the hot water consumption and energy performance before and after renovation in multi-apartment buildings

    Science.gov (United States)

    Tumanova, K.; Borodinecs, A.; Geikins, A.

    2017-10-01

    The article presents the results of hot water supply system analysis. Taking into account that the current consumption of hot water differs from normative values, real measured data of hot water consumption in multi-apartment buildings from year 2013 until year 2015 have been analyzed. Also, the thermal energy consumption for hot water preparation has been analyzed. Based on aggregated data and taking into account the fact that renovated systems of hot water supply in existing multi-apartment buildings have same pipelines’ diameters, it was analyzed how these systems are economically and energy efficient. For the study, residential buildings in Riga, which have different architectural and engineering solutions for hot water supply systems, were selected. The study was based on thermal energy consumption measurements, which were taken at the individual heating system’s manifolds. This study was done in order to develop database on hot water consumption in civil buildings and define difference in key performance criteria in unclassified buildings. Obtained results allows to reach European Regional Development Fund project “NEARLY ZERO ENERGY SOLUTIONS FOR UNCLASSIFIED BUILDINGS” Nr. 1.1.1.116A048 main targets.

  19. Identification and assessment of environmental benefits from solar hot water production

    International Nuclear Information System (INIS)

    Haralambopoulos, D.; Spilanis, I.

    1997-01-01

    The environmental benefits associated with the utilization of solar energy for hot water production are estimated in this work. The case of a particular country, Greece, and its electricity production system is employed to show the direct consequences of substituting electricity with solar energy for hot water production. The amount of conventional fuel saved, i.e. lignite and oil, is estimated, and the reduction in air pollution is calculated. This allows the calculation of reduction emission factors for solar hot water production to be undertaken. Data, with respect to the materials and the amount of energy necessary for the construction of the solar heaters, are also presented. These can serve as inputs to an energy-environment policy framework in order to lead to reduction of air pollutants like SO 2 , NO X and particulates, and the release of the greenhouse gas CO 2 into the atmosphere. (Author)

  20. Thermomechanical finite element analysis of hot water boiler structure

    Directory of Open Access Journals (Sweden)

    Živković Dragoljub S.

    2012-01-01

    Full Text Available The paper presents an application of the Finite Elements Method for stress and strain analysis of the hot water boiler structure. The aim of the research was to investigate the influence of the boiler scale on the thermal stresses and strains of the structure of hot water boilers. Results show that maximum thermal stresses appear in the zone of the pipe carrying wall of the first reversing chamber. This indicates that the most critical part of the boiler are weld spots of the smoke pipes and pipe carrying plate, which in the case of significant scale deposits can lead to cracks in the welds and water leakage from the boiler. The nonlinear effects were taken into account by defining the bilinear isotropic hardening model for all boiler elements. Temperature dependency was defined for all relevant material properties, i. e. isotropic coefficient of thermal expansion, Young’s modulus, and isotropic thermal conductivity. The verification of the FEA model was performed by comparing the measured deformations of the hot water boiler with the simulation results. As a reference object, a Viessmann - Vitomax 200 HW boiler was used, with the installed power of 18.2 MW. CAD modeling was done within the Autodesk Inventor, and stress and strain analysis was performed in the ANSYS Software.

  1. Solar Energy for Domestic Hot Water: Case Studies in Sisimiut 1999-2005

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2005-01-01

    Two pioneer solar domestic hot water systems were installed at Bygge- og Anlægsskolen in Sisimiut in 1999 and 2000. Detailed measurements of energy flows and solar radiation incl. snow reflectance has been undertaken for both plants. Since August 2004 data logging of the measurements was made...... available online on the website www.arcticsolar.com. Measurements show that solar plant 1 and 2 cover 22% and 23%, respectively, of the energy spent for domestic hot water heating. This paper summarises the findings from the past 5 years....

  2. Development of two-stage compression heat pump for hot water supply in commercial use. Establishment of design method for water and air heat source system; Gyomuyo nidan asshukushiki kyuto heat pump no kaihatsu. Suinetguen oyobi kuki netsugen sytem no sekkei hoho no kakuritsu

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H; Hashimoto, K; Saikawa, M; Iwatsubo, T; Mimaki, T [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1996-07-01

    The two-stage compression cascade heating heat pump cycle was devised for hot water supply in business use such as hotel and store use which allows hot water supply less in primary energy consumption than gas boilers, and higher in temperature than conventional heat pumps. This cycle heats water in cascade manner by two-stage compression using two compressors in both low- and high-stage refrigerant circuits, and two condensers different in condensation temperature (intermediate heat exchanger and condenser) to achieve higher hot water temperature and higher COP. For cost reduction, the new system design method was established which is possible to cope with conventional compressors such as screw and scroll ones with different theoretical suction volume for every one. System design parameters such as thermal output and COP of hot water supply were largely affected by theoretical suction volume ratio of low- and high-stage compressors dependent on combination of the compressors, and refrigerant condensing temperature in an intermediate heat exchanger as proper parameter. 4 refs., 17 figs., 13 tabs.

  3. 14 CFR 27.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems with features conducive to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 27.961...

  4. 14 CFR 29.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 29.961...

  5. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  6. Surprisingly low natural gas consumption for hot water in the Netherlands in 1996

    International Nuclear Information System (INIS)

    Geerse, C.

    1997-01-01

    The Dutch use hot water more efficient than previously expected. This conclusion is drawn from a recent study of hot water consumption in Dutch households and the corresponding natural gas consumption. Based on that (once-only) hot water use survey the hot water use models, as applied in the annual Basic Survey of Natural Gas Consumption of Small-scale Consumers in the Netherlands (BAK), will be modified. 6 tabs

  7. Twin cities institutional issues study cogenerated hot water district heating

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, R. E.; Leas, R.; Kolb, J. O.

    1979-01-01

    Community district heating, utilizing hot water produced through electrical/thermal cogeneration, is seen as an integral part of Minnesota's Energy Policy and Conservation Plan. Several studies have been conducted which consider the technical and institutional issues affecting implementation of cogenerated district heating in the Minneapolis and St. Paul Metropolitan Area. The state of the technical art of cogenerated hot water district heating is assumed to be transferable from European experience. Institutional questions relating to such factors as the form of ownership, financing, operation, regulation, and product marketability cannot be transferred from the European experience, and have been the subject of an extensive investigation. The form and function of the Institutional Issues Study, and some of the preliminary conclusions and recommendations resulting from the study are discussed.

  8. Possibilities of utilizing solar systems for heating the hot service water in Košice build-up areas KVP and Ťahanovce

    Directory of Open Access Journals (Sweden)

    Peter Horbaj

    2005-12-01

    Full Text Available A production of „HSW“ in block of flats areas by solar collectors means a real alternative to the traditional way of heating by fossil fuels (coal, gas. With this method, it’s possible to save ca. 50 % of energy from the net of the central service of the heat, what can reduce the production of pollutants in the locality, or it can enable to increase the quantity of customers without claims for the restructuralization of the central source. Because Slovakia is the producer of quality solar collectors it’s suitable to use them just for this reason, which could be projected into the price reduction of relatively expensive present systems. On the other side, when using the flat roofs on the block of flats, other useful places are hot occupied and the heating source is nearby the place of it sconsumption. In this case, a collaboration of the solar system and the Central Service of Heat is especially suitable in time with a shortage of the solar radiation.

  9. Solubility of solid ferrocene in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Roth, Michal

    2010-01-01

    Roč. 55, č. 8 (2010), s. 2866-2869 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1465; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized hot water * ferrocene * solubility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.089, year: 2010

  10. Solubilities of oxygenated aromatic solids in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    2009-01-01

    Roč. 54, č. 5 (2009), s. 1457-1461 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : oxygenated aromatics * solubility * pressurized hot water Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.695, year: 2009

  11. Efficacy of brown sugar flotation and hot water methods for detecting Rhagoletis indifferens (Dipt., Tephritidae) larvae

    Science.gov (United States)

    The brown sugar flotation and hot water methods are accepted procedures for detecting larval western cherry fruit fly, Rhagoletis indifferens Curran, in sweet cherry [Prunus avium (L.) L.] and could be included in a systems approach for showing the absence of larvae in fruit. The methods require cr...

  12. Hydrolysis kinetics of tulip tree xylan in hot compressed water.

    Science.gov (United States)

    Yoon, Junho; Lee, Hun Wook; Sim, Seungjae; Myint, Aye Aye; Park, Hee Jeong; Lee, Youn-Woo

    2016-08-01

    Lignocellulosic biomass, a promising renewable resource, can be converted into numerous valuable chemicals post enzymatic saccharification. However, the efficacy of enzymatic saccharification of lignocellulosic biomass is low; therefore, pretreatment is necessary to improve the efficiency. Here, a kinetic analysis was carried out on xylan hydrolysis, after hot compressed water pretreatment of the lignocellulosic biomass conducted at 180-220°C for 5-30min, and on subsequent xylooligosaccharide hydrolysis. The weight ratio of fast-reacting xylan to slow-reacting xylan was 5.25 in tulip tree. Our kinetic results were applied to three different reaction systems to improve the pretreatment efficiency. We found that semi-continuous reactor is promising. Lower reaction temperatures and shorter space times in semi-continuous reactor are recommended for improving xylan conversion and xylooligosaccharide yield. In the theoretical calculation, 95% of xylooligosaccharide yield and xylan conversion were achieved simultaneously with high selectivity (desired product/undesired product) of 100 or more. Copyright © 2016. Published by Elsevier Ltd.

  13. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for large buildings); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Ogata kenchikubutsuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-30

    This report describes the fiscal 1976 research result on solar cooling/heating and hot water supply systems for large buildings. Although the small experimental single/double effect absorption refrigerator system didn't satisfy the initial design specifications, if the large system is used, it probably satisfies them. Its wide operation range was confirmed by adding LiCl to water-LiBr system coolant. Concentration by reverse osmosis and electrodialysis for recycling absorbent resulted in failure. The storage tank volume of coolant and absorbent necessary for a heat storage refrigerator reached 4 times as large as refrigerator unit one. The primary basic plan of a single/double effect refrigerator system with plane collectors was prepared for Oita University. For system simulation, more practical characteristic equations are showed by reconsidering equations for single effect systems. The characteristic equations for double effect and single/double effect systems were obtained on the basis of the 1976 research result. The control method of hot water and absorbent effective for refrigerators was clarified. Absorbent circulation of 3.5-4% in concentration difference was optimum. (NEDO)

  14. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for large buildings); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Ogata kenchikubutsuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-30

    This report describes the fiscal 1976 research result on solar cooling/heating and hot water supply systems for large buildings. Although the small experimental single/double effect absorption refrigerator system didn't satisfy the initial design specifications, if the large system is used, it probably satisfies them. Its wide operation range was confirmed by adding LiCl to water-LiBr system coolant. Concentration by reverse osmosis and electrodialysis for recycling absorbent resulted in failure. The storage tank volume of coolant and absorbent necessary for a heat storage refrigerator reached 4 times as large as refrigerator unit one. The primary basic plan of a single/double effect refrigerator system with plane collectors was prepared for Oita University. For system simulation, more practical characteristic equations are showed by reconsidering equations for single effect systems. The characteristic equations for double effect and single/double effect systems were obtained on the basis of the 1976 research result. The control method of hot water and absorbent effective for refrigerators was clarified. Absorbent circulation of 3.5-4% in concentration difference was optimum. (NEDO)

  15. 14 CFR 23.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 23.961... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor lock...

  16. Radiocarbon application in dating 'complex' hot and cold CO{sub 2}-rich mineral water systems: A review of case studies ascribed to the northern Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Carreira, Paula M. [Instituto Tecnologico e Nuclear, Departamento de Quimica, Estrada Nacional No 10, 2686-953 Sacavem (Portugal)], E-mail: carreira@itn.pt; Marques, Jose M.; Graca, Rui C.; Aires-Barros, Luis [Instituto Superior Tecnico, Laboratorio de Mineralogia e Petrologia, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2008-10-15

    The use of radioactive isotopes plays a very important role in dating groundwater, providing an apparent age of the systems in the framework of the aquifers conceptual modelling making available important features about the water fluxes, such as recharge, horizontal flow rates and discharge. In this paper, special emphasis has been put on isotopic constraints in the use of {delta}{sup 13}C and {sup 14}C content as a dating tool in some hot (76 deg. C) and cold (17 deg. C) CO{sub 2}-rich mineral waters discharging in the Vilarelho da Raia-Pedras Salgadas region (N-Portugal). The radiocarbon content determined in these CO{sub 2}-rich mineral waters ({sup 14}C activity from 4.3 up to 9.9 pmc) is incompatible with the systematic presence of {sup 3}H (from 1.7 to 7.9 TU). The {delta}{sup 13}C values of the studied CO{sub 2}-rich mineral waters indicate that the total C in the recharge waters is being masked by larger quantities of CO{sub 2} ({sup 14}C-free) introduced from deep-seated (upper mantle) sources. This paper demonstrates that a good knowledge of mineral water systems is essential to allow hydrologists to make sound conclusions on the use of C isotopic data in each particular situation.

  17. Clean subglacial access: prospects for future deep hot-water drilling

    Science.gov (United States)

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  18. The Design of Hot Water Supply System of Solar Energy and Air Source Heat Pump%太阳能+空气源热泵的热水供应系统设计

    Institute of Scientific and Technical Information of China (English)

    卢春萍

    2015-01-01

    太阳能集中热水系统受到天气的影响难以全天候运行,需要设置辅助加热装置。以广州市宾馆热水供应为例,对太阳能空气源热泵的热水系统进行设计,包括空气源热泵热水机组选型计算、太阳能集热管面积计算、储热水箱的确定、集热循环水泵的确定。%Influenced by weather condition,it is difficult to run for hot water supply system of solar en-ergy all the time,and the auxiliary heating device need setting.Taking hot water supply in a hotel of Guangzhou city as an example in this paper,the heat pump system of solar energy and air source was designed,including the calculation of equipment selection of the air source heat pump, the calculation of the collector area,the determination of the heat storage tank,and the determina-tion of the circulating pump of the heat collection.

  19. Hot Chips and Hot Interconnects for High End Computing Systems

    Science.gov (United States)

    Saini, Subhash

    2005-01-01

    I will discuss several processors: 1. The Cray proprietary processor used in the Cray X1; 2. The IBM Power 3 and Power 4 used in an IBM SP 3 and IBM SP 4 systems; 3. The Intel Itanium and Xeon, used in the SGI Altix systems and clusters respectively; 4. IBM System-on-a-Chip used in IBM BlueGene/L; 5. HP Alpha EV68 processor used in DOE ASCI Q cluster; 6. SPARC64 V processor, which is used in the Fujitsu PRIMEPOWER HPC2500; 7. An NEC proprietary processor, which is used in NEC SX-6/7; 8. Power 4+ processor, which is used in Hitachi SR11000; 9. NEC proprietary processor, which is used in Earth Simulator. The IBM POWER5 and Red Storm Computing Systems will also be discussed. The architectures of these processors will first be presented, followed by interconnection networks and a description of high-end computer systems based on these processors and networks. The performance of various hardware/programming model combinations will then be compared, based on latest NAS Parallel Benchmark results (MPI, OpenMP/HPF and hybrid (MPI + OpenMP). The tutorial will conclude with a discussion of general trends in the field of high performance computing, (quantum computing, DNA computing, cellular engineering, and neural networks).

  20. NORTH PORTAL-HOT WATER CIRCULATION PUMP CALCULATION-SHOP BUILDING NO.5006

    International Nuclear Information System (INIS)

    Blackstone, R.

    1996-01-01

    The purpose of this design analysis and calculation is to size a circulating pump for the service hot water system in the Shop Building 5006, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculation is based on Reference 5.2. This consists of determining the total heat transfer from the service hot water system piping to the surrounding environment. The heat transfer is then used to define the total pumping capacity based on a given temperature change in the circulating hot water as it flows through the closed loop piping system. The total pumping capacity is used to select a pump model from manufacturer's literature. This established the head generation for that capacity and particular pump model. The total length of all hot water supply and return piping including fittings is then estimated from the plumbing drawings which defines the pipe friction losses that must fit within the available pump head. Several iterations may be required before a pump can be selected that satisfies the head-capacity requirements

  1. ON A NEW TECHNOLOGY OF PREPARATION OF HOT DRINKING WATER

    Directory of Open Access Journals (Sweden)

    M. F. Jalilov

    2017-01-01

    Full Text Available The present article contains information concerning the new Cl-anionization technology in the preparation of hot drinking water. In contrast with water softening, that replaces all the hardness salts by sodium cations in the cation exchanger, this new technology makes it possible to replace incrustating HCO3̄ and SO42--anions in a strong-base anion exchanger by Cl⁻-ions. As a result, the incrustation on the surfaces of heating hot water heaters is prevented. Thus, cations of hardness that are valuable for the human body remain in the water, the quality of the latter conforming to drinking water quality. Considering the important role of calcium and magnesium in the human body, in Germany and Turkey the minimum value of hardness cations in drinking water is limited to 2.85 and 7.50 mg-Eqv/l, respectively. According to the World Health Organization, in the composition of drinking water, the concentration of cations of magnesium and calcium is recommended, respectively, within 10–(20–30, and 20–50 mg/l; the minimum value of total hardness is 2–4 mg-Eqv/l. According to the developed technology drinking water is passed consistently in the downward direction through the mechanical and chlorineanionite exchanger filters. In the latter, the main part of HCO3̄ and SO42--water ions are exchanged for Cl-anions of anionite. Then the water is collected in the tank, from where it is pumped to the hot water heater through the ultraviolet disinfection unit. After the depletion of the anionite by HCO3̄ and SO42--anions, it is regenerated by a solution of 8–12 % NaCl. The results of research by the anion exchangers Purolite A200EMBCl and AB-17-8 are plotted. It is noted that when the specific consumption of salt for regeneration is of about 45–55 kg/m³, working exchange capacity of the A200EMBCl occurs to be in the range 300–370 g-Eqv/m³. For anionization of water, the residual concentration of HCO3̄-ions are changed from 0.5 to 3.2 mg

  2. Advanced manipulator system for large hot cells

    International Nuclear Information System (INIS)

    Vertut, J.; Moreau, C.; Brossard, J.P.

    1981-01-01

    Large hot cells can be approached as extrapolated from smaller ones as wide, higher or longer in size with the same concept of using mechanical master slave manipulators and high density windows. This concept leads to a large number of working places and corresponding equipments, with a number of penetrations through the biological protection. When the large cell does not need a permanent operation of number of work places, as in particular to serve PIE machines and maintain the facility, use of servo manipulators with a large supporting unit and extensive use of television appears optimal. The advance on MA 23 and supports will be described including the extra facilities related to manipulators introduction and maintenance. The possibility to combine a powered manipulator and MA 23 (single or pair) on the same boom crane system will be described. An advance control system to bring the minimal dead time to control support movement, associated to the master slave arm operation is under development. The general television system includes over view cameras, associated with the limited number of windows, and manipulators camera. A special new system will be described which brings an automatic control of manipulator cameras and saves operator load and dead time. Full scale tests with MA 23 and support will be discussed. (author)

  3. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    Science.gov (United States)

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  4. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    Science.gov (United States)

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  5. 工程型太阳能热泵热水系统节能效益分析%Energy-saving Benefit Analysis of Engineering Type Solar Energy Hot Water System in Conjunction with Heat Pump

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    According to the engineering case region meteorological data and solar resource characteristics,the solar energy centralized heating system in Conjunction with heat pump used in the hotel is analyzed based on saving benefits. By means of comprehensive analyzing of annual amount of energy saving,cost saving,payback period for the increase of the initial investment,as well as environmental benefits of the solar energy heat pump hot water system,it is indicated that solar energy heat pump hot water system project not only has the very high heat efficiency and environmental adaptability but also has high economy efficiency. It is a kind of heating water systems of ideal high quality.%  根据工程案例地区气象参数及太阳能资源特点,对已投入宾馆使用的太阳能热泵集中供热水系统进行节能效益分析。通过对太阳能热泵热水系统的年节能量,节省费用,系统增加的初投资的回收年限,以及太阳能热泵热水系统的环保效益进行综合分析。表明工程型太阳能热泵热水系统不仅具有很高的热效率和环境适应性同时具有较高的经济性,是一种理想的高品质供热水系统。

  6. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of systems for new residential buildings); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shinchiku kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at development of devices for solar energy systems for air conditioning and hot water supply, in order to commercialize innovative systems for economic air conditioning and hot water supply for new residential buildings. The research items are (1) development of materials for the devices (e.g., heat collectors and absorption refrigerators), (2) operation of the systems in the test building, and measurement (methods for measurement and evaluation of the systems in the test building, instrumentation systems and operation thereof, and analysis of the measured data), and (3) system analysis (system simulation, comparison of the simulated results with the observed results, and system variations). The item (1) studies economic efficiency, durability and stability of the vacuum glass tube type collectors. The item (2) studies a dripping type generator, refrigerant recycling type generator and generator with a built-in auxiliary heat source for the absorption refrigerators. These types have their own advantages and disadvantages, and it is necessary to establish how these results are to be included in the products. The item (3) changes the collector arrangement, based on the observed data, and improves heat-collecting pump starting/stopping conditions, refrigerator operating conditions and insulation around the primary heat-storage tank. It is necessary to analyze the improved systems. (NEDO)

  7. Identification of hot spot area of sediment contamination in a lake system using texture characteristics.

    Science.gov (United States)

    Sheela, A M; Letha, J; Joseph, Sabu; Thomas, Jobin

    2013-04-01

    Texture plays an important role in the identification of polluted stretch in a lake system. The organic matter as well as toxic elements get accumulated in the finer sediments. The aim of the work is to show the spatio-temporal distribution of texture of the lake sediment (Akkulam-Veli lake, Kerala) and to identify the hot spot areas of contamination. Hot spot areas vary with seasons. During PRM, (premonsoon), the upstream portion of the Akkulam lake is the hot spot. During MON (monsoon), the downstream portion of the Akkulam lake and the upstream portion of the Veli lake are the hot spots. During POM (postmonsoon), hot spot area is the downstream portion of the Akkulam lake. This methodology can be used for the quick identification of hot spots in water bodies.

  8. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  9. HEAT LOSS FROM HOT WATER SUPPLY LINE IN A RESIDENTIAL BUILDING

    OpenAIRE

    近藤, 修平; 鉾井, 修一

    2011-01-01

    In order to the evaluate heat loss from hot water supply lines in a residential building, hot water demand in a house in Chiba prefecture was measured and analyzed. The following results were obtained. 1. The heat loss of the hot water supply line was about 132kJ for the shower and 110kJ for the bathtub in winter. Since the temperature difference between the inlet and outlet of the hot water supply line is small, the measured heat loss from the hot water supply line sometimes becomes negative...

  10. Fiscal 1976 Sunshine Project result report (Drawings). R and D on solar cooling/heating and hot water supply system (R and D on the system for apartment houses); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho zumenshu. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    Working design was made on an apartment house for R and D on solar cooling/heating and hot water supply system, and its drawings were prepared. The design was made on the experimental medium-rise square pyramid apartment house (3- storied, 28 dwelling units, RC structure, 1,566.63m{sup 2} in building area, 2,309.05m{sup 2} in total floor area). The house was equipped with normal high-voltage receiving panel, indoor cubicle of 300kVA, common antenna TV, telephone piping, door chime, direct water supply system with individual meters, LPG gas piping with individual meters, central hot water supply system with individual meters, and central cooling/heating system with individual fan coil units. The exterior of the house was finished with asphalt-waterproofing normal concrete-finished roofs of 1/50 in gradient, epoxy system resin-coated exposed concrete exterior walls, Al sash slide pair-glass window and alumite-finished Al door openings, and foamed polystyrene insulation plates (60mm, 50mm and 50mm thick for roofs, floors and walls, respectively). (NEDO)

  11. A semi-analytical refrigeration cycle modelling approach for a heat pump hot water heater

    Science.gov (United States)

    Panaras, G.; Mathioulakis, E.; Belessiotis, V.

    2018-04-01

    The use of heat pump systems in applications like the production of hot water or space heating makes important the modelling of the processes for the evaluation of the performance of existing systems, as well as for design purposes. The proposed semi-analytical model offers the opportunity to estimate the performance of a heat pump system producing hot water, without using detailed geometrical or any performance data. This is important, as for many commercial systems the type and characteristics of the involved subcomponents can hardly be detected, thus not allowing the implementation of more analytical approaches or the exploitation of the manufacturers' catalogue performance data. The analysis copes with the issues related with the development of the models of the subcomponents involved in the studied system. Issues not discussed thoroughly in the existing literature, as the refrigerant mass inventory in the case an accumulator is present, are examined effectively.

  12. MICROBIAL POPULATION OF HOT SPRING WATERS IN ESKİŞEHİR/TURKEY

    Directory of Open Access Journals (Sweden)

    Nalan YILMAZ SARIÖZLÜ

    2012-02-01

    Full Text Available In order to investigate and find out the bacterial community of hot spring waters in Eskişehir, Turkey, 7 hot spring water samples were collected from 7 different hot springs. All samples were inoculated using four different media (nutrient agar, water yeast extract agar, trypticase soy agar, starch casein agar. After incubation at 50 ºC for 14 days, all bacterial colonies were counted and purified. Gram reaction, catalase and oxidase properties of all isolates were determined and investigated by BIOLOG, VITEK and automated ribotyping system (RiboPrinter. The resistance of these bacteriawas examined against ampiciline, gentamisine, trimethoprime-sulphamethoxazole and tetracycline. As a result, heat resistant pathogenic microorganisms in addition to human normal flora were determined in hot spring waters (43-50 ºC in investigated area. Ten different species belong to 6 genera were identified as Alysiella filiformis, Bordetella bronchiseptica, B. pertussis, Molexalla caprae, M. caviae, M. cuniculi, M. phenylpyruvica, Roseomonas fauriae, Delftia acidovorans and Pseudomonas taetrolens.

  13. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for large-sized building); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Ogata kenchikubutsuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Equipment was developed constituting a solar cooling/heating and hot-water supply system, as was the system using such equipment as well as being safe and easy to carry out inspection and maintenance, with the purpose of putting into practice an innovative system capable of cooling/heating and hot-water supply for a large-sized building economically by means of solar energy. An analysis was conducted on the test result in an experimental system having a practical size, with the effect confirmed of the improvement work of fiscal 1978. An inspection was made for the cause of piping corrosion, as were the examination and proposal for anti-corrosion measures. Heat and weather resistance tests were carried out on selective absorption films and a convection preventive structure. A selective absorption film processing was performed on a heat collecting plate for a large heat-collecting device, with a durability test conducted for the device by assembling the film in it. A test equipment was designed and manufactured for a latent heat type heat-collecting system of a practical size, performing various experiments and an automatically controlled operation. Displayed in the test by the practical size experiment system (in the Oita University laboratory) were the cooling/heating operation mode, summary of a whole day operation, daily fluctuation of electrical power and kerosene consumption, and a graph of accumulating totals. A long-term/short-term instrumentation analysis were also performed. (NEDO)

  14. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of solar systems for condominiums); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-01

    This project is aimed at technological development of economical solar energy systems for air conditioning and hot water supply for condominiums. The major items for the FY 1977 programs include (1) designs and fabrication of equipment for a test building, (2) development of the equipment materials, and (3) system analysis. The jobs for item (1) include management of the designs and construction, placing an order for the building, and fabrication of an air conditioner expander and heat pump; those for item (2) include simplification of a condensing type and plate type heat collector structures, weather-resistance of the plate type heat collector structure, and materials for selective absorbing membranes and reflectors; and those for item (3) include estimation of heat loads in a model building, first to third floors as the test building, and fourth to 14th floors as the conventional box-shaped building. The heat collector installation area is investigated for a multistory building, for which solar radiation intensity at the heat-receiving plane and the like are taken into account. It is found that the solar system can be installed, when an area of 50m{sup 2} can be allocated to the system in each story. There is a limit to story number for the solar system to economically work for air conditioning and hot water supply. Sufficient insulation of the system and reduction in pipe length by zoning are the necessary measures against heat losses. (NEDO)

  15. Nuclear applications for steam and hot water supply

    International Nuclear Information System (INIS)

    1991-07-01

    An increase in the heat energy needs underlined by the potential increase in fossil fuel prices, particularly in oil supplies, and by the necessity for an improvement of the environment worldwide, as signalized by the IAEA Member States, prompted the decision to start a programme leading to this report. This document is intended to help to identify the experience of Member States where nuclear power plants or specialized nuclear heat plants are employed or envisaged to be used for distribution of steam or hot water to industrial or residential consumers, covering low and medium temperature ranges. 25 refs, 33 figs, 15 tabs

  16. Laboratory stand for examination of the operational thermal parameters of polyvalent system for heating, cooling and domestic hot water supply using renewable energy sources

    International Nuclear Information System (INIS)

    Zlateva, Merima

    2014-01-01

    The report presents the structure of an universal laboratory stand for determine the operating parameters of a polyvalent system for utilization of renewable energy sources. The system is a combination of three modules using different technologies for renewable sources – solar energy, atmospheric air and biomass, incorporated in a common heat accumulator. The structural scheme permits the possibility to use the stand in different operating modes, to demonstrate the feasibility of using any one of the renewable energy sources both individually and in various combinations. The author express gratitude to the partners of the companies Robert Bosch Bulgaria Ltd, Ahi Carrier Bulgaria and Eratermtotal, with whose generous support is build the stand. Key words: Renewable energy sources (RES), Heating with RES, Biomass, Air to Water Heat pumps

  17. Effects of Misasa hot spring water on the growth of vegetables (Joint research)

    International Nuclear Information System (INIS)

    Yamada, Satoshi; Kita, Makoto; Goto, Yukari; Ishimori, Yuu

    2011-11-01

    Tottori University and Japan Atomic Energy Agency started a joint study to investigate the effect of hot spring water on the growth of vegetable plants in 2009. The aim of the study is to examine a feasibility of producing a regionally special vegetable with considering the characteristics of the Misasa district, where radon hot springs are historically famous. This report illustrates the intermediate results obtained from the study carried out from 2009 to 2010. (1) Screening test: Eighteen plants were examined for screening. As the results, Misasa hot spring water used in the water culture enlarged the growths of 14 plants. Lastly, 9 plants were selected as candidate plants for further examinations. (2) Sample preparation: Plants sampled in the water culture were lyophilized and stored in a freezer for nutrio-physiological analyses to select the suitable plant from the 9 plants. (3) Examination in labor-saving cultivation: Preliminary examinations were performed with a large-scale system to establish a practical labor-saving water culture system. (author)

  18. Measurements of cold and hot water in ten dwellings; Maetning av kall- och varmvatten i tio hushaall

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, Aasa; Nordman, Roger; Pettersson, Ulrik (Swedish National Testing and Research Inst., Boraas (Sweden))

    2008-07-01

    Reducing tap water consumption has considerable potential for reducing overall environmental impact. It not only saves fresh water, but also gives significant savings of energy that would otherwise have been needed to heat hot water. However, in order to improve the energy efficiency of building services systems and to help occupants act more energy-efficiently, more knowledge is needed on how water is used in our homes. Today, we actually know very little about usage patterns from one tapping point to another, or the division between cold and hot water use, and this study aims to help provide appropriate information. The aim of this project is to increase the knowledge of how tap water is used in Swedish households. The main purpose is to gain knowledge of how to decrease the energy use and for that reason the description of the use of hot water is essential. Measurement has been made of hot and cold water use at each tapping point in ten dwellings: four apartments in apartment buildings, and six single-family buildings. The households were of the following categories; single, young couple, middle-aged couple and families with children. The number of households is too low to represent the water use at national level, but can still contribute with important knowledge of how we use water in our homes. The results show the following division of tap water use: - wash basin: 19% (11 % hot water and 8 % cold water); - kitchen sink 41% (23 % hot water and 18 % cold water); - shower/bathtub 40% (27 % hot water and 13 % cold water). About 61% of the total water quantity is hot water (note that cold water for toilet flushing and for laundry is not included in the total water use). The proportions between tapping points are very similar for the dwellings in the apartment buildings and single-family houses, and the use of water in the shower/bathtub is essentially the same as the use in the kitchens. In the single-family buildings the water use in laundry rooms was measured

  19. Mechanism of Corrosion of Activated Aluminum Particles by Hot Water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2014-01-01

    Mechanism of corrosion in aluminum particles by hot water treatment for hydrogen generation is evaluated. The aluminum powder was activated by ball milling for different durations, which modified size and microstructure of the particles. Open circuit potential test was carried out to elucidate different stages of the reaction. Tafel test was used to explain the effect of ball milling and growth of hydroxide layer on corrosion of the particles. Surface, cross section and thickness of the grown hydroxide on the aluminum particles were studied in a scanning electron microscope. The corrosion potential of the aluminum powders depends on microstructure of the aluminum particles, growth of the hydroxide layer and a change in pH because of cathodic reactions. The hydrogen production test showed that a deformed microstructure and smaller particle size accelerates the corrosion rate of aluminum by hot water, the effect of the deformed microstructure being more significant at the beginning of the reaction. Effect of growth of the hydroxide layer on corrosion mechanism is discussed

  20. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  1. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Bryan J.; Chvala, William D.

    2010-09-30

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  2. Hot weather stresses system : more supply needed

    International Nuclear Information System (INIS)

    Anon

    2002-01-01

    Signs of stress in Ontario's electric system were revealed this summer, mainly as a result of the hot and humid weather experienced in the Toronto region in particular. A question was raised by the Executive Director of the Independent Power Producers' Society of Ontario (IPPSO) as to whether there are enough incentives for new supply or any unnecessary barriers, in light of the tight reserve margins and little new construction. No major failures or breakdowns were experienced, which proved to be a real test of the newly created market system. However, significant spikes in hourly prices and uplift charges were felt in July. At times, power had to be purchased from outside the province, and the prices paid for this power were much higher than the prices paid to in-province producers. There was proof that consumers were not adjusting their consumption in response to fluctuations in the prices, as had been expected by the system's designers. Pre-dispatch and real-time prices were disconnected, and large consumers did not benefit from reliable day-ahead price projections. Another major issue raised was that of finding new power supplies. The situation is not yet desperate as Ontario can trade electricity with other regions, but it is felt that the situation should be examined sooner rather than later. Import pricing is an issue that needs to be addressed now. The IPPSO is concerned that no new generating capacity plans are in the works at this time. The barriers to new investment in Ontario's generation must be identified, and a meeting between market participants and government should be scheduled for that purpose. A review of the presentation of price-related information is being conducted to allow consumers to adjust their consumption, cutting back when prices soar and saving money by the same token. It is felt that a more comfortable surplus of supply would either reduce or eliminate these problems. Some of the reasons believed to affect the level of investment in

  3. Hot weather stresses system : more supply needed

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2002-08-01

    Signs of stress in Ontario's electric system were revealed this summer, mainly as a result of the hot and humid weather experienced in the Toronto region in particular. A question was raised by the Executive Director of the Independent Power Producers' Society of Ontario (IPPSO) as to whether there are enough incentives for new supply or any unnecessary barriers, in light of the tight reserve margins and little new construction. No major failures or breakdowns were experienced, which proved to be a real test of the newly created market system. However, significant spikes in hourly prices and uplift charges were felt in July. At times, power had to be purchased from outside the province, and the prices paid for this power were much higher than the prices paid to in-province producers. There was proof that consumers were not adjusting their consumption in response to fluctuations in the prices, as had been expected by the system's designers. Pre-dispatch and real-time prices were disconnected, and large consumers did not benefit from reliable day-ahead price projections. Another major issue raised was that of finding new power supplies. The situation is not yet desperate as Ontario can trade electricity with other regions, but it is felt that the situation should be examined sooner rather than later. Import pricing is an issue that needs to be addressed now. The IPPSO is concerned that no new generating capacity plans are in the works at this time. The barriers to new investment in Ontario's generation must be identified, and a meeting between market participants and government should be scheduled for that purpose. A review of the presentation of price-related information is being conducted to allow consumers to adjust their consumption, cutting back when prices soar and saving money by the same token. It is felt that a more comfortable surplus of supply would either reduce or eliminate these problems. Some of the reasons believed to affect the

  4. Modified hot-conditioning of PHT system surfaces of PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswaran, G [Bhabha Atomic Research Centre, Trombay, Bombay (India)

    1997-02-01

    The increased awareness on the importance of controlling activity transport and radiation buildup on out-of-core surfaces of water cooled nuclear reactors is leading to a host of measures both from chemistry as well as engineering sides being undertaken. Passivation of the surfaces of structural materials is one such. Pressurised Heavy Water Reactors of CANDU design use large surface area of carbon steel alloy in the Primary Heat Transport System. Hot-conditioning of the PHT system with deoxygenated light water at temperatures {approx_equal} 473 - 523 K during commissioning stage is done to form a protective magnetite film on the surfaces of carbon steel essentially to guard this material from corrosion during the intervening period between initial commissioning and first fuel loading and achieving nuclear heat. However, a need is felt to improve the quality of this magnetite film and control the crud release so that the twin objectives of controlling the corrosion of carbon steel and reducing a possible deposition of corrosion products on surfaces of fuel clad could be achieved. Laboratory static autoclave investigations have been carried out on the formation of protective magnetite film on carbon steel at 473 K, pH 10 (pH at 298 K) deoxygenated aqueous solutions of chelants like HEDTA, DTPA, NTA apart from EDTA. Additionally, influence of AVT chemicals like hydrazine, cyclohexylamine, morpholine and additives like glucose, boric acid has been studied. The data have been compared with the standard procedure of hot-conditioning namely with simple LiOH. It is found that chelants increase the base metal loss but the oxide formed is more protective than the one formed under simple LiOH treatment. The efficiency of passivation is greatly enhanced by hydrazine and boric acid while it is adversely affected by glucose. AVT chemicals acts as effective corrosion inhibitors. (author). 14 refs, 2 figs, 4 tabs.

  5. Modified hot-conditioning of PHT system surfaces of PHWRs

    International Nuclear Information System (INIS)

    Venkateswaran, G.

    1997-01-01

    The increased awareness on the importance of controlling activity transport and radiation buildup on out-of-core surfaces of water cooled nuclear reactors is leading to a host of measures both from chemistry as well as engineering sides being undertaken. Passivation of the surfaces of structural materials is one such. Pressurised Heavy Water Reactors of CANDU design use large surface area of carbon steel alloy in the Primary Heat Transport System. Hot-conditioning of the PHT system with deoxygenated light water at temperatures ≅ 473 - 523 K during commissioning stage is done to form a protective magnetite film on the surfaces of carbon steel essentially to guard this material from corrosion during the intervening period between initial commissioning and first fuel loading and achieving nuclear heat. However, a need is felt to improve the quality of this magnetite film and control the crud release so that the twin objectives of controlling the corrosion of carbon steel and reducing a possible deposition of corrosion products on surfaces of fuel clad could be achieved. Laboratory static autoclave investigations have been carried out on the formation of protective magnetite film on carbon steel at 473 K, pH 10 (pH at 298 K) deoxygenated aqueous solutions of chelants like HEDTA, DTPA, NTA apart from EDTA. Additionally, influence of AVT chemicals like hydrazine, cyclohexylamine, morpholine and additives like glucose, boric acid has been studied. The data have been compared with the standard procedure of hot-conditioning namely with simple LiOH. It is found that chelants increase the base metal loss but the oxide formed is more protective than the one formed under simple LiOH treatment. The efficiency of passivation is greatly enhanced by hydrazine and boric acid while it is adversely affected by glucose. AVT chemicals acts as effective corrosion inhibitors. (author). 14 refs, 2 figs, 4 tabs

  6. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    Science.gov (United States)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  7. Application of solar energy to the supply of industrial process hot water. Aerotherm final report, 77-235. [Can washing in Campbell Soup plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The objectives of the Solar Industrial Process Hot Water Program are to design, test, and evaluate the application of solar energy to the generation and supply of industrial process hot water, and to provide an assessment of the economic and resource benefits to be gained. Other objectives are to stimulate and give impetus to the use of solar energy for supplying significant amounts of industrial process heat requirements. The plant selected for the design of a solar industrial process hot water system was the Campbell Soup facility in Sacramento, California. The total hot water demand for this plant varies between 500 and 800 gpm during regular production shifts, and hits a peak of over 1,000 gpm for approximately one hour during the cleanup shift. Most of the hot water is heated in the boiler room by a combination of waste heat recovery and low pressure (5 psi) steam-water heat exchangers. The hot water emerges from the boiler room at a temperature between 160/sup 0/F and 180/sup 0/F and is transported to the various process areas. Booster heaters in the process areas then use low pressure (5 psi) or medium pressure (20 psi) steam to raise the temperature of the water to the level required for each process. Hot water is used in several processes at the Campbell Soup plant, but the can washing process was selected to demonstrate the feasibility of a solar hot water system. A detailed design and economic analysis of the system is given. (WHK)

  8. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for large-sized building); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Ogata kenchikubutsuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-31

    In fiscal 1977, studies were carried out jointly with a research group assigned by the Government Research Institute using a solar cooling/heating and hot-water supply system for a large-sized building (i.e., various devices such as a heat collecting device, heat storing device, refrigerator, etc., and their attached equipment, hereinafter the 'test equipment'), a system installed in the building of the energy technology section, Department of engineering, Oita University. The studies were as follows. (1) Meteorological observation was conducted concerning meteorological items such as insolation, temperature, wind direction and wind velocity which were necessary for the operation and evaluation of the test equipment. (2) The test equipment was operated by the Oita University technical assistants in cooperation with the research group so that R and D was smoothly carried out for the practicability of an innovative system, in which cooling/heating and hot-water supply for a large-sized building were economically performed by the solar energy using the test equipment; and also, maintenance and management for the overall facilities were carried out within a pre-determined range. (3) Temperature, wind velocity, etc., around the heat collecting device were continuously measured in the winter time for preventive measures against freezing, with the data accumulated. The facilities consisted of 40 units of 2 m x 7.5 m large heat collecting device, 30USRT absorption refrigerating machine, and 45 m{sup 3} heat storage tank. (NEDO)

  9. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for apartment houses); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1976 research result on solar cooling/heating and hot water supply system for apartment houses. In the system research, comparative study was made on facility costs and operation costs per heat load between previous and solar cooling/heating and hot water supply systems for apartment houses. In the working design for apartment houses, various calculation necessary for start of work, and preparation of detail drawings and specifications were made. In development of solar collector, the test loop and collector were prepared using full-scale collector elements for medium-scale performance tests. In development of heat accumulator, inorganic hydrate was selected as heat storage material using latent heat for the confirmation test of basic physical properties. In development of solar cooling/heating equipment, the confirmation test of Rankine engine's performance, controllability and durability was made under real load. In addition, the refrigerator of nearly 20 tons of refrigeration driven by Rankine engine was fabricated, (NEDO)

  10. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for new detached houses); 1994 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu. Shinchiku kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-30

    This report describes the fiscal 1974 result on the solar cooling/heating and hot water supply system. The report includes the system analysis result (collection of existing technical data, analysis of weather conditions, profitability assessment, concept design of the primary experimental house), and the research result on equipment and materials (view and evaluation of existing technologies, selective transparent and absorption materials, the primary prototype solar heat collector model, refrigerator). As the study result, the spheroidal experimental house was adopted. The solar heat utilization system is a central air-conditioning equipment composed of heating by hot water obtained from the solar heat collector, and cooling by absorption refrigerator. Heat collection efficiencies were measured for (1) stainless steel substrate collector, (2) copper substrate collector, and (3) glass pipe collector prepared as prototype collectors. (2) was higher in heat collection efficiency than (1). The efficiency of (3) hardly increased by rise in heat collection temperature due to vacuum structure and selective absorption membrane. Further measurement of such characteristics is necessary at higher temperatures. (NEDO)

  11. Hot water in the Long Valley Caldera—The benefits and hazards of this large natural resource

    Science.gov (United States)

    Evans, William C.; Hurwitz, Shaul; Bergfeld, Deborah; Howle, James F.

    2018-03-26

    The volcanic processes that have shaped the Long Valley Caldera in eastern California have also created an abundant supply of natural hot water. This natural resource provides benefits to many users, including power generation at the Casa Diablo Geothermal Plant, warm water for a state fish hatchery, and beautiful scenic areas such as Hot Creek gorge for visitors. However, some features can be dangerous because of sudden and unpredictable changes in the location and flow rate of boiling water. The U.S. Geological Survey monitors several aspects of the hydrothermal system in the Long Valley Caldera including temperature, flow rate, and water chemistry.

  12. Sustainable and reliable hot water in utility buildings; Duurzaam en verantwoord warmtapwater in utiliteitsgebouwen

    Energy Technology Data Exchange (ETDEWEB)

    Lansbergen, A. [Itho, Schiedam (Netherlands)

    2008-02-15

    Non-residential buildings that have a high demand for hot water were formerly equipped with large, conventional central hot water systems. A growing awareness of the risk of legionella infection and the thermal strategy needed to prevent the growth of these bacteria have generally resulted in higher water temperatures. The water circulation rate in such systems has also been raised. An unexpected side effect of these measures has been an increase in transmission loss from the hot water pipe network. This loss often results in the heating of water in adjacent cold water pipes to a higher temperature than desired or permitted. There is no longer any advantage in designing large centralized systems with a high thermal output. The answer is to split a large system into a number of smaller ones, and thereby reduce the pipe lengths required to serve the draw-off points. [Dutch] In utiliteitsgebouwen met veel warmwatertappunten is in het verleden vaak een grote traditionele centrale warmtapwaterinstallaties geplaatst. Door de groeiende bekendheid over de gevaren van de legionellabacterie en het thermisch beheer van de warmtapwaterinstallatie om legionellagroei te voorkomen, is de warmtapwatertemperatuur in de regel nu hoger ingesteld dan voorheen. Ook is de circulatie in de warmtapwaterinstallaties opgevoerd. Het bijkomend nadelig effect van deze maatregelen is dat het transmissieverlies van het warmtapwaternet groter is geworden, waardoor in veel gevallen de naastgelegen koudwaterleidingen onbedoeld warmer worden dan gewenst en toegestaan. Het heeft dus geen voordeel meer een grote centrale installatie met relatief veel warmteafgifte te ontwerpen. Het antwoord: splits de grote installatie in meerdere kleine installaties en beperk daardoor de noodzakelijke leidinglengtes naar de tappunten.

  13. Report on achievements in fiscal 1974 in Sunshine Project. Study on hot water systems in geothermal areas; 1974 nendo chinetsu chiiki no netsusuikei ni kansuru kenkyu seika chukan hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This study has begun in fiscal 1973 under a five year plan with an objective to elucidate origin and maintenance of reservoirs of geothermal fluids. To achieve the objective, estimation was made on the systems of infiltration, storage and gushing of the fluids, particularly on infiltration areas. In the hydraulic flow rate study, observation was carried out in the Onikubi area on amount of rainfall, air pressures, temperatures, electric conductivity, and pH, and in ten fluid sources on flow rates, temperatures and pH. Flow rate observation was started at three rivers. In the Kuju area, flow rate observation was started on four fluid sources. Observations were started on temperatures, electric conductivity, flow rates, amount of rainfall by using the Takenoyu geothermal steal wells, and on amount of rainfall in the Teraono and Hacchobara areas. In the study of isotopic geology, site analyses and water collection were carried out in the Kuju area for underground water in six locations, hot spring water in seven locations, and 17 test samples from two geothermal wells. As a study on reservoirs, observation was started in the southern Hachimantai area on measurement of ground fluctuation in association with steam collection. In parallel, fracture survey and gravity measurement were carried out. In order to investigate transformed geology, analytic samples were collected from 12 survey wells in the Onikubi area. A spinner flow mater was tested in that area. (NEDO)

  14. Direct uses of hot water (geothermal) in dairying

    Energy Technology Data Exchange (ETDEWEB)

    Barmettler, E.R.; Rose, W.R. Jr.

    1978-01-01

    Digital computer simulation was used to investigate the peak, steady energy utilization of a geothermal energy-supported dairy. A digital computer program was also written to assess the lifetime economics of the dairy operation. A dynamic simulation program was written to design water storage tanks under diurnal transient loading. The geothermal site specified is the artesian spring named Hobo Wells near Susanville, California. The dairy configuration studies are unique, but consist of conventional processing equipment. In the dairy, cattle waste would be used to generate methane and carbon dioxide by anaerobic digestion. Some carbon dioxide would be removed from the gas stream with a pressurized water scrubber to raise the heating value. The product gas would be combusted in a spark ignition engine connected to an electric generator. The electrical power produced would be used for operation of fans, pumps, lights and other equipment in the dairy. An absorption chiller using a geothermal water driven generator would provide milk chilling. Space heating would be done with forced air hot water unit heaters.

  15. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Science.gov (United States)

    2010-01-01

    ... efficiency of commercial water heaters and hot water supply boilers (other than commercial heat pump water... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks Test Procedures § 431.106 Uniform test method for the measurement...

  16. Cooling Systems Design in Hot Stamping Tools by a Thermal-Fluid-Mechanical Coupled Approach

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2014-06-01

    Full Text Available Hot stamping tools with cooling systems are the key facilities for hot stamping process of Ultrahigh strength steels (UHSS in automotive industry. Hot stamping tools have significant influence on the final microstructure and properties of the hot stamped parts. In serials production, the tools should be rapidly cooled by cooling water. Hence, design of hot stamping tools with cooling systems is important not only for workpieces of good quality but also for the tools with good cooling performance and long life. In this paper, a new multifield simulation method was proposed for the design of hot stamping tools with cooling system. The deformation of the tools was also analyzed by this method. Based on MpCCI (Mesh-based parallel Code Coupling Interface, thermal-fluid simulation and thermal-fluid-mechanical coupled simulation were performed. Subsequently, the geometrical parameters of the cooling system are investigated for the design. The results show that, both the distance between the ducts and the distance between the ducts and the tools loaded contour have significant influence on the quenching effect. And better quenching effect can be achieved with the shorter distance from the tool surface and with smaller distance between ducts. It is also shown that, thermal expansion is the main reason for deformation of the hot forming tools, which causes the distortion of the cooling ducts, and the stress concentration at corner of the ducts.

  17. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for existing detached houses); 1974 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-28

    This report describes the fiscal 1974 research result on solar cooling/heating and hot water supply systems for existing detached houses. The program for calculating heat collection rates was prepared by integrating peripheral conditions and every calculation step of heat collection rate, mean value, accumulated value and changes caused by disturbance. The cooling/heating load calculation program was also prepared for unsteady dynamic thermal analysis of houses. Another program was prepared for hot water supply load because of a large difference in life pattern. The profitability and energy conservation of 644 systems different in heat source, heat discharge, heat collection, heat storage, auxiliary heat source and equipment were evaluated by heat balance calculation program. Survey and study were also made on various heat engines such as heat pump, absorption refrigerator and Rankine cycle engine. Based on the survey result on existing technology for plane collectors, the optimum design method of collectors were established through various characteristic tests. Some kinds of suitable fusion latent heat type heat media were selected, and their operation stabilities were studied. (NEDO)

  18. Hot-film anemometry in air-water flow

    International Nuclear Information System (INIS)

    Delahaye, J.M.; Galaup, J.P.

    1975-01-01

    Local measurements of void fraction and liquid velocity in a steady-state air-water bubbly flow at atmospheric pressure are presented. Use was made of a constant temperature anemometer and of a conical hot-film probe. The signal was processed with a multi-channel analyzer. Void fraction and liquid velocities are determined from the amplitude histogram of the signal. The integrated void fraction over a diameter is compared with the average void fraction along the same diameter obtained with a γ-ray absorption method. The liquid volumetric flow-rate is calculated from the void fraction and liquid velocity profiles and compared with the indication given by a turbine flowmeter [fr

  19. Thermal solar energy. Collective domestic hot water installations

    International Nuclear Information System (INIS)

    Garnier, Cedric; Chauvet, Chrystele; Fourrier, Pascal

    2016-01-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook on the way to complete the installation of a collective domestic water solar heating system. After some recall of what is solar energy, the thermal solar technology and the energy savings it may induce, this document presents the main hydraulic configurations of a solar heating system with water storage, the dimensioning of a solar water heating system and its cost estimation, the installation and the commissioning of the system, the monitoring and maintenance operations

  20. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Directory of Open Access Journals (Sweden)

    Jingyan Liang

    Full Text Available Hot spring or hot spa bathing (Onsen is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.

  1. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for existing private house); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-05-31

    The following technologies were developed for the purpose of putting into practice an innovative system that performs cooling/heating and hot-water supply for an existing private house economically by solar energy: (1) development of equipment constituting solar cooling/heating and hot-water supply system, and (2) development of a system which uses such equipment and which is inexpensive and safe as well as easy for inspection and maintenance. The results of the research were as follows. A latent heat type heat storage tank was developed in a small low-loss type in which ammonium alum was selected for a high temperature heat storage tank and in which NaCH{sub 3}COO(center dot)3H{sub 2}O were selected for a combination latent heat/cold water heat storage tank. A refrigerator was developed driven by a small Rankine cycle engine of a result coefficient of 0.47. A flat plate type heat collecting device was developed in a type having a BrNi selective absorbing film and materials of copper tube, aluminum plate and double glass. A vacuum heat collecting device was developed in a high efficient type with the outside dimension of {phi} (diameter) 70 x 1,270 mm, selective absorbing film BrNi, and a degree of vacuum of 10{sup -3}Torr. A heat receiving/releasing storm shutter was developed in a type using a latent heat storing material of paraffin wax. A heat absorbing/insulating outside wall panel was developed using FRP and aluminum as the materials. The system analysis also achieved success. (NEDO)

  2. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on metal system materials); 1974 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kinzokukei zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-30

    This report describes the fiscal 1974 research result on metal system materials for solar cooling/heating and hot water supply systems. Study was made on cathodic protection of a roll bond heat collection board promising as Al plane collector. The protection is dependent on sacrificial anode materials. Al-Zn system alloy including minute amounts of In and Sn was effective in protection by transferring natural electrode potential to a base side largely, however, excess addition of In and Sn increased self-corrosion, remaining some issues to be solved. The prototype water flow corrosion test equipment was prepared for corrosion analysis of an Al roll bond collector natural circulation hot water supplier. Preliminary study was made to give selective absorption power (large short-wave absorption and small long-wave radiation from collector surfaces) to a collector. Deposition of Cu, Ni, Co and Sn oxides as black semiconductors into Al anodic oxidation film porous layers by secondary electrolysis was invalid as well as a painting method. Glossy Ni plating onto Al and black Cr and Ni plating onto the surface more elevated solar exposure surface temperature by more than 20% than black painting. (NEDO)

  3. Technical feasibility and economics of retrofitting an existing nuclear power plant to cogeneration for hot water district heating

    International Nuclear Information System (INIS)

    Kolb, J.O.; Bauman, H.F.; Jones, P.D.

    1984-04-01

    This report gives the results of a study of the hypothetical conversion of the Prairie Island Nuclear Plant of the Northern States Power Company to cogeneration operation to supply a future hot water district heating system load in the Twin Cities of Minneapolis-St. Paul. The conceptual design of the nuclear turbine retrofitted for cogeneration and of a hot water transmission system has been performed, and the capital investment and annual owning and operating costs have been estimated for thermal energy capacities of 600 and 1200 MW(t). Unit costs of thermal energy (in mid-1982 dollars/million Btu) have been estimated for cogenerated hot water at the plant gate and also for the most economic transmission system from Prairie Island to the Twin Cities. The economic results from the analysis of the Prairie Island plant and transmission route have been generalized for other transmission distances in other locations

  4. Investigating the Mpemba Effect: When Hot Water Freezes Faster than Cold Water

    Science.gov (United States)

    Ibekwe, R. T.; Cullerne, J. P.

    2016-01-01

    Under certain conditions a body of hot liquid may cool faster and freeze before a body of colder liquid, a phenomenon known as the Mpemba Effect. An initial difference in temperature of 3.2 °C enabled warmer water to reach 0 °C in 14% less time than colder water. Convection currents in the liquid generate a temperature gradient that causes more…

  5. Elution behavior into the high pressured hot water and the organizational change of granite and andesite

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Isao; Miyazaki, Akira; Yamaguchi, Tsutomu; kuriyakawa, Michio

    1988-04-01

    In the development of a high temperature rock system, the interaction between the rock and hot water which occurs in a reservoir provides big effects. The decline of the strength and the increase of the permeability are caused by the elusion of the rock on the surface of the hydraulic fracture and the redeposition of the eluded material also causes to narrow or close the channel. However, studies concerning the organizational change of the rock by the hot water or the material change associated with the organizational change are small in number. In this research, Inaba granite and Honkomatsu andesite were treated in heat with an autoclave in order to investigate the organizational changes of the rocks and at the same time, the elusion behavior of the rocks into the hot water was investigated by examining chemical components which were eluded into the fluid and the components remaining on the rock surface. The decreased amount per specific surface area due to the autoclave treatment is the order of 10/sup -3/(gcm/sup -2/) for both rocks and changeable depending upon the heating temperature and the kind of rock. As a result of the analysis of the fluids in the autoclave after the heat treatment, the Si concentration of Honkomatsu andesite was higher in the same temperature and the heating time. (2 figs, 3 tabs, 6 refs)

  6. Immune changes during whole body hot water immersion: the role of growth hormone.

    Science.gov (United States)

    Kappel, M; Poulsen, T D; Hansen, M B; Galbo, H; Pedersen, B K

    1997-07-01

    Studies examined the role of growth hormone, catecholamines, and beta-endorphins in changes in natural killer cell activity, subtypes of blood mononuclear cells, and leukocyte concentration in response to hot water immersion in humans. The response of leukocytes and neutrophils to 2 hours of hot water immersion and simultaneous administration of propranolol, somatostatin, naloxone, or isotonic saline are reported.

  7. Rotating shell eggs immersed in hot water for the purpose of pasteurization

    Science.gov (United States)

    Pasteurization of shell eggs for inactivation of Salmonella using hot water immersion can be used to improve their safety. The rotation of a shell egg immersed in hot water has previously been simulated by computational fluid dynamics (CFD); however, experimental data to verify the results do not ex...

  8. Energetical and ecological assessment of solar- and heat pump technologies for hot water preparation and space heating in Austria

    International Nuclear Information System (INIS)

    Faninger, G.

    1991-11-01

    Solar and heat pump systems have been proved in many applications on the market. To achieve an efficient energy output it is necessary to consider the special conditions of these technologies. The energetical and ecological criteria of solar and heat pump systems for hot water preparation and space heating are analysed on the basis of experimental data. (author)

  9. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit...... in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared....... The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR...

  10. Technology Solutions for New and Existing Homes Case Study: Addressing Multifamily Piping Losses with Solar Hot Water

    Energy Technology Data Exchange (ETDEWEB)

    D. Springer, M. Seitzler, and C. Backman

    2016-12-01

    Sun Light & Power, a San Francisco Bay Area solar design-build contractor, teamed with the U.S. Department of Energy’s Building America partner the Alliance for Residential Building Innovation (ARBI) to study this heat-loss issue. The team added three-way valves to the solar water heating systems for two 40-unit multifamily buildings. In these systems, when the stored solar hot water is warmer than the recirculated hot water returning from the buildings, the valves divert the returning water to the solar storage tank instead of the water heater. This strategy allows solar-generated heat to be applied to recirculation heat loss in addition to heating water that is consumed by fixtures and appliances.

  11. Fiscal 1981 Sunshine Project research report. Research on underground reinjection mechanism of hot water; 1981 nendo nessui no chika kangen mechanism no chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This report summarizes the fiscal 1981 research result on the behavior and flow mechanism of underground reinjected hot water, and the effect of reinjected hot water on the ground. In the tracer survey in Takinoue area, Iwate prefecture, the re-upwelling rate and mixing rate of reinjected hot water were lower than those in previous surveys, showing the smaller effect of hot water on productivity. In Nigori-Gawa area, Hokkaido, natural conditions prior to industrial production and reinjection were observed by tracer survey. In the simulation research, it was confirmed that the hydraulic structural model and analysis technique established by previous researches are effective for new production and reinjection systems different from previous ones enough. On observation of minute earthquakes, study was made on the effect of reinjected hot water on the ground in Takinoue area. In Nigori-Gawa area, the data were collected under natural conditions prior to industrial production and reinjection through minute earthquake observations. (NEDO)

  12. Application of Air Source Heat Pump plus Solar Energy in Domestic Hot Water Preparation System%空气源热泵+太阳能在热水制备系统中的应用

    Institute of Scientific and Technical Information of China (English)

    李超; 卢强; 郭萌; 赵勇

    2015-01-01

    This paper analyzes the commonly used heating modes and gives a detailed introduction of both air source heat pump technology and solar heating technology. Combined with the actual project, the steam heating system of hot water is changed into air source heat pump plus solar heating. By analyzing the actual enetgy consumption data, we obtain the energy -saving value, thus achieve the goal of energy efficiency.%通过对常用供热方式的分析,并对空气源热泵技术、太阳能制热技术原理的介绍,结合工程实际情况,将原蒸汽加热制热水方式改造为空气源热泵+太阳能制热。通过对实际能耗数据的经济分析,得出改造后的节能价值,达到了节约能源的目的。

  13. PWR primary system chemistry control during hot functional testing

    International Nuclear Information System (INIS)

    Reid, Richard D.; Little, Michael J.

    2014-01-01

    Hot Functional Testing (HFT) involves a number of pre-operational exercises performed to confirm the operability of plant systems at conditions expected during both normal and off-normal operation of a pressurized water reactor (PWR), including operability of safety systems. While the primary purposes of HFT are to demonstrate operability of plant systems and satisfy regulatory requirements, chemistry control during HFT is important to long-term integrity and performance of plant systems. Specifically, HFT is the first time plant equipment is exposed to high temperature water and the chemistry maintained during HFT can impact the passivation layers that form on wetted surfaces and long-term release of metals from these surfaces. Metals released from the inner surfaces of steam generator tubing and reactor coolant loop piping become activated in the core and can redeposit on ex-core surfaces. Because HFT is performed before fuel is loaded in the core, HFT provides an opportunity to produce a passive layer on primary surfaces that is free of activated corrosion products, resistant to metals release during subsequent plant operation, and also resistant to incorporation of activated corrosion products (once fuel is loaded in the core). Thus, maintaining desirable primary chemistry control during HFT is important for source term management, minimization of future shutdown activity releases, minimization of dose rates, and asset preservation. This paper presents an overview of passive film formation in the austenitic stainless steel and high nickel alloys that make up the majority of the primary circuit in advanced PWR designs. Based on this information, a summary is provided of the effects on passive film formation of key chemistry parameters that may be controlled during HFT. (author)

  14. Development of a hot water tank simulation program with improved prediction of thermal stratification in the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Yue, Hongqiang

    2015-01-01

    A simulation program SpiralSol was developed in previous investigations to calculate thermal performance of a solar domestic hot water (SDHW) system with a hot water tank with a built-in heat exchanger spiral [1]. The simulation program is improved in the paper in term of prediction of thermal...... stratification in the tank. The transient fluid flow and heat transfer in the hot water tank during cooling caused by standby heat loss are investigated by validated computational fluid dynamics (CFD) calculations. Detailed CFD investigations are carried out to determine the influence of thickness and material...... property of the tank wall on thermal stratification in the tank. It is elucidated how thermal stratification in the tank is influenced by the natural convection and how the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The existing...

  15. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of systems for large buildings); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Ogata kenchikubutsuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at development of (1) devices for solar energy systems for air conditioning and hot water supply, and (2) low-cost, safe systems incorporating the above devices, which are easily inspected and maintained, in which optimum buildings for effective utilization of solar energy are also investigated. Precision of the system analysis is improved by feeding back the results obtained by the basic studies conducted so far into the simulation. The technical supports for commercialization of heat collectors, refrigerators, heat-storage tanks and radiation type ceilings are also obtained. These results are combined for the designs of a real-size test building. In this year, works to install the facilities in the Oita University's test building are completed. These facilities include 40 units of large-size heat collectors (each approximately 2 m by 7.5 m in size); an absorption refrigerator of 30 uSRT in which single- and double-effect systems are combined; 2 piston-flow type heat-storage tanks, each 45 m{sup 3} in capacity; and others including analyzer, associated piping, duct, instrumentation and electrical systems. The test runs are conducted for the control systems, and long- and short-term instrumentation systems to draw the test schedules for optimizing the full-scale runs to be conducted in the next year. The operating and instrumentation manuals, and operating schedules are also drawn. (NEDO)

  16. Assessing the economic aspects of solar hot water production in Greece

    International Nuclear Information System (INIS)

    Haralambopoulos, D.; Kovras, H.

    1997-01-01

    The long-term performance of various systems was determined and the economic aspects of solar hot water production were investigated in this work. The effect of the collector inclination angle, collector area and storage volume was examined for all systems, and various climatic conditions and their payback period was calculated. It was found that the collector inclination angle does not have a significant effect on system performance. Large collector areas have a diminishing effect on the system's overall efficiency. The increase in storage volume has a detrimental effect for small daily load volumes, but a beneficial one when there is a large daily consumption. Solar energy was found to be truly competitive when the conventional fuel being substituted is electricity, and it should not replace diesel oil on pure economic grounds. Large daily load volumes and large collector areas are in general associated with shorter payback periods. Overall, the systems are oversized and are economically suitable for large daily hot water load volumes. (Author)

  17. Solar space and water heating system installed at Charlottesville, Virginia

    Science.gov (United States)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  18. Toward Complete Utilization of Miscanthus in a Hot-Water Extraction-Based Biorefinery

    Directory of Open Access Journals (Sweden)

    Kuo-Ting Wang

    2017-12-01

    Full Text Available Miscanthus (Miscanthus sp. Family: Poaceae was hot-water extracted (two h, at 160 °C at three scales: laboratory (Parr reactor, 300 cm3, intermediate (M/K digester, 4000 cm3, and pilot (65 ft3-digester, 1.841 × 106 cm3. Hot-water extracted miscanthus, hydrolyzate, and lignin recovered from hydrolyzate were characterized and evaluated for potential uses aiming at complete utilization of miscanthus. Effects of scale-up on digester yield, removal of hemicelluloses, deashing, delignification degree, lignin recovery and purity, and cellulose retention were studied. The scale-dependent results demonstrated that before implementation, hot-water extraction (HWE should be evaluated on a scale larger than a laboratory scale. The production of energy-enriched fuel pellets from hot-water extracted miscanthus, especially in combination with recovered lignin is recommended, as energy of combustion increased gradually from native to hot-water extracted miscanthus to recovered lignin. The native and pilot-scale hot-water extracted miscanthus samples were also subjected to enzymatic hydrolysis using a cellulase-hemicellulase cocktail, to produce fermentable sugars. Hot-water extracted biomass released higher amount of glucose and xylose verifying benefits of HWE as an effective pretreatment for xylan-rich lignocellulosics. The recovered lignin was used to prepare a formaldehyde-free alternative to phenol-formaldehyde resins and as an antioxidant. Promising results were obtained for these lignin valorization pathways.

  19. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  20. Thermal performance behavior of a domestic hot water solar storage tank during consumption operation

    International Nuclear Information System (INIS)

    Dehghan, A.A.; Barzegar, A.

    2011-01-01

    Transient thermal performance behavior of a vertical storage tank of a domestic solar water heating system with a mantle heat exchanger has been investigated numerically in the discharge/consumption mode. It is assumed that the tank is initially stratified during its previous heat storing/charging operation. During the discharging period, the city cold water is fed at the bottom of the tank and hot water is extracted from its top outlet port for consumption. Meanwhile, the collector loop is assumed to be active. The conservation equations in the axis-symmetric cylindrical co-ordinate have been used and discretised by employing the finite volume method. The low Reynolds number (LRN) k - ω model is utilized for treating turbulence in the fluid. The influence of the tank Grashof number, the incoming cold fluid Reynolds number and the size of the inlet port of the heat storage tank on the transient thermal characteristics of the tank is investigated and discussed. It is found that for higher values of Grashof number, the pre-established thermal stratification is well preserved during the discharging operation mode. It is also noticed that in order to have a tank with a proper thermal performance and or have least mixing inside the tank during the consumption period, the tank inflow Reynolds number and or its inflow port diameter should be kept below certain values. In these cases, the storage tank is enabling to provide proper amount of hot water with a proper temperature for consumption purposes.

  1. Application of an intermediate LWR for electricity production and hot-water district heating

    International Nuclear Information System (INIS)

    1983-05-01

    The objective of the study is to evaluate the technical and economic feasibility of a 400 MWe Consolidated Nuclear Steam System (CNSS) for supplying district heat to the Minneapolis/St. Paul area. A total of three CNSS reactor sites, located various distances from the Minneapolis-St. Paul area load center, are evaluated. The distance from the load center is determined by the credited safety features of the plant design. Each site is also evaluated for three different hot water supply/return temperatures providing a total of nine CNSS study cases. The cost of district heat delivered to the load center is determined for each case

  2. Achievement report for fiscal 2000 on New Sunshine Project aiding program. Development of hot water utilizing power generation plant (Technological development of hot rock power generation system - development of elementary technologies); 2000 nendo nessui riyo hatsuden plant to kaihatsu seika hokokusho. Koon gantai hatsuden system no gijutsu kaihatsu (yoso gijutsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In order to identify the possibility of a hot rock power generation system, technological R and D has been performed on structuring of a man-made hydrothermal system, fracture mapping, downhole measurement and a circulating extraction system. This paper summarizes the achievements in fiscal 2000. With regard to the long-term circulating extraction test, a circulating heat extraction and test device was installed at the hot rock experimental field in the Hijiori area in Yamagata Prefecture, where geochemical data collection and tests including analyses thereon have begun. In reservoir bed analysis, a well module was incorporated into a reservoir bed simulator to improve the module so that comparison with the data of actual production on the ground can be performed. For the fracture mapping, AE having been observed during the long-term circulation test was analyzed, whereas it was estimated that the seismic source would not move or expanded during this period. A PTS logging has been performed during the long-term circulation test to investigate characteristics of the flow-out zone of the injection well and the production zone of the production well. In making the fracture model, an initial model was fabricated to estimate heat extraction behavior in the long-term circulation test. (NEDO)

  3. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    Science.gov (United States)

    Goudarzi, A. M.; Mazandarani, P.; Panahi, R.; Behsaz, H.; Rezania, A.; Rosendahl, L. A.

    2013-07-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is augmented by two devices. An electric fan can increase the air-to-fuel ratio in order to increase the system's efficiency and decrease air pollution by providing complete combustion of wood. In addition, thermoelectric generators (TEGs) produce power that can be used to satisfy all basic needs. In this study, a water-based cooling system is designed to increase the efficiency of the TEGs and also produce hot water for residential use. Through a range of tests, an average of 7.9 W was achieved by a commercial TEG with substrate area of 56 mm × 56 mm, which can produce 14.7 W output power at the maximum matched load. The total power generated by the stove is 166 W. Also, in this study a reasonable ratio of fuel to time is described for residential use. The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water, and essential heat for warming the room and cooking.

  4. 46 CFR 53.05-2 - Relief valve requirements for hot water boilers (modifies HG-400.2).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Relief valve requirements for hot water boilers (modifies HG-400.2). 53.05-2 Section 53.05-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... requirements for hot water boilers (modifies HG-400.2). (a) The relief valve requirements for hot water boilers...

  5. Health improvement of domestic hot tap water supply Gusev, Kaliningrad Region, Russia. Make-up water tank project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, Joergen

    1998-07-01

    This report describes the project `Health Improvement of Domestic Hot Tap Water Supply, Gusev, Kaliningrad, Russia`, which was carried out in the autumn of 1996 and financed by the Danish Environmental Protection Agency, the Danish Energy Agency and Gusev Municipality. The project proposal and application outlined the following objectives: Erection of system so that hot tap water, which is tapped directly from the district heating system, obtains an acceptable quality in health terms; Complete training and education, so that the plant can be operated and maintained by the power station`s staff and rehabilitation projects within supply of domestic water and district heating can be promoted to the greatest possible extent; Systems for heat treatment of make-up water were implemented in less than three months; The project was carried out in close Danish-Russian co-operation from the beginning of engineering to the commissioning and resulted in transfer and demonstration of know-how and technology; Information was recorded on the existing domestic water and heat supply systems as well as on the treatment of sewage, and recommendations for rehabilitation projects were made. Previously, when the temperature in the district heating system was relatively high, a heat treatment apparently took place in the district heating system. However, due to the current poor economic situation there are no means with which to buy the fuel quantities necessary to maintain the previously normal district heating temperature. In the new concept the cold make-up water is heated to >80 deg. C as required by the health authorities before it is led to the district heating return system and subsequently heated to the actual supply temperature of 50-60 deg. C. The energy consumption in the two concepts is approximately the same. A 1,000 m{sup 3} tank with heating coils was erected between the make-up water system and the district heating system. The tank should equalise the daily capacity

  6. Control system for glassing hot presses

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.F.

    1984-06-13

    A software programmable control system has been developed that automates the glass fusing process used in the production of semiconductor thermopile elements. The new control system replaces an older, mostly manual, electromechanical design. This report describes the new control design and its functional features.

  7. Remote Robotic Cleaning System for Contaminated Hot-Cell Floor

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Park, Jang Jin; Yang, Myung S.; Kwon, Hyo Kjo

    2005-01-01

    The M6 hot-cell of the Irradiated Material Examination Facility at the Korea Atomic Energy Research Institute (KAERI) has been contaminated with spent fuel debris and other radioactive waste due to the DUPIC nuclear fuel development processes. As the hot-cell is active, direct human workers' access, even with protection, to the in-cell is not possible because of the nature of the high radiation level of the spent PWR fuel. A remote robotic cleaning system has been developed for use in a highly radioactive environment of the M6 hot-cell. The remote robotic cleaning system was designed to completely eliminate human interaction with hazardous radioactive contaminants. This robotic cleaning system was also designed to remove contaminants or contaminated smears placed or fixed on the floor of the M6 hot-cell by mopping it in a remote manner. The environmental, functional and mechanical design considerations, control system and capabilities of the developed remote robotic cleaning system are presented

  8. ''Terek-3'' a well flowmeter for hot water

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, A; Bar-sliva, V

    1979-01-01

    For studying ther applicability of an injection well with injection of hot water (with temperature to 150-200/sup 0/C) it is necessary to have well flowmeters which have high sensitivity and performance capacity at this temperature. In developing the well remote flowmeter ''Terek-3'' the All-Union Scientific research and Planning-Design Institute for comprehensive automation of oil and gas industry made a decision to use a drive-less packer developed by the authors of the article for the well flowmeter ''Terek-1'' designed to study high-output wells. Because of the use of the drive-less packer, the sensitivity of the flowmeter was considerably improved and the lower limit of measurements were decreased to 60 m/sup 3//day. In order to reduce friction in the supports of the turbines, agate step bearings and cores were used made of steel 40KKhNM. The upper step bearing was installed in the instrument housing, and the lower in the body of the turbines. This reduces the possibility of its contamination in the measurement process. One should also bear in mind that with an increase in temperature, the viscosity of water diminshes (roughly 5-fold with temperature of 150/sup 0/C). Therefore, with a decrease in the influence of viscosity on the readings of the flowmeter in the instrument, a turbine was used suggested by V. I. Bar-Sliva. In this turbine the blades are separated from the step which guarantees not only the obtaining of the maximum moving momentum but also reduces the influence of the change in viscosity on the operation of the turbine. The impulse output signal obtained with rotation of the turbine with magnet is transmitted on a single-strand cable to a surface apparatus consisting of a condensator frequency meter and universal logging recorder N-381 which guarantees recording of the changed consumption on a diagram tape as a function of depth or time. Experimental samples of the well flowmeter ''Terek-3'' passed state inspection tests.

  9. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for existing detached houses); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-27

    This report describes the fiscal 1976 research result on solar cooling/heating and hot water supply systems for existing detached houses. In system analysis, various evaluation items of the primary experimental house to be constructed and the titled thermal system were determined, and its measurement/control online program was developed. In the R and D on equipment and materials, the performance of the vacuum collector prepared in last fiscal year was tested, and based on its result and study on optimum structure, the new prototype vacuum collector was fabricated. In the study on heat transfer and heat storage system equipment, the medium-scale latent heat type heat storage tank (1 x 10{sup 4}kcal in thermal capacity, 8 x 10{sup 3}kcal/h in thermal output) using ammonium alum was prepared. For a preventive mechanism against supercooling, reconsideration of structure of a crystal nucleus formation plate was necessary. In the study on refrigerator driven by Rankine cycle engine, the prototype compressor more than 3,000kcal/h in refrigeration capacity was fabricated. Construction of the experimental house and trial operation of the cooling/heating system were promoted. (NEDO)

  10. Reports on 1979 result of Sunshine Project. R and D on solar cooling/heating and hot-water supply system (R and D on system for newly built private housing); 1979 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shinchiku kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    This report is for the results of fiscal 1979 on a solar cooling/heating and hot-water supply system for newly-built private housing. The research reports for fiscal 1974 to 1978 are as reported so far; for example, the research on energy-saving construction including thermal insulation method was used in an experimental housing completed in fiscal 1976. The solar heat collecting device was built in the experimental housing by increasing the scale of and utilizing the heat collecting device of a vacuum glass tube type on which research was done before fiscal 1975. The absorption refrigerating machine incorporated in the housing was of a forced circulation type which was high in temperature stability using the result of the research carried out until then. In fiscal 1979, as in fiscal 1978, one year residential experiment was conducted in which a family of a couple and two children lived in a house under an improved system as a result of a system variation and the like, and made an evaluation on the performance. Simultaneously, a control management system was developed in which a micro-computer was introduced for the purpose of improving the system performance, with the operation carried out under the micro-computer control. In addition, a fundamental experiment was also completed concerning a long-term heat accumulation by underground heat reserve. (NEDO)

  11. Saturation and nucleation in hot nuclear systems

    International Nuclear Information System (INIS)

    Deangelis, A.R.

    1990-07-01

    We investigate nuclear fragmentation in a supersaturated system using classical nucleation theory. This allows us to go outside the normally applied constraint of chemical equilibrium. The system is governed by a virial equation of state, which we use to find an expression for the density as a function of pressure and temperature. The evolution of the system is discussed in terms of the phase diagram. Corrections are included to account for the droplet surface and all charges contained in the system. Using this model we investigate and discuss the effects of temperature and saturation, and compare the results to those of other models of fragmentation. We also discuss the limiting temperatures of the system for the cases with and without chemical equilibrium. We find that large nuclei will be formed in saturated systems, even above the limiting temperature as previously defined. We also find that saturation and temperature dominate surface and Coulomb effects. The effects are quite large, thus even a qualitative inspection of the yields may give an indication of the conditions during fragmentation

  12. Development of a direct expansion solar assisted heat pump for hot water supply

    International Nuclear Information System (INIS)

    Abdesselam Hamloui; Ong, K.S.; Than Cheok Fah; Masjuki Hassan

    2000-01-01

    Experimental investigations were conducted on the direct expansion solar assisted Heat Pump (DESAHP). Refrigerant R-22 was expanded in the solar collector which also acted as the evaporator in a conventional vapor compression refrigerating machine. The experiments were conducted under conditions of high and low solar radiation, with evaporator completely shaded from the sun, and at night. System thermal performance was determined by measuring refrigerant flow rate, temperature and pressure at numerous points in the system. The results showed that 227-l of water could be heated from 3O degree to 55 degree C in about 105 minutes. Higher water temperatures were obtained during hot sunny days. The coefficient of performance of heating, COP h , ranged from 11 to 4.7, depending upon operating conditions. The total saving of electric energy during hot sunny days was about 460 %. It means that for 1 kWh of electrical input to the system, we achieve 4.6 kWh. This percentage decreases as the evaporator temperature decreases and is a function of solar energy input. (Author)

  13. The Use of Solar Energy for Preparing Domestic Hot Water in a Multi-Storey Building

    Directory of Open Access Journals (Sweden)

    Giedrius Šiupšinskas

    2012-12-01

    Full Text Available The article analyses the possibilities of solar collectors used for a domestic hot water system and installed on the roofs of modernized multi-storey buildings under the existing climate conditions. A number of combinations of flat plate and vacuum solar collectors with accumulation tank systems of various sizes have been examined. Heat from the district heating system is used as an additional heat source for preparing domestic hot water. The paper compares calculation results of energy and economy regarding the combinations of flat plate and vacuum solar collectors and the size of the accumulation tank. The influence of variations in the main indicators on the final economic results has also been evaluated. Research has been supported applying EC FP7 CONCERTO program (‘‘Sustainable Zero Carbon ECO-Town Developments Improving Quality of Life across EU - ECO-Life’’ (ECO-Life Project Contract No. TREN/FP7EN/239497/”ECOLIFE”.Article in Lithuanian

  14. Methods of accounting the hot water consumption modes at the solar installations design

    Directory of Open Access Journals (Sweden)

    Vyacheslav O. Dubkovsky

    2015-06-01

    Full Text Available Peculiarities of the high-powered solar systems for hot water heating are considered. The purpose of work consists in development of methods for accounting the 24-hourly hot water consumption mode, determining the solar systems dynamic descriptions. The basic solar system schemes are analyzed with their shortages from the user satisfaction view point due to sun energy. For the dynamic parameters improvement the use of operative expense tank is examined such receptacle bearing built-in worm-pipe, through which all heat carrier from solar collectors passes before entering the fast heat exchanger which heats a tank-accumulator. The scientific novelty refers to the proof that this tank principal parameter is a not the volume, but the built-in exchanger capacity, determined by the solar collectors field total thermal power. As an ecological constituent of operating costs it is suggested to take into account cost paid for the emission of combustion products. As this method practical application example considered is the solar collectors capacity optimization for a communal enterprise.

  15. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    International Nuclear Information System (INIS)

    Warner, J.L.; Lutz, J.D.

    2006-01-01

    Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

  16. Semiclassical description of hot nuclear systems

    International Nuclear Information System (INIS)

    Brack, M.

    1984-01-01

    We present semiclassical density variational calculations for highly excited nuclear systems. We employ the newly derived functionals tau[rho] and sigma[rho] of the extended Thomas-Fermi (ETF) model, generalized to finite temperatures. Excellent agreement is reached with Hartree-Fock (HF) results. We also calculated the fission barrier of 240 Pu as a function of the nuclear temperature

  17. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for apartment houses); 1974 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Shugo jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-01

    This report describes the fiscal 1974 R and D result on solar cooling/heating and hot water supply systems for apartment houses. In system analysis, the system plan was selected through basic data survey, modeling by combining some kinds of such systems and energy flow calculation. On solar heat collector, theoretical analysis was made on a stationary plane collector, and study was made on cover glass material and absorption surface performances. On Rankine's engine, studies on advanced selective absorption film, transmissive film, prevention of heat radiation and converging collector were necessary. As solar heat driving refrigerators, absorptive one and Rankine's one were promising. As heat media for refrigerators, R-11 and 113, and R-114 and 11 were suitable for turbo one and displacement one, respectively. Since a displacement compressor is featured by high-efficiency lower-speed operation than that of turbo one without any constraint, its direct connection with a motor or generator is possible. Screw compressor belonging to displacement one was promising. Rotary displacement one was also promising in a small-capacity range within 20-50RT. (NEDO)

  18. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test.

    Science.gov (United States)

    Lu, Yehu; Song, Guowen; Wang, Faming

    2015-03-01

    Hot liquid hazards existing in work environments are shown to be a considerable risk for industrial workers. In this study, the predicted protection from fabric was assessed by a modified hot liquid splash tester. In these tests, conditions with and without an air spacer were applied. The protective performance of a garment exposed to hot water spray was investigated by a spray manikin evaluation system. Three-dimensional body scanning technique was used to characterize the air gap size between the protective clothing and the manikin skin. The relationship between bench scale test and manikin test was discussed and the regression model was established to predict the overall percentage of skin burn while wearing protective clothing. The results demonstrated strong correlations between bench scale test and manikin test. Based on these studies, the overall performance of protective clothing against hot water spray can be estimated on the basis of the results of the bench scale hot water splashes test and the information of air gap size entrapped in clothing. The findings provide effective guides for the design and material selection while developing high performance protective clothing. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  19. Presence of Legionella spp. in Hot Water Networks of Different Italian Residential Buildings: A Three-Year Survey.

    Science.gov (United States)

    Totaro, Michele; Valentini, Paola; Costa, Anna Laura; Frendo, Lorenzo; Cappello, Alessia; Casini, Beatrice; Miccoli, Mario; Privitera, Gaetano; Baggiani, Angelo

    2017-10-26

    Although the European reports highlight an increase in community-acquired Legionnaires' disease cases, the risk of Legionella spp. in private houses is underestimated. In Pisa (Italy) we performed a three-year survey on Legionella presence in 121 buildings with an independent hot water production (IB); 64 buildings with a central hot water production (CB); and 35 buildings with a solar thermal system for hot water production (TB). From all the 220 buildings Legionella spp. was researched in two hot water samples collected either at the recirculation point or on the first floor and on the last floor, while the potable water quality was analysed in three cold water samples collected at the inlet from the aqueduct network, at the exit from the autoclave, and at the most remote tap. Legionella pneumophila sg1, Legionella pneumophila sg2-16, and non- pneumophila Legionella species were detected in 26% of the hot water networks, mostly in CB and TB. In these buildings we detected correlations between the presence of Legionella and the total chlorine concentration decrease and/or the increase of the temperature. Cold water resulted free from microbiological hazards, with the exception of Serratia liquefaciens and Enterobacter cloacae isolated at the exit from two different autoclaves. We observed an increase in total microbial counts at 22 °C and 37 °C between the samples collected at the most remote taps compared to the ones collected at the inlet from the aqueduct. The study highlights a condition of potential risk for susceptible categories of population and supports the need for measures of risk assessment and control.

  20. Exergy efficiency enhancement of MSF desalination by heat recovery from hot distillate water stages

    International Nuclear Information System (INIS)

    Al-Weshahi, Mohammed A.; Anderson, Alexander; Tian, Guohong

    2013-01-01

    This detailed exergy analysis of a 3800 m 3 /h Multi-Stage Flash (MSF) desalination plant is based on the latest published thermodynamics properties of water and seawater. The parameters of the study were extracted from a validated model of MSF desalination using IPSEpro software. The results confirmed that the overall exergy efficiency of the unit is lower than would be desirable at only 5.8%. Exergy inputs were destroyed by 55%, 17%, 10%, 4.3%, and 14% respectively, in the heat recovery stages, brine heater, heat rejection stages, pumps and brine streams disposal. Moreover, the detail of the study showed that the lowest exergy destruction occurs in the first stage, increasing gradually in heat recovery stages and sharply in heat rejection stages. The study concludes that recovering the heat from the hot distillate water stages can improve unit exergy efficiency from its low 5.8% to a more economical 14%, with the hot water parameters suitable for powering other thermal systems such as absorption chiller and multi-effect desalination

  1. Risk of Burns from Eruptions of Hot Water Overheated in Microwave Ovens

    Science.gov (United States)

    ... Products and Procedures Home, Business, and Entertainment Products Risk of Burns from Eruptions of Hot Water Overheated ... coffee or sugar are added before heating, the risk is greatly reduced. If superheating has occurred, a ...

  2. Effects of Hot Water Immersion on Storage Quality of Fresh Broccoli Heads

    Directory of Open Access Journals (Sweden)

    Huaqiang Dong

    2004-01-01

    Full Text Available Freshly harvested broccoli heads were immersed for 0, 1, 4 or 8 min into hot water at 45 °C, and then were hydrocooled rapidly for 10 min at 10 °C. Following these treatments, the broccoli were air-dried for 30 min, then packed in commercial polymeric film bags, and, finally, stored for 16 days at –1, 1, and 12 °C. The samples treated with hot water maintained high contents of chlorophyll concentrations, their yellowing rate was delayed, and fungal infection and chilling or freezing injury were inhibited markedly. Compared to non-heat-treated broccoli, a lower level of peroxidase activity with a relatively higher chlorophyll concentration was observed when broccoli were treated with hot water. Among these heat treatments, immersion in hot water for 4 min at 45 °C was the most effective for maintaining the quality of harvested broccoli heads.

  3. The Energy Efficiency of Hot Water Production by Gas Water Heaters with a Combustion Chamber Sealed with Respect to the Room

    Directory of Open Access Journals (Sweden)

    Grzegorz Czerski

    2014-08-01

    Full Text Available This paper presents investigative results of the energy efficiency of hot water production for sanitary uses by means of gas-fired water heaters with the combustion chamber sealed with respect to the room in single-family houses and multi-story buildings. Additionally, calculations were made of the influence of pre-heating the air for combustion in the chimney and air supply system on the energy efficiency of hot water production. CFD (Computational Fluid Dynamics software was used for calculation of the heat exchange in this kind of system. The studies and calculations have shown that the use of gas water heaters with a combustion chamber sealed with respect to the room significantly increases the efficiency of hot water production when compared to traditional heaters. It has also been proven that the pre-heating of combustion air in concentric chimney and air supply ducts essentially improves the energy efficiency of gas appliances for hot water production.

  4. Hot Topics/New Initiatives | Drinking Water in New England ...

    Science.gov (United States)

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  5. Effects of hot water treatments on dormant grapevine propagation materials used for grafted vine production

    Directory of Open Access Journals (Sweden)

    Soltekin Oguzhan

    2017-01-01

    Full Text Available Agrobacterium vitis is responsible for the crown gall disease of grapevine which breaks the grapevine trunk vascular system. Nutrient flow is prevented by crown gall and it leads to weak growth and death of the plants. It can be destructive disease often encountered in vineyards and it can be spread in cuttings for propagation. Thermotherapy treatment is an alternative method for eradicating A. vitis from grapevine cuttings but effects of thermotherapy treatments on dormant vine tissue, bud vitality, rooting and shooting of the propagation materials are not yet fully understood. In this research, it is aimed to determine the effects of thermotherapy treatment (Hot water treatment on callus formation (at the basal part and grafting point, grafted vine quality (shoot length, shoot width, root number, shooting and rooting development, fresh and dry weight of shoots and roots and final take in the grafted vine production. Experiment was conducted in the nursery of Manisa Viticultural Research Institute. Rootstocks (Kober 5BB, Couderc 1613 and 41B and scions (Sultan 7 and Manisa sultanı were hot-water treated at 50°C for 30 minutes which is the most common technique against Agrobacterium vitis. After thermotherapy treatment, all rootstocks were grafted with Sultan 7 and Manisa sultanıvarieties. They were kept for 22 days in callusing room for callus development and then they were planted in polyethlyene bags for rooting. At the end of the study, significant treatment x rootstock interaction were observed for the final take of Sultan 7 variety. Thermotherapy treated of 1613C/Sultan 7 combinations had more final take than the control (untreated group. For instance, hot water treated cuttings of 1613C/Sultan 7 combinations had 75% final take while the control group had the 70%. Also there were not observed any adverse effects of HWT on bud and tissue vitality.

  6. Method for reducing heat loss during injection of hot water into an oil stratum

    Energy Technology Data Exchange (ETDEWEB)

    Evgenev, A E; Kalashnikov, V N; Raiskii, Yu D

    1968-07-01

    A method is described for reduction of heat loss during the injection of hot water into an oil stratum. During the transportation of the hot water to the face of the bore holes, it has high-molecular polymers added to it. The high-molecular polymer may be guanidine or polyoxyethylene in the quantity of 0.01 to 0.03% by wt.

  7. Applying spatial analysis techniques to assess the suitability of multipurpose uses of spring water in the Jiaosi Hot Spring Region, Taiwan

    Science.gov (United States)

    Jang, Cheng-Shin

    2016-04-01

    The Jiaosi Hot Spring Region is located in northeastern Taiwan and is rich in geothermal springs. The geothermal development of the Jiaosi Hot Spring Region dates back to the 18th century and currently, the spring water is processed for various uses, including irrigation, aquaculture, swimming, bathing, foot spas, and recreational tourism. Because of the proximity of the Jiaosi Hot Spring Region to the metropolitan area of Taipei City, the hot spring resources in this region attract millions of tourists annually. Recently, the Taiwan government is paying more attention to surveying the spring water temperatures in the Jiaosi Hot Spring Region because of the severe spring water overexploitation, causing a significant decline in spring water temperatures. Furthermore, the temperature of spring water is a reliable indicator for exploring the occurrence and evolution of springs and strongly affects hydrochemical reactions, components, and magnitudes. The multipurpose uses of spring water can be dictated by the temperature of the water. Therefore, accurately estimating the temperature distribution of the spring water is critical in the Jiaosi Hot Spring Region to facilitate the sustainable development and management of the multipurpose uses of the hot spring resources. To evaluate the suitability of spring water for these various uses, this study spatially characterized the spring water temperatures of the Jiaosi Hot Spring Region by using ordinary kriging (OK), sequential Gaussian simulation (SGS), and geographical information system (GIS). First, variogram analyses were used to determine the spatial variability of spring water temperatures. Next, OK and SGS were adopted to model the spatial distributions and uncertainty of the spring water temperatures. Finally, the land use (i.e., agriculture, dwelling, public land, and recreation) was determined and combined with the estimated distributions of the spring water temperatures using GIS. A suitable development strategy

  8. Interactive Effects of Corrosion, Copper, and Chloramines on Legionella and Mycobacteria in Hot Water Plumbing.

    Science.gov (United States)

    Rhoads, William J; Pruden, Amy; Edwards, Marc A

    2017-06-20

    Complexities associated with drinking water plumbing systems can result in undesirable interactions among plumbing components that undermine engineering controls for opportunistic pathogens (OPs). In this study, we examine the effects of plumbing system materials and two commonly applied disinfectants, copper and chloramines, on water chemistry and the growth of Legionella and mycobacteria across a transect of bench- and pilot-scale hot water experiments carried out with the same municipal water supply. We discovered that copper released from corrosion of plumbing materials can initiate evolution of >1100 times more hydrogen (H 2 ) from water heater sacrificial anode rods than does presence of copper dosed as soluble cupric ions. H 2 is a favorable electron donor for autotrophs and causes fixation of organic carbon that could serve as a nutrient for OPs. Dosed cupric ions acted as a disinfectant in stratified stagnant pipes, inhibiting culturable Legionella and biofilm formation, but promoted Legionella growth in pipes subject to convective mixing. This difference was presumably due to continuous delivery of nutrients to biofilm on the pipes under convective mixing conditions. Chloramines eliminated culturable Legionella and prevented L. pneumophila from recolonizing biofilms, but M. avium gene numbers increased by 0.14-0.76 logs in the bulk water and were unaffected in the biofilm. This study provides practical confirmation of past discrepancies in the literature regarding the variable effects of copper on Legionella growth, and confirms prior reports of trade-offs between Legionella and mycobacteria if chloramines are applied as secondary disinfectant residual.

  9. Hot spots and hot moments in riparian zones: potential for improved water quality management

    Science.gov (United States)

    Despite considerable heterogeneity over space and time, biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. Recently, these heterogeneous processes have been co...

  10. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for large buildings); 1974 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu. Ogata kenchikubutsuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-28

    Large buildings such as government office building, private office building and gymnasium are consuming a huge amount of fossil fuel as energy for cooling/heating and hot water supply. The final target of this project is a use of solar heat as energy for such systems in place of fossil fuel. The fiscal 1974 target of this project is as follows. The main part of the computation program was developed for system analysis on the whole thermal system composed of building structure, thermal load, and cooling and heating equipment. The small experimental thermal equipment and artificial light source were prepared to clarify the mechanism of solar heat collectors experimentally. As the first step of innovative refrigerator development, the small trial experimental equipment was prepared to clarify heat transfer characteristics for coolant recycling, and to develop an ideal structure heat exchanger possible to reduce the temperature difference between heating medium and heated liquid. Prior to development of a heat storage equipment, basic study was made on heat storage materials, heat insulation methods and characteristics of heat storage tanks. (NEDO)

  11. Kinetics of Pressurized Water Reactors with Hot or Cold Moderators

    Energy Technology Data Exchange (ETDEWEB)

    Norinder, O

    1960-11-15

    The set of neutron kinetic equations developed in this report permits the use of long integration steps during stepwise integration. Thermal relations which describe the transfer of heat from fuel to coolant are derived. The influence upon the kinetic behavior of the reactor of a number of parameters is studied. A comparison of the kinetic properties of the hot and cold moderators is given.

  12. Heading towards the nZEB through CHP+HP systems. A comparison between retrofit solutions able to increase the energy performance for the heating and domestic hot water production in residential buildings

    International Nuclear Information System (INIS)

    Salata, Ferdinando; Golasi, Iacopo; Domestico, Umberto; Banditelli, Matteo; Lo Basso, Gianluigi; Nastasi, Benedetto; Lieto Vollaro, Andrea de

    2017-01-01

    Highlights: • Energy optimization measures to increase the energy class of buildings. • Analysis of the demands related to the space-heating season and the production of annual DHW. • Case study related to a residential building of medium size located in Rome (Italy). • Improvements on building envelope and on systems (traditional technologies or CHP+HP). • Energy and economic analysis to achieve the performance of a nZEB. - Abstract: Optimizing consumptions in the field of civil construction led to define energy labels for residential buildings. To calculate the building energy demand the EPgl was determined, i.e. the annual consumption per m"2 of primary energy. This paper examines the technical solutions useful to optimize the energy demands for heating during space-heating season and domestic hot water production (thanks to energy analysis softwares as MC11300 and TRNSYS) and, at the same time, to take into account the financial issues those interventions implied. The total inside heated surface of the building case study is 1204.00 m"2, hence the inside heated volume is about 3250.80 m"3. Besides the more traditional interventions concerning the building envelope and its systems, the paper examined the performance of a system obtained through the combination of a cogenerator (CHP) and a heat pump (HP), thus, substituting the conventional boilers of the buildings. CHP+HP solution increases the most the energy label of the building (from a D class with EPgl = 59.62 kW h m"−"2 year"−"1, to an A class, with EPgl = 25.64 kW h m"−"2 year"−"1), determining an annual energy cost saving of 3,114 € year"−"1, allowing to amortize installation costs (54,560 €) in a reasonable payback period, i.e. 15.4 years. This innovative solution in the residential sector can be realized through retrofit interventions on existing buildings, hence it leads the current dwelling towards nZEB with a remarkable benefits for the environment.

  13. Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    . Evaluation models were built to investigate the energy, economy and exergy performances of the proposed domestic hot water systems in various configurations. The configurations of the devised domestic hot water substations were optimised to fit well with both low and ultra-low-temperature district heating...... °C and 50 °C district heating scenarios, while the individual micro tank solution consumed less energy and cost less in the 35 °C district heating scenario....

  14. Hot water supply in ''Smart Home''. Decentralized supply, decentralized control; Warmwasserversorgung im 'Smart Home'. Dezentral versorgen, dezentral steuern

    Energy Technology Data Exchange (ETDEWEB)

    Wiechers, Olaf

    2013-10-01

    The separation of the heating system and domestic hot water is already established in commercial and residential construction. The decentralized hot water supply offers environmental and economic benefits. In this paper it is shown that one can also do this in a detached house. [German] Die Trennung von Heizsystem und Warmwasserbereitung ist im Gewerbe- und Wohnungsbau bereits etabliert. Die dezentrale Warmwasserversorgung bietet oekologische und oekonomische Vorteile. In diesem Beitrag wird gezeigt, dass man dies auch bei einem Einfamilienhaus durchfuehren kann.

  15. Air-cooled LiBr-water absorption chillers for solar air conditioning in extremely hot weathers

    International Nuclear Information System (INIS)

    Kim, D.S.; Infante Ferreira, C.A.

    2009-01-01

    A low temperature-driven absorption cycle is theoretically investigated for the development of an air-cooled LiBr-water absorption chiller to be combined with low-cost flat solar collectors for solar air conditioning in hot and dry regions. The cycle works with dilute LiBr-water solutions so that risk of LiBr crystallization is less than for commercially available water-cooled LiBr-water absorption chillers even in extremely hot ambient conditions. Two-phase heat exchangers in the system were modelled taking account of the heat and mass transfer resistances in falling film flows by applying the film theory in thermal and concentration boundary layers. Both directly and indirectly air-cooled chillers were modelled by properly combining component models and boundary conditions in a matrix system and solved with an algebraic equation solver. Simulation results predict that the chillers would deliver chilled water around 7.0 deg. C with a COP of 0.37 from 90 deg. C hot water under 35 deg. C ambient condition. At 50 deg. C ambient temperature, the chillers retained about 36% of their cooling power at 35 deg. C ambient. Compared with the directly air-cooled chiller, the indirectly air-cooled chiller presented a cooling power performance reduction of about 30%

  16. Utilization of the residual water resource from the Kozloduy NPP's hot channel for building a small hydropower plant (TK1)

    International Nuclear Information System (INIS)

    Tolev, T.

    2004-01-01

    A hydropower plant built on the hot channel of the NPP should be capable to utilise the whole changing water flow from the NPP cooling system. Tree factors - level of the hot channel, level of the Danube river and the water flow - determine the power potential of the HPP. The water level in the hot channel varies between 31.20 and 32.50 m with an optimum at 31.50 m. The Danube river level varies in a wide range. The head at 85% of the river level and at a level of the channel 31.50 m is 7.2 m. The water flow depends on the NPP operation and it is between 45 m 3 /s and 140 m 3 /s. Thus the nominal power of the HPP is 5 740 kW. The construction of the HPP is justified in case of at least 30 years of operation. The calculations are made for the operation of units 5 and 6 which are expected to work during this period. A significant role for the maximal utilisation of the resource of the hot channel plays the choice of the hydro-turbines. The horizontal PIT-Kaplan turbines are considered as the most appropriate. The integrating of the plant into the electric network and possible impact on the environment are also considered

  17. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of solar systems for existing residential buildings); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-05-31

    As part of the research and development of the solar energy systems for air conditioning and hot water supply for existing residential buildings, the following efforts are made: (1) system analysis, (2) studies on devices and materials, and (3) installation and operation of the facilities in test buildings, and collection of the data. For the item (1), the sensible heat type heat-accumulating tank is replaced by the latent heat type to reduce heat losses and auxiliary power requirements by improving heat-accumulating tank efficiency and revising the control procedure. For the item (2), the devices installed in the test buildings are tested to improve their performance and reliability, in which, e.g., results of operation, under commercial conditions, of the Rankine cycle refrigerator installed in the test building are taken into consideration. The empirical correlation {eta} 0.66 - 1.7{delta}T/I is obtained for instantaneous heat-collecting efficiency of a vacuum collector, made on a trial basis. Its heat loss is sufficiently small, which is in agreement with the results of the nighttime heat release tests. For the latent heat type heat-accumulating tank, stability of the materials therefor are investigated. For the Rankine cycle refrigerator, development of its parts is continued. For the item (3), the facilities are tested for around 7 months, and problems involved in each device are clarified. (NEDO)

  18. Metagenomic analysis of bacterial diversity of Siloam hot water ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... 14.40. Bicarbonate (HCO3). 107.36. Table 3. Trace elements composition at Siloam Hot spring. Element. Concentration (μg/L) Element. Concentration (μg/L) Element. Concentration μg/L. Antimony. 0.0. Cobalt. 0.1. Strontium. 20.4. Arsenic. 0.3. Copper. 0.0. Tellurium. 0.0. Barium. 4.2. Iodine. 1.9. Thallium.

  19. Building America Case Study: Addressing Multifamily Piping Losses with Solar Hot Water, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  20. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation, Davis, CA (United States); Seitzler, Matt [Alliance for Residential Building Innovation, Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation, Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  1. Determination of Hot Springs Physico-Chemical Water Quality Potentially Use for Balneotherapy

    International Nuclear Information System (INIS)

    Zaini Hamzah; Nurul Latiffah Abd Rani; Ahmad Saat; Ab Khalik Wood

    2013-01-01

    Hot springs areas are attractive places for locals and foreigners either for excursion or for medical purposes such as for healing of various types of diseases. This is because the hot spring water is believed rich in salt, sulfur, and sulfate in the water body. For many thousands of years, people have used hot springs water both for cozy bathing and therapy. Balneotherapy is the term used where the patients were immersed in hot mineral water baths emerged as an important treatment in Europe around 1800s. In view of this fact, a study of hot springs water was performed with the objective to determine the concentration of Na + , K + , Ca 2+ , S, SO 4 2- and Cl - in hot springs water around the State of Selangor, Malaysia. Energy dispersive X-ray Fluorescent Spectrometry (EDXRF) was used to measure the concentrations of Na + , K + , Ca 2+ and S meanwhile for SO 4 2- and Cl - anion, Ion Chromatography (IC) was used. The concentration of Na + obtained for filtered and unfiltered samples ranged from 33.68 to 80.95 and 37.03 to 81.91 ppm respectively. Meanwhile, the corresponding concentrations of K + ranged from 1.47 to 45.72 and 1.70 to 56.81 ppm. Concentrations of Ca 2+ ranged from 2.44 to 18.45 and 3.75 to 19.77 ppm. The concentration of S obtained for filtered and unfiltered samples ranged from 1.87 to 12.41 and 6.25 to 12.86 ppm. The concentrations for SO 4 2- and Cl - obtained ranged from 0.15 to 1.51 ppm and 7.06 to 20.66 ppm for filtered samples. The data signified higher concentration of salt and other important nutrients in hot spring water. (author)

  2. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Svendsen, Svend

    2017-01-01

    District heating (DH) is a cost-effective method of heat supply, especially to area with high heat density. Ultra-low-temperature district heating (ULTDH) is defined with supply temperature at 35-45 degrees C. It aims at making utmost use of the available low-temperature energy sources. In order...... to achieve high efficiency of the ULTDH system, the return temperature should be as low as possible. For the energy-efficient buildings in the future, it is feasible to use ULTDH to cover the space heating demand. However, considering the comfort and hygiene requirements of domestic hot water (DHW...... lower return temperature and higher efficiency for DHW supply, an innovative substation was devised, which replaced the bypass with an instantaneous heat exchanger and a micro electric storage tank. The energy performance of the proposed substation and the resulting benefits for the DH system...

  3. Power control system for a hot gas engine

    Science.gov (United States)

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  4. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on metal system materials); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kinzokukei zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1976 research result on high-efficiency high-durability inexpensive metallic collectors, equipment and materials for solar cooling/heating and hot water supply systems. In the study on metal materials for heat collector plates, corrosion-proofing experiment was made on Al-Zn, Al-Zn-In and Al-Zn-Fe-In alloys treated by bainite under 7 kinds of environmental conditions, resulting in no formation of any through hole. Study was also made on water flow corrosion test of A1100 material, and water- corrosion retardant for Al. In the study on selective absorption films, study was made on secondary electrochemically coated film and vacuum deposition film. Fabrication, test operation and preliminary experiment were made on the large secondary electrolysis facility for full- scale solar panels. The selective absorptivity of secondary electrochemically coated films was a maximum of 0.95 in absorptivity and 0.10 in emissivity, showing the favorable selective absorptivity of both Ni and Co. The durability test result showed favorable heat resistance, light resistance and moisture resistance. (NEDO)

  5. Description of the heating and expansion process of a water drop enclosed in a hot melt

    International Nuclear Information System (INIS)

    Froehlich, G.; Berg, E. von.

    1985-11-01

    In the present study a simple model for the description of the heating- and expansion-process of a water drop enclosed in hot melt is developed. The model is valid between the first contact of melt and water up to the beginning of evaporation. A possible superheating by retardation of ebullition is disregarded. The balance equations for energy, mass and momentum as well as the equation of state are integrated over the radial space coordinate in both media using appropriate profiles of temperature, pressure and velocity. Thereby a system of coupled ordinary differential equations is formed for the variables of the model which are now time dependent only. The equations are solved numerically by means of a FORTRAN-program. The influence of parameters (melt-temperature, heat-transfer-coefficient between melt and water as well as drop radius) are studied. It is shown that always very rapidly a vapor-layer forms around the water drop, while the inner part of the drop did not yet 'notice' anything of the heating process. An approximation formula for the time-transfer-coefficients between melt and water. Due to this approximation, the time up to incipience of evaporation grows proportional to the drop radius, which means that in the frame of the present model even small droplets won't evaporate as a whole instantaneously. (orig.) [de

  6. Technical, economic and environmental investigation of using district heating to prepare domestic hot water in Chinese multi-storey buildings

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Xia, Jianjun; Thorsen, Jan Eric

    2016-01-01

    The development of DH (District Heating) is an environmentally friendly and energy-efficient strategy in China. Currently, the vast majority of DH systems are SH (Space Heating) only and do not provide DHW (Domestic Hot Water). DHW is mainly produced by individual water heaters due to the cost......-effective issues of the centralized DHW systems. From the perspective of long-term development, DHW produced via DH systems would be more sustainable because DH is an important precondition for an environmental safe use of domestic waste fuels. This paper presents an approach that uses flat stations meanwhile...

  7. Geothermal reservoir simulation of hot sedimentary aquifer system using FEFLOW®

    Science.gov (United States)

    Nur Hidayat, Hardi; Gala Permana, Maximillian

    2017-12-01

    The study presents the simulation of hot sedimentary aquifer for geothermal utilization. Hot sedimentary aquifer (HSA) is a conduction-dominated hydrothermal play type utilizing deep aquifer, which is heated by near normal heat flow. One of the examples of HSA is Bavarian Molasse Basin in South Germany. This system typically uses doublet wells: an injection and production well. The simulation was run for 3650 days of simulation time. The technical feasibility and performance are analysed in regards to the extracted energy from this concept. Several parameters are compared to determine the model performance. Parameters such as reservoir characteristics, temperature information and well information are defined. Several assumptions are also defined to simplify the simulation process. The main results of the simulation are heat period budget or total extracted heat energy, and heat rate budget or heat production rate. Qualitative approaches for sensitivity analysis are conducted by using five parameters in which assigned lower and higher value scenarios.

  8. Water jet intrusion into hot melt concomitant with direct-contact boiling of water

    Energy Technology Data Exchange (ETDEWEB)

    Sibamoto, Yasuteru [Japan Atomic Energy Research Inst., Tokai Research Establishment, Tokai, Ibaraki (Japan)

    2005-08-01

    Boiling of water poured on surface of high-temperature melt (molten metal or metal oxide) provides an efficient means for heat exchange or cooling of melt. The heat transfer surface area can be extended by forcing water into melt. Objectives of the present study are to elucidate key factors of the thermal and hydrodynamic interactions for the water jet injection into melt (Coolant Injection mode). Proposed applications include in in-vessel heat exchangers for liquid metal reactor and emergency measures for cooling of molten core debris in severe accidents of light water reactor. Water penetration into melt may occurs also as a result of fuel-coolant interaction (FCI) in modes other than CI, it is anticipated that the present study contributes to understand the fundamental mechanism of the FCI process. The previous works have been limited on understanding the melt-water interaction phenomena in the water-injection mode because of difficulty in experimental measurement where boiling occurs in opaque invisible hot melt unlike the melt-injection mode. We conducted visualization and measurement of melt-water-vapor multiphase flow phenomena by using a high-frame-rate neutron radiography technique and newly-developed probes. Although limited knowledge, however, has been gained even such an approach, the experimental data were analyzed deeply by comparing with the knowledge obtained from relevant matters. As a result, we succeeded in revealing several key phenomena and validity in the conditions under which stable heat transfer is established. Moreover, a non-intrusive technique for measurement of the velocity and pressure fields adjacent to a moving free surface is developed. The technique is based on the measurement of fluid surface profile, which is useful for elucidation of flow mechanism accompanied by a free surface like the present phenomena. (author)

  9. Strontium isotopic composition of hot spring and mineral spring waters, Japan

    International Nuclear Information System (INIS)

    Notsu, Kenji; Wakita, Hiroshi; Nakamura, Yuji

    1991-01-01

    In Japan, hot springs and mineral springs are distributed in Quaternary and Neogene volcanic regions as well as in granitic, sedimentary and metamorphic regions lacking in recent volcanic activity. The 87 Sr/ 86 Sr ratio was determined in hot spring and mineral spring waters obtained from 47 sites. The ratios of waters from Quaternary and Neogene volcanic regions were in the range 0.703-0.708, which is lower than that from granitic, sedimentary and metamorphic regions (0.706-0.712). The geographical distribution of the ratios coincides with the bedrock geology, and particularly the ratios of the waters in Quaternary volcanic regions correlate with those of surrounding volcanic rocks. These features suggest that subsurface materials control the 87 Sr/ 86 Sr ratios of soluble components in the hot spring and mineral spring waters. (author)

  10. Estudio sobre la efectividad para la prevención de la legionelosis del sistema de calentamiento instantáneo, instalado en la red de agua sanitaria de un hospital Effectiveness study of a pasteurization system in controlling contamination with Legionella installed in a hospital's hot water system

    Directory of Open Access Journals (Sweden)

    Laura Gavaldà Mestre

    2006-12-01

    Full Text Available Se ha estudiado la efectividad de un sistema de pasteurización en el control de la contaminación por Legionella en la red de agua caliente de un hospital.El hospital había optado por este sistema debido a que los acumuladores convencionales originales presentaban importantes problemas en la capacidad de producción y en el mantenimiento de las temperaturas de distribución.El estudio fue iniciado después de haberse instalado los pasteurizadores y ha consistido en la realización de controles mensuales de Legionella y temperatura durante un período de 11 meses. De los resultados, se puede valorar que el sistema de pasteurización se considera efectivo, siempre y cuando las condiciones de la red (circulación, material, diseño, etc sean las adecuadas. El sistema no se considera efectivo en redes antiguas y con ramales sin circulación como se ha podido constatar en este estudio en el edificio de servicios, donde las conducciones presentaban un estado de conservación deficiente. En esta zona de servicios los controles de Legionella han mostrado una mejora únicamente después de que se iniciara un programa de purgas junto con la paulatina sustitución de los tramos en mal estado.The effectiveness of a pasteurization system in controlling contamination with Legionella has been evaluated in a hospital’s hot water system.The hospital acquired these equipments because the original system -conventional hot water tanks– had problems in producing and maintaining the distribution temperatures in the hot water circuit.The study started 11 months after the pasteurizers had been installed. The study consisted on Legionella and temperature controls which were conducted monthly during an 11-month period. Results have proved that a pasteurization system method to be an effective system of instantaneous warming provided that there are adequate conditions (circulation, materials, design, etc.. This system has no effectiveness in old nets or nets with

  11. Effect of hot water extracted hardwood and softwood chips on particleboard properties

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Tsai Garcia-Perez; Eini Lowell; Thomas Amidon

    2014-01-01

    The affinity of particleboard (PB) to water is one of the main limitations for using PB in moisture-rich environments. PB dimensional stability and durability can be improved by reducing the available hydroxyl groups in wood through hemicellulose removal, for example, by hot water extraction (HWE), which increases wood resistance to moisture uptake. The resulting...

  12. Effect of hot water and gamma radiation on postharvest decay of grapefruit

    International Nuclear Information System (INIS)

    Spalding, D.H.; Reeder, W.F.

    1986-01-01

    'Marsh' seedless white Florida grapefruit (Citrus paradisi Macf.) were inoculated after harvest with a spore suspension of green mold (Penicillium digitatum Sacc.) and treated by immersion in hot water (50°C for 5 min) or irradiation with gamma rays (250 Gy) from a Cobalt-60 source or a combination of the two treatments. Fruit were wrapped individually with shrink film after hot water treatment and before irradiation and were stored with wrapped control fruit at 24°C for 9 days. Fruit treated with hot water developed less green mold rot than untreated fruit, even when treatment was delayed for 72 hr after inoculation. Fruit irradiated after a delay of 2 hr, but not 24-72 hr, after inoculation developed less rot than untreated fruit. Development of green mold rot was not significantly different in fruit treated with both hot water and irradiation than with hot water alone. No visible injury or off-flavors were detected in any of the fruit. (author)

  13. Effect of Hot water and dilute acid pretreatment on the chemical properties of liquorice root

    Directory of Open Access Journals (Sweden)

    zahra takzare

    2016-06-01

    Full Text Available Abstract In this study, the liquorice root (Glycyrrhiza glabra that was extracted in the factory in Kerman province, pre-hydrolyzed and then chemical compositions (Extractives, Lignin content, Holocellulose percent, the hydrolysis process yield and weight loss of the waste was measured. Pre-hydrolysis process was done on the above mentioned waste by hot water, hot water followed by 0.5 percent sulfuric acid and also alone sulfuric acid with different concentrations (0.5, 1, 1.5 and 2 percent The samples were pre-hydrolyzed in hot water at 150 °C and 30, 60 and 90 minutes as well as in the mixture of hot water and 0.5 % sulfuric acid at 150 °C and 60 minutes and also in pure sulfuric acid, at 130 °C and at 60 minutes. The results showed that the pre-hydrolyzed treatment with hot water in 60 minutes had been favorable performance in the respect of weight loss, lignin content and holocellulose percent. Also, in the case of pre-treatment including sulfuric acid, 2% dose can be good selected option in term of maximum holocellulose percent and minimum lignin content so that it can be suggested to produce higher value-added products such as bioethanol from licorice root bid.

  14. Installation package for a sunspot cascade solar water heating system

    Science.gov (United States)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  15. Head-out immersion in hot water increases serum BDNF in healthy males.

    Science.gov (United States)

    Kojima, Daisuke; Nakamura, Takeshi; Banno, Motohiko; Umemoto, Yasunori; Kinoshita, Tokio; Ishida, Yuko; Tajima, Fumihiro

    2017-11-20

    Brain-derived neurotrophic factor (BDNF) is an important neurotrophin. The present study investigated the effects of head-out water immersion (HOI) on serum BDNF concentrations. Eight healthy men performed 20 min head-out water immersion at 42 °C (hot-HOI) and 35 °C (neutral-HOI). These experimental trials were administered in a randomised order separated by at least 7 days. Venous blood samples were withdrawn at rest, immediately after the 20-min HOI, as well as at 15 and 30 min after the end of the HOI. Serum BDNF and S100β, plasma cortisol, platelet and monocyte counts, and core body temperature (T cb ) were measured. T cb was higher at the end of the hot-HOI and 15 min after hot-HOI (p hot-HOI. No change in T cb was recorded during neutral-HOI. BDNF level was higher (p hot-HOI and at 15 min after the end of hot-HOI, and returned to the baseline at 30 min after hot-HOI. S100β, platelet count and monocyte count remained stable throughout the study. Cortisol level was lower at the end of the hot-HOI and returned to pre-HOI level during the recovery period. BDNF and S100β, cortisol, and platelet and monocyte counts did not change throughout the neutral-HOI study. The present findings suggested that the increase in BDNF during 20-min hot-HOI was induced by hyperthermia through enhanced production, rather than by changes in permeability of the blood-brain barrier (BBB), platelet clotting mechanisms or secretion from monocytes.

  16. Volcanic Gases and Hot Spring Water to Evaluate the Volcanic Activity of the Mt. Baekdusan

    Science.gov (United States)

    Yun, S. H.; Lee, S.; Chang, C.

    2017-12-01

    This study performed the analysis on the volcanic gases and hot spring waters from the Julong hot spring at Mt. Baekdu, also known as Changbaishan on the North Korea(DPRK)-China border, during the period from July 2015 to August 2016. Also, we confirmed the errors that HCO3- concentrations of hot spring waters in the previous study (Lee et al. 2014) and tried to improve the problem. Dissolved CO2 in hot spring waters was analyzed using gas chromatograph in Lee et al.(2014). Improving this, from 2015, we used TOC-IC to analysis dissolved CO2. Also, we analyzed the Na2CO3 standard solutions of different concentrations using GC, and confirmed the correlation between the analytical concentrations and the real concentrations. However, because the analytical results of the Julong hot spring water were in discord with the estimated values based on this correlation, we can't estimate the HCO3-concentrations of 2014 samples. During the period of study, CO2/CH4 ratios in volcanic gases are gradually decreased, and this can be interpreted in two different ways. The first interpretation is that the conditions inside the volcanic edifice are changing into more reduction condition, and carbon in volcanic gases become more favorable to distribute into CH4 or CO than CO2. The second interpretation is that the interaction between volcanic gases and water becomes greater than past, and the concentrations of CO2which have much higher solubility in water decreased, relatively. In general, the effect of scrubbing of volcanic gas is strengthened during the quiet periods of volcanic activity rather than active periods. Meanwhile, the analysis of hot spring waters was done on the anion of acidic gases species, the major cations, and some trace elements (As, Cd, Re).This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-3060.

  17. Targeted removal of ant colonies in ecological experiments, using hot water.

    Science.gov (United States)

    Tschinkel, Walter R; King, Joshua R

    2007-01-01

    Ecological experiments on fire ants cannot, or should not, use poison baits to eliminate the fire ants because such baits are not specific to fire ants, or even to ants. Hot water is an extremely effective and specific killing agent for fire ant colonies, but producing large amounts of hot water in the field, and making the production apparatus mobile have been problematical. The construction and use of a charcoal-fired kiln made from a 55-gal. oil drum lined with a sand-fireclay mixture is described. An automobile heater fan powered from a 12-v battery provided a draft. Dual bilge pumps pumped water from a large tank through a long coil of copper tubing within the kiln to produce 4 to 5 l. of hot water per min. The hot water was collected in 20 l. buckets and poured into fire ant nests previously opened by piercing with a stick. The entire assembly was transported in and operated from the back of a pickup truck. Five experimental plots containing 32 to 38 colonies of the fire ant, Solenopsis invicta, Buren (Hymenoptera: Formicidae), were treated with hot water over a period of two years. All colonies on the treatment plots were treated twice with hot water early in 2004, reducing their numbers to zero. However new colonies were formed, and mature colonies expanded into the plots. A third treatment was made in the spring of 2005, after which fire ant populations were suppressed for over a year. Whereas the 5 control plots contained a total of 166 mostly large colonies, the 5 treatment plots contained no live colonies at all. Averaged over a two-year period, a 70% reduction in total number of colonies was achieved (P ants.

  18. Extraction of steviol glycosides from fresh Stevia using acidified water; comparison to hot water extraction, including purification

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Huurman, Sander

    2017-01-01

    This report describes a practical comparison of an acidified water extraction of freshly harvested Stevia
    plants (the NewFoss method) to the hot water extraction of dried Stevia plants, the industry standard. Both
    extracts are subsequently purified using lab-/bench scale standard industrial

  19. Effect of Insulation Thickness on Thermal Stratification in Hot Water Tanks

    Directory of Open Access Journals (Sweden)

    Burak KURŞUN

    2018-03-01

    Full Text Available One of the important factors to be considered in increasing the efficiency of hot water storage tanks used for thermal energy storage is thermal stratification. Reducing the temperature of the water at the base of the tank provides more utilization of the energy of the heat source during the heating of the water and improves the efficiency of the system. In this study, the effect of the insulation thickness on the outer surface of the tank and the ratio of the tank diameter to the height (D/H on the thermal stratification was investigated numerically. Numerical analyzes were carried out for the condition that the insulation thickness was constant and variable in the range of D/H=0,3-1. Water was used as the heat storage fluid and the analysis results were obtained for eight hours cooling period. Numerical results showed that the temperature difference between the bottom and top surfaces of the tank increased between 7-9 ° C for the range of D / H = 0,3-1 with changing the insulation thickness.

  20. Tidal formation of Hot Jupiters in binary star systems

    Science.gov (United States)

    Bataille, M.; Libert, A.-S.; Correia, A. C. M.

    2015-10-01

    More than 150 Hot Jupiters with orbital periods less than 10 days have been detected. Their in-situ formation is physically unlikely. We need therefore to understand the migration of these planets from high distance (several AUs). Three main models are currently extensively studied: disk-planet interactions (e.g. [3]), planet-planet scattering (e.g. [4]) and Kozai migration (e.g. [2]). Here we focus on this last mechanism, and aim to understand which dynamical effects are the most active in the accumulation of planetary companions with low orbital periods in binary star systems. To do so, we investigate the secular evolution of Hot Jupiters in binary star systems. Our goal is to study analytically the 3-day pile-up observed in their orbital period. Our framework is the hierarchical three-body problem, with the effects of tides, stellar oblateness, and general relativity. Both the orbital evolution and the spin evolution are considered. Using the averaged equations of motion in a vectorial formalism of [1], we have performed # 100000 numerical simulations of well diversified three-body systems, reproducing and generalizing the numerical results of [2]. Based on a thorough analysis of the initial and final configurations of the systems, we have identified different categories of secular evolutions present in the simulations, and proposed for each one a simplified set of equations reproducing the evolution. Statistics about spin-orbit misalignements and mutual inclinations between the orbital planes of the Hot Jupiter and the star companion are also provided. Finally, we show that the extent of the 3 day pile-up is very dependent on the initial parameters of the simulations.

  1. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  2. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  3. Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

    Directory of Open Access Journals (Sweden)

    Jukka Yrjölä

    2015-08-01

    Full Text Available Producing domestic hot water (DHW with a ground source heat pump (GSHP is challenging due to the high temperature (HT of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.

  4. Thermal performance assessment and improvement of a solar domestic hot water tank with PCM in the mantle

    DEFF Research Database (Denmark)

    Deng, Jie; Furbo, Simon; Kong, Weiqiang

    2018-01-01

    To develop an appropriate solar DHW (Domestic Hot Water) tank for residential dwellings and put it into the European solar thermal market for promotion, thermal performance tests of PCM (Phase Change Material) hot water storage tanks of both a prototype and an improved version with a water volume...

  5. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  6. Physicochemical and phytochemical properties of cold and hot water extraction from Hibiscus sabdariffa.

    Science.gov (United States)

    Ramirez-Rodrigues, Milena M; Plaza, Maria L; Azeredo, Alberto; Balaban, Murat O; Marshall, Maurice R

    2011-04-01

    Hibiscus cold (25 °C) and hot (90 °C) water extracts were prepared in various time-temperature combinations to determine equivalent extraction conditions regarding their physicochemical and phytochemical properties. Equivalent anthocyanins concentration was obtained at 25 °C for 240 min and 90 °C for 16 min. Total phenolics were better extracted with hot water that also resulted in a higher antioxidant capacity in these extracts. Similar polyphenolic profiles were observed between fresh and dried hibiscus extracts. Hibiscus acid and 2 derivatives were found in all extracts. Hydroxybenzoic acids, caffeoylquinic acids, flavonols, and anthocyanins constituted the polyphenolic compounds identified in hibiscus extracts. Two major anthocyanins were found in both cold and hot extracts: delphynidin-3-sambubioside and cyanidin-3-sambubioside. In general, both cold and hot extractions yielded similar phytochemical properties; however, under cold extraction, color degradation was significantly lower and extraction times were 15-fold longer. Hibiscus beverages are prepared from fresh or dried calyces by a hot extraction and pasteurized, which can change organoleptic, nutritional, and color attributes. Nonthermal technologies such as dense phase carbon dioxide may maintain their fresh-like color, flavor, and nutrients. This research compares the physicochemical and phytochemical changes resulting from a cold and hot extraction of fresh and dried hibiscus calyces and adds to the knowledge of work done on color, quality attributes, and antioxidant capacity of unique tropical products. In addition, the research shows how these changes could lead to alternative nonthermal processes for hibiscus.

  7. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun; Yang, Jieyi; Wan, Fang; Ge, Quan; Yang, Longlai; Ding, Zunliang; Yang, Dequan; Sacher, Edward R.; Isimjan, Tayirjan T.

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a

  8. Fiscal 1976 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on synthetic resin system materials); 1976 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Gosei jushikei zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1976 research result on synthetic resin system materials for solar cooling/heating and hot water supply systems. In fiscal 1976, study was made on evaluation of the practical performance of photo-selective transmissive films, photo-selective absorptive films, reflective films and collector materials. In the study on photo-selective transmissive films, study was mainly promoted on indium oxide film, and a solar radiation transmissivity of 78% and an IR reflectance of 78% were obtained at 4000(angstrom)/min in deposition rate by reactive sputtering under the existence of oxygen gas mixture. In the study on photo-selective absorptive films, study was made on conditions for the basic prescription of paints for semiconductor dispersing coated films. The exposure test result of CuO and CuO-MnO{sub 2} system materials showed excellent heat resistances with less change in optical property after 720h at 140 degreesC and 350h at 180 degreesC. In the study on reflective films, evaluation was made on the durability of reflective films obtained by vacuum deposition of Ag and Al onto synthetic resin films through outdoor exposure. (NEDO)

  9. Determination of arsenic and bromine in hot spring waters by neutron activation analysis

    International Nuclear Information System (INIS)

    Kikawada, Y.; Kawai, S.; Oi, T.

    2004-01-01

    Concentrations of arsenic and bromine dissolved in hot spring waters have been determined by neutron activation analysis using 0.5 cm 3 of sample waters without any chemical pretreatment. The samples prepared for neutron irradiation were simply pieces of filter papers which were infiltrated with samples. With the results of satisfactorily high accuracy and precision, this analytical method was found to be very convenient for the determinations of arsenic and bromine dissolved in water at ppm to sub-ppm levels. (author)

  10. Phytochemical content of hot and cold water extracts of Orthosiphon stamineus leaves

    Science.gov (United States)

    Habboo, Maysam Dahham; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina

    2018-04-01

    Orthosiphon stamineus Benth (Lamiaceae) is a plant with ethnobotanical applications including antifungal and antibacterial properties. This study aimed to evaluate the phytochemical contents of Orthosiphon stamineus leaves water extract prepared in cold and hot distilled water. Phytochemical screening revealed the presence of phytochemicals components such as a flavonoid, terpenoid and steroid in both extracts. Cold water extract has two extra components: saponin and alkaloid that may be destroyed by the exposure to heat.

  11. Laser-fluorescence determination of trace uranium in hot spring water, geothermal water and tap water in Xi'an Lishan region

    International Nuclear Information System (INIS)

    Ma Wenyan; Zhou Chunlin; Han Feng; Di Yuming

    2002-01-01

    Using the Laser-Fluorescence technique, an investigation was made, adopting the standard mix method, on trace uranium concentrations in hot spring water and geothermal water from Lishan region, and in tap water from some major cities in Shanxi province. Totally 40 samples from 27 sites were investigated. Measurement showed that the tap water contains around 10 -6 g/L of uranium, whose concentrations in both hot spring water and geothermal water are 10 -5 g/L. Most of samples are at normal radioactive background level, some higher contents were determined in a few samples

  12. Visualization study on hot particle-water interaction by using neutron radiography

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Saito, Y.; Moriyama, Kiyofumi; Sugimoto, Jun

    1999-01-01

    In relation to severe accident research of a nuclear reactor, an experiment was performed to simulate the premixing process in the vapor explosion by dropping hot stainless-steel particle into heavy water filled in a rectangular tank. The test rig consisted of a furnace and a rectangular tank (400 mm in height, 100 mm in width and 30 mm in depth) filled with heavy water kept at 4degC. The particle diameter used in the experiment were 6, 9 and 12 mm, and the initial temperature of the particle ranged from 600 to 1000degC. The behavior of gas dome generated by heated particle-subcooled water interaction was successfully visualized by high-frame-rate neutron radiography at the recording speed of 500 frames/s. Temporal and spatial variations of void fraction in the gas dome were measured by processing the images obtained. The void fraction measurement indicated the possibility that the ambient fluid was superheated by the hot particle-water contact and the vapor was generated in proportion to the particle size and temperature. Preliminary calculations of heat transfer from hot particle to water were conducted by using and empirical correlation for steady film boiling. Comparison between experimental and calculated results suggested that the transient heat transfer around the hot particle could not be explained only by steady film boiling but some other heat transfer mechanisms such as unsteady film boiling or hear transfer due to direct contact may be needed. (author)

  13. The effect of different stabilizers on the thermostability of electron beam crosslinked polyethylene in hot water

    International Nuclear Information System (INIS)

    Hassanpour, S.; Khoylou, F.

    2003-01-01

    Plastic pipes owing to their flexibility, great lengths, easier handling and absence of corrosion have been used for hot-water installations. Crosslinked high-density polyethylene is one of the best materials, being used for this purpose. The useful lifetime of unstabilized polyethylene is predicted to vary from a few months in hot water (30-40 deg. C) to almost two years in cool water (0-10 deg. C). Polyethylene was mixed with different types of stabilizers, in order to increase its durability. The samples were irradiated at 100-150 kGy. The amount of gel fraction and the changes in mechanical properties were measured. Irradiated samples were immersed in hot water for 1000 h. The thermostability of the specimens and the existence of antioxidants were measured by the induction time technique using differential scanning calorimetry at different time intervals. Furthermore, the changes in chemical structure and mechanical properties of the samples during their immersion in hot water were determined

  14. Generalizable occupant-driven optimization model for domestic hot water production in NZEB

    International Nuclear Information System (INIS)

    Kazmi, H.; D’Oca, S.; Delmastro, C.; Lodeweyckx, S.; Corgnati, S.P.

    2016-01-01

    Highlights: • Smart meter data for domestic hot water consumption is collected for 46 NZEB. • Reinforcement learning optimizes energy consumed while constrained on user comfort. • Online optimization models learn occupant behaviour and system thermodynamics. • Offline generalizable models calibrate dynamically the storage vessel operation. • Real world application of the active controls resulted in energy savings of 27%. - Abstract: The primary objective of this paper is to demonstrate improved energy efficiency for domestic hot water (DHW) production in residential buildings. This is done by deriving data-driven optimal heating schedules (used interchangeably with policies) automatically. The optimization leverages actively learnt occupant behaviour and models for thermodynamics of the storage vessel to operate the heating mechanism – an air-source heat pump (ASHP) in this case – at the highest possible efficiency. The proposed algorithm, while tested on an ASHP, is essentially decoupled from the heating mechanism making it sufficiently robust to generalize to other types of heating mechanisms as well. Simulation results for this optimization based on data from 46 Net-Zero Energy Buildings (NZEB) in the Netherlands are presented. These show a reduction of energy consumption for DHW by 20% using a computationally inexpensive heuristic approach, and 27% when using a more intensive hybrid ant colony optimization based method. The energy savings are strongly dependent on occupant comfort level. This is demonstrated in real-world settings for a low-consumption house where active control was performed using heuristics for 3.5 months and resulted in energy savings of 27% (61 kW h). It is straightforward to extend the same models to perform automatic demand side management (ADSM) by treating the DHW vessel as a flexibility bearing device.

  15. Strains and stresses in the rock around and unlined hot water cavern

    Science.gov (United States)

    Rehbinder, Göran

    1984-07-01

    Hot water stored in an unlined rock cavern is an efficient energy storage. A research program has been carried out with a test plant at the city of Avesta, Sweden. The plant consists of a rock cavern, the volume of which is 15000 m3, which serves as an energy buffer in the district heating system of the city. The water is heated from a garbage incinerator located close to the cavern. During the first test period the temperature of the stored water has varied between 40°C and 95°C. The heating of the rock causes strains and stresses in the rock. The measurements show that the state in the rock does mainly respond to the average temperature and not to the fluctuations. The maximum thermal stress is 9 MPa occurring at the wall of the cavern. The heave of the ground is less than 5 mm. The development of stress and strain will continue after the first test period since thermal equilibrium was not reached during this period.

  16. Thermal neutron activation analysis of the water Zamzam at Mecca, Saudi Arabia and the water of the fourty five hot springs at Hot Springs, Arkansas, USA

    International Nuclear Information System (INIS)

    Melibary, A.R.

    1980-10-01

    Samples from the Islamic holy water Zamzam in Mecca, Saudi Arabia and the famous mineral water of Hot Springs, in Hot Springs, Arkansas were analyzed for trace elements content by thermal neutron activation analysis. For Zamzam the concentration of 37 S, 49 Ca, 38 Cl, 31 Si, 42 K, 24 Na and 82 Br were found, respectively, to be 3, 107, 11, 12, 4, 14, and 9 ppm; and that for Hot Springs Sample, replacing 82 Br with 27 Mg, are 2, 44, 2, 10, 1, 4, and 5 ppm. The experimental limit of detection for pure standards of the nuclides 27 Mg, 128 I, 64 Cu, and 56 Mn were found to be 8, 8x10 - 3, 6x10 - 2, and 2x10 - 4 μg, respectively. These nuclides were not detected in Zamzam, therefore, it was concluded that in Zamzam the concentration levels of the nuclides 27 Mg, 128 I, 64 Cu, and 56 Mn were below that of the limit of detection of pure standards. (orig./HP) [de

  17. Naked Gold Nanoparticles and hot Electrons in Water.

    Science.gov (United States)

    Ghandi, Khashayar; Wang, Furong; Landry, Cody; Mostafavi, Mehran

    2018-05-08

    The ionizing radiation in aqueous solutions of gold nanoparticles, stabilized by electrostatic non-covalent intermolecular forces and steric interactions, with antimicrobial compounds, are investigated with picosecond pulse radiolysis techniques. Upon pulse radiolysis of an aqueous solution containing very low concentrations of gold nanoparticles with naked surfaces available in water (not obstructed by chemical bonds), a change to Cerenkov spectrum over a large range of wavelengths are observed and pre-solvated electrons are captured by gold nanoparticles exclusively (not by ionic liquid surfactants used to stabilize the nanoparticles). The solvated electrons are also found to decay rapidly compared with the decay kinetics in water. These very fast reactions with electrons in water could provide an enhanced oxidizing zone around gold nanoparticles and this could be the reason for radio sensitizing behavior of gold nanoparticles in radiation therapy.

  18. HTGR power plant hot reheat steam pressure control system

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1975-01-01

    A control system for a high temperature gas cooled reactor (HTGR) power plant is disclosed wherein such plant includes a plurality of steam generators. Dual turbine-generators are connected to the common steam headers, a high pressure element of each turbine receiving steam from the main steam header, and an intermediate-low pressure element of each turbine receiving steam from the hot reheat header. Associated with each high pressure element is a bypass line connected between the main steam header and a cold reheat header, which is commonly connected to the high pressure element exhausts. A control system governs the flow of steam through the first and second bypass lines to provide for a desired minimum steam flow through the steam generator reheater sections at times when the total steam flow through the turbines is less than such minimum, and to regulate the hot reheat header steam pressure to improve control of the auxiliary steam turbines and thereby improve control of the reactor coolant gas flow, particularly following a turbine trip. (U.S.)

  19. Study on Operating Performance of a Combined Hot Water Supplying System with Solar Energy and Heat Pump Based on TRNSYS%基于TRNSYS的太阳能-热泵联合供热水系统运行性能研究

    Institute of Scientific and Technical Information of China (English)

    杨敏

    2017-01-01

    Established a combined hot water supplying system model with solar energy and air source heat pump based on TRNSYS and simulated the water temperature variation and operating energy consumption characteristics in the water tank of a student dormitory in different seasons in Changsha.The results show that the water from the time-temperature control scheme of the system each month can basically meet the needs of users.By concmparing the solar energy absorption,heat pump energy consumption and energy consumption of each part at each month,coluded that the heat pump has the least energy consumption,the solar energy utilization rate is the highest and the system save energy most in summer.The research results provide reference value for mastering theperformance of hot water supplying system with solar energy and improving the design and control of the whole system.%基于TRNSYS软件建立了太阳能与空气源热泵联合供水系统模型,模拟了长沙地区某学生宿舍不同季节水箱内的水温变化及运行能耗特点.结果表明,所选取的时间-温差控制方案下该系统各个月的水温基本上可以满足用户需求.通过比较各供热水系统各月吸收太阳热量、热泵能耗、各个部件能耗,得出夏季热泵能耗最少,太阳能利用率最高,该系统节约能源最多.研究结果对掌握太阳能供热水系统性能及改善整个系统的设计与控制具有参考价值.

  20. Energy, economy and exergy evaluations of the solutions for supplying domestic hot water from low-temperature district heating in Denmark

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    District heating in Denmark is going through the transition from 3rd generation (80/40 °C) to 4th generation (50-55 °C/25 °C) systems in,preparation for district heating based completely on renewable fuels by 2035. However, concern about Legionella growth and reduced comfort with low......-temperature domestic hot water supply may be discouraging the implementation of low-temperature district heating. Aimed at providing possible solutions, this study modelled various proposals for district heating systems with supply temperatures of 65 °C, 50 °C and 35 °C and for two different building topologies....... Evaluation models were built to investigate the energy, economy and exergy performances of the proposed domestic hot water systems in various configurations. The configurations of the devised domestic hot water substations were optimised to fit well with both low and ultra-low-temperature district heating...

  1. Imaging the Extended Hot Hydrogen Exosphere at Mars to Determine the Water Escape Rate

    Science.gov (United States)

    Bhattacharyya, Dolon

    2017-08-01

    ACS SBC imaging of the extended hydrogen exosphere of Mars is proposed to identify the hot hydrogen population present in the exosphere of Mars. Determining the characteristics of this population and the underlying processes responsible for its production are critical towards constraining the escape flux of H from Mars, which in turn is directly related to the water escape history of Mars. Since the hot atoms appear mainly at high altitudes, these observations will be scheduled when Mars is far from Earth allowing us to image the hot hydrogen atoms at high altitudes where they dominate the population. The altitude coverage by HST will extend beyond 30,000 km or 8.8 Martian radii in this case, which makes it perfect for this study as orbiting spacecraft remain at low altitudes (MAVEN apoapse is 6000 km) and cannot separate hot atoms from the thermal population at those altitudes. The observations will also be carried out when Mars is near aphelion, the atmospheric temperature is low, and the thermal population has a small scale height, allowing the clear characterization of the hot hydrogen layer. Another advantage of conducting this study in this cycle is that the solar activity is near its minimum, allowing us to discriminate between changes in the hot hydrogen population from processes taking place within the atmosphere of Mars and changes due to external drivers like the solar wind, producing this non-thermal population. This proposal is part of the HST UV initiative.

  2. 207 EFFECTS OF HOT AND COLD WATER PRE- TREATMENTS ...

    African Journals Online (AJOL)

    The treatments used were immersion of the seeds in cold water (at room o temperature) for 8, 12 and ... goat, sheep and cattle in the semi arid regions due to the palatability of its ... visible signs of infestation were selected out of the total seeds ...

  3. Sulfuric acid and hot water treatments enhance ex vitro and in vitro ...

    African Journals Online (AJOL)

    Seeds of Hibiscus dasycalyx S. F. Blake and Shiller, a federally listed candidate endangered species and native to North America and two variants of Hibiscus acetosella Welw. ex. Hiern were scarified using sulfuric acid and hot water. The effects of the scarification methods on in vitro and ex vitro germination in both ...

  4. [Severe burns of lower limb due to association of hot water and citrullus colocynthis].

    Science.gov (United States)

    Fejjal, N; Gharib, N E; El Mazouz, S; Abbassi, A; Belmahi, A

    2011-06-30

    The case is reported of a patient suffering from severe burns through having used Citrullus colocynthis as a medicinal plant together with hot water. This led to carbonization of the foot and to its amputation. A description of the plant and its toxicity is given.

  5. Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    of Legionella in the DHW (domestic hot water) and assure the comfortable temperature, all substations were installed with supplementary heating devices. Detailed measurements were taken in the substations, including the electricity demand of the supplementary heating devices. To compare the energy and economic...

  6. Controlling Aphelenchoides subtenuis nematodes with a hot water treatment in Crocus and Allium

    NARCIS (Netherlands)

    Leeuwen, van P.J.; Trompert, J.P.T.

    2011-01-01

    Several bulbous crops like Crocus, Allium and some species of Tulipa and Narcissus can be infected with the nematode Aphelenchoides subtenuis. The nematodes cause retarded growth, poor or no flowering and eventually death of the bulbs and corms. A hot water treatment after lifting the bulbs has

  7. Mixing Hot and Cold Water Streams at a T-Junction

    Science.gov (United States)

    Sharp, David; Zhang, Mingqian; Xu, Zhenghe; Ryan, Jim; Wanke, Sieghard; Afacan, Artin

    2008-01-01

    A simple mixing of a hot- and cold-water stream at a T-junction was investigated. The main objective was to use mass and energy balance equations to predict mass low rates and the temperature of the mixed stream after the T-junction, and then compare these with the measured values. Furthermore, the thermocouple location after the T-junction and…

  8. Non-parametric method for separating domestic hot water heating spikes and space heating

    DEFF Research Database (Denmark)

    Bacher, Peder; de Saint-Aubain, Philip Anton; Christiansen, Lasse Engbo

    2016-01-01

    In this paper a method for separating spikes from a noisy data series, where the data change and evolve over time, is presented. The method is applied on measurements of the total heat load for a single family house. It relies on the fact that the domestic hot water heating is a process generating...

  9. Pressurized hot water extraction of proteins from Sambucus nigra L. branches

    Czech Academy of Sciences Publication Activity Database

    Šalplachta, Jiří; Hohnová, Barbora

    2017-01-01

    Roč. 108, DEC (2017), s. 312-315 ISSN 0926-6690 Grant - others:GA AV ČR(CZ) R200311521 Institutional support: RVO:68081715 Keywords : elderberry * pressurized hot water extraction * proteins Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.181, year: 2016

  10. Hot water extracted wood fiber for production of wood plastic composites (WPCs)

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Thomas E. Amidon; Timothy L. Chaffee

    2013-01-01

    Undebarked ponderosa pine chips were treated by hot water extraction to modify the chemical composition. In the treated pine (TP) , the mass was reduced by approximately 20%, and the extract was composed mainly of degradation products of hemicelluloses. Wood flour produced from TP and unextracted chips (untreated pine, UP) was blended with high-density polyethylene (...

  11. Spattering and Crackle of Hot Cooking Oil with Water: A Classroom Demonstration and Discussion

    Science.gov (United States)

    Pinto, Gabriel; Gauthier, Carmen V.

    2009-01-01

    Any student that has spent time in the kitchen knows that hot vegetable oil will pop and spatter violently after coming into contact with water such as that on the surface of foods (meat, fish, potatoes, etc.). This well-known effect can be used as an instructional resource to promote cooperative, active, and inquiry-based learning about central…

  12. Mango fruit aroma volatile production following quarantine hot water treatment and subsequent ripening

    Science.gov (United States)

    Mangos are an important tropical fruit crop worldwide that are appreciated for their attractive peel and flesh colors, juicy texture, sweetness, and unique aroma. Mangos exported to the U.S. receive quarantine hot water treatment (QHWT) at 46.1 °C for 65 to 110 min (depending on fruit shape and size...

  13. Hot water surface pasteurization for inactivating Salmonella on surfaces of mature green tomatoes

    Science.gov (United States)

    Outbreaks of salmonellosis have been associated with the consumption of tomatoes contaminated with Salmonella. Commercial washing processes for tomatoes are limited in their ability to inactivate and/or remove this human pathogen. Our objective was to develop a hot water surface pasteurization pro...

  14. Controlling tulip stem nematodes in tulip bulbs by a hot water treatment

    NARCIS (Netherlands)

    Dam, van M.F.N.

    2013-01-01

    A hot water treatment (HWT) protocol is needed to control tulip stem nematode (TSN) in tulip bulbs. A HWT above approximately 45°C in tulips is assumed to be harmful to the bulbs. Experience with HWT to destroy stem nematodes in daffodils shows that the required temperature for this is 4 hours at

  15. Effect Of Hot Water Injection On Sandstone Permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke

    2012-01-01

    of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites...... to formations with a significant fraction of fine particles including clay minerals are investigated. The porosities range from 0.10 to 0.30 and permeabilities span the range from 1 to 1000 md. To compare different rock types, specific surface is determined from permeability and porosity using Kozeny’s equation...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx...

  16. Emerging issues in environmental cracking in hot water

    International Nuclear Information System (INIS)

    Andresen, P.L.; Morra, M.M.

    2007-01-01

    Extensive research and engineering application efforts have been made to understand and manage environmentally assisted cracking (EAC) in high temperature water. EAC is a complex phenomena involving dozens of important parameters, and important issues continue to emerge as careful studies have been performed. This paper summarizes a number of emerging issues, and highlights the need for improvements in experimental sophistication and for deeper probing into the nature and importance of these emerging issues. (author)

  17. Importance of body-water circulation for body-heat dissipation in hot-humid climates: a distinctive body-water circulation in swamp buffaloes

    Directory of Open Access Journals (Sweden)

    S. Chanpongsang

    2010-02-01

    Full Text Available Thermo-regulation in swamp buffaloes has been investigated as an adaptive system to hot-humid climates, and several distinctive physiological responses were noted. When rectal temperature increased in hot conditions, blood volume, blood flow to the skin surface and skin temperature markedly increased in buffaloes relatively to cattle. On the other hand, the correlation between blood volume and plasma concentration of arginine vasopressin (AVP was compared between buffaloes and cattle under dehydration. Although plasma AVP in cattle increased immediately for reducing urine volume against a decrease in blood volume as well as the response observed in most animal species, the increase in plasma AVP was delayed in buffaloes, even after a large decrease in blood volume. In buffaloes, a marked increase in blood volume facilitated the dissipation of excess heat from the skin surface during wallowing. In addition, the change in plasma AVP observed in buffaloes was consistent with that of other animals living in habitats with the high availability of water. These results suggest that the thermo-regulatory system in buffaloes accelerates body-water circulation internally and externally. This system may be adaptive for heat dissipation in hot-humid climates, where an abundance of water is common.

  18. The influence of mass transfer, velocity and mechanical stress on the growth of coating in hot water

    International Nuclear Information System (INIS)

    Heimsch, R.; Hegele, E.; Frau, B.

    1977-01-01

    Within the scope of the research programme of the special research range 157 'Thermal Power Plant' at the university of Stuttgart, the formation, the growth and the characteristics of the magnetite layer (Fe 3 O 4 ) in steam generator pipes, in the hot water phase will be analysed. In the Grosskraftwerk Mannheim AG a test plant was installed for that purpose, which operates at present in circulating operation at p = 250 bars and t = 340 0 C. For the Fe 3 O 4 formation important parameters, temperature, pH-value, Fe-, O 2 -, H 2 -content, electrical conductivity and redox potential will be controlled. By hot water oxidation - this is the range on which our research is concentrated at present, a double layer epitactical and topotactical of Fe 3 O 4 is formed. One of the undesired layer types is the so-called 'Ripple-rafflers' of the epitactical layer, which results in an extensive increase of pressure loss in the evaporator, and which requires cleaning of the evaporator. Referred to the entire system, the pressure loss increase can be up to 30%. During the report period, the influece of speed, mass flux and mechanical stress on the layer growth in hot water, especially on the morphology of the protective layers have been researched. The achieved results will be described in this lecture. (orig.) [de

  19. Changes in antioxidant and fruit quality in hot water-treated ‘Hom Thong’ banana fruit during storage

    Science.gov (United States)

    The effects of hot water treatment on antioxidant phytochemicals and fruit quality were investigated in banana fruit of cv. Gros Michel (Musa acuminata, AAA Group, locally called cv. Hom Thong) by immersing fruits in hot water (50 'C) for 10 min, before storage at 25 'C for 10 days or 14 'C for 8 da...

  20. Costs for heating and hot water more than halved

    International Nuclear Information System (INIS)

    Haag, J.

    2005-01-01

    This article describes how solar technology provides three-quarters of the water-heating energy requirements of a Swiss chalet in Riederalp. Advances in solar heating technology and the reduction of prices over the past few years are discussed. The installation, which uses vacuum-tube collectors that are integrated into the balustrades of the south-facing balconies of the three-storey chalet with holiday apartments, is briefly described. The partial financial support provided by the local authorities is discussed as is the word-of-mouth propaganda triggered off in this mountain resort which has led to increased interest in the combination of solar energy and traditional heating forms

  1. Decay and acceptability of mangos treated with combinations of hot water, imazalil, and gamma radiation

    International Nuclear Information System (INIS)

    Spalding, D.H.; Reeder, W.F.

    1986-01-01

    Combination treatments with radiation at 200 or 750 Gy and hot water (53 C) or hot 0.1% a.i. imazalil (53 C) for 3 min were more effective than single treatments for control of anthracnose and stem-end rot of Tommy Atkins mangos caused by Colletotrichum gloeosporioides and Diplodia natalensis or Phomopsis citri, respectively. Irradiation at 750 Gy inhibited development of ripe skin color and caused some browning and pitting of the skin. Effects of radiation on skin color and injury were partially offset when heat treatment preceded irradiation. Individual wrapping of mangos in shrink film resulted in increased decay and breakdown. (author)

  2. Decay and acceptability of mangos treated with combinations of hot water, imazalil, and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, D. H.; Reeder, W. F.

    1986-12-15

    Combination treatments with radiation at 200 or 750 Gy and hot water (53 C) or hot 0.1% a.i. imazalil (53 C) for 3 min were more effective than single treatments for control of anthracnose and stem-end rot of Tommy Atkins mangos caused by Colletotrichum gloeosporioides and Diplodia natalensis or Phomopsis citri, respectively. Irradiation at 750 Gy inhibited development of ripe skin color and caused some browning and pitting of the skin. Effects of radiation on skin color and injury were partially offset when heat treatment preceded irradiation. Individual wrapping of mangos in shrink film resulted in increased decay and breakdown. (author)

  3. Experimental and computational analysis of the hot water layer for the radiological protection in swimming pool reactor

    International Nuclear Information System (INIS)

    Ribeiro, Rogerio.

    1995-01-01

    Pool reactors are research reactors, which allow easy access to the core and rare simple to operate. Reactors of this kind operating at power levels higher than about one megawatt need a hot water layer at the surface of the pool, in order to keep surface activity below acceptable levels and enable free access to the upper part of the reactor. An experimental apparatus was constructed to study the hot water layer stability. Thermocouples were used to measure the temperature field. A numerical analysis was conducted simultaneously. Regarding experimental results, representative temperature contour lines of the hot water layer were plotted. The temperature field was determined in the numerical analysis and temperature contour lines corresponding to those of the experimental results were plotted. The hot water layer kept stable for experimental and numerical results. Good agreement between the results for the hot water layer position and thickness has been obtained. (author). 21 refs., 40 figs., 15 tabs

  4. Determination of the calibration characteristic of cylindrical hot-film probes in water

    International Nuclear Information System (INIS)

    Ulmanu, D.; Weinberg, D.

    1976-01-01

    On measurement with hot-film probes in industrial water circuits one has to account for temperature fluctuations of the water during the duration of the experiment. In contrast with measurements in air the material data of water already change, and among them especially viscosity, at very small temperature variations. This occurs for water most markedly at room temperature, i.e. in the normal range for water. In the range from 20 0 C to 40 0 C the kinematical viscosity for water varies by a factor of four as compared with air. Variations of 1 0 C in water temperature in this range means an error of 1.0 per cent in velocity. For measurements in water it therefore is necessary to know the calibration characteristic of the probes. (orig./TK) [de

  5. The Performance Evaluation of a Hot Water Layer using a Numerical Simulation

    International Nuclear Information System (INIS)

    Park, Jong Hark; Chae, Hee Taek; Kim, Heon Il; Jun, Byung Jin; Park, Cheol

    2009-01-01

    Most of all research reactors are immerged in the deep water pool to be a ultimate heat sink. At the neighbor of the reactor, some radio-active matters, such as Na-24, Ar-41, Mg-27, Al-28 and etc, may be generated by the neutron irradiation. Those radio-active isotopes may rise up to the pool water surface through the natural convection flow, which can make the radioactivity in the reactor hall rise high enough to concern about the health of people working in the reactor hall. When the irradiation test facilities are loaded or unloaded during a normal operation, the highly radio-activated primary coolant may flow out through the irradiation test holes on the top of the reactor. This also may be a main hazard source to make the working environment of the reactor hall bad. Making a hot water layer 1.5 ∼ 2.0 m thick at the top of reactor pool would be a good measure to resolve that problem. The hot water layer is formed by a thermal stratification of pool water, which can effectively suppress the ascending of the radio-active matters and primary coolant flowing out from the IR holes. In this study a performance evaluation of the hot water layer is conducted by a computational fluid dynamics technique. According to the results of the prediction the hot water layer is formed well about 1.5 m thick, and can suppress the flows containing radioactive matters ascending from the neighbor of the reactor

  6. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  7. The main chemical properties of hot and cold mineral waters in Bayankhongor, Mongolia

    Directory of Open Access Journals (Sweden)

    D Oyuntsetseg

    2014-12-01

    Full Text Available In the current study, hot and cold mineral springs and sub mineral waters in the Bayankhongor province were examined for their chemical characteristics and identified cold mineral waters classification according to mineral water classification of Mongolia. The hot spring waters belong to Na+-HCO3- and Na+-SO42- types. The cold mineral spring of Lkham belongs to Ca2+-HCO3- type. All sub mineral waters are generally located in the two areas (northern part or mountain forest area and the southern part or Gobi desert area. TDS concentrations of cold springs of the southern part in the study area were higher than northern part’s cold springs. The total dissolved silica content of cold spring was ranged from 4.5mg/L to 26 mg/L which did not correspond to requirements of mineral water standard of Mongolia. Thus, these cold springs are belonging to sub mineral water classification. The sub mineral waters were characterized into four types such as a Ca2+-SO42-, Na+-SO42-, Na+-HCO3 and Ca2+ - HCO3 by their chemical composition in the study area. The values for the quartz, chalcedony geothermometer and the Na/K geothermometer were quite different. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 124 and 197°C and most of the hot waters have been  probably mixed with cold water. The result shows that an averaged value of calculated temperature ranges from 77°C to 119°C which indicates that studied area has low temperature geothermal resources. DOI: http://doi.dx.org/10.5564/mjc.v15i0.324 Mongolian Journal of Chemistry 15 (41, 2014, p56-62

  8. Low cycle fatigue behavior of hot-bent 347 stainless steel in a simulated PWR water environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Ho; Seo, Myung Gyu; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Hong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Tae Soon [Central Research InstituteKorea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    The effect of hot bending on the Low cycle fatigue (LCF) behavior of 347 SS was evaluated in Room temperature (RT) air and simulated Pressurized water reactor (PWR) water environments. The LCF life of 347 SS in PWR water was shorter than that in RT air for the as-received and hot-bent conditions. The LCF life of hot-bent 347 SS was relatively longer than that of the as-received condition in both RT air and PWR water. Microstructure analysis indicated development of dislocation structure near niobium carbide particles and increase in dislocation density for the hot-bent 347 SS. Such microstructure acted as barriers to dislocation movement during the LCF test, resulting in minimal hardening for the hot-bent 347 SS in RT air.

  9. Optimization study of a single-effect water–lithium bromide absorption refrigeration system powered by flat-plate collector in hot regions

    International Nuclear Information System (INIS)

    Saleh, A.; Mosa, M.

    2014-01-01

    Highlights: • A comprehensive analysis for optimizing solar absorption system in hot region. • The most important parameter to be controlled is hot source temperature. • Ensuring appropriate choice of parameters, COP of absorption unit exceeds 0.8. • Results show that solar cooling systems are promising in hot regions. • The research aims to play a vital role to promote the use of renewable energy. - Abstract: This investigation has been carried out to present a comprehensive analysis for optimizing the operation of solar absorption system in hot regions. To optimize performance of the system, the hot source temperature should be controlled in function of incident solar radiation, chilled and cooling water temperatures. With an appropriate control, these external conditions can be monitored to detect and implement the actual optimization conditions. Adopting typical values encountered in hot regions, the overall system performance takes its optimal value at temperatures between 75 and 80 °C. It was found that in designing or selecting solar collector, selective coating type is necessary to produce hot water with potential around 80–90 °C needed to optimize operation of absorption unit. By ensuring an appropriate choice of components temperatures, COP of absorption unit can exceed the value 0.8. Cooling water temperature above 40 °C reduces significantly the performance of the unit which requires, under conditions of extremely high external temperatures, dimensioning and selection of condensers and absorbers that guarantee values less than this limit

  10. A radioecological survey of eatable organisms for natural radionuclides in hot spring water

    International Nuclear Information System (INIS)

    Zhu, H.; Huang, X.; Song, H.; Li, J.; Zhang, J.

    1993-01-01

    This paper reports a radioecological survey on some aquatic eatable organisms raised in a hot spring water, which is rich in 226 Ra, in Hubei Province; and on agricultural products irrigated with the water. The contents of 226 Ra, 210 Pb and 210 Po in the water, some aquatic organisms, rice, vegetable an some other connected environmental samples were determined. The Concentration Factor (CF) or Transfer Coefficient (TC) from environmental medium into the eatable parts of the organisms for these nuclides as well as relative Distribution Factor (DF) was calculated. (author). 6 refs, 1 fig., 9 tabs

  11. Silicon isotope fractionation during silica precipitation from hot-spring waters

    Science.gov (United States)

    Geilert, Sonja; Vroon, Pieter; Keller, Nicole; Gudbrnadsson, Snorri; Stefánsson, Andri; van Bergen, Manfred

    2014-05-01

    Hot-spring systems in the Geysir geothermal area, Iceland, have been studied to explore silicon isotope fractionation in a natural setting where sinter deposits are actively formed over a temperature interval between 20° and 100° C. The SiO2(aq)concentrations in spring and stream waters range between 290 and 560ppm and stay relatively constant along downstream trajectories, irrespective of significant cooling gradients. The waters are predominantly oversaturated in amorphous silica at the temperatures measured in the field. Correlations between the saturation indices, temperature and amounts of evaporative water loss suggest that cooling and evaporation are the main causes of subaqueous silica precipitation. The δ30Si values of dissolved silica in spring water and outflowing streams average around +1o probably due to the small quantities of instantaneously precipitating silica relative to the dissolved amount. Siliceous sinters, in contrast, range between -0.1o to -4.0o consistent with a preferred incorporation of the light silicon isotope and with values for precipitated silica becoming more negative with downstream decreasing temperatures. Larger fractionation magnitudes are inversely correlated with the precipitation rate, which itself is dependent on temperature, saturation state and the extent of a system. The resulting magnitudes of solid-fluid isotopic fractionation generally decline from -3.5o at 10° C to -2.0o at 90° C. These values confirm a similar relationship between fractionation magnitude and temperature that we found in laboratory-controlled silica-precipitation experiments. However, a relatively constant offset of ca. -2.9o between field and experimental fractionation values indicates that temperature alone cannot be responsible for the observed shifts. We infer that precipitation kinetics are a prominent control of silicon isotope fractionation in aqueous environments, whereby the influence of the extent of the system on the precipitation

  12. Nuclear combined heat and power - analyses of hot water pipeline breaks in a service tunnel with Apros simulation software

    International Nuclear Information System (INIS)

    Henttonen, T.; Paananen, M.

    2010-01-01

    This paper presents a computer model and simulation results for a long-distance heat transport system. The system can be used e.g. to transport heat from a nuclear power plant with combined heat and power (CHP) production. CHP production is considered for new build NPP projects in Finland. Emphasis is on the environmental conditions during a hot water pipeline break in a service tunnel. The modelled pipeline system is designed to transport 1000 MW of heat over a distance of 77 km for district heating purposes. The hot water pipeline is assumed to be 1200 mm diameter with a water temperature of 120 deg. C. Cooled water returns with a temperature of 55 - 60 deg. C in a similar 1200 mm diameter pipe. Both pipelines are installed to a service tunnel which is excavated into bedrock and divided into 2 kilometres long compartments. Both the 77 km long pipeline and the tunnel are modelled with Apros simulation software. A leak is modelled from the pipeline to the tunnel and the results are analyzed. This paper includes three different leak sizes (1 %, 10 % and 100 % of the pipeline's cross-sectional area). The leaks are calculated with water temperatures of 95 deg. C and 120 deg. C in the pipeline. Apros calculates dynamically the phenomena inside the pipeline with two-phase 6-equation calculation model. The tunnel conditions are calculated with a lumped parameter model. The size of the leak has a substantial effect on the leak's consequences in the tunnel. Also the water temperature in the pipeline influences the results strongly. If the water temperature is over 100 deg. C, a considerable amount of the water boils as it leaks to the tunnel. The boiling of water makes the conditions in the tunnel much more severe than they would otherwise be. If there is a substantial flow out of the tunnel, the air in the tunnel can be replaced by hot steam. Obviously, this can mean hazardous conditions in the tunnel. (authors)

  13. Study of the effect of injecting cold or hot water on the operation of an oil field

    Energy Technology Data Exchange (ETDEWEB)

    Gusein-Zade, M A; Kolosovskaya, A K; Lebedev, V V; Chicherov, L G

    1968-11-01

    Several Soviet reservoirs contain either highly paraffinic or viscous crude oils, where recovery by an ordinary waterflood is poor. Under such circumstances, hot water injection appears to be advantageous. Hot water injection is advisable when: (1) the reservoir is heterogeneous and contains low-permeability sections; (2) the oil is saturated with paraffin at reservoir temperature; and (3) reservoir pressure is only slightly higher than static pressure. In Uzen field, hot water injection should recover 1.5 times more oil than would be recovered with cold water. Various problems involved with hot water injection such as equipment and methods of heating the water, transportation of the water of the wellhead, heat losses in transport of hot water, and well equipment for handling hot water are discussed. Calculations indicate that it should be possible to transport 100/sup 0/C water through a 5 km pipeline with a 4/sup 0/ to 6/sup 0/C temperature drop; then deliver to the well bottom at a temperature of 90/sup 0/ to 92/sup 0/C.

  14. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  15. Hydrothermal pretreatment of wood by mild steam explosion and hot water extraction.

    Science.gov (United States)

    Wojtasz-Mucha, Joanna; Hasani, Merima; Theliander, Hans

    2017-10-01

    The aim of this work was to compare the two most common hydrothermal pre-treatments for wood - mild steam explosion and hot water extraction - both with the prospect of enabling extraction of hemicelluloses and facilitating further processing. Although both involve autohydrolysis of the lignocellulosic tissue, they are performed under different conditions: the most prominent difference is the rapid, disintegrating, discharge employed in the steam explosion opening up the structure. In this comparative study, the emphasis was placed on local composition of the pre-treated wood chips (of industrially relevant size). The results show that short hot water extraction treatments lead to significant variations in the local composition within the wood chips, while steam explosion accomplishes a comparably more even removal of hemicelluloses due to the advective mass transport during the explosion step. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hot water epilepsy: Phenotype and single photon emission computed tomography observations

    Directory of Open Access Journals (Sweden)

    Mehul Patel

    2014-01-01

    Full Text Available We studied the anatomical correlates of reflex hot water epilepsy (HWE using multimodality investigations viz. magnetic resonance imaging (MRI, electroencephalography (EEG, and single photon emission computed tomography (SPECT. Five men (mean age: 27.0 ΁ 5.8 years with HWE were subjected to MRI of brain, video-EEG studies, and SPECT scan. These were correlated with phenotypic presentations. Seizures could be precipitated in three patients with pouring of hot water over the head and semiology of seizures was suggestive of temporal lobe epilepsy. Ictal SPECT showed hyperperfusion in: left medial temporal - one, left lateral temporal - one, and right parietal - one. Interictal SPECT was normal in all five patients and did not help in localization. MRI and interictal EEG was normal in all the patients. The clinical and SPECT studies suggested temporal lobe as the seizure onset zone in some of the patients with HWE.

  17. Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation.

    Science.gov (United States)

    Vergara-Salinas, José R; Bulnes, Pedro; Zúñiga, María Carolina; Pérez-Jiménez, Jara; Torres, Josep Lluís; Mateos-Martín, María Luisa; Agosin, Eduardo; Pérez-Correa, José R

    2013-07-17

    Grape pomace was extracted with pressurized hot water at laboratory scale before and after fermentation to explore the effects of fermentation and extraction temperature (50-200 °C) and time (5 and 30 min) on total extracted antioxidant levels and activity and to determine the content and recovery efficiency of main grape polyphenols, anthocyanins, and tannins. Fermented pomace yielded more total antioxidants (TAs), antioxidant activity, and tannins, than unfermented pomace but fewer anthocyanins. Elevating the extraction temperature increased TA extraction and antioxidant activity. Maximum anthocyanin extraction yields were achieved at 100 °C and at 150 °C for tannins and tannin-anthocyanin adducts. Using higher temperatures and longer extraction times resulted in a sharp decrease of polyphenol extraction yield. Relevant proanthocyanidin amounts were extracted only at 50 and 100 °C. Finally, TA recovery and activity were not directly related to the main polyphenol content when performing pressurized hot water grape pomace extraction.

  18. Chemical composition of hot spring waters in the Oita river basins, Oita prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Tamio

    1988-01-30

    The source of the water from Oita River comes from the Kuju and Yubu-Tsurumi Volcanos, pouring into Beppu Bay. Its drainage area is 646 km/sup 2/ with a total length of 55 km. Hot springs are exist throughout most of the basin of the main and branches of Oita River. The chemical components of the hot springs in the Ota River basin -Yufuin, Yunotaira, Nagayu, Shonai/Hazama, and Oita City - have been analyzed. The equivalent of magnesium exceeds that of calcium in the carbonate springs of the above. Ca+Mg has positive correlations with HCO/sub 3/ in these carbonate springs. The water from these springs flows into the rivers and pours into Beppu Bay. The flow rate and chemical component concentration were measured at Fudai bridge. The concentration of chemical components having an average flow rate (30 ton/sec) were calculated. (4 figs, 7 tabs, 10 refs)

  19. Hot water immersion as a treatment for stonefish sting: A case report

    Directory of Open Access Journals (Sweden)

    Darlene F. Ongkili

    2013-05-01

    Full Text Available The North Borneo state of Sabah is known worldwide for its beautiful islands and dive sites. Local hospitals deal with a number of marine-related injuries, including marine fauna envenomation by Scorpaenidae and Synanceiidae families of fish. We report a case of a tourist who presented with excruciating pain on her right foot after stepping on a stonefish. Despite being given parenteral analgesia and regional anaesthesia, the pain persisted. Her pain improved after she soaked her foot in hot water for about 30 minutes. No further treatment was required. We reviewed the literature comparing this inexpensive mode of treatment with other conventional treatments. We also explored the possibility of using hot water immersion for treatment of envenomation by other types of marine animals.

  20. Hot and cold CO{sub 2}-rich mineral waters in Chaves geothermal area (northern Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Aires-Barros, Luis; Marques, Jose Manuel; Graca, Rui Cores; Matias, Maria Jose [Universidade Tecnica de Lisboa, Lab. de Mineralogia e Petrologia (LAMPIST), Lisboa (Portugal); Weijden, Cornelis H. van der; Kreulen, Rob [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Eggenkamp, Hermanus Gerardus M. [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Reading Univ., Postgraduate Research Inst. for Sedimentology, Reading (United Kingdom)

    1998-02-01

    In order to update the geohydrologic characterisation of Chaves geothermal area, coupled isotopic and chemical studies have been carried out on hot and cold CO{sub 2}-rich mineral waters discharging, in northern Portugal, along one of the major regional NNE-trending faults (the so-called Verin-Chaves-Penacova Depression). Based upon their location, and chemical and isotopic composition, the analysed waters can be divided into two groups. The northern group belongs to the HCO{sub 3}/Na/CO{sub 2}-rich type, and consists of the hot spring waters of Chaves and the cold spring waters of Vilarelho da Raia. The {delta}D and {delta}{sup 18}O values show that these waters are of meteoric origin. The lack of an {sup 18}O shift indicates that there is no evidence of water/rock interaction at high temperatures. The southern group includes the cold spring waters of Campilho/Vidago and Sabroso/Pedras Salgadas. Their chemistry is similar to that of the northern group but their heavier {delta}D and {delta}{sup 18}O values could be attributed to different recharge altitudes. Mixing between deep mineralised waters and dilute superficial waters of meteoric origin might explain the higher {sup 3}H activity found in the Vidago and Pedras Salgadas mineral waters. Alternatively, they could be mainly related to shallow underground flowpaths. The {delta}{sup 13}C values support a deep-seated origin for the CO{sub 2}. The {delta}{sup 37}Cl is comparable in all the mineral waters of the study areas, indicating a common origin of Cl. The {sup 87}Sr/{sup 86}Sr ratios in waters seem to be dominated by the dissolution of plagioclases or granitic rocks. (Author)

  1. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  2. Influence of the user behaviour on the design and the power requirement of systems for heating, ventilation and hot-water in low-energy buildings; Einfluss des Nutzerverhaltens auf die Auslegung und den Energiebedarf von Anlagen zur Heizung und Warmwasserbereitung im Niedrigenergiehaus

    Energy Technology Data Exchange (ETDEWEB)

    Luedemann, B.; Schmitz, G.

    2000-07-01

    The low-energy standard of new buildings (energy savings regulation 2000) causes a clear shift of the energy consumption of modern houses toward the heat requirement for the ventilation of buildings and for the hot-water supply, which in each case depends strongly on the habits of the user and his requirements for comfort. With the help of the dynamic simulation the interactions between users, building and the equipment technology for heating, ventilation and hot-water supply were analyzed. The main cause variables were detected and resultant conclusions for planning and design of building services systems in low-energy buildings are drawn. (orig.) [German] Die Energiesparverordnung (ESVO) wird die Waermeschutzverordnung und die Heizungsanlagen-Verordnung zusammenfassen und soll zu einer weiteren Absenkung des Energiebedarfes von Neubauten um 30% gegenueber dem aktuell gueltigen Standard fuehren. Mit der ESVO soll insbesondere die installierte Haustechnik in eine gesamtheitliche energetische Bewertung der Gebaeude miteinbezogen werden. In einem Forschungsprojekt der TU Hamburg-Harburg wurden daher Planungshinweise fuer Heizungs-, Lueftungs- und Warmwasseranlagen in Niedrigenergiehaeusern (NEH) erarbeitet. Dabei wurde insbesondere der Einfluss des Nutzerverhaltens in die Betrachtung miteinbezogen. (orig.)

  3. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    DEFF Research Database (Denmark)

    Goudarzi, A.M.; Mazandarani, P.; Panahi, R.

    2013-01-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is developed by two devices. An electric fan can increase the air to fuel ratio in order to increase the system’s efficiency and to decrease the air pollution by providing....... The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water and the essential heat for warming the room and cooking....

  4. Optimization of hot water transport and distribution networks by analytical method: OPTAL program

    International Nuclear Information System (INIS)

    Barreau, Alain; Caizergues, Robert; Moret-Bailly, Jean

    1977-06-01

    This report presents optimization studies of hot water transport and distribution network by minimizing operating cost. Analytical optimization is used: Lagrange's method of undetermined multipliers. Optimum diameter of each pipe is calculated for minimum network operating cost. The characteristics of the computer program used for calculations, OPTAL, are given in this report. An example of network is calculated and described: 52 branches and 27 customers. Results are discussed [fr

  5. Effects of hot water pre-extraction on surface properties of bagasse soda pulp.

    Science.gov (United States)

    Cordeiro, Nereida; Ashori, Alireza; Hamzeh, Yahya; Faria, Marisa

    2013-03-01

    In this work, the effects of hot water pre-extraction of depithed bagasse on the soda pulping and surface properties were studied. The conditions of hot water pre-extraction were: maximum temperature 170 °C, heat-up time 90 min, time at maximum temperature 10 min, and solid to liquor ratio (S:L) 1:8. Consequently, the pre-extracted and un-extracted bagasse chips were subjected to soda pulping at 160 °C for 1h with 11, 14 and 17% active alkali charge and an S:L of 1:5. The results showed that the hot water pre-extraction increased bagasse surface texture porosity by hemicellulose degradation. Therefore, the delignification was faster for pulping of pre-extracted samples. At a certain charge of alkali, pre-extracted samples showed higher screened yield and lower Kappa number. For instance, at 17% alkali charge, pre-extracted bagasse gave 11.3% higher pulp yield compared with the un-extracted ones. Inverse gas chromatography (IGC) results showed that the hot water pre-extraction changed the active sites on the bagasse surface, decreasing the dispersive energy and the basicity character, and affected the particle morphology. The pulping process decreased the hydrophobicity and the basicity of the bagasse surface. The surfaces of un-extracted and pre-extracted bagasse pulps had similar properties but different morphology. The pulps present higher surface area and permeability with more reactive capacity. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Campos Celador, A., E-mail: alvaro.campos@ehu.es [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)

    2011-08-15

    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.

  7. Performance Characteristics of Hero's Turbine Using Hot Water as a Working Fluid

    OpenAIRE

    FUJII, Terushige; OHTA, Jun-ichi; AKAGAWA, Koji; NAKAMURA, Toshi; ASANO, Hitoshi

    1992-01-01

    From the viewpoint of energy conservation and the development of new energy resources,it is important to utilize geothermal resources and waste heat from factories. Among energy conversion device,there is a radial outflow reaction turbine,i.e.,Hero's turbine. Performance characteristics of Hero's turbine are analytically and experimentally clarified for flashing expansion of initially subcooled hot water. It is found that: (a)there is an optimum number of revolutions at which maximum tubine e...

  8. Performance Characteristics of Hero's Turbine Using Hot Water as a Working Fluid

    OpenAIRE

    藤井, 照重; 太田, 淳一; 赤川, 浩爾; 中村, 登志; 浅野, 等

    1990-01-01

    From the view point of energy saving and the development of new energy resources,it is important to utilize geothermal resources and waste heat from factories. As one of the energy conversion expanders,there is a radial outflow reaction turbine(that is,Hero's turbine). Performance characteristics of Hero's turbine using subcooled hot water as a working fluid are clarified analytically and experimentally. It is found that:(a)there is an optimum rotational speed at which maximum turbine efficie...

  9. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion.

    Science.gov (United States)

    Sing, David K; Fortney, Jonathan J; Nikolov, Nikolay; Wakeford, Hannah R; Kataria, Tiffany; Evans, Thomas M; Aigrain, Suzanne; Ballester, Gilda E; Burrows, Adam S; Deming, Drake; Désert, Jean-Michel; Gibson, Neale P; Henry, Gregory W; Huitson, Catherine M; Knutson, Heather A; des Etangs, Alain Lecavelier; Pont, Frederic; Showman, Adam P; Vidal-Madjar, Alfred; Williamson, Michael H; Wilson, Paul A

    2016-01-07

    Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.

  10. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  11. Chemical analyses of waters from geysers, hot springs, and pools in Yellowstone National Park, Wyoming from 1974 to 1978

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.M.; Yadav, S.

    1979-01-01

    Waters from geysers, hot springs, and pools of Yellowstone National Park have been analyzed. We report 422 complete major ion analyses from 330 different locations of geysers, hot springs, and pools, collected from 1974 to 1978. Many of the analyses from Upper, Midway, Lower, and Norris Geyser Basin are recollections of features previously reported.

  12. The isotope geochemistry of hot springs gases and waters from Coromandel and Hauraki

    International Nuclear Information System (INIS)

    Lyon, G.L.; Giggenbach, W.F.

    1992-01-01

    Carbon, hydrogen and oxygen stable isotope analyses have been made on carbon dioxide,methane and water from warm and hot springs in the Coromandel Peninsula and Hauraki Plains. Most of the waters are isotopically unaltered meteoric waters. Methane δ 1 3C values vary widely, from -30%o to -72%o. Warm springs in swamps at Maketu and Kerepehi have microbial methane probably added to the water near the surface. Puriri, Okoroire and Miranda springs produce thermally derived methane, and the Hot Water Beach gas is similar to the Kaitoke gas in chemistry and isotopic composition but altered by shallow microbial oxidation. The Te Aroha gas, though, is not inconsistent with a geothermal origin and the boiling springs and oxygen-isotope altered water are further evidence for high temperatures. Other spring gases have mixtures of thermogenic and microbial methane and none are closely similar to major NZ geothermal CH 4 composition. CO 2 , which is usually present in lesser amounts than N 2 , has isotopic values which suggest a geothermal origin at Te Aroha and Maketu, but otherwise indicates a crustal origin. The dominance of N 2 implies that the fluid flows are tectonic fracture flow rather than geothermal. 3 He/ 4 He data gives further evidence of no major contribution from magmatic material except at Maketu, on the NW boundary of the TVZ. (author). 24 refs., 4 figs., 2 tabs

  13. Potential in hot and tepid waters in the department of Landes - Present and future applications

    Energy Technology Data Exchange (ETDEWEB)

    Hauquin, J.P.; Godard, J.M.; Tronel, F.; Pouchan, P.

    1994-12-31

    This study of the geothermal waters potentialities in the Landes department has selectively reviewed the areas of interest in respect of geology and hydrogeology and gives a picture of their potential valorizations. In the Landes, the exploitation of geothermal fields outside of the use for spa bathing was mainly geared to conventional applications (flats heating, swimming pools). Today geothermal potentialities can be extended to balneotherapy, horticultural and market garden greenhouses, fish farming and wood drying. The study performed delivers a data base to be used by the investor to define and to accurately devise their projects of hot and tepid waters utilization. (Authors). 12 refs., 1 fig., 1 tab.

  14. Imitation experiment for water-treatment by heat of solar collector and hot pump

    International Nuclear Information System (INIS)

    Liao Yuanzong; Liu Shuqing; Pang Heding; Zhao Zhongxin; Zhang Biguang; Wang Xiping; Huo Guangqing

    1997-01-01

    The author presents an imitation experiment in which solar collector and hot pump are jointed for supplying heat to evaporate cleaned water and diffuse it into air. The effects of the temperature and the quantity of supplying air, and circumstance conditions on evaporation quantity are studied. The ratio of evaporating quantity to consuming energy, the efficiency of evaporation, average efficiency of solar collector and supplying heat coefficient of heat pump are measured. The experiment shows that this supplying heat model is practicable, economic and efficient for treating cleaned water

  15. Radiation hygienic assessment of centralized heat and hot water supply of Bilibino village from Bilibin central nuclear heating- and power plant

    International Nuclear Information System (INIS)

    Eremin, V.A.; Marej, A.N.; Nechiporenko, N.I.; Rasskazov, A.P.; Sayapin, N.P.; Soldatov, G.E.; Shcherbinin, A.S.

    1983-01-01

    The experience in using an atomic power plant for heat and hot water supply of the village of Bilibino is outlined. Particular attention is given to the population radiation safety. It has been demonstrated that radiation safety of the system is ensured by maintaining fixed pressure levels in the heating media and by the hermetic state of heat exchanges. Water in the heat and hot water supply network meets the requirements for drinking water. Radioactive corrosion products were not detected in the test water. Gamma-radiation dose rate from the surface of heating devices and pipe-lines in the test premises did not exceed the natural background, that is, U.U1-0.025 mrad

  16. Hot roller embossing system equipped with a temperature margin-based controller

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyoung, E-mail: seyoungkim@kimm.re.kr; Son, Youngsu; Lee, Sunghee; Ham, Sangyong; Kim, Byungin [Department of Robotics and Mechatronics, Korea Institute of Machinery and Materials (KIMM), Daejeon (Korea, Republic of)

    2014-08-15

    A temperature control system was proposed for hot roller embossing. The roll surface was heated using induction coils and cooled with a circulating chilled water system. The temperature of the roll surface was precisely controlled by a temperature margin-based control algorithm that we developed. Implementation of the control system reduced deviations in the roll surface temperature to less than ±2 °C. The tight temperature control and the ability to rapidly increase and decrease the roll temperature will allow optimum operating parameters to be developed quickly. The temperature margin-based controller could also be used to optimize the time course of electrical power and shorten the cooling time by choosing an appropriate temperature margin, possibly for limited power consumption. The chiller-equipped heating roll with the proposed control algorithm is expected to decrease the time needed to determine the optimal embossing process.

  17. Hot roller embossing system equipped with a temperature margin-based controller

    International Nuclear Information System (INIS)

    Kim, Seyoung; Son, Youngsu; Lee, Sunghee; Ham, Sangyong; Kim, Byungin

    2014-01-01

    A temperature control system was proposed for hot roller embossing. The roll surface was heated using induction coils and cooled with a circulating chilled water system. The temperature of the roll surface was precisely controlled by a temperature margin-based control algorithm that we developed. Implementation of the control system reduced deviations in the roll surface temperature to less than ±2 °C. The tight temperature control and the ability to rapidly increase and decrease the roll temperature will allow optimum operating parameters to be developed quickly. The temperature margin-based controller could also be used to optimize the time course of electrical power and shorten the cooling time by choosing an appropriate temperature margin, possibly for limited power consumption. The chiller-equipped heating roll with the proposed control algorithm is expected to decrease the time needed to determine the optimal embossing process

  18. Role of Biotechnology in Animal Production Systems in Hot Climates

    Directory of Open Access Journals (Sweden)

    P. J. Hansen

    1996-01-01

    Full Text Available Developments in the biological sciences in the last three decades have revolutionized mankind's ability to manipulate the genetics, cell biology and physiology of biological organisms. These techniques, collectively termed biotechnology, create the opportunity for modifying domestic animals in ways that markedly increase the efficiency of production. Among the procedures being developed for animal production systems are marker-assisted selection of specific alleles of a gene that are associated with high production, production of transgenic animals , super ovulation and embryo transfer, in vitro fertilization, embryo sexing and cloning, production of large amounts of previously-rare proteins through use of genetically -engineered bacteria or other cells, and identification of new biologically-active molecules as potential regulators of animal function. To date, most uses of biotechnology have concentrated on problems of general relevance to animal agriculture rather than specific problems related to livestock production in hot climates. However, it is likely that biotechnology will be used for this latter purpose also. Strategies to increase disease resistance using marker-assisted selection, production of transgenic animals expressing viral proteins, and recombinant cytokines to enhance immune function should prove useful to reducing the incidence and seventy of various tropical diseases. Additionally, there are methods to reduce effects of heat stress on oestrus detection and establishment of pregnancy. These include remote sensing of oestrus, ovulation synchronization systems and embryo transfer. More research regarding the physiological processes determining heat tolerance and of the pathways through which heat stress alters physiological function will be required before molecular biology techniques can be used to reduce the adverse effects of heat stress on animal production.

  19. Evaluation of radon in hot spring waters in Zacatecas State, Mexico

    International Nuclear Information System (INIS)

    Favila R, E.; Lopez del Rio, H.; Davila R, I.; Mireles G, F.

    2010-10-01

    It is well know that radon is a potent human carcinogen. Because of the health concern of radon exposure, concentrations of 222 Rn were determined in ten hot spring water samples from the Mexican state of Zacatecas. The thermal water is collected in pools and used mainly for recreational purposes. In addition to radon level, the water samples were characterized for temperature, conductivity, and ph. Liquid scintillation spectrometry was used to measure 222 Rn and its decay products by mixing directly an aliquot of water with a commercial liquid scintillation. All measurements were carried out using a liquid scintillation counter (Wallac 1411). The water temperature ranged from 28 to 59 C, while the ph varied from 7.2 to 9.0, and the water conductivity was between 202.4 and 1072 μS/cm. The 222 Rn concentration varied in the range 3.9-32.6 Bq/L. In addition, the risk to radon exposure was assessed by considering three -real and possible- radon exposure scenarios: 1) ingestion of bottled thermal water, 2) direct ingestion of thermal water; and 3) vapor inhalation. The annual effective dose calculated for ingestion of bottled thermal water was 0.010-0.083 mSv/yr; for ingestion of water was 0.65-5.47 mSv/yr; and for inhalation was 0.28-2.81 mSv/yr. (Author)

  20. Discussion on problems of terrestrial heat and moderate-hot water at an uranium deposit in Jiangxi province

    International Nuclear Information System (INIS)

    Liu Xiangguo

    2003-01-01

    According to scientific research and technical summing up reports, based on the field investigation, the possible problems of terrestrial heat and moderate-hot water during the exploitation of an uranium deposit in Jiangxi Province are discussed. The preliminary analysis and discussion on the distribution, distribution regularity, causes of formation and correlation of terrestrial heat and moderate-hot water at the uranium deposit are carried out