WorldWideScience

Sample records for hot water solar

  1. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  2. OUT Success Stories: Solar Hot Water Technology

    Science.gov (United States)

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  3. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  4. HOT WATER COMFORT TEST PROCEDURE FOR SOLAR COMBISYSTEMS: PROPOSAL

    DEFF Research Database (Denmark)

    Furbo, Simon

    1999-01-01

    A proposal for a test procedure for hot water comfort for solar heating systems for combined space heating and domestic hot water supply was worked out.......A proposal for a test procedure for hot water comfort for solar heating systems for combined space heating and domestic hot water supply was worked out....

  5. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  6. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  7. Design package for solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  8. Design package for solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  9. Classifications of central solar domestic hot water systems

    Science.gov (United States)

    Guo, J. Y.; Hao, B.; Peng, C.; Wang, S. S.

    2016-08-01

    Currently, there are many means by which to classify solar domestic hot water systems, which are often categorized according to their scope of supply, solar collector positions, and type of heat storage tank. However, the lack of systematic and scientific classification as well as the general disregard of the thermal performance of the auxiliary heat source is important to DHW systems. Thus, the primary focus of this paper is to determine a classification system for solar domestic hot water systems based on the positions of the solar collector and auxiliary heating device, both respectively and in combination. Field-testing data regarding many central solar DHW systems demonstrates that the position of the auxiliary heat source clearly reflects the operational energy consumption. The consumption of collective auxiliary heating hot water system is much higher than individual auxiliary heating hot water system. In addition, costs are significantly reduced by the separation of the heat storage tank and the auxiliary heating device.

  10. Entrance Effects in Solar Hot Water Stores

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    2003-01-01

    A theoretical and experimental analysis of water jets entering a solar storage tank is performed. CFD calculations of three inlet designs with different inlet flow rates were carried out to illustrate the varying behaviour of the thermal conditions in a solar store. The results showed the impact...

  11. Design package for solar domestic hot water system

    Science.gov (United States)

    1980-01-01

    The initial design of a solar domestic hot water system is considered. The system performance specification and detailed design drawings are included. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished site data acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  12. Design and installation package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains the design and installation procedure for the Solar Engineering and Manufacturing Company's solar hot water system. Included are the system performance specifications, system design drawings, hazard analysis and other information necessary to evaluate the design and instal the system.

  13. How mixing during hot water draw-offs influence the thermal performance of small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2005-01-01

    CFD calculations on the mixing during hot water draw-offs in vertical hot water tanks with different diameters have been carried out. The calculations, which were carried out with the same cold water inlet design, showed that the extent of mixing is strongly influenced by the tank diameter. The e...... consideration of the required hot water comfort.......CFD calculations on the mixing during hot water draw-offs in vertical hot water tanks with different diameters have been carried out. The calculations, which were carried out with the same cold water inlet design, showed that the extent of mixing is strongly influenced by the tank diameter....... The extent of mixing is increasing for increasing tank diameter. Further, calculations of the yearly thermal performance of small solar domestic hot water systems with hot water tanks with different mixing rates during hot water draw-offs were carried out. Both solar domestic hot water systems with mantle...

  14. How mixing during hot water draw-offs influence the thermal performance of small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2005-01-01

    CFD calculations on the mixing during hot water draw-offs in vertical hot water tanks with different diameters have been carried out. The calculations, which were carried out with the same cold water inlet design, showed that the extent of mixing is strongly influenced by the tank diameter....... The extent of mixing is increasing for increasing tank diameter. Further, calculations of the yearly thermal performance of small solar domestic hot water systems with hot water tanks with different mixing rates during hot water draw-offs were carried out. Both solar domestic hot water systems with mantle......, and that a decreased auxiliary volume in the tanks and an increased height/diameter ratio of the tanks will increase the thermal performance of the systems. The investigations showed further, that mixing during hot water draw-offs decreases the thermal performance of solar domestic hot water systems. The mixing...

  15. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  16. Installation package for a domestic solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    The installation of two prototype solar heating and hot water systems is described. The systems consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy.

  17. Solar heating and hot water system installed at Listerhill, Alabama

    Science.gov (United States)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  18. Solar heating and hot water system installed at Listerhill, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The solar system was installed into a new buildng and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This final report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  19. Solar heating and hot water system installed at Listerhill, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The solar system was installed into a new buildng and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This final report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  20. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    Science.gov (United States)

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  1. A modular solar system provides hot water for alligator farm

    Energy Technology Data Exchange (ETDEWEB)

    Healey, H.M. (Healey Associates, Merritt Island, FL (United States))

    1994-03-01

    This article describes an 8,000 ft[sup 2] (743 m[sup 2]), site-built, large volume, Integral Collector Storage (ICS) solar water heating system installed at the farm to preheat water for the building washdown as part of a Florida Energy Office demonstration project. The project utilized at Foster Farms was a Shallow Solar Pond (SSP)--a modular, site-built, solar water heating system capable of providing in excess of 5,000 heated gallons (19 m[sup 3]) per day. During the past 10 years, a large number of solar systems have been proposed to provide economical hot water for industrial processes. Most of these water heating systems have proven to be too costly or too complex to compete with the traditional water heating methods using conventional fuels. Technology initiated at Lawrence Livermore Laboratory and expanded upon by the Tennessee Valley Authority was shown to have outstanding potential in Florida. This technology, which was utilized at Foster Farms, consists of a site-built large-volume ICAS system called the Shallow Solar Pond. Shallow Solar Pond (SSP) systems utilize the modular approach in which modules, built in a standardized size, are tied together to supply the required load. The SSP module can be ground mounted or installed on a roof. Each SSP module is typically 16 ft (5 m) wide and up to 200 ft (61 m) in length. The module contains one or two flat waterbags similar to a waterbed. The bags rest on a layer of insulation or bed of sand inside concrete or fiberglass curbs. The bag is protected against damage and heat loss by greenhouse-type glazing. A typical 200 ft [times] 16 ft (61 m [times] 5 m) pond, filled to a 4 in. (10 cm) depth, holds approximately 8,000 gallons (30 m[sup 3]) of water.

  2. Solar production of industrial process hot water: Operation and evaluation of the Campbell Soup hot water solar facility

    Science.gov (United States)

    Kull, J. I.; Neimeyer, W. N.; Youngblood, S. B.

    1980-12-01

    The operation and evaluation of a solar hot water facility is summarized. The period of evaluation was for 12 months from October 1979 through September 1980. The objective of the work was to obtain additional, long term data on the operation and performance of the facility. Minor modifications to the facility were completed. The system was operated for 15 months, and 12 months of detailed data were evaluated. The facility was available for operation and of the time during the last 8 months of evaluation. A detailed description of the solar facility and of the operating experience is given, and a summary of system performance for the 12 month operation/evaluation period is presented. Recommendations for large scale solar facilities based on this project's experience are given, and an environmental impact assessment is provided.

  3. Numerical Simulation of a Solar Domestic Hot Water System

    Science.gov (United States)

    Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.

    2014-11-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.

  4. Preliminary design package for solar heating and hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Levine, P.; Meyer, R.; White, James S.

    1977-01-01

    A collection of documents submitted by the Fern Engineering Company for the preliminary design review on the development of two prototype solar heating and hot water systems is presented. The information includes system certification, system functional description, system configuration, system specification, system performance and other documents pertaining to the progress and the design of the system. This system, which is intended for use in the normal single-family residence, consists of the following subsystems: collector, storage, control, transport, and Government-furnished Site Data Acquisition. One of the two prototype units will be installed in Lansing, Michigan, and the other in Tunkhannock, Pennsylvania.

  5. Hourly use profiles for solar domestic hot water heaters in the National Solar Data Network

    Science.gov (United States)

    Barvir, E. J.; Doak, L. G.; Waterman, R. E.; Gervasio, C.

    Daily hot water rates of consumption and the Hourly Profiles of Daily Hot Water Consumption for single and multiple family dwellings are provided in this paper. These new statistics obtained from the National Solar Data Network (NSDN) are significantly different from the statistics currently being used in TRNSYS, SOLCOST and F-Chart. The NSDN statistics suggest that both the daily demand and hourly use profiles used in performance models should be revised.

  6. Solar hot water systems for the southeastern United States: principles and construction of breadbox water heaters

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-02-01

    The use of solar energy to provide hot water is among the easier solar technologies for homeowners to utilize. In the Southeastern United States, because of the mild climate and abundant sunshine, solar energy can be harnessed to provide a household's hot water needs during the non-freezing weather period mid-April and mid-October. This workbook contains detailed plans for building breadbox solar water heaters that can provide up to 65% of your hot water needs during warm weather. If fuel costs continue to rise, the annual savings obtained from a solar water heater will grow dramatically. The designs in this workbook use readily available materials and the construction costs are low. Although these designs may not be as efficient as some commercially available systems, most of a household's hot water needs can be met with them. The description of the breadbox water heater and other types of solar systems will help you make an informed decision between constructing a solar water heater or purchasing one. This workbook is intended for use in the southeastern United States and the designs may not be suitable for use in colder climates.

  7. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  8. Application of the genetic algorithm for optimisation of large solar hot water systems

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Visser, H.

    2002-01-01

    An implementation of the genetic algorithm in a design support tool for (large) solar hot water systems is described. The tool calculates the yield and the costs of solar hot water systems based on technical and financial data of the system components. The genetic algorithm allows for optimisation o

  9. Application of the genetic algorithm for optimisation of large solar hot water systems

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Visser, H.

    2002-01-01

    An implementation of the genetic algorithm in a design support tool for (large) solar hot water systems is described. The tool calculates the yield and the costs of solar hot water systems based on technical and financial data of the system components. The genetic algorithm allows for optimisation

  10. Design of multifamily solar domestic hot water systems using recirculating distribution

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, D.R.

    1982-01-01

    This paper describes a study designed to quantify the effect of daily domestic hot water loads and system design on the performance of solar domestic hot water systems employing a recirculating distribution system. A solar domestic hot water system judged representative of the systems funded by the HUD Solar Demonstration Program, along with a modification to this system, was modeled using the TRNSYS simulation computer program. Results of simulations over a representative climatic period show that daily domestic hot water usage significantly affects solar system performance. Notable improvement in system performance can be obtained by the use of a recirculation return to solar storage system configuration within a specific range of daily domestic hot water loads. An optimum system was developed from parametric variations of system design and modeled on an annual basis. Comparison is made to modeled system performance of the original design.

  11. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  12. Solar hot water systems application to the solar building test facility and the Tech House

    Science.gov (United States)

    Goble, R. L.; Jensen, R. N.; Basford, R. C.

    1976-01-01

    Projects which relate to the current national thrust toward demonstrating applied solar energy are discussed. The first project has as its primary objective the application of a system comprised of a flat plate collector field, an absorption air conditioning system, and a hot water heating system to satisfy most of the annual cooling and heating requirements of a large commercial office building. The other project addresses the application of solar collector technology to the heating and hot water requirements of a domestic residence. In this case, however, the solar system represents only one of several important technology items, the primary objective for the project being the application of space technology to the American home.

  13. Final report : testing and evaluation for solar hot water reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); He, Hongbo (University of New Mexico, Albuquerque, NM); Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Burch, Jay (National Renewable Energy Laboratory, Golden CO)

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  14. Solar unit for producing hot water and cold

    Energy Technology Data Exchange (ETDEWEB)

    Bayramov, R.B.; Nazarova, G.R.; Pivovarova, A.P.; Ushakova, A.D.

    1982-01-01

    A unit is described which contains a reserve heater, cooling tower, air moistener, loop for producing hot water which has a tubular boiler arranged in a glass ''hot box,'' and hot water storage, and loop for circulating the solution which includes a generator, whose working surface serves as the outer surface of the boiler, heat exchanger-regenerator with cavities of strong and weak solutions, cooling agent for the strong solution which is also connected to the cooling tower, and absorber which is connected to the air moistener.

  15. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  16. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seitzler, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Backman, Christine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weitzel, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  17. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation, Davis, CA (United States); Seitzler, Matt [Alliance for Residential Building Innovation, Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation, Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  18. Building America Case Study: Addressing Multifamily Piping Losses with Solar Hot Water, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  19. Active space heating and hot water supply with solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Karaki, S.; Loef, G. O.G.

    1981-04-01

    Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

  20. Solar Cogeneration of Electricity and Hot Water at DoD Installations

    Science.gov (United States)

    2014-05-01

    However, as the tank heats up, the solar array is able to add less and less heat. This is because the thermal efficiency of any solar thermal collector ...PRFTA: Parks Reserve Force Training Area PV: photovoltaic PVT: photovoltaic and thermal SHW: solar hot water EXECUTIVE SUMMARY Cogenra Solar ...Inc. set out to demonstrate an innovative hybrid electric/ thermal solar cogeneration system at Port Hueneme (Naval Base Ventura County) and the

  1. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    Science.gov (United States)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  2. Design package for a complete residential solar space heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  3. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    Science.gov (United States)

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  4. Solar hot water space heating system. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, T

    1979-08-13

    A retrofit solar heating system was installed on Madison Hall at Jordan College, Cedar Springs, Michigan. The system provides heating and domestic water preheating for a campus dormitory. Freeze protection is provided by a draindown system. The building and solar system, construction progress, and design changes are described. Included in appendices are: condensate trap design, structural analysis, pictures of installation, operating instructions, maintenance instructions, and as-built drawings. (MHR)

  5. Performance monitoring of a multi-unit solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Makuch, P.D.; Harrison, S.J. [Queen`s Univ., Kingston, ON (Canada). Solar Calorimetry Lab.

    1994-12-01

    A solar domestic hot water (SDHW) system was installed on an existing multi-family apartment building in 1991. Energy monitoring hardware was installed in 1992. It was a preheat system that was retrofitted upstream of existing hot water tanks located in the building. Monitoring of the system continued for eight months. As a result of this monitoring, average daily values could be made available for each month, as well as values of incident solar radiation, outdoor temperature, hot water use, total system energy, auxiliary energy, solar energy delivered to the load, energy loss from the recirculation loop and pump run time. Performance results indicated that the system performed at a level close to simulated values, but that system performance during the summer period was severely reduced due to low hot water usage. 5 refs., 12 figs., 2 tabs.

  6. Solar hot water system installed at Days Inn Motel, Dallas, Texas (Valley View)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    The solar hot water system installed in the Days Inns of America, Inc., Days Inn Motel (120 rooms), I-35/2276 Valley View Lane, Dallas, Texas is described. The solar system was designed by ILI Incorporated to provide 65 percent of the total domestic hot water (DHW) demand. The Solar Energy Products, model CU-30WW liquid (water) flat plate collector (1000 square feet) system automatically drains into the 1000 gallon steel storage tank when the solar pump is not running. This system is one of eleven systems planned. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers. The operation of this system was begun March 11, 1980. The solar components were partly funded ($15,000 of 30,000 cost) by a Department of Energy grant.

  7. Thermal performance of a photographic laboratory process: Solar Hot Water System

    Science.gov (United States)

    Walker, J. A.; Jensen, R. N.

    1982-01-01

    The thermal performance of a solar process hot water system is described. The system was designed to supply 22,000 liters (5,500 gallons) per day of 66 C (150 F) process water for photographic processing. The 328 sq m (3,528 sq. ft.) solar field has supplied 58% of the thermal energy for the system. Techniques used for analyzing various thermal values are given. Load and performance factors and the resulting solar contribution are discussed.

  8. Solar heating and hot water system installed at Cherry Hill, New Jersey

    Science.gov (United States)

    1979-01-01

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  9. Solar heating and domestic hot water system installed at North Dallas High School

    Science.gov (United States)

    1980-01-01

    The solar energy system located at the North Dallas High School, Dallas, Texas is discussed. The system is designed as a retrofit in a three story with basement, concrete frame high school building. Extracts from the site files, specification references for solar modification to existing building heating and domestic hot water systems, drawings, installation, operation and maintenance instructions are included.

  10. Solar Energy for Domestic Hot Water: Case Studies in Sisimiut 1999-2005

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2005-01-01

    Two pioneer solar domestic hot water systems were installed at Bygge- og Anlægsskolen in Sisimiut in 1999 and 2000. Detailed measurements of energy flows and solar radiation incl. snow reflectance has been undertaken for both plants. Since August 2004 data logging of the measurements was made...... available online on the website www.arcticsolar.com. Measurements show that solar plant 1 and 2 cover 22% and 23%, respectively, of the energy spent for domestic hot water heating. This paper summarises the findings from the past 5 years....

  11. Solar Energy for Domestic Hot Water: Case Studies in Sisimiut 1999-2005

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2005-01-01

    Two pioneer solar domestic hot water systems were installed at Bygge- og Anlægsskolen in Sisimiut in 1999 and 2000. Detailed measurements of energy flows and solar radiation incl. snow reflectance has been undertaken for both plants. Since August 2004 data logging of the measurements was made...... available online on the website www.arcticsolar.com. Measurements show that solar plant 1 and 2 cover 22% and 23%, respectively, of the energy spent for domestic hot water heating. This paper summarises the findings from the past 5 years....

  12. Solar hot water system installed at Days Inn Motel, Jacksonville, Florida

    Science.gov (United States)

    1980-09-01

    The solar system was designed to provide 65 percent of the hot water demand. Water in the liquid flat plate collector (900 square feet) system automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature.

  13. Solar heating and hot water system installed at Saint Louis, Missouri

    Science.gov (United States)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  14. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  15. Effect of hot-water consumption on temperature distribution in a horizontal solar water storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Helwa, N.H.; El-Ghetany, H.H. [National Research Center, Cairo (Egypt). Dept. of Solar Energy; Mobarak, A.M.; El-Sallak, M.S. [Cairo Univ. (Egypt). Dept. of Mechanical Engineering

    1995-12-31

    This experimental investigation assesses the behaviour of a solar water heater provided with a liquid heat exchanger in a horizontal storage tank. The factors that affect the stratification inside the storage tank are considered. The performance of the system is studied in the light of the daily consumption of hot water of an Egyptian family. The results obtained show that in the places where it is necessary to use a horizontal tank it must be supplied with an auxiliary electric heater to meet the required load at the required temperature, especially in winter. (author)

  16. Promising freeze protection alternatives in solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.E.

    1997-12-31

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  17. Promising freeze protection alternatives in solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, David E. [Univ. of Wisconsin, Madison, WI (United States)

    1997-01-01

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  18. Solar hot water system installed at Day's Lodge, Atlanta, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    The solar energy hot water system installed in the Days Inns of America, Inc., Day's Lodge I-85 and Shallowford Road, NE Atlanta, Georgia is described. This system is one of eleven systems planned under this grant and was designed to provide for 81% of the total hot water demand. There are two separate systems, each serving one building of the lodge (total of 65 suites). The entire system contains only potable city water. The 1024 square feet of Grumman Sunstream Model 332 liquid flat plate collectors and the outside piping drains whenever the collector plates approach freezing or when power is interrupted. Solar heated water from the two above ground cement lined steel tanks (1000 gallon tank) is drawn into the electric domestic hot water (DHW) tanks as hot water is drawn. Electric resistance units in the DHW tanks top off the solar heated water, if needed, to reach thermostat setting. Operation of this system was begun in August, 1979. The solar components were partly funded ($18,042 of $36,084 cost) by the Department of Energy.

  19. System design package for SIMS Prototype System 2, solar hot water

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This report is a collection of documents and drawings that describe a solar hot water system. The necessary information to evaluate the design and with information sufficient to assemble a similar system is presented. The International Business Machines Corporation developed prototype system 2 solar hot water for use in a single family dwelling. The system has been installed in Building Number 20, which is a single family residence on the grounds of the Veterans Administration Hospital at Togus, Maine. It consists of the following subsystems: collector, storage, energy transport, and control. It is a design with wide-spread application potential with only slight adjustments necessary in system size.

  20. Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    This study focus on the analysis, modeling and simulation of solar domestic hot water(DHW) systems. Problems related to the system operation such as input weather data and hot water load conditions are also investigated.In order to investigate the heat loss as part of the total heat load, dynamic...... model of distribution network is developed and simulations are carried out for typical designed circulation type of distribution networks. For dynamic simulation of thermosyphon and drain-back solar DHW systems, thermosyphon loop model and drain-back tank model are put forward. Based on the simulations...

  1. Solar hot water system installed at Day's Inn Motel, Dallas, Texas (Valley View)

    Science.gov (United States)

    1980-09-01

    The solar system was designed to provide 65 percent of the total domestic hot water (DHW) demand. A liquid (water) flat plate collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank when the solar pump is not running. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers.

  2. Solar production of industrial process hot water: operation and evaluation of the Campbell Soup hot water solar facility. Final report, September 1, 1979-December 10, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Kull, J. I.; Niemeyer, W. N.; Youngblood, S. B.

    1980-12-01

    The operation and evaluation of a solar hot water facility designed by Acurex Corporation and installed (November 1977) at the Campbell Soup Company Sacramento, California canning plant is summarized. The period of evaluation was for 12 months from October 1979 through September 1980. The objective of the work was to obtain additional, long term data on the operation and performance of the facility. Minor modifications to the facility were completed. The system was operated for 15 months, and 12 months of detailed data were evaluated. The facility was available for operation 99% of the time during the last 8 months of evaluation. A detailed description of the solar facility and of the operating experience is given, and a summary of system performance for the 12 month operation/evaluation period is presented. Recommendations for large-scale solar facilities based on this project's experience are given, and an environmental impact assessment for the Campbell Soup solar facility is provided. (WHK)

  3. Simulation programs for ph.D. study of analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The design of solar domestic hot water (DHW) systems is a complex process, due to characteristics inherent in the solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. One of the main objects of the Ph.D. study of `Analysis, Modelling and optimum Design of Solar Domestic Hot Water Systems` is to develop and verify programs for carrying out the simulation and evaluation of the dynamic performance of solar DHW systems. During this study, simulation programs for hot water distribution networks and for certain types of solar DHW systems were developed. (au)

  4. Life cycle cost analysis of new FRP based solar parabolic trough collector hot water generation system

    Institute of Scientific and Technical Information of China (English)

    A. VALAN ARASU; T. SORNAKUMAR

    2008-01-01

    Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fibre reinforced plastic (FRP) based solar PTC with an embedded electronic controlled tracking system designed and developed for hot water generation in a restaurant in Madurai, India. The new collector performance has been tested according to ASHRAE Standard 93 (1986). The performance of a new PTC hot water generation system with a well mixed hot water storage tank is investigated by a series of extensive tests over ten months period. The average maximum storage tank water temperature observed was 74.91 ℃, when no energy is withdrawn from the tank to the load during the collection period. The total cost of the new economic FRP based solar PTC for hot water generation with an embedded electronic controlled tracking system is Rs. 25000 (US$ 573) only. In the present work, life cycle savings (LCS) method is employed for a detailed economic analysis of the PTC system. A computer program is used as a tool for the economic analysis. The present worth of life cycle solar savings is evaluated for the new solar PTC hot water generation system that replaces an existing electric water heating system in the restaurant and attains a value of Rs. 23171.66 after 15 years, which is a significant saving. The LCS method and the MATLAB computer simulation program presented in this paper can be used to estimate the LCS of other renewable energy systems.

  5. Performance monitoring of a bubble pumped solar domestic hot water system - final report

    Energy Technology Data Exchange (ETDEWEB)

    Makuch, P.D.; Harrison, S.J. [Queen`s Univ., Kingston, ON (Canada). Solar Calorimetry Lab.

    1995-12-01

    A new type of solar domestic hot water (SDHW) system for cold climates was described. The bubble pump system is self pumping and self regulating (it circulates anti-freeze). The system transports heat from roof mounted solar collectors to a thermal storage located at a lower level when there is available solar radiation. The design is unique in that it has no moving parts and requires no external electrical or mechanical input to operate. A unit was installed on a row house in Kingston, Ontario, to evaluate its performance. The average daily solar fraction was 32.4 per cent, and the average system efficiency for the monitored period was 13.4 per cent. This was below expectations due to low hot water demand. Performance improved somewhat towards the end of the monitoring period due to increased demand for hot water, improvements to the system, and increased solar insulation. A more realistic annual performance was estimated at 19 per cent for system efficiency and 41 per cent for solar fraction. Further improvements could be expected, especially in mid-winter performance, if the solar collector slope could be increased to a value of 45 to 60 degrees to the horizontal. 8 refs., 14 tabs., 9 figs.

  6. Solar energy hot water heating and electric utilities. A model validation

    Science.gov (United States)

    1981-10-01

    TRNSYS is a residential solar simulation program designed to provide detailed simulations of individual solar systems composed of almost any presently used residential solar technology. The model is described and a validation of the model is presented using a group of domestic solar hot water systems in the metropolitan Philadelphia area. The collection and reduction of the data used is discussed, and the TRNSYS modeling of the systems is presented. The model results are given and a sensitivity analysis of the models was performed to determine the effect of input changes on the electric auxiliary backup consumption.

  7. Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The Final Report of the Solar Hot Water System located at the Red Star Industrial Laundry, 3333 Sabre Avenue, Fresno, California, is presented. The system was designed as an integrated wastewater heat recovery and solar preheating system to supply a part of the hot water requirements. It was estimated that the natural gas demand for hot water heating could be reduced by 56 percent (44 percent heat reclamation and 12 percent solar). The system consists of a 16,500 gallon tube-and-shell wastewater heat recovery subsystem combined with a pass-through 6,528 square foot flat plate Ying Manufacturing Company Model SP4120 solar collector subsystem, a 12,500 gallon fiber glass water storage tank subsystem, pumps, heat exchangers, controls, and associated plumbing. The design output of the solar subsystem is approximately 2.6 x 10/sup 9/ Btu/year. Auxiliary energy is provided by a gas fired low pressure boiler servicing a 4,000 gallon service tank. This project is part of the US Department of Energy's Solar Demonstration Program with DOE sharing $184,841 of the $260,693 construction cost. The system was turned on in July 1977, and acceptance tests completed in September 1977. The demonstration period for this project ends September 2, 1982.

  8. Solar hot water system installed at Quality Inn, Key West, Florida. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings, is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50% of the energy required for the domestic hot water system. The solar system consists of approximately 1400 ft/sup 2/ of flat plate collector, two 500 gal storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in 40% fuel savings.

  9. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  10. Solar hot water system installed at Days Inn Motel, Jacksonville, Florida

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    The solar energy hot water system installed in the Days Inns of America, Inc., Days Inn Motel (120 rooms) I-95 and Cagle Road, Jacksonville, Florida, is described. The solar system was designed by ILI, Incorporated to provide 65 percent of the hot water demand. The system is one of eleven systems planned under this grant. Water (in the Solar Energy Products, Model CU-30ww liquid flat plate collector (900 square feet) system) automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature. This system was turned on June 19, 1979. The solar components were partly funded ($15,823 of $31,823 cost) by the Department of Energy.

  11. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  12. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  13. Verification test report on a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information is provided on the development, qualification and acceptance verification of commercial solar heating and hot water systems and components. The verification includes the performances, the efficiences and the various methods used, such as similarity, analysis, inspection, test, etc., that are applicable to satisfying the verification requirements.

  14. Design tool for large solar hot water systems - Uniform optimization of components and economy

    NARCIS (Netherlands)

    Visser, H.

    1996-01-01

    In close collaboration with the parties concerned, i.e. both the sellers and investors, a design and optimization method for large solar hot water systems is being developed. In order to support investors in achieving the feasibility of such systems, the normalized method including software tool for

  15. Solar hot water system installed at Day's Inn Motel, Savannah, Georgia

    Science.gov (United States)

    1980-09-01

    The Solar System was designed to provide 50 percent of the total Domestic Hot Water (DHW) demand. Liquid Flat Plate Collectors (900 square feet) are used for the collector subsystem. The collector subsystem is closed loop, using 50 percent Ethylene Glycol solution antifreeze for freeze protection. The 1,000 gallon fiber glass storage tank contains two heat exchangers. One of the heat exchangers heats the storage tank with the collector solar energy. The other heat exchanger preheats the cold supply water as it passes through on the way to the Domestic Hot Water (DHW) tank heaters. Electrical energy supplements the solar energy for the DHW. The Collector Mounting System utilizes guy wires to structurally tie the collector array to the building.

  16. Solar heating and hot water system installed at Cherry Hill, New Jersey. [Hotels

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-16

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system went into operation November 8, 1978 and is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are General Electric Company liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  17. The Development of a Roof Integrated Solar Hot Water System

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Infrastructure and DER Dept.; Moss, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Solar Technologies Dept.; Palomino, G. Ernest [Salt River Project (SRP), Tempe, AZ (United States)

    2006-09-01

    The Salt River Project (SRP), in conjunction with Sandia National Laboratories (SNL) and Energy Laboratories, Inc. (ELI), collaborated to develop, test, and evaluate an advanced solar water-heating product for new homes. SRP and SNL collaborated under a Department of Energy Cooperative Research and Development Agreement (CRADA), with ELI as SRP's industry partner. The project has resulted in the design and development of the Roof Integrated Thermal Siphon (RITH) system, an innovative product that features complete roof integration, a storage tank in the back of the collector and below the roofline, easy installation by homebuilders, and a low installed cost. SRP's market research guided the design, and the laboratory tests conducted at SNL provided information used to refine the design of field test units and indicated that the RITH concept is viable. ELI provided design and construction expertise and is currently configured to manufacture the units. This final report for the project provides all of the pertinent and available materials connected to the project including market research studies, the design features and development of the system, and the testing and evaluation conducted at SNL and at a model home test site in Phoenix, Arizona.

  18. Solar hot water system installed at Days Inn Motel, Dallas, Texas (Forrest Lane)

    Science.gov (United States)

    1980-09-01

    The solar system was designed to provide 65 percent of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make DHW tank standby losses. All pumps are controlled by differential temperature.

  19. Solar technology assessment project. Volume 3: Active space heating and hot water supply with solar energy

    Science.gov (United States)

    Karaki, S.; Loef, G. O. G.

    1981-04-01

    Several types of solar water heaters are described and assessed. These include thermosiphon water heaters and pump circulation water heaters. Auxiliary water heating is briefly discussed, and new and retrofit systems are compared. Liquid-based space heating systems and solar air heaters are described and assessed, auxiliary space heating are discussed, and new and retrofit solar space heating systems are compared. The status of flat plate collectors, evacuated tube collectors, and thermal storage systems is examined. Systems improvements, reliability, durability and maintenance are discussed. The economic assessment of space and water heating systems includes a comparison of new systems costs with conventional fuels, and sales history and projections. The variety of participants in the solar industry and users of solar heat is discussed, and various incentives and barriers to solar heating are examined. Several policy implications are discussed, and specific government actions are recommended.

  20. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  1. Simulation Programs for Ph.D. Study of Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    The design of solar domestic hot water system is a complex process, due to characteristics inherent in solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. This report presents the detailed...... programs or units that were developed in the Ph.D study of " Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems"....

  2. Solar hot water system installed at Days Inn Motel, Dallas, Texas

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The solar energy hot water system installed in the Days Inn of America, Inc., Days Inn Motel (100 rooms), I-635/2753 Forrest Lane, Dallas, Texas is described. The solar system was designed by ILI, Inc., to provide 65% of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector is 1000 square feet of solar energy products, Model CU-30W array. Water in the collector system automatically drains into the 1000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make up DHW tank standby losses. All pumps are controlled by differential temperature. Operation of this system was begun March 11, 1980. The solar components were partly funded ($15,000 of $30,000 cost) by the Department of Energy Grant.

  3. Simple solar systems for heating, hot water and cooking in high altitude regions with high solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Schwarzer, K. [Solar-Inst., Juelich (Germany); Kleine-Hering, H. [Ecoandina, Salta (Argentina)

    2004-07-01

    In connection with a BMBF research project (FKZ 17104.01), a new system has been developed to provide solar heating and hot water. The system is designed to be used in areas with high solar radiation and low ambient temperatures, conditions which occur typically in high altitude regions. The main considerations in developing this system were robust technology, low cost and easy maintenance. To ensure robustness, air is used as the heat transfer medium. Air has the advantage of a low thermal capacity and enables the system to be immediately ready for use, and does not have the disadvantages of water at temperatures below the freezing point. The units were installed in two public buildings in the Argentinean Altiplano at an altitude of 3600 m, as part of a BMZ (Ministry for Cooperation) project. The local partner in the project was Ecoandina. Because of the high level of direct solar insolation in this area, concentrating solar cookers for families and institutions have a very high acceptance. As part of the BMZ project, four community cookers with Fixed-Focus reflectors (Scheffler reflectors) each with 3 kW power were installed. Further installations included solar hot water systems, drip irrigation systems with solar pumps and parabolic cookers for families. One of the villages equipped with these units is now to receive an award for being the first Solar Village in Argentina. (orig.)

  4. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  5. Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies.

    Science.gov (United States)

    Otanicar, Todd P; Golden, Jay S

    2009-08-01

    This study compares environmental and economic impacts of using nanofluids to enhance solar collector efficiency as compared to conventional solar collectors for domestic hotwater systems. Results show that for the current cost of nanoparticles the nanofluid based solar collector has a slightly longer payback period but at the end of its useful life has the same economic savings as a conventional solar collector. The nanofluid based collector has a lower embodied energy (approximately 9%) and approximately 3% higher levels of pollution offsets than a conventional collector. In addition if 50% penetration of residential nanofluid based solar collector systems for hot water heating could be achieved in Phoenix, Arizona over 1 million metric tons of CO2 would be offset per year.

  6. Thermal performance of small solar domestic hot water systems in theory, in the laboratory and in practice

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    for poor thermal performances of systems tested in practice are given. Based on theoretical calculations the negative impact on the thermal performance, due to a large number of different parameter variations are given. Recommendations for future developments of small solar domestic hot water systems......The aim of the project is to present results of measurements and theoretical calculations for solar domestic hot water systems installed and tested in the laboratory and in practice. The solar domestic hot water systems from which results are presented are all based on small tanks. Further, reasons...

  7. Study on Thermal Performance Assessment of Solar Hot Water Systems in Malaysia

    Directory of Open Access Journals (Sweden)

    Sulaiman Shaharin Anwar

    2014-07-01

    Full Text Available Solar Hot Water Systems (SHWS are gaining popularity in Malaysia due to increasing cost of electricity and also awareness of environmental issues related to the use of fossil fuels. The introduction of solar hot water systems in Malaysia is an indication that it has potential market. However, there is a need for a proper methodology for rating the energy performance of these systems. The main objective of this study is to assess the thermal performance of several SHWS subject to four different locations in Malaysia using combined direct measurement and computer modelling using the TRNSYS simulation program. The results showed distinct differences in performance of the systems as a result of locations and manufacturers. The findings could be used further in developing an acceptable rating system for SHWS in Malaysia.

  8. System Design Package for SIMS Prototype System 3, Solar Heating and Domestic Hot Water

    Science.gov (United States)

    1978-01-01

    A collation of documents and drawings are presented that describe a prototype solar heating and hot water system using liquid flat plate collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system.

  9. System design package for IBM system one: solar heating and domestic hot water

    Science.gov (United States)

    1977-01-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage. The system was designed for installation into a single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system was packaged for evaluation of the system with information sufficient to assemble a similar system.

  10. Modelling a directly coupled photovoltaic pumping system in a solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Y.; Fraisse, G. [Savoy Univ., Le Bourget du lac (FR). Design Optimization and Environmental Engineering Laboratory (LOCIE)

    2008-07-01

    This paper presents a photovoltaic (PV) powered pumping system applying in a solar domestic hot water (SDHW) system. Two circulators ('Standard' and 'Solar') are employed respectively. A new model of circulator is developed in TRNSYS based on a 'Standard' type that consists of a DC-brushless motor and a centrifugal pump. Model validation is carried out by comparing with the experimental measurement. The experimental performance of these two circulators is analyzed on the aspects of startup and the stable operation stage. (orig.)

  11. Solar Heating of Buildings and Domestic Hot Water. Revision.

    Science.gov (United States)

    1980-05-01

    gaseous state. These engines operate on various cycles, including the Stirling and Brayton cycles. For relatively low thermal energy input temperatures...are air and water. The basic concept is to dehu- midify air with a desiccant, evaporatively cool the dehumidified air, and * regenerate the desiccant... regenerating it for continuation of the process. Desiccant systems have faced problems of high parasitic power and large space requirements relative to

  12. Solar heating and hot water system installed at Municipal Building complex, Abbeville, South Carolina

    Science.gov (United States)

    1979-01-01

    Information on the solar energy system installed at the new municipal building for the City of Abbeville, SC is presented, including a description of solar energy system and buildings, lessons learned, and recommendations. The solar space heating system is a direct air heating system. The flat roof collector panel was sized to provide 75% of the heating requirement based on an average day in January. The collectors used are job-built with two layers of filon corrugated fiberglass FRP panels cross lapped make up the cover. The storage consists of a pit filled with washed 3/4 in - 1 1/2 in diameter crushed granite stone. The air handler includes the air handling mechanism, motorized dampers, air circulating blower, sensors, control relays and mode control unit. Solar heating of water is provided only those times when the hot air in the collector is exhausted to the outside.

  13. Development and construction of the novel solar thermal desiccant cooling system incorporating hot water production

    Energy Technology Data Exchange (ETDEWEB)

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi; Takaki, Rie [Faculty of Engineering, Tohoku University, Sendai 980-8579 (Japan); Satake, Akira [Technical Research Institute, Maeda Corporation, Tokyo 179-8914 (Japan); Yoshie, Ryuichiro [Faculty of Engineering, Tokyo Polytechnic University, Atsugi 243-0297 (Japan); Baba, Seizo [Earth Clean Tohoku Co. Ltd., Sendai 984-0038 (Japan)

    2010-02-15

    This paper reports the development and construction of the novel solar cooling and heating system. The system consists of the thermal energy subsystem and the desiccant cooling subsystem. The system utilizes both the cheaper nighttime electric energy and the free daytime solar energy. The system is conceptualized to produce both cooling during summer daytime and hot water production during winter. Testing and evaluation of the system had been done to determine its operational procedure and performance. Based on the results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage. The desiccant cooling subsystem reduced both the temperature and the humidity content of the air using solar energy with a minimal amount of back-up electric energy. The system however, needs further investigation under real conditions. (author)

  14. An experimental investigation with artificial sunlight of a solar hot-water heater

    Science.gov (United States)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot water heater in a solar simulator to determine basic performance characteristics of a traditional type of flat plate collector, with and without side reflectors (to increase the solar flux). Information on each of the following was obtained; (1) the effect of flow and incidence angle on the efficiency of a flat plate collector (but only without side reflectors); (2) transient performance under flow and nonflow conditions; (3) the effectiveness of reflectors to increase collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning; and (4) the limits of applicability of a collector efficiency correlation based on the Hottel Whillier equation.

  15. Thermal Energy Storage using PCM for Solar Domestic Hot Water Systems: A Review

    Science.gov (United States)

    Khot, S. A.; Sane, N. K.; Gawali, B. S.

    2012-06-01

    Thermal energy storage using phase chase materials (PCM) has received considerable attention in the past two decades for time dependent energy source such as solar energy. From several experimental and theoretical analyses that have been made to assess the performance of thermal energy storage systems, it has been demonstrated that PCM-based systems are reliable and viable options. This paper covers such information on PCMs and PCM-based systems developed for the application of solar domestic hot water system. In addition, economic analysis of thermal storage system using PCM in comparison with conventional storage system helps to validate its commercial possibility. From the economic analysis, it is found that, PCM based solar domestic hot water system (SWHS) provides 23 % more cumulative and life cycle savings than conventional SWHS and will continue to perform efficiently even after 15 years due to application of non-metallic tank. Payback period of PCM-based system is also less compared to conventional system. In conclusion, PCM based solar water heating systems can meet the requirements of Indian climatic situation in a cost effective and reliable manner.

  16. Hot water from the sun: a consumer guide to solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Beth

    2005-02-15

    The following topics are discussed: how solar water heaters work, making good use of the sun, estimating costs and savings, choosing the right dealer/installer, choosing the right system, warranties and contracts, getting a good installation, and living with your solar energy system. The appendices discuss system performance and durability, and provide sources of additional information on solar energy and its applications. (MHR)

  17. Comparison of some results of program SHOW with other solar hot water computer programs

    Science.gov (United States)

    Young, M. F.; Baughn, J. W.

    Subroutines and the driver program for the simulation code SHOW (solar hot water) for solar thermosyphon systems are discussed, and simulations are compared with predictions by the F-CHART and TRNSYS codes. SHOW has the driver program MAIN, which defines the system control logic for choosing the appropriate system subroutine for analysis. Ten subroutines are described, which account for the solar system physical parameters, the weather data, the manufacturer-supplied system specifications, mass flow rates, pumped systems, total transformed radiation, load use profiles, stratification in storage, an electric water heater, and economic analyses. The three programs are employed to analyze a thermosiphon installation in Sacramento with two storage tanks. TRNSYS and SHOW were in agreement and lower than F-CHARt for annual predictions, although significantly more computer time was necessary to make TRNSYS converge.

  18. Application of solar energy to the supply of hot water for textile dyeing. Final report, CDRL/PA 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-01

    The design plan for a solar process hot water system for a textile dye beck at Riegel Textile Corporation's LaFrance, South Carolina, facilities is presented. The solar system consists of 396 GE model TC 100 evacuated tube collector modules arranged in a ground mounted array with a total collector area of 6680 square feet. The system includes an 8000-gallon hot water storage tank. Systems analyses, specification sheets, performance data, and an economic evaluation of the proposed system are presented. (WHK)

  19. Solar heating, cooling, and hot water systems installed at Richland, Washington. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Project Sunburst is a demonstration system for solar space heating and cooling and solar hot water heating for a 14,400 square foot office building in Richland, Washington. The project is part of the US Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid--liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building to reject surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program has been provided from the beginning of the program and has resulted in numerous visitors and tour groups.

  20. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk

    2012-05-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  1. Technology Solutions for New and Existing Homes Case Study: Addressing Multifamily Piping Losses with Solar Hot Water

    Energy Technology Data Exchange (ETDEWEB)

    D. Springer, M. Seitzler, and C. Backman

    2016-12-01

    Sun Light & Power, a San Francisco Bay Area solar design-build contractor, teamed with the U.S. Department of Energy’s Building America partner the Alliance for Residential Building Innovation (ARBI) to study this heat-loss issue. The team added three-way valves to the solar water heating systems for two 40-unit multifamily buildings. In these systems, when the stored solar hot water is warmer than the recirculated hot water returning from the buildings, the valves divert the returning water to the solar storage tank instead of the water heater. This strategy allows solar-generated heat to be applied to recirculation heat loss in addition to heating water that is consumed by fixtures and appliances.

  2. The Use of Solar Energy for Preparing Domestic Hot Water in a Multi-Storey Building

    Directory of Open Access Journals (Sweden)

    Giedrius Šiupšinskas

    2012-12-01

    Full Text Available The article analyses the possibilities of solar collectors used for a domestic hot water system and installed on the roofs of modernized multi-storey buildings under the existing climate conditions. A number of combinations of flat plate and vacuum solar collectors with accumulation tank systems of various sizes have been examined. Heat from the district heating system is used as an additional heat source for preparing domestic hot water. The paper compares calculation results of energy and economy regarding the combinations of flat plate and vacuum solar collectors and the size of the accumulation tank. The influence of variations in the main indicators on the final economic results has also been evaluated. Research has been supported applying EC FP7 CONCERTO program (‘‘Sustainable Zero Carbon ECO-Town Developments Improving Quality of Life across EU - ECO-Life’’ (ECO-Life Project Contract No. TREN/FP7EN/239497/”ECOLIFE”.Article in Lithuanian

  3. Numerical simulation of a parabolic trough solar collector for hot water and steam generation

    Science.gov (United States)

    Hachicha, Ahmed Amine

    2016-05-01

    Parabolic trough solar collectors (PTCs) are currently one of the most mature and prominent solar technology for the production of electricity. In order to reduce the electricity cost and improve the overall efficiency, Direct Steam generation (DSG) technology can be used for industrial heat process as well as in the solar fields for electricity production. In the last decades, this technology is experiencing an important development last decades and it is considered as one of the most feasible process for the next generation of power plants using PTCs. A numerical model based on Finite Volume Method (FVM) balance is presented to predict the thermal behavior of a parabolic trough solar collector used for hot water and steam generation. The realistic non-uniform solar flux is calculated in a pre-processing task and inserted to the general model. A numerical-geometrical method based on ray trace and FVM techniques is used to determine the solar flux distribution around the absorber tube with high accuracy.

  4. Analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The object of this study was dynamic modeling, simulation and optimum design of solar DHW (domestic hot water) systems, with respect to different whether conditions, and accurate dynamic behaviour of the heat load. Special attention was paid to systems with thermosyphon and drain-back design. The solar radiation in Beijing (China) and in Denmark are analyzed both by theoretical calculations and the analysis of long-term measurements. Based on the weather data from the Beijing Meteorological Station during the period of 1981-1993, a Beijing Test Reference Year has been formulated by means of statistical analysis. A brief introduction about the Danish Test Reference Year and the Design Reference Year is also presented. In order to investigate the heat loss as a part of the total heat load, dynamic models for distribution networks have been developed, and simulations have been carried out for typically designed distribution networks of the circulation type. The influence of operation parameters such as the tank outlet temperature, the hot-water load and the load pattern, on the heat loss from the distribution networks in presented. It was found that the tank outlet temperature has a significant influence on the heat loss from a circulation type of distribution network, while the hot-water load and the load pattern have no obvious effect. Dynamic models of drain-back tanks, both as a separated tank and combined with a mantle tank, have been developed and presented. Models of the other basic components commonly used in solar DHW systems, such as flat-plate collectors, connection pipes, storage tanks with a heat exchanger spiral, and controllers, are also described. (LN) 66 refs.

  5. Smart solar domestic hot water systems. Development and test; Intelligente solvarmeanlaeg. Udvikling og afproevning

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, E.; Knudsen, S.; Furbo, S.; Vejen, N.K.

    2001-07-01

    The purpose of the project described in this report is to develop and test smart solar domestic hot water systems (SDHW systems) where the energy supply from the auxiliary energy supply system is controlled in a flexible way fitted to the hot water consumption in such a way, that the SDHW systems are suitable for large as well as small hot water demands. In a smart SDHW system the auxiliary energy supply system is controlled in a smart way. The auxiliary energy supply system heats up the water in the hot water tank from the top and only the hot water volume needed by the consumers is heated. Further the water is heated immediately before tapping. The control system includes a number of temperature sensors which cover the temperatures in the auxiliary heated volume. Based on these temperatures the energy content in the hot water tank is calculated. Only water heated to a temperature above 50 deg. C contributes to the total energy content in the hot water tank. Furhter the control system includes a timer that only allows the auxiliary energy supply system to be active in certain time periods and only if the energy content in the hot water tank is lower than wanted. In this way the water in the tank is heated immediately before the expected time of tapping and only the hot water volume needed is heated. The report is divided into five main sections. The sections deals with: Developing and testing storage tanks, laboratory test of SDHW systems based on some of the developed storage tanks, validation of simulation programs for smart solar heating systems, optimisation of system design and control strategy and measurements on two smart SDHW systems installed in single family houses. In all the developed hot water tanks, attempt is made to heat the water in the tank from the top of the tank and not as in traditional tanks where the water is heated from the lowest level of the auxiliary energy supply system, normally a helix or a electrical heating element placed in the

  6. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  7. Partial results summary for solar domestic hot water monitoring in Pennsylvania

    Science.gov (United States)

    Aungst, W. K.

    Installation procedures, monitoring practices, and results of performance evaluations of 50 HUD-sponsored residential solar flat plate collector systems studied in the field are summarized. The systems consisted of antifreeze, drain-down, and air freeze protection schemes, featured either one- or two-tank thermal storage, and were either roof- or ground-mounted. Residents kept daily records of water flow, temperature, kWh, and elapsed time. The HUD program goals were that one-half of the household daily water needs would be heated by the solar system. An average of 34.5% of the hot water energy was found, although a coefficient of performance of 1.40 was also found, compared to 0.78 and 0.82 for nonsolar water heaters. An average of 9% rate of return on investment was calculated for the solar systems, noting that system efficiencies ranged from 7-79.8%, and the rates of return ranged from 1-22.4%.

  8. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Bryan J.; Chvala, William D.

    2010-09-30

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  9. Enhancement of natural circulation type domestic solar hot water system performance by using a wind turbine

    Science.gov (United States)

    Ramasamy, K. K.; Srinivasan, P. S. S.

    2011-08-01

    Performance improvement of existing 200 litres capacity natural convection type domestic solar hot water system is attempted. A two-stage centrifugal pump driven by a vertical axis windmill having Savonius type rotor is added to the fluid loop. The windmill driven pump circulates the water through the collector. The system with necessary instrumentation is tested over a day. Tests on Natural Circulation System (NCS) mode and Wind Assisted System (WAS) mode are carried out during January, April, July and October, 2009. Test results of a clear day are reported. Daily average efficiency of 25-28 % during NCS mode and 33-37 % during WAS mode are obtained. With higher wind velocities, higher collector flow rates and hence higher efficiencies are obtained. In general, WAS mode provides improvements in efficiency when compared to NCS mode.

  10. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    Science.gov (United States)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  11. Saving cost in solar water heaters by means of integration of the solar equipment in an existing hot water circulation loop; Kosteneinsparungen bei solaren Warmwasseranlagen durch Einbindung in die Warmwasserzirkulation. Vorstudie

    Energy Technology Data Exchange (ETDEWEB)

    Sitzmann, B.

    2001-07-01

    The implementation of solar water heaters in hot-water circulations for apartment buildings was examined. Models as well as investigations at 6 water supply systems in existing buildings show technically and economically opportunities for the proposed installation. Beside a reduction of the solar-piping length the proposed system shows higher opportunities for using existing hot water storage devices for solar energy storage. This is because of the energy transfer at the hot water storage devices from the existing in- and outlets instead of a heat exchanger. Today the proposed installation can be already classified as economic useful if the investment for piping and additional hot water storage device can be reduced in comparison to conventional solar water heaters. Further optimisation can be seen in the simple installation of the solar water heater to improve the economic efficiency of the proposed system. (author)

  12. Utilization of phase change materials in solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Mazman, Muhsin; Evliya, Hunay; Paksoy, Halime Oe. [Chemistry Dept., Art and Science Fac., Cukurova University, Balcali, Adana (Turkey); Cabeza, Luisa F.; Nogues, Miquel [Dept. Informatica i Eng. Industrial, Universitat de Lleida, Jaume II 69, 25001 Lleida (Spain); Mehling, Harald [ZAE Bayern, Division 1, Walther-Meissner-Str. 6, 85748 Garching (Germany)

    2009-06-15

    Thermal energy storage systems which keep warm and cold water separated by means of gravitational stratification have been found to be attractive in low and medium temperature thermal storage applications due to their simplicity and low cost. This effect is known as thermal stratification, and has been studied experimentally thoughtfully. This system stores sensible heat in water for short term applications. Adding PCM (phase change material) modules at the top of the water tank would give the system a higher storage density and compensate heat loss in the top layer because of the latent heat of PCM. Tests were performed under real operating conditions in a complete solar heating system that was constructed at the University of Lleida, Spain. In this work, new PCM-graphite compounds with optimized thermal properties were used, such as 80:20 weight percent ratio mixtures of paraffin and stearic acid (PS), paraffin and palmitic acid (PP), and stearic acid and myristic acid (SM). The solar domestic hot water (SDHW) tank used in the experiments had a 150 L water capacity. Three modules with a cylindrical geometry with an outer diameter of 0.176 m and a height of 0.315 m were used. In the cooling experiments, the average tank water temperature dropped below the PCM melting temperature range in about 6-12 h. During reheating experiments, the PCM could increase the temperature of 14-36 L of water at the upper part of the SDHW tank by 3-4 C. This effect took place in 10-15 min. It can be concluded that PS gave the best results for thermal performance enhancement of the SDHW tank (74% efficiency). (author)

  13. Solar heating and hot water system for the central administrative office facility. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    Progress on the solar heating and hot water system for the central administrative office facility of the Lincoln Housing Authority, Lincoln, NE is covered. An acceptance test plan is presented and the results of the test are tabulated. A complete blueprint of the system as built is provided. The monitoring system is drawn and settings and installation are described. An operation and maintenance manual discusses procedures for start up, shut down and seasonal changeover and include a valve list and pictures and specifications of components and materials used. Photographs of the final installation are included, and technical data and performance data are given. Finally, there is a brief description of system design and operation and a discussion of major maintenance problems encountered and their solutions. (LEW)

  14. Investigation of a low flow solar heating system for space heating and domestic hot water supply for Aidt Miljø A/S

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1997-01-01

    A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility.......A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility....

  15. Investigation of a solar heating system for space heating and domestic hot water supply for Sol&Træ A.m.b.a

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility.......A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility....

  16. The DST method for solar domestic hot water systems - Research and development for ISO and CEN standards

    NARCIS (Netherlands)

    Visser, H.; Ree, B.G.C. van der

    1996-01-01

    The Dynamic System Test (DST) method for performance characterization of solar domestic hot water (SDHW) systems has been the subject of international research for a number of years. At present, several countries are using the method and it is being standardized on international and European levels.

  17. Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2004-01-01

    Experimental and numerical investigations of vertical mantle heat exchangers for solar domestic hot water (SDHW) systems have been carried out. Two different inlet positions are investigated. Experiments based on typical operation conditions are carried out to investigate how the thermal stratifi......Experimental and numerical investigations of vertical mantle heat exchangers for solar domestic hot water (SDHW) systems have been carried out. Two different inlet positions are investigated. Experiments based on typical operation conditions are carried out to investigate how the thermal...... stratification is affected by different positions of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the tank is analysed by CFD-simulations. Furthermore, side-by-side laboratory tests have been carried out with SDHW systems with different mantle...

  18. Low-Cost Solar Domestic Hot Water Systems for Mild Climates

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Christensen, C.; Merrigan, T.; Hewett, R.; Jorgensen, G.

    2005-01-01

    In FY99, Solar Heating and Lighting set the goal to reduce the life-cycle cost of saved-energy for solar domestic hot water (SDHW) systems in mild climates by 50%, primarily through use of polymer technology. Two industry teams (Davis Energy Group/SunEarth (DEG/SE) and FAFCO) have been developing un-pressurized integral-collector-storage (ICS) systems having load-side heat exchangers, and began field-testing in FY04. DEG/SE?s ICS has a rotomolded tank and thermoformed glazing. Based upon manufacturing issues, costs, and poor performance, the FAFCO team changed direction in late FY04 from an un-pressurized ICS to a direct thermosiphon design based upon use of pool collectors. Support for the teams is being provided for materials testing, modeling, and system testing. New ICS system models have been produced to model the new systems. A new ICS rating procedure for the ICS systems is undergoing testing and validation. Pipe freezing, freeze protection valves, and overheating have been tested and analyzed.

  19. Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

  20. Assembly and comparison of available solar hot water system reliability databases and information.

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

    2009-05-01

    Solar hot water (SHW) systems have been installed commercially for over 30 years, yet few quantitative details are known about their reliability. This report describes a comprehensive analysis of all of the known major previous research and data regarding the reliability of SHW systems and components. Some important conclusions emerged. First, based on a detailed inspection of ten-year-old systems in Florida, about half of active systems can be expected to fail within a ten-year period. Second, valves were identified as the probable cause of a majority of active SHW failures. Third, passive integral and thermosiphon SHW systems have much lower failure rates than active ones, probably due to their simple design that employs few mechanical parts. Fourth, it is probable that the existing data about reliability do not reveal the full extent of fielded system failures because most of the data were based on trouble calls. Often an SHW system owner is not aware of a failure because the backup system silently continues to produce hot water. Thus, a repair event may not be generated in a timely manner, if at all. This final report for the project provides all of the pertinent details about this study, including the source of the data, the techniques to assure their quality before analysis, the organization of the data into perhaps the most comprehensive reliability database in existence, a detailed statistical analysis, and a list of recommendations for additional critical work. Important recommendations include the inclusion of an alarm on SHW systems to identify a failed system, the need for a scientifically designed study to collect high-quality reliability data that will lead to design improvements and lower costs, and accelerated testing of components that are identified as highly problematic.

  1. Development of a gas backup heater for solar domestic hot-water systems. Final report, April 1978-April 1980

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, D.J.; Grunes, H.E.; de Winter, F.; Armstrong, P.R.

    1980-06-01

    A comprehensive program was undertaken to develop a unique gas fired backup for solar domestic hot water systems. Detailed computer design tools were written. A series of heat transfer experiments were performed to characterize the performance of individual components. A full scale engineering prototype, including the solar preheat tank and solar heat exchanger, was designed, fabricated and subjected to limited testing. Firing efficiency for the backup system was found to be 81.4% at a firing rate of 50,000 Btu/h. Long term standby losses should be negligible.

  2. Application of solar energy to the supply of industrial process hot water. Aerotherm final report, 77-235. [Can washing in Campbell Soup plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The objectives of the Solar Industrial Process Hot Water Program are to design, test, and evaluate the application of solar energy to the generation and supply of industrial process hot water, and to provide an assessment of the economic and resource benefits to be gained. Other objectives are to stimulate and give impetus to the use of solar energy for supplying significant amounts of industrial process heat requirements. The plant selected for the design of a solar industrial process hot water system was the Campbell Soup facility in Sacramento, California. The total hot water demand for this plant varies between 500 and 800 gpm during regular production shifts, and hits a peak of over 1,000 gpm for approximately one hour during the cleanup shift. Most of the hot water is heated in the boiler room by a combination of waste heat recovery and low pressure (5 psi) steam-water heat exchangers. The hot water emerges from the boiler room at a temperature between 160/sup 0/F and 180/sup 0/F and is transported to the various process areas. Booster heaters in the process areas then use low pressure (5 psi) or medium pressure (20 psi) steam to raise the temperature of the water to the level required for each process. Hot water is used in several processes at the Campbell Soup plant, but the can washing process was selected to demonstrate the feasibility of a solar hot water system. A detailed design and economic analysis of the system is given. (WHK)

  3. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    A cooperative agreement was negotiated in April 1978 for the installation of a space and domestic hot water system at Southeast of Saline, Kansas Unified School District 306, Mentor, Kansas. The solar system was installed in a new building and was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The collectors are liquid flat plate. They are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. This final report, which describes in considerable detail the solar heating facility, contains detailed drawings of the completed system. The facility was declared operational in September 1978, and has functioned successfully since.

  4. Report on the analysis of field data relating to the reliability of solar hot water systems.

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

    2011-07-01

    Utilities are overseeing the installations of thousand of solar hot water (SHW) systems. Utility planners have begun to ask for quantitative measures of the expected lifetimes of these systems so that they can properly forecast their loads. This report, which augments a 2009 reliability analysis effort by Sandia National Laboratories (SNL), addresses this need. Additional reliability data have been collected, added to the existing database, and analyzed. The results are presented. Additionally, formal reliability theory is described, including the bathtub curve, which is the most common model to characterize the lifetime reliability character of systems, and for predicting failures in the field. Reliability theory is used to assess the SNL reliability database. This assessment shows that the database is heavily weighted with data that describe the reliability of SHW systems early in their lives, during the warranty period. But it contains few measured data to describe the ends of SHW systems lives. End-of-life data are the most critical ones to define sufficiently the reliability of SHW systems in order to answer the questions that the utilities pose. Several ideas are presented for collecting the required data, including photometric analysis of aerial photographs of installed collectors, statistical and neural network analysis of energy bills from solar homes, and the development of simple algorithms to allow conventional SHW controllers to announce system failures and record the details of the event, similar to how aircraft black box recorders perform. Some information is also presented about public expectations for the longevity of a SHW system, information that is useful in developing reliability goals.

  5. Testing and analysis of load-side immersed heat exchangers for solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, R.B.; Bingham, C.E.

    1987-10-01

    This report describes work to determine the performance of load-side heat exchangers for use in residential solar domestic hot water systems. We measured the performance of four heat exchangers: a smooth coil and a finned coil having heat transfer areas of 2.5 m/sup 2/ (26 ft/sup 2/) and those having areas of 1.7 m/sup 2/ (19 ft/sup 2/). A numerical model using the thermal network program MITAS was constructed, and results were compared to the experimental results. Research showed a smooth coil with only 70% of the surface area of a finned coil performed better than the finned coil. Also, load-side heat exchangers can maintain and enhance stratification in storage tanks, permitting the use of control strategies that take advantage of stratified storage tanks to increase system performance. The analytical model, which agreed reasonably well with the experimental results, was used to vary heat exchanger flow rate and area and initial tank temperature for both a smooth- and a finned-coil heat exchanger. Increasing the heat exchanger flow rate and area results in higher heat transfer rates but not necessarily optimal performance. Lower initial tank temperatures resulted in reduced tank stratification. The smooth heat exchanger outperformed the finned heat exchanger with the same outside surface area. 15 refs., 37 figs., 9 tabs.

  6. Retrofitting Domestic Hot Water Heaters for Solar Water Heating Systems in Single-Family Houses in a Cold Climate: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Björn Karlsson

    2012-10-01

    Full Text Available One of the biggest obstacles to economic profitability of solar water heating systems is the investment cost. Retrofitting existing domestic hot water heaters when a new solar hot water system is installed can reduce both the installation and material costs. In this study, retrofitting existing water heaters for solar water heating systems in Swedish single-family houses was theoretically investigated using the TRNSYS software. Four simulation models using forced circulation flow with different system configurations and control strategies were simulated and analysed in the study. A comparison with a standard solar thermal system was also presented based on the annual solar fraction. The simulation results indicate that the retrofitting configuration achieving the highest annual performance consists of a system where the existing tank is used as storage for the solar heat and a smaller tank with a heater is added in series to make sure that the required outlet temperature can be met. An external heat exchanger is used between the collector circuit and the existing tank. For this retrofitted system an annual solar fraction of 50.5% was achieved. A conventional solar thermal system using a standard solar tank achieves a comparable performance for the same total storage volume, collector area and reference conditions.

  7. Retrofitted Solar Domestic Hot Water Systems for Swedish Single-Family Houses—Evaluation of a Prototype and Life-Cycle Cost Analysis

    Directory of Open Access Journals (Sweden)

    Luis Ricardo Bernardo

    2016-11-01

    Full Text Available According to recent technology road maps, system cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. Previous studies have investigated such retrofitting, using theoretical simulations and laboratory tests, but no actual installations were made and tested in practice. This article describes the installation, measured performance and cost effectiveness of a retrofitting solution that converts existing domestic hot water heaters to a solar domestic hot water system. The measured performance is characterised by the monthly and annual solar fractions. The cost effectiveness is evaluated by a life-cycle cost analysis, comparing the retrofitted system to a conventional solar domestic hot water system and the case without any solar heating system. Measurements showed that approximately 50% of the 5000 kWh/year of domestic hot water consumption was saved by the retrofitted system in south Sweden. Such savings are in agreement with previous estimations and are comparable to the energy savings when using a conventional solar domestic hot water system. The life-cycle cost analysis showed that, according to the assumptions and given climate, the return on investment of the retrofitted system is approximately 17 years, while a conventional system does not reach profitability during its lifetime of 25 years.

  8. Profitability Variations of a Solar System with an Evacuated Tube Collector According to Schedules and Frequency of Hot Water Demand

    Directory of Open Access Journals (Sweden)

    Carlos J. Porras-Prieto

    2016-12-01

    Full Text Available The use of solar water heating systems with evacuated tube collectors has been experiencing a rapid growth in recent years. Times when there is demand for hot water, the days of use and the volumes demanded may determine the profitability of these systems, even within the same city. Therefore, this paper characterizes the behavior of a solar system with active circulation with the objective of determining the profitability variations according to the timing and schedule of demand. Through a simplified methodology based on regression equations, calculated for each hour of the day based on data from an experimental facility, the useful energy is estimated from the time and frequency of the demand for hot water at 60 °C. The analysis of the potential profitability of the system in more than 1000 scenarios analyzed shows huge differences depending on the number of days when the water is demanded, the time when demand occurs, the irradiation and the average price of energy. In cities with high irradiation and high energy prices, the system could be profitable even in homes where it is used only on weekends. The study of profitability in a building of 10 homes shows that by applying an average European household’s profile for hot water demand, levels close to full potential would be reached; for this, it is necessary to optimize the collection surface.

  9. Application of solar hot water and geothermal principles to closed-cycle aquaculture

    Science.gov (United States)

    Yanzito, R. A.

    1981-04-01

    The design of an underground silo where warm water food fish could be raised to market size under controlled conditions. The building and solar concept analysis for the closed cycle aquaculture system are described. Energy conservation features of the design include Earth berming and insulation of the production silo and enclosure, a waste water reclaim system and a solar heating system. Much of the water surface area is covered with removable plants to minimize evaporative heat losses. An energy conservation analysis is also reported and the F-Chart computer program is described. The system chosen utilizes single glazed flat plate collectors in a closed loop antifreeze system. Makeup water is introduced during an 8 hour period each day. Solar energy is transferred from the antifreeze solution to the makeup water after it leaves the waste water heat exchanger.

  10. Solar heating and hot water system installed at Charlotte Memorial Hospital, Charlotte, North Carolina

    Science.gov (United States)

    1981-01-01

    Detailed information regarding the design and installation of a heating and hot water system in a commercial application is given. This information includes descriptions of system and building, design philosophy, control logic operation modes, design and installation drawing and a brief description of problems encountered and their solutions.

  11. System design package for SIMS prototype system 4, solar heating and domestic hot water

    Science.gov (United States)

    1978-01-01

    The system consisted of a modular designed prepackaged solar unit, containing solar collectors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping, and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system were packaged for evaluation.

  12. Solar heating, cooling, and hot water systems installed at Richland, Washington

    Science.gov (United States)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  13. In-situ parameter estimation for solar domestic hot water heating systems components. Final report, June 1995--May 1996

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.R.

    1997-03-01

    Three different solar domestic hot water systems are being tested at the Colorado State University Solar Energy Applications Laboratory; an unpressurized drain-back system with a load side heat exchanger, an integral collector storage system, and an ultra low flow natural convection heat exchanger system. The systems are fully instrumented to yield data appropriate for in-depth analyses of performance. The level of detail allows the observation of the performance of the total system and the performance of the individual components. This report evaluates the systems based on in-situ experimental data and compares the performances with simulated performances. The verification of the simulations aids in the rating procedure. The whole system performance measurements are also used to analyze the performance of individual components of a solar hot water system and to develop improved component models. The data are analyzed extensively and the parameters needed to characterize the systems fully are developed. Also resulting from this indepth analysis are suggested design improvements wither to the systems or the system components.

  14. Solar-powered hot-air system

    Science.gov (United States)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  15. Development of Hot Water Solar Oven for Low Temperature Thermal Processes

    Directory of Open Access Journals (Sweden)

    Segun R. BELLO

    2009-07-01

    Full Text Available The most useful form of the Hottel-Whiller-Bliss generalized performance equations for flat plate collector utilizing heat removal factor and loss coefficients is used to model a solar oven- water heating system for low thermal process application. The water heating system was designed, tested and evaluated with a daily collector efficiency of 51.82%, an average daily solar radiation of 689.23 (w/ºc per day and a useful gain by collector of 563.85 (w/ºc. Loss in collector is 116.39 (w/ºc and total average daily heat gain by water in collector is 292.26 (w/ºc. Average Daily storage heat capacity of 582.83 (KJ and the daily convected heat delivered to test chamber is 147.07 (KJ. The overall System efficiency of 25.24% was obtained.

  16. Hybrid solar-wind installation prospects for hot water and heating supply of private homes in the Absheron peninsula conditions of the Republic of Azerbaijan

    Directory of Open Access Journals (Sweden)

    Arzu Huseynov

    2015-12-01

    Full Text Available This paper analyses the environmental problems arising from the use of traditional energy resources for the production of electricity and heat. The advantages of replacing conventional energy resources and shifting to wind and solar energy technologies are explained. The possibilities of the combined use of solar and wind energy to provide an average family of 5 people with hot water and heating are explored. Experimental results were obtained from full-scale tests under prevailing conditions at Baku. Solar-wind hybrid systems for heating and hot water were designed and developed at the Institute of Radiation Problems of the Azerbaijan National Academy of Sciences. The paper also examines the possibility of supplying a family of 5 people with hot water produced by solar energy year-round and presents the results of the calculation of the energy balance of such facility.DOI: http://dx.doi.org/10.5755/j01.erem.71.3.12274

  17. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  18. Test and evaluation of Fern Engineering Company, Incorporated, solar heating and hot water system. [structural design criteria and system effectiveness

    Science.gov (United States)

    1979-01-01

    Tests, test results, examination and evaluation by Underwriters Laboratory, Inc., of a single family solar heating and hot water system consisting of collector, storage, control, transport, and data acquisition are presented. The structural characteristics of the solar flat plate collectors were evaluated according to snow and wind loads indicated in various building codes to determine their suitability for use both Michigan and Pennsylvania where prototype systems were installed. The flame spread classification of the thermal insulation is discussed and the fire tests conducted on components are described. The operation and dielectrics withstand tests of the energy transport module indicate the module is capable of rated air delivery. Tests of the control panel indicate the relay coil temperatures exceed the temperature limits allowed for the insulating materials involved.

  19. Retrofitting Conventional Electric Domestic Hot Water Heaters to Solar Water Heating Systems in Single-Family Houses—Model Validation and Optimization

    Directory of Open Access Journals (Sweden)

    Luis R. Bernardo

    2013-02-01

    Full Text Available System cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. In this study, the TRNSYS simulation models of the retrofitting solar thermal system were validated against measurements. Results show that the validated models are in good agreement with measurements. On an annual basis a deviation of 2.5% out of 1099 kWh was obtained between the auxiliary energy from results and from the simulation model for a complete system. Using the validated model a system optimization was carried out with respect to control strategies for auxiliary heating, heat losses and volume of auxiliary storage. A sensitivity analysis was carried out regarding different volumes of retrofitted hot water boiler, DHW profiles and climates. It was estimated that, with adequate improvements, extended annual solar fractions of 60%, 78% and 81% can be achieved for Lund (Sweden, Lisbon (Portugal and Lusaka (Zambia, respectively. The correspondent collector area was 6, 4 and 3 m2, respectively. The studied retrofitted system achieves a comparable performance with conventional solar thermal systems with the potential to reduce the investment cost.

  20. Sanitary hot water; Eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Cegibat, the information-recommendation agency of Gaz de France for building engineering professionals, has organized this conference meeting on sanitary hot water to present the solutions proposed by Gaz de France to meet its clients requirements in terms of water quality, comfort, energy conservation and respect of the environment: quantitative aspects of the hot water needs, qualitative aspects, presentation of the Dolce Vita offer for residential buildings, gas water heaters and boilers, combined solar-thermal/natural gas solutions, key-specifications of hot water distribution systems, testimony: implementation of a gas hot water reservoir and two accumulation boilers in an apartment building for young workers. (J.S.)

  1. Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE

    Directory of Open Access Journals (Sweden)

    Nutakki Tirumala Uday Kumar

    2017-04-01

    Full Text Available Water is the most desirable and sparse resource in Gulf cooperation council (GCC region. Utilization of point-of-use (POU water treatment devices has been gaining huge market recently due to increase in knowledge of urban population on health related issues over contaminants in decentralized water distribution networks. However, there is no foolproof way of knowing whether the treated water is free of contaminants harmful for drinking and hence reliance on certified bottled water has increased worldwide. The bottling process right from treatment to delivery is highly unsustainable due to huge energy demand along the supply chain. As a step towards sustainability, we investigated various ways of coupling of membrane distillation (MD process with solar domestic heaters for co-production of domestic heat and pure water. Performance dynamics of various integration techniques have been evaluated and appropriate configuration has been identified for real scale application. A solar combi MD (SCMD system is experimentally tested for single household application for production 20 L/day of pure water and 250 L/day of hot water simultaneously without any auxiliary heating device. The efficiency of co-production system is compared with individual operation of solar heaters and solar membrane distillation.

  2. Testing of Solar Heated Domestic Hot Water System for Solarnor A/S

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1997-01-01

    The solar heating system from the Norwegian company SolarNor AS was tested in the Institutes test facility for SDHWsystems. The results of the test are given in the report.......The solar heating system from the Norwegian company SolarNor AS was tested in the Institutes test facility for SDHWsystems. The results of the test are given in the report....

  3. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...... in the heating system. The heat storage was tested in a heat storage test facility. The most important characteristics of the heat storage were determined by means of the tests and recommendations for the design of the heat storage were given....

  4. An economic and performance design study of solar preheaters for domestic hot water heaters in North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.B.; Smetana, F.O.

    1977-03-01

    The performance and estimated material costs for several solar preheaters for domestic hot water heaters using insolation levels present in North Carolina are presented. The effects of monthly variations in insolation and the direction of incident radiation are included. Demand is assumed at 13 gallons (49.2 liters) per day per person. The study shows that a closed circulation system with 82 gallons (310 liters) of preheated storage and 53.4 cu ft (4.94 cu m) of collector surface with single cover can be expected to cost about $800 and to repay it capital cost and interest (at 8%) in 5.2 years, assuming present electric rates increase at 5% per year.

  5. An economic and performance design study of solar preheaters for domestic hot water heaters in North Carolina

    Science.gov (United States)

    Jones, C. B.; Smetana, F. O.

    1977-01-01

    The performance and estimated material costs for several solar preheaters for domestic hot water heaters using isolation levels present in North Carolina are presented. The effects of monthly variations in isolation and the direction of incident radiation are included. Demand is assumed at 13 gallons (49.2 liters) per day per person. The study shows that a closed circulation system with 82 gallons (310 liters) of preheated storage and 53.4 cu ft (4.94 cu m) of collector surface with single cover can be expected to cost about $800 and to repay it capital cost and interest (at 8%) in 5.2 years, assuming present electric rates increase at 5% per year.

  6. Analysis of thermosyphon heat exchangers for use in solar domestic hot water heating systems

    Science.gov (United States)

    Dahl, Scott David

    1998-11-01

    A recent innovation in the solar industry is the use of thermosyphon heat exchangers. Determining the performance of these systems requires knowledge of how thermosyphon flow rate and heat exchanger performance vary with operating conditions. This study demonstrates that several thermosyphon heat exchanger designs operate in the laminar mixed convection regime. Empirical heat transfer and pressure drop correlations are obtained for three tube-in-shell heat exchangers (four, seven, and nine tube). Thermosyphon flow is on the shell side. Correlations are obtained with uniform heat flux on the tube walls and with a mixture of glycol and water circulating inside the tubes. Ranges of Reynolds, Prandtl, and Grashof numbers are 50 to 1800, 2.5 and 6.0, and 4×105 to 1×108, respectively. Nusselt number correlations are presented in a form that combines the contributions of forced and natural convection, Nu4Mixed=Nu4Forced+Nu4Natural. The Nusselt number is influenced by natural convection when the term Raq0.25/(Re0.5Pr0.33) is greater than unity. Pressure drop through these three designs is not significantly affected by mixed convection because most pressure drop losses are at the heat exchanger inlet and outlet. A comparison and discussion of the performance of several other heat exchanger designs (tube-in-shell and coil-in- shell designs) are presented. Generally, the coil-in- shell heat exchangers perform better than the tube-in- shell heat exchangers. Data from all heat exchanger designs is used to develop a new one-dimensional model for thermosyphon heat exchangers in solar water heating systems. The model requires two empirically determined relationships, pressure drop as a function of water mass flow rate and the overall heat transfer coefficient-area product (UA) as a function of Reynolds, Prandtl, and Grashof number. A testing protocol is presented that describes the procedure to obtain the data for the correlations. Two new TRNSYS component models are presented

  7. Testing of Solar Heated Domestic Hot Water System for Solahart Scandinavia ApS

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1997-01-01

    The solar heating system marketed by Solahart Scandinavia ApS was tested in the Institutes test facility for SDHWsystems. The test results are described in the report.......The solar heating system marketed by Solahart Scandinavia ApS was tested in the Institutes test facility for SDHWsystems. The test results are described in the report....

  8. Optimal operation by dynamic programming in a solar/electric hot-water system; Taiyonetsu/denryoku kyuto system no doteki keikakuho ni yoru saiteki un`yo

    Energy Technology Data Exchange (ETDEWEB)

    Edo, S.; Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    With regard to utilization of a solar/electric hot-water system, a discussion was given by using a dynamic programming method on operation of a system which minimizes power charge. The discussed system is an installation in a welfare facility accommodating 100 persons, where solar heat is stored in a heat storage tank from a heat collector, and utilized for hot water supply. If the solar heat is insufficient for required hot water quantity, the water is heated by using an electric heater. The discussion compared the system operation using the dynamic programming method with the following two systems: the operation method 1, which does not utilize insolation forecast and the operation method 2, in which insolation forecast is utilized and late-night electric power is utilized for heating water in shortage. As a result of the calculation, the operation using the dynamic programming method conducts heat storage by utilizing the late-night power even if insolation is sufficient in winter in order to suppress heating by utilizing late-night power for days with less insolation. Thus, suppression is given on excessive utilization of day-time power and on rise in annual maximum power demand. It was found that the present system reduces power consumption by 37.7% when compared with the operation method 1, and 22.7% when compared even with the operation method 2. 3 refs., 5 figs., 3 tabs.

  9. 太阳能-空气源热泵热水系统节能分析%SOLAR-AIR SOURCE HEAT PUMP HOT WATER SYSTEM ENERGY EFFICIENCY ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    王冠竹; 刘学来

    2011-01-01

    介绍了太阳能生活热水系统,以山东省为例,对太阳能热水器配备空气源热泵的热水系统进行了节能效益分析.结果表明,配备空气源热泵的太阳能热水系统回收期为4.21年,对我国走低碳经济之路有重要的参考价值.%This article describes the solar hot water system. It conducts the energy-saving benefit a-nalysis of solar energy -air source heat pump hot water system. The results show that the payback period of this system is 4.21 years. It has important reference value for going low-carbon economy road in China.

  10. Solar water heater design package

    Science.gov (United States)

    1981-01-01

    Package describes commercial domestic-hot-water heater with roof or rack mounted solar collectors. System is adjustable to pre-existing gas or electric hot-water house units. Design package includes drawings, description of automatic control logic, evaluation measurements, possible design variations, list of materials and installation tools, and trouble-shooting guide and manual.

  11. Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.

    Energy Technology Data Exchange (ETDEWEB)

    He, Hongbo (University of New Mexico, Albuquerque, NM); Vorobieff, Peter V. (University of New Mexico, Albuquerque, NM); Menicucci, David (University of New Mexico, Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Carlson, Jeffrey J.

    2012-06-01

    This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific

  12. The study on hot water and air conditioning integrated solar building system%太阳能热水空调建筑一体化系统

    Institute of Scientific and Technical Information of China (English)

    钟承尧; 王林茂; 严世胜; 颜丽娜

    2011-01-01

    设计了太阳能热水空调建筑一体化系统.该系统由2台冷水水冷机组、2个平板型太阳能集热器单元、1个贮热水箱、2个贮冷水箱和77台供冷终端组成,为海南省昌江县人民医院内儿科77个病房提供空调冷量和洗澡用热水.该系统初投资少,设备利用率高.经过1年的应用运行,取得了节约能源、减少对环境热污染的效果,为更好地推广应用太阳能探索一条新的路子.%The hot water and air-conditioning integrated solar building system is designed in this paper. The system is composed of 2 flat solar-energy collector units, 1 hot water storage tank, 2 chilled water storage tanks and 77 cold supplying terminals. It can provide air-conditioning cold capacity and hot water for bathing to 77 internal pediatrics wards of Renmin hospital in Changjiang country town, Hainan province. The system is small in initial investment and high in capacity utilization efficiency. After one year of operation, the effects of energy saving and thermal pollution reduction have been achieved, this could be a nova approach for utilizing solar energy.

  13. Validation of a simulation method for forced circulation type of solar domestic hot water heating systems; Kyosei junkangata taiyonetsu kyuto system simulation hoho no kensho

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Udagawa, M. [Kogakuin University, Tokyo (Japan); Matsumoto, T. [Yazaki Corp., Tokyo (Japan)

    1996-10-27

    Simulation of solar hot water systems using element model was conducted, in which computation of the convergence of apparatus characteristic values was performed every hour. For each apparatus, the outlet temperature was made a function of the inlet temperature on the basis of the heat balance, from which a simultaneous equation was derived and then solved for the determination of the outlet temperature for the computation of the quantity of heat collected by each apparatus. The actually measured system comprises a planar solar collector, heat storage tank, and heat collector piping. The measurement involved a direct heat collecting system with the medium running from the heat storage tank bottom layer, through the solar collector, and then back to the heat storage tank third layer, and an indirect heat collector system with a heat exchanger provided at the heat storage tank bottom layer. There was no substantial difference between the direct type and the indirect type with respect to the solar collector inlet and outlet temperatures, quantity of heat collected, and the fluctuation in heat storage tank inside temperature distribution relative to time. Difference occurred between the two in tank water temperature distribution, however, when water was extracted in great volume at a time. The quantity of the heat collected by each of the two and the daily integration of the same differed but a little from computed values. 4 refs., 6 figs., 4 tabs.

  14. Investigation and optimisation of heat storage tanks for low-flow SDHW systems[Solar Domestic Hot Water

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Soeren

    2004-07-01

    This thesis, 'Investigation and optimisation of heat storage tanks for low-flow SDHW systems', describes a study of the heat transfer and flow structure in vertical mantle heat exchangers for low-flow Solar Domestic Hot Water (SDHW) systems. The heat storage is a key component in SDHW systems and the vertical mantle heat exchanger is one of the most promising heat storage designs for low-flow SDHW systems. The study was carried out using a combination of experimental and numerical methods. Thermal experiments of mantle heat exchangers with different mantle inlet designs showed that the mantle inlet port with advantage can be located a distance from the top of the mantle. Consequently, the mantle heat exchangers marketed today can be improved by changing the mantle inlet position. The heat transfer and flow structure in mantle heat exchangers are rather complex and the thermal experiments were followed by investigations by means of advanced experimental and numerical techniques such as Particle Image Velocimetry (PIV) and Computational Fluid Dynamics (CFD). Using a transparent glass mantle tank, experimental flow visualisation was carried out with a PIV system. The flow structures inside the mantle and inside the tank were visualised and then compared with the flow structures predicted by CFD-models. The investigations showed that the CFD-models were able to model the flow in the mantle and in the tank correctly. The CFD-models were also validated by means of thermal experiments with a steel mantle tank. With the verified CFD-models, a parameter analysis was carried out for differently designed mantle heat exchangers for different typical conditions to reveal how the mantle tank parameters influence the flow structure and heat transfer in mantle heat exchangers. The heat transfer in the mantle near the mantle inlet port showed to be in the mixed convection regime, and as the distance from the inlet increased, natural convection started to dominate. The

  15. EXPETIMENTAL STUDY ON INDOOR SOLAR COOKER INTEGRATED SOLAR HOT WATER SYSTEM%室内太阳灶耦合太阳能热水系统的实验研究

    Institute of Scientific and Technical Information of China (English)

    尹宝泉; 王一平; 朱丽

    2013-01-01

    To solve the issues had using conditions and unstable performance of outdoor solar cooker,consideringthe surplus heat in summer but inadequate in winter,the thermal cascade utility system of indoor solar cooker and solar water heater was put forward.Experimental studies show that this system can not meet the need of hot water and meanwhile collect the higher thermal energy into the heat storage tank for cooking and hot water,so that realize the different temperature cascade use of solar energy.%为解决室外太阳灶使用条件恶劣及性能不稳定等问题,同时考虑到太阳能热水系统存在夏季热量过剩、冬季热量不足等天气条件制约,提出室内太阳灶耦合太阳能热水的热量梯级利用系统.通过实验研究可知,该系统在满足生活热水需求的同时,能收集中温热并将其存储在储热箱中,既可用于烹调,也可用于加热水,实现了太阳能中低温的梯级利用.

  16. 太阳能-空气复合热源热泵热水系统%Solar-air composite heat source heat pump hot water system

    Institute of Scientific and Technical Information of China (English)

    王岗; 全贞花; 赵耀华; 侯隆澍; 徐俊芳; 邓月超

    2014-01-01

    In the light of low efficiency of photovoltaic power generation and the problems of air source heat pump applied in cold regions, a composite heat exchanger evaporator is developed and a new type of solar-air composite heat source heat pump hot water system is designed in this study, which is comprised of independent solar photovoltaic-thermal collector based on flat plate micro heat pipe and air source heat pump. The performance of heat pump hot water system is evaluated experimentally under different operating conditions, including water temperature of the tank, heating time of hot water, suction and discharge pressure, consumption of compressor power and heat pump coefficient of performance (COP), etc. Experimental results show that at ambient temperature of 5℃, 10℃ and 15℃, with 73 L hot water heated by heat pump and water temperature in the tank ranged from 15℃ to 50℃, the running time of composite heat source operation is shorter than that of separate air heat source operation, decreased by 5.14%, 10.29% and 11.38%, respectively. COPs are increased by 5.99%, 9.28%and 11.96%, respectively.%针对光伏发电效率较低和空气源热泵在寒冷地区应用中存在的问题,研发了一种新型复合蒸发器,将平板微热管阵列太阳能光伏光热(PV/T)集热器与空气源热泵相结合,组成新型太阳能-空气复合热源热泵热水系统。并对该热水系统在不同运行工况下的水箱水温、吸排气压力、压缩机功率和性能等进行了实验研究。实验结果表明,在环境温度分别为5、10和15℃的条件下,热泵加热73 L水,水温从15℃加热到50℃时,双热源运行工况的加热时间比单空气热源运行工况依次缩短了5.14%、10.29%和11.38%,COP依次提高了5.99%、9.28%和11.96%。

  17. Preliminary design package for Sunspot Domestic Hot Water Heating System

    Science.gov (United States)

    1976-01-01

    The design review includes a drawing list, auto-control logic, measurement definitions, and other document pertaining to the solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control transport, auxiliary energy, and site data acquisition.

  18. Numerical simulation of the solar thermal energy storage system for domestic hot water supply located in south Spain

    Directory of Open Access Journals (Sweden)

    Tores Ledesma Juan

    2013-01-01

    Full Text Available Nowadays, due to increase in energy consumption, a great deal of fossil fuels is being used. This latter is a consequence of the present environmental problems, such as global warming, acid rain, etc. In order to decrease these problems, the use of renewable energy sources is being promoted. But the renewable energy sources, particularly solar energy, present the drawback that there is a mismatch between the energy demand and supply. To cover this mismatch, the use of phase change thermal energy storage systems is required. In this work, the behavior of a packed bed latent heat thermal energy storage system cooperating with solar collector located in south Spain was analyzed by using a numerical method which based on Finite Volume discretization and Enthalpy Method. The model was validated by comparing obtained results with experimental data reported in the literature. The packed bed was composed of spherical capsules filled with phase change materials usable for a solar water heating system. The system was designed according to the conditions in the south Spain and by using commercial components available on the market. A series of numerical simulations were conducted applying meteorological data for several months in south Spain, particularly in Málaga.

  19. The Role of Solar Hot Water Systems in High-rise Buildings in Scale%太阳能热水系统在高层建筑规模化中的作用

    Institute of Scientific and Technical Information of China (English)

    许成飞

    2014-01-01

    对高层建筑来说,太阳能热水系统与其结合很好地实现了绿色、环保的理念。因此,有必要对太阳能热水系统在高层建筑规模化中的作用作详细的分析。%The high-rise building, the solar hot water system and its combined well to achieve a green, environmentally friendly concept. Therefore, it is necessary for solar hot water system in the role of high-rise construction scale for detailed analysis.

  20. No Thermal Inversion and a Solar Water Abundance for the Hot Jupiter HD 209458b from HST/WFC3 Spectroscopy

    Science.gov (United States)

    Line, Michael R.; Stevenson, Kevin B.; Bean, Jacob; Desert, Jean-Michel; Fortney, Jonathan J.; Kreidberg, Laura; Madhusudhan, Nikku; Showman, Adam P.; Diamond-Lowe, Hannah

    2016-12-01

    The nature of the thermal structure of hot Jupiter atmospheres is one of the key questions raised by the characterization of transiting exoplanets over the past decade. There have been claims that many hot Jupiters exhibit atmospheric thermal inversions. However, these claims have been based on broadband photometry rather than the unambiguous identification of emission features with spectroscopy, and the chemical species that could cause the thermal inversions by absorbing stellar irradiation at high altitudes have not been identified despite extensive theoretical and observational effort. Here we present high-precision Hubble Space Telescope WFC3 observations of the dayside thermal emission spectrum of the hot Jupiter HD 209458b, which was the first exoplanet suggested to have a thermal inversion. In contrast to previous results for this planet, our observations detect water in absorption at 6.2σ confidence. When combined with Spitzer photometry, the data are indicative of a monotonically decreasing temperature with pressure over the range of 1-0.001 bars at 7.7σ confidence. We test the robustness of our results by exploring a variety of model assumptions, including the temperature profile parameterization, presence of a cloud, and choice of Spitzer data reduction. We also introduce a new analysis method to determine the elemental abundances from the spectrally retrieved mixing ratios with thermochemical self-consistency and find plausible abundances consistent with solar metallicity (0.06-10 × solar) and carbon-to-oxygen ratios less than unity. This work suggests that high-precision spectrophotometric results are required to robustly infer thermal structures and compositions of extrasolar planet atmospheres and to perform comparative exoplanetology.

  1. Standard Guide for On-Site Inspection and Verification of Operation of Solar Domestic Hot Water Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This guide covers procedures and test methods for conducting an on-site inspection and acceptance test of an installed domestic hot water system (DHW) using flat plate, concentrating-type collectors or tank absorber systems. 1.2 It is intended as a simple and economical acceptance test to be performed by the system installer or an independent tester to verify that critical components of the system are functioning and to acquire baseline data reflecting overall short term system heat output. 1.3 This guide is not intended to generate accurate measurements of system performance (see ASHRAE standard 95-1981 for a laboratory test) or thermal efficiency. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine th...

  2. Solar Water-Heater Design Package

    Science.gov (United States)

    1982-01-01

    Information on a solar domestic-hot water heater is contained in 146 page design package. System consists of solar collector, storage tanks, automatic control circuitry and auxiliary heater. Data-acquisition equipment at sites monitors day-by-day performance. Includes performance specifications, schematics, solar-collector drawings and drawings of control parts.

  3. Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, B.; Burch, J.; Barker, G.

    2010-08-01

    The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

  4. Analysis of practical operation of two typical solar hot water system projects%两个典型太阳能热水系统工程实际运行效果分析

    Institute of Scientific and Technical Information of China (English)

    李永华; 李开春

    2012-01-01

    Currently, technical and economic studies of solar hot water system are mainly in the theory,and actual operating data are few. The application of solar hot water system depends on the weather condition. However, the real weather condition is difficult to simulate by theoretical analysis, due to the defects in the theoretical calculation. Through the two solar hot water system projects with 24 hours weather monitoring system, this paper truly showed the parameter variances in solar hot water system application and analyzed the differences between theoretical calculation and real data, which would offer practical references for the solar hot water system design.%目前对太阳能热水系统的技术性和经济性分析多在理论层面上,实际的运行数据很少,而太阳能热水供应属于“望天收”,真实的天气情况很难用理论分析方法模拟,其理论计算具有一定的缺陷性.通过两个建有全天候24 h监控系统的太阳能热水系统工程,真实地反映了太阳能热水系统使用中的参数变化,分析了理论计算与实际数据的差别,为太阳能热水系统的设计提供了实践依据.

  5. Hot exciton dissociation in polymer solar cells.

    Science.gov (United States)

    Grancini, G; Maiuri, M; Fazzi, D; Petrozza, A; Egelhaaf, H-J; Brida, D; Cerullo, G; Lanzani, G

    2013-01-01

    The standard picture of photovoltaic conversion in all-organic bulk heterojunction solar cells predicts that the initial excitation dissociates at the donor/acceptor interface after thermalization. Accordingly, on above-gap excitation, the excess photon energy is quickly lost by internal dissipation. Here we directly target the interfacial physics of an efficient low-bandgap polymer/PC(60)BM system. Exciton splitting occurs within the first 50 fs, creating both interfacial charge transfer states (CTSs) and polaron species. On high-energy excitation, higher-lying singlet states convert into hot interfacial CTSs that effectively contribute to free-polaron generation. We rationalize these findings in terms of a higher degree of delocalization of the hot CTSs with respect to the relaxed ones, which enhances the probability of charge dissociation in the first 200 fs. Thus, the hot CTS dissociation produces an overall increase in the charge generation yield.

  6. 福建省大型太阳能热水系统的运行模式与操作管理分析%Analysis of operational mode and management of solar hot water system in Fujian Province

    Institute of Scientific and Technical Information of China (English)

    陈仕泉; 黄夏东; 杨淑波; 陆观立

    2012-01-01

    随着近几年国家对可再生能源在建筑工程中应用补贴政策的推行,福建省太阳能热水系统与建筑一体化工程项目迅速的增加,如何掌握太阳能热水系统的经济运行与科学管理,成为业主的当务之急。太阳能热水系统在不同季节气候条件下生产、储存的热水量是不同的,业主使用热水的运行模式也是不同的,且运行的费用也不同。在全年不同气候条件下,太阳能集热器和空气源热泵热水机组如何各司其责,是管理者必须要掌握的。%The number of the projects integrated with solar hot water systems has been increasing rapidly due to the subsidy policy published by the government in the past few years for the renewable energy application in architectural projects. It is becoming imperative for the house owners to know how to manage the solar hot water systems in an economical and scientific way. The operational modes of the solar hot water system are different in production, save hot water consumption with different weather condition leading to different cost. It is necessary for the manager to make sure the solar thermal collector and heat pump hot water systems work properly.

  7. LARGO hot water system thermal performance test report

    Science.gov (United States)

    1978-01-01

    The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions is presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The Solar Hot Water system is termed a Dump-type because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

  8. A novel solar hot plate for cooking

    Energy Technology Data Exchange (ETDEWEB)

    Rincon Mejia, Eduardo A; Osorio Jaramillo, Fidel A [Facultad de Ingenieria, UAEMex, Toluca, Edo. (Mexico)

    2000-07-01

    In Mexico and other developing countries, the use of firewood as combustible for cooking has contributed to deforestation and desertification of large zones. This is due to the lack of alternative combustibles for the poor inhabitants of the countryside and remote areas. In this paper, a new solar hot plate, intended for contributing to solve this problem, is presented. It can be used for cooking not only a great variety of prehispanic and traditional meals, like tortillas, fried meat and vegetables, but also hot cakes, bacon, eggs, steaks and fries. The hot plate solar cooker, called Tolocatzin, consists of a horizontal metallic plate, which is heated from both of its top and bottom surfaces by concentrated sun light from multicompound concentrator based on nonimaging optics, and built with nine ordinary plane glass-silvered, and two curved aluminum mirrors, so it can be manufactured easily in a small factory or at home. For an acceptance angle of 15 Celsius degrees, which allows the concentration of sun light without sun-tracking for about one hour, it can reach temperatures up to 240 Celsius degrees in a few minutes. This temperature is high enough for cooking almost all fried or grilled meals. The design was optimized using ray-trace procedures. The operational experience with early prototypes has shown that the Tolocatzin solar hot plate does an excellent cooking job and could really be massively used in sunny countries. [Spanish] En Mexico y otros paises en desarrollo, el uso de la madera como combustible para cocinar ha contribuido a la deforestacion y desertificacion de grandes zonas. Esto es debido a la falta de combustibles alternativos por parte de los habitantes pobres del campo y de areas remotas. En este articulo se presenta una nueva placa solar que tiene el proposito de contribuir a resolver este problema. Puede ser usada para cocinar no solamente una gran variedad de comidas prehispanicas y tradicionales, como tortillas, carne frita y verduras sino

  9. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM)

    OpenAIRE

    Miqdam T. Chaichan; Hussein A. Kazem

    2015-01-01

    This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temp...

  10. Hot Plasma Flows in the Solar Corona

    Science.gov (United States)

    Shibasaki, K.

    2012-12-01

    The Solar Corona is a non-equilibrium open system. Energy and mass are supplied from the lower atmosphere and flow upwards through the corona into the interplanetary space. Steady state could be possible but not equilibrium state. Temperature of the corona varies depending on solar activities. However, even under very quite state, coronal temperature is still kept around million degrees. Coronal heating mechanisms have to work under such condition. Temperature of plasma is an averaged kinetic energy of random motion of particles. Motion of charged particles in magnetic field generates Lorenz force and particles gyrate around magnetic field lines. Gyration of charged particles generates magnetic moment which is directed anti-parallel to the surrounding magnetic field. This is the origin of diamagnetism of plasma. Each particle can be considered as a small magnet directed opposite to the surrounding magnetic field. When these magnets are put in inhomogeneous magnetic field, they are pushed toward weak field region. In case of open magnetic field region in the solar corona, plasma particles are pushed upwards. If this force (diamagnetic or mirror force) exceeds the gravity force, plasma flows upwards. Magnetic moment of each charged particle in thermal plasma is proportional to temperature and inversely proportional to magnetic field strength. The condition for plasma to flow upwards in an open magnetic field is that the scale length of the change of magnetic field strength is shorter than the hydrostatic scale length, which is determined by temperature and the gravity acceleration. This can be a mechanism to regulate the coronal temperature around million degree. The solar corona is filled with magnetic field, which is rooted at the photosphere in the form of flux tubes. Flux tubes connect directly the corona and the sub-photospheric layer where temperature is higher than the photosphere. Hot plasma, trapped in the flux tubes when they are generated around the bottom

  11. Cost of m{sup 2} installed of hot water to pave in cities of the desert of Atacama; Costo del m{sup 2} instalado de agua caliente solar en ciudades del desierto de Atacama

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, W. W.; Galleguillos, V. R.; Echevarria, A. J.

    2008-07-01

    In this work were registered the domiciliary solar hot water of flat plate collectors for innovating projects that rationalize their use in Antofagasta, 300000 habitants; 23,5 degree S: 70.1 degree W. Average solar radiation in the city is about of 20 MJ/m{sup 2}fay. The medium temperature of water by day on the city is 17 degree centigrade. Annual average of the relative humidity is approximately 70%m the precipitations in the city are extremely low about 1 mm and the sea breeze is around 2.5 m/s, which comes from of the ocean pacific in SW direction. Our study informs that to heat 100 liters of water up to 40 degree centigrade, it is necessary 1 m{sup 2} of solar collector to US$ 700, the m{sup 2} installed. The city has 61 of these facilities in hospitals, school, high school and housings. Our study informs of a total of 700 m{sup 2} of solar collector and 33400 available of hot water liters. (Author)

  12. Installation package for a sunspot cascade solar water heating system

    Science.gov (United States)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  13. 浅析太阳能采暖与生活热水系统的技术与经济效益%On Technology and Economic Benefits of Solar Heating and Domestic Hot Water System

    Institute of Scientific and Technical Information of China (English)

    李恩云

    2014-01-01

    太阳能采暖和生活热水系统由集热器、蓄热水箱、辅助热源和自动化控制系统组成。文章基于太阳能采暖和生活热水系统研究背景,围绕系统的技术工艺原理探讨其在经济和技术方面的可行性,最后分析其技术和经济效益,以突出该系统的应用优势。%Solar heating and domestic hot water system are composed of heat collector, hot water storage tank, auxiliary heat source and automatic control system. Based on the background of solar heating and domestic hot water system, and according to technical theory of the system, this paper explores its economic and technical feasibility, and finally analyses its technology and economic benefits to highlight the advantages of the system.

  14. No Thermal Inversion and a Solar Water Abundance for the Hot Jupiter HD209458b from HST WFC3 Emission Spectroscopy

    CERN Document Server

    Line, Michael R; Bean, Jacob; Desert, Jean-Michel; Fortney, Jonathan J; Kreidberg, Laura; Madhusudhan, Nikku; Showman, Adam P; Diamond-Lowe, Hannah

    2016-01-01

    The nature of the vertical thermal structure of hot Jupiter atmospheres is one of the key questions raised by the characterization of transiting exoplanets over the last decade. There have been claims that many hot Jupiter's exhibit vertical profiles with increasing temperature with decreasing pressure in the infrared photosphere that leads to the reversal of molecular absorption bands into emission features (an inversion). However, these claims have been based on broadband photometry rather than the unambiguous identification of emission features with spectroscopy, and the chemical species that could cause the thermal inversions by absorbing stellar irradiation at high altitudes have not been identified despite extensive theoretical and observational effort. Here we present high precision HST WFC3 observations of the dayside emission spectrum of the hot Jupiter HD209458b; the first exoplanet suggested to have a thermal inversion. Our observations resolve a water band in absorption at 6.2 sigma confidence. Wh...

  15. Solar space and water heating system installed at Charlottesville, Virginia

    Science.gov (United States)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  16. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  17. Performance and testing of a hot box storage solar cooker

    Energy Technology Data Exchange (ETDEWEB)

    Nahar, N.M. [Central Arid Zone Research Inst., Rajasthan (India)

    2003-05-01

    A hot box solar cooker with used engine oil as a storage material has been designed, fabricated and tested so that cooking can be performed even in the late evening. The performance and testing of a storage solar cooker have been investigated by measuring stagnation temperatures and conducting cooking trials. The maximum stagnation temperature inside the cooking chambers of the hot box solar cooker with storage material was the same as that of the hot box solar cooker without storage during the day time, but it was 23 deg C more in the storage solar cooker from 1700 to 2400 h. The efficiency of the hot box storage solar cooker has been found to be 27.5%. Cooking trials were also conducted. The rice and green gram washed split were kept at 1730 h, and these were cooked perfectly by 2000 h in the hot box storage solar cooker, while these were not cooked in the hot box solar cooker without storage. (Author)

  18. Solar Hot Water System Design Based on the Late Operation for Affordable Housing%基于后期运营的保障房太阳能热水系统设计

    Institute of Scientific and Technical Information of China (English)

    赵敬辛; 张世忠; 高辉; 欧阳志云; 王玮娜

    2015-01-01

    The contribution of solar water heating system is analyzed for the energy efficiency of af-fordable housing. With comprehensive analysis method of incremental cost and late operation, their decision role in building energy applications is expounded. The solar hot hater system can be selected according to the characteristics of geography, climate, economy and the users’ habit, proposing the suitable solar hot water system for the appropriate housing in less developed areas.%结合国家“十二五”科技支撑计划课题示范社区项目中太阳能热水系统的选用和设计,分析了太阳能热水系统对于保障性住房节能的贡献;用成本增量和后期运营操作综合分析的方法,阐述了初期投资和后期运营管理成本增量在建筑能源应用中的决策作用;提出了结合地域、气候、经济特点及使用人群甄选太阳能热水系统的设计思路;推荐了适宜在欠发达地区保障房体系中推广的太阳能热水系统。

  19. Effect of insolation forecasting error on reduction of electricity charges for solar hot water system; Taiyonetsu kyuto system no denki ryokin sakugen koka ni oyobosu nissharyo yosoku gosa no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S. [Maizuru National College of Technology, Kyoto (Japan); Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan)

    1996-10-27

    A solar hot water system can be economically operated if inexpensive midnight power is purchased to cover the shortage of solar energy predicted for the following day. Investigations were conducted because error in insolation prediction affects the system operation and electric charge reduction effect. The target temperature of the heat accumulation tank at every predetermined time point is calculated on the previous evening in consideration of predicted insolation so that the water will be as hot as prescribed at the feeding time on the following day. Midnight power is used for uniform heating to attain the target temperature for 7 o`clock on the following morning. The uniform heating continues from 8 o`clock to the feeding time, this time using solar energy and daytime power to attain the target temperature. Accordingly, the division between the midnight power and daytime power is determined in view of the target temperature for 7 o`clock on the following morning, which target temperature is so set that the charge will be the minimum by optimizing the allocation of the above-said two. When the insolation prediction error rate is beyond 30%, the electric charge grows higher as the rate rises. But, when the rate is not higher than 30%, the charge is little affected by a rise in the rate. 5 refs., 10 figs., 1 tab.

  20. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  1. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  2. 工程型太阳能热泵热水系统节能效益分析%Energy-saving Benefit Analysis of Engineering Type Solar Energy Hot Water System in Conjunction with Heat Pump

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    According to the engineering case region meteorological data and solar resource characteristics,the solar energy centralized heating system in Conjunction with heat pump used in the hotel is analyzed based on saving benefits. By means of comprehensive analyzing of annual amount of energy saving,cost saving,payback period for the increase of the initial investment,as well as environmental benefits of the solar energy heat pump hot water system,it is indicated that solar energy heat pump hot water system project not only has the very high heat efficiency and environmental adaptability but also has high economy efficiency. It is a kind of heating water systems of ideal high quality.%  根据工程案例地区气象参数及太阳能资源特点,对已投入宾馆使用的太阳能热泵集中供热水系统进行节能效益分析。通过对太阳能热泵热水系统的年节能量,节省费用,系统增加的初投资的回收年限,以及太阳能热泵热水系统的环保效益进行综合分析。表明工程型太阳能热泵热水系统不仅具有很高的热效率和环境适应性同时具有较高的经济性,是一种理想的高品质供热水系统。

  3. Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE

    National Research Council Canada - National Science Library

    Nutakki Tirumala Uday Kumar; Andrew R Martin

    2017-01-01

    ... (POU) water treatment devices has been gaining huge market recently due to increase in knowledge of urban population on health related issues over contaminants in decentralized water distribution networks...

  4. 太阳能水纯化热水一体化装置性能分析与试验%Performance analysis and experiment of solar hot water and pure water co-production system

    Institute of Scientific and Technical Information of China (English)

    周希正; 马春元; 张立强; 王鹏

    2014-01-01

    为了提高太阳能水纯化热水一体化的集热性能及产水率,该文介绍了系统的工作原理,建立太阳能水纯化热水一体化能量转化和传递模型。采用双真空热管集热,设计了蒸发、冷凝水箱及蓄热水箱,建造了Φ58 mm×1.8 m×24玻璃双真空热管集热试验装置。运用软件Matlab数值运算与试验对比,结果表明:蓄热温度从50℃到70℃,系统产水率及性能系数先随着蓄热温度升高而增大,至60℃左右最大,然后随着蓄热温度升高而减小。60℃定温蓄热比60℃定量蓄热日产水量高847.9 mL,总性能系数增加0.102,产水率增加0.056。此外试验研究了不蓄热工况的系统性能,产水量为5978.4 mL,系统总性能系数1.2498,产水率0.468,比60℃定温蓄热工况下性能系数低0.3979,产水率减小0.219。该文的研究为太阳能热水系统与海水淡化相结合具有参考和利用价值。%In this paper, the solar hot water and pure water co-production system was built and the mathematical model of energy conversion and transmission was established based on the system’s operation, which aimed to improve the thermal performance and water productivity of the system experimentally and theoretically. The double evacuated tube solar collector was integrated into the desalination stills to ensure the continuity production of distillate. The evaporation-condensation tank and the heat storage water tank were designed and built with aφ58 mm×1.8 m×24 double evacuated heat pipe, a hot water tank capacity of 109.2 L, an evaporation area of 0.6235 m2, a condensation water tank capacity of 124.8 L, a condensation area of 0.7092 m2, and a heat storage water tank of 200 L. The governing energy balance equations were solved analytically with Matlab software and compared with the experimental results. The results indicated that water productivity and performance coefficient increased first and then decreased with

  5. Experimental Validation of a Domestic Stratified Hot Water Tank Model in Modelica for Annual Performance Assessment

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2015-01-01

    The use of stratified hot water tanks in solar energy systems - including ORC systems - as well as heat pump systems is paramount for a better performance of these systems. However, the availability of effective and reliable models to predict the annual performance of stratified hot water tanks c...

  6. Investigations on stratification devices for hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Hampel, Matthias;

    2008-01-01

    The significance of the thermal stratification for the energy efficiency of small solar-thermal hot water heat stores is pointed out. Exemplary the thermal stratification build-up with devices already marketed as well as with devices still in development has been investigated experimentally...... and theoretically, taking into account different realistic operation conditions. The methods (selective temperature measurement, non-invasive field measuring methods PIV and LIF, Computational Fluid Dynamics (CFD)) suitable for the experimental and theoretical analysis of thermal stratification devices...

  7. Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells.

    Science.gov (United States)

    Zhang, Yu; Yam, ChiYung; Schatz, George C

    2016-05-19

    Detailed balance between photon-absorption and energy loss constrains the efficiency of conventional solar cells to the Shockley-Queisser limit. However, if solar illumination can be absorbed over a wide spectrum by plasmonic structures, and the generated hot-carriers can be collected before relaxation, the efficiency of solar cells may be greatly improved. In this work, we explore the opportunities and limitations for making plasmonic solar cells, here considering a design for hot-carrier solar cells in which a conventional semiconductor heterojunction is attached to a plasmonic medium such as arrays of gold nanoparticles. The underlying mechanisms and fundamental limitations of this cell are studied using a nonequilibrium Green's function method, and the numerical results indicate that this cell can significantly improve the absorption of solar radiation without reducing open-circuit voltage, as photons can be absorbed to produce mobile carriers in the semiconductor as long as they have energy larger than the Schottky barrier rather than above the bandgap. However, a significant fraction of the hot-carriers have energies below the Schottky barrier, which makes the cell suffer low internal quantum efficiency. Moreover, quantum efficiency is also limited by hot-carrier relaxation and metal-semiconductor coupling. The connection of these results to recent experiments is described, showing why plasmonic solar cells can have less than 1% efficiency.

  8. Demonstration of a Solar Thermal Combined Heating, Cooling and Hot Water System Utilizing an Adsorption Chiller for DoD Installations

    Science.gov (United States)

    2013-12-01

    solar thermal chiller system using evacuated tube collectors is unlikely to be recovered from energy savings alone. A...by certified technicians. 9 2.3.2 Solar Collector Array Advantages and Limitations Solar thermal collector panels can effectively collect solar ...other researchers [8,9], a solar thermal chiller system based on evacuated tube collectors is unlikely to be cost effective under most

  9. Solar space and water heating system installed at Charlottesville, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Greer, Charles R.

    1980-09-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, consists of 88 single glazed, Sunworks Solector copper base plate collector modules; hot water coils in the hot air ducts; a domestic hot water (DHW) preheat tank; a 3,000 gallon concrete urethane-insulated storage tank and other miscellaneous components. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  10. 广州亚运城太阳能水源热泵项目设计要点介绍%Introduction of the design points of Guangzhou Asian Games Town solar hot water and water source heat pump project

    Institute of Scientific and Technical Information of China (English)

    王耀堂; 王则慧; 董立; 赵世明; 刘振印

    2011-01-01

    Guangzhou Asian Games Town is located in Panyu district of Guangzhou City, including athlete village, media village, technical official village, logistic service village, gyms village, and Asian Games Park. As the initialization district of new city construction, Asian Games Town is positioned as medium and high level residential community and regional service center with comprehensive facilities, and will be used as Asian Games Village in 2010 for the 16th Asian Games. As an important special technology project, the Asian Games Town solar energy and water source heat pump project were designed, constructed and managed solely, and this system would supply the Asian Games Town residential buildings domestic hot water and partial singular building air condition cold source. The engineering background, general situation and system design principles of Guangzhou Asian Games Town solar energy and water source heat pump project were introduced, and the engineering project design content and difficult problems were also summarized.%广州亚运城位于广州市番禺区,分为运动员村、媒体村、技术官员村、后勤服务区、体育馆区及亚运公园六大部分.亚运城作为新城建设的启动区,定位为配套完善的中高档居住社区及区域服务中心,2010年作为第16届亚运会亚运村使用.亚运城太阳能和水源热泵利用工程作为亚运城重大技术专项进行单独设计、施工和运行管理,系统集中供应亚运城居住建筑生活热水和部分单体建筑空调冷源.介绍了广州亚运城太阳能水源热泵项目的工程背景、工程概况和系统设计原则,总结了主要工程设计内容和难点问题.

  11. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... attached. Thermal efficiency for an instantaneous water heater, a storage water heater or a hot water... the amount of energy consumed by the water heater as measured during the thermal efficiency test... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial water heaters, hot...

  12. The sun as hot water source. Answers to questions on the solar water heater; Le soleil source d'eau chaude. Les reponses a vos questions sur le chauffe-eau solaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This guide answers to the main questions concerning a water heating system for domestic use. It aims to help the people who want to buy a solar water heater, to better estimate the advantages and the limits, in providing information on the operating and the use. (A.L.B.)

  13. Hot water can freeze faster than cold?!?

    CERN Document Server

    Jeng, M

    2005-01-01

    We review the Mpemba effect, where intially hot water freezes faster than initially cold water. While the effect appears impossible at first sight, it has been seen in numerous experiments, was reported on by Aristotle, Francis Bacon, and Descartes, and has been well-known as folklore around the world. It has a rich and fascinating history, which culminates in the dramatic story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon, while simple to describe, is deceptively complex, and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. We survey proposed theoretical mechanisms for the Mpemba effect, and the results of modern experiments on the phenomenon. Studies of the observation that hot water pipes are more ...

  14. Solar thermal water heating : an application for Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, T. [Simple Solar Heating Ltd., Okotoks, AB (Canada); Lonseth, R.; Lonseth, A.; Jagoda, K. [Mount Royal College, Calgary, AB (Canada)

    2009-07-01

    The use of renewable energy resources is an essential feature in curtailing greenhouse gas (GHG) emissions. This paper discussed solar thermal water heating applications for Alberta. In particular, it presented a case study of the successful commercial application of solar thermal water heating systems in households in the city of Calgary. The system used solar-thermal collectors with heat pipes mounted inside vacuum sealed glass cylinders. The devices collected heat and transferred it to a copper manifold even in extreme winter temperatures. The system included a solar storage tank integrated into a domestic hot water system. The solar fluid circulated through the solar tank. Fresh cold water entered the solar tank when hot water was used in the house in order to be preheated before entering the original water heating tank. A 25 watt pump was mounted in the closed solar loop to circulate the solar heat transfer fluid. An economic analysis demonstrated that a 2-panel system saved the equivalent of 2.4 acres of carbon-absorbing forest and had the same benefit as purchasing a hybrid car. The payback period for the system was 4 years. It was concluded that solar thermal systems are the best renewable energy method for domestic water heating in Calgary. 10 refs., 2 tabs., 5 figs.

  15. When hot water freezes before cold

    CERN Document Server

    Katz, J I

    2006-01-01

    I suggest that the origin of the Mpemba effect (the freezing of hot water before cold) is freezing-point depression by solutes, either gaseous or solid, whose solubility decreases with increasing temperature so that they are removed when water is heated. They are concentrated ahead of the freezing front by zone refining in water that has not been heated, reduce the temperature of the freezing front, and thereby reduce the temperature gradient and heat flux, slowing the progress of the front. I present a simple calculation of this effect, and suggest experiments to test this hypothesis.

  16. Application of Air Source Heat Pump plus Solar Energy in Domestic Hot Water Preparation System%空气源热泵+太阳能在热水制备系统中的应用

    Institute of Scientific and Technical Information of China (English)

    李超; 卢强; 郭萌; 赵勇

    2015-01-01

    This paper analyzes the commonly used heating modes and gives a detailed introduction of both air source heat pump technology and solar heating technology. Combined with the actual project, the steam heating system of hot water is changed into air source heat pump plus solar heating. By analyzing the actual enetgy consumption data, we obtain the energy -saving value, thus achieve the goal of energy efficiency.%通过对常用供热方式的分析,并对空气源热泵技术、太阳能制热技术原理的介绍,结合工程实际情况,将原蒸汽加热制热水方式改造为空气源热泵+太阳能制热。通过对实际能耗数据的经济分析,得出改造后的节能价值,达到了节约能源的目的。

  17. Application of solar energy to the supply of industrial process hot water: preliminary design and performance report. Volume I. Technical report. Aerotherm report TR-76-219. [For can washing at Campbell Soup Plant in Sacramento

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-10-14

    The design and performance of a solar hot water system for can washing at the Campbell Soup Plant in Sacramento, California, are presented. The collector field is located on the roof of the finished products warehouse of the Campbell Soup Sacramento plant. Water is supplied from a 3.8 cm (1/sup 1///sub 2/ in.) supply line which is located directly below an existing roof access hatch. A supply pipe will be brought up through that hatch. The water flow will then be split into two manifold lines which supply the dual rows of flat plate collectors. The preheated water from the flat plates is then passed into six sets of parallel connected concentrators. Each set consist of eight 1.83 x 3.05 m (6 x 10 foot) modules connected in series. The water from these units is gathered in a 3.8 cm (1/sup 1///sub 2/ in.) insulated pipe which transports it to the storage tank. This pipe will be attached to an existing pipe run until it reaches the can washing building. From there the pipe will follow the can washing building around to the storage tank. The storage tank is a 75,200 1 (20,000 gal) steel tank which is coated internally with a USDA approved phenolic liner. The outside of the tank is insulated. A 2.2 kw (3 hp) motor is used to pump the stored water for the tank into the can washing line. Detail drawings and descriptions of the collector field, installation, piping, controls, data acquisition equipment, and roof structure are included. Furthermore, a program schedule with equipment and manpower costs for successfully completing Phase II of this contract is included. Also included is an organization chart of the Phase II program personnel. (WHK)

  18. Photophoretic transport of hot minerals in the solar nebula

    CERN Document Server

    Moudens, A; Petit, J -M; Wurm, G; Cordier, D; Charnoz, S

    2011-01-01

    Hot temperature minerals have been detected in a large number of comets and were also identified in the samples of Comet Wild 2 that were returned by the Stardust mission. Meanwhile, observations of the distribution of hot minerals in young stellar systems suggest that these materials were produced in the inner part of the primordial nebula and have been transported outward in the formation zone of comets. We investigate the possibility that photophoresis provides a viable mechanism to transport high-temperature materials from the inner solar system to the regions in which the comets were forming. We use a grid of time-dependent disk models of the solar nebula to quantify the distance range at which hot minerals can be transported from the inner part of the disk toward its outer regions as a function of their size and density. The particles considered here are in the form of aggregates that presumably were assembled from hot mineral individual grains ranging down to submicron sizes and formed by condensation ...

  19. Consumer impacts on dividends from solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F.; Levermore, G. [University of Manchester, Manchester (United Kingdom); Lynch, H. [Centre for Alternative Technology, Machynlleth, University of East London, London (United Kingdom)

    2011-01-15

    Common domestic solar water heating system usage patterns were investigated by a survey of 55 installations. These usage patterns were modelled by simulation based on the actual occupants' use of boiler or other auxiliary heating control strategies. These strategies were not optimal, as often assumed. The effectiveness of the technology was found to be highly sensitive to the time settings used for auxiliary water heating, and the 65% of solar householders using their boilers in the mornings were found to be forgoing 75% of their potential savings. Additionally, 92% of consumers were found to be small households, whose potential savings were only 23% of those of larger households, which use more hot water. Overall the majority (at least 60%) of the systems surveyed were found to be achieving no more than 6% of their potential savings. Incorporating consideration of Legionella issues, results indicate that if solar thermal technology is to deliver its potential to CO2 reduction targets: solar householders must avoid any use of their auxiliary water heating systems before the end of the main warmth of the day, grants for solar technology should be focused on households with higher hot water demands, and particularly on those that are dependent on electricity for water heating, health and safety requirements for hot water storage must be reviewed and, if possible, required temperatures should be set at a lower level, so that carbon savings from solar water heating may be optimized.

  20. 21 CFR 880.6085 - Hot/cold water bottle.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  1. Hot water, fresh beer, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, F.S. (Lawrence Berkeley Laboratory, Berkeley, CA (USA) Physics Department, University of California, Berkeley, CA (USA))

    1990-11-01

    In the hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO{sub 2}) provided you first (a) get rid of much of the excess CO{sub 2} so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, Do ionizing particles produce bubbles in fresh beer '' is answered experimentally.

  2. Solar water splitting: efficiency discussion

    CERN Document Server

    Juodkazyte, Jurga; Sebeka, Benjaminas; Savickaja, Irena; Malinauskas, Tadas; Badokas, Kazimieras; Juodkazis, Kestutis; Juodkazis, Saulius

    2016-01-01

    The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxide formation as an intermediate in oxygen evolution reaction is newly revealed and explains why an oxygen evolution is not taking place at the thermodynamically expected 1.23 V potential. Solar hydrogen production with electrical-to-hydrogen conversion efficiency of 52% is demonstrated using a simple ~0.7%-efficient n-Si/Ni Schottky solar cell connected to a water electrolysis cell. This case study shows that separation of the processes of solar harvesting and electrolysis avoids photo-electrode corrosion and utilizes optimal electrodes for hydrogen and oxygen evolution reactions and achieves ~10% efficiency in light...

  3. Washing Habits and Machine with Intake of hot and cold Water

    DEFF Research Database (Denmark)

    Christensen, Bente Lis; Nørgaard, Jørgen

    1997-01-01

    Domestic washing machines typically spend around 80% of the electricity on heating water. Most of this can be replaced by more appropriate heat sources like district heat from combined heat and power production, or gas heating system. In recent years some washing machine manufacturers have marketed...... machines which can take in both hot and cold water and mix it to the temperature wanted. Such one machine has been tested in daily household use over 5 months, with habits of very few hot water washes. The result is an electricity consumption corresponding to 67 kWh per year for an average household...... with slightly adapted washing habits, or 17% of normal today. If the heat is supplied from combined heat and power production as in the actual experiment, CO2-emission is reduced by 81%. With hot water from oil or gas heaters the reduction will be slightly lower, while with solar hot water it will be larger....

  4. Solar water splitting: efficiency discussion

    OpenAIRE

    Juodkazyte, Jurga; Seniutinas, Gediminas; Sebeka, Benjaminas; Savickaja, Irena; Malinauskas, Tadas; Badokas, Kazimieras; Juodkazis, Kestutis; Juodkazis, Saulius

    2016-01-01

    The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxide formation as an intermediate in oxygen evolution reaction is newly revealed and explains why a...

  5. 新型建筑制冷采暖热水一体化系统及模型分析%New Integrated Solar System of Refrigeration and Heating with Hot Water for Building and Model Analysis

    Institute of Scientific and Technical Information of China (English)

    山石泉; 李媛

    2016-01-01

    立足于节能减排的大背景,提出一种新型的制冷采暖热水一体化系统。基于 DeST 软件平台模拟的气象数据,通过建立系统各个模块的模型对系统的节能性、经济性以及 CO2减排性进行了分析,结果表明一体化系统有显著的节能及环保性。如果能大规模使用,会有可观的经济与社会效益。%Based on the background of energy saving and emission reduction, a new type of integrat-ed solar system for refrigeration and heating with hot water is proposed. Based on the meteorological data from DeST software simulation platform, the energy saving, economy and CO2 emission reduction of the sys-tem is analyzed by establishing the system model of the various parts of the system. The results show that the integrated system has obvious energy saving property and environmental protection property. If it can be used on a large scale, there will be considerable economic and social benefits.

  6. Drying of hot chilli using solar tunnel drier

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M.A. [Farm Machinery and Postharvest Process Engineering Division, Bangladesh Agricultural Research Institute, Gazipur-1701 (Bangladesh); Bala, B.K. [Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh-2202 (Bangladesh)

    2007-01-15

    A mixed mode type forced convection solar tunnel drier was used to dry hot red and green chillies under the tropical weather conditions of Bangladesh. The drier consisted of transparent plastic covered flat-plate collector and a drying tunnel connected in series to supply hot air directly into the drying tunnel using two fans operated by a photovoltaic module. The drier had a loading capacity of 80 kg of fresh chillies. Moisture content of red chilli was reduced from 2.85 to 0.05 kg kg{sup -1} (db) in 20 h in solar tunnel drier and it took 32 h to reduce the moisture content to 0.09 and 0.40 kg kg{sup -1} (db) in improved and conventional sun drying methods, respectively. In case of green chilli, about 0.06 kg kg{sup -1} (db) moisture content was obtained from an initial moisture content of 7.6 kg kg{sup -1} (db) in 22 h in solar tunnel drier and 35 h to reach the moisture content to 0.10 and 0.70 kg kg{sup -1} (db) in improved and conventional sun drying methods, respectively. The use of a solar tunnel drier and blanching of sample led to a considerable reduction in drying time and dried products of better quality in terms of colour and pungency in comparison to products dried under the sun. The solar tunnel drier and blanching of chilli are recommended for drying of both red and green chillies. (author)

  7. Sugar cane bagasse prehydrolysis using hot water

    Directory of Open Access Journals (Sweden)

    D. Abril

    2012-03-01

    Full Text Available Results are presented on the hot water prehydrolysis of sugar cane bagasse for obtaining ethanol by fermentation. The experimental study consisted of the determination of the effect of temperature and time of prehydrolysis on the extraction of hemicelluloses, with the objective of selecting the best operating conditions that lead to increased yield of extraction with a low formation of inhibitors. The study, carried out in a pilot plant scale rotational digester, using a 3² experimental design at temperatures of 150-190ºC and times of 60-90 min, showed that it is possible to perform the hot water prehydrolysis process between 180-190ºC in times of 60-82 min, yielding concentrations of xylose > 35 g/L, furfural < 2.5 g/L, phenols from soluble lignin < 1.5 g/L, and concentrations < 3.0 g/L of hemicelluloses in the cellolignin residue. These parameters of temperature and prehydrolysis time could be used for the study of the later hydrolysis and fermentation stages of ethanol production from sugar cane bagasse.

  8. Solar compact stations with intelligent control for hot water generation and heating support; Solarkompaktstation mit intelligenter Regelung zur Warmwasserbereitung und Heizungsunterstuetzung

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, M. [Dr. Riedel Automatisierungstechnik GmbH, Berlin (Germany); Jurisch, B. [Parabel Energiesysteme GmbH, Berlin (Germany)

    2000-04-01

    Modern solar systems are technically mature and have a long service life and low cost. They are supported by efficient thermal insulation and low-temperature heating systems, e.g. floor, wall and ceiling heating systems. The contribution presents data of 5 identical large-scale systems recorded since June 1998. The systems are conventional house service stations but with complex control systems for all components. [German] Die heute auf dem Markt angebotenen solar-thermischen Anlagen sind technisch ausgereift, langlebig und werden immer preiswerter. Das Interesse der Bevoelkerung an Solarenergie steigt somit staendig und es werden neue Konzepte entwickelt, um den Deckungsbeitrag der Solarenergie noch weiter zu steigern. Verbesserte Waermedaemmung und der Einsatz von Niedrigenergieheizsystemen, wie Fussboden-, Wand- und Deckenheizung machen den Einsatz von Solaranlagen nicht nur fuer die Warmwasserbereitung, sondern auch zur Heizungsunterstuetzung immer interessanter. Daten von 5 bauartgleichen Grossanlagen zeigen seit Juni 1998 interessante Perspektiven zur Energieeinsparung. Die Anlagen entsprechen in ihrer konstruktiven Bauweise erweiterten konventionellen Hausanschlussstationen. Erstmals wird jedoch eine komplexe Regelung fuer saemtliche Komponenten mit grossem Erfolg eingesetzt. (orig.)

  9. Getting into hot water Problematizing hot water service demand: The case of Old Cairo

    Science.gov (United States)

    Culhane, Thomas Henry

    This dissertation analyzes hot water demand and service infrastructure in two neighboring but culturally distinct communities of the urban poor in the inner-city area of central Cairo. The communities are the Historic Islamic Cairo neighborhood of Darb Al Ahmar at the foot of Al-Azhar park, and the Zurayib neighborhood of Manshiyat Nasser where the Coptic Zabaleen Recyclers live. The study focuses on the demand side of the hot water issue and involves consideration of built-environment infrastructures providing piped water, electricity, bottled gas, sewage, and the support structures (wiring and plumbing) for consumer durables (appliances such as hot water heaters, stoves, refrigerators, air conditioners) as well as water pumps and water storage tanks. The study asks the questions "How do poor communities in Cairo value hot water" and "How do cost, infrastructure and cultural preferences affect which attributes of hot water service are most highly preferred?". To answer these questions household surveys based primarily on the World Bank LSMS modules were administered by professional survey teams from Darb Al Ahmar's Aga Khan Trust for Culture and the Zabaleen's local NGO "Spirit of Youth" in their adjacent conununities in and surrounding historic Cairo. In total 463 valid surveys were collected, (231 from Darb Al Ahmar, 232 from the Zabaleen). The surveys included a contingent valuation question to explore Willingness to Pay for improved hot water service; the surveys queried household assets as proxies for income. The dissertation's findings reveal that one quarter of the residents of Darb Al Ahmar and two-thirds of the residents of Manshiyet Nasser's Zabaleen lack conventional water heating service. Instead they employ various types of stoves and self-built contraptions to heat water, usually incurring considerable risk and opportunity costs. However the thesis explores the notion that this is rational "satisficing" behavior; despite the shortcomings of such self

  10. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM

    Directory of Open Access Journals (Sweden)

    Miqdam T. Chaichan

    2015-03-01

    Full Text Available This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temperature measured in a definite interval of time. Four cases were studied: using water as storage material with and without solar tracker. Also, PCM was as thermal storage material with and without solar tracker.The system working time was increased to about 5 h with sun tracker by concentrating dish and adding PCM to the system. The system concentrating efficiency, heating efficiency, and system productivity, has increased by about 64.07%, 112.87%, and 307.54%, respectively. The system working time increased to 3 h when PCM added without sun tracker. Also, the system concentrating efficiency increased by about 50.47%, and the system heating efficiency increased by about 41.63%. Moreover, the system productivity increased by about 180%.

  11. Hot spots and active longitudes: Organization of solar activity as a probe of the interior

    Science.gov (United States)

    Bai, Taeil; Hoeksema, J. Todd; Scherrer, Phil H.

    1995-01-01

    In order to investigate how solar activity is organized in longitude, major solar flares, large sunspot groups, and large scale photospheric magnetic field strengths were analyzed. The results of these analyses are reported. The following results are discussed: hot spots, initially recognized as areas of high concentration of major flares, are the preferred locations for the emergence of big sunspot groups; double hot spots appear in pairs that rotate at the same rate separated by about 180 deg in longitude, whereas, single hot spots have no such companions; the northern and southern hemispheres behave differently in organizing solar activity in longitude; the lifetime of hot spots range from one to several solar cycles; a hot spot is not always active throughout its lifetime, but goes through dormant periods; and hot spots with different rotational periods coexist in the same hemisphere during the same solar cycle.

  12. Space Station solar water heater

    Science.gov (United States)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  13. YACON INULIN LEACHING DURING HOT WATER BLANCHING

    Directory of Open Access Journals (Sweden)

    Caroline Fenner Scher

    2015-10-01

    Full Text Available ABSTRACTYacon roots contain inulin, which has prebiotic properties and it may be used as sucrose or fat substitutes. However, inulin is very soluble in water. The loss of this important nutrient during blanching is caused mainly by diffusion or leaching, which might be diminished if blanching temperature - time conditions are correctly employed. The aim of this study was to determine the leaching of the sugars inulin, glucose and fructose, present in yacon roots, during hot water blanching under different time/temperature conditions. The samples were cleaned and peeled and cut into geometric forms of 1.75 ± 0.35 mm thick disks. A complete factorial experimental design was used, and the treatments of the samples were compared using the Tukey test. The results indicated that the time and temperature were significant in the dissolution of the sugars. The lowest inulin losses occurred at temperatures and times lower than 60 ºC and 3 minutes. For all temperatures, the lowest glucose and fructose losses were obtained at time lower than 3 and 5 minutes, respectively.

  14. Heat Losses Evaluation for Domestic Hot Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Theodor Mateescu

    2006-01-01

    Full Text Available In sanitary systems assembly, domestic hot water distribution supply networks represent an important weight for energetically balance.par This paper presents, in an analytical and graphical manner, the computational tools needed for domestic hot water piping system behavior characterization in different functional and structural assumptions.

  15. 7 CFR 305.22 - Hot water immersion treatment schedules.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water immersion treatment schedules. 305.22 Section 305.22 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat Treatments § 305.22 Hot water immersion treatment schedules. (a) T102-d...

  16. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  17. Water in the Solar System

    Science.gov (United States)

    Encrenaz, Thérèse

    2008-09-01

    Water is ubiquitous in the Universe, and also in the Solar System. By setting the snow line at its condensation level in the protosolar disk, water was responsible for separating the planets into the terrestrial and the giant ones. Water ice is a major constituent of the comets and the small bodies of the outer Solar System, and water vapor is found in the giant planets, both in their interiors and in the stratospheres. Water is a trace element in the atmospheres of Venus and Mars today. It is very abundant on Earth, mostly in liquid form, but it was probably also abundant in the primitive atmospheres of Venus and Mars. Water is found in different states on the three planets, as vapor on Venus and ice (or permafrost) on Mars. Most likely, this difference has played a major role in the diverging destinies of the three planets.

  18. Field performance of photovoltaic solar water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Fanney, A.H.; Dougherty, B.P.; Kramp, K.P. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Building Environment Div.

    1997-11-01

    Energy consumed for water heating accounts for approximately 17.9 EJ of the energy consumed by residential and commercial buildings. Although there are over 90 million water heaters currently in use within the United States, durability and installation issues as well as initial cost have limited the sales of solar water heaters to less than 1 million units. Durability issues have included freeze and fluid leakage problems, failure of pumps and their associated controllers, the loss of heat transfer fluids under stagnation conditions, and heat exchanger fouling. The installation of solar water heating systems has often proved difficult, requiring roof penetrations for the piping that transports fluid to and from the solar collectors. Fanney and Dougherty have recently proposed and patented a solar water heating system that eliminates the durability and installation problems associated with current solar water heating systems. The system employs photovoltaic modules to generate electrical energy which is dissipated in multiple electric heating elements. A microprocessor controller is used to match the electrical resistance of the load to the operating characteristics of the photovoltaic modules. Although currently more expensive than existing solar hot water systems, photovoltaic solar water heaters offer the promise of being less expensive than solar thermal systems within the next decade. To date, photovoltaic solar water heating systems have been installed at the National Institute of Standards and Technology in Gaithersburg, MD and the Florida Solar Energy Center in Cocoa, FL. This paper will review the technology employed, describe the two photovoltaic solar water heating systems, and present measured performance data.

  19. Domestic Heating and Cooling and Hot Water Supply System Based on Heat Pumps and Solar Energy%基于热泵和太阳能的住宅供暖供冷供生活热水三联供系统研究

    Institute of Scientific and Technical Information of China (English)

    魏海翔; 梁镇杰; 梁海珍; 刘翠华

    2014-01-01

    Residential heating and cooling water supply system for combined based on heat pumps and solar is a line with the social sustainable development, energy saving and environmental protection technical measures, it is a major breakthrough in air heat pump and solar energy industries. The system DC inverter air heat pump as the core,combined with solar energy,electricity and other energy to residential heating, cooling and domestic hot water provided, focus on solving the DC inverter air heat pump to residential and efficient heating, cooling, hot for life water, and solar and other alternative energy linkage, for residential heating cooling and domestic hot water systems integration and technology and other key technology issues.%基于热泵和太阳能的住宅供暖供冷供生活热水三联供系统是一项符合社会可持续发展的,节能环保的技术措施。该系统以直流变频空气能热泵为核心,结合太阳能、电能及其他能源,向住宅供暖、供冷及提供生活热水,着重解决了直流变频空气能热泵向住宅高效供暖、供冷、供生活热水,和太阳能及其他备用能源的联动,面向住宅供暖冷及生活热水的系统集成关键技术及工艺等问题。

  20. Solar process water heat for the IRIS images custom color photo lab

    Science.gov (United States)

    1980-01-01

    The solar facility located at a custom photo laboratory in Mill Valley, California is described. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100 F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxillary back up system is a conventional gas-fired water heater. Site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are presented.

  1. Comparative Study and Design of Solar Water Heater

    Directory of Open Access Journals (Sweden)

    K.Sainath,Y.krishna, Mohd Salahuddin, Mohammed Siddique Ahmed, Md Ismail, Syed Rahman,Mohammed Noman, Mohd Khaleel Ullah, Faraz Ur Rehman Azhar, Mohd Moizuddin,Mohd Riyaz Uddin.

    2014-10-01

    Full Text Available A solar water heater design is made from the plastic bottles of thumps up & plastic pipe(p.v.c run up by the centre of each solar heater in a row of bottles, these bottles act as glazing & hold reflectors made from the black paint. Solar water heaters are made of two basic parts: a solar collector that gathers radiant energy and a storage tank for the hot water inside. These systems are used to heat water for swimming pools, as well as for domestic cooking and cleaning needs. A system in which the sun’s heat is gathered by a solar collector and used to increase the temperature of a heat-transfer fluid , which flows through the pipes in the collector; the heat contained in this fluid then is conveyed and transferred to the water to be heated. Solar water heaters use the solar energy from the sun to generate heat (not electricity which can then be used to heat water for showering, space heating, industrial processes or even solar cooling. However, the research shows that the electric water spends about the 25% of its home energy costs on heating water. If we make a water heater without the collector then we can save a lot of money solar water heater do not polluted if one investing on SWH avoids carbon dioxide nitrogen oxide and sulphur dioxide and the other air pollution wastes and the utility generates power on your bum fuel to heat your household water when SWH replaces the an electric water heater. This electric displaced over 20 years replaced more than 50 tones avoided c02 emissions alone co2 traps heat in the upper most atmosphere thus, contributing to the ‘Green House Effect

  2. Performance of Thermosyphon Solar Water Heaters in Series

    Directory of Open Access Journals (Sweden)

    Tsong-Sheng Lee

    2012-08-01

    Full Text Available More than a single thermosyphon solar water heater may be employed in applications when considerable hot water consumption is required. In this experimental investigation, eight typical Taiwanese solar water heaters were connected in series. Degree of temperature stratification and thermosyphon flow rate in a horizontal tank were evaluated. The system was tested under no-load, intermittent and continuous load conditions. Results showed that there was stratification in tanks under the no-load condition. Temperature stratification also redeveloped after the draw-off. Analysis of thermal performance of the system was conducted for each condition.

  3. Hot wire deposited hydrogenated amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  4. Cycle Simulation of HotWater Fired Absorption Chiller

    Science.gov (United States)

    Esaki, Shuji; Iramina, Kazuyasu; Kobayashi, Takahiro; Ohnou, Masayuki; Kaneko, Toshiyuki; Soga, Takashi

    The design limits were examined to determine the lowest temperature for hot water that can be used as a heat source to drive a hot water fired absorption chiller. Advantage was taken of the fact that the cycle calculation method using the minimum temperature difference is quite effective. This minimum temperature difference was the lower of the two temperature differences used to get the logarithmic mean temperature difference that need to design the evaporator, absorber, condenser and generator in an absorption refrigerator. This report proposes a new solution algorithm employing this minimum temperature difference to make a cycle simulation of the hot water fired absorption chiller. It shows the lowest usable temperature for hot water and makes clear the chilled water and cooling water temperature conditions that can provide the lowest temperature.

  5. Solar power water distillation unit

    Science.gov (United States)

    Hameed, Kamran; Muzammil Khan, Muhammad; Shahrukh Ateeq, Ijlal; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-06-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  6. Solar-Powered Water Distillation

    Science.gov (United States)

    Menninger, F. J.; Elder, R. J.

    1985-01-01

    Solar-powered still produces pure water at rate of 6,000 gallons per year. Still fully automatic and gravity-fed. Only outside electric power is timer clock and solenoid-operated valve. Still saves $5,000 yearly in energy costs and pays for itself in 3 1/2 years.

  7. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkanshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S.; Mizuno, T. [Yazaki Resources Co. Ltd., Shizuoka (Japan)

    1996-10-27

    For the purpose of satisfying demands for qualitative improvement on tapwater temperature and pressure, an indirect-type solar water heater using solar cells, in which a closed type hot water storage tank connected directly to the water supply is integrated with a solar collector, was examined for its characteristics and performance. The heat collecting medium is a water solution of polypropylene glycol, which circulates through the solar collector pump, cistern, solar collector, and heat exchanger (hot water storage tank). The results of the test are summarized below. When comparison is made between the two solar collector pump control methods, the solar cells direct connection method and the differential thermo method utilizing temperature difference between the solar collector and the hot water storage tank, they are alike in collecting heat on clear days, but on cloudy days the latter collects 5% more than the former. In winter, when the heat exchanger heat transfer area is 0.4m{sup 2} large, a further increase in the area improves but a little the heat collecting efficiency. An increase in the medium flow rate and temperature, or in the Reynolds number, enhances the heat collecting efficiency. 13 figs., 6 tabs.

  8. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...

  9. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon

    2007-01-01

    loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...

  10. 207 EFFECTS OF HOT AND COLD WATER PRE- TREATMENTS ...

    African Journals Online (AJOL)

    JOURNAL OF RESEARCH IN FORESTRY, WILDLIFE AND ENVIRONMENT. VOLUME 2 ... dormancy, these methods include hot water. (FAO .... ASSET Journal Series A, 2: 29-36. FAO 1990. Arabic Gum, FAO Food and. Nutrition. Food and ...

  11. Constant delivery temperature solar water heater - an integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. [C.A.S. Indian Institute of Technology, New Delhi (India); Kumar, N. [D.C.E. Muzaffarpur Institute of Technology, Bihar (India)

    1997-05-01

    An integrated model of a constant delivery temperature solar water heat-cum-active regenerative distillation system has been developed. The water used for the regenerative effect in the distiller of the proposed system is subsequently fed to the basin-cum-storage tank of the still through the heat exchanger (connected to the collector). The model varies the water mass flow rate in order to maintain a constant outlet temperature. With minor modifications in the solar water heater, the extra energy stored in the water mass due to non-utilization of capacity and/or non-linear utilization of capacity can be efficiently utilized for distillation purposes. In this process, the latent heat of vaporization is used for preheating the inlet water supply to the heat exchanger. The effect of insulation on maintaining the hot water temperature and distillate output is also presented. (Author)

  12. Hot spots and hot moments in riparian zones: Potential for improved water quality management

    Science.gov (United States)

    Philippe Vidon; Craig Allan; Douglas Burns; Tim P. Duval; Noel Gurwick; Shreeram Inamdar; Richard Lowrance; Judy Okay; Durelle Scott; Stephen Sebestyen

    2010-01-01

    Biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. These heterogeneous processes have recently been conceptualized as "hot spots and moments" of retention, degradation, or production. Nevertheless, studies investigating...

  13. Hot water treatments delay cold-induced banana peel blackening

    NARCIS (Netherlands)

    Promyou, S.; Ketsa, S.; Doorn, van W.G.

    2008-01-01

    Banana fruit of cv. Gros Michel (Musa acuminata, AAA Group, locally called cv. Hom Thong) and cv. Namwa (Musa x paradisiaca, ABB Group) were immersed for 5, 10 and 15 min in water at 42 degrees C, or in water at 25 degrees C (control), and were then stored at 4 degrees C. Hot water treatment for 15

  14. Engineering solutions for polymer composites solar water heaters production

    Science.gov (United States)

    Frid, S. E.; Arsatov, A. V.; Oshchepkov, M. Yu.

    2016-06-01

    Analysis of engineering solutions aimed at a considerable decrease of solar water heaters cost via the use of polymer composites in heaters construction and solar collector and heat storage integration into a single device representing an integrated unit results are considered. Possibilities of creating solar water heaters of only three components and changing welding, soldering, mechanical treatment, and assembly of a complicate construction for large components molding of polymer composites and their gluing are demonstrated. Materials of unit components and engineering solutions for their manufacturing are analyzed with consideration for construction requirements of solar water heaters. Optimal materials are fiber glass and carbon-filled plastics based on hot-cure thermosets, and an optimal molding technology is hot molding. It is necessary to manufacture the absorbing panel as corrugated and to use a special paint as its selective coating. Parameters of the unit have been optimized by calculation. Developed two-dimensional numerical model of the unit demonstrates good agreement with the experiment. Optimal ratio of daily load to receiving surface area of a solar water heater operating on a clear summer day in the midland of Russia is 130‒150 L/m2. Storage tank volume and load schedule have a slight effect on solar water heater output. A thermal insulation layer of 35‒40 mm is sufficient to provide an efficient thermal insulation of the back and side walls. An experimental model layout representing a solar water heater prototype of a prime cost of 70‒90/(m2 receiving surface) has been developed for a manufacturing volume of no less than 5000 pieces per year.

  15. Origin of life and living matter in hot mineral water

    OpenAIRE

    Ignatov, Ignat; Mosin, Oleg

    2013-01-01

    In this review the composition of water and isotopic structure of water during a process of origin of life is submitted. The data obtained testify that life maintenance depends on physical-chemical properties of water and external factors – temperature and рН. Hot mineral alkaline water, which interacts with CaCO 3 is closest to these conditions. Next in line with regard to quality is sea and mountain water.

  16. ORIGIN OF LIFE AND LIVING MATTER IN HOT MINERAL WATER

    OpenAIRE

    Ignatov, Ignat; Mosin, Oleg

    2013-01-01

    In this review the composition of water and isotopic structure of water during a process of origin of life is submitted. The data obtained testify that life maintenance depends on physical-chemical properties of water and external factors – temperature and рН. Hot mineral alkaline water, which interacts with CaCO 3 is closest to these conditions. Next in line with regard to quality is sea and mountain water.

  17. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Jim; Melody, Moya

    2012-11-08

    There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

  18. Low-Cost Solar Water Heating Research and Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  19. Modeling patterns of hot water use in households

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J.D.; Liu, Xiaomin; McMahon, J.E. [and others

    1996-11-01

    This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

  20. Modeling patterns of hot water use in households

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

    1996-01-01

    This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

  1. Upgrading of biomass by carbonization in hot compressed water

    Directory of Open Access Journals (Sweden)

    Wiwut Tanthapanichakoon

    2006-09-01

    Full Text Available Carbonization of biomass (corn cob in hot compressed water was performed using a small bomb reactor at temperature 300-350ºC and pressure 10-18 MPa for 30 min. Then, the solid product or biochar was subjected to various analyses in order to investigate the effects of the carbonization in hot compressed water on the characteristics of the biochar. It was found that the yield of biochar carbonized in hot compressed water at 350ºC and pressure of 10 MPa for 30 min was 44.7%, whereas the yield of biochar carbonized in nitrogen atmosphere at 350ºC is 36.4%. Based on the information obtained from the elemental analyses of the biochar, it was found that the oxygen functional groups in the corn cob were selectively decomposed during the carbonization in hot compressed water. The pyrolysis and combustion behaviors of the biochar were found to be affected significantly by the carbonization in hot compressed water.

  2. Lanthanoid abundance of some neutral hot spring waters in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kikawada, Yoshikazu; Oi, Takao [Jochi Univ., Tokyo (Japan); Honda, Teruyuki

    1999-06-01

    Contents of lanthanoids (Ln's) in some neutral hot spring waters as well as in acidic hot spring waters were determined by neutron activation analysis. It was found that a higher pH resulted in lower concentrations of Ln's; the value of correlation coefficient (r) between the logarithm of the concentration of Sm ([Sm]), chosen as the representative of Ln's, and the logarithm of pH was -0.90. The sum of [Al] and [Fe] was strongly correlated with [Ln]'s in the pH range of 1.3 and 8.8; the correlation was expressed as log[Sm] = 0.893 log([Al] + [Fe]) - 5.45 with the r value of 0.98. The sum of [Al] and [Fe] was thus a good measure of the Ln contents in acidic and neutral hot spring waters. The Ln abundance patterns of neutral hot spring waters with normal CO{sub 2} concentrations had concave shapes with relative depletion in the middle-heavy Ln's and seemed to reflect the solubility of Ln carbonates. The neutral hot spring water with a high CO{sub 2} content of 1,800 ppm showed a Ln pattern with a relative enrichment in the heavy Ln's and seemed to reflect the solubility of Ln's observed for CO{sub 2}-rich solutions. (author)

  3. Two different sources of water for the early solar nebula.

    Science.gov (United States)

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  4. Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-09-01

    A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of $6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities. This publication details specifications of the parabolic trough solar system and highlights 5 years of measured performance data.

  5. Innovative solar thermochemical water splitting.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  6. Small-scale Geothermal Power Plants Using Hot Spring Water

    Science.gov (United States)

    Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.

    2013-12-01

    The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three

  7. Investigation on Kombiterm GE Domestic Hot Water Tank

    DEFF Research Database (Denmark)

    Heller, Alfred; Heuer, Andreas Walter

    1996-01-01

    Investigation of a hot water tank with a high heat exchanger spiral with a small pipe diameter in the upper part of the heat exchanger spiral and a large pipe diameter in the lower part of the heat exchanger spiral in cooperation with Kãhler&Breum Beholder- og Maskinfabrik K/S. First preprint of ...... of project resulting in final "Sagsrapport": Andreas Heuer, "High Spiral Heat Exchanger in Domestic Hot Water Tanks.", SR-9711, 1997, ISSN 1396-402X.Andreas Heuer, "User Manual for Simulation Program GETANK", SR-9712, 1997, ISSN1396-402X....

  8. Investigation on Kombiterm GE Domestic Hot Water Tank

    DEFF Research Database (Denmark)

    Heller, Alfred; Heuer, Andreas Walter

    1996-01-01

    Investigation of a hot water tank with a high heat exchanger spiral with a small pipe diameter in the upper part of the heat exchanger spiral and a large pipe diameter in the lower part of the heat exchanger spiral in cooperation with Kãhler&Breum Beholder- og Maskinfabrik K/S. First preprint of ...... of project resulting in final "Sagsrapport": Andreas Heuer, "High Spiral Heat Exchanger in Domestic Hot Water Tanks.", SR-9711, 1997, ISSN 1396-402X.Andreas Heuer, "User Manual for Simulation Program GETANK", SR-9712, 1997, ISSN1396-402X....

  9. Hot water always immediately available; Warmwasser stets sofort verfuegbar

    Energy Technology Data Exchange (ETDEWEB)

    Tettamanti, M.

    2007-07-01

    This article describes a system that guarantees the immediate supply of hot water at taps using heating strips that accompany the pipes leading from the boiler to the point of usage whilst avoiding energy losses incurred when hot-water circulation systems are used. The self-regulating system is described and application examples are quoted. The topic of legionella bacteria prevention is discussed and the efficiency of the system is looked at. Notes on the installation of the heating tapes are given and the system's controller is briefly looked at.

  10. YACON INULIN LEACHING DURING HOT WATER BLANCHING

    National Research Council Canada - National Science Library

    Scher, Caroline Fenner; Brandelli, Adriano; Noreña, Caciano Zapata

    2015-01-01

    .... However, inulin is very soluble in water. The loss of this important nutrient during blanching is caused mainly by diffusion or leaching, which might be diminished if blanching temperature - time conditions are correctly employed...

  11. Pouring 'Cold Water' on Hot Accretion

    Science.gov (United States)

    Rubin, A. E.

    1995-09-01

    The extensive recrystallization of type-6 OC has been interpreted as having resulted either from prograde thermal metamorphism of initially cold, unequilibrated material [1,2] or from autometamorphism due to slow cooling of material that accreted while still hot (1000-1200 K). Although the physical implausibility of hot accretion has been addressed [3], no comprehensive evaluation has been made of arguments in its favor. As shown below, these arguments are based on incomplete data, flawed experiments or improbable interpretations. Correlation between petrologic type and Ca in low-Ca pyroxene. Models of prograde metamorphism assume that, with increasing temperature, opx acquires Ca at the expense of diopside. Analyses of pyroxene in 10 H chondrites showed no correlation between Ca in pyroxene cores and increasing petrologic type [4], but more extensive data sets show such correlations [1,5,6]. A review of data for 51 OC [7] shows a progressive increase in the Wo content of low-Ca pyroxene with petrologic type: Wo 0.4-1.2 in type-3 and -4; Wo 1.2-1.6 in type-5; and Wo 1.6-2.2 in type-6. Striated opx. Undeformed striated opx were interpreted as having formed from inverted protopyroxene during slow cooling [8]; striated opx from H4 Quenggouk were found to convert into normal opx within 1 week during annealing at 1100 K [9]. Because prograde metamorphism probably lasted ~60 Ma [10], there should be no striated opx remaining in type-4 or -5 OC. However, samples of 99% twinned clinopyroxene (analogous to that in chondrules in type-3 OC) annealed for >3 weeks at Conquista could not have formed during single stage cooling as expected in autometamorphism; a two-stage cooling history involving rapid cooling during chondrule formation followed by parent-body annealing is more plausible. Polycrystalline taenite. Polycrystalline taenite in H/L3 Tieschitz was interpreted as a relict solidification structure that failed to anneal into monocrystalline taenite because of rapid

  12. Reversible electron-hole separation in a hot carrier solar cell

    Science.gov (United States)

    Linke, Heiner

    Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron-hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron-hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. To achieve this, we consider a highly selective energy filter such as a quantum dot embedded into a one-dimensional conductor. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. In addition this theoretical analysis, I will also report on first experimental results in a nanowire-based energy filter device. Ref: S Limpert, S Bremner, and H Linke, New J. Phys 17, 095004 (2015)

  13. Experimental and numerical evaluation of a solar passive cooling system under hot and humid climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Jose; Almao, Nastia [Universidad del Zulia, Lab. de Simulacion Computacional, Zulia (Venezuela); Gonzalez, Eduardo [Universidad del Zulia, Inst. de Investigaciones de la Facultad de Arquitectura, Zulia (Venezuela)

    2001-07-01

    The thermal performance of a solar passive cooling system (SPCS) under a hot and humid climate is experimentally and numerically evaluated. The experimental data were obtained from two full scale cells, with identical walls, but different roof configurations. One cell has a highly-insulated roof and the other has an SPCS incorporated consisting of a thermal mass (water), which is cooled by evaporation and long wave nocturnal radiation. The study was conducted taking into account the local climatic conditions of Maracaibo, a tropical city located in Venezuela. The numerical evaluation was accomplished using the computational code 'EVITA' which is based on the finite volume approach with high order bounded treatment of the convective terms. A PISO-like solution algorithm is used to solve the transient form of the continuity, momentum and energy equations. It has been demonstrated experimentally and numerically that under a hot and humid climate, it is possible to keep the indoor temperature below the outdoor temperature, using a passive cooling technique of a roof pond. The numerical results obtained using the model have demonstrated that the computational code used is a suitable cost-efficient alternative for the thermal performance evaluation of SPCS. (Author)

  14. Solar Water Heating with Low-Cost Plastic Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  15. The effect of hot water injection on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Haugwitz, Christian; Jacobsen, Peter Sally Munch;

    2014-01-01

    Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We present an analysis of literature data in combination with new short-term flow through permeability experiments in order to address physical and physico-chemical mechanisms that can alter...

  16. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based...

  17. Intelligent annunciator for solar water heater

    Science.gov (United States)

    Chen, Xiao

    2009-07-01

    The solar water heater has advantages of low cost, no pollution, safety, energy conservation and is very suitable for users in rural area. But many now used solar water heater has no alarm device resulting water and resource wasting because of forgetting to turn off the valve after water sailing upstream. To overcome this defect, an intelligent annunciator for solar water heater installed at the end of the return pipe is presented and designed in order to remind the user. Firstly, the advantages and disadvantages of automatic and manual sailing upstream are compared concluding that manual sailing upstream is more trustiness. Then an annunciator for solar water heater is studied and ameliorated. Its principle, parameters index and functions are introduced. The annunciator uses CD4069 chip as the core circuit with very little assistant circuit. It can provide sound and light alarm at the same time. This annunciator for solar water heater water is very simple in production, low cost, the use of safe and convenient. The annunciator is applicable to all solar power products, including various types of early installation of solar power water heaters and water tanks without changing their structures. It can meet family and industrial environmental applications.

  18. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy st

  19. Intracellular mechanisms of solar water disinfection

    Science.gov (United States)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  20. Design and Development of Prototype Cylindrical Parabolic Solar Collector for Water Heating Application

    Directory of Open Access Journals (Sweden)

    Hrushikesh Bhujangrao Kulkarni

    2016-02-01

    Full Text Available Concentrating collectors absorbs solar energy and convert it into heat for generating hot water, steam at required temperature, which can be further used for solar thermal applications. The developing countries like India where solar energy is abundantly available; there is need to develop technology for harnessing solar energy for power production, but the main problem associated with concentrating solar power technology is the high cost of installation and low output efficiency. To solve this problem, a prototype cylindrical parabolic solar collector having aperture area of 1.89 m2 is designed and developed using low cost highly reflecting and absorbing material to reduce initial cost of project and improve thermal efficiency. ASHRAE Standard 93, 1986 was used to evaluate the thermal performance and it was observed that this system can generate hot water at an average temperature of 500C per day with an average efficiency of 49% which is considerable higher than flat plate solar collectors. Hot water produced by this system can be useful for domestic, agricultural, industrial process heat applications.Article History: Received Sept 19, 2015; Received in revised form Dec 23, 2015; Accepted February 2, 2016; Available online How to Cite This Article: Bhujangrao, K.H. (2016. Design and Development of Prototype Cylindrical Parabolic Solar Collector for Water Heating Application. International Journal of Renewable Energy Development, 5(1, 49-55 http://dx.doi.org/10.14710/ijred.5.1.49-55 

  1. 复合型空气-水太阳集热器热性能研究及影响因素分析%Collection Hot Performance and Influence Factor Analysis for Compound Air-water Solar Collector

    Institute of Scientific and Technical Information of China (English)

    肖菊; 孙寅聪; 邢乃豪; 谢毅; 高林朝

    2015-01-01

    对研制的一种复合型空气-水太阳集热器建立数学模型并进行冬季空气采暖集热效率模拟。对比分析了立面90°和坡屋面45°两种安装倾角在不同工况下集热器的热性能,研究了循环介质质量流量及太阳辐射强度等因素对集热器集热效率和出口温度的影响。%The mathematical model is established by programming to simulate winter air heating collection efficiency for a kind of compound air⁃water solar collectors. We make comparative analysis for the collection efficiency of the collectors under installation angles of elevation 90° and 45° slope roof and study the influence of air flow and solar radiation intensity on collector efficiency and the outlet temperature.

  2. Hot Oxygen Corona at Mars and Its Effect on Solar Wind Deceleration

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tie-Long; Lichtenegger Herbert; SHI Jian-Kui; WANG Xiao; Lammer Helmut

    2006-01-01

    @@ Phobos 2 plasma measurements have revealed solar wind deceleration of about 100 km/s upstream of the Martian bow shock. It is suggested that the deceleration is due to the mass loading by the ions originating from the hot oxygen corona of Mars. In this study, we use a gas-dynamic model to estimate the solar wind deceleration caused by the mass loading effect and the result shows that the deceleration is only about 10-15 km/s when we invoke the well established hot oxygen corona density profiles.

  3. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  4. PCM-module to improve hot water heat stores with stratification

    Energy Technology Data Exchange (ETDEWEB)

    Mehling, H.; Hippeli, S.; Hiebler, S. [ZAE Bayern, Garching (Germany); Cabeza, L.F. [Universitat de Lleida (Spain). Centre de Recerca en Energia Aplicada

    2003-04-01

    Hot water heat stores with stratification are a common technology used in solar energy systems and reuse of waste heat. Adding a PCM module at the top of the water tank would give the system higher storage density, and compensate heat loss in the top layer. The work presented here includes experimental results and numerical simulation of the system using an explicit finite-difference method. Experiments and simulations were carried out using different cylindrical PCM modules. With only 1/16 of the volume of the store being PCM, 3/16 of water at the top of the store was held warm for 50% to 200% longer and the average energy density was increased by 20% to 45%. Furthermore, these 3/16 of water were reheated by the heat from the module after being cooled down in only 20 min. (Author)

  5. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  6. Hot-air flat-plate solar collector-design package

    Science.gov (United States)

    1979-01-01

    Report contains design data, performance specifications, and drawings for hot-air flat-plate solar-energy collector. Evaluation consists of tests on thermal performance time constance, and incidence angle modifier test. Results are presented in table and graph form and are analyzed in detail.

  7. Hot-air flat-plate solar collector-design package

    Science.gov (United States)

    1979-01-01

    Report contains design data, performance specifications, and drawings for hot-air flat-plate solar-energy collector. Evaluation consists of tests on thermal performance time constance, and incidence angle modifier test. Results are presented in table and graph form and are analyzed in detail.

  8. An unusual burn caused by hot argy wormwood leaf water

    Directory of Open Access Journals (Sweden)

    Feng Guo

    2011-09-01

    Full Text Available An unusual burn case caused by hot wormwood leaf water was discussed. A 29-year-old woman sustained a 7% second-degree burn on both buttocks and left thigh. This case report highlights a rare cause of a chemical burn that may become more common with increasing use of this Chinese traditional medicine. The prevention measures of this burn injury were also presented.

  9. Cathodic Protection of Hot Water Tanks at Fort Sill

    Science.gov (United States)

    2007-06-01

    clothing suitable for the weather and your work. Torn, loose clothing, cuffs, sleeves, etc., are hazardous and could cause accidents. Jewelry (rings...sharp edges. 8. Friction Buckle: Inspect the buckle for distortion. The outer bars and center bars must be straight. Pay special attention...include high silicon cast iron, graphite, mixed metal oxide, platinum and niobium coated wire and others. 3.1.5 A typical ICCP system for a hot water

  10. Forecasting hot water consumption in dwellings using artificial neural networks

    OpenAIRE

    Gelazanskas, Linas; Gamage, Kelum

    2015-01-01

    The electricity grid is currently transforming and becoming more and more decentralised. Green energy generation has many incentives throughout the world thus small renewable generation units become popular. Intermittent generation units pose threat to system stability so new balancing techniques like Demand Side Management must be researched. Residential hot water heaters are perfect candidates to be used for shifting electricity consumption in time. This paper investigates the ability on Ar...

  11. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  12. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experimental test. We reported the investigation of solar thermal conversion efficiency in different seasons which is 29.24% in summer, 14.75% in winter, and 15.53% in rainy season. This paper also discusses the DC heater for backup system and the current by using thermoelectric generator which are 3.20 V in summer, 2.120 V in winter, and 1.843 V in rainy season. This solar water heating system is mostly suited for its ease of operation and simple maintenance. It is expected that such novel solar thermal technology would further contribute to the development of the renewable energy (solar driven heating/hot water service and therefore lead to significant environmental benefits.

  13. Development of a hot water tank simulation program with improved prediction of thermal stratification in the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Yue, Hongqiang

    2015-01-01

    A simulation program SpiralSol was developed in previous investigations to calculate thermal performance of a solar domestic hot water (SDHW) system with a hot water tank with a built-in heat exchanger spiral [1]. The simulation program is improved in the paper in term of prediction of thermal...... stratification in the tank. The transient fluid flow and heat transfer in the hot water tank during cooling caused by standby heat loss are investigated by validated computational fluid dynamics (CFD) calculations. Detailed CFD investigations are carried out to determine the influence of thickness and material...... property of the tank wall on thermal stratification in the tank. It is elucidated how thermal stratification in the tank is influenced by the natural convection and how the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The existing...

  14. Indoor tests of a hot-air solar collector

    Science.gov (United States)

    1979-01-01

    Data taken relating indoor testing using solar simulator at Marshall Space Center has been compared with data taken during outdoor tests in previous studies. Data includes tests on thermal performance, time constance, and incidence-angle modifier tests in table/graph form.

  15. Thermal performance of a hot-air solar collector

    Science.gov (United States)

    1978-01-01

    Report contains procedures and results of thermal-performance tests on double-glazed air solar collector. Four types of tests were carried out including thermal-efficiency and stagnation tests, collector time-constant tests to assess effects of transients, and incident-angle modifier tests. Data are presented in tables and as graphs and are discussed and analyzed.

  16. Global water cycle and solar activity variations

    Science.gov (United States)

    Al-Tameemi, Muthanna A.; Chukin, Vladimir V.

    2016-05-01

    The water cycle is the most active and most important component in the circulation of global mass and energy in the Earth system. Furthermore, water cycle parameters such as evaporation, precipitation, and precipitable water vapour play a major role in global climate change. In this work, we attempt to determine the impact of solar activity on the global water cycle by analyzing the global monthly values of precipitable water vapour, precipitation, and the Solar Modulation Potential in 1983-2008. The first object of this study was to calculate global evaporation for the period 1983-2008. For this purpose, we determined the water cycle rate from satellite data, and precipitation/evaporation relationship from 10 years of Planet Simulator model data. The second object of our study was to investigate the relationship between the Solar Modulation Potential (solar activity index) and the evaporation for the period 1983-2008. The results showed that there is a relationship between the solar modulation potential and the evaporation values for the period of study. Therefore, we can assume that the solar activity has an impact on the global water cycle.

  17. Study on solar sea water desalination; Studie ueber solare Meerwasserentsalzung

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, G.K.

    1995-09-01

    The state of the art of solar sea water desalination is discussed based on the example of simple solar distillation. Reasons are given for the relatively reserved use of this technique in the past. The increasing shortage of fresh water (drinking water) due to increasing water consumption, the deforestation of (rain) forests, and increasing environmental pollution reveals the urgency of sea water desalination. However, the fossil energy sources that are needed for desalination cause a further increase in carbon dioxide emissions and aggravate the global-warming problem. This study suggests to multiply the relatively low economic efficiency and low cost efficiency of simple solar distillers by vacuum-controlled ground cooling and to operate pumps that convey sea water and distilled water by means of solar energy or solar cogeneration. Model calculations and a pilot project are recommended for a closer quantification of the data. General intercultural and socioeconomic aspects that must be considered when installing solar sea water (waste water) distillation plants, e.g. in Africa, are discussed. (orig.) [Deutsch] In dieser Studie wird der Stand der Technik der solaren Wasserentsalzung, basierend auf der einfachen solaren Destillation, untersucht sowie die Gruende fuer den bisher relativ geringen Einsatz dieser Technik erlaeutert. Die zunehmende Verknappung von Suesswasser (Trinkwasser), durch steigenden Wasserverbrauch, durch die Abholzung von (Regen)-Waeldern und durch die zunehmende Umweltverschmutzung ruecken aber die Notwendigkeit der Meerwasserentsalzung immer staerker in den Vordergrund. Der hohe Energiebedarf dafuer traegt aber bei der Verwendung von fossiler Primaerenergie zu einer weiteren Verstaerkung des CO{sub 2}-Ausstosses und damit zur weiteren Verschaerfung der Klimaproblematik bei. Deshalb wird hier nicht nur vorgeschlagen, den relativ geringen Wirkungsgrad und die relativ geringe Kosteneffizienz einfacher solarer Destillatoren durch

  18. Basic principles of solar water heating

    CSIR Research Space (South Africa)

    Page-Shipp, RJ

    1980-09-10

    Full Text Available This article correctly reflects the principles of Solar Water Heating as they pertain to South African conditions. However, it was written in 1980 and the global energy situation has changed considerably. Furthermore, modern commercial units...

  19. Report on Solar Water Heating Quantitative Survey

    Energy Technology Data Exchange (ETDEWEB)

    Focus Marketing Services

    1999-05-06

    This report details the results of a quantitative research study undertaken to better understand the marketplace for solar water-heating systems from the perspective of home builders, architects, and home buyers.

  20. Field Surveys of Non-Residential Solar Water Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Kung-Ming Chung

    2012-02-01

    Full Text Available To develop indigenous alternative and renewable energy resources, long-term subsidy programs (1986–1991 and 2000–present for solar water heaters have been enforced in Taiwan. By the end of 2010, the total installed area of solar collectors had exceeded 2 million square meters. However, over 98% of solar water heaters were used in residential systems for hot water production, with the areas of installed solar collector being less than 10 square meters. There were only 98 systems with area of solar collectors installed exceeding 100 square meters put into operation from 2001 to 2010. These systems were mainly installed for water heating in dormitories, swimming pools, restaurants, and manufacturing plants. In the present study, a comprehensive survey of these large-scale solar water heaters was conducted. The objectives of the survey were to assess the system performance and to collect feedback from individual users. It is found that lack of experience in system design and maintenance are the key factors affecting reliable operation of a system. Hourly, daily and long-term field measurements of a dormitory system were also examined to evaluate its thermal efficiencies. Results indicated that thermal efficiency of the system is associated with the daily solar radiation. Hot water use pattern and operation of auxiliary heater should be taken into account in system design.

  1. Root Cause Analysis of Water Wastage in Hot - Cold Water Dispenser

    Directory of Open Access Journals (Sweden)

    Sunil Kokane

    2015-03-01

    Full Text Available Hot - Cold Water Dispenser is a high end kitchen product mounted on sink of kitchen to meet the requirement of instant hot and cold water as desired. It provides cold water at ambient temperature and hot water at near boiling temperature of about 97ºC to meet the instant water need. It was reported from few users, small amount of unnecessary water get dispensed from the Hot - Cold Water Dispenser during the idle conditions. This is undesirable and affecting on the overall performance of product. This paper briefs the available Root Cause Analysis and process to select the suitable method to find out the root cause of problem. From the available methods, Fault Tree Analysis was found to be most suitable method. The paper describes this method in length. Fault Tree Analysis is used as the scientific approach to find the root cause of problem of water dripping in Hot - Cold Water Dispenser at idle condition. It makes use of a graphical representation of the major faults associated with the product, the causes for the faults, and potential countermeasures. It is found that the FTA tool helps to identify areas of concern for new product design as well as for improvement of existing products.

  2. Water Purification and Disinfection by using Solar Energy: Towards Green Energy Challenge

    Directory of Open Access Journals (Sweden)

    Md Z.H. Khan

    2015-12-01

    Full Text Available The aim of this work was to design a solar water treatment plant for household purpose. Water purification is the process of eradicating detrimental chemicals, biological poisons, suspended solids and gases from contaminated water. In this work we have reported an investigation of compact filter which is cost effective for developing countries and ease of maintenance. We have arranged a solar water disinfection system that improves the microbiological quality of drinking water at household level. We get 14 L pure water and 16 ml water vapour within 240 min by using filtration method. From our work we get hot water up to 49°C. The efficiency of the system at sunny days and cloudy days are 18.23% and 18.13% respectively. This simple solar hybrid system helps to remove turbidity as well as chemical and pathogenic contaminants from water sources in the most affordable, and expedient manner possibly.

  3. Legionella contamination in hot water of Italian hotels.

    Science.gov (United States)

    Borella, Paola; Montagna, Maria Teresa; Stampi, Serena; Stancanelli, Giovanna; Romano-Spica, Vincenzo; Triassi, Maria; Marchesi, Isabella; Bargellini, Annalisa; Tatò, Daniela; Napoli, Christian; Zanetti, Franca; Leoni, Erica; Moro, Matteo; Scaltriti, Stefania; Ribera D'Alcalà, Gabriella; Santarpia, Rosalba; Boccia, Stefania

    2005-10-01

    A cross-sectional multicenter survey of Italian hotels was conducted to investigate Legionella spp. contamination of hot water. Chemical parameters (hardness, free chlorine concentration, and trace element concentrations), water systems, and building characteristics were evaluated to study risk factors for colonization. The hot water systems of Italian hotels were strongly colonized by Legionella; 75% of the buildings examined and 60% of the water samples were contaminated, mainly at levels of > or =10(3) CFU liter(-1), and Legionella pneumophila was the most frequently isolated species (87%). L. pneumophila serogroup 1 was isolated from 45.8% of the contaminated sites and from 32.5% of the hotels examined. When a multivariate logistic model was used, only hotel age was associated with contamination, but the risk factors differed depending on the contaminating species and serogroup. Soft water with higher chlorine levels and higher temperatures were associated with L. pneumophila serogroup 1 colonization, whereas the opposite was observed for serogroups 2 to 14. In conclusion, Italian hotels, particularly those located in old buildings, represent a major source of risk for Legionnaires' disease due to the high frequency of Legionella contamination, high germ concentration, and major L. pneumophila serogroup 1 colonization. The possible role of chlorine in favoring the survival of Legionella species is discussed.

  4. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  5. Slow And Fast Kindling During Hyperthermic Stimulation In Rats : Implications For Hot Water Epilepsy

    Directory of Open Access Journals (Sweden)

    Krishnamurthy U

    2000-01-01

    Full Text Available Hot water epilepsy, a reflex epilepsy precipitated by hot water stimulation, has been commonly reported from southern India. Clinical studies have indicated that a phenomenon of hyperthermic kindling may underlie the appearance of spontaneous seizures in some hot water epilepsy patients at a later stage. Our present experiments with a rat model for hot water epilepsy demonstrate the occurrence of slow and fast kindling during hyperthermic seizures, induced by repeated stimulations with hot water, in different populations of rats. These findings have important implications for the pathophysiology and management of this epileptic syndrome in human beings.

  6. Economic analysis of residential solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-23

    A typical residential solar water heater, and typical cost and performance information are described briefly. The monthly costs and savings of the typical system are discussed. Economic evaluations of solar water heaters are presented in increasingly complex levels of detail. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described. Methods for calculating the Payback Period for any non-typical solar water heater are described. This calculated Payback Period is then shown to be related to the effective interest rate that the puchaser of the system would receive for a typical set of economic conditions. A method is presented to calculate the effective interest rate that the solar system would provide. (MHR)

  7. Analysis of a solar water thermosyphon system; Analise do aquecimento solar de agua por sistema a termosifao

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Abner Barzola

    1992-07-01

    A design methodology and to perform the simulation of flat plate solar collectors coupled with a water storage tank and operating by natural convection circulation is presented. For a given site the incident solar radiation on a tilted and previously oriented surface is determined from solar astronomy and the dally average of the monthly data of the horizontal total solar radiation. Huancayo situated in Peru (at 12.05 deg S, long. 76.18 deg W, altitude 3,312 m), is chosen as the site to be installed the solar water system, as a mean to improve the peasant's standard of life. An optimum tilt angle for a north oriented collector surface is obtained in order to have a maximum solar capture during the water. The theoretical methodology use here is based upon the ONG's paper (1976), and in attrition is considered the hot water drainage due to the dally consumption. For the sake of comparison, the calculated flowrate values are confronted with the experimental data obtained by FERNANDEZ, for a same site location (Rio de Janeiro) and are used identical dimensions for the water thermosyphon heater. Finally, the economic feasibility of the solar water system is demonstrated when it is compared with the usual immersion electric resistance boiler. For the Peruvian conditions the more adequate solar water system for a rural or domestic usage is a 1.4 m{sup 2} area solar collector (6 parallel, 15,875 mm copper tubes), 100 l capacity for the water storage tank, 33.5 mm for the connecting tubes, being of 300 mm. The height between the collector top and the bottom of the tank. (author)

  8. Photocatalytic Water Disinfection with Solar Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sichel, C.; Fernandez-Ibanez, P.; Blanco, J.; Malato, S.

    2006-07-01

    Drinking water disinfection is the final treatment phase before supplying drinking water to customers. Actually, the most widely employed disinfecting method is the chlorination. Even though it has high efficiency and long residual effects, chlorine presents the drawback of the high potential to produce chloro-organic compounds, which are hazardous. In order to find a safe method to disinfect drinking water, a number of so-called {sup n}ew technologies{sup a}re being developed by researchers from the entire world. Among these emerging technologies, the heterogeneous photocatalytic oxidation is becoming more and more important, mainly for applications in isolated and arid areas of developing countries. In the case of heterogeneous photocatalytic oxidation via TiO2, when the semiconductor is suspended or immersed in water and irradiated with near UV (?<385 nm), OH radicals are generated by the reaction of holes and electrons respectively with electron donor and acceptor molecules. The OH radical is highly toxic towards microorganisms and very reactive in the oxidation of organic substances. Therefore, a solar photocatalytic treatment can be a disinfecting method but at the same time a process to degrade organic matter. This contribution demonstrates the feasibility of using the photocatalytical processes to inactivate microorganisms present in water for potential applications in drinking water disinfection for solar systems. This work shows the main results on solar photocatalytic disinfection with solar photo-reactors, using the solar radiation and TiO2 as a photocatalyst. (Author)

  9. Water Desalination Systems Powered by Solar Energy

    Science.gov (United States)

    Barseghyan, A.

    2015-12-01

    The supply of potable water from polluted rivers, lakes, unsafe wells, etc. is a problem of high priority. One of the most effective methods to obtain low cost drinking water is desalination. Advanced water treatment system powered by Solar Energy and based on electrodialysis for water desalination and purification, is suggested. Technological and economic evaluations and the benefits of the suggested system are discussed. The Advanced Water Treatment System proposed clears water not only from different salts, but also from some infections, thus decreasing the count of diseases which are caused by the usage of non-clear water. Using Solar Energy makes the system stand alone which is convenient to use in places where power supply is problem.

  10. Potential for solar water heating in Zimbabwe

    NARCIS (Netherlands)

    Batidzirai, B.; Lysen, E.H.; van Egmond, S.; van Sark, W.G.J.H.M.

    2009-01-01

    This paper discusses the economic, social and environmental benefits from using solar water heating (SWH) in Zimbabwe. By comparing different water heating technology usage in three sectors over a 25-year period, the potential of SWH is demonstrated in alleviating energy and economic problems that e

  11. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery

    Science.gov (United States)

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-01

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a “solar water battery”. The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E0 (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  12. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery.

    Science.gov (United States)

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-15

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a "solar water battery". The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E(0) (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  13. Effect Of Hot Water Injection On Sandstone Permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke

    2012-01-01

    The seasonal imbalance between supply and demand of renewable energy requires temporary storage, which can be achieved by hot water injection in warm aquifers. This requires that the permeability and porosity of the aquifer are not reduced significantly by heating. We present an overview...... of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx...

  14. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, Arvind; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank, resp

  15. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, A.; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank, resp

  16. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, A.; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank,

  17. Solar Water Splitting Using Semiconductor Photocatalyst Powders

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-01

    Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water splitting using heterogeneous photocatalysts with a single semiconductor enables the direct generation of H from photoreactors and is one of the most economical technologies for large-scale production of solar fuels. Efficient photocatalyst materials are essential to make this process feasible for future technologies. To achieve efficient photocatalysis for overall water splitting, all of the parameters involved at different time scales should be improved because the overall efficiency is obtained by the multiplication of all these fundamental efficiencies. Accumulation of knowledge ranging from solid-state physics to electrochemistry and a multidisciplinary approach to conduct various measurements are inevitable to be able to understand photocatalysis fully and to improve its efficiency.

  18. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J. [ARIES Collaborative, New York, NY (United States); Varshney, K. [ARIES Collaborative, New York, NY (United States); Henderson, H. [ARIES Collaborative, New York, NY (United States)

    2013-10-01

    In this project, the ARIES Building America team collected apartment temperature data from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. Data was analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating in an effort to answer the question, "What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?" This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort.

  19. Solar wind origin of terrestrial water

    CERN Document Server

    Merkl, Hans

    2011-01-01

    The origin of the Earth water reserves during the evolution of the planet is one of the big miracles in geophysics. Common explanations are storage of water in the Earth mantle at a time when the crust had not yet formed and depositing of water by comets during the time of late heavy bombardement. Both explanations have different problems - especially when comparing with the evolution of Mars and Venus. Here we discuss the possible role of hydrogen collected from the solar wind by the early Earth magnetosphere. While the water production by solar wind capture is very small today it may have been significant during the first billion years after planetary formation because solar wind was much stronger at that time and Earth magnetospheric configuration may have been different. We estimate that the contribution of solar wind hydrogen to the Earth water reserves can be up to 10% when we assume a that the Earth dipole acted as a collector and early solar wind was 1000 times stronger than today. We can not even exc...

  20. Simulation on Solar Hot Water Low-temperature Radiant Floor Heating System Based on Different Floor's Room Temperature Control%基于分层室温控制的太阳能热水低温地板辐射供暖系统模拟研究

    Institute of Scientific and Technical Information of China (English)

    李双双; 端木琳; 舒海文; 叶晓莉

    2011-01-01

    本文构建了基于分层室温控制的太阳能热水低温地板辐射供暖系统,并以大连地区为对象,采用TRNSYS软件对其进行了模拟计算,预测太阳能供暖系统的运行情况,对室内温度、蓄热水箱温度以及集热器和辅助热源的运行情况进行了较详细的分析.在此基础上,针对软件模拟过程中组件的选择和太阳能供暖系统的设计提出了建议.%In this paper, a solar hot water low-temperature radiant floor heating system based on different floor's room temperature control was established. Taking the building in Dalian as a simulation object,the software of TRNSYS was used to analyze the operation of the system. Furthermore, the room temperature, the temperature of heat storage water tank and the operation conditions of heat collector and auxiliary heat source were studied. Based on the discussion, several advice for component selection during simulation and relevant system design was given out.

  1. Low Cost Solar Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    William Bostic

    2005-12-16

    This project was directed by NREL to pursue development of an all polymer solar thermal collector. The proposed design utilized a dual sheet thermoform process to coincidentally form the absorber as well as the containment structure to support the glazing. It utilized ventilation to overcome stagnation degradation of the polymer materials.

  2. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-04-08

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  3. Building America Case Study: Solar Water Heating in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    R. Aldrich and J. Williamson

    2016-05-01

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: (1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads. (2.) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes. (3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating. (4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support form the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  4. 46 CFR 53.05-2 - Relief valve requirements for hot water boilers (modifies HG-400.2).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Relief valve requirements for hot water boilers... requirements for hot water boilers (modifies HG-400.2). (a) The relief valve requirements for hot water boilers... (incorporated by reference; see 46 CFR 53.01-1) except as noted otherwise in this section. (b) Hot water...

  5. ALKALINE PEROXIDE BLEACHING OF HOT WATER TREATED WHEAT STRAW

    Directory of Open Access Journals (Sweden)

    Suvi Mustajoki

    2010-05-01

    Full Text Available The aim of this study was to evaluate the possibilities for chemical consumption reduction in P-P-Paa-P bleaching (P alkaline peroxide stage, Paa peracetic stage of hot water treated straw and the effect of the wheat straw variability on the process. Papermaking fibre production from wheat straw using such a process could be implemented on a small scale if chemical consumption was low enough to eliminate the need for chemical recovery. The pulp properties obtained with this process are equal to or even superior to the properties of wheat straw soda pulp. The possibility of enhancing the first peroxide stage with oxygen and pressure was studied. The possibility for substitution of sodium hydroxide partially with sodium carbonate was also investigated. The objective was to achieve International Standardization Organization (ISO brightness of 75%, with minimal sodium hydroxide consumption, whilst maintaining the pulp properties. The optimization of the peroxide bleaching is challenging if the final brightness target cannot be reduced. Results indicate that up to 25% of the sodium hydroxide could be substituted with sodium carbonate without losing brightness or affecting pulp properties. Another possibility is a mild alkali treatment between the hot water treatment and the bleaching sequence.

  6. Indirect heat integration across plants using hot water circles☆

    Institute of Scientific and Technical Information of China (English)

    Chenglin Chang; Yufei Wang; Xiao Feng

    2015-01-01

    Total site heat integration (TSHI) provides more opportunities for energy saving in industry clusters. Some design methods including direct integration using process streams and indirect integration using intermediate-fluid cir-cuits, i.e., steam, dowtherms and hot water, have been proposed during last few decades. Indirect heat integration is preferred when the heat sources and sinks are separated in independent plants with rather long distance. This improves energy efficiency by adaption of intermediate fluid circle which acts as a utility provider for plants in a symbiotic network. However, there are some significant factors ignored in conventional TSHI, i.e. the investment of pipeline, cost of pumping and heat loss. These factors simultaneously determine the possibility and perfor-mance of heat integration. This work presents a new methodology for indirect heat integration in low tempera-ture range using hot water circuit as intermediate-fluid medium. The new methodology enables the targeting of indirect heat integration across plants considering the factors mentioned earlier. An MINLP model with economic objective is established and solved. The optimization results give the mass flow rate of intermediate-fluid, diam-eter of pipeline, the temperature of the circuits and the matches of heat exchanger networks (HENS) automati-cally. Finally, the application of this proposed methodology is il ustrated with a case study.

  7. Simplified architectural method for the solar control optimization of awning and external wall in houses in hot and dry climates

    OpenAIRE

    Gómez Muñoz, Víctor Manuel; Porta Gándara, Migual Ángel

    2003-01-01

    In extremely hot and dry climates, like northwestern Mexico, solar gain reduction in houses using solar passive techniques is important for improving comfort inside the construction and to save costs in electrical cooling during the whole year, because the winter season is also hot in those regions. A new one-dimension method is proposed to analyze the interaction between two common shading devices: awnings and external walls to reduce insulation on the facade and inside the house due to fene...

  8. Thermal performance of solar water heater system in Yemen

    Energy Technology Data Exchange (ETDEWEB)

    Abdulla Aziz, G.M.; Mukbel, M.A. (Aden Univ., (Yemen, Republic of). Faculty of Engineering)

    1994-01-01

    A thermosyphonic solar water heating system was designed and fabricated from available materials. The risers of galvanized iron are fixed to an aluminium absorber plate by using an Omiga-in and Omiga-out technique. The collector absorber has an aperture area of 127 cm x 91 cm and is connected to a storage tank with 124 l capacity. The system was then tested under the climatical conditions of Aden city. The performance of characteristics of the system, under 'nondrawn off' and ''drawoff'' hot water conditions, are experimentally determined and then compared with the theoretical results. The results are quite satisfactory. The maximum efficiency reached 79%, with mean storage tank temperature of 60[sup o]C. (author)

  9. Study of LO-phonon decay in semiconductors for hot carrier solar cell

    Science.gov (United States)

    Levard, Hugo; Vidal, Julien; Laribi, Sana; Guillemoles, Jean-François

    2014-03-01

    Knowledge of phonon decay is of crucial importance when studying basic properties of semiconductors, since they are closely related to Raman linewidth and non-equilibrium-hot-carriers cooling. The latter indeed cools down to the bottom of the conduction band within a picosecond range because of electron-phonon interaction. The eventual emitted hot phonons then decay in few picoseconds. The hot carriers cooling can be slowed down by considering the decay rate dependence of phonon on conservation rules, whose tuning may reduce the allowed two-phonon final states density. This is of direct interest for the third generation photovoltaic devices that are Hot Carrier Solar Cells (HCSC), in which the photoexcited carriers are extracted at an energy higher than thermal equilibrium. One of the HCSC main challenges then is to find an absorber material in which the hot phonons has a relaxation time longer than the carriers cooling time, so that we can expect the electron to ``reabsorb'' a phonon, slowing down the electronic cooling. HCSC yield is ultimately limited by LO phonon decay, though. In this work, we present theoretical results obtained from ab initio calculations of phonon lifetime in III-V and IV-IV semiconductors through a three-phonon process. Common approximations in the literature are questioned. In particular, we show that the usual ``zone-center approximation'' is not valid in some specific semiconductors. The analysis allows to correctly investigate phonon decay mechanisms in bulk and nanostructured materials.

  10. X-raying hot plasma in solar active regions with the SphinX spectrometer

    CERN Document Server

    Miceli, M; Gburek, S; Terzo, S; Barbera, M; Collura, A; Sylwester, J; Kowalinski, M; Podgorski, P; Gryciuk, M

    2012-01-01

    The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board CORONAS-PHOTON mission is sensitive to X-ray emission well above 1 keV and provides the opportunity to detect the hot plasma component. We analyzed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistics and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 x 10^44 cm^-3. The X-ray emission from the hot plasma dominat...

  11. Solar energy engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, J.S.

    1986-01-01

    This book introduces the reader to solar energy engineering, covering topics such as radiation, absorption, its practical applications in space and hot water heating, and solar geometrical and geographical forms.

  12. Hot water preparation using only a heat-pump; Warmwasserbereitung immer mit Waermepumpe

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, H.; Gabathuler, H. R. [Gabathuler AG, beratende Ingenieure, Diessenhofen (Switzerland); Baumgartner, T. [Th. Baumgartner und Partner AG, Duebendorf (Switzerland)

    2007-07-01

    This article discusses the use of heat-pumps to heat up domestic hot water. The authors note that previously, heat-pumps were used to provide only space heating and domestic hot water was heated up using separate electrical heating elements. The results of a research and development project that defined standard configurations for small heat-pump installations that also provide hot water are discussed. An existing installation with two heat-pumps with ground-loop heat probes and a hot water store was used for tests. Measurements made and the results obtained are presented and discussed. Six configuration variants are described and their operation examined in detail. It is concluded that heat pumps may always be used for hot water preparation despite hygiene regulations demanding hot water temperatures up to 60 {sup o}C to prevent legionella growth.

  13. Potential evaluation of cold heat and hot heat supply by solar heat; Taiyonetsu ni yoru reinetsu onnetsu no kyokyu potential hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Akizawa, A.; Ishida, K.; Kashiwagi, T. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan)

    1997-01-30

    When the recovered solar heat is supplied to demands such as heating, cooling by absorption refrigerator and hot water supply, the maximum available heating value was determined using a model in which solar heat collector was installed in the residence, to investigate the possibility of alternative demand. In this study, the supply temperatures were 80 {degree}C for cooling, 50 {degree}C for heating, and 50 {degree}C for hot water supply, where a flat plate type heat collector was employed. It was assumed that the heat storage can be conducted for 24 hours. Results obtained are as follows. For detached houses, most of the monthly demand can be supplied due to the actual predominant fine days in each month. For the cold and intermediate periods, it was supposed that monthly demand can be supplied by using excess heating value of fine days in the case of sufficient capacity of heat storage tank. For the model with heat insulating structure, demands except hot water supply can be supplied from solar energy. It was found that the heat insulation greatly contributes to the energy saving. 6 refs., 5 figs., 2 tabs.

  14. Potential evaluation of cold heat and hot heat supply by solar heat; Taiyonetsu ni yoru reinetsu onnetsu no kyokyu potential hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Akizawa, A.; Ishida, K.; Kashiwagi, T. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan)

    1997-01-30

    When the recovered solar heat is supplied to demands such as heating, cooling by absorption refrigerator and hot water supply, the maximum available heating value was determined using a model in which solar heat collector was installed in the residence, to investigate the possibility of alternative demand. In this study, the supply temperatures were 80 {degree}C for cooling, 50 {degree}C for heating, and 50 {degree}C for hot water supply, where a flat plate type heat collector was employed. It was assumed that the heat storage can be conducted for 24 hours. Results obtained are as follows. For detached houses, most of the monthly demand can be supplied due to the actual predominant fine days in each month. For the cold and intermediate periods, it was supposed that monthly demand can be supplied by using excess heating value of fine days in the case of sufficient capacity of heat storage tank. For the model with heat insulating structure, demands except hot water supply can be supplied from solar energy. It was found that the heat insulation greatly contributes to the energy saving. 6 refs., 5 figs., 2 tabs.

  15. Detection and identification of failures in the operation of solar domestic hot water heating systems; Detection et identification de dysfonctionnements affectant les installations solaires pour la production d'eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    Jobin, C. [Agena Energies, Moudon (Switzerland)

    2004-07-01

    In a first report established at the end of 2002 the basic features of the reported study have been set up. The goal was to develop, apply and supervise detection systems of malfunctions/failures in solar thermal installations. A reliable and quick detection of possible breakdowns is of paramount importance to guarantee the safety of an installation and a steady solar heat production. Therefore, an adequate control system has been developed and introduced in 2002-2003 to the market. Today, several hundred of such failure detecting controllers are currently in use in single-family dwellings. In 2003-2004 the observations and experience gained with them have been carefully written down. All observations and comments from the owners of such solar installations have contributed to a spectacular know-how enhancement. The use of such controllers has allowed to fix inherent defects in newly developed equipment, and also to define the basic principles to be implemented for malfunction detection. Then, options for continuous improvements could be easily put in place. (author)

  16. 印染企业太阳能热水应用技术探讨%Investigation on application technology of solar hot water in dyeing and printing enterprises

    Institute of Scientific and Technical Information of China (English)

    张国成; 刘慧清

    2013-01-01

    Steam consumption is the first power cost of dyeing and printing enterprises. Solar energy as a kind of inexhaustible and widely available pollution-free resource is able to obviously reduce steam consumption and improve production of the enterprise. Additionally, solar panels on the workshop roof exhibit insulating effect. Not only energy saving and emission reduction can be achieved, but also the finance pressure on enterprises will be alleviated by adopting solar energy contract energy manage mode.%印染企业蒸汽耗量占到动力成本之首,而太阳能作为一种用之不竭且到处可取的无污染资源,能有效降低企业蒸汽用量,提高生产量,同时太阳能板铺在车间屋面上,还能起到隔热作用。太阳能热水可采用合同能源管理模式,既能达到节能减排的目的,又能缓解企业资金压力。

  17. Solar energy system performance evaluation: Seasonal report for Fern Lansing, Lansing, Michigan

    Science.gov (United States)

    1980-01-01

    A solar space heating and hot water system's operational performance from April 1979 through March 1980 is evaluated. Solar energy satisfied 15 percent of the total measured load (hot water plus space heating). Net savings were approximately 21 million BTUs.

  18. A hot plate solar cooker with electricity generation-Combining a parabolic trough mirror with a sidney tube and heat pipe

    NARCIS (Netherlands)

    Kaasjager, A.D.J.; Moeys, G.P.G.

    2012-01-01

    Solar cookers supply clean and sustainable energy for cooking and so limit the use of wood or charcoal. A new type of solar cooker is developed with a hot plate. The hot plate offers comfortable access to the food under preparation. The hot plate opens up the opportunity to generate small amounts of

  19. A hot plate solar cooker with electricity generation-Combining a parabolic trough mirror with a sidney tube and heat pipe

    NARCIS (Netherlands)

    Kaasjager, A.D.J.; Moeys, G.P.G.

    2012-01-01

    Solar cookers supply clean and sustainable energy for cooking and so limit the use of wood or charcoal. A new type of solar cooker is developed with a hot plate. The hot plate offers comfortable access to the food under preparation. The hot plate opens up the opportunity to generate small amounts of

  20. Solar water heater for NASA's Space Station

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  1. Direct uses of hot water (geothermal) in dairying

    Energy Technology Data Exchange (ETDEWEB)

    Barmettler, E.R.; Rose, W.R. Jr.

    1978-01-01

    Digital computer simulation was used to investigate the peak, steady energy utilization of a geothermal energy-supported dairy. A digital computer program was also written to assess the lifetime economics of the dairy operation. A dynamic simulation program was written to design water storage tanks under diurnal transient loading. The geothermal site specified is the artesian spring named Hobo Wells near Susanville, California. The dairy configuration studies are unique, but consist of conventional processing equipment. In the dairy, cattle waste would be used to generate methane and carbon dioxide by anaerobic digestion. Some carbon dioxide would be removed from the gas stream with a pressurized water scrubber to raise the heating value. The product gas would be combusted in a spark ignition engine connected to an electric generator. The electrical power produced would be used for operation of fans, pumps, lights and other equipment in the dairy. An absorption chiller using a geothermal water driven generator would provide milk chilling. Space heating would be done with forced air hot water unit heaters.

  2. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  3. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  4. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  5. Performances of modern domestic hot-water stores

    Energy Technology Data Exchange (ETDEWEB)

    Spur, Roman [Czech Technical University in Prague (Czech Republic). Department of Environmental and Building Services, Faculty of Civil Engineering; Fiala, Dusan [Institute of Energy and Sustainable Development, De Montfort University, Leicester (United Kingdom); Nevrala, Dusan [Enplan - heating technology company, Prague (Czech Republic); Probert, Doug [Cranfield University, Bedford (United Kingdom). School of Engineering

    2006-08-15

    Several designs of domestic hot-water (DHW) store, including those with immersed heat-exchangers (HXs), are commercially available. So there is a need for a method that accurately assesses their effectivenesses. In this study, the behaviours of a novel stratified, and two standard, stores were analyzed. The TRNSYS simulation software was enhanced to simulate the functioning of those stores. The resulting mathematical model was validated using measurements obtained from experiments, which required a realistic daily DHW draw-off for testing the DHW systems. Evaluation of a user-related effectivenesses (URE) for each of the three tanks tested showed that the inner configurations of: (i) the tank and (ii) the immersed HX can significantly affect the store's performance. The stratified store was up to 32% more effective than the commonly employed commercially-available store. (author)

  6. The origin of inner Solar System water.

    Science.gov (United States)

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  7. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Directory of Open Access Journals (Sweden)

    Jingyan Liang

    Full Text Available Hot spring or hot spa bathing (Onsen is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.

  8. Low sulfur content hot reducing gas production using calcium oxide desulfurization with water recycle

    Energy Technology Data Exchange (ETDEWEB)

    Feinman, J.; Mcgreal, J.E.

    1982-03-23

    A process and apparatus are claimed for producing a low sulfur content, hot reducing gas by desulfurizing hot reducing gas. This is done in the following manner; by contacting the sulfur-bearing hot reducing gas with a bed of a particulate calcium oxide desulfurizing agent to thereby produce a product gas stream and a byproduct calcium sulfide compositions recovering sulfur from the calcium sulfide composition by contacting the calcium sulfide composition with hot liquid water at a temperature and corresponding pressure sufficient to maintain steam in the system and to thereby convert the sulfide to calcium hydroxide and hydrogen sulfide and to produce a liquid water stream containing sulfur; combining the sulfur containing water stream with a fresh water stream and recycling this water stream for contacting the calcium sulfide composition. Preferably water vapor produced in the contacting step is condensed and returned to the system in the final stage of contacting the calcium sulfide composition with hot liquid water.

  9. Development of smart solar tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    The aim of the project is to develop smart solar tanks. A smart solar tank is a tank in which the domestic water can bee heated both by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply system heats up the hot-water tank from the top and the water volume heated...... by the auxiliary energy supply system is fitted to the hot water consumption and consumption pattern. In periods with a large hot-water demand the volume is large, in periods with a small hot-water demand the volume is small. Based on measurements and calculations the advantage of smart SDHW systems is visualised....

  10. Artificial photosynthesis for solar water-splitting

    Science.gov (United States)

    Tachibana, Yasuhiro; Vayssieres, Lionel; Durrant, James R.

    2012-08-01

    Hydrogen generated from solar-driven water-splitting has the potential to be a clean, sustainable and abundant energy source. Inspired by natural photosynthesis, artificial solar water-splitting devices are now being designed and tested. Recent developments based on molecular and/or nanostructure designs have led to advances in our understanding of light-induced charge separation and subsequent catalytic water oxidation and reduction reactions. Here we review some of the recent progress towards developing artificial photosynthetic devices, together with their analogies to biological photosynthesis, including technologies that focus on the development of visible-light active hetero-nanostructures and require an understanding of the underlying interfacial carrier dynamics. Finally, we propose a vision for a future sustainable hydrogen fuel community based on artificial photosynthesis.

  11. AWSWAH - the heat pipe solar water heater

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.

    1986-01-01

    An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

  12. Modelling heterogeneous interfaces for solar water splitting

    Science.gov (United States)

    Pham, Tuan Anh; Ping, Yuan; Galli, Giulia

    2017-04-01

    The generation of hydrogen from water and sunlight offers a promising approach for producing scalable and sustainable carbon-free energy. The key of a successful solar-to-fuel technology is the design of efficient, long-lasting and low-cost photoelectrochemical cells, which are responsible for absorbing sunlight and driving water splitting reactions. To this end, a detailed understanding and control of heterogeneous interfaces between photoabsorbers, electrolytes and catalysts present in photoelectrochemical cells is essential. Here we review recent progress and open challenges in predicting physicochemical properties of heterogeneous interfaces for solar water splitting applications using first-principles-based approaches, and highlights the key role of these calculations in interpreting increasingly complex experiments.

  13. Modelling heterogeneous interfaces for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Tuan Anh; Ping, Yuan; Galli, Giulia

    2017-01-09

    The generation of hydrogen from water and sunlight others a promising approach for producing scalable and sustainable carbon-free energy. The key of a successful solar-to-fuel technology is the design of efficient, long-lasting and low-cost photoelectrochemical cells, which are responsible for absorbing sunlight and driving water splitting reactions. To this end, a detailed understanding and control of heterogeneous interfaces between photoabsorbers, electrolytes and catalysts present in photoelectrochemical cells is essential. Here we review recent progress and open challenges in predicting physicochemical properties of heterogeneous interfaces for solar water splitting applications using first-principles-based approaches, and highlights the key role of these calculations in interpreting increasingly complex experiments.

  14. Super-hot (T > 30 MK) Thermal Plasma in Solar Flares

    CERN Document Server

    Caspi, Amir

    2011-01-01

    The Sun offers a convenient nearby laboratory to study the physical processes of particle acceleration and impulsive energy release in magnetized plasmas that occur throughout the universe, from planetary magnetospheres to black hole accretion disks. Solar flares are the most powerful explosions in the solar system, releasing up to 10^32-10^33 ergs over only 100-1,000 seconds, accelerating electrons up to hundreds of MeV and heating plasma to tens of MK. The accelerated electrons and the hot plasma each contain tens of percent of the total flare energy, indicating an intimate link between particle acceleration, plasma heating, and flare energy release. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observes the X-ray emission from these processes from ~3 keV to ~17 MeV with unprecedented spectral, spatial, and temporal resolution. RHESSI observations show that "super-hot" (>30 MK) plasma temperatures are achieved almost exclusively by intense, GOES X-class flares and appear to be strictly a...

  15. A Super-Solar Metallicity For Stars With Hot Rocky Exoplanets

    CERN Document Server

    Mulders, Gijs D; Apai, Daniel; Frasca, Antonio; Molenda-Zakowicz, Joanna

    2016-01-01

    The host star metallicity provide a measure of the conditions in protoplanetary disks at the time of planet formation. Using a sample of over 20,000 Kepler stars with spectroscopic metallicities from the LAMOST survey, we explore how the exoplanet population depends on host star metallicity as a function of orbital period and planet size. We find that exoplanets with orbital periods less than 10 days are preferentially found around metal-rich stars ([Fe/H]~ 0.15 +- 0.05 dex). The occurrence rates of these hot exoplanets increases to ~30% for super-solar metallicity stars from ~10% for stars with a sub-solar metallicity. Cooler exoplanets, that resides at longer orbital periods and constitute the bulk of the exoplanet population with an occurrence rate of >~ 90%, have host-star metallicities consistent with solar. At short orbital periods, P<10 days, the difference in host star metallicity is largest for hot rocky planets (<1.7 R_Earth), where the metallicity difference is [Fe/H] =~ 0.25 +- 0.07 dex. The...

  16. Hot wire CVD deposition of nanocrystalline silicon solar cells on rough substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongbo B.T., E-mail: h.li@uu.n [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Werf, Karine H.M. van der; Rath, Jatin K.; Schropp, Ruud E.I. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2009-04-30

    In silicon thin film solar cell technology, frequently rough or textured substrates are used to scatter the light and enhance its absorption. The important issue of the influence of substrate roughness on silicon nanocrystal growth has been investigated through a series of nc-Si:H single junction p-i-n solar cells containing i-layers deposited with Hot-wire CVD. It is shown that silicon grown on the surface of an unoptimized rough substrate contains structural defects, which deteriorate solar cell performance. By introducing parameter v, voids/substrate area ratio, we could define a criterion for the morphology of light trapping substrates for thin film silicon solar cells: a preferred substrate should have a v value of less than around 1 x 10{sup -6}, correlated to a substrate surface rms value of lower than around 50 nm. Our Ag/ZnO substrates with rms roughness less than this value typically do not contain microvalleys with opening angles smaller than {approx} 110{sup o}, resulting in solar cells with improved output performance. We suggest a void-formation model based on selective etching of strained Si-Si atoms due to the collision of growing silicon film surface near the valleys of the substrate.

  17. Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance

    Science.gov (United States)

    Cravens, T. E.; Rahmati, A.; Fox, Jane L.; Lillis, R.; Bougher, S.; Luhmann, J.; Sakai, S.; Deighan, J.; Lee, Yuni; Combi, M.; Jakosky, B.

    2017-01-01

    The evolution of the atmosphere of Mars and the loss of volatiles over the lifetime of the solar system is a key topic in planetary science. An important loss process for atomic species, such as oxygen, is ionospheric photochemical escape. Dissociative recombination of O2+ ions (the major ion species) produces fast oxygen atoms, some of which can escape from the planet. Many theoretical hot O models have been constructed over the years, although a number of uncertainties are present in these models, particularly concerning the elastic cross sections of O atoms with CO2. Recently, the Mars Atmosphere and Volatile Evolution mission has been rapidly improving our understanding of the upper atmosphere and ionosphere of Mars and its interaction with the external environment (e.g., solar wind), allowing a new assessment of this important loss process. The purpose of the current paper is to take a simple analytical approach to the oxygen escape problem in order to (1) study the role that variations in solar radiation or solar wind fluxes could have on escape in a transparent fashion and (2) isolate the effects of uncertainties in oxygen cross sections on the derived oxygen escape rates. In agreement with several more elaborate numerical models, we find that the escape flux is directly proportional to the incident solar extreme ultraviolet irradiance and is inversely proportional to the backscatter elastic cross section. The amount of O lost due to ion transport in the topside ionosphere is found to be about 5-10% of the total.

  18. Solar detoxification of waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, J. M.

    2000-07-01

    Heterogeneous photocatalysis is a discipline which includes a large variety of reactions: mild or total oxidations, dehydrogenation, hydrogen transfer. oxygen-18 and deuterium isotopic exchange, metal deposition, water detoxification, gaseous pollutant removal, etc. In line with the latter point, it can be considered as one of the new Advanced Oxidation Technologies (AOT) for air and water purification treatment. Several books and reviews have been recently devoted to this problem (1-6). A recent review has reported more than 1200 references on the subject (7). Heterogeneous photocatalysis can be carried out in various media: gas phase, pure organic liquid phases or aqueous solutions. As for classical heterogeneous catalysis, the overall process can be decomposed into five independent steps: 1. Transfer of the reactants in the fluid to the surface. 2. Adsorption of a least one of the reactants. 3. Reaction in the adsorbed phase 4. Desorption of the product (s) 5. Removal of the products from the interface region. (Author) 11 refs.

  19. Solar Detoxification of Waste Waters

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, J.M.

    2002-07-01

    Heterogeneous photocatalysis is a discipline which includes a large variety of reactions: mild or total oxidations, dehydrogenation, hydrogen transfer, oxygen-18 and deuterium isotopic exchange, metal deposition, water detoxification, gaseous pollutant removal, etc. In line with the latter point, it can be considered as one of the new. Advanced Oxidation Technologies (AOT) for air and water purification treatment. Several books and reviews have been recently devoted to this problem (1-6). A recent review has reported more than 1200 references on the subject. Heterogeneous photocatalysis can be carried out in various media: gas phase, pure organic liquid phases or aqueous solutions. As for classical heterogeneous catalysis, the overall process can be decomposed into five independent steps: 1. Transfer of the reactants in the fluid phase to the surface 2. Adsorption of a least one of the reactants 3. Reaction in the adsorbed phase 4. Desorption of the products 5. Removal of the products from the interface region. (Author)

  20. Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell

    Science.gov (United States)

    Alfano, R. R.; Wang, W. B.; Mohaidat, J. M.; Cavicchia, M. A.; Raisky, O. Y.

    1995-01-01

    The main purpose of this research program is to investigate potential semiconductor materials and their multi-band-gap MQW (multiple quantum wells) structures for high efficiency solar cells for aerospace and commercial applications. The absorption and PL (photoluminescence) spectra, the carrier dynamics, and band structures have been investigated for semiconductors of InP, GaP, GaInP, and InGaAsP/InP MQW structures, and for semiconductors of GaAs and AlGaAs by previous measurements. The barrier potential design criteria for achieving maximum energy conversion efficiency, and the resonant tunneling time as a function of barrier width in high efficiency MQW solar cell structures have also been investigated in the first two years. Based on previous carrier dynamics measurements and the time-dependent short circuit current density calculations, an InAs/InGaAs - InGaAs/GaAs - GaAs/AlGaAs MQW solar cell structure with 15 bandgaps has been designed. The absorption and PL spectra in InGaAsP/InP bulk and MQW structures were measured at room temperature and 77 K with different pump wavelength and intensity, to search for resonant states that may affect the solar cell activities. Time-resolved IR absorption for InGaAsP/InP bulk and MQW structures has been measured by femtosecond visible-pump and IR-probe absorption spectroscopy. This, with the absorption and PL measurements, will be helpful to understand the basic physics and device performance in multi-bandgap InAs/InGaAs - InGaAs/InP - InP/InGaP MQW solar cells. In particular, the lifetime of the photoexcited hot electrons is an important parameter for the device operation of InGaAsP/InP MQW solar cells working in the resonant tunneling conditions. Lastly, time evolution of the hot electron relaxation in GaAs has been measured in the temperature range of 4 K through 288 K using femtosecond pump-IR-probe absorption technique. The temperature dependence of the hot electron relaxation time in the X valley has been measured.

  1. Phonon lifetime in SiSn and its suitability for hot-carrier solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Levard, Hugo; Laribi, Sana; Guillemoles, Jean-François [Institute for Research and Development on Photovoltaic Energy (IRDEP), UMR 7174, EDF R and D/CNRS/Chimie ParisTech, 6 quai Watier, 78401 Chatou (France)

    2014-06-02

    We present a phononic and electronic study of SiSn in the zinc-blende phase. A detailed description of the longitudinal optical (LO) phonon decay in a three-phonon process is presented together with the corresponding lifetime. The necessity to go beyond the zone center phonon approximation in this case is highlighted as it reveals a steep dependence of the lifetime on the initial phonon wavenumber, which differs from usual semiconductors. The electronic band structure is calculated within the GW formalism and shows a small direct band gap. It is shown that the LO-phonon resulting from electron cooling has a lifetime four to eight orders of magnitude above all the known value in semiconductors for this process. We finally show the suitability of SiSn for hot-carrier solar cells, as it is endowed with ultra-slow cooling of hot carriers.

  2. Water Quality Study on the Hot and Cold Water Supply Systems at Vietnamese Hotels

    Directory of Open Access Journals (Sweden)

    Kanako Toyosada

    2017-04-01

    Full Text Available This study was conducted as part of the Joint Crediting Mechanism (JCM of the Japanese Ministry of Economy, Trade and Industry, and the Ministry of the Environment project’s preparation in Vietnam. Samples were taken from hot and cold water supplies from guest rooms’ faucets in 12 hotels in Hanoi city, Vietnam, and 13 hotels in Japan for comparison. A simple water quality measurement and determination of Legionella was carried out. The results showed that residual effective chlorine—which guarantees bactericidal properties—was not detected in tap water supplied in hotel rooms in Vietnam, and nitrite (an indicator of water pollution was detected in 40% of buildings. In the hotels in Japan, the prescribed residual chlorine concentration met the prescribed levels, and nitrite was not detected. Additionally, while there was no Legionella detected in the Japanese cases, it was detected in most of the Vietnamese hotels, which were found to manage the hot water storage tank at low temperatures of 40–50 °C. It was found that there were deficiencies in cold and hot water supply quality, and that there was no effective system in place for building operation maintenance and management.

  3. Solar process water heat for the Iris Images Custom Color Photo Lab. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This is the final technical report of the solar facility locted at Iris Images Custom Photo Laboratory in Mill Valley, California. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100/sup 0/F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxiliary back up system is a conventional gas-fired water heater. Freeze protection in this mild climate was originally provided by closed-loop circulation of hot water from the storage tank. Later this was changed to a drain-down system due to a freeze when electrical power failed. This system has been relatively successful with little or no scheduled maintenance. The site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are included.

  4. Solar water heaters. A review of systems research and design innovation

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Brian [Dublin Institute of Technology (Ireland). Dublin Energy Lab.

    2011-07-01

    Solar water heating can be considered to be an established mature technology. The achievement of this status is the outcome of over a century of system development that culminated with a flourish of innovation in the last thirty years. Drivers for research and development have been achieving economic viability by devising systems that, for specific applications in particular climate contexts produced more hot water per unit cost. Reductions in both initial capital and installation costs have been achieved as well as in those associated with subsequent operation and maintenance. Research on solar water heating is discussed with the emphasis on overall systems though some key aspects of component development are also outlined. A comprehensive taxonomy is presented of the generic types of solar water heater that have emerged and their features, characteristics and performance are discussed. (orig.)

  5. 7 CFR 305.21 - Hot water dip treatment schedule for mangoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water dip treatment schedule for mangoes. 305.21 Section 305.21 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat Treatments § 305.21 Hot water dip treatment schedule for mangoes....

  6. Solar heating for a restaurant--North Little Rock, Arkansas

    Science.gov (United States)

    1981-01-01

    Hot water consumption of large building affects solar-energy system design. Continual demand for hot water at restaurant makes storage less important than at other sites. Storage capacity of system installed in December 1979 equals estimated daily hot-water requirement. Report describes equipment specifications and modifications to existing building heating and hot water systems.

  7. Risk of Burns from Eruptions of Hot Water Overheated in Microwave Ovens

    Science.gov (United States)

    ... Burns from Eruptions of Hot Water Overheated in Microwave Ovens Share Tweet Linkedin Pin it More sharing options ... after it had been over-heated in a microwave oven. Over-heating of water in a cup can ...

  8. Data from Sustainability Base Characterizing Hot Water Pump Differential Pressure Spikes for ACCEPT

    Data.gov (United States)

    National Aeronautics and Space Administration — During the heating season in Sustainability Base, a critical alarm associated with a hot water pump circulating heating water for the radiative system which...

  9. Water and acetaldehyde in HH212: The first hot corino in Orion

    CERN Document Server

    Codella, C; Cabrit, S; Podio, L; Bachiller, R; Fontani, F; Gusdorf, A; Lefloch, B; Leurini, S; Tafalla, M

    2016-01-01

    Aims: Using the unprecedented combination of high resolution and sensitivity offered by ALMA, we aim to investigate whether and how hot corinos, circumstellar disks, and ejected gas are related in young solar-mass protostars. Methods: We observed CH$_3$CHO and deuterated water (HDO) high-excitation ($E_{\\rm u}$ up to 335 K) lines towards the Sun-like protostar HH212--MM1. Results: For the first time, we have obtained images of CH$_3$CHO and HDO emission in the inner $\\simeq$ 100 AU of HH212. The multifrequency line analysis allows us to contrain the density ($\\geq$ 10$^{7}$ cm$^{-3}$), temperature ($\\simeq$ 100 K), and CH$_3$CHO abundance ($\\simeq$ 0.2--2 $\\times$ 10$^{-9}$) of the emitting region. The HDO profile is asymmetric at low velocities ($\\leq$ 2 km s$^{-1}$ from $V_{\\rm sys}$). If the HDO line is optically thick, this points to an extremely small ($\\sim$ 20--40 AU) and dense ($\\ge$ 10$^{9}$ cm$^{-3}$) emitting region. Conclusions: We report the first detection of a hot corino in Orion. The HDO asymm...

  10. Prediction and experimental validation of stagnation temperature attained by a solar cooker of hot box type

    Energy Technology Data Exchange (ETDEWEB)

    Narasimha Rao, A. V; Srikrishna, D. V. N [Warangal (India)

    2000-07-01

    A hot box type solar cooker, having double glass covers and a plane mirror reflector, is tested for stagnation temperature. A computer code is developed based on the analytical model proposed by Vaishya et. al. The global and beam components of solar radiation measured at Warangal are made use to predict the stagnation temperature of the cooker. The observed values of stagnation temperature at Warangal are compared with those of predicted values. A good agreement of the measured and observed values of the stagnation temperature is observed during the afternoon period. The lag in the observed values during the forenoon may be due to thermal inertia of the cooker. [Spanish] Se probo una estufa solar de tipo caja caliente con cubiertas dobles de vidrio y un espejo reflector plano para medir la temperatura de estancamiento. Se desarrollo un codigo de computacion basado en el modelo analitico propuesto por Vaishya et. al. Los componentes de la radiacion solar globales y de rayo medidos en Warangal se usan para predecir la temperatura de estancamiento de la estufa. Los valores observados de la temperatura de estancamiento en Warangal se comparan con los valores predichos. Se aprecia una buena concidencia de los valores medidos y observados de la temperatura de estancamiento durante el periodo de la tarde. El retraso de los valores observados durante la manana puede ser debido a la inercia termica de la estufa.

  11. Water decontamination by solar photocatalysis. Descontaminacion de aguas residuales mediante fotocatalisis solar

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Galvez, J.; Malato Rodriguez, S.

    1993-01-01

    A solar photocatalytic system is being developed at the Plataforma Solar de Almeria to destroy organic contaminants in water. Test with common water contaminants were conducted at the Solar Detoxification Loop with real sunlight and large quantities of water flowing through glass tubes were the solar UV light is concentrated. Experiments at this scale provide verification of laboratory studies and allow the design and operation of real preindustrial detoxification systems. (Author)

  12. Generation of Hot Water from Hot-Dry for Heavy-Oil Recovery in Northern Alberta, Canada

    Science.gov (United States)

    Pathak, V.; Babadagli, T.; Majorowicz, J. A.; Unsworth, M. J.

    2011-12-01

    The focus of prior applications of hot-dry-rock (HDR) technology was mostly aimed at generating electricity. In northern Alberta, the thermal gradient is low and, therefore, this technology is not suitable for electricity generation. On the other hand, the cost of steam and hot water, and environmental impacts, are becoming critical issues in heavy-oil and bitumen recovery in Alberta. Surface generation of steam or hot-water accounts for six percent of Canada's natural gas consumption and about 50 million tons of CO2 emission. Lowered cost and environmental impacts are critical in the widespread use of steam (for in-situ recovery) and hot-water (for surface extraction of bitumen) in this region. This paper provides an extensive analysis of hot-water generation to be used in heavy-oil/bitumen recovery. We tested different modeling approaches used to determine the amount of energy produced during HDR by history matching to example field data. The most suitable numerical and analytical models were used to apply the data obtained from different regions containing heavy-oil/bitumen deposits in northern Alberta. The heat generation capacity of different regions was determined and the use of this energy (in the form of hot-water) for surface extraction processes was evaluated. Original temperature gradients were applied as well as realistic basement formation characteristics through an extensive hydro thermal analysis in the region including an experimental well drilled to the depth of 2,500m. Existing natural fractures and possible hydraulic fracturing scenarios were evaluated from the heat generation capacity and the economics points of view. The main problem was modeling difficulties, especially determination and representation of fracture network characteristics. A sensitivity analysis was performed for the selected high temperature gradient regions in Alberta. In this practice, the characteristics of hydraulic fractures, injection rate, depth, the distance between

  13. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  14. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  15. Application of cooling with solid dissecants in solar heating and heating water systems; Aplicacion de la refrigeracion con desecantes solidos en sistemas solares de calefaccion y agua caliente sanitaria

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo Andres, A.; Cejudo Lopez, J. M.; Dominguez Munoz, F.; Serrano Casares, F.

    2004-07-01

    Solar thermal systems designed for domestic hot water and space heating, must be dimensioned on a larger scale than for purely domestic hot water. In summer, when there are many days when no heating is required, the oversized collector area leads to frequent stagnancy situations. In order to use the excess of collector area in summer, a solar desiccant cooling system can be integrated in the solar thermal system. This paper study such combination, using computer simulations with the program TRNSYS, Klein(2000). (Author)

  16. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  17. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  18. Influence of solar flares and CME on the gaseous envelopes of hot Jupiter exoplanets

    Science.gov (United States)

    Bisikalo, Dmitry; Cherenkov, Alexander

    2015-08-01

    Hot Jupiters, i.e. exoplanets having masses comparable to the mass of Jupiter and semimajor axes shorter than 0.1~AU, have a number of outstanding features, caused mostly by their proximity to the host star. As a matter of fact, the atmospheres of several dozens of these planets fill their Roche lobes, which results in a powerful outflow of material from the planet toward the host star. In addition, since the planet orbits at a short distance, its orbital velocity is supersonic, which causes the formation of a bow shock ahead of the planet. These effects substantially change the mechanism of interaction between the planet's gaseous envelope (atmosphere) and the stellar wind. In this paper, we investigate the flow pattern in the vicinity of a typical hot Jupiter by using 3D gas dynamic simulations. By considering the star-planet interaction we study variations in the structure of the hot Jupiter's envelope and estimate the variations of atmosphere’s mass-loss rate caused by the influence of typical solar flares and coronal mass ejections.

  19. Hydrolysis kinetics of tulip tree xylan in hot compressed water.

    Science.gov (United States)

    Yoon, Junho; Lee, Hun Wook; Sim, Seungjae; Myint, Aye Aye; Park, Hee Jeong; Lee, Youn-Woo

    2016-08-01

    Lignocellulosic biomass, a promising renewable resource, can be converted into numerous valuable chemicals post enzymatic saccharification. However, the efficacy of enzymatic saccharification of lignocellulosic biomass is low; therefore, pretreatment is necessary to improve the efficiency. Here, a kinetic analysis was carried out on xylan hydrolysis, after hot compressed water pretreatment of the lignocellulosic biomass conducted at 180-220°C for 5-30min, and on subsequent xylooligosaccharide hydrolysis. The weight ratio of fast-reacting xylan to slow-reacting xylan was 5.25 in tulip tree. Our kinetic results were applied to three different reaction systems to improve the pretreatment efficiency. We found that semi-continuous reactor is promising. Lower reaction temperatures and shorter space times in semi-continuous reactor are recommended for improving xylan conversion and xylooligosaccharide yield. In the theoretical calculation, 95% of xylooligosaccharide yield and xylan conversion were achieved simultaneously with high selectivity (desired product/undesired product) of 100 or more. Copyright © 2016. Published by Elsevier Ltd.

  20. Review of feasible solar energy applications to water processes

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S.; Fernandez-Ibanez, P.; Alarcon, D.; Gernjak, W.; Maldonado, M.I. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Plataforma Solar de Almeria (CIEMAT-PSA), Tabernas (Almeria) (Spain)

    2009-08-15

    In the context of an upcoming energy crisis due to the decline of the Oil Era, water problems are expected to substantially worsen. And vice versa, due to the close relationship between water and energy issues, water problems are also expected to contribute to increased energy problems. Furthermore, environmental considerations, such as global warming, will surely add significant pressure. In this scenario, renewable energies are rapidly increasing their contribution to the global mix, with solar energy clearly having the greatest potential, and in view of the worldwide coincidence that where there is water stress and/or scarcity, there are also good solar radiation levels, the conclusion seems clear suitable technologies must be developed to permit the use of solar energy to simultaneously help solve energy and water problems. The main solar energy applications for water processes presented in this paper are: (1) solar desalination; (2) solar detoxification and; (3) solar disinfection. (author)

  1. Purification Of Water From Nsukka Water Pond Using Solar Still.

    Directory of Open Access Journals (Sweden)

    Ugwuoke E.C

    2015-08-01

    Full Text Available Abstract This work presents the analysis of a solar water distillation system. There is important need for good drinking water in the world today due to harmful effect of water borne diseases. Most water from rivers ponds seas are either salty or brackish and require purification before drinking. The water used in this work is collected from pond at Nsukka Urban and the experiment was performed at University of Nigeria Nsukka. Twenty litres of water was used for the experiment and 4 litres was obtained as the maximum volume after 10 days .The average temperature recorded during the experiment was 29C. The chemical and physical properties of the distillate correspond to world Health Organization Standard.

  2. Comparison of conventional and solar-water-heating products and industries report

    Energy Technology Data Exchange (ETDEWEB)

    Noreen, D; LeChevalier, R; Choi, M; Morehouse, J

    1980-07-11

    President Carter established a goal that would require installation of at least one million solar water heaters by 1985 and 20 million water-heating systems by the year 2000. The goals established require that the solar industry be sufficiently mature to provide cost-effective, reliable designs in the immediate future. The objective of this study was to provide the Department of Energy with quantified data that can be used to assess and redirect, if necessary, the program plans to assure compliance with the President's goals. Results deal with the product, the industry, the market, and the consumer. All issues are examined in the framework of the conventional-hot-water industry. Based on the results of this solar hot water assessment study, there is documented proof that the solar industry is blessed with over 20 good solar hot water systems. A total of eight generic types are currently being produced, but a majority of the systems being sold are included in only five generic types. The good systems are well-packaged for quality, performance and installation ease. These leading systems are sized and designed to fit the requirements of the consumer in every respect. This delivery end also suffers from a lack of understanding of the best methods for selling the product. At the supplier end, there are problems also, including: some design deficiencies, improper materials selection and, occasionally, the improper selection of components and subsystems. These, in total, are not serious problems in the better systems and will be resolved as this industry matures.

  3. THE HARDWARE SOURCES OF THE AUTOMATION OF THE SOLAR WATER HEATING OF THE AGRICULTURE PLANTS

    Directory of Open Access Journals (Sweden)

    Gazalov V. S.

    2016-01-01

    Full Text Available The article deals with the necessity of the uninterrupted control of the work quality of the solar heating system. The advantages of the microcontroller systems, which gave their evolution in the last years, are shown. The possibilities of the usage of the microcontroller systems for carrying the work quality control are shown. The electrical principal scheme of the system of the automatic control of the solar water heating which allow to control the work quality control are shown. The system was divided into interconnected parts. The methods of the temperature control by the electronic temperature sensors 18B20, water control by the optical pair with open channel and water quantity meter with the optical wheel, water level in the tank by the ultrasonic sensor of the distance and level of the solar radiation by the pyranometer are shown. The necessarily calculation of the geometric tank sizes and water velocity in the solar collector are carried out. The corresponding hardware resources of the PIC microcontrollers like hardware counters, timer with the ability to allow counting by the external signal (Gate Control, analog-digital converter and fixed voltage reference module are described. The algorithms of the control of the water temperature in the tank and the control of the filling the tank with the hot water from the solar collector are described. The methods of the transmitting information to the operator are shown. The advantages of the microcontroller control are described

  4. Water geochemistry and hydrogeology of the shallow aquifer at Roosevelt Hot Springs, southern Utah: A hot dry rock prospect

    Energy Technology Data Exchange (ETDEWEB)

    Vuataz, F.D.; Goff, F.

    1987-12-01

    On the western edge of the geothermal field, three deep holes have been drilled that are very hot but mostly dry. Two of them (Phillips 9-1 and Acord 1-26 wells) have been studied by Los Alamos National Laboratory for the Hot Dry Rock (HDR) resources evaluation program. A review of data and recommendations have been formulated to evaluate the HDR geothermal potential at Roosevelt. The present report is directed toward the study of the shallow aquifer of the Milford Valley to determine if the local groundwater would be suitable for use as make-up water in an HDR system. This investigation is the result of a cooperative agreement between Los Alamos and Phillips Petroleum Co., formerly the main operator of the Roosevelt Hot Springs Unit. The presence of these hot dry wells and the similar setting of the Roosevelt area to the prototype HDR site at Fenton Hill, New Mexico, make Roosevelt a very good candidate site for creation of another HDR geothermal system. This investigation has two main objectives: to assess the water geochemistry of the valley aquifer, to determine possible problems in future make-up water use, such as scaling or corrosion in the wells and surface piping, and to assess the hydrogeology of the shallow groundwaters above the HDR zone, to characterize the physical properties of the aquifer. These two objectives are linked by the fact that the valley aquifer is naturally contaminated by geothermal fluids leaking out of the hydrothermal reservoir. In an arid region where good-quality fresh water is needed for public water supply and irrigation, nonpotable waters would be ideal for an industrial use such as injection into an HDR energy extraction system. 50 refs., 10 figs., 10 tabs.

  5. Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Steven Winters Associates, Inc., Norwalk, CT (United States)

    2016-02-01

    In western Massachusetts, an affordable housing developer built a community of 20 homes with the goal of approaching zero energy consumption. In addition to excellent thermal envelopes and photovoltaic systems, the developer installed a solar domestic hot water (SDHW) system on each home. The Consortium for Advanced Residential Buildings (CARB), a U.S. Department of Energy Building America research team, commissioned some of the systems, and CARB was able to monitor detailed performance of one system for 28 months.

  6. Limiting efficiencies of solar energy conversion and photo-detection via internal emission of hot electrons and hot holes in gold

    CERN Document Server

    Boriskina, Svetlana V; Hsu, Wei-Chun; Liao, Bolin; Chen, Gang

    2015-01-01

    We evaluate the limiting efficiency of full and partial solar spectrum harvesting via the process of internal photoemission in Au-semiconductor Schottky junctions. Our results based on the ab initio calculations of the electron density of states (e-DOS) reveal that the limiting efficiency of the full-spectrum Au converter based on hot electron injection is below 4%. This value is even lower than previously established limit based on the parabolic approximation of the Au electron energy bands. However, we predict limiting efficiency exceeding 10% for the hot holes collection through the Schottky junction between Au and p-type semiconductor. Furthermore, we demonstrate that such converters have more potential if used as a part of the hybrid system for harvesting high- and low-energy photons of the solar spectrum.

  7. Static Characteristics of Absorption Chiller-Heater Supplying Cold and Hot Water Simultaneously

    Science.gov (United States)

    Inoue, Naoyuki; Irie, Tomoyoshi

    Absorption chiller-heaters which can supply both chilled water and hot water at the same time, are used for cooling and heating air conditioning systems. In this paper, we classified absorption cold and hot water generating cycles and control methods, studied these absorption cycles by cycle simulation. In economizer cycle, condensed refrigerant which heats hot water is transported to cooling cycle and used effectively for cooling chilled water, Concerning with transported condensed refrigerant, there are two methods, all condensed refrigerant or required refrigerant for cooling are transported to cooling cycle, and required refrigerant method is better for energy saving. Adding improvement of solution control to this economizer cycle, simultaneous cold and hot water supplying chiller-heaters have good characteristics of energy saving in the all region.

  8. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  9. Large scale water lens for solar concentration.

    Science.gov (United States)

    Mondol, A S; Vogel, B; Bastian, G

    2015-06-01

    Properties of large scale water lenses for solar concentration were investigated. These lenses were built from readily available materials, normal tap water and hyper-elastic linear low density polyethylene foil. Exposed to sunlight, the focal lengths and light intensities in the focal spot were measured and calculated. Their optical properties were modeled with a raytracing software based on the lens shape. We have achieved a good match of experimental and theoretical data by considering wavelength dependent concentration factor, absorption and focal length. The change in light concentration as a function of water volume was examined via the resulting load on the foil and the corresponding change of shape. The latter was extracted from images and modeled by a finite element simulation.

  10. Simplified architectural method for the solar control optimization of awnings and external walls in houses in hot and dry climates

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Munoz, V.M. [Instituto Politecnico Nacional, Mexico City (Mexico). Centro Interdisciplinario de Ciencias Marinas; Porta-Gandara, M.A. [Centro de Investigaciones Biologicas del Noroeste, Mexico City (Mexico)

    2003-01-01

    In extremely hot and dry climates, like northwestern Mexico, solar gain reduction in houses using solar passive techniques is important for improving comfort inside the construction and to save costs in electrical cooling during the whole year, because the winter season is also hot in those regions. A new one-dimension method is proposed to analyze the interaction between two common shading devices: awnings and external walls to reduce insulation on the facade and inside the house due to fenestration. The method is demonstrated by optimizing a typical dwelling with an azimuth of 90{sup o} (east), which, achieves 45% reduction in direct solar insulation during the summer solstice on the profile of the facade. Results showed that this method is simple and reliable in increasing the shadow on the facade and to block completely the solar beam radiation on the windowpane with optimal relations between these shading devices. (author)

  11. Preparation of microcrystalline single junction and amorphous-microcrystalline tandem silicon solar cells entirely by hot-wire CVD

    Energy Technology Data Exchange (ETDEWEB)

    Kupich, M.; Grunsky, D.; Kumar, P.; Schroeder, B. [University of Kaiserslautern (Germany). Department of Physics

    2004-01-25

    The hot-wire chemical vapour deposition (HWCVD) has been used to prepare highly conducting p- and n-doped microcrystalline silicon thin layers as well as highly photoconducting, low defect density intrinsic microcrystalline silicon films. These films were incorporated in all-HWCVD, all-microcrystalline nip and pin solar cells, achieving conversion efficiencies of {eta}=5.4% and 4.5%, respectively. At present, only the nip-structures are found to be stable against light-induced degradation. Furthermore, microcrystalline nip and pin structures have been successfully incorporated as bottom cells in all-hot-wire amorphous-microcrystalline nipnip- and pinpin-tandem solar cells for the first time. So far, the highest conversion efficiencies of the 'micromorph' tandem structures are {eta}=5.7% for pinpin-solar cells and 7.0% for nipnip solar cells. (author)

  12. Effect of Installation of Solar Collector on Performance of Balcony Split Type Solar Water Heaters

    OpenAIRE

    Xu Ji; Ming Li; Weidong Lin; Tufeng Zheng; Yunfeng Wang

    2015-01-01

    The influences of surface orientation and slope of solar collectors on solar radiation collection of balcony split type solar water heaters for six cities in China were analyzed by employing software TRNSYS. The surface azimuth had greater effect on solar radiation collection in high latitude regions. For deviation of the surface slope angle within ±20° around the optimized angle, the variation of the total annual collecting solar radiation was less than 5%. However, with deviation of 70° to ...

  13. Technology Solutions for New Homes Case Study: Indirect Solar Water Heating Systems in Single-Family Homes

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-01

    In 2011, Rural Development, Inc. (RDI) completed the construction of Wisdom Way Solar Village (WWSV), which is a development of 20 very efficient homes in Greenfield, Massachusetts. The homes feature R-40 walls, triple-pane windows, R-50 attic insulation, and airtight construction. All homes also have photovoltaic (PV) systems and solar domestic hot water (SDHW) systems. Auxiliary water heating is provided by tankless gas water heaters. With the SDHW systems, RDI hoped to eliminate most of the need for gas for water heating and get the homes closer to zero energy.

  14. Mathematical Model of the Geothermal Water Resources in the South Hot Spring System in Chongqing

    Institute of Scientific and Technical Information of China (English)

    Liu Dongyan; Luo Yunju; Liu Xinrong

    2005-01-01

    The geothermal waters of south hot spring, small hot spring and Qiaokouba in Chongqing, are all part of the south hot spring geothermal water system. Exploitation has caused a decline in the water levels of the south and small hot springs, which have not flowed naturally for 15 years. Now, bores pump geothermal water to the springs. If the water level drops below the elevation of the rivers, river-water will replenish the geothermal water, destroying this resource. It is therefore an urgent task to model the geothermal water system, to enable sustainable development and continued use of the geothermal water in Qiaokouba. A numerical simulation of the geothermal water system was adopted and a quantitative study on the planning scheme was carried out. A mathematical model was set up to simulate the whole geothermal water system, based on data from the research sites. The model determined the maximum sustainable water yield in Qiaokouba and the two hot springs, and the south hot spring and small hot spring sustainable yields are 1 100 m3/d and 700 m3/d from 2006 to 2010, 1 300 m3/d and 1 000 m3/d from 2011 to 2015, and 1 500 m3/d and 1 200 m3/d from 2016 to 2036. The maximum exploitable yield is 3 300 m3/d from 2006 to 2036 in Qiaokouba. The model supplies a basis to adequately exploit and effectively protect the geothermal water resources, and to continue to develop the geothermal water as a tourist attraction in Chongqing.

  15. Study on the effect of underground hot water on fracturing and earthquake activities

    Institute of Scientific and Technical Information of China (English)

    SONG Guan-yi; YI Li-xin; SONG Xiao-bing

    2000-01-01

    Utilizing the geological exploring information of Houhaoyao area and digital seismic network¢ s data of Huailai area, the author studied the role of underground fluids (hot water) in the fracturing activities and in the processes of seismogeny. The results show that the shear stress between two blocks of the fault is decreased rapidly and the vertical fault throw is obviously increased at the fracture segments where there is underground hot water action. With the vertical fault throw increasing, the shear stress transfers to two ends of the fault at the place where there is no underground hot water action, and the earthquake probably develops at these two ends of the fault.

  16. Development of Absorption Heat Pump Driven by Low Temperature Hot Water

    Science.gov (United States)

    Hoshida, Toshihiro; Nakamura, Naoto; Asai, Hiroshi; Hasatani, Masanobu; Watanabe, Fujio; Fujisawa, Ryou

    We developed an Adsorption Heat Pump (AHP) system, which applies silica-gel as adsorbent and H2O as refrigerant, and is possibly intended to use low temperature hot water (333K) as a driving force. The growing importance to save energy, leads us to develop energy saving systems such as Co-generation systems, including fuel cell system. It is important to use low temperature hot water in order to achieve high efficiency in total. It is, however, noticed that the lower water temperature is, the more difficult its' heat recovery becomes. We reported experimental results of the AHP system, and estimated the possibility to apply low temperature hot water from fuel cell system to the AHP system. We showed quantitatively that the AHP system is able to be driven by low temperature hot water(333K).

  17. Water delivery in the Early Solar System

    CERN Document Server

    Dvorak, Rudolf; Süli, Áron; Sándor, Zsolt; Galiazzo, Mattia; Pilat-Lohinger, Elke

    2015-01-01

    As part of the national scientific network 'Pathways to Habitable Worlds' the delivery of water onto terrestrial planets is a key question since water is essential for the development of life as we know it. After summarizing the state of the art we show some first results of the transport of water in the early Solar System for scattered main belt objects. Hereby we investigate the questions whether planetesimals and planetesimal fragments which have gained considerable inclination due to the strong dynamical interactions in the main belt region around 2 AU can be efficient water transporting vessels. The Hungaria asteroid group is the best example that such scenarios are realistic. Assuming that the gas giants and the terrestrial planets are already formed, we monitor the collisions of scattered small bodies containing water (in the order of a few percent) with the terrestrial planets. Thus we are able to give a first estimate concerning the respective contribution of such bodies to the actual water content i...

  18. Performance Test: Okaw Bluff Bathhouse Solar Hot Water System.

    Science.gov (United States)

    1982-06-01

    Dieterich standard annubars with differential pressure transducer for flow rate measurements. -Tem-tex resistance temperature detector sensors hooked in...compilation and output. Second, flow rate measurements will be improved by adding specially calibrated annubars on all flow loops for more thorough system

  19. Simulating the escaping atmospheres of hot gas planets in the solar neighborhood

    CERN Document Server

    Salz, M; Schneider, P C; Schmitt, J H M M

    2016-01-01

    Absorption of high-energy radiation in planetary thermospheres is believed to lead to the formation of planetary winds. The resulting mass-loss rates can affect the evolution, particularly of small gas planets. We present 1D, spherically symmetric hydrodynamic simulations of the escaping atmospheres of 18 hot gas planets in the solar neighborhood. Our sample only includes strongly irradiated planets, whose expanded atmospheres may be detectable via transit spectroscopy. The simulations were performed with the PLUTO-CLOUDY interface, which couples a detailed photoionization and plasma simulation code with a general MHD code. We study the thermospheric escape and derive improved estimates for the planetary mass-loss rates. Our simulations reproduce the temperature-pressure profile measured via sodium D absorption in HD 189733 b, but show unexplained differences in the case of HD 209458 b. In contrast to general assumptions, we find that the gravitationally more tightly bound thermospheres of massive and compact...

  20. Hot-carrier solar cells using low-dimensional quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Daiki; Kasamatsu, Naofumi; Harada, Yukihiro; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-10-27

    We propose a high-conversion-efficiency solar cell (SC) utilizing the hot carrier (HC) population in an intermediate-band (IB) of a quantum dot superlattice (QDSL) structure. The bandgap of the host semiconductor in this device plays an important role as an energy-selective barrier for HCs in the QDSLs. According to theoretical calculation using the detailed balance model with an air mass 1.5 spectrum, the optimum IB energy is determined by a trade-off relation between the number of HCs with energy exceeding the conduction-band edge and the number of photons absorbed by the valence band−IB transition. Utilizing experimental data of HC temperature in InAs/GaAs QDSLs, the maximum conversion efficiency under maximum concentration (45 900 suns) has been demonstrated to increase by 12.6% as compared with that for a single-junction GaAs SC.

  1. Returning method of hot water in geothermal power generation and structure of pipeline for hot water returning; Zinetsu hatsuden ni okeru nessui no kangen shori hoho oyobi kangen nessuiyo haikan kozo

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Y.

    1997-06-17

    According to the invention, the geothermal fluid consisting of steam and hot water gushing out of steam production well is separated into steam and hot water by means of gas-liquid separator, and the hot water is returned into the ground through the returning well without being exposed to the atmosphere. At that time, the temperature of the hot water to be returned to the ground is lower than the temperature of the hot water remained in the well. Before returning the hot water to the ground, the hot water level in the return well is lowered by means of compressed air so as to keep the temperature of hot water remained in the well being higher than the temperature of hot water to be returned. The pipeline of the hot water closed system including the production well and return well is either upward inclined or downward inclined in the flowing direction. In these ways, the hot water can be returned safely to the ground without causing hammering. 2 tabs.

  2. On the development of single and multijunction solar cells with hot-wire CVD deposited active layers

    NARCIS (Netherlands)

    Li, H. B. T.; Franken, R.H.; Stolk, R.L.; Schuttauf, J.A.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2008-01-01

    We present an overview of the scientific challenges and achievements during the development of thin film silicon based single and multijunction solar cells with hot-wire chemical vapor deposition (HWCVD) of the active silicon layers. The highlights discussed include the development of Ag/ZnO coating

  3. PV HEAT - Simulation and Experimental Validation of a Photovoltaic Domestic Hot Water System

    OpenAIRE

    Kimmling, Mathias

    2016-01-01

    Presentation for Conference TRNSYS User Experience Days 2016 in Kaiserslautern, Germany.TRNSYS Simulation of SELACAL photovoltaic domestic hot water system. Further information on simulation results verification. 

  4. Effect of Hot Water Treatment on Postharvest Shelf Life and Quality of Broccoli

    Institute of Scientific and Technical Information of China (English)

    WU Ping; LI Wu

    2003-01-01

    Broccoli was stored at 0, 10, or 20℃ after immersion in hot water (38 -52℃ ) for 10 or 30min. Yellowing of broccoli was significantly slowed and shelf life significantly increased when broccoli wastreated with hot water at 42 -46℃ and then stored at 10 or 20℃. Heat injury occurred when treatment washigher than 46℃ in some varieties. Broccoli lasted 2 -3 days longer when stored at 10℃ and 1 -2 days longerwhen stored at 20℃ after hot water treatment at 46℃. There was no significant effect of treatment on shelflife after long time storage at 0℃. Weight loss was reduced by hot water treatment and the respiration behav-ior of the broccoli was also changed.

  5. Probing charge transfer and hot carrier dynamics in organic solar cells with terahertz spectroscopy

    Science.gov (United States)

    Cunningham, Paul D.; Lane, Paul A.; Melinger, Joseph S.; Esenturk, Okan; Heilweil, Edwin J.

    2016-04-01

    Time-resolved terahertz spectroscopy (TRTS) was used to explore charge generation, transfer, and the role of hot carriers in organic solar cell materials. Two model molecular photovoltaic systems were investigated: with zinc phthalocyanine (ZnPc) or alpha-sexathiophene (α-6T) as the electron donors and buckminsterfullerene (C60) as the electron acceptor. TRTS provides charge carrier conductivity dynamics comprised of changes in both population and mobility. By using time-resolved optical spectroscopy in conjunction with TRTS, these two contributions can be disentangled. The sub-picosecond photo-induced conductivity decay dynamics of C60 were revealed to be caused by auto-ionization: the intrinsic process by which charge is generated in molecular solids. In donor-acceptor blends, the long-lived photo-induced conductivity is used for weight fraction optimization of the constituents. In nanoscale multilayer films, the photo-induced conductivity identifies optimal layer thicknesses. In films of ZnPc/C60, electron transfer from ZnPc yields hot charges that localize and become less mobile as they thermalize. Excitation of high-lying Franck Condon states in C60 followed by hole-transfer to ZnPc similarly produces hot charge carriers that self-localize; charge transfer clearly precedes carrier cooling. This picture is contrasted to charge transfer in α-6T/C60, where hole transfer takes place from a thermalized state and produces equilibrium carriers that do not show characteristic signs of cooling and self-localization. These results illustrate the value of terahertz spectroscopic methods for probing charge transfer reactions.

  6. Hydrogen Generation by Solar Photolysis of Water

    Science.gov (United States)

    Graetzel, Michael

    2004-03-01

    Prospects of near term fuel cell applications for transportation and communication have stimulated recently great interest in systems that can generate hydrogen through water cleavage by sunlight. A device that appears very promising to accomplish this goal is a tandem cell based on two superimposed photoactive layers [1]. The top layer consists of nanocrystalline oxide film absorbing the blue part of the solar spectrum and producing oxygen from water under light excitation. This is placed directly on top of a dye-sensitized nanocrystalline TiO2 film (DSC) capturing the green and red part of the solar spectrum. The voltage generated by this second photosystem enables hydrogen production to proceed without application of an external electric bias. The overall reaction corresponds to the splitting of water into hydrogen and oxygen by visible light. The maximum conversion efficiency achieved so far with these systems is about 6-7 electrode a nanocrystalline WO3 film. The use of nanoparticles for the top layer has several great advantages. They are translucent avoiding losses by light scattering and their small size is within the minority carrier diffusion length, allowing the valence band hole reaction with water at the particle surface to proceed with high efficiency. Recent work has focused on replacing the WO3 by semiconductor oxide absorbing a larger fraction of visible light than tungsten trioxide, e.g. Fe2O3.The principles and current state of this research will be briefly reviewed. Literature 1. M. Graetzel, "Photoelectrochemical Cells" Nature, 414, 332-344 (2001)

  7. Productivity Amelioration of Solar Water Distillator Linked with Salt Gradient Pond

    Directory of Open Access Journals (Sweden)

    Miqdam Miqdam Tariq Chaichan

    2013-04-01

    Full Text Available There is a great need for fresh water in many developing countries. Water sources from, e.g., lakes; rivers and groundwater are often brackish or contain harmful bacteria and should therefore not be used for drinking or irrigation.In this work a simple solar double sloped basin type still was connected to a solar salt gradient pond. The salinity-gradient solar pond is constructed in such a manner that the convective circulation in the pond is prohibited by making the bottom water much denser than the surface water. In doing so, the solar radiation absorbed in the deep water can be stored; the hot water from the salt pond was used to heat salt water in the stiller, at daylight and night.The tests were conducted in September and October in autumn season in Baghdad city-Iraq in 2009. The results show development in stiller productivity at daylight and larger productivity increase at night. The stiller productivity increased also with cooling the glass cover from the still outside. 

  8. Residential CO2 Heat Pump System for Combined Space Heating and Hot Water Heating

    OpenAIRE

    Stene, Jørn

    2004-01-01

    Carbon dioxide (CO2, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO2 heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO2 heat pump systems for combined space heating and hot water hea...

  9. Heat Consumption Assessment of the Domestic Hot Water Systems in the Apartment Buildings

    OpenAIRE

    Grasmanis, D; Greķis, A; Talcis, N

    2013-01-01

    This study presents the analysis of energy consumption for domestic hot water in apartment buildings in Riga. The aggregate data contains information about 39 apartment buildings, including heat energy consumption and domestic hot water (DHW) consumption. The analysis is focused on the heat energy consumption in the DHW system. The analysis characterizes the DHW consumption, energy consumption for DHW and energy losses in the DHW systems in apartment buildings.

  10. Heat Consumption Assessment of the Domestic Hot Water Systems in the Apartment Buildings

    OpenAIRE

    Grasmanis, Dzintars; Talcis, Normunds; Greķis, Aldis

    2015-01-01

    This study presents the analysis of energy consumption for domestic hot water in apartment buildings in Riga, Latvia. The aggregate data contains information about 39 apartment buildings, including heat energy consumption and domestic hot water (DHW) consumption. The analysis is focused on the heat energy consumption and seasonal characteristics in the DHW system.The analysis characterizes the DHW consumption, energy consumption for DHW and energy losses in the DHW systems in apartment buildi...

  11. Heat Consumption Assessment of the Domestic Hot Water Systems in the Apartment Buildings

    OpenAIRE

    Grasmanis, D; Greķis, A; Talcis, N

    2013-01-01

    This study presents the analysis of energy consumption for domestic hot water in apartment buildings in Riga. The aggregate data contains information about 39 apartment buildings, including heat energy consumption and domestic hot water (DHW) consumption. The analysis is focused on the heat energy consumption in the DHW system. The analysis characterizes the DHW consumption, energy consumption for DHW and energy losses in the DHW systems in apartment buildings.

  12. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Science.gov (United States)

    2010-01-01

    ... Instantaneous Water Heaters and Hot Water Supply Boilers* Thermal Efficiency ANSI Z21.10.3-1998, § 2.9** A. For... Instantaneous Water Heaters and Hot Water Supply Boilers* Thermal Efficiency ANSI Z21.10.3-1998, § 2.9** (2) Oil...) Assume that the thermal efficiency (Et) of electric water heaters with immersed heating elements is...

  13. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  14. Flat plate collectors as facade elements for domestic hot water and heat insulation. Flachkollektoren als Fassadenelemente zur Brauchwassererwaermung und Waermedaemmung

    Energy Technology Data Exchange (ETDEWEB)

    Flamm, H.; Lochau, R.; Maeiss, M.; Schiele, J.

    1984-07-01

    In a newly constructed south-west-facade 200 m/sup 2/ of flat plate collectors were integrated as construction elements to heat domestic water. The building needs 5-10 m/sup 3/ of hot water per day, i.e. 250-500 kWh/d. The solar circuit runs with a water-glycol-mixture with a specific volume flow rate of 20-40 l/m/sup 2/h. The storage capacity is 8 m/sup 3/, i.e. 40 l/m/sup 2/ collector area. The heating system is bivalent. The total cost was DM 220.000, excepting the cost of facade construction. The observation period was 2 years. The heat flow balance was measured daily using a microprocessor. As far as the construction was concerned, there were no defects during the observation period. The rooms behind solar collectors showed no additional thermal load. The most favourable season for running solar systems is from April to September. In this period the average efficiencies were 15 to 20%, the net energy yield was 76 kWh/m/sup 2/.

  15. X-ray emission from the local hot bubble and solar wind charge exchange

    Science.gov (United States)

    Uprety, Youaraj

    DXL (Diffuse X-rays from the Local galaxy) is a sounding rocket mission to quantify the Solar Wind Charge Exchange (SWCX) X-ray emission in the interplanetary medium, and separate its contribution from the Local Hot Bubble (LHB) emission. The first launch of DXL took place in December 2012. This thesis will describe the DXL instrumentation and calibrations, and discuss the results obtained. The mission uses two large area proportional counters to scan through the Helium Focusing Cone (HFC), a high helium density region in the solar system emitting excess X-rays due to SWCX. Using well determined models of the interplanetary neutral distribution and comparing the DXL results with data from the same region obtained by the ROSAT satellite away from the cone, we calculated that SWCX contributes at most 36% to the ¼ keV ROSAT band and 13% to the ¾ keV ROSAT band, in the galactic plane. This provides a firm proof for existence of a LHB which dominates the Diffuse X-ray Background (DXB) at ¼ keV, while raising new questions on the origin of the ¾ keV emission.

  16. A Solar Coronal Cavity with a Hot Core Observed by Hinode

    Science.gov (United States)

    Jibben, Patricia R.; Reeves, Kathy; Su, Yingna

    2014-06-01

    Coronal cavities are large low density regions often observed above high latitude filament channels. These cavities will sometimes have areas of bright X-ray emission near their centers. Using Hinode satellite data from the X-ray Telescope (XRT) and the EUV Imaging Spectrometer (EIS) we examine the thermal emission properties and coronal velocity structures of a cavity, containing a central bright X-ray emission, observed on 23 February 2012. We investigate the interaction between the coronal cavity and the prominence material using data from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamic Observatory (SDO) and H-α data from the Hinode Solar Optical Telescope (SOT). We use a non-linear force-free field model to understand the magnetic field structure that gives rise to the coronal emission in this cavity. A comparison of AIA and XRT data reveal emission in 171 that outlines the hot core of the cavity; consistent with the modeled magnetic field structure.This work is supported by under contract SP02H1701R from Lockheed-Martin to SAO, contract NNM07AB07C from NASA to SAO and grant number NNX12AI30G from NASA to SAO.

  17. Hot spots and hot moments in riparian zones: potential for improved water quality management

    Science.gov (United States)

    Despite considerable heterogeneity over space and time, biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. Recently, these heterogeneous processes have been co...

  18. Disinfection of contaminated water by using solar irradiation.

    Science.gov (United States)

    Caslake, Laurie F; Connolly, Daniel J; Menon, Vilas; Duncanson, Catriona M; Rojas, Ricardo; Tavakoli, Javad

    2004-02-01

    Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min.

  19. Definition of hydraulic stability of KVGM-100 hot-water boiler and minimum water flow rate

    Science.gov (United States)

    Belov, A. A.; Ozerov, A. N.; Usikov, N. V.; Shkondin, I. A.

    2016-08-01

    In domestic power engineering, the methods of quantitative and qualitative-quantitative adjusting the load of the heat supply systems are widely distributed; furthermore, during the greater part of the heating period, the actual discharge of network water is less than estimated values when changing to quantitative adjustment. Hence, the hydraulic circuits of hot-water boilers should ensure the water velocities, minimizing the scale formation and excluding the formation of stagnant zones. The results of the calculations of hot-water KVGM-100 boiler and minimum water flow rate for the basic and peak modes at the fulfillment of condition of the lack of surface boil are presented in the article. The minimal flow rates of water at its underheating to the saturation state and the thermal flows in the furnace chamber were defined. The boiler hydraulic calculation was performed using the "Hydraulic" program, and the analysis of permissible and actual velocities of the water movement in the pipes of the heating surfaces was carried out. Based on the thermal calculations of furnace chamber and thermal- hydraulic calculations of heating surfaces, the following conclusions were drawn: the minimum velocity of water movement (by condition of boiling surface) at lifting movement of environment increases from 0.64 to 0.79 m/s; it increases from 1.14 to 1.38 m/s at down movement of environmental; the minimum water flow rate by the boiler in the basic mode (by condition of the surface boiling) increased from 887 t/h at the load of 20% up to 1074 t/h at the load of 100%. The minimum flow rate is 1074 t/h at nominal load and is achieved at the pressure at the boiler outlet equal to 1.1 MPa; the minimum water flow rate by the boiler in the peak mode by condition of surface boiling increases from 1669 t/h at the load of 20% up to 2021 t/h at the load of 100%.

  20. Towards Highly Efficient Bias-Free Solar Water Splitting

    NARCIS (Netherlands)

    Abdi, F.F.

    2013-01-01

    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  1. Towards Highly Efficient Bias-Free Solar Water Splitting

    NARCIS (Netherlands)

    Abdi, F.F.

    2013-01-01

    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  2. Novel configurations of solar distillation system for potable water production

    Science.gov (United States)

    Riahi, A.; Yusof, K. W.; Sapari, N.; Singh, B. S.; Hashim, A. M.

    2013-06-01

    More and more surface water are polluted with toxic chemicals. Alternatively brackish and saline water are used as feed water to water treatment plants. Expensive desalination process via reverse osmosis or distillation is used in the plants. Thus, this conventional desalination is not suitable for low and medium income countries. A cheaper method is by solar distillation. However the rate of water production by this method is generally considered low. This research attempts to enhance water production of solar distillation by optimizing solar capture, evaporation and condensation processes. Solar radiation data was captured in several days in Perak, Malaysia. Three kinds of experiments were done by fabricating triangular solar distillation systems. First type was conventional solar still, second type was combined with 50 Watt solar photovoltaic panel and 40 Watt Dc heater, while third type was integrated with 12 Volt Solar battery and 40 Watt Dc heater. The present investigation showed that the productivity of second and third systems were 150% and 480% of the conventional still type, respectively. The finding of this research can be expected to have wide application in water supply particularly in areas where fresh surface water is limited.

  3. Two-Step Water Splitting with Concentrated Solar Heat Using Rotary-Type Solar Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, H.; Fuse, A.; Miura, T.; Ishihara, H.; Tamara, Y.

    2006-07-01

    The rotary-type solar furnace has been developed and fabricated for solar hydrogen production by a two-step water splitting reaction using the special reactive ceramic. The rotary-type solar furnace is the dual cell solar reactor, which has two different type reaction rooms, one is for discharging oxygen and another is for water splitting reaction. The detailed specification and the efficiency of the rotary-type solar furnace were examined. Successive evolutions of oxygen and hydrogen were observed in the discharging oxygen and water splitting reaction cells, respectively. Two-step water splitting process using newly developed rotary type solar furnace was achieved. The optimum reaction temperatures of the oxygen releasing reaction and hydrogen generation reaction with Ni,Mn-ferrite were 1173 K and 1473 K, respectively. (Author)

  4. Sporadic Legionnaires' disease: the role of domestic electric hot-water tanks.

    Science.gov (United States)

    Dufresne, S F; Locas, M C; Duchesne, A; Restieri, C; Ismaïl, J; Lefebvre, B; Labbé, A C; Dion, R; Plante, M; Laverdière, M

    2012-01-01

    Sporadic community-acquired legionellosis (SCAL) can be acquired through contaminated aerosols from residential potable water. Electricity-dependent hot-water tanks are widely used in the province of Quebec (Canada) and have been shown to be frequently contaminated with Legionella spp. We prospectively investigated the homes of culture-proven SCAL patients from Quebec in order to establish the proportion of patients whose domestic potable hot-water system was contaminated with the same Legionella isolate that caused their pneumonia. Water samples were collected in each patient's home. Environmental and clinical isolates were compared using pulsed-field gel electrophoresis. Thirty-six patients were enrolled into the study. Legionella was recovered in 12/36 (33%) homes. The residential and clinical isolates were found to be microbiologically related in 5/36 (14%) patients. Contaminated electricity-heated domestic hot-water systems contribute to the acquisition of SCAL. The proportion is similar to previous reports, but may be underestimated.

  5. Solar heating of the produced water of petroleum; Aquecimento solar da agua produzida de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rogerio Pitanga; Chiavone-Filho, Osvaldo; Bezerra, Magna A. Santos; Melo, Josette Lourdes Sousa de; Oliveira, Jackson Araujo de; Ramos, Rafael E. Moura [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Schuhli, Juliana Bregenski; Andrade, Vivian Tavares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In this work, experimental data of solar heating for common water and saline solution were measured. The solar heater is formed by a flat-plane collector and a thermal reservoir ('boiler'). The objective is to quantify the variation of fluids' temperature, and correlate it to environment variables, especially solar irradiation. Thereby, it is possible to estimate the solar heating of produced water of petroleum. The solar heater is part of a system of treatment of produced water, and its function is to pre-heat the fluid that enters into the solar distiller, increasing the productivity of distilled water. A saline solution that represents produced water was used in the experiments, using sodium chloride (1000 ppm). The experimental data demonstrates that the solar heater is capable to heat the fluid to temperatures close to 70 deg C, reaching temperatures close to 50 deg C even during cloudy days with low solar radiation. Furthermore, the solar collector energy system provides a higher rate of heating and trough of the thermal reservoir the temperature can remain longer. These are important aspects to the integration with solar distillation. (author)

  6. Effect of Installation of Solar Collector on Performance of Balcony Split Type Solar Water Heaters

    Directory of Open Access Journals (Sweden)

    Xu Ji

    2015-01-01

    Full Text Available The influences of surface orientation and slope of solar collectors on solar radiation collection of balcony split type solar water heaters for six cities in China were analyzed by employing software TRNSYS. The surface azimuth had greater effect on solar radiation collection in high latitude regions. For deviation of the surface slope angle within ±20° around the optimized angle, the variation of the total annual collecting solar radiation was less than 5%. However, with deviation of 70° to 90°, the variation was up to 20%. The effects of water cycle mode, reverse slope placement of solar collector, and water tank installation height on system efficiency were experimentally studied. The thermal efficiencies of solar water heater with single row horizontal arrangement all-glass evacuated tubular collector were higher than those with vertical arrangement at the fixed surface slope angle of 90°. Compared with solar water heaters with flat-plate collector under natural circulation, the system thermal efficiency was raised up to 63% under forced circulation. For collector at reverse slope placement, the temperature-based water stratification in water tank deteriorated, and thus the thermal efficiency became low. For improving the system efficiency, an appropriate installation height of the water tank was suggested.

  7. Mercury in water and biomass of microbial communities in hot springs of Yellowstone National Park, USA

    Science.gov (United States)

    King, S.A.; Behnke, S.; Slack, K.; Krabbenhoft, D.P.; Nordstrom, D.K.; Burr, M.D.; Striegl, R.G.

    2006-01-01

    Ultra-clean sampling methods and approaches typically used in pristine environments were applied to quantify concentrations of Hg species in water and microbial biomass from hot springs of Yellowstone National Park, features that are geologically enriched with Hg. Microbial populations of chemically-diverse hot springs were also characterized using modern methods in molecular biology as the initial step toward ongoing work linking Hg speciation with microbial processes. Molecular methods (amplification of environmental DNA using 16S rDNA primers, cloning, denatured gradient gel electrophoresis (DGGE) screening of clone libraries, and sequencing of representative clones) were used to examine the dominant members of microbial communities in hot springs. Total Hg (THg), monomethylated Hg (MeHg), pH, temperature, and other parameters influential to Hg speciation and microbial ecology are reported for hot springs water and associated microbial mats. Several hot springs indicate the presence of MeHg in microbial mats with concentrations ranging from 1 to 10 ng g-1 (dry weight). Concentrations of THg in mats ranged from 4.9 to 120,000 ng g-1 (dry weight). Combined data from surveys of geothermal water, lakes, and streams show that aqueous THg concentrations range from l to 600 ng L-1. Species and concentrations of THg in mats and water vary significantly between hot springs, as do the microorganisms found at each site. ?? 2006.

  8. Experimental Study of Energy-Saving Air-Conditioner with Hot Water

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-bo; CHEN Dan; LU Ying

    2009-01-01

    Energy-saving air-conditioner with hot water is an air source heat pump air-conditioner,which can also supply hot water.The hot water is heated by a double pipe condenser connected with an air-cooled condenser in series in the system.This experiment of the energy-saving air-conditioner was carried out in the enthalpy-dif-ference air-conditioner laboratory.The hot water temperature and the compressor'S discharge and suction pres.sure were recorded in the working condition,where the ambient temperature was at 43℃,35℃,21℃,7℃,and 2℃separately.The results showed that the system operated stably and reliably. This system can supply 240 L hot water at 50℃in the whole year,and its coefficience of performance(COP)is much higher than the conventional air source heat pump system.Its energy conservation WaS proved by comparing the thermal effi.ciency with other sourece water heaters.

  9. Solar Distillation Practice For Water Desalination Systems

    OpenAIRE

    Mahian, Omid; Kianifar, Ali; Jumpholkul, Chaiwat; Thiangtham, Phubate; Wongwises, Somchai; Srisomba, Raviwat

    2015-01-01

    references, it is suggested to add a chapter concerning CFD simulations of solar stills. In addition, a part can be devoted to using novel technologies such as nanotechnology for productivity enhancement of solar stills

  10. Hot water epilepsy: A form of reflex epilepsy - from infancy to adolescence

    Directory of Open Access Journals (Sweden)

    Rajath Pejaver

    2015-01-01

    Full Text Available Hot water epilepsy (HWE is a type of reflex epilepsy which occurs when hot water is poured over the head. Most cases have been reported from Southern India. Genetic, cultural, and geographical factors can be responsible for HWE. HWE can be treated by clobazam 1–2 h prior to take a bath rather than continuous anti-epileptic therapy. Medication prior to bathing may be useful in treating older children, eliminating the need to be accompanied by an adult during bathing. It can also be treated by reducing the temperature of the water used for bathing. Here, we report three cases of HWE in varying age groups.

  11. Potential for solar water heating in Zimbabwe

    Energy Technology Data Exchange (ETDEWEB)

    Batidzirai, Bothwell [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)]|[Department of Fuels and Energy, School of Engineering Science and Technology, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi (Zimbabwe); Lysen, Erik H.; Van Egmond, Sander [Utrecht Centre for Energy Research (UCE), Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Van Sark, Wilfried G.J.H.M. [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2009-04-15

    This paper discusses the economic, social and environmental benefits from using solar water heating (SWH) in Zimbabwe. By comparing different water heating technology usage in three sectors over a 25-year period, the potential of SWH is demonstrated in alleviating energy and economic problems that energy-importing countries like Zimbabwe are facing. SWH would reduce coincident electricity winter peak demand by 13% and reduce final energy demand by 27%, assuming a 50% penetration rate of SWH potential demand. Up to $250 million can be saved and CO{sub 2} emissions can be reduced by 29% over the 25-year period. Benefits are also present at individual consumer level, for the electricity utility, as well as for society at large. In the case of Zimbabwe, policy strategies that can support renewable energy technologies are already in current government policy, but this political will need to be translated into enhanced practical activities. A multi-stakeholder approach appears to be the best approach to promoting widespread dissemination of SWH technologies. (author)

  12. Effect of hot water extracted hardwood and softwood chips on particleboard properties

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Tsai Garcia-Perez; Eini Lowell; Thomas Amidon

    2014-01-01

    The affinity of particleboard (PB) to water is one of the main limitations for using PB in moisture-rich environments. PB dimensional stability and durability can be improved by reducing the available hydroxyl groups in wood through hemicellulose removal, for example, by hot water extraction (HWE), which increases wood resistance to moisture uptake. The resulting...

  13. Development of equipment for in situ studies of biofilm in hot water systems

    DEFF Research Database (Denmark)

    Bagh, Lene Karen; Albrechtsen, Hans-Jørgen; Arvin, Erik

    1999-01-01

    New equipment was developed for in situ studies of biofilms in hot water tanks and hot water pipes under normal operation and pressure. Sampling ports were installed in the wall of a hot water tank and through these operating shafts were inserted with a test plug in the end. The surface of the test...... plugs was made of the same material as used in the hot water system and the test plugs were flush with the inner surface of the tank. When the operating shaft was removed from the tank, biofilm could be collected. In the distribution system, biofilm samples were collected from test plugs inserted...... in sampling ports in a by-pass. Heterotrophic plate counts (HPC) revealed 10(4)-10(6) CFU cm(-2) on the test plugs in the hot water system after an exposure period of 7 d. The number of bacteria was not influenced by the location of the plug within each cluster of plugs in the distribution system...

  14. Application of energy and exergy analysis to increase efficiency of a hot water gas fired boiler

    Directory of Open Access Journals (Sweden)

    Todorović Milena N.

    2014-01-01

    Full Text Available In engineering practice exergy can be used for technical and economic optimization of energy conversion processes. The problem of increasing energy consumption suggests that heating plants, i.e. hot water boilers, as energy suppliers for household heating should be subjected to exergy and energy analysis. Heating plants are typically designed to meet energy demands, without the distinguished difference between quality and quantity of the produced heat. In this paper, the energy and exergy analysis of a gas fired hot water boiler is conducted. Energy analysis gives only quantitative results, while exergy analysis provides an insight into the actually available useful energy with respect to the system environment. In this paper, a hot water boiler was decomposed into control volumes with respect to its functional components. Energy and exergy of the created physical model of the hot water boiler is performed and destruction of exergy and energy loss in each of the components is calculated. The paper describes the current state of energy and exergy efficiency of the hot water boiler. The obtained results are analyzed and used to investigate possibilities for improvement of availability and reliability of the boiler. A comparison between the actual and the proposed more reliable solution is made.

  15. Effect of Hot water and dilute acid pretreatment on the chemical properties of liquorice root

    Directory of Open Access Journals (Sweden)

    zahra takzare

    2016-06-01

    Full Text Available Abstract In this study, the liquorice root (Glycyrrhiza glabra that was extracted in the factory in Kerman province, pre-hydrolyzed and then chemical compositions (Extractives, Lignin content, Holocellulose percent, the hydrolysis process yield and weight loss of the waste was measured. Pre-hydrolysis process was done on the above mentioned waste by hot water, hot water followed by 0.5 percent sulfuric acid and also alone sulfuric acid with different concentrations (0.5, 1, 1.5 and 2 percent The samples were pre-hydrolyzed in hot water at 150 °C and 30, 60 and 90 minutes as well as in the mixture of hot water and 0.5 % sulfuric acid at 150 °C and 60 minutes and also in pure sulfuric acid, at 130 °C and at 60 minutes. The results showed that the pre-hydrolyzed treatment with hot water in 60 minutes had been favorable performance in the respect of weight loss, lignin content and holocellulose percent. Also, in the case of pre-treatment including sulfuric acid, 2% dose can be good selected option in term of maximum holocellulose percent and minimum lignin content so that it can be suggested to produce higher value-added products such as bioethanol from licorice root bid.

  16. Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Seitzler, Matthew [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-05-01

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.

  17. Modeling and characterization of double resonant tunneling diodes for application as energy selective contacts in hot carrier solar cells

    Science.gov (United States)

    Jehl, Zacharie; Suchet, Daniel; Julian, Anatole; Bernard, Cyril; Miyashita, Naoya; Gibelli, Francois; Okada, Yoshitaka; Guillemolles, Jean-Francois

    2017-02-01

    Double resonant tunneling barriers are considered for an application as energy selective contacts in hot carrier solar cells. Experimental symmetric and asymmetric double resonant tunneling barriers are realized by molecular beam epitaxy and characterized by temperature dependent current-voltage measurements. The negative differential resistance signal is enhanced for asymmetric heterostructures, and remains unchanged between low- and room-temperatures. Within Tsu-Esaki description of the tunnel current, this observation can be explained by the voltage dependence of the tunnel transmission amplitude, which presents a resonance under finite bias for asymmetric structures. This effect is notably discussed with respect to series resistance. Different parameters related to the electronic transmission of the structure and the influence of these parameters on the current voltage characteristic are investigated, bringing insights on critical processes to optimize in double resonant tunneling barriers applied to hot carrier solar cells.

  18. X-Ray Evidence for Multiphase Hot Gas with Solar Abundances in the Brightest Elliptical Galaxies

    CERN Document Server

    Buote, D A

    1998-01-01

    We examine whether single-phase models of the hot gas can successfully describe the ASCA and ROSAT spectra of NGC 1399, NGC 4472, NGC 4636, and NGC 5044. Broad-band spectral fitting of the ASCA SIS and GIS data accumulated within a radius of ~5 arcmin for each galaxy shows that single-phase models are unable to fit the SIS data near 1 keV. In addition, these single-phase models typically fail to produce the large equivalent widths of the K-alpha line blends of the H-like and He-like ions of Si and S which are measured independently of the Fe L emission lines. Two-phase models provide excellent broad-band fits to both the SIS and GIS data of each galaxy with the relative abundances (except for NGC 4636) fixed at their solar values. A simple multiphase cooling flow model fits nearly as well as the two-phase model for NGC 1399, NGC 4472, and NGC 5044. The multiphase models also predict more accurately the Si and S equivalent widths and the ratios of Si XIV/XIII and S XVI/XV than the single-phase models. Using va...

  19. EPIC 220504338b: A dense hot-Jupiter transiting a solar analogue

    CERN Document Server

    Espinoza, Néstor; Brahm, Rafael; Jones, Matías; Jordán, Andrés; Rojas, Felipe; Drass, Holger; Vučković, Maja; Hartman, Joel D; Jenkins, James S; Cortés, Cristián

    2016-01-01

    We present the discovery of EPIC 220504338b, a dense hot-Jupiter discovered using photometry from Campaign 8 of the Kepler-2 (K2) mission and high-resolution spectroscopic follow up obtained with the FEROS spectrograph. The planet orbits a $V=13.68$ solar analogue in a $P=5.81771^{+0.00004}_{-0.00004}$ day orbit, has a radius of $0.91^{+0.10}_{-0.07}R_J$ and a mass of $1.28^{+0.11}_{-0.12}M_J$. With a density of $2.08^{+0.66}_{-0.57}$ gr/cm$^3$, the planet is among the densest systems known having masses below 2 $M_J$ and $T_\\textrm{eq} > 1000$, and is just above the temperature limit at which inflation mechanisms are believed to start being important. Based on its mass and radius, we estimate that EPIC 220504338b should have a heavy element content on the order of $\\sim$ 110 $M_{\\oplus}$ or greater.

  20. Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yasuhiko, E-mail: takeda@mosk.tytlabs.co.jp; Sugimoto, Noriaki [Toyota Central Research and Development Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan); Ichiki, Akihisa [Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Kusano, Yuya [Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Toyota Motor Corp., 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Motohiro, Tomoyoshi [Toyota Central Research and Development Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan); Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2015-09-28

    Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs.

  1. Exegetic evaluation of solar heating water thermosyphonic; Evaluacion exergetica de sistemas de calentamiento de agua solares termosifonicos

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J. R.; Andreani, R. J. L.; Lucchini, J. M.; Fasulo, A. J.

    2004-07-01

    A tool has been developed in order to analyse by means of the exegetic method the behaviour of a solar water heating thermosyphonic system composed by a flat plate collector and a tank, aided by a auxiliary conventional heater. A computational model run annual simulations, using data obtained from normalized test for commercial flat plate collectors. Taking into account the hot water demand and the climatic conditions, it is possible to determine the critical points of exergy destruction from de project design and the assembly of the system components, integrating the values for one typical year. Therefore, different combinations collector-tank can be tested in order to select the necessary auxiliary heater, looking for an economic optimized system. (Author)

  2. Extraction of steviol glycosides from fresh Stevia using acidified water; comparison to hot water extraction, including purification

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Huurman, Sander

    2017-01-01

    This report describes a practical comparison of an acidified water extraction of freshly harvested Stevia
    plants (the NewFoss method) to the hot water extraction of dried Stevia plants, the industry standard. Both
    extracts are subsequently purified using lab-/bench scale standard industrial

  3. Extraction of steviol glycosides from fresh Stevia using acidified water; comparison to hot water extraction, including purification

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Huurman, Sander

    2017-01-01

    This report describes a practical comparison of an acidified water extraction of freshly harvested Stevia
    plants (the NewFoss method) to the hot water extraction of dried Stevia plants, the industry standard. Both
    extracts are subsequently purified using lab-/bench scale standard industrial

  4. Theoretical comparison between solar combisystems based on bikini tanks and tank-in-tank solar combisystems

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris

    2008-01-01

    Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....

  5. Generation of Electric Energy and Desalinating Water from Solar Energy and the Oceans Hydropower

    Science.gov (United States)

    Elfikky, Niazi

    Brief.All warnings and fears about the environment in our Earth planet due to the serious effects of the industrial revolution were certainly predicted early. But the eager contest and the powerful desire for more profits beside the human interest for welfare and development closed all minds about the expected severe destuctive impacts on our earth planet. Also, we have to remember that the majority of the African, Asian and Latin American countries are still in the first stage of their development and if they will be left to generate all their demand of energy by the conventional machine e.g (Fossil Fuel, Biofuel and Nuclear Fuel), then our Earth planet will confront an endless and ceasless severe destructive impacts due to the encroach of the released hot Carbon Doxide and hot vapours of Acids which will never forgive any fruitful aspect in our Earth Planet from destruction. 1. Importance of the New Project. Building the Extra cheap, clean Power plants with safe and smooth Operation in addition to the long life time in service for generating enough and plentiful electric energy the sustainable renwable resources will invigorate the foresaking of all Nuclear, Fossil and Biofuel power plants to avoide the nuclear hazards and stop releasing the hot carbon doxide, hot acids for the recovery of our ill environment. Also, the main sustainable, renewable, and cheap resources for generating the bulky capacity of the electric energy in our project are the Sun and the Oceans in addition to all Seas Surrounding all Continents in our Earth planet. Therefore, our recourses are so much enormous plentiful, clean, and renewable. 2. .Generation of Electricity from Solar Energy by Photovoltiac Cells (PVCs) or Concentrated Solar Power (CSP). Characteristics of Photovoltiac Cells (PVCs). It is working only by Sun's Light (Light photons) and its efficiency will decrease as the Solar Thermal Radiation will increase, i.e. as the temerature of the Solar Voltiac will increase, its output

  6. Influence of Locally Derived Recharge on the Water Quality and Temperature of Springs in Hot Springs National Park, Arkansas

    Science.gov (United States)

    Bell, Richard W.; Hays, Phillip D.

    2007-01-01

    The hot springs of Hot Springs National Park consist of a mixture of water from two recharge components: a primary hot-water component and a secondary cold-water component. Widespread distribution of fractures enables mixing of the hot- and cold-water components of flow near the discharge area for the springs. Urbanization in the area near the hot springs of Hot Springs National Park has increased the potential for degradation of the quality of surface-water runoff and locally derived ground-water recharge to the hot springs. Previous studies by the U.S. Geological Survey have indicated that water from some cold-water springs and wells in the vicinity of Hot Springs, Arkansas, showed evidence of contamination and that water from locally derived cold-water recharge might contribute 25 percent of the total flow to the hot springs after storms. Water samples were collected during base-flow conditions at nine hot springs and two cold-water springs in September 2000. Nine hot springs and one cold-water spring were resampled in October 2001 after a storm that resulted in a measurable decrease in water temperature in selected hot springs. Water samples were analyzed for a variety of dissolved chemical constituents (nutrients, major ions, trace elements, pesticides, semivolatile compounds, isotopes, and radiochemicals), physical properties, field measurements, and bacteria. Comparison of analyses of samples collected during base-flow conditions from the springs in 2000 and during a storm event in 2001 with the results from earlier studies dating back to the late 1800's indicates that little change in major, minor, and trace constituent chemistry has occurred and that the water continues to be of excellent quality. Water-quality data show distinguishable differences in water chemistry of the springs during base-flow and stormflow conditions, indicating changing input of cold-water recharge relative to hot-water recharge. Silica, total dissolved solids, strontium, barium

  7. Is there a solar signal in lower stratospheric water vapour?

    Science.gov (United States)

    Schieferdecker, Tobias; Lossow, Stefan; Stiller, Gabriele; von Clarmann, Thomas

    2016-04-01

    A merged time series of stratospheric water vapour built from the Halogen Occultation Instrument (HALOE) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) data between 60 deg S and 60 deg N and 15 to 30 km, and covering the years 1992 to 2012, was analysed by multivariate linear regression, including an 11-year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second component following the stratospheric age of air. The amplitudes of the water vapour response are largest close to the tropical tropopause (up to 0.35 ppmv) and decrease with altitude and latitude. Including the solar cycle proxy in the regression results in linear trends of water vapour being negative over the full altitude/latitude range, while without the solar proxy, positive water vapour trends in the lower stratosphere were found. We conclude from these results that a solar signal seems to be generated at the tropical tropopause which is most likely imprinted on the stratospheric water vapour abundances and transported to higher altitudes and latitudes via the Brewer-Dobson circulation. Hence it is concluded that the tropical tropopause temperature at the final dehydration point of air may also be governed to some degree by the solar cycle. The negative water vapour trends obtained when considering the solar cycle impact on water vapour abundances can possibly solve the "water vapour conundrum" of increasing stratospheric water vapour abundances despite constant or even decreasing tropopause temperatures.

  8. Phase Change Material on Augmentation of Fresh Water Production Using Pyramid Solar Still

    Directory of Open Access Journals (Sweden)

    S. Ravishankara

    2013-10-01

    Full Text Available The augmentation of fresh water and increase in the solar still efficiency of a triangular pyramid is added with phase change material (PCM on the basin. Experimental studies were conducted and the effects of production of fresh water with and without PCM were investigated. Using paraffin as the PCM material, performance of the solar still were conducted on a hot, humid climate of Chennai (13°5′ 2" North, 80°16′ 12"East, India. The use of paraffin wax increases the latent heat storage so that the energy is stored in the PCM and in the absence of solar radiation it rejects its stored heat into the basin for further evaporation of water from the basin. Temperatures of water, Tw, Temperature of phase change material, TPCM, Temperature of cover, Tc were measured using thermocouple. Results show that there is an increase of maximum 20%, in productivity of fresh water with PCM. Keywords: fresh water production; PCM; thermal energy storage; phase change material

  9. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Arvind [Department of Design, Production and Management, University of Twente, Enschede (Netherlands); Dubey, Swapnil; Sandhu, G.S. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Sodha, M.S. [Department of Education and Physics, Lucknow University, Lucknow 226007 (India); Anwar, S.I. [Indian Institute of Sugar-cane Research, Lucknow, U.P. (India)

    2009-12-15

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank, respectively, in the terms of design and climatic parameters. Further, an analysis has also been extended for hot water withdrawal at constant collection temperature. Numerical computations have been carried out for the design and climatic parameters of the system used by Huang et al. [Huang BJ, Lin TH, Hung WC, Sun FS. Performance evaluation of solar photovoltaic/thermal systems. Sol Energy 2001; 70(5): 443-8]. It is observed that the daily overall thermal efficiency of IPVTS system increases with increase constant flow rate and decrease with increase of constant collection temperature. The exergy analysis of IPVTS system has also been carried out. It is further to be noted that the overall exergy and thermal efficiency of an integrated photovoltaic thermal solar system (IPVTS) is maximum at the hot water withdrawal flow rate of 0.006 kg/s. The hourly net electrical power available from the system has also been evaluated. (author)

  10. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-12-01

    Full Text Available The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal efficiency of the system was found to be 8% with an operating temperature of 120 °C. The hot water produced by the unit has a temperature of 40 °C. Economic assessment was done for 1-kW and 5-kW solar ORC water pumping systems. These systems use different types of solar collectors: a parabolic trough collector (PTC and an evacuated tube collector (ETC. The economic analysis showed that the costs of water are $2.47/m3 (highest and $1.86/m3 (lowest for the 1-kW system and a 150-m pumping head. In addition, the cost of water is reduced when the size of the system is increased and the pumping head is reduced. The minimum volumes of water pumped are 2190 m3 and 11,100 m3 yearly for 1 kW and 5 kW, respectively. The payback period is eight years with a profitability index of 1.6. The system is highly feasible and promising in the context of Nepal.

  11. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

    2008-08-13

    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union's Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory's Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

  12. Intelligent complete solution for heating and hot water; Intelligente Komplettloesung fuer Heizung und Warmwasser

    Energy Technology Data Exchange (ETDEWEB)

    Haegler, W.

    2002-07-01

    This article describes an integrated space-heating and hot-water heating system that is suitable for apartment buildings and housing estates. The concept, developed by a heating system planner in the Swiss Bernese Oberland, is described. The principles behind the system, which features centralised heat generation and decentralised hot-water storage, are discussed. The advantages offered by the system are compared with conventional solutions, whereby savings in investments and the use of standard components are commented on. The functioning of the decentralised hot-water boilers, which are heated up via the centralised heat distribution system at times when space-heating demands are low, is described. One of the many possibilities for the centralised generation of heat - a heat pump - is examined and the use of programmable controllers in the operation of the system is described.

  13. Investigation on actuation and thermo-mechanical behaviour of Shape Memory Alloy spring using hot water

    Science.gov (United States)

    Chouhan, Priya; Nath, Tameshwer; Lad, B. K.; Palani, I. A.

    2016-09-01

    In this paper, hot water is used as an actuation media for Shape memory alloy and its impact on the morphology of structure of Nitinol Shape Memory Alloy (SMA), is presented. With hot water actuation as the temperature reaches 70-80°C, spring gets fully compressed for the first few cycles followed by a displacement loss in actuation. This actuation loss is then studied with different characterization methods such as Thermo Gravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). With SEM results, it can be inferred that the energy source is not deteriorating the structure. Results observed from TGA shows high oxygen content at lower temperature limits with hot water actuation which suggest the need of conducting experiments in inert atmosphere. As a possible mechanism, a new actuation medium is introduced and various results can be seen in the paper discussed below.

  14. Performance of Generator of Absorption Refrigerating Machine Powered by Hot Water

    Science.gov (United States)

    Kunugi, Yoshifumi; Usui, Sanpei; Ouchi, Tomihisa; Fukuda, Tamio

    For 70 kW generator of absorption refrigerating machine powered by the hot water, lifted liquid rate of the bubble lift pump has a maximum value at some vapor flow rate of refrigerant and hot water inlet temperature. This is in agreement with results of small size bubble lift pump. Maximum lifted liquid rate G0 is correlated by the equation G0 = 5, 000σ1.5, where σ is the degree of submergence. In this case, diameter of pump tube was 41.6mm, and length of it were 1,300 and 1,500mm. The range of hot water inlet temperature was 78 - 100°C. Multitube heat flux of first generator is about two times that of second generator at the same superheat.

  15. Non-parametric method for separating domestic hot water heating spikes and space heating

    DEFF Research Database (Denmark)

    Bacher, Peder; de Saint-Aubain, Philip Anton; Christiansen, Lasse Engbo;

    2016-01-01

    In this paper a method for separating spikes from a noisy data series, where the data change and evolve over time, is presented. The method is applied on measurements of the total heat load for a single family house. It relies on the fact that the domestic hot water heating is a process generating...... short-lived spikes in the time series, while the space heating changes in slower patterns during the day dependent on the climate and user behavior. The challenge is to separate the domestic hot water heating spikes from the space heating without affecting the natural noise in the space heating...... measurements. The assumption behind the developed method is that the space heating can be estimated by a non-parametric kernel smoother, such that every value significantly above this kernel smoother estimate is identified as a domestic hot water heating spike. First, it is showed how a basic kernel smoothing...

  16. Parametric studies of an active solar water heating system with various types of PVT collectors

    Indian Academy of Sciences (India)

    Roonak Daghigh; Mohd Hafidz Ruslan; Kamaruzzaman Sopian

    2015-10-01

    This study simulated active photovoltaic thermal solar collectors (PV/T) for hot water production using TRNSYS. The PV/T collectors consist of the amorphous, monocrystalline and polycrystalline. The long-term performances for the glazed and unglazed PV/T collectors were also evaluated. In this simulation, the design parameters used were collector area of 4 m2, collector slope angle of 15 degree and mass flow rate to the collector area ratio of 8–20 kg/hm2. In addition the tank height between 0.9 m to 1.1 m for unglazed PV/T collectors and 0.9 m to 1 m for glazed collectors, as well as the storage tank volume between 200 and 300 L has been used. The climate parameters used were solar radiation levels range of 4–4.9 kWh/m2, the mean ambient temperature in the range of 25–28°C. The results of the simulation indicated that there was an increase in solar fraction and electrical power output of the active PV/T hot water system.

  17. Development of a new solar thermal engine system for circulating water for aeration

    Energy Technology Data Exchange (ETDEWEB)

    Kerdchang, Pongsakorn; Win, Maung Maung; Teekasap, Sombat [South-East Asia Univ., Building Scientific Research Center, Bangkok (Thailand); Hirunlabh, Jongjit; Khedari, Joseph [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand); Zeghmati, Belkacem [Perpignan Univ., Centre d' Etudes Fondamentales, Groupe de Mecanique Acoustique et Instrumentation, Perpignan, 66 (France)

    2005-04-01

    This paper presents a numerical study about the performance of a Beta Stirling solar thermal engine system. This system is composed of a solar collector box connected to a regenerator hydraulic system and a transmitting power system. The objective of the system is to offer a new alternative to help solving stagnant water pollution in hot countries like Thailand by circulating water in canals, lakes, ponds etc. for aeration using solar energy. The purpose of this study is to determine the power output and actual heat transfer on the performance of the solar thermal engine. The solar thermal engine is analyzed using a mathematical model based on the first law of thermodynamics for processes with finite speed, with particular attention to the energy balance at the receiver. The result of calculations showed that the regenerator volume and phase angle must be chosen carefully to fulfill the requirement that total fluid mass in the system is constant and to obtain maximum power output throughout the day. (Author)

  18. Water Impacts of High Solar PV Electricity Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cohen, Stuart [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  19. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  20. Ethanol production from hot-water sugar maple wood extract hydrolyzate: fermentation media optimization for Escherichia coli FBWHR

    National Research Council Canada - National Science Library

    Yang Wang; Chenhui Liang; Shijie Liu

    2015-01-01

    .... Response surface methodology was employed to investigate the effect of fermentation media on the ethanol production from concentrated hot-water sugar maple hemicellulosic wood extract hydrolyzate...

  1. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  2. Alternative Solution for Consumption Hot Water Recirculation for the Civil Buildings

    Directory of Open Access Journals (Sweden)

    Theodor Mateescu

    2007-01-01

    Full Text Available The sanitary comfort and the effective cost of maintenance in the civil buildings (block of flats are badly affected by the absence of the consumption hot water recirculation. From the technical point of view, the classical solution imposes the doubling of the transport and distribution pipes on the entire route, between the source and the consumption points. The materialization of the solution requires important financial investment, discouraging most of the time and the postponement of the problem solving with important consequences. This paper proposes an alternative technical solution which limits to a minimum the intervention, only in the interior hot water distribution system.

  3. Radiological performance of hot water layer system in open pool type reactor

    Directory of Open Access Journals (Sweden)

    Amr Abdelhady

    2013-06-01

    Full Text Available The paper presents the calculated dose rate carried out by using MicroShield code to show the importance of hot water layer system (HWL in 22 MW open pool type reactor from the radiation protection safety point of view. The paper presents the dose rate profiles over the pool surface in normal and abnormal operations of HWL system. The results show that, in case of losing the hot water layer effect, the radiation dose rate profiles over the pool surface will increase from values lower than the worker permissible dose limits to values very higher than the permissible dose limits.

  4. Experimental analysis on the use of condensing boilers for centralized production of domestic hot water

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, E.; Lazzarin, R.; Piccininni, F.; Caliari, R. (Bari Univ. (Italy). Ist. di Fisica Tecnica ed Impianti Termotecnici)

    1988-11-01

    The monthly performance of pulse combustion condensing boilers has been studied. The boilers are utilized in a plant for the centralized production of domestic hot water. The heating capacity is 112 kW with a daily production of 15 cubic meter of hot waters at 60 degrees centigrade. The analysis has shown the very good seasonal performance of the boilers even without a suitable plant design. The great importance of the heat distribution system has been outlined in order to reach good overall performance.

  5. The Brackets Design and Stress Analysis of a Refinery's Hot Water Pipeline

    Science.gov (United States)

    Zhou, San-Ping; He, Yan-Lin

    2016-05-01

    The reconstruction engineering which reconstructs the hot water pipeline from a power station to a heat exchange station requires the new hot water pipeline combine with old pipe racks. Taking the allowable span calculated based on GB50316 and the design philosophy of the pipeline supports into account, determine the types and locations of brackets. By analyzing the stresses of the pipeline in AutoPIPE, adjusting the supports at dangerous segments, recalculating in AutoPIPE, at last determine the types, locations and numbers of supports reasonably. Then the overall pipeline system will satisfy the requirement of the ASME B31.3.

  6. Solar water heaters in China: A new day dawning

    NARCIS (Netherlands)

    Han, Jingyi; Mol, A.P.J.; Lu, Y.

    2010-01-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively

  7. Too Hot to Handle: Climate Change and Agricultural Water Use

    Directory of Open Access Journals (Sweden)

    Denise Fort

    2011-10-01

    Full Text Available The world faces enormous challenges in responding to looming crises in food and water. Responding to this challenge will require flexibility; such flexibility may be impeded by legal institutions. This paper looks at the western United States and discusses the role of irrigated agriculture in that region. Because of climate change, a growing population, declining groundwater, the need to protect ecosystems and other conflicts, the author suggests that all water uses, including long-standing agricultural water rights, need to be examined in light of these changes. Legal systems have tended to serve the status quo, but perhaps the law can help facilitate this re-examination.

  8. The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates

    KAUST Repository

    Haschke, Jan

    2017-03-23

    Extensive knowledge of the dependence of solar cell and module performance on temperature and irradiance is essential for their optimal application in the field. Here we study such dependencies in the most common high-efficiency silicon solar cell architectures, including so-called Aluminum back-surface-field (BSF), passivated emitter and rear cell (PERC), passivated emitter rear totally diffused (PERT), and silicon heterojunction (SHJ) solar cells. We compare measured temperature coefficients (TC) of the different electrical parameters with values collected from commercial module data sheets. While similar TC values of the open-circuit voltage and the short circuit current density are obtained for cells and modules of a given technology, we systematically find that the TC under maximum power-point (MPP) conditions is lower in the modules. We attribute this discrepancy to additional series resistance in the modules from solar cell interconnections. This detrimental effect can be reduced by using a cell design that exhibits a high characteristic load resistance (defined by its voltage-over-current ratio at MPP), such as the SHJ architecture. We calculate the energy yield for moderate and hot climate conditions for each cell architecture, taking into account ohmic cell-to-module losses caused by cell interconnections. Our calculations allow us to conclude that maximizing energy production in hot and sunny environments requires not only a high open-circuit voltage, but also a minimal series-to-load-resistance ratio.

  9. Search for Solar Axions by the CERN Axion Solar Telescope with 3 He Buffer Gas: Closing the Hot Dark Matter Gap

    CERN Document Server

    Arik, M.; Barth, K.; Belov, A.; Borghi, S.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Cetin, S.A.; Collar, J.I.; Da Riva, E.; Dafni, T.; Davenport, M.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Friedrich, P.; Galán, J.; García, J.A.; Gardikiotis, A.; Garza, J.G.; Gazis, E.N.; Geralis, T.; Georgiopoulou, E.; Giomataris, I.; Gninenko, S.; Gómez, H.; Gómez Marzoa, M.; Gruber, E.; Guthörl, T.; Hartmann, R.; Hauf, S.; Haug, F.; Hasinoff, M.D.; Hoffmann, D.H.H.; Iguaz, F.J.; Irastorza, I.G.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Königsmann, K.; Kotthaus, R.; Krčmar, M.; Kuster, M.; Lakić, B.; Lang, P.M.; Laurent, J.M.; Liolios, A.; Ljubičić, A.; Lozza, V.; Luzón, G.; Neff, S.; Niinikoski, T.; Nordt, A.; Papaevangelou, T.; Pivovaroff, M.J.; Raffelt, G.; Riege, H.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Shilon, I.; Silva, P.S.; Solanki, S.K.; Stewart, L.; Tomás, A.; Tsagri, M.; van Bibber, K.; Vafeiadis, T.; Villar, J.; Vogel, J.K.; Yildiz, S.C.; Zioutas, K.

    2014-01-01

    The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.

  10. Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap.

    Science.gov (United States)

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Da Riva, E; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Georgiopoulou, E; Giomataris, I; Gninenko, S; Gómez, H; Gómez Marzoa, M; Gruber, E; Guthörl, T; Hartmann, R; Hauf, S; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Lang, P M; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Shilon, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2014-03-07

    The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10)  GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  11. Thermal shock fracture of hot silicon carbide immersed in water

    Science.gov (United States)

    Lee, Youho; McKrell, Thomas J.; Kazimi, Mujid S.

    2015-12-01

    High purity CVD-SiC, considered as a nuclear grade cladding material, exhibits thermal shock tolerance ∼1260 °C in room temperature water and beyond it (>1260 °C) in saturated water. Being thinner than the tested specimen thickness (1.5 mm × 2.0 mm), the actual cladding (0.57 mm) is anticipated to exhibit enhanced thermal shock tolerance. This implies that thermal shock alone may not shatter the SiC cladding in reflood. Level of fuel rod internal pressure will be a decisive factor in predicting cladding fracture during reflood. Decreasing water subcooling significantly reduces thermal shock fracture danger of ceramic materials. Thermal shock experiments showed strength retention for both pressureless sintered-SiC and CVD SiC, as well as Al2O3 samples quenched from temperatures up to 1260 °C in saturated water. Solid-liquid contacts during nucleate and transition boiling, and boiling incipience upon water bath entering are a highly probable origin of thermal shock fracture in water quenching.

  12. Thermal shock fracture of hot silicon carbide immersed in water

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@kaist.ac.kr; McKrell, Thomas J.; Kazimi, Mujid S.

    2015-12-15

    High purity CVD-SiC, considered as a nuclear grade cladding material, exhibits thermal shock tolerance ∼1260 °C in room temperature water and beyond it (>1260 °C) in saturated water. Being thinner than the tested specimen thickness (1.5  mm × 2.0  mm), the actual cladding (0.57 mm) is anticipated to exhibit enhanced thermal shock tolerance. This implies that thermal shock alone may not shatter the SiC cladding in reflood. Level of fuel rod internal pressure will be a decisive factor in predicting cladding fracture during reflood. Decreasing water subcooling significantly reduces thermal shock fracture danger of ceramic materials. Thermal shock experiments showed strength retention for both pressureless sintered-SiC and CVD SiC, as well as Al{sub 2}O{sub 3} samples quenched from temperatures up to 1260 °C in saturated water. Solid–liquid contacts during nucleate and transition boiling, and boiling incipience upon water bath entering are a highly probable origin of thermal shock fracture in water quenching.

  13. The ancient heritage of water ice in the solar system

    CERN Document Server

    Cleeves, L Ilsedore; Alexander, Conel M O'D; Du, Fujun; Graninger, Dawn; Öberg, Karin I; Harries, Tim J

    2014-01-01

    Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Utilizing a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, curtailing the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems.

  14. The ancient heritage of water ice in the solar system.

    Science.gov (United States)

    Cleeves, L Ilsedore; Bergin, Edwin A; Alexander, Conel M O'D; Du, Fujun; Graninger, Dawn; Öberg, Karin I; Harries, Tim J

    2014-09-26

    Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that, if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems.

  15. New Home Buyer Solar Water Heater Trade-Off Study

    Energy Technology Data Exchange (ETDEWEB)

    Symmetrics Marketing Corporation

    1999-08-18

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

  16. Creating a Comprehensive Solar Water Heating Deployment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Focus Marketing Services

    1999-08-18

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

  17. Erosion-Corrosion Behavior of Power Plant Pipe Caused by Hot Feed Water

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Sungho; Lee, Jinwon; Kim, Taewon [Hanyang Univ., Seoul (Korea, Republic of)

    2013-06-15

    In this study, we tried to define the erosion-corrosion behavior together with the resulting effects on a pipe that is a part of a feed water circulation system according to the pipe size and hot feed water environment. An erosion corrosion analysis was performed through the Hayduk and Minas model based on the chemical reaction between iron and oxygen, an essential corrosive factor. The erosion-corrosion rate against the pipe diameter and feed water temperature was then evaluated by means of finite element analysis using Abacus. As shown in the results, the feed water temperature was the main factor influencing the erosion-corrosion rate; in particular, it was expected that the thickness of 316 stainless steel would decrease by 2.59 {mu}m every year in a hot water environment at 290 .deg. C.

  18. Visualization study on hot particle-water interaction by using neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, K.; Hibiki, T.; Saito, Y. [Research Reactor Institute, Kyoto University, Kumatori, Osaka (Japan); Moriyama, Kiyofumi; Sugimoto, Jun

    1999-07-01

    In relation to severe accident research of a nuclear reactor, an experiment was performed to simulate the premixing process in the vapor explosion by dropping hot stainless-steel particle into heavy water filled in a rectangular tank. The test rig consisted of a furnace and a rectangular tank (400 mm in height, 100 mm in width and 30 mm in depth) filled with heavy water kept at 4degC. The particle diameter used in the experiment were 6, 9 and 12 mm, and the initial temperature of the particle ranged from 600 to 1000degC. The behavior of gas dome generated by heated particle-subcooled water interaction was successfully visualized by high-frame-rate neutron radiography at the recording speed of 500 frames/s. Temporal and spatial variations of void fraction in the gas dome were measured by processing the images obtained. The void fraction measurement indicated the possibility that the ambient fluid was superheated by the hot particle-water contact and the vapor was generated in proportion to the particle size and temperature. Preliminary calculations of heat transfer from hot particle to water were conducted by using and empirical correlation for steady film boiling. Comparison between experimental and calculated results suggested that the transient heat transfer around the hot particle could not be explained only by steady film boiling but some other heat transfer mechanisms such as unsteady film boiling or hear transfer due to direct contact may be needed. (author)

  19. Geothermal hot water potential at Parangwedang, Parangtritis, Bantul, Yogyakarta as main support of Geotourism

    Directory of Open Access Journals (Sweden)

    Suhascaryo KRT. Nur

    2017-01-01

    Full Text Available The paper aims to determine the condition of Parangwedang as hot spring source in Parangtritis, Bantul, Yogyakarta and provide a guidance to develop Parangwedang as one of tourism destinations by controlling geological factor. The study is limited to examining the physical condition in the form of color, turbidity, odor, temperature and chemical condition (pH, compositions of calcium (Ca, sodium (Na, silica (SiO2, magnesium (Mg, bicarbonate (HCO3, sulfate (SO4 and chloride (Cl and water source debits of Parangwedang hot springs as part of geohydrology research. The methodology used in the paper is divided into three steps. Firstly, the methodology was based on orientation and survey location. Then, it examined mapping the hot water temperature distribution. Lastly, it was implementing laboratory analysis of rocks and water. As a result, the paper portrays that there are potential water of hot of spring which meets the standards as clean water and the heat capacity can be utilized to support as geological tourism at Parangwedang, Bantul, Yogyakarta, Indonesia.

  20. Clean subglacial access: prospects for future deep hot-water drilling.

    Science.gov (United States)

    Makinson, Keith; Pearce, David; Hodgson, Dominic A; Bentley, Michael J; Smith, Andrew M; Tranter, Martyn; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John; Siegert, Martin J

    2016-01-28

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets.

  1. Fabrication of nc-Si/c-Si solar cells using hot-wire chemical vapor deposition and laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Bing-Rui; Wuu, Dong-Sing; Mao, Hsin-Yuan [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227 (China); Wan, Meng-Shen; Huang, Wei-Hao; Horng, Ray-Hua [Institute of Precision Engineering, National Chung Hsing University, Taichung 40227 (China)

    2009-06-15

    In this paper, we present the performance of Si heterojunction solar cells prepared by hot-wire chemical vapor deposition and laser annealing. Under high hydrogen-dilution-ratio conditions, the crystallinity of the phosphorous-doped emitter layers was greatly improved due to hydrogen-induced crystallization. The grain boundary defects of the nano-crystalline emitter layer were further promoted using a laser (355 nm) crystallization technique. It was found that both the short-circuit current density and fill factor of the Si heterojunction solar cells were mainly dependent on the energy density of the laser beam. An efficiency of 14.2% is achieved for the n-nc-Si/p-c-Si heterojunction solar cell under a laser irradiation density of 382 mW/cm{sup 2}. (author)

  2. Design of a Solar Water Heating System for Kuti Hall, University of ...

    African Journals Online (AJOL)

    Design of a Solar Water Heating System for Kuti Hall, University of Ibadan, Ibadan. ... an energy audit to determine daily heating load and energy eliminated by Solar ... of solar collector and Cold water temperature calculated from weather data ...

  3. An innovative psychometric solar-powered water desalination system

    OpenAIRE

    Shatat, Mahmood; Riffat, Saffa; Gan, Guohui

    2016-01-01

    Important advances have been made in solar water desalination technology but their wide application is restricted by relatively high capital and running costs. Until recently, solar concentrator collectors had usually been employed to distill water in compact desalination systems. Currently, it is possible to replace these collectors by the more efficient evacuated tube collectors, which are now widely available on the market at lower prices. This paper describes the results of experimental a...

  4. Hot and cold water as a supercritical solvent

    Science.gov (United States)

    Fuentevilla, Daphne Anne

    This dissertation addresses the anomalous properties of water at high temperatures near the vapor-liquid critical point and at low temperatures in the supercooled liquid region. The first part of the dissertation is concerned with the concentration dependence of the critical temperature, density, and pressure of an aqueous sodium chloride solution. Because of the practical importance of an accurate knowledge of critical parameters for industrial, geochemical, and biological applications, an empirical equation for the critical locus of aqueous sodium chloride solutions was adopted in 1999 by the International Association for the Properties of Water and Steam (IAPWS) as a guideline. However, since this original Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride was developed, two new theoretical developments occurred, motivating the first part of this dissertation. Here, I present a theory-based formulation for the critical parameters of aqueous sodium chloride solutions as a proposed replacement for the empirical formulation currently in use. This formulation has been published in the International Journal of Thermophysics and recommended by the Executive Committee of IAPWS for adoption as a Revised Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride. The second part of the dissertation addresses a new concept, considering cold water as a supercritical solvent. Based on the idea of a second, liquid-liquid, critical point in supercooled water, we explore the possibility of supercooled water as a novel supercooled solvent through the thermodynamics of critical phenomena. In 2006, I published a Physical Review letter presenting a parametric scaled equation of state for supercooled-water. Further developments based on this work led to a phenomenological mean-field "two-state" model, clarifying the nature of the phase separation in a polyamorphic single-component liquid. In this dissertation, I modify this two-state model to

  5. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    electric heating and three heat pump solutions applying R134a and R744. The results show that conventional solutions at lowest possible temperature have the highest exergetic efficiency of 28% and lowest annual cost of € 690 for a 159 m2 house. The best low temperature system is an R134a heat pump with hot......District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...

  6. Tantalum-based semiconductors for solar water splitting.

    Science.gov (United States)

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  7. DEVELOPMENT OF A SMART SOLAR TANK

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    Theoretical and experimental investigations of small SDHW systems based on so-called smart solar tanks are presented. A smart solar tank is a hot water tank in which the domestic water can both be heated by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply....... The investigations showed that the yearly thermal performance of small SDHW systems can be increased by up to about 30 % if a smart solar tank is used instead of a traditional solar combi tank. The thermal increase is strongly influenced by the hot water consumption and consumption pattern. Recommendations...... for future development of smart solar tanks are given....

  8. Saturn in hot water: viscous evolution of the Enceladus torus

    CERN Document Server

    Farmer, Alison J

    2008-01-01

    The detection of outgassing water vapor from Enceladus is one of the great breakthroughs of the Cassini mission. The fate of this water once ionized has been widely studied; here we investigate the effects of purely neutral-neutral interactions within the Enceladus torus. We find that, thanks in part to the polar nature of the water molecule, a cold (~180 K) neutral torus would undergo rapid viscous heating and spread to the extent of the observed hydroxyl cloud, before plasma effects become important. We investigate the physics behind the spreading of the torus, paying particular attention to the competition between heating and rotational line cooling. A steady-state torus model is constructed, and it is demonstrated that the torus will be observable in the millimeter band with the upcoming Herschel satellite. The relative strength of rotational lines could be used to distinguish between physical models for the neutral cloud.

  9. Development of heat pipes for solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.

    1984-01-01

    Numerous heat pipes were designed, manufactured, and filled on a specially developed filling rig. Each heat pipe was incorporated into a prototype solar water heater developed for this purpose, and was tested under actual insolation conditions. An extensive testing program lasting for more than a year revealed that the heat pipes perform satisfactorily as heat transfer elements in solar water heaters. A special heat pipe featuring a compact and effective condenser configuration was also tested. It was observed to likewise exhibit isothermal behavior and hence promised potential for large scale solar applications.

  10. Solar-Heated and Cooled Office Building--Columbus, Ohio

    Science.gov (United States)

    1982-01-01

    Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.

  11. Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater

    Science.gov (United States)

    Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.

    2015-10-01

    Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.

  12. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Science.gov (United States)

    2010-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating...

  13. Uranium in Hot Water Tanks: A Source of Tenorm

    Science.gov (United States)

    2002-08-01

    geologic timescale evaluations (McCall et al., 2001), and for actinide characterization ( Havrilla , 1997). Drinking Water Regulations The EPA has...L.J., Dangerous Properties of Industrial Materials (Reinhold Publishing Corp. 1957). (As quoted from IAEA Tech. Report Series No. 15, 1963.) Havrilla

  14. Disparity in disinfection byproducts concentration between hot and cold tap water.

    Science.gov (United States)

    Liu, Boning; Reckhow, David A

    2015-03-01

    The quality of water entering a distribution system may differ substantially from the quality at the point of exposure to the consumer. This study investigated temporal variations in the levels of regulated and non-regulated disinfection byproducts (DBPs) in cold and hot tap water in a home on a medium-sized municipal water system. In addition, samples were collected directly from the water plant with some being held in accordance with a simulated distribution system (SDS) test protocol. The location for this work was a system in western Massachusetts, USA that uses free chlorine as a final disinfectant. Very little short term variability of DBPs at the point of entry (POE) was observed. The concentration of DBPs in the time-variable SDS test was similar to concentrations in the cold water tap. For most DBPs, the concentrations continued to increase as the cold water tap sample was held for the time-variable SDS incubation period. However, the impact of heating on DBP levels was compound specific. For example, the concentrations of trihalomethanes (THMs), dichloroacetic acid (DCAA) and chloropicrin (CP) were substantially higher in the hot water tap than in the cold water time-variable SDS samples. In contrast, the concentration of trichloroacetic acid (TCAA) was lower in the heated hot tap water, but about equal to that observed in the cold tap water. The situation was more pronounced for dichloroacetonitrile (DCAN), bromodichloroacetic acid (BDCAA), bromochloroacetic acid (BCAA) and 1,1,1-trichloropropanone (TCP), which all showed lower concentrations in the hot water then in either of the cold water samples (instantaneous or time-variable SDS). The latter was viewed as a clear indication of thermally-induced decomposition. The ratio of unknown total organic halide (UTOX) to TOX was substantially lower in the hot tap water as the THM to TOX ratio became correspondingly larger. The results of this study show that DBP exposure in the home is not well represented by

  15. Natural radioactivity in geothermal waters, Alhambra Hot Springs and nearby areas, Jefferson County, Montana

    Science.gov (United States)

    Leonard, Robert B.; Janzer, Victor J.

    1978-01-01

    Radioactive hot springs issue from a fault zone in crystalline rock of the Boulder batholith at Alhambra, Jefferson County, in southwestern Montana. The discharge contains high concentrations of radon, and the gross alpha activity and the concentration of adium-226 exceed maximum levels recommended by the Environmental Protection Agency for drinking water. Part of the discharge is diverted for space heating, bathing, and domestic use. The radioactive thermal waters at measured temperatures of about 60°C are of the sodium bicarbonate type and saturated with respect to calcium carbonate. Radium-226 in the rock and on fractured surfaces or coprecipitated with calcium carbonate probably is the principal source of radon that is dissolved in the thermal water and discharged with other gases from some wells and springs. Local surface water and shallow ground water are of the calcium bicarbonate type and exhibit low background activity. The temperature, percent sodium, and radioactivity of mixed waters adjacent to the fault zone increase with depth. Samples from most of the major hot springs in southwestern Montana have been analyzed for gross alpha and beta activity. The high level of radioactivity at Alhambra appears to be related to leaching of radioactive material from siliceous veins by ascending thermal waters and is not a normal characteristic of hot springs issuing from fractured crystalline rock in Montana.

  16. Effects of hot-water extraction on the thermochemical conversion of shrub willow via fast pyrolysis

    Science.gov (United States)

    Hot-water extraction (TM) (HWE) is a pretreatment technology designed to facilitate the subsequent hydrolysis of cellulose by removing the majority of the hemicellulose and ash content from the solid biomass. The HWE process generates salable sugars and other products as part of the process. The bio...

  17. Inactivation of salmonella in shell eggs by hot water immersion and its effect on quality

    Science.gov (United States)

    Thermal inactivation kinetics of heat resistant strains of Salmonella Enteritidis in shell eggs processed by hot water immersion were determined, and the effects of the processing on egg quality were evaluated. Shell eggs were inoculated with a composite of heat resistant Salmonella Enteritidis (SE)...

  18. MICROBIAL POPULATION OF HOT SPRING WATERS IN ESKİŞEHİR/TURKEY

    Directory of Open Access Journals (Sweden)

    Nalan YILMAZ SARIÖZLÜ

    2012-02-01

    Full Text Available In order to investigate and find out the bacterial community of hot spring waters in Eskişehir, Turkey, 7 hot spring water samples were collected from 7 different hot springs. All samples were inoculated using four different media (nutrient agar, water yeast extract agar, trypticase soy agar, starch casein agar. After incubation at 50 ºC for 14 days, all bacterial colonies were counted and purified. Gram reaction, catalase and oxidase properties of all isolates were determined and investigated by BIOLOG, VITEK and automated ribotyping system (RiboPrinter. The resistance of these bacteriawas examined against ampiciline, gentamisine, trimethoprime-sulphamethoxazole and tetracycline. As a result, heat resistant pathogenic microorganisms in addition to human normal flora were determined in hot spring waters (43-50 ºC in investigated area. Ten different species belong to 6 genera were identified as Alysiella filiformis, Bordetella bronchiseptica, B. pertussis, Molexalla caprae, M. caviae, M. cuniculi, M. phenylpyruvica, Roseomonas fauriae, Delftia acidovorans and Pseudomonas taetrolens.

  19. Mango fruit aroma volatile production following quarantine hot water treatment and subsequent ripening

    Science.gov (United States)

    Mangos are an important tropical fruit crop worldwide that are appreciated for their attractive peel and flesh colors, juicy texture, sweetness, and unique aroma. Mangos exported to the U.S. receive quarantine hot water treatment (QHWT) at 46.1 °C for 65 to 110 min (depending on fruit shape and size...

  20. Controlling tulip stem nematodes in tulip bulbs by a hot water treatment

    NARCIS (Netherlands)

    Dam, van M.F.N.

    2013-01-01

    A hot water treatment (HWT) protocol is needed to control tulip stem nematode (TSN) in tulip bulbs. A HWT above approximately 45°C in tulips is assumed to be harmful to the bulbs. Experience with HWT to destroy stem nematodes in daffodils shows that the required temperature for this is 4 hours at

  1. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Svendsen, Svend

    2017-01-01

    to achieve high efficiency of the ULTDH system, the return temperature should be as low as possible. For the energy-efficient buildings in the future, it is feasible to use ULTDH to cover the space heating demand. However, considering the comfort and hygiene requirements of domestic hot water (DHW...

  2. Hot water extracted wood fiber for production of wood plastic composites (WPCs)

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Thomas E. Amidon; Timothy L. Chaffee

    2013-01-01

    Undebarked ponderosa pine chips were treated by hot water extraction to modify the chemical composition. In the treated pine (TP) , the mass was reduced by approximately 20%, and the extract was composed mainly of degradation products of hemicelluloses. Wood flour produced from TP and unextracted chips (untreated pine, UP) was blended with high-density polyethylene (...

  3. Optimization of China´s centralized domestic hot water system by applying Danish elements

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric;

    2014-01-01

    Regardless of where they are in the world, people depend on a reliable and sufficient supply of domestic hot water (DHW) for daily use. Some countries that have district heating (DH) infrastructure, such as Denmark and China, combine spacing heating (SH) and DHW together, with the aim of having a...

  4. Efficacy of brown sugar flotation and hot water methods for detecting Rhagoletis indifferens (Dipt., Tephritidae) larvae

    Science.gov (United States)

    The brown sugar flotation and hot water methods are accepted procedures for detecting larval western cherry fruit fly, Rhagoletis indifferens Curran, in sweet cherry [Prunus avium (L.) L.] and could be included in a systems approach for showing the absence of larvae in fruit. The methods require cr...

  5. Spattering and Crackle of Hot Cooking Oil with Water: A Classroom Demonstration and Discussion

    Science.gov (United States)

    Pinto, Gabriel; Gauthier, Carmen V.

    2009-01-01

    Any student that has spent time in the kitchen knows that hot vegetable oil will pop and spatter violently after coming into contact with water such as that on the surface of foods (meat, fish, potatoes, etc.). This well-known effect can be used as an instructional resource to promote cooperative, active, and inquiry-based learning about central…

  6. Ecofriendly hot water treatment reduces postharvest decay and elicits defense response in kiwifruit

    Science.gov (United States)

    Hot water treatment (HWT) of fruit is an effective approach for managing postharvest decay of fruits and vegetables. In the present study, the effects of HWT (45 degrees C for 10 min) on the growth of Botrytis cinerea and Penicillium expansum in vitro, and gray (B. cinerea) and blue mold (P. expans...

  7. Controlling tulip stem nematodes in tulip bulbs by a hot water treatment

    NARCIS (Netherlands)

    Dam, van M.F.N.

    2013-01-01

    A hot water treatment (HWT) protocol is needed to control tulip stem nematode (TSN) in tulip bulbs. A HWT above approximately 45°C in tulips is assumed to be harmful to the bulbs. Experience with HWT to destroy stem nematodes in daffodils shows that the required temperature for this is 4 hours at 47

  8. Draft Genome Sequence of Deinococcus sp. Strain RL Isolated from Sediments of a Hot Water Spring.

    Science.gov (United States)

    Mahato, Nitish Kumar; Tripathi, Charu; Verma, Helianthous; Singh, Neha; Lal, Rup

    2014-07-17

    Deinococcus sp. strain RL, a moderately thermophilic bacterium, was isolated from sediments of a hot water spring in Manikaran, India. Here, we report the draft genome (2.79 Mbp) of this strain, which contains 62 contigs and 2,614 coding DNA sequences, with an average G+C content of 69.4%.

  9. Application of Cooling Water in Controlled Runout Table Cooling on Hot Strip Mill

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng-dong; I V Samarasekera

    2004-01-01

    The controlled runout table cooling is essential in determining the final mechanical properties and flatness of steel strip. The heat of a hot steel strip is mainly extracted by cooling water during runout. In order to study the heat transfer by water jet impingement boiling during runout, a pilot facility was constructed at the University of British Columbia. On this pilot facility, the water jet impingement tests were carried out under various cooling conditions to investigate the effect of processing parameters, such as cooling water temperature, water jet impingement velocity, initial strip temperature, water flow rate, water nozzle diameter and array of water nozzles, on the heat transfer of heated strip. The results obtained contribute to the optimization of cooling water during runout.

  10. A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b

    Energy Technology Data Exchange (ETDEWEB)

    Kreidberg, Laura; Bean, Jacob L.; Stevenson, Kevin B. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Désert, Jean-Michel [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Line, Michael R.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Madhusudhan, Nikku [Institute for Astronomy, University of Cambridge, Cambridge CB3 OHA (United Kingdom); Showman, Adam P.; Kataria, Tiffany [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tuscon, AZ 85721 (United States); Charbonneau, David [Department of Astronomy, Harvard University, Cambridge, MA 02138 (United States); McCullough, Peter R. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Seager, Sara [Department of Physics, Massachussetts Institute of Technology, Cambridge, MA 02139 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Henry, Gregory W.; Williamson, Michael [Center of Excellence in Information Systems, Tennessee State University, Nashville, TN 37209 (United States); Homeier, Derek, E-mail: laura.kreidberg@uchicago.edu [Centre de Recherche Astrophysique de Lyon, UMR 5574, CNRS, Université de Lyon, École Normale Supérieure de Lyon, 46 Allée d' Italie, F-69364 Lyon Cedex 07 (France)

    2014-10-01

    The water abundance in a planetary atmosphere provides a key constraint on the planet's primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the solar system giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 M {sub Jup} short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We find the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0.4-3.5 × solar at 1σ confidence). The metallicity of WASP-43b's atmosphere suggested by this result extends the trend observed in the solar system of lower metal enrichment for higher planet masses.

  11. Stratification and thermocirculation in a solar passive water wall

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L.D.; Mustafa, H.; Johnson, R.

    1981-01-01

    The solar passive water wall is a passive system which collects, stores, and distributes thermal energy for the heating of buildings. An analytical model is presented in this paper for calculation of the thermocirculation through the water wall. Representative measured data are presented for the temperature stratification which occurs in a continuous water column of a water wall 2.4 meters high. 10 refs.

  12. Special wettable nanostructured copper mesh achieved by a facile hot water treatment process

    Science.gov (United States)

    Saadi, Nawzat S.; Hassan, Laylan B.; Brozak, Matt; Karabacak, Tansel

    2017-09-01

    In this research, a special wettable copper mesh with superhydrophobicity and superoleophilicity properties is reported using a low-cost, eco-friendly, rapid, and scalable synthesis method. Hot water treatment (HWT) method is used to integrate the micro-textured copper mesh surface with a nanoscale roughness to achieve a hierarchical micro-nano structured surface. The surface energy of the nanoscale roughened copper mesh reduced by coating the hot water treated mesh with polymer ligands containing thiol or fluorine functional groups of low energy. Surface morphology characterization showed the formation of copper oxide nanostructures on the mesh surface by hot water process performed at 95 °C and under a low dissolved oxygen condition. X-ray diffraction patterns reveal the development of stable, uniformly distributed, and compactly arranged, cubic and plate-like nanostructures of cuprous oxide (Cu2O) on the copper mesh surface. The surface wettability of the as-prepared copper mesh was assessed by contact angle (CA) measurement for water and several oils and organic solvents. CA values showed the formation of special wettable copper mesh surface with superhydrophobic property with water contact angle of about 157° and superoleophilic property with oil contact angle as low as 0°. In addition, the effect of the mesh’s geometry on the wetting property was examined through correlations between wire diameter, pore size, and optimal values for the highest water CA.

  13. Hot water use of a utility building tested by measurements; Warmwaterverbruik utiliteitsbouw getoetst met metingen

    Energy Technology Data Exchange (ETDEWEB)

    Pieterse-Quirijns, E.J.; Beverloo, H.; Blokker, E.J.M. [KWR Watercycle Research Institute, Nieuwegein (Netherlands)

    2011-09-15

    In the Netherlands, several guidelines exist to design indoor water mains and hot water installations. They often lead to larger dimensions with possible negative consequences for energy and hygiene. Improved values for the required design parameters can be derived from realistic daily water demand patterns. Simdeum is a simulation model for modelling the water use of various types of both residential buildings and non-residential buildings. This paper shows, that the simulated daily patterns of cold and hot water of various standardised buildings correlate well with measured patterns on a per second base. Simdeum provides insight in the hot water use of several buildings. Thus, the simulated patterns form a solid basis for new design rules. [Dutch] Voor de dimensionering van waterleidinginstallaties en de keuze van warmwaterinstallaties bestaan verschillende richtlijnen. Deze leiden vaak tot overdimensionering met mogelijk negatieve energetische en hygienische gevolgen. Ontwerpkentallen kunnen beter afgeleid worden uit realistische afnamepatronen van het waterverbruik over een dag. Het simulatiemodel Simdeum kan het waterverbruik voor verschillende woningtypen en verschillende typologieen in de utiliteitsbouw modelleren. Dit is vergeleken met metingen op secondebasis. Simdeum geeft inzicht in het warmwaterverbruik van verschillende gebouwen. Hierdoor vormen de gesimuleerde patronen een zeer betrouwbare basis voor nieuwe ontwerprichtlijnen.

  14. Solar space- and water-heating system at Stanford University. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Application of an active hydronic domestic hot water and space heating solar system for the Central Food Services Building is discussed. The closed-loop drain-back system is described as offering dependability of gravity drain-back freeze protection, low maintenance, minimal costs, and simplicity. The system features an 840 square-foot collector and storage capacity of 1550 gallons. The acceptance testing and the predicted system performance data are briefly described. Solar performance calculations were performed using a computer design program (FCHART). Bidding, costs, and economics of the system are reviewed. Problems are discussed and solutions and recommendations given. An operation and maintenance manual is given in Appendix A, and Appendix B presents As-built Drawings. (MCW)

  15. A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons.

    Science.gov (United States)

    Farrell, Daniel J; Sodabanlu, Hassanet; Wang, Yunpeng; Sugiyama, Masakazu; Okada, Yoshitaka

    2015-11-06

    The direct conversion of solar energy to electricity can be broadly separated into two main categories: photovoltaics and thermal photovoltaics, where the former utilizes gradients in electrical potential and the latter thermal gradients. Conventional thermal photovoltaics has a high theoretical efficiency limit (84%) but in practice cannot be easily miniaturized and is limited by the engineering challenges of sustaining large (>1,000 K) temperature gradients. Here we show a hot-carrier-based thermophotonic solar cell, which combines the compact nature of photovoltaic devices with the potential to reach the high-efficiency regime of thermal photovoltaics. In the device, a thermal gradient of 500 K is established by hot electrons, under Stokes illumination, rather than by raising the temperature of the material itself. Under anti-Stokes (sub-bandgap) illumination we observe a thermal gradient of ∼20 K, which is maintained by steady-state Auger heating of carriers and corresponds to a internal thermal up-conversion efficiency of 30% between the collector and solar cell.

  16. Conditions and Characteristics of Coal Water Slurry Containing Petrochemicals Ignition by Hot Particle

    Directory of Open Access Journals (Sweden)

    Gal’chenko Nina K.

    2016-01-01

    Full Text Available Characteristics of CWS containing petrochemicals ignition by single hot particle in disk shape established experimentally. The main components of fuel composition are coal 45 %, water 45 %, used engine oil 10 %. The main parameters of local heat sources are: material – steel, diameter 10–12 mm, high 4–8 mm. As a result of experimental study is established limit (minimum conditions for ignition of CWS containing petrochemicals by hot particle and the impact of local heat source parameters on the main process characteristic – ignition delay time.

  17. Tandem solar cells deposited using hot-wire chemical vapor deposition

    NARCIS (Netherlands)

    Veen, M.K. van

    2003-01-01

    In this thesis, the application of the hot-wire chemical vapor deposition (HWCVD) technique for the deposition of silicon thin films is described. The HWCVD technique is based on the dissociation of silicon-containing gasses at the catalytic surface of a hot filament. Advantages of this technique ar

  18. Quality of fresh-cut 'Kent' mango slices prepared from hot water or non hot water treated fruit

    Science.gov (United States)

    A quarantine heat treatment consisting of exposure to 46°C water for 65 to 110 minutes (depending on cultivar and fruit size) is mandated by USDA-APHIS for all mangoes (Mangifera indica L.) entering the United States. Heat treatments may affect ripening processes and induce resistance to chilling in...

  19. Hot-Wire Chemical Vapor Deposition Of Polycrystalline Silicon : From Gas Molecule To Solar Cell

    NARCIS (Netherlands)

    Veenendaal, P.A.T.T. van

    2002-01-01

    Although the effort to investigate the use of renewable energy sources, such as wind and solar energy, has increased, their contribution to the total energy consumption remains insignificant. The conversion of solar energy into electricity through solar cells is one of the most promising techniques,

  20. Solar H-alpha features with hot onsets. III. Long fibrils in Lyman-alpha and with ALMA

    Science.gov (United States)

    Rutten, R. J.

    2017-02-01

    In H-alpha most of the solar surface is covered by dense canopies of long opaque fibrils, but predictions for quiet-Sun observations with ALMA have ignored this fact. Comparison with Ly-alpha suggests that the extraordinary opacity of H-alpha fibrils is caused by hot precursor events. Application of a recipe that assumes momentary Saha-Boltzmann extinction during their hot onset to millimeter wavelengths suggests that ALMA will observe H-alpha-like fibril canopies, not acoustic shocks underneath, and will yield data more interesting than if these canopies were transparent. An additional file is available at the end of the PDF file of this article.This study is offered as compliment to M.W.M. de Graauw. Our ways, objects, instruments and spectral domains parted after the 1970 eclipse but converge here.