WorldWideScience

Sample records for hot spring geothermal

  1. Geothermal energy and hot springs in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Koga, T. (Hot Springs Therapeutics Research Institute, Kyushu, Univ., Japan)

    1971-01-01

    The hot springs in Ethiopia are concentrated in two areas: the North Afar depression and adjacent Red Sea shore, and a geothermal field 100 km from northeast to southwest in the central part of Ethiopia. The latter extends not only to the Great Rift Valley but also to the Aden Gulf. In the lake district in the central Great Rift Valley, there are a number of hot springs on the lake shore. These are along NE-SW fault lines, and the water is a sodium bicarbonate-type rich in HCO/sub 3/ and Na but low in C1 and Ca. In Dallol in the North Afar depression, CO/sub 2/-containing hot springs with high temperatures (110/sup 0/C) and a specific gravity of 1.4, were observed. In the South Afar depression, located in the northeastern part of the Rift Valley, there are many active volcanoes and hot springs between the lake district and the Danakil depression. The spring water is a sodium bicarbonate saline type. Nine graphs and maps are included.

  2. Geothermal Exploration in Hot Springs, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Toby McIntosh, Jackola Engineering

    2012-09-26

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250 of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the center of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  3. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    East, J.

    1982-04-01

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  4. Vulcan Hot Springs known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Vulcan Hot Springs known geothermal resource area (KGRA) is one of the more remote KGRAs in Idaho. The chemistry of Vulcan Hot Springs indicates a subsurface resource temperature of 147/sup 0/C, which may be high enough for power generation. An analysis of the limited data available on climate, meteorology, and air quality indicates few geothermal development concerns in these areas. The KGRA is located on the edge of the Idaho Batholith on a north-trending lineament which may be a factor in the presence of the hot springs. An occasional earthquake of magnitude 7 or greater may be expected in the region. Subsidence or elevation as a result of geothermal development in the KGRA do not appear to be of concern. Fragile granitic soils on steep slopes in the KGRA are unstable and may restrict development. The South fork of the Salmon River, the primary stream in the region, is an important salmon spawning grounds. Stolle Meadows, on the edge of the KGRA, is used as a wintering and calving area for elk, and access to the area is limited during this period. Socioeconomic and demographic surveys indicate that facilities and services will probably not be significantly impacted by development. Known heritage resources in the KGRA include two sites and the potential for additional cultural sites is significant.

  5. Portrait of a Geothermal Spring, Hunter's Hot Springs, Oregon.

    Science.gov (United States)

    Castenholz, Richard W

    2015-01-27

    Although alkaline Hunter's Hot Springs in southeastern Oregon has been studied extensively for over 40 years, most of these studies and the subsequent publications were before the advent of molecular methods. However, there are many field observations and laboratory experiments that reveal the major aspects of the phototrophic species composition within various physical and chemical gradients of these springs. Relatively constant temperature boundaries demark the upper boundary of the unicellular cyanobacterium, Synechococcus at 73-74 °C (the world-wide upper limit for photosynthesis), and 68-70 °C the upper limit for Chloroflexus. The upper limit for the cover of the filamentous cyanobacterium, Geitlerinema (Oscillatoria) is at 54-55 °C, and the in situ lower limit at 47-48 °C for all three of these phototrophs due to the upper temperature limit for the grazing ostracod, Thermopsis. The in situ upper limit for the cyanobacteria Pleurocapsa and Calothrix is at ~47-48 °C, which are more grazer-resistant and grazer dependent. All of these demarcations are easily visible in the field. In addition, there is a biosulfide production in some sections of the springs that have a large impact on the microbiology. Most of the temperature and chemical limits have been explained by field and laboratory experiments.

  6. Biophysical model of prokaryotic diversity in geothermal hot springs.

    Science.gov (United States)

    Klales, Anna; Duncan, James; Nett, Elizabeth Janus; Kane, Suzanne Amador

    2012-02-01

    Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms. © 2012 American Physical Society

  7. Determining barriers to developing geothermal power generation in Japan: Societal acceptance by stakeholders involved in hot springs

    International Nuclear Information System (INIS)

    Kubota, Hiromi; Hondo, Hiroki; Hienuki, Shunichi; Kaieda, Hideshi

    2013-01-01

    After many years of stagnant growth in geothermal power generation, development plans for new geothermal plants have recently emerged throughout Japan. Through a literature review, we investigated the relationships between the principal barriers to geothermal development and we thereby analyzed the deciding factors in the future success of such enterprises. The results show that the societal acceptance of geothermal power by local stakeholders is the fundamental barrier as it affects almost all other barriers, such as financial, technical, and political risks. Thus, we conducted semi-structured interviews with 26 stakeholders including developers, hot spring inn managers, and local government officials. Some hot spring inn managers and local government officials noted that they have always been strongly concerned about the adverse effects of geothermal power generation on hot springs; their opposition has delayed decision-making by local governments regarding drilling permits, prolonged lead times, and caused other difficulties. A key reason for opposition was identified as uncertainty about the reversibility and predictability of the adverse effects on hot springs and other underground structures by geothermal power production and reinjection of hot water from reservoirs. Therefore, we discuss and recommend options for improving the risk management of hot springs near geothermal power plants. - Highlights: • We clarify relationships between barriers to geothermal power development in Japan. • Local acceptance by hot spring managers is the most prominent barrier. • Uncertainty of reversibility and predictability induces low acceptance. • Risk transfer system and dialogue are needed to alleviate concerns

  8. Hydrogeochemical Characteristics and Evolution of Hot Springs in Eastern Tibetan Plateau Geothermal Belt, Western China: Insight from Multivariate Statistical Analysis

    Directory of Open Access Journals (Sweden)

    Zheming Shi

    2017-01-01

    Full Text Available The eastern Tibetan Plateau geothermal belt is one of the important medium-high temperature geothermal belts in China. However, less work has been done on the hydrochemical characteristic and its geological origin. Understanding the chemical characteristics and the hydrochemical evolution processes is important in evaluating the geothermal energy potential in this area. In the present study, we discussed the hydrochemical properties and their origins of 39 hot springs located in the eastern Tibetan Plateau geothermal belt (Kangding-Litang-Batang geothermal belt. Cluster analysis and factor analysis are employed to character the hydrochemical properties of hot springs in different fault zones and the possible hydrochemical evolution processes of these hot springs. Our study shows that the hot springs can be divided into three groups based on their locations. The hot springs in the first group mainly originate from the volcanic rock and the springs in the second group originate from the metamorphic rock while the springs in the third group originate from the result of mixture of shallow water. Water-rock interaction, cation exchange, and the water environment are the three dominant factors that control the hydrochemical evolution process in the eastern Tibetan Plateau. These results are also in well agreement with the isotopic and chemical analysis.

  9. Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon

    Science.gov (United States)

    Edwards, J. H.; Faulds, J. E.

    2012-12-01

    Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks

  10. Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania.

    Science.gov (United States)

    Coman, Cristian; Drugă, Bogdan; Hegedus, Adriana; Sicora, Cosmin; Dragoş, Nicolae

    2013-05-01

    The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.

  11. Portrait of a Geothermal Spring, Hunter’s Hot Springs, Oregon

    Directory of Open Access Journals (Sweden)

    Richard W. Castenholz

    2015-01-01

    Full Text Available Although alkaline Hunter’s Hot Springs in southeastern Oregon has been studied extensively for over 40 years, most of these studies and the subsequent publications were before the advent of molecular methods. However, there are many field observations and laboratory experiments that reveal the major aspects of the phototrophic species composition within various physical and chemical gradients of these springs. Relatively constant temperature boundaries demark the upper boundary of the unicellular cyanobacterium, Synechococcus at 73–74 °C (the world-wide upper limit for photosynthesis, and 68–70 °C the upper limit for Chloroflexus. The upper limit for the cover of the filamentous cyanobacterium, Geitlerinema (Oscillatoria is at 54–55 °C, and the in situ lower limit at 47–48 °C for all three of these phototrophs due to the upper temperature limit for the grazing ostracod, Thermopsis. The in situ upper limit for the cyanobacteria Pleurocapsa and Calothrix is at ~47–48 °C, which are more grazer-resistant and grazer dependent. All of these demarcations are easily visible in the field. In addition, there is a biosulfide production in some sections of the springs that have a large impact on the microbiology. Most of the temperature and chemical limits have been explained by field and laboratory experiments.

  12. Portrait of a Geothermal Spring, Hunter’s Hot Springs, Oregon

    Science.gov (United States)

    Castenholz, Richard W.

    2015-01-01

    Although alkaline Hunter’s Hot Springs in southeastern Oregon has been studied extensively for over 40 years, most of these studies and the subsequent publications were before the advent of molecular methods. However, there are many field observations and laboratory experiments that reveal the major aspects of the phototrophic species composition within various physical and chemical gradients of these springs. Relatively constant temperature boundaries demark the upper boundary of the unicellular cyanobacterium, Synechococcus at 73–74 °C (the world-wide upper limit for photosynthesis), and 68–70 °C the upper limit for Chloroflexus. The upper limit for the cover of the filamentous cyanobacterium, Geitlerinema (Oscillatoria) is at 54–55 °C, and the in situ lower limit at 47–48 °C for all three of these phototrophs due to the upper temperature limit for the grazing ostracod, Thermopsis. The in situ upper limit for the cyanobacteria Pleurocapsa and Calothrix is at ~47–48 °C, which are more grazer-resistant and grazer dependent. All of these demarcations are easily visible in the field. In addition, there is a biosulfide production in some sections of the springs that have a large impact on the microbiology. Most of the temperature and chemical limits have been explained by field and laboratory experiments. PMID:25633225

  13. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  14. Microbial diversity of acidic hot spring (kawah hujan B) in geothermal field of kamojang area, west java-indonesia.

    Science.gov (United States)

    Aditiawati, Pingkan; Yohandini, Heni; Madayanti, Fida; Akhmaloka

    2009-01-01

    Microbial communities in an acidic hot spring, namely Kawah Hujan B, at Kamojang geothermal field, West Java-Indonesia was examined using culture dependent and culture independent strategies. Chemical analysis of the hot spring water showed a characteristic of acidic-sulfate geothermal activity that contained high sulfate concentrations and low pH values (pH 1.8 to 1.9). Microbial community present in the spring was characterized by 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) analysis. The majority of the sequences recovered from culture-independent method were closely related to Crenarchaeota and Proteobacteria phyla. However, detail comparison among the member of Crenarchaeota showing some sequences variation compared to that the published data especially on the hypervariable and variable regions. In addition, the sequences did not belong to certain genus. Meanwhile, the 16S Rdna sequences from culture-dependent samples revealed mostly close to Firmicute and gamma Proteobacteria.

  15. Direct use applications of geothermal resources at Desert Hot Springs, California. Final report, May 23, 1977--July 31, 1978. Volume II: appendixes

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, C.C.

    1978-07-01

    The following appendixes are included: Desert Hot Springs (DHS) Geothermal Project Advisory Board, Geothermal Citizens Advisory Committee, community needs assessment, geothermal resource characterization, a detailed discussion of the geothermal applications considered for DHS, space/water heating, agricultural operations, detailed analysis of a geothermal aquaculture facility, detailed discussion of proposed energy cascading systems for DHS, regulatory requirements, environmental impact assessment, resource management plan, and geothermal resources property rights and powers of cities to regulate indigenous geothermal resources and to finance construction of facilities for utilization of such resources. (MHR)

  16. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    Energy Technology Data Exchange (ETDEWEB)

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in

  17. Change in color of the hot spring deposits at the Chinoike-Jigoku hot pool, Beppu geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Kazuthoshi, Oue; Ohsawa, Shinji; Yusa, Yuki [Kyoto University, Beppu (Japan). Beppu Geothermal Research Laboratory, Graduate School of Science

    2002-06-01

    The Chinoike-Jigoku hot pool in Beppu geothermal field, Central Kyushu, Japan, displays a blood-red color due to the hematite (Fe{sub 2}O{sub 3}) deposited at the bottom of the pool. The colors of the deposits collected on 1 October 1990, on 27 March 1995, and on 6 March 1996 were measured with a colorimeter. The results show that the red deposits became yellower in 1995 and 1996 than they were in 1990. X-ray diffraction (XRD) patterns and chemical compositions of the deposits indicate that the discoloration of the Chinoike-Jigoku pool water is caused by an increase in the content of jarosite [KFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}]. The temperature of the subsurface thermal water beneath the Chinoike-Jigoku hot pool, as estimated by the anhydrite chemical geothermometer, has declined from 200 to 150{sup o}C over the past 25 years. The Na and Cl concentrations of the hot spring water discharging from Chinoike-Jigoku have decreased, while the SO{sub 4} concentration has increased. The temporal variations in subsurface temperature and dissolved ion concentrations suggest that the mixing ratio between the high-temperature, neutral Na-Cl type water and the relatively low-temperature, acid H-SO{sub 4} type water that form the thermal water of Chinoike-Jigoku has changed over the last 25 years. Hydrothermal studies of jarosite stability have confirmed that the increase in jarosite content in the deposits was caused by a temperature drop of the mixed thermal water beneath Chinoike-Jigoku pool, due to an increase in the contribution of the cooler H-SO{sub 4} water type to the thermal mixture. (author)

  18. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China

    Science.gov (United States)

    Du, Jianguo; Liu, Congqiang; Fu, Bihong; Ninomiya, Yoshiki; Zhang, Youlian; Wang, Chuanyuan; Wang, Hualiu; Sun, Zigang

    2005-04-01

    Geothermal variations, origins of carbon-bearing components and reservoir temperatures in the Rehai geothermal field (RGF) of Tengchong volcanic area, Yunnan Province, southwestern China, are discussed on the basis of carbon isotope compositions, combined with helium isotope ratios and geothermal data from 1973 to 2000. δ 13C values of CO 2, CH 4, HCO 3-, CO 3= and travertine in the hot springs range from -7.6‰ to -1.18‰, -56.9‰ to -19.48‰, -6.7‰ to -4.2‰, -6.4‰ to -4.2‰ and -27.1‰ to +0.6‰, respectively. The carbon dioxide probably has a mantle/magma origin, but CH 4 and He have multiple origins. HCO 3- and CO 3= in RGF thermal fluids are predominantly derived from igneous carbon dioxide, but other ions originate from rocks through which the fluids circulate. The 13C values of CO 2, HCO 3- (aq) and CO 3= (aq) illustrate that isotopic equilibriums between CO 2 and HCO 3- (aq), and CO 3= (aq) and between DIC and travertine were not achieved, and no carbon isotope fractionation between HCO 3- (aq) and CO 3= (aq) of the hot springs in RGF was found. Using various geothermometers, temperatures of the geothermal reservoirs are estimated in a wide range from 69 °C to 450 °C that fluctuated from time to time. The best estimate of subsurface reservoir temperature may be 250-300 °C. Contributions of mantle fluids and shallow crust fluids in Rehai geothermal field varied with time, which resulted in variations of chemical and isotopic compositions and reservoir temperatures.

  19. Microbial Diversity, Distribution and Insight into Their Role in S, Fe and N Biogeochemical Cycling in the Hot Springs at Tengchong Geothermal Fields, Southwest China

    Science.gov (United States)

    Li, J.; Peng, X.; Zhang, L.

    2014-12-01

    Ten sediment samples collected from one acidic and three alkaline high temperature hot springs at Tengchong terrestrial geothermal field, Southwest China, were examined by the mineralogical, geochemical, and molecular biological techniques. The mineralogical and geochemical analyses suggested that these hot springs contain relative high concentrations of S, Fe and N chemical species. Specifically, the acidic hot spring was rich in Fe2+, SO42- and NH4+, while the alkaline hot springs were high in NO3-, H2S and S2O3-. Analyses of 16S rRNA sequences showed their bacterial communities were dominated by Aquificae, Cyanobacteria, Deinococci-Thermus, Firmicutes, Proteobacteria, and Thermodesulfobacteria, while the archeal clone libraries were dominated by Desulfurococcales, Sulfolobales, and Thermoproteales. Among them, the potential S-, N- and Fe-related oxidizing and reducing prokaryote were presenting as a relative high proportion but with a great difference in diversity and metabolic approaches of each sample. These findings provide some significant implications for the microbial function in element biogeochemical cycles within the Tengchong geothermal environments: i). the distinct differences in abundance and diversity of microbial communities of geothermal sediments were related to in situ different physicochemical conditions; ii). the S-, N- and Fe-related prokaryote would take advantage of the strong chemical disequilibria in the hot springs; iii). in return, their metabolic activities can promote the transformation of S, Fe and N chemical species, thus founded the bases of biogeochemical cycles in the terrestrial geothermal environments.

  20. Laser-fluorescence determination of trace uranium in hot spring water, geothermal water and tap water in Xi'an Lishan region

    International Nuclear Information System (INIS)

    Ma Wenyan; Zhou Chunlin; Han Feng; Di Yuming

    2002-01-01

    Using the Laser-Fluorescence technique, an investigation was made, adopting the standard mix method, on trace uranium concentrations in hot spring water and geothermal water from Lishan region, and in tap water from some major cities in Shanxi province. Totally 40 samples from 27 sites were investigated. Measurement showed that the tap water contains around 10 -6 g/L of uranium, whose concentrations in both hot spring water and geothermal water are 10 -5 g/L. Most of samples are at normal radioactive background level, some higher contents were determined in a few samples

  1. Hot springs in Hokuriku District

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K. (Hot Springs Research Center, Japan)

    1971-01-01

    In the Hokuriku district including Toyama, Ishikawa, and Fukui Prefectures, hot springs of more than 25/sup 0/C were investigated. In the Toyama Prefecture, there are 14 hot springs which are located in an area from the Kurobe River to the Tateyama volcano and in the mountainous area in the southwest. In Ishikawa Prefecture there are 16 hot springs scattered in Hakusan and its vicinity, the Kaga mountains, and in the Noto peninsula. In northern Fukui Prefecture there are seven hot springs. The hot springs in Shirakawa in Gifu Prefecture are characterized as acid springs producing exhalations and H/sub 2/S. These are attributed to the Quaternary volcanoes. The hot springs of Wakura, Katayamazu, and Awara in Ishikawa Prefecture are characterized by a high Cl content which is related to Tertiary andesite. The hot springs of Daishoji, Yamanaka, Yamashiro, Kuritsu, Tatsunokuchi, Yuwaku, and Yunotani are characterized by a low HCO/sub 3/ content. The Ca and SO/sub 4/ content decreases from east to west, and the Na and Cl content increases from west to east. These fluctuations are related to the Tertiary tuff and rhyolite. The hot springs of Kuronagi, Kinshu, and Babadani, located along the Kurobe River are characterized by low levels of dissolved components and high CO/sub 2/ and HCO/sub 3/ content. These trends are related to late Paleozoic granite. Hot springs resources are considered to be connected to geothermal resources. Ten tables, graphs, and maps are provided.

  2. FY 2000 report on the survey for introduction of the hot spring effect prediction method in the geothermal development promotion survey. Improvement of the hot spring effect prediction method in the geothermal development promotion survey; 2000 nendo chinetsu kaihatsu sokushin chosa. Onsen eikyo yosoku shuho donyu chosa - Chinetsu kaihatsu sokushin chosa ni okeru onsen eikyo yosoku shuho no kairyo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Supposing the case where the geothermal development promotion survey was carried out in promising geothermal areas in Japan, investigational study was conducted on possibilities of introducing the hot spring effect prediction method, improvement of the method, etc. In the survey, adjustment/classification of formation mechanisms of hot spring were made. For each of the formation mechanisms, the mechanisms in case of the geothermal development having effects were studied/summarized. As to how effects are brought about, presumed were the lowering of water level and decrease in discharge amount in accordance with the decreasing pressure and the dilution by increase in mixture of the ground water around the area. Also cited were the vaporization of hot spring aquifers by the increasing rate of vapor inflow, etc. For the introduction of the hot spring effect prediction method to the geothermal development promotion survey, the problem is short supply of various data, and the examination for it was made. Based on the results of the survey, items to be studied in case of introducing the hot spring effect prediction method were selected. Further, the hot spring effect prediction flow in case of introducing surface survey and well survey was made out. (NEDO)

  3. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. T. [Univ. of Wisconsin, Madison, WI (United States); Akerley, J. [Ormat Technologies Inc., Reno, NV (United States); Baluyut, E. C. [Univ. of Wisconsin, Madison, WI (United States); Cardiff, M. [Univ. of Wisconsin, Madison, WI (United States); Davatzes, N. C. [Temple Univ., Philadelphia, PA (United States). Dept. of Earth and Environmental Science; Feigl, K. L. [Univ. of Wisconsin, Madison, WI (United States); Foxall, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fratta, D. [Univ. of Wisconsin, Madison, WI (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spielman, P. [Ormat Technologies Inc., Reno, NV (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Zemach, E. [Ormat Technologies Inc., Reno, NV (United States)

    2016-05-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  4. Geothermal investment analysis with site-specific applications to Roosevelt Hot Springs and Cove Fort-Sulphurdale, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Cassel, T.A.V.; Edelstein, R.H.; Blair, P.D.

    1978-12-01

    The analysis and modeling of investment behavior in the development of hydrothermal electric power facilities are reported. This investment behavior reflects a degree of sensitivity to public policy alternatives concerning taxation and regulation of the resource and its related energy conversion facilities. The objective of the current research is to provide a realistic and theoretically sound means for estimating the impacts of such public policy alternatives. A stochastic simulation model was developed which offers an efficient means for site-specific investment analysis of private sector firms and investors. The results of the first year of work are discussed including the identification, analysis, quantification and modeling of: a decision tree reflecting the sequence of procedures, timing and stochastic elements of hydrothermal resource development projects; investment requirements, expenses and revenues incurred in the exploration, development and utilization of hydrothermal resources for electric power generation; and multiattribute investment decision criteria of the several types of firms in the geothermal industry. An application of the investment model to specific resource sites in the state of Utah is also described. Site specific data for the Known Geothermal Resource Areas of Roosevelt Hot Springs and Cove Fort-Sulphurdale are given together with hypothesized generation capacity growth rates.

  5. Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China.

    Science.gov (United States)

    Pagaling, Eulyn; Grant, William D; Cowan, Don A; Jones, Brian E; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2012-07-01

    We investigated the bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong in the Yunnan Province, China, using direct molecular analyses. The Langpu (LP) laminated mat was found by the side of a boiling pool with temperature of 60-65 °C and a pH of 8.5, while the Tengchong (TC) streamer mat consisted of white streamers in a slightly acidic (pH 6.5) hot pool outflow with a temperature of 72 °C. Four 16S rRNA gene clone libraries were constructed and restriction enzyme analysis of the inserts was used to identify unique sequences and clone frequencies. From almost 200 clones screened, 55 unique sequences were retrieved. Phylogenetic analysis showed that the LP mat consisted of a diverse bacterial population [Cyanobacteria, Chloroflexi, Chlorobia, Nitrospirae, 'Deinococcus-Thermus', Proteobacteria (alpha, beta and delta subdivisions), Firmicutes, Bacteroidetes and Actinobacteria], while the archaeal population was dominated by methanogenic Euryarchaeota and Crenarchaeota. In contrast, the TC streamer mat consisted of a bacterial population dominated by Aquificae, while the archaeal population also contained Korarchaeota as well as Crenarchaeota and methanogenic Euryarchaeota. These mats harboured clone sequences affiliated to unidentified lineages, suggesting that they are a potential source for discovering novel bacteria and archaea.

  6. Rare earth elements in sinters from the geothermal waters (hot springs) on the Tibetan Plateau, China

    Science.gov (United States)

    Feng, Jin-Liang; Zhao, Zhen-Hong; Chen, Feng; Hu, Hai-Ping

    2014-10-01

    The mineralogical and geochemical composition of sinters from the geothermal areas on the Tibetan Plateau was determined. They occur as siliceous, salty and calcareous sinters but biogenic siliceous sinters were also found. The analyses indicate that there are no distinct inter -element relationships between individual rare earth elements (REEs) and other elements. Formed from the same geothermal water, the mineralogical and chemical composition of the sinters is influenced by their genesis and formation conditions. The REE distributions depend on the origin of the sinters. Fe-Mn phases in sinters tend to scavenge more REEs from geothermal water. Neither the REE fractionation nor the Ce anomaly seems to be associated with Fe-Mn phases in the sinters. The fourth tetrads of some sinters display weak W-type (concave) effects. In contrast, the third tetrads present large effects in some sinters due to positive Gd anomalies. The origin of the positive Eu anomalies in some sinters seems to be caused by preferential dissolution of feldspars during water-rock interaction. The complexing ligands in geothermal water may contribute significantly to the fractionation of REEs in sinters. The dominant CO32- and HCO3- complexing in geothermal water favors enrichment of heavy REEs in calcareous sinters.

  7. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    Science.gov (United States)

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms.

  8. Application of heat-flow techniques to geothermal energy exploration, Leach Hot Springs area, Grass Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Sass, J.H.; Ziagos, J.P.; Wollenberg, H.A.; Munroe, R.J.; di Somma, D.E.; Lachenbruch, A.H.

    1977-01-01

    A total of 82 holes ranging in depth from 18 to 400 meters were drilled for thermal and hydrologic studies in a 200 km/sup 2/ area of Grass Valley, Nevada, near Leach Hot Springs. Outside the immediate area of Leach Hot Springs, heat flow ranges from 1 to 6.5 hfu with a mean of 2.4 hfu (1 hfu = 10/sup -6/ cal cm/sup 2/ s/sup -1/ = 41.8 mWm/sup -2/). Within 2 km of the springs, conductive heat flow ranges between 1.6 and more than 70 hfu averaging 13.6 hfu. Besides the conspicuous thermal anomaly associated with the hot springs, two additional anomalies were identified. One is associated with faults bounding the western margin of the Tobin Range near Panther Canyon, and the other is near the middle of Grass Valley about 5 km SSW of Leach Hot Springs. The mid-valley anomaly appears to be caused by hydrothermal circulation in a bedrock horst beneath about 375 meters of impermeable valley sediments. If the convective and conductive heat discharge within 2 km of the Leach Hot Springs is averaged over the entire hydrologic system (including areas of recharge), the combined heat flux from this part of Grass Valley is about 3 hfu, consistent with the average regional conductive heat flow in the Battle Mountain High. The hydrothermal system can be interpreted as being in a stationary stable phase sustained by high regional heat flow, and no localized crustal heat sources (other than hydrothermal convection to depths of a few kilometers) need be invoked to explain the existence of Leach Hot Springs.

  9. Fiscal 1999 geothermal energy development promotion survey. Report on survey of introduction of techniques for predicting impact on hot springs; 1999 nendo chinetsu kaihatsu sokushin chosa hokokusho. Onsen eikyo yosoku shuho donyu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    In an effort to find guidelines on how to proceed with geothermal energy development so that it may coexist with hot springs, investigations are conducted into cases of impacts on hot springs imposed by geothermal energy development activities. An impact is judged to exist when geothermal development results in a decrease or depletion of pumped or spontaneously welling hot spring water, change in the concentration of dissolved chemical ingredients, fall in water temperature, or in an increase in the amount of discharged steam. Keyword-aided retrieval of data from databases is performed, and geothermal magazines are referred to for information. There are articles reporting impacts imposed by geothermal development on hot springs in the Palinpinon area (Philippines) and 12 others and in the Corwin Springs area (U.S.) and 13 others. These articles carrying outlines and impacts of geothermal development are collected, put in order, and analyzed. Cases in which such impacts are found to exist are categorized into four groups and, in each group, episodes are differentiated from each other by the type of mechanism linking the aquifer and the reservoir which is the object of development. (NEDO)

  10. Vertical distribution of potentially toxic elements in sediments impacted by intertidal geothermal hot springs (Bahia Concepcion, Gulf of California)

    Science.gov (United States)

    Leal-Acosta, M. L.; Shumilin, E.

    2016-12-01

    The intertidal geothermal hot springs (GHS) in Bahia Concepcion, Gulf of California are the source of potentially toxic elements to the adjacent marine environment surrounded by mangroves trees. The anoxic sediments enriched in organic carbon accumulate As, Hg and other heavy metals that can be bioavailable for the biota. To know the vertical distribution of these elements the geochemistry of a short sediment core was carried out. It was collected in June, 2010 in the mangrove area near to GHS (1 m) during a low tide, pushing manually a polypropylene tube into the sediments. The extracted sediment core was cut with plastic knife on 1 cm thick sub-samples, stored in plastic bags and transported on ice to the laboratory. The major and trace elements contents were determinate by ICP-MS after total digestion with stronger acids (HClO4-HNO3-HCl-HF). Certificate reference materials were used for the quality control of the method obtaining good recoveries for most of the elements (80-105%). The sediment core had high maximum contents of CaCO3 (70%) and total organic carbon (12%). The concentration of Hg along the core ranges from 650 to 74300 mg kg-1 and had more than three orders of magnitude above the reference values of 40 mg kg-1 for the Upper Continental Crust (UCC)1. In contrast, As ranges from 12 to 258 mg kg-1 resulting in more than one order of magnitude respect to UCC1 (1.7 mg kg-1). Similar pattern result for Mn, Cu, Pb, and Zn with the maximum values of 3200 mg kg-1, 42 mg kg-1, 12.4 mg kg-1, 71 mg kg-1 respectively that coincide with the maximum for As at the same core depth (4 cm). The Ca, Li, Co, Sb, U, and Mg also show high contents in comparison with the UCC1reference values. The maximum contents of Mo and Cd coincide with maximum concentration of sulfur (2%) at 6 to 8 cm. The enrichment factor calculated using Al as normalizing element showed Cd (7-280), As (26-329) and Hg (23-1196) as highly enriched mainly in the first centimeters of the sediment core

  11. Ammonia oxidation driven by archaea rather than bacteria in the hot spring at Tengchong geothermal field, China.

    Science.gov (United States)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Li, Jiwei; Ta, Kaiwen

    2015-04-01

    The occurrence of microbial mediated ammonia oxidation and these organisms are present in large numbers in natural environments indicated a potential biogeochemical role for them in the global nitrogen cycle. However, very little is understood about their role and contribution to nitrification in the high temperature extreme environments. Here we explore the ammonia oxidation rates and abundance of potential ammonia-oxidizing archaea (AOA) in upper and bottom sediments from Gongxiaoshe hot spring, Tengchong, Yunnan, China. The 15N-incorporating AOA cells and cell aggregated were detected with Fluorescence in situ hybridization (FISH) and Nano secondary ion mass spectrometry (Nano-SIMS). Ammonia oxidation rates measured using 15N-NO3- pool dilution in upper and bottom sediments (without NH4+ stimulated) were 4.8 and 5.3 nmol N g-1h-1, respectively. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both of the two spring sediments by 16S rRNA gene analysis. Furthermore, it should be noted that no ammonia-oxidizing bacterial clones detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present at 2.75-9.80×105 and 0.128-1.96×108 gene copies g-1 sediment. Based on the reaction rates and AOA abundance, we estimated the cell-specific nitrification rates were 0.41 to 0.79 fmol N archaeal cell-1 h-1, which are comparable to those observed in estuary environment. We suggest that AOA have the responsibility in nitrification in this hot spring, and these archaea rather than bacteria may be considered as a driver in nitrogen cycling in terrestrial hot ecosystems. Key words: ammonia-oxidizing archaea (AOA); nitrification; ammonia-oxidizing rate; hot spring;

  12. Site-specific analysis of hybrid geothermal/fossil power plants. Volume One. Roosevelt Hot Springs KGRA

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The economics of a particular hybrid plant must be evaluated with respect to a specific site. This volume focuses on the Roosevelt Hot Springs KGRA. The temperature, pressure, and flow rate data given suggests the site deserves serious consideration for a hybrid plant. Key siting considerations which must be addressed before an economic judgment can be attempted are presented as follows: the availability, quality, and cost of coal; the availability of water; and the availability of transmission. Seismological and climate factors are presented. (MHR)

  13. Investigation of geothermal development and promotion for fiscal 1997. Fluid geochemical investigation (hot-spring gas) report (No. B-5 Musadake area); 1997 nendo chinetsu kaihatus sokushin chosa. Ryutai chikagaku chosa (onsen gas) hokokusho (No.B-5 Musadake chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This investigation elucidated the possible existence of geothermal reservoir layer in the subject area by studying and analyzing the hot-spring gasses of Musadake. The Musadake area is the one extending over Shibetu-cho and Nakashibetu-cho, Shibetu district, Hokkaido. The sampling of the hot-spring gasses was carried out at three natural gusher sites and one hot spring well site. The gasses in the Kawakita hot spring is most affected by volcanic gasses. The origin of the volcanic gasses is a magmatic gas of andesite nature the {sup 3}He/{sup 4}He ratio of which is 8X10{sup -6} or about. As a result of the analysis, the hot-spring water is Na-Cl type, high salt concentrated, and 200 degrees C in temperature; from the result of a gas geochemical thermometer, it is estimated to be not less than 250 degrees C. In the tectonic viewpoint, the depth hot water is derived from the meteorite water that flows in through a bent zone incident to the Musadake-Shitabanupuri mountain fault and from the fossil sea water that exists in the underground depth; the depth hot water is formed by conduction heat from a magma reservoir that formed Musadake and by volcanic ejecta. This depth hot water rises along Kawakita south, Urappu River fault, etc., mixing with the meteorite water and forming the shallow reservoir layer. (NEDO)

  14. Mercury content in Hot Springs

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, R

    1974-01-01

    A method of determination of mercury in hot spring waters by flameless atomic absorption spectrophotometry is described. Further, the mercury content and the chemical behavior of the elementary mercury in hot springs are described. Sulfide and iodide ions interfered with the determination of mercury by the reduction-vapor phase technique. These interferences could, however, be minimized by the addition of potassium permanganate. Waters collected from 55 hot springs were found to contain up to 26.0 ppb mercury. High concentrations of mercury have been found in waters from Shimoburo Springs, Aomori (10.0 ppb), Osorezan Springs, Aomori (1.3 approximately 18.8 ppb), Gosyogake Springs, Akita (26.0 ppb), Manza Springs, Gunma (0.30 approximately 19.5 ppb) and Kusatu Springs, Gunma (1.70 approximately 4.50 ppb). These hot springs were acid waters containing a relatively high quantity of chloride or sulfate.

  15. Geochemistry of sericite and chlorite in well 14-2 Roosevelt Hot Springs geothermal system and in mineralized hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, J.M.

    1980-06-01

    Chemical compositions of chlorite and sericite from one production well in the Roosevelt geothermal system have been determined by electron probe methods and compared with compositions of chlorite and sericite from porphyry copper deposits. Modern system sericite and chlorite occur over a depth interval of 2 km and a temperature interval of 250/sup 0/C.

  16. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, Daniel F. [Univ. of Texas, Austin, TX (United States)

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportable template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.

  17. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  18. Direct Use Applications of Geothermal Resources at Desert Hot Springs, California. Final Report, May 23, 1977--July 31, 1978. Volume I. Summary of Findings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The geothermal resources underlying the City of Desert Hot Springs were described in terms of anticipated geophysical, geochemical, and hydrological characteristics, based upon existing well log data, geologic surveys, and limited wellflow tests. The needs of the City were determined on the basis of its general plan, the City's 1976 census, load survey and a public acceptance survey. Then a broad range of potential nonelectric applications was surveyed in individual as well as energy cascading systems to identify the matchup of the resource and needs of the city. Applications investigated included space conditioning, space/water heating, car wash, agriculture/horticulture, and aquaculture operations. The list of applications so derived was assessed in light of technological, socio-economic, environmental, institutional, and market considerations to determine target opportunities for DHS as well as on a broad regional basis. Those systems which survived the initial screening were subjected to detailed parametric studies focused on determining tradeoffs among performance, cost, size, compatibility with off-the-shelf hardware, etc. A detailed analysis of the engineering and economic aspects of the most promising systems was then performed. Factors considered included technological problems and risks, status of supporting technologies, net energy ratios, costs, market, displacement of fossil fuels, and economic benefit to the community.

  19. [History of hot spring bath treatment in China].

    Science.gov (United States)

    Hao, Wanpeng; Wang, Xiaojun; Xiang, Yinghong; Gu Li, A Man; Li, Ming; Zhang, Xin

    2011-07-01

    As early as the 7th century B.C. (Western Zhou Dynasty), there is a recording as 'spring which contains sulfur could treat disease' on the Wentang Stele written by WANG Bao. Wenquan Fu written by ZHANG Heng in the Easten Han Dynasty also mentioned hot spring bath treatment. The distribution of hot springs in China has been summarized by LI Daoyuan in the Northern Wei Dynasty in his Shuijingzhu which recorded hot springs in 41 places and interpreted the definition of hot spring. Bencao Shiyi (by CHEN Cangqi, Tang Dynasty) discussed the formation of and indications for hot springs. HU Zai in the Song Dynasty pointed out distinguishing hot springs according to water quality in his book Yuyin Conghua. TANG Shenwei in the Song Dynasty noted in Jingshi Zhenglei Beiji Bencao that hot spring bath treatment should be combined with diet. Shiwu Bencao (Ming Dynasty) classified hot springs into sulfur springs, arsenicum springs, cinnabar springs, aluminite springs, etc. and pointed out their individual indications. Geologists did not start the work on distribution and water quality analysis of hot springs until the first half of the 20th century. There are 972 hot springs in Wenquan Jiyao (written by geologist ZHANG Hongzhao and published in 1956). In July 1982, the First National Geothermal Conference was held and it reported that there were more than 2600 hot springs in China. Since the second half of the 20th century, hot spring sanatoriums and rehabilitation centers have been established, which promoted the development of hot spring bath treatment.

  20. Sol Duc Hot Springs feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    Sol Duc Springs is located in the Olympic National Park in western Washington state. Since the turn of the century, the area has served as a resort, offering hot mineral baths, lodge and overnight cabin accommodations. The Park Service, in conjunction with the concessionaire, is in the process of renovating the existing facilities, most of which are approximately 50 years old. The present renovation work consists of removing all of the existing cabins and replacing them with 36 new units. In addition, a new hot pool is planned to replace the existing one. This report explores the possibility of a more efficient use of the geothermal resource to accompany other planned improvements. It is important to note that the system outlined is based upon the resource development as it exists currently. That is, the geothermal source is considered to be: the two existing wells and the hot springs currently in use. In addition, every effort has been made to accommodate the priorities for utilization as set forth by the Park Service.

  1. Archaeal Nitrification in Hot Springs

    Science.gov (United States)

    Richter, A.; Daims, H.; Reigstad, L.; Wanek, W.; Wagner, M.; Schleper, C.

    2006-12-01

    Biological nitrification, i.e. the aerobic conversion of ammonia to nitrate via nitrite, is a major component of the global nitrogen cycle. Until recently, it was thought that the ability to aerobically oxidize ammonia was confined to bacteria of the phylum Proteobacteria. However, it has recently been shown that Archaea of the phylum Crenarchaeota are also capable of ammonia oxidation. As many Crenarchaeota are thermophilic or hyperthermophilic, and at least some of them are capable of ammonia oxidation we speculated on the existence of (hyper)thermophilic ammonia-oxidizing archaea (AOA). Using PCR primers specifically targeting the archaeal ammonia monooxygenase (amoA) gene, we were indeed able to confirm the presence of such organisms in several hot springs in Reykjadalur, Iceland. These hot springs exhibited temperatures well above 80 °C and pH values ranging from 2.0 to 4.5. To proof that nitrification actually took place under these extreme conditions, we measured gross nitrification rates by the isotope pool dilution method; we added 15N-labelled nitrate to the mud and followed the dilution of the label by nitrate production from ammonium either in situ (incubation in the hot spring) or under controlled conditions in the laboratory (at 80 °C). The nitrification rates in the hot springs ranged from 0.79 to 2.22 mg nitrate-N per L of mud and day. Controls, in which microorganisms were killed before the incubations, demonstrated that the nitrification was of biological origin. Addition of ammonium increased the gross nitrification rate approximately 3-fold, indicating that the nitrification was ammonium limited under the conditions used. Collectively, our study provides evidence that (1) AOA are present in hot springs and (2) that they are actively nitrifying. These findings have major implications for our understanding of nitrogen cycling of hot environments.

  2. Rapid precipitation of silica (opal-A) disguises evidence of biogenicity in high-temperature geothermal deposits: Case study from Dagunguo hot spring, China

    Science.gov (United States)

    Peng, Xiaotong; Jones, Brian

    2012-06-01

    Dagunguo Spring, located in the Tengchong geothermal area in the western part of Yunnan Province, China, is a very active spring with water temperatures of 78 to 97 °C and pH of 7.7 to 8.8. The vent pool, 5.6 m in diameter and up to 1.5 m deep, is lined with opal-A that was precipitated from the near-boiling spring waters. A glass suspended in the pool was coated with opal-A in two months and two PVC pipes that drained water from the pool in late 2010 became lined with opal-A precipitates in less than three months. The opal-A accumulated at rates of 0.5 to 0.75 mm/month in the spring pool and 2.5 to 3.5 mm/month in the PVC pipes. The opal-A precipitates, irrespective of where they developed, are formed primarily of silicified microbes and opal-A spheres along with minor amounts of native sulfur, detrital quartz, and clay (mainly kaolinite). The fabrics in these opal-A deposits were dictated largely by the growth patterns of the filamentous and rod-shaped microbes that dominate this low-diversity biota and the amount of opal-A that was precipitated around them. Many of the microbes were preserved as rapid opal-A was precipitated on and around them before the cells decayed. With continued precipitation, however, the microbes became quickly engulfed in the opal-A precipitates and morphological evidence of their presence was lost. In essence, the process that controls their preservation ultimately disguised them to the point where cannot be seen. Critically, this loss of morphological identity takes places even before opal-A starts its diagenetic transformation towards quartz.

  3. Fiscal 1999 survey report on Jozankei Hot Spring conservation (3rd phase); 1999 nendo Jozankei onsen hozen chosa hokokusho (dai sanji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    The impact of geothermal exploitation in the Yunosawa district on the Jozankei hot spring and others in the neighborhood was evaluated, and a survey was conducted of the formation and eruption mechanisms of the Jozankei hot spring for the purpose of hot spring conservation. Activities were conducted in the three fields of (1) geological structure analysis, (2) geochemical analysis of fluids, and (3) comprehensive analysis. Conducted in field (2) were analysis of hot spring utilization data and the contents, analysis of hot spring water and geothermal water, analysis of fluctuations in hot springs, and fluid movement models. Studied in field (3) were the outline of large area geothermal systems, geothermal structure models, relations between geothermal reservoirs and hot spring aquifers, and impact of geothermal exploitation on hot springs. Disclosed as the result were hot spring geological structure models, formation mechanism, eruption mechanism, origins of hot spring water, fluid movement models, interference between hot spring units, and changes in the hot springs as a whole. It was then concluded that the geothermal exploitation in the Yunosawa district would not exert any impact on the hot springs. (NEDO)

  4. Recent trend of administration on hot springs

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Shigeru [Environment Agency, Tokyo (Japan)

    1989-01-01

    The Environmental Agency exercises jurisdiction over Hot Spring Act, and plans to protect the source of the hot spring and to utilize it appropriately. From the aspect of utilization, hot springs are widely used as a means to remedy chronic diseases and tourist spots besides places for recuperation and repose. Statistics on Japanese hot springs showed that the number of hot spring spots and utilized-fountainhead increased in 1987, compared with the number in 1986. Considering the utilized-headspring, the number of naturally well-out springs has stabilized for 10 years while power-operated springs have increased. This is because the demand of hot springs has grown as the number of users has increased. Another reason is to keep the amount of hot water by setting up the power facility as the welled-out amount has decreased. Major point of recent administration on the hot spring is to permit excavation and utilization of hot springs. Designation of National hot spring health resorts started in 1954 in order to ensure the effective and original use of hot springs and to promote the public use of them, for the purpose of arranging the sound circumstances of hot springs. By 1988, 76 places were designated. 4 figs., 3 tabs.

  5. Intertidal geothermal hot springs as a source of trace elements to the coastal zone: A case study from Bahía Concepción, Gulf of California.

    Science.gov (United States)

    Leal-Acosta, María Luisa; Shumilin, Evgueni; Mirlean, Nicolai; Baturina, Elena Lounejeva; Sánchez-Rodríguez, Ignacio; Delgadillo-Hinojosa, Francisco; Borges-Souza, José

    2018-03-01

    We investigated the influence of the intertidal geothermal hot spring (GHS) on the biogeochemistry of trace elements in Santispac Bight, Bahía Concepción (Gulf of California). The geothermal fluids were enriched in As and Hg mainly in ionic form. The suspended particulate matter of the GHS had elevated enrichment factor (EF) >1 of As, Bi, Cd, Co, Cu, Mn, Mo, Sb, Sn, Sr, Ti, U and Zn. The sediment core from GHS1 had high concentration of As, Hg, C org , S, V, Mo, and U and the extremely high EF of these elements at 8cm of the core. The maximum bioaccumulation of As and Hg was in seaweeds Sargassum sinicola collected near the GHS2. The results confirm the input of trace elements to the coastal zone in Bahía Concepción from geothermal fluids and the evident modification of the chemical composition of the adjacent marine environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Thermal water of the Yugawara Hot Spring

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Y; Ogino, K; Nagatsuka, Y; Hirota, S; Kokaji, F; Takahashi, S; Sugimoto, M

    1963-03-01

    The Yugawara Hot Spring is located in the bottom of the dissected creata of the Yugawara volcano. Natural hot spring water ran dry almost twenty five years ago, and thermal water is now pumped up by means of deep drill holes. The hydrorogy of the thermal water was studied from both geochemical and geophysical points of view. Two types of thermal water, sodium chloride and calcium sulfate, are recognized. Sodium chloride is predominant in the high temperature area and low in the surrounding low temperature area. Calcium sulfate predominates in the low temperature area. Sodium chloride is probably derived from deep magmatic emanations as indicated in the high Li content. Sulfate ion seems to originate from oxidation of pyrite whose impregnation took place in the ancient activity of the Yugawara volcano. The content of Ca is stoichiometrically comparable with SO/sub 4//sup 2 -/. It is suggested that sulfuric acid derived from the oxidation of pyrite attacks calcite formed during the hydrothermal alteration of rocks. Some consideration of well logging in the geothermal area is also discussed. Temperature measurement in recharging of cold water is applicable to the logging of drill holes as well as the electric logging.

  7. Microbiological studies of hot springs in India: a review.

    Science.gov (United States)

    Poddar, Abhijit; Das, Subrata K

    2018-01-01

    The earliest microbiological studies on hot springs in India date from 2003, a much later date compared to global attention in this striking field of study. As of today, 28 out of 400 geothermal springs have been explored following both culturable and non-culturable approaches. The temperatures and pH of the springs are 37-99 °C and 6.8-10, respectively. Several studies have been performed on the description of novel genera and species, characterization of different bio-resources, metagenomics of hot spring microbiome and whole genome analysis of few isolates. 17 strains representing novel species and many thermostable enzymes, including lipase, protease, chitinase, amylase, etc. with potential biotechnological applications have been reported by several authors. Influence of physico-chemical conditions, especially that of temperature, on shaping the hot spring microbiome has been established by metagenomic investigations. Bacteria are the predominant life forms in all the springs with an abundance of phyla Firmicutes, Proteobacteria, Actinobacteria, Thermi, Bacteroidetes, Deinococcus-Thermus and Chloroflexi. In this review, we have discussed the findings on all microbiological studies that have been carried out to date, on the 28 hot springs. Further, the possibilities of extrapolating these studies for practical applications and environmental impact assessment towards protection of natural ecosystem of hot springs have also been discussed.

  8. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China

    Science.gov (United States)

    Qi, Jihong; Xu, Mo; An, Chengjiao; Wu, Mingliang; Zhang, Yunhui; Li, Xiao; Zhang, Qiang; Lu, Guoping

    2017-02-01

    Abundant geothermal springs occur along the Moxi fault located in western Sichuan Province (the eastern edge of the Qinghai-Tibet plateau), highlighted by geothermal water outflow with an unusually high temperature of 218 °C at 21.5 MPa from a 2010-m borehole in Laoyulin, Kangding. Earthquake activity occurs relatively more frequently in the region and is considered to be related to the strong hydrothermal activity. Geothermal waters hosted by a deep fault may provide evidence regarding the deep underground; their aqueous chemistry and isotopic information can indicate the mechanism of thermal springs. Cyclical variations of geothermal water outflows are thought to work under the effect of solid earth tides and can contribute to understanding conditions and processes in underground geo-environments. This paper studies the origin and variations of the geothermal spring group controlled by the Moxi fault and discusses conditions in the deep ground. Flow variation monitoring of a series of parameters was performed to study the geothermal responses to solid tides. Geothermal reservoir temperatures are evaluated with Na-K-Mg data. The abundant sulfite content, dissolved oxygen (DO) and oxidation-reduction potential (ORP) data are discussed to study the oxidation-reduction states. Strontium isotopes are used to trace the water source. The results demonstrate that geothermal water could flow quickly through the Moxi fault the depth of the geothermal reservoir influences the thermal reservoir temperature, where supercritical hot water is mixed with circulating groundwater and can reach 380 °C. To the southward along the fault, the circulation of geothermal waters becomes shallower, and the waters may have reacted with metamorphic rock to some extent. Our results provide a conceptual deep heat source model for geothermal flow and the reservoir characteristics of the Moxi fault and indicate that the faulting may well connect the deep heat source to shallower depths. The

  9. Hot-dry-rock geothermal resource 1980

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  10. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China.

    Science.gov (United States)

    Song, Zhao-Qi; Wang, Feng-Ping; Zhi, Xiao-Yang; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Tang, Shu-Kun; Jiang, Hong-Chen; Zhang, Chuanlun L; Dong, Hailiang; Li, Wen-Jun

    2013-04-01

    Thousands of hot springs are located in the north-eastern part of the Yunnan-Tibet geothermal zone, which is one of the most active geothermal areas in the world. However, a comprehensive and detailed understanding of microbial diversity in these hot springs is still lacking. In this study, bacterial and archaeal diversities were investigated in 16 hot springs (pH 3.2-8.6; temperature 47-96°C) in Yunnan Province and Tibet, China by using a barcoded 16S rRNA gene-pyrosequencing approach. Aquificae, Proteobacteria, Firmicutes, Deinococcus-Thermus and Bacteroidetes comprised the large portion of the bacterial communities in acidic hot springs. Non-acidic hot springs harboured more and variable bacterial phyla than acidic springs. Desulfurococcales and unclassified Crenarchaeota were the dominated groups in archaeal populations from most of the non-acidic hot springs; whereas, the archaeal community structure in acidic hot springs was simpler and characterized by Sulfolobales and Thermoplasmata. The phylogenetic analyses showed that Aquificae and Crenarchaeota were predominant in the investigated springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world. Thus findings from this study significantly improve our understanding of microbial diversity in terrestrial hot springs. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Geologic reconnaissance of the Hot Springs Mountains, Churchill County, Nevada

    Science.gov (United States)

    Voegtly, Nickolas E.

    1981-01-01

    A geologic reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas, during June-December 1975, resulted in a reinterpretation of the nature and location of some Basin and Range faults. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by U.S. Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie ' basement ' rocks of the Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present. (USGS)

  12. Isotopic and chemical features of hot springs in Akita Prefecture

    International Nuclear Information System (INIS)

    Matsubaya, Osamu

    1997-01-01

    All over the Akita Prefecture, many hot springs are located. Most of them are of meteoric water, fossil sea water and volcanic gas origins. In the Ohdate-Kazuno area, moderate temperature hot springs of meteoric water origin are found, which may exist as rather shallow formation water in the Green Tuff formations. On the contrary, high temperature geothermal waters of meteoric origin, which are used for power generation, are obtained in two volcanic area of Hachimantai and Oyasu. Those geothermal waters are expected to come up through vertical fissures from depth deeper than 2 km. The difference of these two manners of meteoric water circulation should be necessarily explained to understand the relationship of shallow and deep geothermal systems. About some hot springs of fossil sea water origin, the relationships of δ D and Cl - don't agree to the mixing relation of sea water and meteoric water. This may be explained by two different processes, one of which is mixing of sea water with saline meteoric water (Cl - ca. 12 g/kg). The other is modification of δD by hydrogen isotopic exchange with hydrous minerals underground, or by exchange with atmospheric vapor during a relic lake before burying. (author)

  13. Diagenetic Changes in Common Hot Spring Microfacies

    Science.gov (United States)

    Hinman, N. W.; Kendall, T. A.; MacKenzie, L. A.; Cady, S. D.

    2016-05-01

    The friable nature of silica hot spring deposits makes them susceptible to mechanical weathering. Rapid diagenesis must take place for these rocks to persist in the geologic record. The properties of two microfacies at two deposits were compared.

  14. Geophysical investigations of the geologic and hydrothermal framework of the Pilgrim Springs Geothermal Area, Alaska

    Science.gov (United States)

    Glen, Jonathan; McPhee, Darcy K.; Bedrosian, Paul A.

    2014-01-01

    Pilgrim Hot Springs, located on the Seward Peninsula in west-central Alaska, is characterized by hot springs, surrounding thawed regions, and elevated lake temperatures. The area is of interest because of its potential for providing renewable energy for Nome and nearby rural communities. We performed ground and airborne geophysical investigations of the Pilgrim Springs geothermal area to identify areas indicative of high heat flow and saline geothermal fluids, and to map key structures controlling hydrothermal fluid flow. Studies included ground gravity and magnetic measurements, as well as an airborne magnetic and frequency-domain electromagnetic (EM) survey. The structural and conceptual framework developed from this study provides critical information for future development of this resource and is relevant more generally to our understanding of geothermal systems in active extensional basins. Potential field data reveal the Pilgrim area displays a complex geophysical fabric reflecting a network of intersecting fault and fracture sets ranging from inherited basement structures to Tertiary faults. Resistivity models derived from the airborne EM data reveal resistivity anomalies in the upper 100 m of the subsurface that suggest elevated temperatures and the presence of saline fluids. A northwest trending fabric across the northeastern portion of the survey area parallels structures to the east that may be related to accommodation between the two major mountain ranges south (Kigluaik) and east (Bendeleben) of Pilgrim Springs. The area from the springs southward to the range front, however, is characterized by east-west trending, range-front-parallel anomalies likely caused by late Cenozoic structures associated with north-south extension that formed the basin. The area around the springs (~10 km2 ) is coincident with a circular magnetic high punctuated by several east-west trending magnetic lows, the most prominent occurring directly over the springs. These features

  15. Direct uses of hot water (geothermal) in dairying

    Energy Technology Data Exchange (ETDEWEB)

    Barmettler, E.R.; Rose, W.R. Jr.

    1978-01-01

    Digital computer simulation was used to investigate the peak, steady energy utilization of a geothermal energy-supported dairy. A digital computer program was also written to assess the lifetime economics of the dairy operation. A dynamic simulation program was written to design water storage tanks under diurnal transient loading. The geothermal site specified is the artesian spring named Hobo Wells near Susanville, California. The dairy configuration studies are unique, but consist of conventional processing equipment. In the dairy, cattle waste would be used to generate methane and carbon dioxide by anaerobic digestion. Some carbon dioxide would be removed from the gas stream with a pressurized water scrubber to raise the heating value. The product gas would be combusted in a spark ignition engine connected to an electric generator. The electrical power produced would be used for operation of fans, pumps, lights and other equipment in the dairy. An absorption chiller using a geothermal water driven generator would provide milk chilling. Space heating would be done with forced air hot water unit heaters.

  16. Neutral sodium/bicarbonate/sulfate hot waters in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, W.A.J. (Dept. of Industrial and Scientific Research, Wairakei, New Zealand); Klyen, L.E.; Rhode, M.

    1980-03-01

    The least understood thermal water is a near neutral water which contains varying amounts of bicarbonate and sulfate as the major anions, low concentrations of chloride (< 30 ppM) and sodium as the major cation. In the past this water has been referred to as a sodium bicarbonate water but present studies suggest that the quantities of bicarbonate and sulfate in this water type are frequently of the same order. Of particular interest is the distribution and position of the sodium/bicarbonate/sulfate water in the same and different systems. Many hot springs in Indonesia, for example, discharge water of this composition. Present studies indicate that this water type can originate from high temperature reservoirs which form the secondary steam heated part of a normal high temperature geothermal system. The hydrological conditions producing these waters in geothermal systems are investigated and the relationship between the water type and vapor dominated systems is discussed. It is suggested that the major water type occurring in the so called vapor dominated parts of geothermal systems is this water. The water does not simply represent steam condensate, rather it consists essentially of meteoric water which has been steam heated. The water composition results from the interaction of carbon dioxide and hydrogen sulfide with meteoric water and the rocks confining this water in the aquifer.

  17. Spatial Characteristics of Geothermal Spring Temperatures and Discharge Rates in the Tatun Volcanic Area, Taiwan

    Science.gov (United States)

    Jang, C. S.; Liu, C. W.

    2014-12-01

    The Tatun volcanic area is the only potential volcanic geothermal region in the Taiwan island, and abundant in hot spring resources owing to stream water mixing with fumarolic gases. According to the Meinzer's classification, spring temperatures and discharge rates are the most important properties for characterizing spring classifications. This study attempted to spatially characterize spring temperatures and discharge rates in the Tatun volcanic area, Taiwanusing indicator kriging (IK). First, data on spring temperatures and discharge rates, which were collected from surveyed data of the Taipei City Government, were divided into high, moderate and low categories according to spring classification criteria, and the various categories were regarded as estimation thresholds. Then, IK was adopted to model occurrence probabilities of specified temperatures and discharge rates in springs, and to determine their classifications based on estimated probabilities. Finally, nine combinations were obtained from the classifications of temperatures and discharge rates in springs. Moreover, the combinations and features of spring water were spatially quantified according to seven sub-zones of spring utilization. A suitable and sustainable development strategy of the spring area was proposed in each sub-zone based on probability-based combinations and features of spring water.The research results reveal that the probability-based classifications using IK provide an excellent insight in exploring the uncertainty of spatial features in springs, and can provide Taiwanese government administrators with detailed information on sustainable spring utilization and conservation in the overexploited spring tourism areas. The sub-zones BT (Beitou), RXY (Rd. Xingyi), ZSL (Zhongshanlou) and LSK (Lengshuikeng) with high or moderate discharge rates are suitable to supply spring water for tourism hotels.Local natural hot springs should be planned in the sub-zones DBT (Dingbeitou), ZSL, XYK

  18. Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park. Water Resources Investigation

    International Nuclear Information System (INIS)

    Sorey, M.L.

    1991-01-01

    A two-year study by the U.S. Geological Survey, in collaboration with the National Park Service, Argonne National Laboratory, and Los Alamos National Laboratory was initiated in 1988 to determine the effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA), Montana, on the thermal features of Yellowstone National Park. The study addressed three principal issues: (1) the sources of thermal water in the hot springs at Mammoth, La Duke, and Bear Creek; (2) the degree of subsurface connection between these areas; and (3) the effects of geothermal development in the Corwin Springs KGRA on the Park's thermal features. The authors investigations included, but were not limited to, geologic mapping, electrical geophysical surveys, chemical sampling and analyses of waters and rocks, determinations of the rates of discharge of various thermal springs, and hydrologic tracer tests

  19. Applying spatial analysis techniques to assess the suitability of multipurpose uses of spring water in the Jiaosi Hot Spring Region, Taiwan

    Science.gov (United States)

    Jang, Cheng-Shin

    2016-04-01

    The Jiaosi Hot Spring Region is located in northeastern Taiwan and is rich in geothermal springs. The geothermal development of the Jiaosi Hot Spring Region dates back to the 18th century and currently, the spring water is processed for various uses, including irrigation, aquaculture, swimming, bathing, foot spas, and recreational tourism. Because of the proximity of the Jiaosi Hot Spring Region to the metropolitan area of Taipei City, the hot spring resources in this region attract millions of tourists annually. Recently, the Taiwan government is paying more attention to surveying the spring water temperatures in the Jiaosi Hot Spring Region because of the severe spring water overexploitation, causing a significant decline in spring water temperatures. Furthermore, the temperature of spring water is a reliable indicator for exploring the occurrence and evolution of springs and strongly affects hydrochemical reactions, components, and magnitudes. The multipurpose uses of spring water can be dictated by the temperature of the water. Therefore, accurately estimating the temperature distribution of the spring water is critical in the Jiaosi Hot Spring Region to facilitate the sustainable development and management of the multipurpose uses of the hot spring resources. To evaluate the suitability of spring water for these various uses, this study spatially characterized the spring water temperatures of the Jiaosi Hot Spring Region by using ordinary kriging (OK), sequential Gaussian simulation (SGS), and geographical information system (GIS). First, variogram analyses were used to determine the spatial variability of spring water temperatures. Next, OK and SGS were adopted to model the spatial distributions and uncertainty of the spring water temperatures. Finally, the land use (i.e., agriculture, dwelling, public land, and recreation) was determined and combined with the estimated distributions of the spring water temperatures using GIS. A suitable development strategy

  20. Hot Dry Rock Geothermal Energy Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  1. Preliminary analysis of geothermal aspects of Brazilian thermal spring

    International Nuclear Information System (INIS)

    Hurter, S.J.; Hamza, V.M.

    1982-01-01

    Information on more than 400 geothermal springs in Brazil has been assembled. On the basis of the data colected the temperatures at the maximum depths of circulation of spring waters are calculated using the quality of silica dissolved in water. For some thermal springs temperatures are calculated on the basis of silica determination carrried out by us. Applying linear relations between silica temperature and geothermal flux the average depths of water circulation in the Parana Basin and the Brazilian folded belts surrounding the San Francisco craton are calculated. The radioactivity of the water, derived mainly from the dissolved radon can be correlated with the temperature of the spring. An inverse correlation, as was observed for thermal springs of Pocos de Caldas, can be used to calculate the ascent velocity of thermal waters, where as, a positive correlations could be interpreted as due to the mixing of thermal with surface waters. (Author) [pt

  2. Archaeal diversity in Icelandic hot springs

    DEFF Research Database (Denmark)

    Kvist, Thomas; Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    Whole-cell density gradient extractions from three solfataras (pH 2.5) ranging in temperature from 81 to 90 degrees C and one neutral hot spring (81 degrees C, pH 7) from the thermal active area of Hveragerethi (Iceland) were analysed for genetic diversity and local geographical variation...... of Archaea by analysis of amplified 16S rRNA genes. In addition to the three solfataras and the neutral hot spring, 10 soil samples in transects of the soil adjacent to the solfataras were analysed using terminal restriction fragment length polymorphism (t-RFLP). The sequence data from the clone libraries...... enzymes AluI and BsuRI. The sequenced clones from this solfatara belonged to Sulfolobales, Thermoproteales or were most closest related to sequences from uncultured Archaea. Sequences related to group I.1b were not found in the neutral hot spring or the hyperthermophilic solfatara (90 degrees C)....

  3. WARM SPRINGS CREEK GEOTHERMAL STUDY, BLAIN COUNTY IDAHO, 1987

    Science.gov (United States)

    In the Warm Springs Creek drainage near Ketchum, Idaho (17040219), a leaking pipeline coveys geothermal water through the valley to heat nearby homes as well as to supply a resorts swimming pool. Several domestic wells in close proximity to this line have exhibited increasing fl...

  4. Helium isotopes in geothermal systems: Iceland, The Geysers, Raft River and Steamboat Springs

    International Nuclear Information System (INIS)

    Torgersen, T.

    1982-01-01

    Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios and in terms of the processes which can alter the isotopic ratio. Using this interpretational scheme, Iceland is found to be an area of hot-spot magmatic He implying an active volcanic source although the data are suggestive of high-temperature weathering release of crustal He incorporated in the geothermal fluids. By comparison to fumarolic gases from Hawaii and Juan De Fuca and Cayman Trench basaltic glass samples, The Geysers contains MOR type magmatic He again implying an active volcanic source possibly a 'leaky' transform related to the San Andreas Fault System. Raft River contains only crustal He indicating no active volcanic sources. Steamboat Springs He isotope ratios are distinctly less than typical plate margin volcanics but must still have a magmatic source. (author)

  5. Fiscal 1999 survey report on introducing technique for predicting impact on hot spring; 1999 nendo onsen eikyo yosoku shuho donyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    For the application of fruits of the geothermal development promotion project to survey phase C and for the study of technical means for appropriate development to employ after phase C, some cases of impacts imposed on hot springs by geothermal development were taken up and the causes of the impacts were investigated. Activities were conducted in the three fields of (1) the survey of actualities of impacts imposed on hot springs, (2) the survey of the causes of such impacts, and (3) a comprehensive survey. Keyword searches were conducted into the data system and geothermal energy related magazines, and 13 cases were found in which hot springs were affected by geothermal development, which included the Palinpinon district (Philippines), the Koso district (America), and the Wairakei district (New Zealand). Concerning the 13 cases, data on geology, geological structures, and geothermal fluids were collected and studies were conducted about relations of geothermal development with geological structures and geothermal fluids, as in the case of hot springs, and the two were integrated for the clarification of the causes of impacts. In concluding the report, the difference in mechanism is deliberated between cases with impacts on hot springs and cases without impacts on hot springs. (NEDO)

  6. The isotope geochemistry of hot springs gases and waters from Coromandel and Hauraki

    International Nuclear Information System (INIS)

    Lyon, G.L.; Giggenbach, W.F.

    1992-01-01

    Carbon, hydrogen and oxygen stable isotope analyses have been made on carbon dioxide,methane and water from warm and hot springs in the Coromandel Peninsula and Hauraki Plains. Most of the waters are isotopically unaltered meteoric waters. Methane δ 1 3C values vary widely, from -30%o to -72%o. Warm springs in swamps at Maketu and Kerepehi have microbial methane probably added to the water near the surface. Puriri, Okoroire and Miranda springs produce thermally derived methane, and the Hot Water Beach gas is similar to the Kaitoke gas in chemistry and isotopic composition but altered by shallow microbial oxidation. The Te Aroha gas, though, is not inconsistent with a geothermal origin and the boiling springs and oxygen-isotope altered water are further evidence for high temperatures. Other spring gases have mixtures of thermogenic and microbial methane and none are closely similar to major NZ geothermal CH 4 composition. CO 2 , which is usually present in lesser amounts than N 2 , has isotopic values which suggest a geothermal origin at Te Aroha and Maketu, but otherwise indicates a crustal origin. The dominance of N 2 implies that the fluid flows are tectonic fracture flow rather than geothermal. 3 He/ 4 He data gives further evidence of no major contribution from magmatic material except at Maketu, on the NW boundary of the TVZ. (author). 24 refs., 4 figs., 2 tabs

  7. Microbiology of Kamchatka Peninsula Hot Springs

    Science.gov (United States)

    Bonch-Osmolovsk, E.

    2005-12-01

    Hot springs of Uzon Caldera, Geyser Valley, Moutnovsky Volcano (Kamchatka Peninsula) served as the sources of isolation of numerous thermophilic prokaryotes, many of them representing new taxa. Among new isolates there were hyperthermophilic archaea - neutrophilic or acidophilic anaerobic organotrophs, able to use a wide range of polymeric organic substrates. Bacterial isolates were in majority represented by moderate thermophiles - organotrophs and lithoautotrophs. Latter group consisted of anaerobes oxidizing molecular hydrogen in the course of sulfate, sulfur or iron reduction, and of anaerobic CO-oxidizing, hydrogen-producing bacteria. Some of new isolates represented deep phylogenetic lineages in Bacteria domain. Microbial activity in Kamchatka hot springs was studied by means of radioisotopic tracing. The rates of methanogenesis, acetogenesis, inorganic carbon assimilation, acetate oxidation were determined in three different hot springs with pH ranging from 3.0 to 8.5 and water temeperature being in the range from 55 to 85oC. The results indicated the presence and activity of novel metabolic groups of thermophilic prokaryotes that so far have not been known in laboratory cultures.

  8. Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan.

    Science.gov (United States)

    Amin, Arshia; Ahmed, Iftikhar; Salam, Nimaichand; Kim, Byung-Yong; Singh, Dharmesh; Zhi, Xiao-Yang; Xiao, Min; Li, Wen-Jun

    2017-07-01

    Chilas and Hunza areas, located in the Main Mantle Thrust and Main Karakoram Thrust of the Himalayas, host a range of geochemically diverse hot springs. This Himalayan geothermal region encompassed hot springs ranging in temperature from 60 to 95 °C, in pH from 6.2 to 9.4, and in mineralogy from bicarbonates (Tato Field), sulfates (Tatta Pani) to mixed type (Murtazaabad). Microbial community structures in these geothermal springs remained largely unexplored to date. In this study, we report a comprehensive, culture-independent survey of microbial communities in nine samples from these geothermal fields by employing a bar-coded pyrosequencing technique. The bacterial phyla Proteobacteria and Chloroflexi were dominant in all samples from Tato Field, Tatta Pani, and Murtazaabad. The community structures however depended on temperature, pH, and physicochemical parameters of the geothermal sites. The Murtazaabad hot springs with relatively higher temperature (90-95 °C) favored the growth of phylum Thermotogae, whereas the Tatta Pani thermal spring site TP-H3-b (60 °C) favored the phylum Proteobacteria. At sites with low silica and high temperature, OTUs belonging to phylum Chloroflexi were dominant. Deep water areas of the Murtazaabad hot springs favored the sulfur-reducing bacteria. About 40% of the total OTUs obtained from these samples were unclassified or uncharacterized, suggesting the presence of many undiscovered and unexplored microbiota. This study has provided novel insights into the nature of ecological interactions among important taxa in these communities, which in turn will help in determining future study courses in these sites.

  9. Hot Topics! Heat Pumps and Geothermal Energy

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  10. Report on fiscal 1998 investigation of Jozankei hot spring conservation and hot spring structure; 1998 nendo Jozankei onsen hozen chosa. Onsen kozo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    With the purpose of evaluating recoverable hot water quantity and elucidating the change over a long term, investigations were carried out, with the results summarized, on the geology, alteration zone, gravitational analysis, fluid geochemistry and hydraulics in the area. The investigations covered the area of 7 km x 6 km in about 30 km southwest of Sapporo City and were performed for the period from September 10, 1998 to October 31, 1999. The results were as follows. In the Jozankei area, with the Usubetu layer in the Old Tertiary system as the basement, layers are superposed from the Palaeogene Oligocene to the Quaternary Pleistocene. Distributing in various places between Yunosawa vicinity and Jozankei Hot Spring area are acid to neutral geothermal alteration zones. The hot spring gushing-out zone in the Jozankei hot spring area is supposed to be regulated by side-by-side cracks in the NE-SW direction. It was inferred from tritium concentration and a minor component ratio that, as the mechanism of forming a hot spring, water of precipitation origin circulating and residing for a long time on the Usubetsu layer which is marine sediment is heated by a volcanic heat source latent in the depth. (NEDO)

  11. Phototrophy in Mildly Acidic Hot Spring Ecosystems

    Science.gov (United States)

    Fecteau, K.; Boyd, E. S.; Shock, E.

    2014-12-01

    Microbial light-driven reduction of carbon in continental hydrothermal ecosystems is restricted to environments at temperatures less than 73 °C. In circumneutral and alkaline systems bacterial phototrophs (cyanobacteria and anoxygenic phototrophs) are suggested to be principally responsible for this activity whereas algal (i.e., eukaryotic) phototrophs are thought to be responsible for this activity in acidic systems. In Yellowstone National Park numerous examples of phototrophic microbial communities exist at high and low pH, while hot springs with intermediate pH (values 3-5) are rare and commonly dilute. It is thought that the transition from algal photosynthesis to bacterial photosynthesis occurs within this pH range. To test this hypothesis, we sequenced bacterial and eukaryal small subunit ribosomal RNA genes, analyzed pigments, and performed comprehensive geochemical measurements from 12 hot springs within this pH realm. At all sites, the largest phototrophic population was either comprised of Cyanobacteria or affiliated with the algal order Cyanidiales, which are ubiquitous in acidic springs, yet abundant sequences of both lineages were present in 8 of the 12 sites. Nevertheless, some of these samples exceeded the known temperature limit of the algae (56 °C), suggesting that these populations are dead or inactive. Indeed, one site yielded evidence for a large Cyanidiales population as the only phototrophs present, yet an experiment at the time of sampling failed to demonstrate light-driven carbon fixation, and analysis of extracted pigments showed a large amount of the chlorophyll degradation product pheophorbide a and very little intact chlorophyll, indicating photosynthesis occurred at this site when conditions were different. Our observations illustrate the dynamic nature of these systems that may be transiently conducive to photosynthesis, which may open niches for phototrophs of both domains and likely played a role in the evolution of photosynthesis.

  12. Recovery Act Validation of Innovative Exploration Techniques Pilgrim Hot Springs, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  13. Nitrogen cycling in Hot Spring Sediments and Biofilms (Invited)

    Science.gov (United States)

    Meyer-Dombard, D. R.; Burton, M. S.; Havig, J. R.; Shock, E.

    2010-12-01

    capacity for nitrogen fixation as a function of changing community structure become apparent. Our results provide insight into shifts in genomic and transcriptomic function in the context of niches within hot spring environments, and the effect of availability of fixed nitrogen on the growth habit of microbial communities in situ in these ecosystems. [1] Havig et al., 2010. Merging isotopes and community genomics in a siliceous sinter-depositing hot spring. Journal of Geophysical Research-Biogeosciences (in press). [2] Raymond et al., 2008. EOS Trans AGU. Abstract B14A-03. [3] Hall et al., 2008. Molecular characterization of the diversity and distribution of a thermal spring microbial community using rRNA and metabolic genes. AEM 74:4910-4922. [4] Steunou et al., 2006. In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic Cyanobacteria inhabiting hot spring microbial mats. PNAS 103:2398-2403. [5] Boyd et al., 2009. CO2 uptake and fixation by a thermoacidophilic microbial community attached to precipitated sulfur in a geothermal spring. AEM 75:4289-4296.

  14. Thermo-aerobic bacteria from geothermal springs in Saudi Arabia ...

    African Journals Online (AJOL)

    Fifteen isolates of thermo-aerobic bacteria were found. Bacillus cereus, B. licheniformis, B. thermoamylovorans, Pseudomonas sp., Pseudomonas aeruginosa and Enterobacter sp. were dominant in hot springs. Genetic relatedness indicated that eleven Bacillus spp. grouped together formed several clusters within one main ...

  15. Hot Springs-Garrison Fiber Optic Project

    International Nuclear Information System (INIS)

    1994-10-01

    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA's substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA

  16. Hot Springs-Garrison Fiber Optic Project

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

  17. An Origin of Life in Cycling Hot Spring Pools: Emerging Evidence from Chemistry, Geology and Computational Studies

    Science.gov (United States)

    Deamer, D. W.; Damer, B. F.; Van Kranendonk, M. J.; Djokic, T.

    2017-07-01

    New evidence for an origin of life in a hot spring setting on land is supported by three studies: chemical (polymerization in wet-dry cycles), geological (stromatolites in a 3.48 Ga geothermal field) and computational (verifying the kinetic trap).

  18. Utilization of Indonesia's Hot Spring Sources for Electricity using Kalina Cycle and Organic Rankine Cycle

    Science.gov (United States)

    Prabumukti, Grano; Purwanto; Widodo, Wahyu

    2018-02-01

    Indonesia posses 40% of the world's geothermal energy sources. The existence of hydrothermal sources is usually characterized by their surface manifestations such as hot springs, geysers and fumarole. Hot spring has a potential to be used as a heat source to generate electricity especially in a rural and isolated area. Hot springs can be converted into electricity by binary thermodynamic cycles such as Kalina cycle and ORC. The aim of this study is to obtain the best performances of cycle configuration and the potential power capacity. Simulation is conducted using UNISIM software with working fluid and its operating condition as the decision variables. The simulation result shows that R1234yf and propene with simple ORC as desired working fluid and cycle configuration. It reaches a maximum thermal efficiency up to 9.6% with a specific turbine inlet pressure. Higher temperature heat source will result a higher thermal efficiency‥ Cycle thermal efficiency varies from 4.7% to 9.6% depends on source of hot spring temperature. Power capacity that can be generated using Indonesia's hot spring is ranged from 2 kWe to 61.2 kWe. The highest capacity located in Kawah Sirung and the least located in Kaendi.

  19. Biomediated Precipitation of Calcium Carbonate in a Slightly Acidic Hot Spring

    Science.gov (United States)

    Jiang, L.

    2015-12-01

    A slightly acidic hot spring named "Female Tower" (T=73.5 °C, pH=6.64) is located in the Jifei Geothermal Field, Yunnan Province, Southwest China. The precipitates in the hot spring are composed of large amounts of calcite, aragonite, and sulfur. Scanning electron microscopy (SEM) analyses revealed that the microbial mats were formed of various coccoid, rod-shaped, and filamentous microbes. Transmission electron microscopy (TEM) showed that the intracellular sulfur granules were commonly associated with these microbes. A culture-independent molecular phylogenetic analysis demonstrated that the majority of the bacteria in the spring were sulfur-oxidizing bacteria. In the spring water, H2S concentration was up to 60 ppm, while SO42- concentration was only about 10 ppm. We speculated that H2S might be utilized by sulfur-oxidizing bacteria in this hot spring water, leading to the intracellular formation of sulfur granules. In the meantime, this reaction increased the pH in the micron-scale microdomains, which fostered the precipitation of calcium carbonate in the microbial mats. The results of this study indicated that the sulfur-oxidizing bacteria could play an important role in calcium carbonate precipitation in slightly acidic hot spring environments.

  20. Geofluids Assessment of the Ayub and Shafa Hot Springs in Kopet-Dagh Zone (NE Iran: An Isotopic Geochemistry Approach

    Directory of Open Access Journals (Sweden)

    Hossein Mohammadzadeh

    2017-01-01

    Full Text Available Geothermal energy has a wide range of uses in our life. It is very important to characterize the temperature and the depth of geothermal reservoirs. The aim of this paper is the determination of type, origin source of water temperature, and depth of water circulation in the Ayub-Peighambar and Shafa (AP and SH hot springs, located in NE Iran, using hydrogeochemistry and environmental isotopes (2H and 18O. AP hot spring has elevated temperature (36–40°C and as such is very important for balneotherapy and geotourism industry purposes. The average values of δ18O and δ2H for this hot spring (−10‰ and −73‰, resp. are analogous to that of geothermal and meteoric waters. This indicates that the heat source cannot be related to volcanic activities (with average δ18O value of about 5‰ and it is most probably associated with geothermal gradient with deep circulation of groundwater through faults. Based on Na-K geothermometers coupled with isotopic (18O and 2H geochemistry the temperature of the AP geothermal reservoir was estimated to be in the range of 100–150°C with 3–5 and 4.2 kilometres’ depth, respectively. Chemically, the AP samples are CaSO4 facies with a chemically homogeneous source and steam heated waters type.

  1. Recent developments in the hot dry rock geothermal energy program

    Energy Technology Data Exchange (ETDEWEB)

    Franke, P.R.; Nunz, G.J.

    1985-01-01

    In recent years, most of the Hot Dry Rock Programs effort has been focused on the extraction technology development effort at the Fenton Hill test site. The pair of approximately 4000 m wells for the Phase II Engineering System of the Fenton Hill Project have been completed. During the past two years, hydraulic fracture operations have been carried out to develop the geothermal reservoir. Impressive advances have been made in fracture identification techniques and instrumentation. To develop a satisfactory interwellbore flow connection the next step is to redrill the lower section of one of the wells into the fractured region. Chemically reactive tracer techniques are being developed to determine the effective size of the reservoir area. A new estimate has been made of the US hot dry rock resource, based upon the latest geothermal gradiant data. 3 figs.

  2. Siliceous Shrubs in Yellowstone's Hot Springs: Implications for Exobiological Investigations

    Science.gov (United States)

    Guidry, S. A.; Chafetz, H. S.

    2003-01-01

    Potential relict hot springs have been identified on Mars and, using the Earth as an analog, Martian hot springs are postulated to be an optimal locality for recognizing preserved evidence of extraterrestrial life. Distinctive organic and inorganic biomarkers are necessary to recognize preserved evidence of life in terrestrial and extraterrestrial hot spring accumulations. Hot springs in Yellowstone National Park, Wyoming, U.S.A., contain a wealth of information about primitive microbial life and associated biosignatures that may be useful for future exobiological investigations. Numerous siliceous hot springs in Yellowstone contain abundant, centimeter-scale, spinose precipitates of opaline silica (opal-A). Although areally extensive in siliceous hot spring discharge channel facies, these spinose forms have largely escaped attention. These precipitates referred to as shrubs, consist of porous aggregates of spinose opaline silica that superficially resemble miniature woody plants, i.e., the term shrubs. Shrubs in carbonate precipitating systems have received considerable attention, and represent naturally occurring biotically induced precipitates. As such, shrubs have great potential as hot spring environmental indicators and, more importantly, proxies for pre-existing microbial life.

  3. Some geophysical and geological studies of the Tanzawa Mountains. [Nakagawa Hot Spring area, Hokizawa, and Higashizawa

    Energy Technology Data Exchange (ETDEWEB)

    Minakami, T; Matsuda, T; Hiraga, S; Horai, K I; Sugita, M

    1964-11-01

    Joints and zeolite-veins in both metamorphic rocks and quartz diorite exposed along the Nakagawa River were studied. Fractures with zeolite-veins are most developed in three areas, the Nakagawa hot spring area, Hokizawa, and Higashizawa. They follow two prevailing directions: N--S with minor right-lateral displacement and N60/sup 0/E with minor left-lateral displacement. The two fractures should represent a conjugate set that was produced by stress with maximum principal axis of N30/sup 0/E-S30/sup 0/W. Distribution and prevailing directions of fractures are illustrated. Geothermal gradients are measured in two newly opened boreholes, at the Nakagawa hot spring area and Higashizawa. The geothermal gradients are 12.60 +- 0.48/sup 0/C/100m at the Nakagawa hot spring and 5.55 +- 0.24/sup 0/C/100m at Higashizawa. Temperature-depth relationships in the two boreholes are given. Seismic observation was made at the Higashizawa. In five days 43 shocks were recorded, of which 20 are thought to have occurred 2 to 20km from the observation station, that is, in and very near the Tanzawa mountains. None have shallower hypocenters than 2 km in depth.

  4. Distribution of glycerol dialkyl glycerol tetraethers in Tibetan hot springs

    Directory of Open Access Journals (Sweden)

    Liu He

    2012-05-01

    Full Text Available Isoprenoidal glycerol dialkyl glycerol tetraethers (iGDGTs from the Gulu hot springs (23–83.6 °C, pH > 7 and Yangbajing hot springs (80–128 °C, pH > 7 were analyzed in order to investigate the distribution of archaeal lipids among different hot springs in Tibet. A soil sample from Gulu was incubated at different temperatures and analyzed for changes in iGDGTs to help evaluate whether surrounding soil may contribute to the iGDGTs in hot springs. The sources of bacterial GDGTs (bGDGTs in these hot springs were also investigated. The results revealed different profiles of iGDGTs between Gulu and Yangbajing hot springs. Core iGDGTs and polar iGDGTs also presented different patterns in each hot spring. The PCA analysis showed that the structure of polar iGDGTs can be explained by three factors and suggested multiple sources of these compounds. Bivariate correlation analysis showed significant positive correlations between polar and core bGDGTs, suggesting the in situ production of bGDGTs in the hot springs. Furthermore, in the soil incubation experiment, temperature had the most significant influence on concentration of bGDGTs rather than iGDGTs, and polar bGDGTs had greater variability than core bGDGTs with changing temperature. Our results indicated that soil input had little influence on the composition of GDGTs in Tibetan hot springs. On the other hand, ring index and TEX86 values were both positively correlated with incubation temperature, suggesting that the structure of archaeal lipids changed in response to varying temperature during incubation.

  5. A study to evaluate therapeutic properties of minerals of manghopir hot spring, karachi

    International Nuclear Information System (INIS)

    Javed, A.; Iqbal, J.; Khan, F.A.; Siddiqui, I.

    2009-01-01

    European balneologists have extensively studied the therapeutic value of mineral water. Mineral springs with different mineral contents are recommended for various therapeutic uses. People have been using geothermal water for bathing and good health for many thousands of years A mineral hot spring has greater than 1000 mg/L (ppm) of naturally dissolved solids. Hot mineral spring water contains elements like calcium, magnesium, sodium, potassium as sulphates, bi- carbonates and chlorides, which are used externally to cure many diseases. Manghopir spring contain 38-84 mg/L calcium, 29-56 mg/L magnesium, 388-555 mg/L sodium, 411-599 mg/L chloride, 186-442 mg/L sulphate, 10-25 mg/L potassium, and 1509-2188 mg/L total dissolved solids while the pH was in the range of 7.2-7.8. The temperature of Manghopir Euthermal hot spring remains constant ranging between 40 to 47 degree C. (author)

  6. Geochemical studies of Ishiwa hot springs in Yamanashi Prefecture-yearly change of hot springs

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, T. (Yamanashi Prefecture Womens Junior College, Japan)

    1971-12-01

    The effect of drilling on the Ishiwa hot springs was studied. About 50 wells have been drilled since 1961 when the first well was drilled to a depth of 146 m where 47/sup 0/C water flowed at 1376 l/min. Changes have occurred in flow rate, temperature, and chemical composition of the spring water. In area A near the foot of northern Okura-Keijisan along the Byodo and Fuefuki rivers, the pH value was 8.0 to 8.2 when drilling began, but it is now 7.4 to 8.0. In area B in the central spring area along the Chikatsu water reservoir, the pH was about 8.5 when drilling began, but is presently 10. The shift of area A pH to acidic is thought to be due to the effect of river water. The shift in area B pH to alkaline was thought to be connected to the fountainhead with pH 10 which appeared in the Kami-Ogihara Resseki district in Shioyama City. The fountainhead was located along the Fuefuki River at the foot of Obosatsu, 20 km from the Ishiwa area.

  7. Global occurrence of archaeal amoA genes in terrestrial hot springs.

    Science.gov (United States)

    Zhang, Chuanlun L; Ye, Qi; Huang, Zhiyong; Li, Wenjun; Chen, Jinquan; Song, Zhaoqi; Zhao, Weidong; Bagwell, Christopher; Inskeep, William P; Ross, Christian; Gao, Lei; Wiegel, Juergen; Romanek, Christopher S; Shock, Everett L; Hedlund, Brian P

    2008-10-01

    Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86 degrees C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were

  8. Strontium isotopic composition of hot spring and mineral spring waters, Japan

    International Nuclear Information System (INIS)

    Notsu, Kenji; Wakita, Hiroshi; Nakamura, Yuji

    1991-01-01

    In Japan, hot springs and mineral springs are distributed in Quaternary and Neogene volcanic regions as well as in granitic, sedimentary and metamorphic regions lacking in recent volcanic activity. The 87 Sr/ 86 Sr ratio was determined in hot spring and mineral spring waters obtained from 47 sites. The ratios of waters from Quaternary and Neogene volcanic regions were in the range 0.703-0.708, which is lower than that from granitic, sedimentary and metamorphic regions (0.706-0.712). The geographical distribution of the ratios coincides with the bedrock geology, and particularly the ratios of the waters in Quaternary volcanic regions correlate with those of surrounding volcanic rocks. These features suggest that subsurface materials control the 87 Sr/ 86 Sr ratios of soluble components in the hot spring and mineral spring waters. (author)

  9. Proceedings of the second NATO-CCMS information meeting on dry hot rock geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, J.J. (comp.)

    1977-11-01

    A summary is presented of the second and last NATO-CCMS (North Atlantic Treaty Organization--Committee on Challenges of Modern Society) Geothermal Pilot Study Information Meeting on Dry Hot Rock Geothermal Energy. Only summaries of the formal presentations are included. Overviews of the Energy Research and Development Administration (ERDA) and the U.S. Geological Survey (USGS) geothermal projects are included with emphasis on the Los Alamos Scientific Laboratory (LASL) Hot Dry Rock Geothermal Energy Development Project. Reports of developments in nine foreign countries and on geothermal projects in US universities are also presented.

  10. Brevibacillus sediminis sp. nov., isolated from a hot spring.

    Science.gov (United States)

    Xian, Wen-Dong; Yin, Yi-Rui; Liu, Lan; Yuan, Chang-Guo; Hussain, Firasat; Khan, Inamullah; Habib, Neeli; Zhou, En-Min; Li, Wen-Jun

    2016-02-01

    Strain YIM 78300 T , a novel Gram-stain-positive, moderately thermophilic, endospore-forming, rod-shaped, motile bacterium, was recovered from the sediment of a hot spring in the Tagejia Geothermal Field, Angren, Tibet province, western China. Optimum growth was observed at 50-55 °C, at pH 7.0 and with 0-1.5 % (w/v) NaCl. Phylogenetic analysis of the 16S rRNA gene sequence of strain YIM 78300 T indicated that it belongs to the genus Brevibacillus . Similarity levels between the 16S rRNA gene sequences of the new isolate and those of the type strains of Brevibacillus members were 96.9-96.3 %; highest sequence similarity was with Brevibacillus thermoruber DSM 7064 T . The predominant menaquinone was MK-7 and the major cellular fatty acids were iso-C 15 : 0 and iso-C 17 : 0 . The major polar lipids were phosphatidyl- N -methylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, two unidentified phospholipids, an unidentified aminophospholipid and two unidentified polar lipids. The G+C content of the genomic DNA of strain YIM 78300 T was 57.9 mol%. Based on phylogenetic analyses, and physiological and biochemical characteristics, strain YIM 78300 T is considered to represent a novel species of the genus Brevibacillus , for which the name Brevibacillus sediminis sp. nov. is proposed. The type strain is YIM 78300 T ( = DSM 29928 T  = CPCC 100738 T ).

  11. Geothermal reservoir simulation of hot sedimentary aquifer system using FEFLOW®

    Science.gov (United States)

    Nur Hidayat, Hardi; Gala Permana, Maximillian

    2017-12-01

    The study presents the simulation of hot sedimentary aquifer for geothermal utilization. Hot sedimentary aquifer (HSA) is a conduction-dominated hydrothermal play type utilizing deep aquifer, which is heated by near normal heat flow. One of the examples of HSA is Bavarian Molasse Basin in South Germany. This system typically uses doublet wells: an injection and production well. The simulation was run for 3650 days of simulation time. The technical feasibility and performance are analysed in regards to the extracted energy from this concept. Several parameters are compared to determine the model performance. Parameters such as reservoir characteristics, temperature information and well information are defined. Several assumptions are also defined to simplify the simulation process. The main results of the simulation are heat period budget or total extracted heat energy, and heat rate budget or heat production rate. Qualitative approaches for sensitivity analysis are conducted by using five parameters in which assigned lower and higher value scenarios.

  12. Lanthanoid abundance of some neutral hot spring waters in Japan

    International Nuclear Information System (INIS)

    Kikawada, Yoshikazu; Oi, Takao; Honda, Teruyuki

    1999-01-01

    Contents of lanthanoids (Ln's) in some neutral hot spring waters as well as in acidic hot spring waters were determined by neutron activation analysis. It was found that a higher pH resulted in lower concentrations of Ln's; the value of correlation coefficient (r) between the logarithm of the concentration of Sm ([Sm]), chosen as the representative of Ln's, and the logarithm of pH was -0.90. The sum of [Al] and [Fe] was strongly correlated with [Ln]'s in the pH range of 1.3 and 8.8; the correlation was expressed as log[Sm] = 0.893 log([Al] + [Fe]) - 5.45 with the r value of 0.98. The sum of [Al] and [Fe] was thus a good measure of the Ln contents in acidic and neutral hot spring waters. The Ln abundance patterns of neutral hot spring waters with normal CO 2 concentrations had concave shapes with relative depletion in the middle-heavy Ln's and seemed to reflect the solubility of Ln carbonates. The neutral hot spring water with a high CO 2 content of 1,800 ppm showed a Ln pattern with a relative enrichment in the heavy Ln's and seemed to reflect the solubility of Ln's observed for CO 2 -rich solutions. (author)

  13. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing.

    Science.gov (United States)

    Chan, Chia Sing; Chan, Kok-Gan; Tay, Yea-Ling; Chua, Yi-Heng; Goh, Kian Mau

    2015-01-01

    The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0-9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community.

  14. Characteristics and Origins of Hot Springs in the Tatun Volcano Group in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Chia-Mei Liu

    2011-01-01

    Full Text Available This paper systematically surveyed distribution and field occurrences of 13 hot springs as well as geochemical investigation on the geothermal area of the Tatun Volcano Group (TVG. According to Piper diagrams, pH values, field occurrences and water-rock interactions, these hot springs can be classified into three types: (1 Type I, SO42- acidic water where the reservoir is located in the Wuchishan Formation; (2 Type II, HCO3- a near neutral spring where waters originate from the volcanic terrane (andesite; and (3 Type III, Cl- -rich acidic water where waters emanate from shallower Wuchishan Formation. In terms of isotopic ratio, δD and δ18O values, two groups of hot spring can be recognized. One is far away from the meteoric water line of the Tatun area with values ranging between -26.2‰ and -3.5‰, and from -3.2‰ to 1.6‰, respectively. However, another close to the meteoric water line of the Tatun area is between -28.4‰ and -13.6‰, and from -5.5‰ to -4.2‰, respectively. In addition, the δ34S value of thermal waters can also be distinguished into two groups, one ranging from 26.1‰ to 28.5‰, and the other between 0.8‰ and 7.8‰. Based on field occurrences and geochemical characteristics, a model has been proposed to illustrate the origin of these hot springs.

  15. Morphological and phylogenetic diversity of thermophilic cyanobacteria in Algerian hot springs.

    Science.gov (United States)

    Amarouche-Yala, Samia; Benouadah, Ali; El Ouahab Bentabet, Abd; López-García, Purificación

    2014-11-01

    Geothermal springs in Algeria have been known since the Roman Empire. They mainly locate in Eastern Algeria and are inhabited by thermophilic organisms, which include cyanobacteria forming mats and concretions. In this work, we have investigated the cyanobacterial diversity of these springs. Cyanobacteria were collected from water, concretions and mats in nine hot springs with water temperatures ranging from 39 to 93 °C. Samples were collected for isolation in culture, microscopic morphological examination, and molecular diversity analysis based on 16S rRNA gene sequences. Nineteen different cyanobacterial morphotypes were identified, the most abundant of which were three species of Leptolyngbya, accompanied by members of the genera Gloeocapsa, Gloeocapsopsis, Stigonema, Fischerella, Synechocystis, Microcoleus, Cyanobacterium, Chroococcus and Geitlerinema. Molecular diversity analyses were in good general agreement with classical identification and allowed the detection of additional species in three springs with temperatures higher than 50 °C. They corresponded to a Synechococcus clade and to relatives of the intracellularly calcifying Candidatus Gloeomargarita lithophora. The hottest springs were dominated by members of Leptolyngbya, Synechococcus-like cyanobacteria and Gloeomargarita, whereas Oscillatoriales other than Leptolyngbya, Chroococcales and Stigonematales dominated lower temperature springs. The isolation of some of these strains sets the ground for future studies on the biology of thermophilic cyanobacteria.

  16. Biodiversity of the microbial mat of the Garga hot spring.

    Science.gov (United States)

    Rozanov, Alexey Sergeevich; Bryanskaya, Alla Victorovna; Ivanisenko, Timofey Vladimirovich; Malup, Tatyana Konstantinovna; Peltek, Sergey Evgenievich

    2017-12-28

    Microbial mats are a good model system for ecological and evolutionary analysis of microbial communities. There are more than 20 alkaline hot springs on the banks of the Barguzin river inflows. Water temperature reaches 75 °C and pH is usually 8.0-9.0. The formation of microbial mats is observed in all hot springs. Microbial communities of hot springs of the Baikal rift zone are poorly studied. Garga is the biggest hot spring in this area. In this study, we investigated bacterial and archaeal diversity of the Garga hot spring (Baikal rift zone, Russia) using 16S rRNA metagenomic sequencing. We studied two types of microbial communities: (i) small white biofilms on rocks in the points with the highest temperature (75 °C) and (ii) continuous thick phototrophic microbial mats observed at temperatures below 70 °C. Archaea (mainly Crenarchaeota; 19.8% of the total sequences) were detected only in the small biofilms. The high abundance of Archaea in the sample from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. In the microbial mats, primary products were formed by cyanobacteria of the genus Leptolyngbya. Heterotrophic microorganisms were mostly represented by Actinobacteria and Proteobacteria in all studied samples of the microbial mats. Planctomycetes, Chloroflexi, and Chlorobi were abundant in the middle layer of the microbial mats, while heterotrophic microorganisms represented mostly by Firmicutes (Clostridia, strict anaerobes) dominated in the bottom part. Besides prokaryotes, we detect some species of Algae with help of detection their chloroplasts 16 s rRNA. High abundance of Archaea in samples from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. Metagenomic analysis of microbial communities of the microbial mat of Garga hot spring showed that

  17. Comparative metagenomics of eight geographically remote terrestrial hot springs

    DEFF Research Database (Denmark)

    Menzel, Peter; Islin, Sóley Ruth; Rike, Anne Gunn

    2015-01-01

    Hot springs are natural habitats for thermophilic Archaea and Bacteria. In this paper, we present the metagenomic analysis of eight globally distributed terrestrial hot springs from China, Iceland, Italy, Russia, and the USA with a temperature range between 61 and 92 (∘)C and pH between 1.8 and 7....... A comparison of the biodiversity and community composition generally showed a decrease in biodiversity with increasing temperature and decreasing pH. Another important factor shaping microbial diversity of the studied sites was the abundance of organic substrates. Several species of the Crenarchaeal order...

  18. Chemical and isotopic characteristics of geothermal fluids from Sulphur Springs, Saint Lucia

    Science.gov (United States)

    Joseph, Erouscilla P.; Fournier, Nicolas; Lindsay, Jan M.; Robertson, Richard; Beckles, Denise M.

    2013-03-01

    Sulphur Springs is a vigorous, geothermal field associated with the active Soufrière Volcanic Centre in southern Saint Lucia, Lesser Antilles island arc. The 'Sulphur Springs Park' is an important tourist attraction (touted as the 'world's only drive-through volcano') with some of the hot pools being developed into recreational pools. Some 200,000 people visit the park each year. Since 2001, the hydrothermal fluids of Sulphur Springs have been sampled as part of an integrated volcanic monitoring programme for the island. Gas and water samples were analysed to characterise the geochemistry of the hydrothermal system, and to assess the equilibrium state and subsurface temperatures of the reservoir. This has also enabled us, for the first time, to establish baseline data for future geochemical monitoring. The gases are of typical arc-type composition, with N2 excess and low He and Ar content. The dry gas composition is dominated by CO2 (ranging from 601-993 mmol/mol), with deeper magmatic sourced H2S-rich vapour undergoing boiling and redox changes in the geothermal reservoir to emerge with a hydrothermal signature in the fumarolic gases. Fluid contributions from magmatic degassing are also evident, mainly from the moderate to high contents of HCl and deeply-sourced H2S gas, respectively. Sulphur Springs hydrothermal waters have acid-sulphate type compositions (SO4 = 78-4008 mg/L; pH = 3-7), and are of primarily meteoric origin which have been affected by evaporation processes based on the enrichment in both δ18O and δD (δ18O = - 1 to 15‰ and δD = - 9 to 14‰ respectively) in relation to the global meteoric water line (GMWL). These waters are steam-heated water typically formed by absorption of H2S-rich gases in the near surface oxygenated groundwaters. Reservoir temperatures calculated from the evaluation of gas equilibria in the CO2-CH4-H2 system reveal higher temperatures (190 to 300 °C) than those derived from quartz geothermometry (95 to 169 °C), which

  19. Progress of the LASL dry hot rock geothermal energy project

    Science.gov (United States)

    Smith, M. C.

    1974-01-01

    The possibilities and problems of extracting energy from geothermal reservoirs which do not spontaneously yield useful amounts of steam or hot water are discussed. The system for accomplishing this which is being developed first is a pressurized-water circulation loop intended for use in relatively impermeable hot rock. It will consist of two holes connected through the hot rock by a very large hydraulic fracture and connected at the surface through the primary heat exchanger of an energy utilization system. Preliminary experiments in a hole 2576 ft (0.7852 km) deep, extending about 470 ft (143 m) into the Precambrian basement rock underlying the Jemez Plateau of north-central New Mexico, revealed no unexpected difficulties in drilling or hydraulically fracturing such rock at a temperature of approximately 100 C, and demonstrated a permeability low enough so that it appeared probable that pressurized water could be contained by the basement rock. Similar experiments are in progress in a second hole, now 6701 ft (2.043 km) deep, about 1.5 miles (2.4 km) south of the first one.

  20. Biogeochemical characteristics of Kuan-Tzu-Ling, Chung-Lun and Bao-Lai hot springs in southern Taiwan.

    Science.gov (United States)

    Maity, Jyoti Prakash; Liu, Chia-Chuan; Nath, Bibhash; Bundschuh, Jochen; Kar, Sandeep; Jean, Jiin-Shuh; Bhattacharya, Prosun; Liu, Jiann-Hong; Atla, Shashi B; Chen, Chien-Yen

    2011-01-01

    Hot springs are the important natural sources of geothermally heated groundwater from the Earth's crust. Kuan-Tzu-Ling (KTL), Chung-Lun (CL) and Bao-Lai (BL) are well-known hot springs in southern Taiwan. Fluid and mud (sediments) samples were collected from the eruption points of three hot springs for detailed biogeochemical characterization. The fluid sample displays relatively high concentrations of Na(+) and Cl(-) compared with K(+), Mg(2+), Ca(2+), NO(2) (-), and SO(4) (2-), suggesting a possible marine origin. The concentrations of Fe, Cr, Mn, Ni, V and Zn were significantly higher in the mud sediments compared with fluids, whereas high concentrations of As, Ba, Cu, Se, Sr and Rb were observed in the fluids. This suggests that electronegative elements were released during sediment-water interactions. High As concentration in the fluids was observed to be associated with low redox (Eh) conditions. The FTIR spectra of the humic acid fractions of the sediments showed the presence of possible functional groups of secondary amines, ureas, urethanesm (amide), and silicon. The sulfate-reducing deltaproteobacterium 99% similar to Desulfovibrio psychrotolerans (GU329907) were rich in the CL hot spring while mesophilic, proteolytic, thiosulfate- and sulfur-reducing bacterium that 99% similar to Clostridium sulfidigenes (GU329908) were rich in the BL hot spring.

  1. Estimate of Hot Dry Rock Geothermal Resource in Daqing Oilfield, Northeast China

    OpenAIRE

    Guangzheng Jiang; Yi Wang; Yizuo Shi; Chao Zhang; Xiaoyin Tang; Shengbiao Hu

    2016-01-01

    Development and utilization of deep geothermal resources, especially a hot dry rock (HDR) geothermal resource, is beneficial for both economic and environmental consideration in oilfields. This study used data from multiple sources to assess the geothermal energy resource in the Daqing Oilfield. The temperature logs in boreholes (both shallow water wells and deep boreholes) and the drilling stem test temperature were used to create isothermal maps in depths. Upon the temperature field and the...

  2. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    Science.gov (United States)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  3. Induced Seismicity at the UK "Hot Dry Rock" Test Site for Geothermal Energy Production

    OpenAIRE

    Li, Xun; Main, Ian; Jupe, Andrew

    2018-01-01

    In enhanced geothermal systems (EGS), fluid is injected at high pressure in order to stimulate fracturing and/or fluid flow through otherwise relatively impermeable underlying hot rocks to generate power and/or heat. The stimulation induces micro-earthquakes whose precise triggering mechanism and relationship to new and pre-existing fracture networks are still the subject of some debate. Here we analyse the dataset for induced micro-earthquakes at the UK “hot dry rock” experimental geothermal...

  4. Microbial diversity and autotrophic activity in Kamchatka hot springs.

    Science.gov (United States)

    Merkel, Alexander Yu; Pimenov, Nikolay V; Rusanov, Igor I; Slobodkin, Alexander I; Slobodkina, Galina B; Tarnovetckii, Ivan Yu; Frolov, Evgeny N; Dubin, Arseny V; Perevalova, Anna A; Bonch-Osmolovskaya, Elizaveta A

    2017-03-01

    Microbial communities of Kamchatka Peninsula terrestrial hot springs were studied using molecular, radioisotopic and cultural approaches. Analysis of 16S rRNA gene fragments performed by means of high-throughput sequencing revealed that aerobic autotrophic sulfur-oxidizing bacteria of the genus Sulfurihydrogenibium (phylum Aquificae) dominated in a majority of streamers. Another widely distributed and abundant group was that of anaerobic bacteria of the genus Caldimicrobium (phylum Thermodesulfobacteria). Archaea of the genus Vulcanisaeta were abundant in a high-temperature, slightly acidic hot spring, where they were accompanied by numerous Nanoarchaeota, while the domination of uncultured Thermoplasmataceae A10 was characteristic for moderately thermophilic acidic habitats. The highest rates of inorganic carbon assimilation determined by the in situ incubation of samples in the presence of 14 C-labeled bicarbonate were found in oxygen-dependent streamers; in two sediment samples taken from the hottest springs this process, though much weaker, was found to be not dependent on oxygen. The isolation of anaerobic lithoautotrophic prokaryotes from Kamchatka hot springs revealed a wide distribution of the ability for sulfur disproportionation, a new lithoautotrophic process capable to fuel autonomous anaerobic ecosystems.

  5. Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs.

    Science.gov (United States)

    Menzel, Peter; Gudbergsdóttir, Sóley Ruth; Rike, Anne Gunn; Lin, Lianbing; Zhang, Qi; Contursi, Patrizia; Moracci, Marco; Kristjansson, Jakob K; Bolduc, Benjamin; Gavrilov, Sergey; Ravin, Nikolai; Mardanov, Andrey; Bonch-Osmolovskaya, Elizaveta; Young, Mark; Krogh, Anders; Peng, Xu

    2015-08-01

    Hot springs are natural habitats for thermophilic Archaea and Bacteria. In this paper, we present the metagenomic analysis of eight globally distributed terrestrial hot springs from China, Iceland, Italy, Russia, and the USA with a temperature range between 61 and 92 (∘)C and pH between 1.8 and 7. A comparison of the biodiversity and community composition generally showed a decrease in biodiversity with increasing temperature and decreasing pH. Another important factor shaping microbial diversity of the studied sites was the abundance of organic substrates. Several species of the Crenarchaeal order Thermoprotei were detected, whereas no single bacterial species was found in all samples, suggesting a better adaptation of certain archaeal species to different thermophilic environments. Two hot springs show high abundance of Acidithiobacillus, supporting the idea of a true thermophilic Acidithiobacillus species that can thrive in hyperthermophilic environments. Depending on the sample, up to 58 % of sequencing reads could not be assigned to a known phylum, reinforcing the fact that a large number of microorganisms in nature, including those thriving in hot environments remain to be isolated and characterized.

  6. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Directory of Open Access Journals (Sweden)

    Zhou Jiang

    Full Text Available Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86. Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation, Sulfolobus (sulfur and iron oxidation, Metallosphaera and Acidicaldus (iron oxidation. Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  7. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Science.gov (United States)

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin

    2016-01-01

    Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  8. Correlation of geothermal springs with sub-surface fault terminations revealed by high-resolution, UAV-acquired magnetic data

    Science.gov (United States)

    Glen, Jonathan; A.E. Egger,; C. Ippolito,; N.Athens,

    2013-01-01

    There is widespread agreement that geothermal springs in extensional geothermal systems are concentrated at fault tips and in fault interaction zones where porosity and permeability are dynamically maintained (Curewitz and Karson, 1997; Faulds et al., 2010). Making these spatial correlations typically involves geological and geophysical studies in order to map structures and their relationship to springs at the surface. Geophysical studies include gravity and magnetic surveys, which are useful for identifying buried, intra-basin structures, especially in areas where highly magnetic, dense mafic volcanic rocks are interbedded with, and faulted against less magnetic, less dense sedimentary rock. High-resolution magnetic data can also be collected from the air in order to provide continuous coverage. Unmanned aerial systems (UAS) are well-suited for conducting these surveys as they can provide uniform, low-altitude, high-resolution coverage of an area without endangering crew. In addition, they are more easily adaptable to changes in flight plans as data are collected, and improve efficiency. We have developed and tested a new system to collect magnetic data using small-platform UAS. We deployed this new system in Surprise Valley, CA, in September, 2012, on NASA's SIERRA UAS to perform a reconnaissance survey of the entire valley as well as detailed surveys in key transition zones. This survey has enabled us to trace magnetic anomalies seen in ground-based profiles along their length. Most prominent of these is an intra-basin magnetic high that we interpret as a buried, faulted mafic dike that runs a significant length of the valley. Though this feature lacks surface expression, it appears to control the location of geothermal springs. All of the major hot springs on the east side of the valley lie along the edge of the high, and more specifically, at structural transitions where the high undergoes steps, bends, or breaks. The close relationship between the springs

  9. Geothermal Resources in China Les ressources géothermiques de la Chine

    OpenAIRE

    An K. S.; Huang S. Y.

    2006-01-01

    The present paper deals mainly with the distribution features, briefly describes the geology in the three geothermal fields of different types in Beijing, Yangbajing of Xizang (Tibet), and Dengwu of Guangdong, and finally gives on account of the development and utilization of geothermal resources. Up to now, more, than 2,500 geothermal water points (including hot springs, hot-water wells, and hot water in mines) have been found. Four major geothermal zones and three basic types of geothermal ...

  10. Hot and cold CO{sub 2}-rich mineral waters in Chaves geothermal area (northern Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Aires-Barros, Luis; Marques, Jose Manuel; Graca, Rui Cores; Matias, Maria Jose [Universidade Tecnica de Lisboa, Lab. de Mineralogia e Petrologia (LAMPIST), Lisboa (Portugal); Weijden, Cornelis H. van der; Kreulen, Rob [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Eggenkamp, Hermanus Gerardus M. [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Reading Univ., Postgraduate Research Inst. for Sedimentology, Reading (United Kingdom)

    1998-02-01

    In order to update the geohydrologic characterisation of Chaves geothermal area, coupled isotopic and chemical studies have been carried out on hot and cold CO{sub 2}-rich mineral waters discharging, in northern Portugal, along one of the major regional NNE-trending faults (the so-called Verin-Chaves-Penacova Depression). Based upon their location, and chemical and isotopic composition, the analysed waters can be divided into two groups. The northern group belongs to the HCO{sub 3}/Na/CO{sub 2}-rich type, and consists of the hot spring waters of Chaves and the cold spring waters of Vilarelho da Raia. The {delta}D and {delta}{sup 18}O values show that these waters are of meteoric origin. The lack of an {sup 18}O shift indicates that there is no evidence of water/rock interaction at high temperatures. The southern group includes the cold spring waters of Campilho/Vidago and Sabroso/Pedras Salgadas. Their chemistry is similar to that of the northern group but their heavier {delta}D and {delta}{sup 18}O values could be attributed to different recharge altitudes. Mixing between deep mineralised waters and dilute superficial waters of meteoric origin might explain the higher {sup 3}H activity found in the Vidago and Pedras Salgadas mineral waters. Alternatively, they could be mainly related to shallow underground flowpaths. The {delta}{sup 13}C values support a deep-seated origin for the CO{sub 2}. The {delta}{sup 37}Cl is comparable in all the mineral waters of the study areas, indicating a common origin of Cl. The {sup 87}Sr/{sup 86}Sr ratios in waters seem to be dominated by the dissolution of plagioclases or granitic rocks. (Author)

  11. Geologic setting and chemical characteristics of hot springs in central and western Alaska

    Science.gov (United States)

    Miller, Thomas P.; Barnes, Ivan; Pattan, William Wallace

    1973-01-01

    Numerous hot springs occur in a variety of geologic provinces in central and western Alaska. Granitic plutons are common to all the provinces and the hot springs are spatially associated with the contacts of these plutons. Of 23 hot springs whose bedrock geology is known, all occur within 3 miles of a granitic pluton. The occurrence of hot springs, however, appears to be independent of the age, composition, or magmatic history of the pluton.

  12. Colorado geothermal commercialization program. Geothermal energy opportunities at four Colorado towns: Durango, Glenwood Springs, Idaho Springs, Ouray

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.; Zimmerman, J.

    1981-01-01

    The potential of four prospective geothermal development sites in Colorado was analyzed and hypothetical plans prepared for their development. Several broad areas were investigated for each site. The first area of investigation was the site itself: its geographic, population, economic, energy demand characteristics and the attitudes of its residents relative to geothermal development potential. Secondly, the resource potential was described, to the extent it was known, along with information concerning any exploration or development that has been conducted. The third item investigated was the process required for development. There are financial, institutional, environmental, technological and economic criteria for development that must be known in order to realistically gauge the possible development. Using that information, the next concern, the geothermal energy potential, was then addressed. Planned, proposed and potential development are all described, along with a possible schedule for that development. An assessment of the development opportunities and constraints are included. Technical methodologies are described in the Appendix. (MHR)

  13. Hydrogeological controls of radon in a few hot springs in the Western Ghats at Ratnagiri district in Maharashtra, India

    International Nuclear Information System (INIS)

    Ansari, Md. Arzoo; Sharma, Suman; Saravana Kumar, U.; Chatterjee, Sitangshu; Diksha; Low, Upananda

    2014-01-01

    Geological structures (faults, fractures and weak zones) and high heat flow in geothermal areas allow easy passage for release of radon gas to the atmosphere. Radon is constantly transported from the Earth's interior and vented out through exhalation points at permeable fault zones. 222 Rn concentrations were measured in a few hot springs and nearby groundwater using RAD7 at Tural and Rajwadi, Ratnagiri district, Maharashtra. The 222 Rn concentrations in the hot springs vary from 1087 ± 132 to 1655 ± 177 Bq/m 3 at Tural and from 152 ± 67 to 350 ± 82 Bq/m 3 at Rajwadi. Groundwaters from wells within a radius of 200 m around the geothermal fields have radon concentration between 1087 ± 132 and 5445 ± 337 Bq/m 3 . We have assessed the radon activity in the vicinity of the hot springs to understand their hydrogeological control, origin of heat source and possible effect on the tourist and the human population residing nearby. (author)

  14. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Directory of Open Access Journals (Sweden)

    Jacob P. Beam

    2016-02-01

    Full Text Available Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA, and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III-oxide mat ecosystems. Spatial and temporal changes in Fe(III-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3 - 3.5; temperature = 68 - 75 °C in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4 - 40 d, and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 d, and reached steady-state levels within 14 - 30 d, corresponding to visible Fe(III-oxide accretion. Heterotrophic archaea colonized near 30 d, and emerged as the dominant functional guild after 70 d and in mature Fe(III-oxide mats (1 - 2 cm thick. First-order rate constants of Fe(III-oxide accretion ranged from 0.046 - 0.05 d-1, and in situ microelectrode measurements showed that the oxidation of Fe(II is limited by the diffusion of O2 into the Fe(III-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III-oxide mats are useful for understanding other Fe(II-oxidizing systems.

  15. Investigation of bacterial diversity of hot springs of Odisha, India

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Sahoo

    2015-12-01

    Full Text Available 16S rRNA deep sequencing analysis, targeting V3 region was performed using Illumina bar coded sequencing. Sediment samples from two hot springs (Atri and Taptapani were collected. Atri and Taptapani metagenomes were classified into 50 and 51 bacterial phyla. Proteobacteria (45.17% dominated the Taptapani sample metagenome followed by Bacteriodetes (23.43% and Cyanobacteria (10.48% while in the Atri sample, Chloroflexi (52.39%, Nitrospirae (10.93% and Proteobacteria (9.98% dominated. A large number of sequences remained taxonomically unresolved in both hot springs, indicating the presence of potentially novel microbes in these two unique habitats thus unraveling the importance of the current study. Metagenome sequence information is now available at NCBI, SRA database accession no. SRP057428.

  16. Diversity of thermophilic archaeal isolates from hot springs in Japan

    Science.gov (United States)

    Itoh, Takashi; Yoshikawa, Naoto; Takashina, Tomonori

    2005-09-01

    In the light of the significance of extremophiles as model organisms to access possible extraterrestiral life, we provide a short review of the systematics of thermophilic Archaea, and introduce our exploratory research of novel thermophilic Archaea from hot springs in Japan. Up to date, we have isolated 162 strains of the thermophilic Archaea from hot springs in Japan by the enrichment method or the most probable number/PCR method, and the 16S rRNA gene sequences were determined to reveal their phylogenetic diversity. The sequence comparison illustrated that the isolates belonged to the orders Sulfolobales (117 isolates) , Thermoproteales (29 isolates), Desulfurococcales (8 isolates) and Thermoplasmatales (8 isolates), and there were six separate lineages representing new genera, and at least seven new species as predicted by the phylogenetic distance to known species. The collection of isolates not only included novel taxa but would give some implication for a necessity to reevaluate the current taxonomy of the thermophilic Archaea.

  17. Mining Hot Springs for Biodiversity and Novel Enzymes

    DEFF Research Database (Denmark)

    Islin, Sóley Ruth

    organisms have proven to be a great source of novel enzymes that are valuable in a variety of industrial processes. We set out to search for novel thermophilic hydrolytic enzymes by taking samples from thermal environments around the world. We employed several different methods in achieving this, both......The existence of microbial life at extreme environments, such as hot springs, has been known for a few decades. The remarkable ability of microorganisms to withstand the extreme conditions of their habitats, has astounded scientist and pushed the limits of what was considered possible. Thermophilic...... culture-dependent as well as culture-independent methods. Each hot spring sample was enriched on various polymeric substrates at high temperatures in the search of thermophilic microorganism with the ability to degrade the substrate. Enzymatic activity of the cultures was confirmed, the most promising...

  18. Fiscal 1999 survey for promotion of geothermal energy development. Survey report of environmental impact survey - Hot spring fluctuation (No. B-5, Musadake district); 1999 nendo chinetsu kaihatsu sokushin chosa. Kankyo eikyo chosa hokokusho (onsen hendo) (No.B-5 Musadake chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    Research boreholes N11-MD-3 and -4 were drilled in Shibetsu-cho, Shibetsu-gun, Hokkaido, in the period July 1999 through December 1999, and thermal water was examined at the sites in July and November 1999. For the purpose of detecting the impact of the said work on the environment, local hot springs were examined for their status before, during, and after the drilling period. Measurements were conducted in the period August 5, 1998, through December 31, 2000. It was found that no fluctuation in water temperature or yield attributable to the drilling was detected. Hot springs were examined for nine items including water temperature and pH level at four spots which were Kaiyo-dai, River Tenyu, and Otoko-yu and Onna-yu of Kawakita Hot Spring, when 23-31 measurements were performed from each of the four. (NEDO)

  19. Cultivation and characterization of thermophilic Nitrospira species from geothermal springs in the US Great Basin, China, and Armenia.

    Science.gov (United States)

    Edwards, Tara A; Calica, Nicole A; Huang, Dolores A; Manoharan, Namritha; Hou, Weiguo; Huang, Liuqin; Panosyan, Hovik; Dong, Hailiang; Hedlund, Brian P

    2013-08-01

    Despite its importance in the nitrogen cycle, little is known about nitrite oxidation at high temperatures. To bridge this gap, enrichment cultures were inoculated with sediment slurries from a variety of geothermal springs. While nitrite-oxidizing bacteria (NOB) were successfully enriched from seven hot springs located in US Great Basin, south-western China, and Armenia at ≤ 57.9 °C, all attempts to enrich NOB from > 10 hot springs at ≥ 61 °C failed. The stoichiometric conversion of nitrite to nitrate, chlorate sensitivity, and sensitivity to autoclaving all confirmed biological nitrite oxidation. Regardless of origin, all successful enrichments contained organisms with high 16S rRNA gene sequence identity (≥ 97%) with Nitrospira calida. In addition, Armenian enrichments also contained close relatives of Nitrospira moscoviensis. Physiological properties of all enrichments were similar, with a temperature optimum of 45-50 °C, yielding nitrite oxidation rates of 7.53 ± 1.20 to 23.0 ± 2.73 fmoles cell(-1) h(-1), and an upper temperature limit between 60 and 65 °C. The highest rates of NOB activity occurred with initial NO2 - concentrations of 0.5-0.75 mM; however, lower initial nitrite concentrations resulted in shorter lag times. The results presented here suggest a possible upper temperature limit of 60-65 °C for Nitrospira and demonstrate the wide geographic range of Nitrospira species in geothermal environments. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Amorphous calcium carbonate associated with biofilms in hot spring deposits

    Science.gov (United States)

    Jones, Brian; Peng, Xiaotong

    2012-08-01

    Calcium carbonate nanoparticles are intimately associated with crystalline calcite and aragonite in the Eryuan, Gongxiaoshe, and Zhuyuan hot springs (water temperature > 75 °C), which are located in Yunnan Province, China. The nanoparticles, springs, the ACC is always found under, in, or on top of biofilms, commonly in close proximity to crystalline calcite and/or aragonite. Textural evidence indicates that the ACC probably developed in microdomains that develop in the complex biofilm hydrogels. Critically, there is no evidence to support the notion that the nanoparticles are calcified nannobacteria. In the Chinese springs, ACC appears to play a formative role in the development of wheat-sheaf arrays of aragonite crystals and some of the calcite crystals. Hollow cores in some of the aragonite bundles probably formed as ACC was dissolved and many of the aragonite crystals appear to have developed as ACC recrystallized. Similarly, layers of ACC that coat the surfaces of some calcite crystals could be diagenetically transformed into calcite. The development of ACC in hot spring systems may be widespread and may play a critical but transitory role in the development of crystalline CaCO3 in these high temperature environments.

  1. The Mycoflora of Hot Spring Soil in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Kuei-Yu Chen

    2003-09-01

    Full Text Available An investigation of the mycoflora in northern Taiwan from August 1999 to June 2000, particularly of thermophilic and thermotolerant fungi inhabiting sulfurous hot spring soils, resulted in identification 12 taxa: Aspergillus fumigatus var. fumigatus (66.85 %, A. fumigatus var. 1 with green colony (7.86 %, A. fumigatus var. 2 with brown colony (4.81 %, A. niger (1.14 %, unidentified Asperigillus sp. (0.045 %, Chrysosporium sp. (0.18 %, Papulaspora thermophila (2.72 %, Scytalidium thermophilum (0.045 %, Sporotrichum sp. (0.045 %, Mycelia sterilia sp.1 with white colony (6.63 %, Mycelia sterilia sp.2 with yellow colony (5.27 % and Mycelia sterilia sp. 3 with gray colony (4.405 %. A total of 2202 colonies were isolated from three sampling sites: site 1 (hot springhead, site 2 (2 m from site 1 and site 3 (4 m from site 1. Fungal colonies isolated as well as species percentage at three sites were as follows: 32.92 % in 9 taxa from site 1, 37.87 % in 11 taxa from site 2, and 29.21 % in 8 taxa from site 3. The dominant species was Aspergillus fumigatus var. fumigatus, which was isolated year around from three sampling sites. A. fumigatus var. 1 appeared from February to June 2000. A. fumigatus var. 2 was isolated only in August and October 1999. Within the sampling range of hot spring niches, there was evidence of the presence of ecotypes in the A. fumigatus complex. Chrysosporium sp. and Sporotrichum sp. were isolated only from the soils without hot water treatment, but Aspergillus sp. and Scytalidium thermophilum were isolated only from the soils pre-treated with hot water for 30 min. at 60℃. The significance level (P value of fungal communities between hot water treatment and no treatment was 0.866, indicating that no significant difference between both treatments.

  2. Feasibility for development of an aquaculture facility at Hot Spring Cove

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This report describes the feasibilty of obtaining geothermally warmed water for use in aquaculture at Hot Springs Cove, British Columbia, and concludes that while the sources can probably be assessed from two sites in the cove, neither this nor the quantity of water available can be known for certain without field trials. The report also examines the feasibility of culturing various species of sea life at Hot Springs Cove, and concludes that a combination of rearing coho salmon smolts and oysters, with the late addition of tilapia, appears to be the most suitable both for biological and economic reasons. The total capital investment amounts to about $1,033,000. Operating costs would be about $450,000 annually, and additional capital to cover this would be needed in the first years of operation. A business plan is provided which includes cash flow projections for the first nine years of operation, and this shows that a maximum investment of approximately $1.2 million would be needed by the third year of operation. If sufficient warm water is available, and the facility is operated successfully, it should pay off the investment in seven to nine years, provided that interest free loans are available for capital investments. 20 refs., 1 fig., 8 tabs.

  3. Isolation of diverse members of the Aquificales from geothermal springs in Tengchong, China

    OpenAIRE

    Hedlund, Brian P.; Reysenbach, Anna-Louise; Huang, Liuquin; Ong, John C.; Liu, Zizhang; Dodsworth, Jeremy A.; Ahmed, Reham; Williams, Amanda J.; Briggs, Brandon R.; Liu, Yitai; Hou, Weiguo; Dong, Hailiang

    2015-01-01

    The order Aquificales (phylum Aquificae) consists of thermophilic and hyperthermophilic bacteria that are prominent in many geothermal systems, including those in Tengchong, Yunnan Province, China. However, Aquificales have not previously been isolated from Tengchong. We isolated five strains of Aquificales from diverse springs (temperature 45.2–83.3°C and pH 2.6–9.1) in the Rehai Geothermal Field from sites in which Aquificales were abundant. Phylogenetic analysis showed that four of the str...

  4. Report on the FY 1998 survey for preservation of Jozankei Hot Spring. Hot spring variation survey; 1998 nendo Jozankei onsen hozen chosa. Onsen hendo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Of the FY 1998 survey for preservation of Jozankei Hot Spring, a survey was conducted with the aim of grasping the state of variation in ingredients of hot spring, etc. in the area and of elucidating the causes of hot spring variation. During the period from October 27, 1998 to August 28, 1999, the following were carried out: sampling of specimens of spring water at 6 spring sources, river water at 2 points and precipitation at 2 points; measurement of temperature, spring temperature, pH, electric conductivity, etc.; analyses of Na, Ca, CL, HCO{sub 3}, SiO{sub 2}, etc. The results of the analysis are as follows. As to spring sources, A-2, A-7 and B-1, the precipitation or river water flow rate seem to largely affect the variation in hot spring measuring values. As to spring resources, A-6 and B-4, the relation with the precipitation or river water flow rate is not clear, but a big change is recognized in the snow-melting season. The tendency to the two variations seems to be caused by the difference between the spring with which the river water is greatly concerned by the crack system of the spring having reached the river and the spring which was closed on the earth surface. The temperature variation of springs was considered to be affected by the river water which flowed into the springs. (NEDO)

  5. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing

    Directory of Open Access Journals (Sweden)

    Chia Sing eChan

    2015-03-01

    Full Text Available The Sungai Klah (SK hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-meter-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0 to 9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC. In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3−V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream and geochemical parameters (broad temperature and pH range. It is speculated that symbiotic relationships occur between the members of the community.

  6. The Co-Distribution of Nitrifying Archaea and Diazotrophic Bacteria in Geothermal Springs

    Science.gov (United States)

    Hamilton, T. L.; Jewell, T. N. M.; de la Torre, J. R.; Boyd, E. S.

    2014-12-01

    Microbial processes that regulate availability of nutrients play key roles in shaping community composition. All life requires fixed nitrogen (N), and its bioavailability is what often limits ecosystem productivity. Biological nitrogen fixation, or the reduction of dinitrogen (N2) to ammonia (NH3), is a keystone process in N limited ecosystems, providing nitrogen for members of the community. N2 fixing organisms likely represent a 'bottom up control' on the structure of communities that develop in N limited environments. N2 fixation is catalyzed by a limited number of metabolically diverse bacteria and some methanogenic archaea and occurs in a variety of physically and geochemically diverse environments. Nitrification, or the sequential oxidation of NH4+ to nitrite (NO2-) and ultimately nitrate (NO3-), is catalyzed by several lineages of Proteobacteria at temperatures of < 62°C and by members of the Thaumarcheota at temperatures up to 90°C. Nitrification can thus be considered a 'top down control' on the structure of communities that develop in N limited environments. Our research in Yellowstone National Park (YNP) reveals a strong correspondence between the distribution of ammonia oxidizing archaea (AOA) and nitrogen fixing aquificae (NFA) in nitrogen-limited geothermal hot springs over large environmental gradients. Based on the physiology of AOA and NFA, we propose that the strong co-distributional pattern results from interspecies interactions, namely competition for bioavailable ammonia. Our recent work has shown that in springs where the niche dimension of AOA and NFA overlap (e.g., Perpetual Spouter; pH 7.1, 86.4°C), the dissimilar affinities for NH4 result in AOA metabolism maintaining a low NH4(T) pool and selecting for inclusion of NFA during the assembly of these communities. Here, we examine in situ physiological interactions of AOA and NFA, tracking changes in transcript levels of key genes involved in nitrogen metabolism and carbon fixation of

  7. Hot dry rock geothermal energy: status of exploration and assessment. Report No. 1 of the hot dry rock assessment panel

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The status of knowledge of attempts to utilize hot dry rock (HDR) geothermal energy is summarized. It contains (1) descriptions or case histories of the ERDA-funded projects at Marysville, MT, Fenton Hill, NM, and Coso Hot Springs, CA; (2) a review of the status of existing techniques available for exploration and delineation of HDR; (3) descriptions of other potential HDR sites; (4) definitions of the probable types of HDR resource localities; and (5) an estimate of the magnitude of the HDR resource base in the conterminous United States. The scope is limited to that part of HDR resource assessment related to the determination of the extent and character of HDR, with emphasis on the igneous-related type. It is estimated that approximately 74 Q (1 Q = 1,000 Quads) of heat is stored in these sites within the conterminous U.S. at depths less than 10 km and temperatures above 150/sup 0/C, the minimum for power generation. (Q = 10/sup 18/ BTU = 10/sup 21/J; the total U.S. consumption for 1972 was approximately 0.07 Q). Approximately 6300 Q are stored in the conduction-dominated parts of the crust in the western U.S. (23% of the total surface area), again at depths less than 10 km and temperatures above 150/sup 0/C. Nearly 10,000 Q are believed to be contained in crustal rocks underlying the entire conterminous U.S., at temperatures above 150/sup 0/C. The resource base is significantly larger for lower grade heat. (JGB)

  8. Generation by heated rock. Technology for hot dry rock geothermal power; Yakeishi ni mizu de hatsuden. Koon gantai hatsuden no gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Y. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1995-06-15

    Japan is one of the most distinguished volcanic country in the world and about 8% of the active volcanos of the world are distributed in Japan. This kind of a large quantity and natural energy resource near us are used as hot springs in the whole country and as for electricity in 10 geothermal power stations. In future, if this enormous underground geothermal energy could be utilized safely and economically by using new power generation system like hot dry rock geothermal power generation (HDR), it may contribute a little to the 21st century`s energy problem of Japan. Central Research Inst. of Electric Power Industry has installed `Okachi HDR testing ground` in Okachi-machi of Akita Ken, and is carrying out experiments since 1989. Hot dry rock geothermal power generation is a method in which water is injected to the hot dry rock and the thermal energy is recovered that the natural rock bed is used as a boiler. However, development of many new technologies is necessary to bring this system in practical use. 9 refs., 5 figs., 1 tab.

  9. Study of tourists exposure rate in Mahallat hot Spring Region

    International Nuclear Information System (INIS)

    Tavakoli, H. M.B.; Fallah, M.G.; Ghiasinejad, M.

    2006-01-01

    Introduction: High level radiation areas have been recognized on various parts of the earth. Some of these areas include: Brasilia, India, and Iran. Mahallat hot spring region in the central part of Iran is also one of these areas. Study of exposure in these areas could be helpful in investigating the effects of ionizing radiation. Materials and Methods: In addition to several seasonal springs, Mahallat hot spring region contains five permanent springs named: Soleimani, Shafa, Dombe, Romatism and Sauda. Internal exposure (due to inhalation of radon gas and drinking water) and external exposure (due to cosmic rays and radioactive elements in the ground) to the tourists was studied. Used materials and apparatus include: RSS -112 ionizing chamber for environmental gamma rays exposure measurement, highly pure germanium detector for measuring radioactive elements in the ground, liquid scintillation counter for measuring 222 Rn gas concentration in water samples, Bubbler chamber and Locus cells for Rn concentration measurements (Emanation method) and Alfa guard detector for 226 Ra concentration measurements. Conclusions and Discussion: A total of 270 visitors are included in this study. Considering residual durations of the studied group in open and closed environment of bathrooms, hotel and inn rooms, obtained annual external effective dose is 75.4±8.7μSv and 138.3±11.8μSv for natives and travelers respectively. EEC coefficients has been used for calculating annual internal effective dose due to radon gas inhalation. Annual internal effective dose, in this path, is 0.9 and 2.1 mSv in open and closed environment for native and visitors respectively. Annual internal effective dose due to drinking water, is 0.43 and 0.09μSv for natives people and travelers, respectively. Measurements show that more than 90% of the received dose in the studied groups is due to radon gas inhalation. External and internal dose summation is 0.98 mSv for natives and 2.2 mSv for for

  10. Study of tourists exposure rate in Mahallat hot Spring Region

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, H. M.B. [Isfahan Univ. of Medical Sciences, Isfahan (Iran, Islamic Republic of); Fallah, M.G. [Isfahan University of Medical Sciences (Iran, Islamic Republic of); Ghiasinejad, M. [Iran Atomic Energy Organization, Tehran (Iran, Islamic Republic of)

    2006-07-01

    Introduction: High level radiation areas have been recognized on various parts of the earth. Some of these areas include: Brasilia, India, and Iran. Mahallat hot spring region in the central part of Iran is also one of these areas. Study of exposure in these areas could be helpful in investigating the effects of ionizing radiation. Materials and Methods: In addition to several seasonal springs, Mahallat hot spring region contains five permanent springs named: Soleimani, Shafa, Dombe, Romatism and Sauda. Internal exposure (due to inhalation of radon gas and drinking water) and external exposure (due to cosmic rays and radioactive elements in the ground) to the tourists was studied. Used materials and apparatus include: RSS -112 ionizing chamber for environmental gamma rays exposure measurement, highly pure germanium detector for measuring radioactive elements in the ground, liquid scintillation counter for measuring {sup 222}Rn gas concentration in water samples, Bubbler chamber and Locus cells for Rn concentration measurements (Emanation method) and Alfa guard detector for {sup 226}Ra concentration measurements. Conclusions and Discussion: A total of 270 visitors are included in this study. Considering residual durations of the studied group in open and closed environment of bathrooms, hotel and inn rooms, obtained annual external effective dose is 75.4{+-}8.7{mu}Sv and 138.3{+-}11.8{mu}Sv for natives and travelers respectively. EEC coefficients has been used for calculating annual internal effective dose due to radon gas inhalation. Annual internal effective dose, in this path, is 0.9 and 2.1 mSv in open and closed environment for native and visitors respectively. Annual internal effective dose due to drinking water, is 0.43 and 0.09{mu}Sv for natives people and travelers, respectively. Measurements show that more than 90% of the received dose in the studied groups is due to radon gas inhalation. External and internal dose summation is 0.98 mSv for natives and 2

  11. DYNAMIC MIXING MODEL OF THE CHIGNAHUAPAN THERMAL SPRING IN THE GEOTHERMAL ZONE OF THE ACOCULCO CALDERA, PUEBLA, MEXICO

    Science.gov (United States)

    Gutierrez-Cirlos, A.; Torres-Rodriguez, V.

    2009-12-01

    The Acoculco Caldera, of Pliocenic age, is located within the limits of the Transmexican Volcanic Belt (CVT) and the Sierra Madre Oriental (SMOr). The Acoculco geothermal zone consists of a 790m thick igneous sequence, related to a volcanic complex formed by andesites and rhyolitic domes emplaced in an 18 Km diameter annular fracture. It unconformably overlies a 5000 m thick section of folded and faulted Jurassic-Cretaceous carbonate rocks. The Chignahuapan Spring, located in the extreme eastern part of the Geothermal Zone of the Acoculco Caldera, yields temperatures of 49°C and discharges an estimated of 98 lps from the karstified Lower Cretaceous limestone. Both major and trace element geochemical analysis were carried out, and results were interpreted using Piper and Stiff diagrams, as well as geothermometry. The results indicate that water belongs to the calcium-bicarbonate type and yield temperatures in a range of 70-80°C at depth, which suggest an extensive lateral flow from the main reservoir and mixing with shallow groundwaters. The spring suffers significant variations in its temperature throughout the year, especially during the rainy season, when water temperature decreases up to 10°C. Analyzing the hot spring water temperature data from of the last 10 years and comparing it with the precipitation and air temperature curves of the region, we expect to develop a dynamic mixing model which depicts the relation between these factors and the importance of each one in the water temperature variation. We also look forward to be able to forecast water temperature trends for the next several years and correlate it with climate change in the area.

  12. Geothermal energy worldwide

    International Nuclear Information System (INIS)

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  13. Hydrogeochemical evaluation of conventional and hot dry rock geothermal resource potential in the Clear Lake region, California

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.

    1993-05-01

    Chemistry, stable isotope, and tritium contents of thermal/mineral waters in the Clear Lake region were used to evaluate conventional and hot dry rock (HDR) geothermal potential for electrical generation. Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connate types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connate (generic) end-members. The latter end-member has enriched {delta}D as well as enriched {delta}{sup 18}O, from typical high-temperature geothermal reservoir waters. Tritium data indicate most Clear Lake region waters are mixtures of old and young fluid components. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is {le}150{degree}C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures {le}150{degree}C (except for Sulphur Bank mine). HDR technologies are probably the best way to commercially exploit the known high-temperatures existing beneath the Clear Lake region particularly within and near the main Clear Lake volcanic field.

  14. Engineering and Economic Analysis of Non-Electric Applications for Geothermal Heat Resources at Desert Hot Sprlngs, Califormia

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-04-28

    A study will be conducted to evaluate non-electric applications of an identifiable geothermal energy resource in terms of engineering, economic, and institutional considerations and to formulate the preliminary design and implementation plan of the most promising demonstration or industrial development project. The purpose of this study is to determine potential options that the Energy Research and Development Administration may exercise in developing low- and moderate-temperature hydrothermal resources as an economically and environmentally acceptable alternate energy source and in enhancing the development of a coherent geothermal industry. The study will focus upon a reservoir-specific, multiple use application of hydrothermal resources underlying the City of Desert Hot Springs. Potential applications to be considered include a space conditioning utility network for commercial and residential buildings and an aquacultural and agricultural installation in individual as well as energy cascading systems. To extend the utility of the study findings, the evaluation of potential applications will be conducted within the wider context of satisfying broad regional needs. The study will also be conducted in the framework of a moving baseline to account for emerging technologies and possible future cost escalations and availability of alternate energy sources. The progress of this study will be monitored by an Advisory Board comprised of a representative cross-section of the geothermal community. Results of the study will be disseminated through reports and a workshop to maximize information exchange with the geothermal community. In addition, a self-start manual will be prepared and distributed so that interested communities having similar geothermal resources can readily evaluate appropriate nonelectric applications to meet their specific needs and gain added insight into how best to implement these applications.

  15. A multi-disciplinary investigation of Irish warm springs and their potential for geothermal energy provision.

    Science.gov (United States)

    Blake, Sarah; Jones, Alan G.; Henry, Tiernan

    2015-04-01

    Irish warm springs are one of a set of several target types that are being evaluated for their geothermal energy potential during the course of the island-wide assessment of the geothermal energy potential of Ireland under the IRETHERM project (www.iretherm.ie). Forty-two warm springs and warm shallow groundwater occurrences have been recorded in Ireland; water temperatures in the springs (approx. 12-25 °C) are elevated with respect to average Irish groundwater temperatures (10-11 °C). This study focuses on warm springs in east-central Ireland found in the Carboniferous limestone of the Dublin Basin. A combination of geophysical methods (controlled source electromagnetics (CSEM) and audio-magnetotellurics (AMT)) and hydrochemical analyses (including time-lapse temperature and electrical conductivity measurements) have been utilised at several of the springs to determine the source of the heated waters at depth and the nature of the geological structures that deliver the warm waters to the surface. Using the example of St. Gorman's Well, Co. Meath, we show how the combination of these different methods of investigation and the interpretation of these various data sets enables us to better understand the physical and chemical variability of the spring through time. This will provide the basis for an assessment of the source of these thermal waters as a potential geothermal energy reservoir and will allow for more precise characterisation of the groundwater resource. We present subsurface models derived from new geophysical data collected at St. Gorman's Well in 2013. This high-resolution AMT survey consisted of a grid of 40 soundings recorded at approximately 200 m intervals centred on the spring. The aim of the survey was to image directly any (electrically conductive) fluid conduit systems that may be associated with the springs and to provide an understanding of the observed association of the Irish warm springs with major structural lineaments, such as the NE

  16. Hydrosalinity studies of the Virgin River, Dixie Hot Springs, and Littlefield Springs, Utah, Arizona, and Nevada

    Science.gov (United States)

    Gerner, Steven J.; Thiros, Susan A.; Gerner, Steven J.; Thiros, Susan A.

    2014-01-01

    The Virgin River contributes a substantial amount of dissolved solids (salt) to the Colorado River at Lake Mead in the lower Colorado River Basin. Degradation of Colorado River water by the addition of dissolved solids from the Virgin River affects the suitability of the water for municipal, industrial, and agricultural use within the basin. Dixie Hot Springs in Utah are a major localized source of dissolved solids discharging to the Virgin River. The average measured discharge from Dixie Hot Springs during 2009–10 was 11.0 cubic feet per second (ft3/s), and the average dissolved-solids concentration was 9,220 milligrams per liter (mg/L). The average dissolved-solids load—a measurement that describes the mass of salt that is transported per unit of time—from Dixie Hot Springs during this period was 96,200 tons per year (ton/yr). Annual dissolved-solids loads were estimated at 13 monitoring sites in the Virgin River Basin from streamflow data and discrete measurements of dissolved-solids concentrations and (or) specific conductance. Eight of the sites had the data needed to estimate annual dissolved-solids loads for water years (WYs) 1999 through 2010. During 1999–2010, the smallest dissolved-solids loads in the Virgin River were upstream of Dixie Hot Springs (59,900 ton/yr, on average) and the largest loads were downstream of Littlefield Springs (298,200 ton/yr, on average). Annual dissolved-solids loads were smallest during 2002–03, which was a period of below normal precipitation. Annual dissolved-solids loads were largest during 2005—a year that included a winter rain storm that resulted in flooding throughout much of the Virgin River Basin. An average seepage loss of 26.7 ft3/s was calculated from analysis of monthly average streamflow from July 1998 to September 2010 in the Virgin River for the reach that extends from just upstream of the Utah/Arizona State line to just above the Virgin River Gorge Narrows. Seepage losses from three river reaches

  17. Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs.

    Science.gov (United States)

    Pearson, Ann; Pi, Yundan; Zhao, Weidong; Li, WenJun; Li, Yiliang; Inskeep, William; Perevalova, Anna; Romanek, Christopher; Li, Shuguang; Zhang, Chuanlun L

    2008-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87 degrees C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX(86) paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleoclimate studies.

  18. In situ ecophysiology of Aigarchaeota from an oxic, hot-spring filamentous 'streamer' community

    Science.gov (United States)

    Beam, J.; Jay, Z.; Tringe, S. G.; Glavina del Rio, T.; Rusch, D.; Schmid, M.; Wagner, M.; Inskeep, W.

    2014-12-01

    The candidate phylum Aigarchaeota contains thermophilic archaea from terrestrial, subsurface, and marine geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, an accurate description of their metabolism, potential ecological interactions, and role in biogeochemical cycling is lacking. Here we report possible ecological interactions and the in situ metabolism of an uncultivated lineage of Aigarchaeota from an oxic, terrestrial hot-spring filamentous 'streamer' community (Octopus Spring, pH = 8; T = 78 - 84 °C, Yellowstone National Park, Wyoming, USA). Fluorescence in situ hybridization (FISH) was combined with detailed genomic and transcriptomic reconstruction to elucidate the ecophysiological role of Aigarchaeota in these streamer communities. This novel population of Aigarchaeota are filamentous (~500 nm diameter by ~10-30 μm length), which is consistent with the morphology predicted by the presence and transcription of a single actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both thermophilic bacteria and archaea. Metabolic reconstruction suggests that this aigarchaeon is an aerobic, chemoorganotroph. A single heme copper oxidase complex was identified in de novo genome assemblies, and was highly transcribed in environmental samples. Potential electron donors include acetate, fatty acids, sugars, peptides, and aromatic compounds. Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this population of Aigarchaeota likely utilizes a broad range of reduced carbon substrates. Potential electron donors for this population may include extracellular polymeric substances produced by other microorganisms in close proximity. Flagellum genes were also highly transcribed, which suggests a potential mechanism for motility and/or cell-cell attachment

  19. Numerical investigation on the implications of spring temperature and discharge rate with respect to the geothermal background in a fault zone

    Science.gov (United States)

    Jiang, Zhenjiao; Xu, Tianfu; Mariethoz, Gregoire

    2018-04-01

    Geothermal springs are some of the most obvious indicators of the existence of high-temperature geothermal resources in the subsurface. However, geothermal springs can also occur in areas of low average subsurface temperatures, which makes it difficult to assess exploitable zones. To address this problem, this study quantitatively analyzes the conditions associated with the formation of geothermal springs in fault zones, and numerically investigates the implications that outflow temperature and discharge rate from geothermal springs have on the geothermal background in the subsurface. It is concluded that the temperature of geothermal springs in fault zones is mainly controlled by the recharge rate from the country rock and the hydraulic conductivity in the fault damage zone. Importantly, the topography of the fault trace on the land surface plays an important role in determining the thermal temperature. In fault zones with a permeability higher than 1 mD and a lateral recharge rate from the country rock higher than 1 m3/day, convection plays a dominant role in the heat transport rather than thermal conduction. The geothermal springs do not necessarily occur in the place having an abnormal geothermal background (with the temperature at certain depth exceeding the temperature inferred by the global average continental geothermal gradient of 30 °C/km). Assuming a constant temperature (90 °C here, to represent a normal geothermal background in the subsurface at a depth of 3,000 m), the conditions required for the occurrence of geothermal springs were quantitatively determined.

  20. Subaqueous hot springs in Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay (SW Turkey): Locations, chemistry and origins

    Science.gov (United States)

    Avşar, Özgür; Avşar, Ulaş; Arslan, Şebnem; Kurtuluş, Bedri; Niedermann, Samuel; Güleç, Nilgün

    2017-10-01

    In this study, horizontal temperature measurements along organized grids have been used to detect subaqueous hot springs. The study area, located in the southwest of Turkey and comprised of Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay, was scanned by measuring temperatures horizontally, 2-3 m above the bottom of the lake or sea. After analyzing the temperature data along the grids, the locations with anomalous temperature values were detected, and divers headed here for further verification. Accordingly, among these anomalies, the divers confirmed seven of them as subaqueous hot springs. Three of these hot springs are located in the Köyceğiz Lake, three of them are located in the Dalyan Channel and one hot spring is located in the Fethiye-Göcek Bay. At the locations where temperature anomalies were detected, the divers collected samples directly from the subaqueous hot spring using a syringe-type sampler. We evaluated these water samples together with samples collected from hot and cold springs on land and from local rivers, lakes and the sea, with an aim to generate a conceptual hydrogeochemical model of the geothermal system in the study area. This model predicts that rainwater precipitating in the highlands percolates through fractures and faults into the deeper parts of the Earth's crust, here it is heated and ascends through the sea bottom via buried faults. Pervious carbonate nappes that are underlain and overlain by impervious rocks create a confined aquifer. The southern boundary of the Carbonate-Marmaris nappes is buried under alluvium and/or sea/lake water bodies and this phenomenon determines whether hot springs occur on land or subaqueous. The chemical and isotopic properties of the hot springs point to seawater mixing at deep levels. Thus, the mixing most probably occurs while the water is ascending through the faults and fractures. The gas geochemistry results reveal that the lowest mantle He contributions occur in the samples from K

  1. Subaqueous hot springs in Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay (SW Turkey): Locations, chemistry and origins

    KAUST Repository

    Avşar, Özgür

    2017-08-07

    In this study, horizontal temperature measurements along organized grids have been used to detect subaqueous hot springs. The study area, located in the southwest of Turkey and comprised of Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay, was scanned by measuring temperatures horizontally, 2–3m above the bottom of the lake or sea. After analyzing the temperature data along the grids, the locations with anomalous temperature values were detected, and divers headed here for further verification. Accordingly, among these anomalies, the divers confirmed seven of them as subaqueous hot springs. Three of these hot springs are located in the Köyceğiz Lake, three of them are located in the Dalyan Channel and one hot spring is located in the Fethiye-Göcek Bay. At the locations where temperature anomalies were detected, the divers collected samples directly from the subaqueous hot spring using a syringe-type sampler. We evaluated these water samples together with samples collected from hot and cold springs on land and from local rivers, lakes and the sea, with an aim to generate a conceptual hydrogeochemical model of the geothermal system in the study area. This model predicts that rainwater precipitating in the highlands percolates through fractures and faults into the deeper parts of the Earth\\'s crust, here it is heated and ascends through the sea bottom via buried faults. Pervious carbonate nappes that are underlain and overlain by impervious rocks create a confined aquifer. The southern boundary of the Carbonate-Marmaris nappes is buried under alluvium and/or sea/lake water bodies and this phenomenon determines whether hot springs occur on land or subaqueous. The chemical and isotopic properties of the hot springs point to seawater mixing at deep levels. Thus, the mixing most probably occurs while the water is ascending through the faults and fractures. The gas geochemistry results reveal that the lowest mantle He contributions occur in the samples from K

  2. An environmental survey of Serpentine Hot Springs: Geology, hydrology, geochemistry, and microbiology

    Science.gov (United States)

    Nordstrom, D. Kirk; Hasselbach, Linda; Ingebritsen, Steven E.; Skorupa, Dana; McCleskey, R. Blaine; McDermott, Timothy R.

    2015-01-01

    Serpentine Hot Springs is the most visited site in the Bering Land Bridge National Preserve. The hot springs have traditionally been used by the Native people of the Seward Peninsula for religious, medicinal and spiritual purposes and continue to be used in many of the same ways by Native people today. The hot springs are also popular with non-Native users from Nome and other communities, recreational users and pilots from out of the area, and hunters and hikers.

  3. A Geological and Geophysical Study of the Geothermal Energy Potential of Pilgrim Springs, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Donald L.; Forbes, Robert B. [eds.

    1980-01-01

    The Pilgrim Springs geothermal area, located about 75 km north of Nome, was the subject of an intensive, reconnaissance-level geophysical and geological study during a 90-day period in the summer of 1979. The thermal springs are located in a northeast-oriented, oval area of thawed ground approximately 1.5 km{sup 2} in size, bordered on the north by the Pilgrim River. A second, much smaller, thermal anomaly was discovered about 3 km northeast of the main thawed area. Continuous permafrost in the surrounding region is on the order of 100 m thick. Present surface thermal spring discharge is {approx} 4.2 x 10{sup -3} m{sup 3} s{sup -1} (67 gallons/minute) of alkali-chloride-type water at a temperature of 81 C. The reason for its high salinity is not yet understood because of conflicting evidence for seawater vs. other possible water sources. Preliminary Na-K-Ca geothermometry suggests deep reservoir temperatures approaching 150 C, but interpretation of these results is difficult because of their dependence on an unknown water mixing history. Based on these estimates, and present surface and drill hole water temperatures, Pilgrim Springs would be classified as an intermediate-temperature, liquid-dominated geothermal system.

  4. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids

    Science.gov (United States)

    Suryantini; Rachmawati, C.; Abdurrahman, M.

    2017-12-01

    Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is

  5. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Directory of Open Access Journals (Sweden)

    Jingyan Liang

    Full Text Available Hot spring or hot spa bathing (Onsen is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.

  6. Cancer mortality and other causes of death in users of geothermal hot water.

    Science.gov (United States)

    Kristbjornsdottir, Adalbjorg; Rafnsson, Vilhjalmur

    2015-01-01

    Residents of geothermal areas have increased incidence of non-Hodgkin's lymphoma, breast, prostate, and kidney cancers. The aim was to study whether this is also reflected in cancer mortality among the population using geothermal hot water for space heating, washing, and showering. The follow-up was from 1981 to 2009. Personal identifier of those 5-64 years of age was used in record linkage with nationwide death registry. Thus, vital and emigration status was ascertained. The exposed population was defined as inhabitants of communities with district heating generated from geothermal wells since 1972. Reference populations were inhabitants of other areas with different degrees of volcanic/geothermal activity. Hazard ratio (HR) and 95% confidence intervals (CI) were adjusted for age, gender, education, housing, reproductive factors and smoking habits. Among those using geothermal water, the HR for all causes of death was 0.98 (95% CI 0.91-1.05) as compared with cold reference area. The HR for breast cancer was 1.53 (1.04-2.24), prostate cancer 1.74 (1.21-2.52), kidney cancer 1.78 (1.03-3.07), and for non-Hodgkin's lymphoma 2.01 (1.05-3.38). HR for influenza was 3.36 (1.32-8.58) and for suicide 1.49 (1.03-2.17). The significant excess mortality risk of breast and prostate cancers, and non-Hodgkin's lymphoma confirmed the results of similarly designed studies in Iceland on cancer incidence among populations from high-temperature geothermal areas and users of geothermal hot water. The risk is not confined to cancers with good prognosis, but also concerns fatal cancers. Further studies are needed on the chemical and physical content of the water and the environment emissions in geothermal areas.

  7. Hot spring therapy of atomic bomb exposed patients, (9)

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, O [Balneogic Sanatorium for the Atomic Bomb Injured Beppu, Oita (Japan); Tsuji, H

    1978-03-01

    The following description shows the statistics and the results of medical examinatin concerning the patients utilized Beppu Atomic Bomb Center from April, 1977, to March, 1978. Number of persons utilized the center was 3904, and 20285 man-days in total. Number of case treated there was 268. Number of diseases amounted to 442 of 66 sorts, excluding temporary of acute diseases such as acute entergastritis and cold diseases, etc. According to the report by the Ministry of Health and Welfare, atomic bomb-exposed persons show twice as much rate of incidence as normal persons, and owing to aging, many of them have more than two kinds of diseases. Among the diseases, 60 cases were hypertension, 32 heart disease, 30 knee-arthritis, 26 diabetes, 25 hepatitis, 23 spondylosis deformans, etc. Among 268 cases treated by hot spring therapy, 6 were totally cured, and 252 showed alleviation, while 10 showed no change.

  8. Geothermal Potential Based on Physical Characteristics of the Region (Case Study: Mount Karang, Pandeglang Regency and Banten Province

    Directory of Open Access Journals (Sweden)

    Russel Fhillipo

    2018-01-01

    Full Text Available This research is about geothermal potential of Mount Karang, Banten Province which is based on the characteristics of the region. This research method used is geochemistry sample of hot springs and integrated with GIS method for spatial of geothermal potential. Based on the geothermal potential, Mount Karang is divided into three regions, ie high potential, normal potential, and low potential. The high geothermal potential region covers an area of 24.16 Km2 and which there are Cisolong and Banjar 2 hot springs. The normal potential covers Kawah hot spring. Index of the fault of Mount Karang region is one of the significant physical characteristics to determine geothermal potential.

  9. Geochemistry of thermal/mineral waters in the Clear Lake region, California, and implications for hot dry rock geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.; Mansfield, J.

    1993-02-01

    Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connote types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast, ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connote end-members. The latter end-member has enriched [delta]D as well as enriched d[sup l8]O, very different from typical high-temperature geothermal reservoir waters. Tritium data and modeling of ages indicate most Clear Lake region waters are 500 to > 10,000 yr., although mixing of old and young components is implied by the data. The age of end-member connate water is probably > 10,000 yr. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is [le] 150[degrees]C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures [le] 150[degrees]C (except for Sulphur Bank Mine). Hot dry rock technologies are the best way to commercially exploit the known high temperatures existing beneath the Clear Lake region, particularly within the main Clear Lake volcanic field.

  10. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    Science.gov (United States)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  11. Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs.

    Science.gov (United States)

    Dodsworth, Jeremy A; McDonald, Austin I; Hedlund, Brian P

    2012-08-01

    To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting chemolithotrophy in two US Great Basin hot springs, taking into account the effects of changing reactant and product activities on the Gibbs free energy as each reaction progressed. Results ranged from 1.2 × 10(-5) to 3.6 J kg(-1) spring water, or 3.7 × 10(-5) to 11.5 J s(-1) based on measured flow rates, with aerobic oxidation of CH(4) or NH4 + giving the highest average yields. Energy yields calculated without constraining pH were similar to those at constant pH except for reactions where H(+) was consumed, which often had significantly lower yields when pH was unconstrained. In contrast to the commonly used normalization of reaction chemical affinities per mole of electrons transferred, reaction energy yields for a given oxidant varied by several orders of magnitude and were more sensitive to differences in the activities of products and reactants. The high energy yield of aerobic ammonia oxidation is consistent with previous observations of significant ammonia oxidation rates and abundant ammonia-oxidizing archaea in sediments of these springs. This approach offers an additional lens through which to view the thermodynamic landscape of geothermal springs. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs

    Science.gov (United States)

    Hedlund, Brian P.; Paraiso, Julienne J.; Williams, Amanda J.; Huang, Qiuyuan; Wei, Yuli; Dijkstra, Paul; Hungate, Bruce A.; Dong, Hailiang; Zhang, Chuanlun L.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31–95°C; pH: 6.8–10.7). bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal). The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS−) and positively with properties of oxygenated, low temperature sites (O2, NO−3). Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤70°C). PMID:23964271

  13. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs in U.S. Great Basin hot springs

    Directory of Open Access Journals (Sweden)

    Brian P. Hedlund

    2013-08-01

    Full Text Available Branched glycerol dialkyl glycerol tetraethers (bGDGTs are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31-95°C; pH: 6.8-10.7. bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal. The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤ 70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS- and positively with properties of oxygenated, low temperature sites (O2, NO3-. Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤ 70°C.

  14. Iron Homeostasis in Yellowstone National Park Hot Spring Microbial Communities

    Science.gov (United States)

    Brown, I.; Tringe, S. G.; Franklin, H.; Bryant, D. A.; Klatt, C. G.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    It has been postulated that life may have originated on Earth, and possibly on Mars, in association with hydrothermal activity and high concentrations of ferrous iron. However, it is not clear how an iron-rich thermal hydrosphere could be hospitable to microbes, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, the study of microbial diversity in iron-depositing hot springs (IDHS) and the mechanisms of iron homeostasis and suppression of oxidative stress may help elucidate how Precambrian organisms could withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe(2+) and O2. Proteins and clusters of orthologous groups (COGs) involved in the maintenance of Fe homeostasis found in cyanobacteria (CB) inhabiting environments with high and low [Fe] were main target of this analysis. Preliminary results of the analysis suggest that the Chocolate Pots (CP) microbial community is heavily dominated by phototrophs from the cyanobacteria (CB), Chloroflexi and Chlorobi phyla, while the Mushroom Spring (MS) effluent channel harbors a more diverse community in which Chloroflexi are the dominant phototrophs. It is speculated that CB inhabiting IDHS have an increased tolerance to both high concentrations of Fe(2+) and ROS produced in the Fenton reaction. This hypothesis was explored via a comparative analysis of the diversity of proteins and COGs involved in Fe and redox homeostasis in the CP and MS microbiomes.

  15. Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993

    Energy Technology Data Exchange (ETDEWEB)

    Blackett, R.E.

    1994-07-01

    The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

  16. Isolation of diverse members of the Aquificales from geothermal springs in Tengchong, China.

    Science.gov (United States)

    Hedlund, Brian P; Reysenbach, Anna-Louise; Huang, Liuquin; Ong, John C; Liu, Zizhang; Dodsworth, Jeremy A; Ahmed, Reham; Williams, Amanda J; Briggs, Brandon R; Liu, Yitai; Hou, Weiguo; Dong, Hailiang

    2015-01-01

    The order Aquificales (phylum Aquificae) consists of thermophilic and hyperthermophilic bacteria that are prominent in many geothermal systems, including those in Tengchong, Yunnan Province, China. However, Aquificales have not previously been isolated from Tengchong. We isolated five strains of Aquificales from diverse springs (temperature 45.2-83.3°C and pH 2.6-9.1) in the Rehai Geothermal Field from sites in which Aquificales were abundant. Phylogenetic analysis showed that four of the strains belong to the genera Hydrogenobacter, Hydrogenobaculum, and Sulfurihydrogenibium, including strains distant enough to likely justify new species of Hydrogenobacter and Hydrogenobaculum. The additional strain may represent a new genus in the Hydrogenothermaceae. All strains were capable of aerobic respiration under microaerophilic conditions; however, they had variable capacity for chemolithotrophic oxidation of hydrogen and sulfur compounds and nitrate reduction.

  17. Isolation of diverse members of the Aquificales from geothermal springs in Tengchong, China

    Directory of Open Access Journals (Sweden)

    Brian P. Hedlund

    2015-02-01

    Full Text Available The order Aquificales (phylum Aquificae consists of thermophilic and hyperthermophilic bacteria that are prominent in many geothermal systems, including those in Tengchong, Yunnan Province, China. However, Aquificales have not previously been isolated from Tengchong. We isolated five strains of Aquificales from diverse springs (temperature 60.0-82.9°C and pH 2.6-8.9 in the Rehai Geothermal Field from sites in which Aquificales were abundant. Phylogenetic analysis showed that four of the strains belong to the genera Hydrogenobacter, Hydrogenobaculum, and Sulfurihydrogenibium, including strains distant enough to likely justify new species of Hydrogenobacter and Hydrogenobaculum. The additional strain may represent a new genus in the Hydrogenothermaceae. All strains were capable of aerobic respiration under microaerophilic conditions; however, they had variable capacity for chemolithotrophic oxidation of hydrogen and sulfur compounds and nitrate reduction.

  18. Field observations and management strategy for hot spring wastewater in Wulai area, Taiwan.

    Science.gov (United States)

    Lin, J Y; Chen, C F; Lei, F R; Hsieh, C D

    2010-01-01

    Hot springs are important centers for recreation and tourism. However, the pollution that may potentially be caused by hot spring wastewater has rarely been discussed. More than half of Taiwan's hot springs are located in areas where the water quality of water bodies is to be protected, and untreated wastewater could pollute the receiving water bodies. In this study, we investigate hot spring wastewater in the Wulai area, one of Taiwan's famous hot spring resorts. Used water from five hot spring hotels was sampled and ten sampling events were carried out to evaluate the changes in the quality of used water in different seasons, at different periods of the week, and from different types of hotels. The concentrations of different pollutants in hot spring wastewater were found to exhibit wide variations, as follows: COD, 10-250 mg/L; SS, N.D.-93 mg/L; NH(3)-N, 0.01-1.93 mg/L; TP, 0.01-0.45 mg/L; and E. coli, 10-27,500 CFU/100 mL. The quality of hot spring wastewater depends on the operation of public pools, because this affects the frequency of supplementary fresh water and the outflow volume. Two management strategies, namely, onsite treatment systems and individually packaged treatment equipment, are considered, and a multi-objective optimization model is used to determine the optimal strategy.

  19. A preliminary survey of radon concentrations in South Island hot springs

    International Nuclear Information System (INIS)

    Whitehead, N.E.

    1976-02-01

    Radon 222 was determined in hot spring waters from the South Island of New Zealand by a method involving the radiochemical isolation of 214 Bi. The results ranged from 137 to 1830 pCi/l with a mean of 738 pCi/l. These results are lower than those reported in the literature for North Island hot springs. (auth.)

  20. Microstructure of Sinter Deposit Formed at Hot Springs in West Sumatera

    Science.gov (United States)

    Putra, A.; Inanda, D. Y.; Buspa, F.; Salim, A. F.

    2018-03-01

    Sinter deposit emerged and spread at several hot springs in West Sumatera is divided into three types, they are full silica, half silica-carbonate and full carbonate. This work intends to investigate the characteristic of each type by its crystalline structure and morphology and its correlation to surface temperature. The research is focused on Sapan Maluluang hot spring (full silica), Garara hot spring (half silica-carbonate) and Bawah Kubang hot spring (full carbonate). Crystalline structure is analyzed by X-Ray Diffraction (XRD) methods, it showed that deposit from Sapan Maluluang has opal-A structure, Garara has opal-CT structure and Bawah Kubang has crystalline structure. The Scanning Electron Microscopy (SEM) methods is applied to describe its morphology surface, in which spherical, almost rounded and irregular textured was formed at each deposit, respectively. Surface temperature of hot spring also has given impact on deposit texture.

  1. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring

    Directory of Open Access Journals (Sweden)

    Geng Wu

    2017-07-01

    Full Text Available Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO4-xSx2- with x = 1–4 formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.

  2. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring.

    Science.gov (United States)

    Wu, Geng; Huang, Liuqin; Jiang, Hongchen; Peng, Yue'e; Guo, Wei; Chen, Ziyu; She, Weiyu; Guo, Qinghai; Dong, Hailiang

    2017-01-01

    Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO 4-x S x 2- with x = 1-4) formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.

  3. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing

    Directory of Open Access Journals (Sweden)

    Allyson Lee Brady

    2015-09-01

    Full Text Available Carbon monoxide (CO is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45–65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 µmoles CO day-1 g (wet weight-1 within 5 selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies.

  4. Seasonal patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province, China.

    Science.gov (United States)

    Briggs, Brandon R; Brodie, Eoin L; Tom, Lauren M; Dong, Hailiang; Jiang, Hongchen; Huang, Qiuyuan; Wang, Shang; Hou, Weiguo; Wu, Geng; Huang, Liuquin; Hedlund, Brian P; Zhang, Chuanlun; Dijkstra, Paul; Hungate, Bruce A

    2014-06-01

    Studies focusing on seasonal dynamics of microbial communities in terrestrial and marine environments are common; however, little is known about seasonal dynamics in high-temperature environments. Thus, our objective was to document the seasonal dynamics of both the physicochemical conditions and the microbial communities inhabiting hot springs in Tengchong County, Yunnan Province, China. The PhyloChip microarray detected 4882 operational taxonomic units (OTUs) within 79 bacterial phylum-level groups and 113 OTUs within 20 archaeal phylum-level groups, which are additional 54 bacterial phyla and 11 archaeal phyla to those that were previously described using pyrosequencing. Monsoon samples (June 2011) showed increased concentrations of potassium, total organic carbon, ammonium, calcium, sodium and total nitrogen, and decreased ferrous iron relative to the dry season (January 2011). At the same time, the highly ordered microbial communities present in January gave way to poorly ordered communities in June, characterized by higher richness of Bacteria, including microbes related to mesophiles. These seasonal changes in geochemistry and community structure are likely due to high rainfall influx during the monsoon season and indicate that seasonal dynamics occurs in high-temperature environments experiencing significant changes in seasonal recharge. Thus, geothermal environments are not isolated from the surrounding environment and seasonality affects microbial ecology. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Feasibility study for a 10-MM-GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume 1. Process and plant design

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    An investigation was performed to determine the technical and economic viability of constructing and operating a geothermally heated, biomass, motor fuel alcohol plant at Brady's Hot Springs. The results of the study are positive, showing that a plant of innovative, yet proven design can be built to adapt current commerical fermentation-distillation technology to the application of geothermal heat energy. The specific method of heat production from the Brady's Hot Spring wells has been successful for some time at an onion drying plant. Further development of the geothermal resource to add the capacity needed for an ethanol plant is found to be feasible for a plant sized to produce 10 million gallons of motor fuel grade ethanol per year. A very adequate supply of feedgrains is found to be available for use in the plant without impact on the local or regional feedgrain market. The effect of diverting supplies from the animal feedlots in Northern Nevada and California will be mitigated by the by-product output of high-protein feed supplements that the plant will produce. The plant will have a favorable impact on the local farming economies of Fallon, Lovelock, Winnemucca and Elko, Nevada. It will make a positive and significant socioeconomic contribution to Churchill County, providing direct employment for an additional 61 persons. Environmental impact will be negligible, involving mostly a moderate increase in local truck traffic and railroad siding activity. The report is presented in two volumes. Volume 1 deals with the technical design aspects of the plant. The second volume addresses the issue of expanded geothermal heat production at Brady's Hot Springs, goes into the details of feedstock supply economics, and looks at the markets for the plant's primary ethanol product, and the markets for its feed supplement by-products. The report concludes with an analysis of the economic viability of the proposed project.

  6. Final Report and Strategic Plan on the Feasibility Study to Assess Geothermal Potential on Warm Springs Reservation Lands. Report No. DOE/GO/15177

    Energy Technology Data Exchange (ETDEWEB)

    James Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates

    2007-05-17

    In 2005 the Confederated Tribes of Warm Springs Tribal Council authorized an evaluation of the geothermal development potential on the Confederated Tribes of Warm Springs Reservation of Oregon. Warm Springs Power & Water Enterprises obtained a grant from the U.S. Department of Energy to conduct a geological assessment and development estimate. Warm Springs Power & Water Enterprises utilized a team of expert consultants to conduct the study and develop a strategic plan. The resource assessment work was completed in 2006 by GeothermEx Inc., a consulting company specializing in geothermal resource assessments worldwide. The GeothermEx report indicates there is a 90% probability that a commercial geothermal resource exists on tribal lands in the Mt. Jefferson area. The geothermal resource assessment and other cost, risk and constraints information has been incorporated into the strategic plan.

  7. Xylanases of thermophilic bacteria from Icelandic hot springs

    Energy Technology Data Exchange (ETDEWEB)

    Pertulla, M; Raettoe, M; Viikari, L [VTT, Biotechnical Lab., Espoo (Finland); Kondradsdottir, M [Dept. of Biotechnology, Technological Inst. of Iceland, Reykjavik (Iceland); Kristjansson, J K [Dept. of Biotechnology, Technological Inst. of Iceland, Reykjavik (Iceland) Inst. of Biotechnology, Iceland Univ., Reykjavik (Iceland)

    1993-02-01

    Thermophilic, aerobic bacteria isolated from Icelandic hot springs were screened for xylanase activity. Of 97 strains tested, 14 were found to be xylanase positive. Xylanase activities up to 12 nkat/ml were produced by these strains in shake flasks on xylan medium. The xylanases of the two strains producing the highest activities (ITI 36 and ITI 283) were similar with respect to temperature and pH optima (80deg C and pH 8.0). Xylanase production of strain ITI 36 was found to be induced by xylan and xylose. Xylanase activity of 24 nkat/ml was obtained with this strain in a laboratory-scale-fermentor cultivation on xylose medium. [beta]-Xylosidase activity was also detected in the culture filtrate. The thermal half-life of ITI 36 xylanase was 24 h at 70deg C. The highest production of sugars from hydrolysis of beech xylan was obtained at 70deg C, although xylan depolymerization was detected even up to 90deg C. (orig.).

  8. Geothermal heat for Erding. 2. Energy and wellness, geothermal heating station and hot-water indoor swimming pool; Geowaerme fuer Erding 2. Energie und Wellness, Geothermieheizwerk und Thermalbad

    Energy Technology Data Exchange (ETDEWEB)

    Tenzer, H. (comp.); Bussmann, W.

    1999-07-01

    This 17:20 minute VHS-PAL video film describes the project 'Geothermal heat for Erding 2', i.e. the construction of the geothermal heating station and a modern hot-water indoor swimming pool. [German] Der vorliegende VHS-PAL-Videofilm beschreibt innerhalb von 17:20 Min. Lauflaenge das Projekt 'Geowaerme fuer Erding 2'. Gezeigt werden die Entstehungsphasen dieses Projektes bestehend aus einem Geothermieheizwerk und einem modernen Thermalbad. (AKF)

  9. Hot Dry Rock Geothermal Energy Development Project. Annual report, fiscal year 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    The feasibility of extracting geothermal energy from hot dry rock in the earth's crust was investigated. The concept being investigated involves drilling a deep hole, creating an artificial geothermal reservoir at the bottom of the hole by hydraulic fracturing, and then intersecting the fracture with a second borehole. At the beginning of FY77, the downhole system was complete, but the impedance to the flow of fluid was too high to proceed confidently with the planned energy extraction demonstration. Therefore, in FY77 work focused on an intensive investigation of the characteristics of the downhole system and on the development of the necessary tools and techniques for understanding and improving it. Research results are presented under the following section headings: introduction and history; hot dry rock resource assessment and site selection; instrumentation and equipment development; drilling and fracturing; reservoir engineering; energy extraction system; environmental studies; project management and liaison; and, looking back and ahead. (JGB)

  10. Environmental effects of geothermal energy exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H [Japan Metals and Chemicals Co., Ltd., Japan

    1975-01-01

    The environmental effects of geothermal power generation which cause air and water pollution and destruction of natural areas are reviewed. The production of steam and hot water affect existing hot springs sources and can cause ground subsidence. Harmful gas can be released onto the atmosphere from fumarolic gas and hot springs. Hydrothermal geothermal fields occasionally contain harmful substances such as arsenic in the hot water. Serious environmental effects can result from geothermal exploitation activities such as the felling of trees for road construction, well drilling, and plant construction. Once geothermal power generation has begun, the release of H/sub 2/S into the atmosphere and the reinjection of hot water are conducted continuously and sufficient countermeasures can be taken. One problem is the effects of plant construction and operation on natural parks. It is important to reach a compromise between development and protection of natural senic areas. Two figures, two tables, and 13 references are provided.

  11. Indoor radon levels in selected hot spring hotels in Guangdong, China

    Energy Technology Data Exchange (ETDEWEB)

    Song Gang [Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640 (China); Zhang Boyou [Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640 (China); Wang Xinming [Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640 (China)]. E-mail: wangxm@gig.ac.cn; Gong Jingping [Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640 (China); Chan, Daniel [Department of Building Services Engineering, Hong Kong Polytechnic University, Hong Kong (China); Bernett, John [Department of Building Services Engineering, Hong Kong Polytechnic University, Hong Kong (China); Lee, S.C. [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hong Kong (China)

    2005-03-01

    Guangdong is one of the provinces that have most hot springs in China, and many hotels have been set up near hot springs, with spring water introduced into the bath inside each hotel room for hot spring bathing to attract tourists. In the present study, we measured radon in indoor and outdoor air, as well as in hot spring waters, in four hot spring hotels in Guangdong by using NR-667A (III) continuous radon detector. Radon concentrations ranged 53.4-292.5 Bq L{sup -1} in the hot spring water and 17.2-190.9 Bq m{sup -3} in outdoor air. Soil gas intrusion, indoor hot spring water use and inefficient ventilation all contributed to the elevated indoor radon levels in the hotel rooms. From the variation of radon levels in closed unoccupied hotel rooms, soil gas intrusion was found to be a very important source of indoor radon in hotel rooms with floors in contact with soils. When there was spring water bathing in the bathes, average radon levels were 10.9-813% higher in the hotel rooms and 13.8-489% higher in bathes compared to their corresponding average levels when there was no spring water use. Spring water use in the hotel rooms had radon transfer coefficients from 1.6x10{sup -4} to 5.0x10{sup -3}. Radon in some hotel rooms maintained in concentrations much higher than guideline levels might thus have potential health risks to the hotel workers, and technical and management measures should be taken to lower their exposure of radon through inhalation.

  12. Indoor radon levels in selected hot spring hotels in Guangdong, China.

    Science.gov (United States)

    Song, Gang; Zhang, Boyou; Wang, Xinming; Gong, Jingping; Chan, Daniel; Bernett, John; Lee, S C

    2005-03-01

    Guangdong is one of the provinces that have most hot springs in China, and many hotels have been set up near hot springs, with spring water introduced into the bath inside each hotel room for hot spring bathing to attract tourists. In the present study, we measured radon in indoor and outdoor air, as well as in hot spring waters, in four hot spring hotels in Guangdong by using NR-667A (III) continuous radon detector. Radon concentrations ranged 53.4-292.5 Bq L(-1) in the hot spring water and 17.2-190.9 Bq m(-3) in outdoor air. Soil gas intrusion, indoor hot spring water use and inefficient ventilation all contributed to the elevated indoor radon levels in the hotel rooms. From the variation of radon levels in closed unoccupied hotel rooms, soil gas intrusion was found to be a very important source of indoor radon in hotel rooms with floors in contact with soils. When there was spring water bathing in the bathes, average radon levels were 10.9-813% higher in the hotel rooms and 13.8-489% higher in bathes compared to their corresponding average levels when there was no spring water use. Spring water use in the hotel rooms had radon transfer coefficients from 1.6x10(-4) to 5.0x10(-3). Radon in some hotel rooms maintained in concentrations much higher than guideline levels might thus have potential health risks to the hotel workers, and technical and management measures should be taken to lower their exposure of radon through inhalation.

  13. Indoor radon levels in selected hot spring hotels in Guangdong, China

    International Nuclear Information System (INIS)

    Song Gang; Zhang Boyou; Wang Xinming; Gong Jingping; Chan, Daniel; Bernett, John; Lee, S.C.

    2005-01-01

    Guangdong is one of the provinces that have most hot springs in China, and many hotels have been set up near hot springs, with spring water introduced into the bath inside each hotel room for hot spring bathing to attract tourists. In the present study, we measured radon in indoor and outdoor air, as well as in hot spring waters, in four hot spring hotels in Guangdong by using NR-667A (III) continuous radon detector. Radon concentrations ranged 53.4-292.5 Bq L -1 in the hot spring water and 17.2-190.9 Bq m -3 in outdoor air. Soil gas intrusion, indoor hot spring water use and inefficient ventilation all contributed to the elevated indoor radon levels in the hotel rooms. From the variation of radon levels in closed unoccupied hotel rooms, soil gas intrusion was found to be a very important source of indoor radon in hotel rooms with floors in contact with soils. When there was spring water bathing in the bathes, average radon levels were 10.9-813% higher in the hotel rooms and 13.8-489% higher in bathes compared to their corresponding average levels when there was no spring water use. Spring water use in the hotel rooms had radon transfer coefficients from 1.6x10 -4 to 5.0x10 -3 . Radon in some hotel rooms maintained in concentrations much higher than guideline levels might thus have potential health risks to the hotel workers, and technical and management measures should be taken to lower their exposure of radon through inhalation

  14. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  15. Neutron activation analysis of the rare earth elements in Nasu hot springs

    International Nuclear Information System (INIS)

    Ikeda, Nagao; Takahashi, Naruto.

    1978-01-01

    Eleven rare earth elements (lanthanum, cerium, neodymium, samarium, europium, gadolinium, terbium, holmium, thulium, ytterbium and lutetium) in hot spring waters and sinter deposits in the Nasu area were determined by the neutron activation method. The rare earth elements in hot spring water were preconcentrated in ferric hydroxide precipitate and neutron-irradiated. The rare earth elements were chemically separated into lighter and heavier groups and the activity of each group was measured with a Ge(Li) detector. Distribution of the rare earth elements between the hot spring water and the sinter deposit was also discussed. (auth.)

  16. New bathing therapy in Japanese hot springs using radiation from radon

    International Nuclear Information System (INIS)

    Sugimori, Kenji; Okajima, Maiko; Oowada, Mizuno; Koyama, Yoshihisa; Shozugawa, Katsumi; Matsuo, Motoyuki

    2015-01-01

    Japanese-style bathing is an important part of the traditional culture of Japan, and most Japanese people love hot springs. Many kinds of hot springs exist all over Japan and are often a major factor when considering where to go for travel, relaxation and rest. However, other countries, especially in Europe, also use hot springs for medical treatments such as balneo therapy, hydrokinetic therapy, fango therapy and inhalation therapy. Some hot springs in Japan are located on radioactive springs. Five typical radioactive spring areas can be found in Tamagawa (Akita Pref.), Murasugi (Niigata Pref.), Masutomi (Yamanashi Pref.), Misasa (Tottori Pref.), and Sekigane (Tottori Pref.). While hot springs in Japan are mainly used for bathing, these radioactive springs are also used for bedrock bathing and/or inhalation therapy. In Italy, Fango therapy is a medical treatment conducted under a medical doctor's super vision with peloids maturated with hot spring water called 'Fango'. Japanese style Fango, named Biofango R , has already been made by using natural hot springs that have been modified with Italian Fango. Medical evaluation of test subjects has shown good results after treatment with Fango therapy. An important point in Fango therapy is how to make satisfactory maturated peloids. For this purpose, an experiment was conducted at Masutomi hot spring to confirm the possibility of using radioactive spring water to make maturated peloids. The basement material for the peloids used for this experiment was made from bentonite mixed with original rock from the Masutomi hot spring area consisting of crushed basalt and granite that have a fine amount of radioactivity. These peloids were circulated through hot spring water for two weeks to a month and then used for treatment. The medical data showed that therapy using this method resulted in greater improvement in 'test subjects' body functions compared with the data from previous observations. This

  17. Update on Production Chemistry of the Roosevelt Hot Springs Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Stuart; Kirby, Stefan; Allis, Rick; Moore, Joe; Fischer, Tobias

    2018-02-12

    Analyses of production fluids from the Roosevelt Hot Springs reservoir were acquired from well sampling campaigns in 2015 and 2016. The resulting data have been recalculated to reservoir conditions by correcting for effects of steam loss, and the values are compared to legacy data from earlier reports to quantify changes with time in response to fluid production. The reservoir composition is similar to that at the start of reservoir exploitation, having near neutral pH, total dissolved solids of 7000-10,000 mg/kg, and ionic ratios of Cl/HCO3 ~50-100, Cl/SO4 ~50-100, and Na/K ~4-5. Cation, gas and silica geothermometers indicate a range of equilibration temperatures between 240 and 300 °C, but quartz-silica values are most closely consistent with measured reservoir temperatures and well enthalpies. The largest change in fluid composition is observed in well 54-3. The fluid has evolved from being fed by a single phase liquid to a twophase mixture of steam and liquid due to pressure draw down. The fluid also shows a 25% increase in reservoir chloride and a ~20° C decrement of cooling related to mixing with injected brine. The other production wells also show increase in chloride and decrease in temperature, but these changes diminish in magnitude with distance from injection well 14-2. Stable isotope compositions indicate that the reservoir water is largely meteoric in origin, having been modified by hydrothermal waterrock interaction. The water has also become progressively enriched in isotopic values in response to steam loss and mixing of injectate. N2-Ar-He and helium isotope ratios indicate a deep magmatic source region that probably supplies the heat for the hydrothermal system, consistent with recent Quaternary volcanism in the Mineral Mountains.

  18. Beneficial effect of hot spring bathing on stress levels in Japanese macaques.

    Science.gov (United States)

    Takeshita, Rafaela S C; Bercovitch, Fred B; Kinoshita, Kodzue; Huffman, Michael A

    2018-05-01

    The ability of animals to survive dramatic climates depends on their physiology, morphology and behaviour, but is often influenced by the configuration of their habitat. Along with autonomic responses, thermoregulatory behaviours, including postural adjustments, social aggregation, and use of trees for shelter, help individuals maintain homeostasis across climate variations. Japanese macaques (Macaca fuscata) are the world's most northerly species of nonhuman primates and have adapted to extremely cold environments. Given that thermoregulatory stress can increase glucocorticoid concentrations in primates, we hypothesized that by using an available hot spring, Japanese macaques could gain protection against weather-induced cold stress during winter. We studied 12 adult female Japanese macaques living in Jigokudani Monkey Park, Japan, during the spring birth season (April to June) and winter mating season (October to December). We collected faecal samples for determination of faecal glucocorticoid (fGC) metabolite concentrations by enzyme immunoassay, as well as behavioural data to determine time spent in the hot springs, dominance rank, aggression rates, and affiliative behaviours. We used nonparametric statistics to examine seasonal changes in hot spring bathing, and the relationship between rank and air temperature on hot spring bathing. We used general linear mixed-effect models to examine factors impacting hormone concentrations. We found that Japanese macaques use hot spring bathing for thermoregulation during the winter. In the studied troop, the single hot spring is a restricted resource favoured by dominant females. High social rank had both costs and benefits: dominant females sustained high fGC levels, which were associated with high aggression rates in winter, but benefited by priority of access to the hot spring, which was associated with low fGC concentrations and therefore might help reduce energy expenditure and subsequent body heat loss. This unique

  19. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    Science.gov (United States)

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  20. Radiological Studies in the Hot Spring Region of Oyoun Mossa and Hammam Faraun Thermal Spring Areas in Western Sinai

    International Nuclear Information System (INIS)

    Ramadan, Kh.A.; Badran, H.M.; Ramadan, Kh.A.; Seddeek, M.K.; Sharshar, T.; Sharshar, T.

    2009-01-01

    Radioactivity in and around the two hot springs, Oyoun Mossa and Hammam Faraun, Western Sinai has been determined. The ground water, sediment and sand samples were measured by gamma-ray spectrometer for 232 Th, 226 Ra and 40 K isotopes. The enrichment of 226 Ra in Hammam Faraun hot spring was the most prominent feature. The concentration of 226 Ra in Oyoun Mossa and Hammam Faraun hot springs are 68 and 2377 Bq/kg for sediments, 3.5 and 54.7 Bq/kg for wild plants, and 205 and 1945 mBq/l for the ground water, respectively. In addition, the concentration of sand samples are 14 times larger in the area of Hammam Faraun compared with that of Oyoun Mossa. On the other hand, the concentration of 232 Th in different samples are comparable in the two areas while 137 Cs concentrations are relatively higher in Oyoun Mossa. For the purpose of comparison, sand samples were collected from two locations 5-12 km away from each spring. The activity concentrations of the four locations are comparable and in agreement with those from the area of the two springs except in one case. The major difference was the activity concentration of 226 Ra in the area of Hammam Faraun, which is much higher. The concentrations of all detected isotopes in water samples from these two springs are much higher than that detected in 27 natural wells in north Sinai. The results of the present study indicate that water only in Hammam Faraun hot spring is contaminated with 238 U-isotopes and the surrounding area is affected by this contamination. The calculated annual effective dose equivalents in the surroundings of Hammam Faraun (81.8 μSv) is superior to the maximum contaminant levels recommended.

  1. CRISPR Spacer Arrays for Detection of Viral Signatures from Acidic Hot Springs

    Science.gov (United States)

    Snyder, J. C.; Bateson, M. M.; Suciu, D.; Young, M. J.

    2010-04-01

    Viruses are the most abundant life-like entities on the planet Earth. Using CRISPR spacer sequences, we have developed a microarray-based approach to detecting viral signatures in the acidic hot springs of Yellowstone.

  2. Estimate of Hot Dry Rock Geothermal Resource in Daqing Oilfield, Northeast China

    Directory of Open Access Journals (Sweden)

    Guangzheng Jiang

    2016-10-01

    Full Text Available Development and utilization of deep geothermal resources, especially a hot dry rock (HDR geothermal resource, is beneficial for both economic and environmental consideration in oilfields. This study used data from multiple sources to assess the geothermal energy resource in the Daqing Oilfield. The temperature logs in boreholes (both shallow water wells and deep boreholes and the drilling stem test temperature were used to create isothermal maps in depths. Upon the temperature field and thermophysical parameters of strata, the heat content was calculated by 1 km × 1 km × 0.1 km cells. The result shows that in the southeastern part of Daqing Oilfield, the temperature can reach 150 °C at a depth of 3 km. The heat content within 3–5 km is 24.28 × 1021 J, wherein 68.2% exceeded 150 °C. If the recovery factor was given by 2% and the lower limit of temperature was set to be 150 °C, the most conservative estimate for recoverable HDR geothermal resource was 0.33 × 1021 J. The uncertainties of the estimation are mainly contributed to by the temperature extrapolation and the physical parameter selections.

  3. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    Science.gov (United States)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  4. Genome Sequence of a Novel Archaeal Rudivirus Recovered from a Mexican Hot Spring

    DEFF Research Database (Denmark)

    Servín-Garcidueñas, L; Peng, X; Garrett, R

    2013-01-01

    We report the consensus genome sequence of a novel GC-rich rudivirus, designated SMR1 (Sulfolobales Mexican rudivirus 1), assembled from a high-throughput sequenced environmental sample from a hot spring in Los Azufres National Park in western Mexico.......We report the consensus genome sequence of a novel GC-rich rudivirus, designated SMR1 (Sulfolobales Mexican rudivirus 1), assembled from a high-throughput sequenced environmental sample from a hot spring in Los Azufres National Park in western Mexico....

  5. Diversity and Ecological Functions of Crenarchaeota in Terrestrial Hot Springs of Tengchong, China

    Science.gov (United States)

    Li, W.; Song, Z.; Chen, J.; Jiang, H.; Zhou, E.; Wang, F.; Xiao, X.; Zhang, C.

    2010-12-01

    The diversity and potential ecological functions of Crenarchaeota were investigated in eight terrestrial hot springs (pH: 2.8-7.7; temperature: 43.6-96 C) located in Tengchong, China, using 16S rRNA gene phylogenetic analysis. A total of 826 crenarchaeotal clones were analyzed and a total of 47 Operational taxonomic units (OTUs) were identified. Most (93%) of the identified OTUs were closely related (89-99%) to those retrieved from hot springs and other thermal environments. Our data showed that temperature may predominate over pH in affecting crenarchaeotal diversity in Tengchong hot springs. Crenarchaeotal diversity in moderate-temperature (59 to 77 C) hot springs was the highest, indicating that the moderate-temperature hot springs are more inclusive for Crenarchaeota. To understand what ecological functions these Crenarchaeota may play in Tengchong hot springs, we isolated the environmental RNA and constructed four cDNA clone libraries of the archaeal accA gene that encodes Acetyl CoA carboxylase. The accA gene represents one of the key enzymes responsible for the CO2 fixation in the 3-hydroxypropionate/4-hydroxybutyrate pathway. The results of phylogenetic analysis showed all the transcribed accA gene sequences can be classified into three large clusters, with the first one being affiliated with marine crenarchaeota, the second one with cultured crenarchaeota, and the third one with Chlorobi (Green sulfur bacteria), which have been proved to employ the 3-hydroxypropionate/4-hydroxybutyrate pathway. The long-branch distances of the phylogenetic tree suggest that these sequences represent novel accA-like gene. Our results also showed that sequences of the accA-like gene from the same hot spring belonged to one cluster, which suggests that a single crenarchaeotal group may fix CO2 via 3-hydroxypropionate/4-hydroxybutyrate pathway in the investigated hot springs.

  6. Silicon isotope fractionation during silica precipitation from hot-spring waters

    Science.gov (United States)

    Geilert, Sonja; Vroon, Pieter; Keller, Nicole; Gudbrnadsson, Snorri; Stefánsson, Andri; van Bergen, Manfred

    2014-05-01

    Hot-spring systems in the Geysir geothermal area, Iceland, have been studied to explore silicon isotope fractionation in a natural setting where sinter deposits are actively formed over a temperature interval between 20° and 100° C. The SiO2(aq)concentrations in spring and stream waters range between 290 and 560ppm and stay relatively constant along downstream trajectories, irrespective of significant cooling gradients. The waters are predominantly oversaturated in amorphous silica at the temperatures measured in the field. Correlations between the saturation indices, temperature and amounts of evaporative water loss suggest that cooling and evaporation are the main causes of subaqueous silica precipitation. The δ30Si values of dissolved silica in spring water and outflowing streams average around +1o probably due to the small quantities of instantaneously precipitating silica relative to the dissolved amount. Siliceous sinters, in contrast, range between -0.1o to -4.0o consistent with a preferred incorporation of the light silicon isotope and with values for precipitated silica becoming more negative with downstream decreasing temperatures. Larger fractionation magnitudes are inversely correlated with the precipitation rate, which itself is dependent on temperature, saturation state and the extent of a system. The resulting magnitudes of solid-fluid isotopic fractionation generally decline from -3.5o at 10° C to -2.0o at 90° C. These values confirm a similar relationship between fractionation magnitude and temperature that we found in laboratory-controlled silica-precipitation experiments. However, a relatively constant offset of ca. -2.9o between field and experimental fractionation values indicates that temperature alone cannot be responsible for the observed shifts. We infer that precipitation kinetics are a prominent control of silicon isotope fractionation in aqueous environments, whereby the influence of the extent of the system on the precipitation

  7. Site-specific analysis of hybrid geothermal/fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    A preliminary economic analysis of a hybrid geothermal/coal power plant was completed for four geothermal resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa, and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant.

  8. Fiscal 1999 survey on conservation of Jozankei hot spring. Survey report of hot spring alteration; 1999 nendo jozankei onsen hozen chosa. Onsen hendo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    As a part of fiscal 1999 survey on conservation of Jozankei hot spring, a survey was made on the change of water composition in hot springs and rivers for the purpose of elucidating the cause of hot spring alteration. In the survey, sampling and water quality analysis were conducted once a month at four sources and one river point on the upstream side of Tsukimibashi bridge on the Toyohira river and at two sources and one river point between Tsukimibashi bridge and Takayamabashi bridge. Also carried out were sampling and constituent analysis at five points for river water of a wide area. The survey results were as follows. The pattern of change in spring water temperature was recognized such that it tended to rise in summer when river temperature was high and to fall in winter. Spring water temperature rose greatly at the time of higher water level like the thaw in some sources but conversely fell in other sources. The fluctuation trend in PH values was such that they mostly went up in April of snow melting time and in early August of much rain and went down in winter of little rain and less snowmelt. As for electric conductivity and dissolved constituents, it was recognized that the conductivity lowered and that the constituents decreased in concentration, all concurrently at the time of snowmelt and much rain. (NEDO)

  9. Geochemical and physical drivers of microbial community structure in hot spring ecosystems

    Science.gov (United States)

    Havig, J. R.; Hamilton, T. L.; Boyd, E. S.; Meyer-Dombard, D. R.; Shock, E.

    2012-12-01

    Microbial communities in natural systems are typically characterized using samples collected from a single time point, thereby neglecting the temporal dynamics that characterize natural systems. The composition of these communities obtained from single point samples is then related to the geochemistry and physical parameters of the environment. Since most microbial life is adapted to a relatively narrow ecological niche (multiplicity of physical and chemical parameters that characterize a local habitat), these assessments provide only modest insight into the controls on community composition. Temporal variation in temperature or geochemical composition would be expected to add another dimension to the complexity of niche space available to support microbial diversity, with systems that experience greater variation supporting a greater biodiversity until a point where the variability is too extreme. . Hot springs often exhibit significant temporal variation, both in physical as well as chemical characteristics. This is a result of subsurface processes including boiling, phase separation, and differential mixing of liquid and vapor phase constituents. These characteristics of geothermal systems, which vary significantly over short periods of time, provide ideal natural laboratories for investigating how i) the extent of microbial community biodiversity and ii) the composition of those communities are shaped by temporal fluctuations in geochemistry. Geochemical and molecular samples were collected from 17 temporally variable hot springs across Yellowstone National Park, Wyoming. Temperature measurements using data-logging thermocouples, allowing accurate determination of temperature maximums, minimums, and ranges for each collection site, were collected in parallel, along with multiple geochemical characterizations as conditions varied. There were significant variations in temperature maxima (54.5 to 90.5°C), minima (12.5 to 82.5°C), and range (3.5 to 77.5°C) for

  10. Anoxybacillus vitaminiphilus sp. nov., a strictly aerobic and moderately thermophilic bacterium isolated from a hot spring.

    Science.gov (United States)

    Zhang, Xin-Qi; Zhang, Zhen-Li; Wu, Nan; Zhu, Xu-Fen; Wu, Min

    2013-11-01

    A strictly aerobic, Gram-stain-positive, motile and spore-forming bacterium, strain 3nP4(T), was isolated from the Puge hot spring located in the south-western geothermal area of China. Strain 3nP4(T) grew at 38-66 °C (optimum 57-60 °C), at pH 6.0-9.3 (optimum 7.0-7.5) and with 0-4 % (w/v) NaCl (optimum 0-0.5 %). Phylogenetic analysis of 16S rRNA gene sequences, as well as DNA-DNA relatedness values, indicated that the isolate represents a novel species of the genus Anoxybacillus, related most closely to Anoxybacillus voinovskiensis DSM 12111(T). Strain 3nP4(T) had diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and one unidentified phospholipid as major polar lipids and iso-C15 : 0 and iso-C17 : 0 as major fatty acids, which are both typical chemotaxonomic characteristics of the genus Anoxybacillus. The mean DNA G+C content of strain 3nP4(T) was 39.2±0.95 mol% (HPLC). A distinctive characteristic of the novel isolate was its extreme reliance on vitamin mixture or yeast extract for growth. Based on data from this taxonomic study using a polyphasic approach, strain 3nP4(T) is considered to represent a novel species of the genus Anoxybacillus, for which the name Anoxybacillus vitaminiphilus sp. nov. is proposed. The type strain is 3nP4(T) ( = CGMCC 1.8979(T) = JCM 16594(T)).

  11. Characterizing Volumetric Strain at Brady Hot Springs, Nevada, USA Using Geodetic Data, Numerical Models, and Prior Information

    Science.gov (United States)

    Reinisch, E. C.; Feigl, K. L.; Cardiff, M. A.; Morency, C.; Kreemer, C.; Akerley, J.

    2017-12-01

    Time-dependent deformation has been observed at Brady Hot Springs using data from the Global Positioning System (GPS) and interferometric synthetic aperture radar (InSAR) [e.g., Ali et al. 2016, http://dx.doi.org/10.1016/j.geothermics.2016.01.008]. We seek to determine the geophysical process governing the observed subsidence. As two end-member hypotheses, we consider thermal contraction and a decrease in pore fluid pressure. A decrease in temperature would cause contraction in the subsurface and subsidence at the surface. A decrease in pore fluid pressure would allow the volume of pores to shrink and also produce subsidence. To simulate these processes, we use a dislocation model that assumes uniform elastic properties in a half space [Okada, 1985]. The parameterization consists of many cubic volume elements (voxels), each of which contracts by closing its three mutually orthogonal bisecting square surfaces. Then we use linear inversion to solve for volumetric strain in each voxel given a measurement of range change. To differentiate between the two possible hypotheses, we use a Bayesian framework with geostatistical prior information. We perform inversion using each prior to decide if one leads to a more geophysically reasonable interpretation than the other. This work is part of a project entitled "Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology" and is supported by the Geothermal Technology Office of the U.S. Department of Energy [DE-EE0006760].

  12. Recovery of energy from geothermal brine and other hot water sources

    Science.gov (United States)

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  13. A search for correlation between seismicity and radon anomaly in hot springs

    International Nuclear Information System (INIS)

    Amin, B.S.; Rama

    1982-01-01

    Measurements of radon contents of the exholved gas emanating from several hot water springs along the Western Coast of India are reported here. Concentration of radon in gas phase of individual sprinqs varied in general, directly with the surface temperature of the water emerging from the respective springs, and showed little variation with time. Radon measurements were carried out continuously for about two years at two hot springs located at Ganeshpuri and Sathivali in the coastal area of Northern Maharashtra. The distant tremors did not cause any variation in the radon content. There was no marked local seismic activity during the period of observations, and the levels of radon stayed essentially constant. The measurements were also carried out at a hot spring in Assam, for about 8 months. These also did not show any significant variation; this period too lacked any marked local seismicity. (author)

  14. Drilling fluids and lost circulation in hot-dry-rock geothermal wells at Fenton Hill

    Energy Technology Data Exchange (ETDEWEB)

    Nuckols, E.B.; Miles, D.; Laney, R.; Polk, G.; Friddle, H.; Simpson, G.

    1981-01-01

    Geothermal hot dry rock drilling at Fenton Hill in northern New Mexico encountered problems of catastrophic lost circulation in cavernous areas of limestones in the Sandia Formation, severe corrosion due to temperatures of up to 320/sup 0/C, and torque problems caused by 35/sup 0/ hole angle and the abrasiveness of Precambrian crystalline rock. The use of polymeric flocculated bentonite fluid, clear water, fibrous material, dry drilling, oxygen scavengers, a biodegradable lubricant mixture of modified triglicerides and alcohol, and maintenance of a high pH, were some of the approaches taken toward solving these problems.

  15. Southwest Alaska Regional Geothermal Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  16. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    Science.gov (United States)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  17. Effects of Physiochemical Factors on Prokaryotic Biodiversity in Malaysian Circumneutral Hot Springs

    Directory of Open Access Journals (Sweden)

    Chia S. Chan

    2017-07-01

    Full Text Available Malaysia has a great number of hot springs, especially along the flank of the Banjaran Titiwangsa mountain range. Biological studies of the Malaysian hot springs are rare because of the lack of comprehensive information on their microbial communities. In this study, we report a cultivation-independent census to describe microbial communities in six hot springs. The Ulu Slim (US, Sungai Klah (SK, Dusun Tua (DT, Sungai Serai (SS, Semenyih (SE, and Ayer Hangat (AH hot springs exhibit circumneutral pH with temperatures ranging from 43°C to 90°C. Genomic DNA was extracted from environmental samples and the V3–V4 hypervariable regions of 16S rRNA genes were amplified, sequenced, and analyzed. High-throughput sequencing analysis showed that microbial richness was high in all samples as indicated by the detection of 6,334–26,244 operational taxonomy units. In total, 59, 61, 72, 73, 65, and 52 bacterial phyla were identified in the US, SK, DT, SS, SE, and AH hot springs, respectively. Generally, Firmicutes and Proteobacteria dominated the bacterial communities in all hot springs. Archaeal communities mainly consisted of Crenarchaeota, Euryarchaeota, and Parvarchaeota. In beta diversity analysis, the hot spring microbial memberships were clustered primarily on the basis of temperature and salinity. Canonical correlation analysis to assess the relationship between the microbial communities and physicochemical variables revealed that diversity patterns were best explained by a combination of physicochemical variables, rather than by individual abiotic variables such as temperature and salinity.

  18. Isotope and chemical investigation of geothermal springs and thermal water produced by oil wells in potwat area, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Tariq, J.A; Choudhry, M.A.; Hussain, Q.M.

    2008-10-01

    Isotopes and geochemical techniques were applied to investigate the origin, subsurface history and reservoir temperatures of geothermal springs in Potwar. Two sets of water samples were collected. Surface temperatures of geothermal springs ranges from 52 to 68.3 C. Waters produced by oil wells in Potwar area were also investigated. Geothermal springs of Potwar area are Na-HCO/sub 3/ type, while the waters produced by oil wells are Na-Cl and Ca-Cl types. Source of both the categories of water is meteoric water recharged from the outcrops of the formations in the Himalayan foothills. These waters undergo very high /sup 18/O-shift (up to 18%) due to rock-water interaction at higher temperatures. High salinity of the oil field waters is due to dissolution of marine evaporites. Reservoir temperatures of thermal springs determined by the Na-K geo thermometers are in the range of 56-91 deg. C, while Na-K-Ca, Na-K-Mg, Na-K-Ca-Mg and quartz geo thermometers give higher temperatures up to 177 C. Reservoir temperature determined by /sup 18/O(SO/Sub 4/-H/sub 2/O) geo thermometer ranges from 112 to 138 deg. C. There is wide variation in reservoir temperatures (54-297 deg. C) of oil fields estimated by different chemical geo thermometers. Na-K geo thermometer seems more reliable which gives close estimates to real temperature (about 100 deg. C) determined during drilling of oil wells. (author)

  19. Chemical composition of hot spring waters in the Oita river basins, Oita prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Tamio

    1988-01-30

    The source of the water from Oita River comes from the Kuju and Yubu-Tsurumi Volcanos, pouring into Beppu Bay. Its drainage area is 646 km/sup 2/ with a total length of 55 km. Hot springs are exist throughout most of the basin of the main and branches of Oita River. The chemical components of the hot springs in the Ota River basin -Yufuin, Yunotaira, Nagayu, Shonai/Hazama, and Oita City - have been analyzed. The equivalent of magnesium exceeds that of calcium in the carbonate springs of the above. Ca+Mg has positive correlations with HCO/sub 3/ in these carbonate springs. The water from these springs flows into the rivers and pours into Beppu Bay. The flow rate and chemical component concentration were measured at Fudai bridge. The concentration of chemical components having an average flow rate (30 ton/sec) were calculated. (4 figs, 7 tabs, 10 refs)

  20. Hydrothermal Alteration in an Acid-Sulphate Geothermal Field: Sulphur Springs, Saint Lucia

    Science.gov (United States)

    Joseph, E. P.; Barrett, T. J.

    2017-12-01

    Sulphur Springs is a vigorous geothermal field associated with the Soufrière Volcanic Centre in southern Saint Lucia. Bubbling hydrothermal pools are rich in sodium-calcium sulphate, with pHs of 3-7 and temperatures of 41-97ºC. Fumaroles have temperatures up to, and at times above, 100°C. Gases from bubbling pools and fumaroles have high contents of CO2 (601-993 mmol/mol) and H2S (3-190 mmol/mol). To investigate the nature and extent of hydrothermal alteration, detailed chemical analysis was carried out on 25 altered rocks, 10 sediments from pools and creeks in the main discharge area, and 15 little-altered rocks up to 2 km away from geothermal field. Eight altered samples were also analysed for stable isotope compositions, with mineralogy determined by X-ray diffraction and mineral liberation analysis. Least-altered host rocks comprise calc-alkaline feldspar-quartz-porphyritic dacites of near-uniform composition that form massive domes and volcaniclastic units. These rocks were emplaced 10-30 Ka ago (Lindsay et al. 2013). Within the geothermal field, the dacites have been highly altered to kaolinite, quartz, cristobalite, alunite, natroalunite, smectite, native sulphur, jarosite, gypsum and amorphous compounds. Muds from grey to blackish hydrothermal pools additionally contain iron sulphides, mainly pyrite. Despite intense alteration of the original dacites, Zr and Ti have remained essentially immobile, allowing the calculation of mass changes. Major depletions of Fe, Mg, Ca, Na and commonly Si occur over an area of at least 200 x 400 m. The most altered rocks also show losses of Al, light REE and Y, implying leaching by highly acidic waters. A few altered rocks have, however, gained Al together with Si and P. Also present are m-scale zones of silica + native sulphur, wherein the silica appears to represent a residue from the leaching of dacite, rather than a hydrothermal addition. Delta-34S values of samples containing mixtures of sulphates, native sulphur and

  1. Idaho: basic data for thermal springs and wells as recorded in GEOTHERM, Part A

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, J.D.

    1983-07-01

    All chemical data for geothermal fluids in Idaho available as of December 1981 is maintained on GEOTHERM, computerized information system. This report presents summaries and sources of records for Idaho. 7 refs. (ACR)

  2. Determination of Hot Springs Physico-Chemical Water Quality Potentially Use for Balneotherapy

    International Nuclear Information System (INIS)

    Zaini Hamzah; Nurul Latiffah Abd Rani; Ahmad Saat; Ab Khalik Wood

    2013-01-01

    Hot springs areas are attractive places for locals and foreigners either for excursion or for medical purposes such as for healing of various types of diseases. This is because the hot spring water is believed rich in salt, sulfur, and sulfate in the water body. For many thousands of years, people have used hot springs water both for cozy bathing and therapy. Balneotherapy is the term used where the patients were immersed in hot mineral water baths emerged as an important treatment in Europe around 1800s. In view of this fact, a study of hot springs water was performed with the objective to determine the concentration of Na + , K + , Ca 2+ , S, SO 4 2- and Cl - in hot springs water around the State of Selangor, Malaysia. Energy dispersive X-ray Fluorescent Spectrometry (EDXRF) was used to measure the concentrations of Na + , K + , Ca 2+ and S meanwhile for SO 4 2- and Cl - anion, Ion Chromatography (IC) was used. The concentration of Na + obtained for filtered and unfiltered samples ranged from 33.68 to 80.95 and 37.03 to 81.91 ppm respectively. Meanwhile, the corresponding concentrations of K + ranged from 1.47 to 45.72 and 1.70 to 56.81 ppm. Concentrations of Ca 2+ ranged from 2.44 to 18.45 and 3.75 to 19.77 ppm. The concentration of S obtained for filtered and unfiltered samples ranged from 1.87 to 12.41 and 6.25 to 12.86 ppm. The concentrations for SO 4 2- and Cl - obtained ranged from 0.15 to 1.51 ppm and 7.06 to 20.66 ppm for filtered samples. The data signified higher concentration of salt and other important nutrients in hot spring water. (author)

  3. California: basic data for thermal springs and wells as recorded in GEOTHERM. Part A

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, J.D.

    1983-07-01

    This GEOTHERM sample file contains 1535 records for California. Three computer-generated indexes give one line summaries of each GEOTHERM record. Each index is sorted by different variables to assist in locating geothermal records describing specific sites. 7 refs. (ACR)

  4. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables.

    Science.gov (United States)

    Xie, Wei; Zhang, Chuanlun L; Wang, Jinxiang; Chen, Yufei; Zhu, Yuanqing; de la Torre, José R; Dong, Hailiang; Hartnett, Hilairy E; Hedlund, Brian P; Klotz, Martin G

    2015-05-01

    Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P-GDGTs) and core GDGTs (C-GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5-10.1 and a temperature range of 43.7-93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P- and C-GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P- and C-GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring-characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Hot dry rock geothermal energy for U.S. electric utilities. Draft final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    In order to bring an electric utility component into the study of hot dry rock geothermal energy called for in the Energy Policy Act of 1992 (EPAct), EPRI organized a one-day conference in Philadelphia on January 14,1993. The conference was planned as the first day of a two-day sequence, by coordinating with the U.S. Geological Survey (USGS) and the U.S. Department of Energy (DOE). These two federal agencies were charged under EPAct with the development of a report on the potential for hot dry rock geothermal energy production in the US, especially the eastern US. The USGS was given lead responsibility for a report to be done in association with DOE. The EPRI conference emphasized first the status of technology development and testing in the U.S. and abroad, i.e., in western Europe, Russia and Japan. The conference went on to address the extent of knowledge regarding the resource base in the US, especially in the eastern half of the country, and then to address some practical business aspects of organizing projects or industries that could bring these resources into use, either for thermal applications or for electric power generation.

  6. An evaluation of ambient sulphur dioxide concentrations from passive degassing of the Sulphur Springs, Saint Lucia geothermal system: Implications for human health

    Science.gov (United States)

    Joseph, Erouscilla P.; Beckles, Denise M.; Cox, Leonette; Jackson, Viveka B.; Alexander, Dominic

    2015-10-01

    Sulphur Springs Park in Saint Lucia is a site of energetic geothermal activity associated with the potentially active Soufrière Volcanic Centre. The Park is one of Saint Lucia's most important tourist attractions, and is marketed as the 'world's only drive-in volcano'. It has an on-site staff of tour guides and vendors, as well as over 200,000 visitors annually. There are also a number of residents living in the areas bordering the Park. Recreational use is made of the geothermal waters for bathing, application of mud masques, and in some cases drinking. As part of the University of the West Indies, Seismic Research Centre's (UWI-SRC's) overall volcano monitoring programme for Saint Lucia, the volcanic emissions at Sulphur Springs (hot springs, mud pools and fumaroles) have been regularly monitored since 2001. In recent years, visitors, staff, and management at the Park have expressed concern about the health effects of exposure to volcanic emissions from the hydrothermal system. In response to this, SRC has expanded its regular geothermal monitoring programme to include a preliminary evaluation of ambient sulphur dioxide (SO2) concentrations in and around the Park, to assess the possible implications for human health. Passive diffusion tubes were used to measure the atmospheric SO2 concentrations at various sites in Sulphur Springs Park (SSP), in the town of Soufrière and in the capital of Castries. Measurements of average monthly ambient SO2 with the passive samplers indicated that during the dry season period of April to July 2014 concentration at sites closest to the main vents at SSP (Group 1), which are routinely used by staff and visitors, frequently exceeded the WHO 10-minute AQG for SO2 of 500 μg/m3. However, for sites that were more distal to the main venting area (Groups 2 and 3), the average monthly ambient SO2 did not exceed the WHO 10-minute AQG for SO2 of 500 μg/m3 during the entire monitoring period. The measured concentrations and dispersion

  7. Production and Characterization of an Extracellular Acid Protease from Thermophilic Brevibacillus sp. OA30 Isolated from an Algerian Hot Spring

    Directory of Open Access Journals (Sweden)

    Mohamed Amine Gomri

    2018-04-01

    Full Text Available Proteases have numerous biotechnological applications and the bioprospection for newly-thermostable proteases from the great biodiversity of thermophilic microorganisms inhabiting hot environments, such as geothermal sources, aims to discover more effective enzymes for processes at higher temperatures. We report in this paper the production and the characterization of a purified acid protease from strain OA30, a moderate thermophilic bacterium isolated from an Algerian hot spring. Phenotypic and genotypic study of strain OA30 was followed by the production of the extracellular protease in a physiologically-optimized medium. Strain OA30 showed multiple extracellular proteolytic enzymes and protease 32-F38 was purified by chromatographic methods and its biochemical characteristics were studied. Strain OA30 was affiliated with Brevibacillus thermoruber species. Protease 32-F38 had an estimated molecular weight of 64.6 kDa and was optimally active at 50 °C. It showed a great thermostability after 240 min and its optimum pH was 6.0. Protease 32-F38 was highly stable in the presence of different detergents and solvents and was inhibited by metalloprotease inhibitors. The results of this work suggest that protease 32-F38 might have interesting biotechnological applications.

  8. Production and Characterization of an Extracellular Acid Protease from Thermophilic Brevibacillus sp. OA30 Isolated from an Algerian Hot Spring.

    Science.gov (United States)

    Gomri, Mohamed Amine; Rico-Díaz, Agustín; Escuder-Rodríguez, Juan-José; El Moulouk Khaldi, Tedj; González-Siso, María-Isabel; Kharroub, Karima

    2018-04-12

    Proteases have numerous biotechnological applications and the bioprospection for newly-thermostable proteases from the great biodiversity of thermophilic microorganisms inhabiting hot environments, such as geothermal sources, aims to discover more effective enzymes for processes at higher temperatures. We report in this paper the production and the characterization of a purified acid protease from strain OA30, a moderate thermophilic bacterium isolated from an Algerian hot spring. Phenotypic and genotypic study of strain OA30 was followed by the production of the extracellular protease in a physiologically-optimized medium. Strain OA30 showed multiple extracellular proteolytic enzymes and protease 32-F38 was purified by chromatographic methods and its biochemical characteristics were studied. Strain OA30 was affiliated with Brevibacillus thermoruber species. Protease 32-F38 had an estimated molecular weight of 64.6 kDa and was optimally active at 50 °C. It showed a great thermostability after 240 min and its optimum pH was 6.0. Protease 32-F38 was highly stable in the presence of different detergents and solvents and was inhibited by metalloprotease inhibitors. The results of this work suggest that protease 32-F38 might have interesting biotechnological applications.

  9. Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing.

    Science.gov (United States)

    Sharp, Christine E; Martínez-Lorenzo, Azucena; Brady, Allyson L; Grasby, Stephen E; Dunfield, Peter F

    2014-10-01

    We investigated methanotrophic bacteria in sediments of several warm geothermal springs ranging in temperature from 22 to 45 °C. Methane oxidation was measured at potential rates up to 141 μmol CH4 d(-1) g(-1) sediment. Active methanotrophs were identified using (13) CH4 stable-isotope probing (SIP) incubations performed at close to in situ temperatures for each site. Quantitative (q) PCR of pmoA genes identified the position of the heavy ((13) C-labelled) DNA fractions in density gradients, and 16S rRNA gene pyrotag sequencing of the heavy fractions was performed to identify the active methanotrophs. Methanotroph communities identified in heavy fractions of all samples were predominated by species similar (≥ 95% 16S rRNA gene identities) to previously characterized Gammaproteobacteria and Alphaproteobacteria methanotrophs. Among the five hottest samples (45 °C), members of the Gammaproteobacteria genus Methylocaldum dominated in two cases, while three others were dominated by an OTU closely related (96.8% similarity) to the Alphaproteobacteria genus Methylocapsa. These results suggest that diverse methanotroph groups are adapted to warm environments, including the Methylocapsa-Methylocella-Methyloferula group, which has previously only been detected in cooler sites. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Thermal neutron activation analysis of the water Zamzam at Mecca, Saudi Arabia and the water of the fourty five hot springs at Hot Springs, Arkansas, USA

    International Nuclear Information System (INIS)

    Melibary, A.R.

    1980-10-01

    Samples from the Islamic holy water Zamzam in Mecca, Saudi Arabia and the famous mineral water of Hot Springs, in Hot Springs, Arkansas were analyzed for trace elements content by thermal neutron activation analysis. For Zamzam the concentration of 37 S, 49 Ca, 38 Cl, 31 Si, 42 K, 24 Na and 82 Br were found, respectively, to be 3, 107, 11, 12, 4, 14, and 9 ppm; and that for Hot Springs Sample, replacing 82 Br with 27 Mg, are 2, 44, 2, 10, 1, 4, and 5 ppm. The experimental limit of detection for pure standards of the nuclides 27 Mg, 128 I, 64 Cu, and 56 Mn were found to be 8, 8x10 - 3, 6x10 - 2, and 2x10 - 4 μg, respectively. These nuclides were not detected in Zamzam, therefore, it was concluded that in Zamzam the concentration levels of the nuclides 27 Mg, 128 I, 64 Cu, and 56 Mn were below that of the limit of detection of pure standards. (orig./HP) [de

  11. Volcanic Gases and Hot Spring Water to Evaluate the Volcanic Activity of the Mt. Baekdusan

    Science.gov (United States)

    Yun, S. H.; Lee, S.; Chang, C.

    2017-12-01

    This study performed the analysis on the volcanic gases and hot spring waters from the Julong hot spring at Mt. Baekdu, also known as Changbaishan on the North Korea(DPRK)-China border, during the period from July 2015 to August 2016. Also, we confirmed the errors that HCO3- concentrations of hot spring waters in the previous study (Lee et al. 2014) and tried to improve the problem. Dissolved CO2 in hot spring waters was analyzed using gas chromatograph in Lee et al.(2014). Improving this, from 2015, we used TOC-IC to analysis dissolved CO2. Also, we analyzed the Na2CO3 standard solutions of different concentrations using GC, and confirmed the correlation between the analytical concentrations and the real concentrations. However, because the analytical results of the Julong hot spring water were in discord with the estimated values based on this correlation, we can't estimate the HCO3-concentrations of 2014 samples. During the period of study, CO2/CH4 ratios in volcanic gases are gradually decreased, and this can be interpreted in two different ways. The first interpretation is that the conditions inside the volcanic edifice are changing into more reduction condition, and carbon in volcanic gases become more favorable to distribute into CH4 or CO than CO2. The second interpretation is that the interaction between volcanic gases and water becomes greater than past, and the concentrations of CO2which have much higher solubility in water decreased, relatively. In general, the effect of scrubbing of volcanic gas is strengthened during the quiet periods of volcanic activity rather than active periods. Meanwhile, the analysis of hot spring waters was done on the anion of acidic gases species, the major cations, and some trace elements (As, Cd, Re).This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-3060.

  12. Enzyme activity screening of thermophilic bacteria isolated from Dusun Tua Hot Spring, Malaysia

    Science.gov (United States)

    Msarah, Marwan; Ibrahim, Izyanti; Aqma, Wan Syaidatul

    2018-04-01

    Thermophilic bacteria have biotechnological importance due to the availability of unique enzymes which are stable in extreme circumstances. The aim of this study includes to isolate thermophilic bacteria from hot spring and screen for important enzyme activities. Water samples from the Dusun Tua Hot Spring were collected and the physiochemical characterisation of water was measured. Eight thermophilic bacteria were isolated and determined to have at least three strong enzyme activity including protease, lipase, amylase, cellulase, pectinase and xylanase. The results showed that HuluC2 displayed all the enzyme activities and can be further studied.

  13. Toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia.

    Science.gov (United States)

    Mohamed, Zakaria A

    2008-01-01

    Toxic cyanobacteria are well reported in rivers, lakes and even marine environments, but the toxin production of cyanobacteria in hot springs is largely unexplored. Therefore, the present study investigated the presence of toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia. The results of an enzyme-linked immunosorbent assay (ELISA) revealed that Saudi spring cyanobacterial mats contained microcystins (MCYSTs) at concentrations ranging from 468 to 512.5 microg g(-1). The Limulus amebocyte lystae (LAL) assay detected lipopolysaccharide (LPS) endotoxins in these mats at concentrations ranging from 433.3 to 506.8 EU g(-1). MCYSTs and endotoxins were also detected in spring waters at levels of 5.7 microg l(-1) and 640 EU ml(-1), respectively, exceeding WHO's provisional guideline value for MCYST-LR in drinking-water. High-performance liquid chromatography (HPLC) analysis revealed that only Oscillatoria limosa and Synechococcus lividus can produce MCYSTs with a profile consisting of MCYST-RR and -LR. Based on the LAL assay, 12 out of 17 cyanobacterial species contained LPS at concentrations ranging from 0.93 to 21.06 EU g(-1). However, not all LPS of these species were toxic to mice. This study suggests that the hot springs in the world including Saudi Arabia should be screened for toxic cyanobacteria to avoid the exposure of people recreating and bathing in spring waters to cyanobacterial toxins.

  14. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    Science.gov (United States)

    Chen, S.; Peng, X.-T.; Xu, H.-C.; Ta, K.-W.

    2015-10-01

    The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g-1 h-1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH). Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU) in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g-1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell-1 h-1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  15. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    Directory of Open Access Journals (Sweden)

    Katrin eHug

    2014-11-01

    Full Text Available Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand. Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic, and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  16. Regulatory, Land Ownership, and Water Availability Factors for a Magma Well: Long Valley Caldera and Coso Hot Springs, California

    Energy Technology Data Exchange (ETDEWEB)

    Blackett, Robert

    1985-09-01

    The U.S. Department of Energy is currently engaged in a program to demonstrate the engineering feasibility of extracting thermal energy from high-level molten magma bodies. The program is being carried out under the direction of Sandia National Laboratories where a number of individual projects support the overall program. The existing program elements include (1) high-temperature materials compatibility testing; (2) studies of properties of melts of various compositions; and (3) the investigation of the economics of a magma energy extraction system. Another element of the program is being conducted with the cooperation of the U.S. Geological Survey, and involves locating and outlining magma bodies at selected sites using various geophysical techniques. The ultimate goal here will be to define the limits of a magma body as a drilling target. During an earlier phase of the program, more than twenty candidate study sites considered were evaluated based upon: (1) the likelihood of the presence of a shallow magma chamber, (2) the accessibility of the site, and (3) physical and institutional constraints associated with each site with respect to performing long-term experiments. From these early phase activities, the number of candidate sites were eventually narrowed to just 2. The sites currently under consideration are Coso Hot Springs and the Long Valley caldera (Figure 1). This report describes certain attributes of these sites in order to help identify potential problems related to: (1) state and federal regulations pertaining to geothermal development; (2) land ownership; and (3) water resource availability. The information sources used in this study were mainly maps, publications, and informative documents gathered from the California Division of Oil and Gas and the U.S. Department of the Interior. Environmental studies completed for the entire Long Valley caldera study area, and for portions of the Coso Hot Springs study area were also used for reference.

  17. Microbial ecology of two hot springs of Sikkim: Predominate population and geochemistry.

    Science.gov (United States)

    Najar, Ishfaq Nabi; Sherpa, Mingma Thundu; Das, Sayak; Das, Saurav; Thakur, Nagendra

    2018-10-01

    Northeastern regions of India are known for their floral and faunal biodiversity. Especially the state of Sikkim lies in the eastern Himalayan ecological hotspot region. The state harbors many sulfur rich hot springs which have therapeutic and spiritual values. However, these hot springs are yet to be explored for their microbial ecology. The development of neo generation techniques such as metagenomics has provided an opportunity for inclusive study of microbial community of different environment. The present study describes the microbial diversity in two hot springs of Sikkim that is Polok and Borong with the assist of culture dependent and culture independent approaches. The culture independent techniques used in this study were next generation sequencing (NGS) and Phospholipid Fatty Acid Analysis (PLFA). Having relatively distinct geochemistry both the hot springs are thermophilic environments with the temperature range of 50-77 °C and pH range of 5-8. Metagenomic data revealed the dominance of bacteria over archaea. The most abundant phyla were Proteobacteria and Bacteroidetes although other phyla were also present such as Acidobacteria, Nitrospirae, Firmicutes, Proteobacteria, Parcubacteria and Spirochaetes. The PLFA studies have shown the abundance of Gram Positive bacteria followed by Gram negative bacteria. The culture dependent technique was correlative with PLFA studies. Most abundant bacteria as isolated and identified were Gram-positive genus Geobacillus and Anoxybacillus. The genus Geobacillus has been reported for the first time in North-Eastern states of India. The Geobacillus species obtained from the concerned hot springs were Geobacillus toebii, Geobacillus lituanicus, Geobacillus Kaustophillus and the Anoxybacillus species includes Anoxybacillus gonensis and Anoxybacillus Caldiproteolyticus. The distribution of major genera and their statistical correlation analyses with the geochemistry of the springs predicted that the temperature, p

  18. Archaeal and bacterial community analysis of several Yellowstone National Park hot springs

    Science.gov (United States)

    Colman, D. R.; Takacs-Vesbach, C. D.

    2012-12-01

    The hot springs of Yellowstone National Park (YNP) are home to a diverse assemblage of microorganisms. Culture-independent studies have significantly expanded our understanding of the diversity of both Bacteria and Archaea present in YNP springs as well as the geochemical and ecological controls on communities. While the ecological analysis of Bacteria among the physicochemically heterogenous springs of YNP has been previously conducted, less is known about the extent of diversity of Archaeal communities and the chemical and ecological controls on their populations. Here we report a culture-independent analysis of 31 hot spring archaeal and bacterial communities of YNP springs using next generation sequencing. We found the phylogenetic diversity of Archaea to be generally comparable to that of co-occurring bacterial communities although overall, in the springs we investigated, diversity was higher for Bacteria than Archaea. Chemical and physical controls were similar for both domains with pH correlating most strongly with community composition. Community differences reflected the partitioning of taxonomic groups in low or high pH springs for both domains. Results will be discussed in a geochemical and ecological context.

  19. Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park

    Science.gov (United States)

    Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.

    2014-12-01

    Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a

  20. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  1. Microbial diversity in an Armenian geothermal spring assessed by molecular and culture-based methods.

    Science.gov (United States)

    Panosyan, Hovik; Birkeland, Nils-Kåre

    2014-11-01

    The phylogenetic diversity of the prokaryotic community thriving in the Arzakan hot spring in Armenia was studied using molecular and culture-based methods. A sequence analysis of 16S rRNA gene clone libraries demonstrated the presence of a diversity of microorganisms belonging to the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Epsilonproteobacteria, Firmicutes, Bacteroidetes phyla, and Cyanobacteria. Proteobacteria was the dominant group, representing 52% of the bacterial clones. Denaturing gradient gel electrophoresis profiles of the bacterial 16S rRNA gene fragments also indicated the abundance of Proteobacteria, Bacteroidetes, and Cyanobacteria populations. Most of the sequences were most closely related to uncultivated microorganisms and shared less than 96% similarity with their closest matches in GenBank, indicating that this spring harbors a unique community of novel microbial species or genera. The majority of the sequences of an archaeal 16S rRNA gene library, generated from a methanogenic enrichment, were close relatives of members of the genus Methanoculleus. Aerobic endospore-forming bacteria mainly belonging to Bacillus and Geobacillus were detected only by culture-dependent methods. Three isolates were successfully obtained having 99, 96, and 96% 16S rRNA gene sequence similarities to Arcobacter sp., Methylocaldum sp., and Methanoculleus sp., respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, USA)

    Energy Technology Data Exchange (ETDEWEB)

    Fouke, B.W.; Farmer, J.D.; Des Marais, D.J.; Pratt, L.; Sturchio, N.C.; Burns, P.C.; Discipulo, M.K.

    2000-05-01

    Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43--72 C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30--62 C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite ice sheets, calcified bubbles, and aggregates of aragonite needles (fuzzy dumbbells) precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28--54 C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28--30 C) is composed of calcite spherules and calcite feather crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO{sub 2} degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding {delta}{sup 13}C. Travertine {delta}{sup 13}C and {delta}{sup 18}O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature ({approximately}50--73 C) depositional facies. Conversely, travertine precipitating in the lower-temperature (<{approximately}50 C) depositional facies exhibits {delta}{sup 13}C and {delta}{sup 18}O values that are as

  3. Geothermal energy in Montana: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.E.

    1979-11-01

    A short description of the state's geothermal characteristics, economy, and climate is presented. More specific information is included under the planning regions and site specific data summaries. A brief discussion of the geothermal characteristics and a listing of a majority of the known hot springs is included. The factors which influence geothermal development were researched and presented, including: economics, financing, state leasing, federal leasing, direct-use technology, water quality laws, water rights, and the Major Facility Siting Act. (MHR)

  4. Geothermal energy in Montana: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.E.

    1979-11-01

    A short description of the state's geothermal characteristics, economy, and climate is presented. A listing of the majority of the known hot springs is included. A discussion of present and projected demand is included. The results of the site specific studies are addressed within the state energy picture. Possible uses and process requirements of geothermal resources are discussed. The factors which influence geothermal development were researched and presented according to relative importance. (MHR)

  5. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    Science.gov (United States)

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  6. Hot spring therapy of the patients exposed to atomic bomb radiation, 15

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Tamon [Genbaku Hibakusha Beppu Onsen Ryoyo Kenkyusho, Oita (Japan); Tsuji, Hideo

    1983-03-01

    The patients exposed to the atomic bomb radiation in Hiroshima area came to Beppu Spa to have hot spring therapy. During the fiscal year of 1982 (April, 1982, to March, 1983), 3972 persons came to the hot spring sanatorium, and 586 patients (14.8 %) received physical examination. Among them, 473 patients (80.7 %) were exposed to the atomic bomb radiation on August 6, 1945, or entered in the city of Hiroshima by August 20, 1945, according to the official notebook issued by the government. Physical examination was performed twice a week during their stay, and more than 53.5 % of the patients were older than 70, and the oldest was 93 years old. Blood pressure was measured when the patients came in and went out, and hypertensive patients were asked to observe the rule of treatment strictly. The complaints of the patients which brought them to the hot spring were mostly pain in bodies and lower extremities, and hypertension, common cold syndrome, diabetes and constipation. Patients took hot spring bath 2

  7. Hot spring therapy of the patients exposed to atomic bomb radiation, 15

    International Nuclear Information System (INIS)

    Ouchi, Tamon; Tsuji, Hideo.

    1983-01-01

    The patients exposed to the atomic bomb radiation in Hiroshima area came to Beppu Spa to have hot spring therapy. During the fiscal year of 1982 (April, 1982, to March, 1983), 3972 persons came to the hot spring sanatorium, and 586 patients (14.8 %) received physical examination. Among them, 473 patients (80.7 %) were exposed to the atomic bomb radiation on August 6, 1945, or entered in the city of Hiroshima by August 20, 1945, according to the official notebook issued by the government. Physical examination was performed twice a week during their stay, and more than 53.5 % of the patients were older than 70, and the oldest was 93 years old. Blood pressure was measured when the patients came in and went out, and hypertensive patients were asked to observe the rule of treatment strictly. The complaints of the patients which brought them to the hot spring were mostly pain in bodies and lower extremities, and hypertension, common cold syndrome, diabetes and constipation. Patients took hot spring bath 2 - 3 times daily, and many patients had microwave and low frequency wave treatment. Soaking in a bath (containing 1.4 mg of cupric sulfate and 11.4 mg of zinc sulfate per liter) was practiced by diabetic patients. The therapeutic effects were difficult to judge because the period of stay of the most patients was about 10 days, but in most of them, subjective symptoms were relieved when they left the sanatorium. (Yamashita, S.)

  8. MICROBIAL POPULATION OF HOT SPRING WATERS IN ESKİŞEHİR/TURKEY

    Directory of Open Access Journals (Sweden)

    Nalan YILMAZ SARIÖZLÜ

    2012-02-01

    Full Text Available In order to investigate and find out the bacterial community of hot spring waters in Eskişehir, Turkey, 7 hot spring water samples were collected from 7 different hot springs. All samples were inoculated using four different media (nutrient agar, water yeast extract agar, trypticase soy agar, starch casein agar. After incubation at 50 ºC for 14 days, all bacterial colonies were counted and purified. Gram reaction, catalase and oxidase properties of all isolates were determined and investigated by BIOLOG, VITEK and automated ribotyping system (RiboPrinter. The resistance of these bacteriawas examined against ampiciline, gentamisine, trimethoprime-sulphamethoxazole and tetracycline. As a result, heat resistant pathogenic microorganisms in addition to human normal flora were determined in hot spring waters (43-50 ºC in investigated area. Ten different species belong to 6 genera were identified as Alysiella filiformis, Bordetella bronchiseptica, B. pertussis, Molexalla caprae, M. caviae, M. cuniculi, M. phenylpyruvica, Roseomonas fauriae, Delftia acidovorans and Pseudomonas taetrolens.

  9. Biomineralization of radioactive sulfide minerals in strong acidic Tamagawa hot springs

    International Nuclear Information System (INIS)

    Tazaki, Kazue; Watanabe, Hiroaki

    2004-01-01

    Bioaccumulation of radioactive sulfide minerals by bacteria in strong acidic hot spring water was found at Tamagawa Hot Springs, Akita prefecture in Japan. The hot spring water produces Hokutolite of radioactive minerals high radium and radon. The β-ray measurements of sediments and biofilms indicate 1850-2420 and 5700 cpm, respectively, which are 50-100 times higher than that of the water and the air (50-90 cpm). The characteristics of hot spring water show pH (1.2), Eh (140 mV), EC (29 mS/cm), DO (0.8 mg/l), and water temperature (99.5degC), indicating extremely strong acidic and reducing conditions. The hot spring water contains mainly HCl associated with high concentrations of Ca 2+ , Al 3+ , Fe 2+ , HSO 4 - and SO 4 2- . SEM-EDX and TEM demonstrate some insight into how microorganisms affect the chemistry and microbiological characteristics of the strong acidic surroundings with high S, As, Ba, and Ca contents in biofilms. Especially SEM-EDX, ED-XRF, and STEM-EDX elemental content maps illustrate the distribution of sulfur-bearing compounds of barite (BaSO 4 ), gypsum (CaSO 4 ·2H 2 O), elemental sulfur (S) and orpiment(As 2 S 3 ) in the reddish orange biofilms. The presence of a hydrogen sulfide-rich (H 2 S) thermal spring and gypsum deposits suggest the volatilization of H 2 S from the spring water, oxidation of the H 2 S gas to sulfuric acid, and reaction of the sulfuric acid. TEM micrographs of bacteria in the biofilms reveal in detail the intimate connections between biological and mineralogical processes that the cells are entirely accumulated with spherical grains, 100∼200 nm in diameter. The relationship among sulfide minerals, such as barite, gypsum, sulfur, orpiment, and Hakutolite, associated with bacteria implies that heavy metals have been transported from strong acidic hot spring water to sediments through bacteria metabolism. It is possible that the capability of radioactive sulfide biofilms for heavy metal immobilization can be used to

  10. Annual absorbed dose rate at the surface of 38 hot and mineral springs in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Bahreyni Toosi, M.; Orougi, M.H.; Sadeghzadeh, A.; Aghamir, A.; Jomehzadeh, A.; Zare, H. [Mashhad Univ. of Medical Sciences, Medical Physics Dep., Faculty of Medicine (Iran, Islamic Republic of)

    2006-07-01

    Full text of publication follows: Measurement of background radiation is very important from different points of view especially to human health. In some cases exposure rate near hot and mineral springs are higher than those of normal areas. The high background radiation of hot and mineral springs is primarily due to the presence of very high amounts of Ra 226 and its decay products. In this research, environmental gamma radiation of hot and mineral springs in Khorasan, Mazandaran and Sareeyn town in Ardabil province have been measured. Equipment used in this work included: a survey meter (R.D.S. -110), a tripod and an aluminium frame to hold the survey meter horizontally.R.D.S. -110 is a microprocessor controlled detector. This survey meter has been designed for monitoring X and rays and radiation. Measurements were carried out at one meter above water level in the vicinity of hot and mineral springs. Dose rates were recorded for one hour. The average of all recorded dose rates over one hour period was taken as the exposure rate for each station. The results indicate that in Khorasan province the highest and lowest annual absorbed dose rates were equal to 10.80 mSv/y at Shanigarmab and 0.52 mSv/y at Nasradin source respectively. In Mazandaran province maximum and minimum exposure rates equal to 54.4 and 0.53 mSv/y were obtained at the surface of Talleshmahalleh and Ghormerz sources. Exposure rates at the vicinity of Sarein sources were not very different and ranged from 1.39 to 1.59 mSv/y. The results indicate that in Khorasan province Shahingarmab hot spring has the highest annual absorbed dose rate (10.80 mSv/y) and Nasraddin in Sarbisheh has the lowest level of radiation (0.62 mSv/y). In Mazandaran province Taleshmahalleh hot mineral spring has the highest annual absorbed dose rate (54.41 mSv/y) and Ghormerz mineral spring has the lowest radiation level (0.53 mSv/y). Also in Sareeyn (in Ardabil province) Abechashm source has the highest annual absorbed dose

  11. Chemical analyses of waters from geysers, hot springs, and pools in Yellowstone National Park, Wyoming from 1974 to 1978

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.M.; Yadav, S.

    1979-01-01

    Waters from geysers, hot springs, and pools of Yellowstone National Park have been analyzed. We report 422 complete major ion analyses from 330 different locations of geysers, hot springs, and pools, collected from 1974 to 1978. Many of the analyses from Upper, Midway, Lower, and Norris Geyser Basin are recollections of features previously reported.

  12. Induced Seismicity at the UK "Hot Dry Rock" Test Site for Geothermal Energy Production

    Science.gov (United States)

    Li, Xun; Main, Ian; Jupe, Andrew

    2018-03-01

    In enhanced geothermal systems (EGS), fluid is injected at high pressure in order to stimulate fracturing and/or fluid flow through otherwise relatively impermeable underlying hot rocks to generate power and/or heat. The stimulation induces micro-earthquakes whose precise triggering mechanism and relationship to new and pre-existing fracture networks are still the subject of some debate. Here we analyse the dataset for induced micro-earthquakes at the UK "hot dry rock" experimental geothermal site (Rosemanowes, Cornwall). We quantify the evolution of several metrics used to characterise induced seismicity, including the seismic strain partition factor and the "seismogenic index". The results show a low strain partition factor of 0.01% and a low seismogenenic index indicating that aseismic processes dominate. We also analyse the spatio-temporal distribution of hypocentres, using simple models for the evolution of hydraulic diffusivity by (a) isotropic and (b) anisotropic pore-pressure relaxation. The principal axes of the diffusivity or permeability tensor inferred from the spatial distribution of earthquake foci are aligned parallel to the present-day stress field, although the maximum permeability is vertical, whereas the maximum principal stress is horizontal. Our results are consistent with a triggering mechanism that involves (a) seismic shear slip along optimally-oriented pre-existing fractures, (b) a large component of aseismic slip with creep (c) activation of tensile fractures as hydraulic conduits created by both the present-day stress field and by the induced shear slip, both exploiting pre-existing joint sets exposed in borehole data.

  13. Isolation and Phylogenetic Analysis of Thermophile Community Within Tanjung Sakti Hot Spring, South Sumatera, Indonesia

    Directory of Open Access Journals (Sweden)

    Heni Yohandini

    2015-07-01

    Full Text Available A community of thermophiles within Tanjung Sakti Hot Spring (South Sumatera have been cultivated and identified based on 16S ribosomal RNA gene sequence. The hot spring has temperature 80 °C–91 °C and pH 7–8. We used a simple method for culturing the microbes, by enriching the spring water with nutrient broth media. Phylogenetic analysis showed that the method could recover microbes, which clustered within four distinct taxonomic groups: Anoxybacillus, Geobacillus, Brevibacillus, and Bacillus. These microbes closely related to Anoxybacillus rupiensis, Anoxybacillus flavithermus, Geobacillus pallidus, Brevibacillus thermoruber, Bacillus licheniformis, and Bacillus thermoamylovorans. The 16S ribosomal RNA gene sequence of one isolate only had 96% similarity with Brevibacillus sequence in GenBank.

  14. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  15. Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico

    Science.gov (United States)

    Peiffer, L.; Bernard-Romero, R.; Mazot, A.; Taran, Y. A.; Guevara, M.; Santoyo, E.

    2014-09-01

    The Acoculco caldera has been recognized by the Mexican Federal Electricity Company (CFE) as a Hot Dry Rock Geothermal System (HDR) and could be a potential candidate for developing an Enhanced Geothermal System (EGS). Apart from hydrothermally altered rocks, geothermal manifestations within the Acoculco caldera are scarce. Close to ambient temperature bubbling springs and soil degassing are reported inside the caldera while a few springs discharge warm water on the periphery of the caldera. In this study, we infer the origin of fluids and we characterize for the first time the soil degassing dynamic. Chemical and isotopic (δ18O-δD) analyses of spring waters indicate a meteoric origin and the dissolution of CO2 and H2S gases, while gas chemical and isotopic compositions (N2/He, 3He/4He, 13C, 15N) reveal a magmatic contribution with both MORB- and arc-type signatures which could be explained by an extension regime created by local and regional fault systems. Gas geothermometry results are in agreement with temperature measured during well drilling (260 °C-300 °C). Absence of well-developed water reservoir at depth impedes re-equilibration of gases upon surface. A multi-gas flux survey including CO2, CH4 and H2S measurements was performed within the caldera. Using the graphical statistical analysis (GSA) approach, CO2 flux measurements were classified in two populations. Population A, representing 95% of measured fluxes is characterized by low values (mean: 18 g m- 2 day- 1) while the remaining 5% fluxes belonging to Population B are much higher (mean: 5543 g m- 2 day- 1). This low degassing rate probably reflects the low permeability of the system, a consequence of the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks. An attempt to interpret the origin and transport mechanism of these fluxes is proposed by means of flux ratios as well as by numerical modeling. Measurements with CO2/CH4 and CO2/H2S flux ratios similar to mass ratios

  16. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Weiguo Hou

    Full Text Available The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21-123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5-2.6, high temperature (85.1-89.1°C, and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6-4.8 and cooler temperature (55.1-64.5°C favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2-9.4 and high temperature (>80°C with high concentrations of silica and salt ions (Na, K, and Cl favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon "Candidatus Nitrosocaldus yellowstonii", and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current

  17. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing.

    Science.gov (United States)

    Hou, Weiguo; Wang, Shang; Dong, Hailiang; Jiang, Hongchen; Briggs, Brandon R; Peacock, Joseph P; Huang, Qiuyuan; Huang, Liuqin; Wu, Geng; Zhi, Xiaoyang; Li, Wenjun; Dodsworth, Jeremy A; Hedlund, Brian P; Zhang, Chuanlun; Hartnett, Hilairy E; Dijkstra, Paul; Hungate, Bruce A

    2013-01-01

    The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21-123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5-2.6), high temperature (85.1-89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6-4.8) and cooler temperature (55.1-64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2-9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon "Candidatus Nitrosocaldus yellowstonii", and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of

  18. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau

    International Nuclear Information System (INIS)

    Zhou, Xiaocheng; Liu, Lei; Chen, Zhi; Cui, Yueju; Du, Jianguo

    2017-01-01

    The southeast Tibetan Plateau is a region with high level seismic activity and strong hydrothermal activity. Several large (7.5 > M > 7) historical earthquakes have occurred in the Litang fault zone (LFZ), eastern Tibetan Plateau since 1700. Litang Ms 5.1 earthquake occurred On Sept 23, 2016, indicating the reactivation of the LFZ. This study was undertaken to elucidate spatial-temporal variations of the hot spring gas geochemistry along the LFZ from Jun 2010 to April 2016. The chemical components, He, Ne and C isotropic ratios of bubbling gas samples taken from 18 hot springs along LFZ were investigated. Helium isotope ratios ( 3 He/ 4 He) measured in hot springs varied from 0.06 to 0.93 Ra (Ra = air 3 He/ 4 He = 1.39 × 10 −6 ), with mantle-derivd He up to 11.1% in the LFZ (assuming R/Ra = 8 for mantle) indicated the fault was a crustal-scale feature that acts as a conduit for deep fluid from the mantle. CO 2 concentrations of the majority of hot spring gas samples were ≥80 vol%, CO 2 / 3 He ratios varied from 1.4 to 929.5 × 10 10 , and δ 13 C CO2 values varied from −19.2‰ to −2.3‰ (vs. PDB). The proportions of mantle-derived CO 2 varied from 0 to 1.8%. Crustal marine limestone was the major contributor (>75%) to the carbon inventory of the majority of hot spring gas samples. Before Litang Ms 5.1 earthquake, the 3 He/ 4 He ratios obviously increased in the Heni spring from May 2013 to Apr 2016. The geographical distribution of the mantle-derivd He decreased from east to west along 30°N in the southeast Tibetan Plateau relative to a corresponding increase in the radiogenic component. The gas geochemical data suggested that the upwelling mantle fluids into the crust play an important role in seismic activity in the strike-slip faults along 30°N in the southeast Tibetan Plateau. - Highlights: • Gas geochemistry of hot springs along Litang fault, Southeast Tibetan Plateau were surveyed. • Mantle-derived He decreased from east to

  19. FY 1996 geothermal development/promotion survey. Report of hot water survey results (No. B-3 Kumaishi area); 1996 nendo chinetsu kaihatsu sokushin chosa. Nessui no chosa hokokusho (No.B-3 Kumaishi chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Reported herein are the survey results of hot water in the Kumaishi area, Hokkaido, as part of the FY 1996 geothermal development/promotion survey project. A total of 277 spouting guidance tests were conducted by the swabbing method for 10 days at the N7-KI-1 well, which, however, failed to achieve continuous spouting of geothermal fluid. A total of 144 swabbing tests were conducted for 8 days at the N7-KI-2 well. The geothermal fluid is spontaneously spouted out, although intermittently, after the main valve was opened, because it had a pressure of 4.1 kg/cm{sup 2} G at the mouth of the well from the first. However, the final self-spouting quantity remained unchanged in spite of the guidance works. The hot water had a pH 6.4, and contained Na as a cation at 8,940 mg/L and Cl as an anion at 14,500 mg/L as the major impurities. The associated gas was mainly composed of carbon dioxide, containing little hydrogen sulfide. The hot water spouted out through the wells contained Na and a high concentration of Cl as the major impurities, suggesting possibility of mixing hot water containing a high concentration of salt with surface water. It is considered that neither hot water nor its impurity concentrations are evenly distributed in the deep underground of the Kumaishi area. It is therefore considered that the deep underground hot water sources for hot spring slightly vary in composition and impurity concentrations. (NEDO)

  20. Abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China.

    Science.gov (United States)

    Song, Zhao-Qi; Wang, Li; Wang, Feng-Ping; Jiang, Hong-Chen; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Li, Wen-Jun

    2013-09-01

    It has been suggested that archaea carrying the accA gene, encoding the alpha subunit of the acetyl CoA carboxylase, autotrophically fix CO2 using the 3-hydroxypropionate/4-hydroxybutyrate pathway in low-temperature environments (e.g., soils, oceans). However, little new information has come to light regarding the occurrence of archaeal accA genes in high-temperature ecosystems. In this study, we investigated the abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China, using DNA- and RNA-based phylogenetic analyses and quantitative polymerase chain reaction. The results showed that archaeal accA genes were present and expressed in the investigated Yunnan hot springs with a wide range of temperatures (66-96 °C) and pH (4.3-9.0). The majority of the amplified archaeal accA gene sequences were affiliated with the ThAOA/HWCG III [thermophilic ammonia-oxidizing archaea (AOA)/hot water crenarchaeotic group III]. The archaeal accA gene abundance was very close to that of AOA amoA gene, encoding the alpha subunit of ammonia monooxygenase. These data suggest that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  1. Geothermal exploitation activity by the United Nations in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H. (Geological Survey of Japan)

    1971-01-01

    The Rift Valley in Ethiopia was investigated for geothermal exploitation by the United Nations because it has Quaternary volcanoes which often indicate possible geothermal power generation. Preparations for the project are still being made, and the chemical analysis of hot springs is being conducted. The Rift Valley has high temperature springs and potential mineral deposits. The Danakil basin in Ethiopia which is included in the Northern Afar, has several active volcanoes made up of basalt deposits and has active hot springs. The East Africa Rift Valley, the Red Sea Rift Valley, and the Afar area are also areas suitable for investigation. Seven maps are included.

  2. Deep Production Well for Geothermal Direct-Use Heating of A Large Commercial Greenhouse, Radium Springs, Rio Grande Rift, New Mexico; FINAL

    International Nuclear Information System (INIS)

    James C. Witcher

    2002-01-01

    Expansion of a large commercial geothermally-heated greenhouse is underway and requires additional geothermal fluid production. This report discusses the results of a cost-shared U.S. Department of Energy (DOE) and A.R. Masson, Inc. drilling project designed to construct a highly productive geothermal production well for expansion of the large commercial greenhouse at Radium Springs. The well should eliminate the potential for future thermal breakthrough from existing injection wells and the inducement of inflow from shallow cold water aquifers by geothermal production drawdown in the shallow reservoir. An 800 feet deep production well, Masson 36, was drilled on a US Bureau of Land Management (BLM) Geothermal Lease NM-3479 at Radium Springs adjacent to the A. R. Masson Radium Springs Farm commercial greenhouse 15 miles north of Las Cruces in Dona Ana County, New Mexico just west of Interstate 25 near the east bank of the Rio Grande. The area is in the Rio Grande rift, a tectonically-active region with high heat flow, and is one of the major geothermal provinces in the western United State

  3. Quartz dissolution and silica deposition in hot-dry-rock geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.A.

    1982-07-01

    The kinetics of quartz dissolution control the produced fluid dissolved silica concentration in geothermal systems in which the downhole residence time is finite. The produced fluid of the Phase I, Run Segment 5 experimental Hot Dry Rock (HDR) geothermal system at Fenton Hill, NM, was undersaturated with respect to quartz in one pass through the reservoir, suggesting that the rate of granite dissolution governed the outlet dissolved silica concentration in this system. The literature data for the rate of quartz dissolution in water from 65 to 625/sup 0/C is correlated using an empirical rate law which is first order in quartz surface area and degree of undersaturation of the fluid. The Arrhenius plot (ln k vs T/sup -1/) is linear over eight orders of magnitude of the rate constant, verifying the validity of the proposed rate expression. Carefully performed quartz dissolution experiments in the present study duplicated the literature data and completed the data base in the temperature range from 150 to 250/sup 0/C. Identical experiments using crushed granite indicate that the rate of quartz dissolution in the presence of granite could be as much as 1 to 2 orders of magnitude faster than the rates observed in the pure quartz experiments. A temperature dependent HDR reservoir model incorporates the quartz dissolution rate law to simulate the dissolved silica behavior during the Fenton Hill Run Segment 5 experiment. For this low-permeability, fracture-dominated reservoir, the assumptions of one-dimensional plug flow through a vertically-inclined rectangular fracture and one-dimensional rock heat conduction perpendicular to the direction of flow are employed. These simplifications lead to an analytical solution for the temperature field in the reservoir.

  4. Hot dry rock geothermal energy development program. Annual report, fiscal year 1980

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, G.M. (comp.)

    1981-07-01

    Investigation and flow testing of the enlarged Phase I heat-extraction system at Fenton Hill continued throughout FY80. Temperature drawdown observed at that time indicated an effective fracture of approximately 40,000 to 60,000 m/sup 2/. In May 1980, hot dry rock (HDR) technology was used to produce electricity in an interface demonstration experiment at Fenton Hill. A 60-kVA binary-cycle electrical generator was installed in the Phase I surface system and heat from about 3 kg/s of geothermal fluid at 132/sup 0/C was used to boil Freon R-114, whose vapor drove a turboalternator. A Phase II system was designed and is now being constructed at Fenton Hill that should approach commercial requirements. Borehole EE-2, the injection well, was completed on May 12, 1980. It was drilled to a vertical depth of about 4500 m, where the rock temperature is approximately 320/sup 0/C. The production well, EE-3 had been drilled to a depth of 3044 m and drilling was continuing. Environmental monitoring of Fenton Hill site continued. Development of equipment, instruments, and materials for technical support at Fenton Hill continued during FY80. Several kinds of models were also developed to understand the behavior of the Phase I system and to develop a predictive capability for future systems. Data from extensive resource investigations were collected, analyzed, and assembled into a geothermal gradient map of the US, and studies were completed on five specific areas as possible locations for HDR Experimental Site 2.

  5. Penentuan Strategi Pengembangan Pariwisata Menggunakan Metode Analisis Swot (Studi Pada Pemandian Air Panas atau Hot Spring di Kelurahan Siogung-Ogung Kecamatan Pangururan Kabupaten Samosir)

    OpenAIRE

    Napitu, Kartini Indayati

    2016-01-01

    Hot spring is a tourist attraction that has the potential to attract more visitors if developed with good strategy. Therefore , researchers interested in studying how to develop the tourist hot spring and strategies that can be done. This study aims to , first to analyze the factors that the strengths, weaknesses, opportunities and threats to tourism Hot Spring in Pangururan Samosir. Second, determine the right marketing strategy in tourism Hot Spring is based on the analysis of strengths , w...

  6. Report on achievements in fiscal 1973 in studies of technologies to develop and utilize resources and preserve national land. Study on hot water systems in geothermal areas; 1973 nendo chinetsu chiiki no nessuikei ni kansuru kenkyu seika chukan hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    It is important for geothermal energy to develop and utilize it in a rational manner. To achieve the objective, hot water systems must be studied comprehensively and elucidated from the standpoint of the systems as a whole. The present study, standing on this viewpoint, is intended to elucidate hot water systems and establish a survey method thereon. Fiscal 1973 has selected four areas (northern Hachimantai, southern Hachimantai, Onikubi and Kuju areas) as the model study fields, and used as the main field the Onikubi area, which clearly shows the structural catchment basin. Studies were performed in this area on hydraulic hot flow rates, isotopic geology, and reservoirs. In the hydraulic hot flow rate study, the amount of rainfall, amount of flowing water, and amount of hot spring water flow-out were observed continually. In the isotopic geology study, hydrogen in hot spring water and underground water, and composition of oxygen isotope were analyzed. Estimation was made from the result thereof on water balance, heat balance, and underground residence time. In the study of reservoirs, measurements were performed inside the wells, and estimation was made on locations and sizes of the reservoirs by surveying distribution of transformed minerals and cracks. (NEDO)

  7. Surveillance of Vittaforma corneae in hot springs by a small-volume procedure.

    Science.gov (United States)

    Chen, Jung-Sheng; Hsu, Tsui-Kang; Hsu, Bing-Mu; Huang, Tung-Yi; Huang, Yu-Li; Shaio, Men-Fang; Ji, Dar-Der

    2017-07-01

    Vittaforma corneae is an obligate intracellular fungus and can cause human ocular microsporidiosis. Although accumulating reports of V. corneae causing keratoconjunctivitis in both healthy and immunocompromised persons have been published, little is known about the organism's occurrence in aquatic environments. Limitations in detection sensitivity have meant a large sampling volume is required to detect the pathogen up to now, which is problematic. A recent study in Taiwan has shown that some individuals suffering from microsporidial keratitis (MK) were infected after exposure to the pathogen at a hot spring. As a consequence of this, a survey and analysis of environmental V. corneae present in hot springs became an urgent need. In this study, sixty water samples from six hot spring recreation areas around Taiwan were analyzed. One liter of water from each sample site was filtered to harvest the fungi. The positive samples were detected using a modified nested PCR approach followed by sequencing using specific SSU rRNA gene primer pairs for V. corneae. In total fifteen V. corneae-like isolates were identified (25.0% of sites). Among them, six isolates, which were collected from recreational areas B, C and D, were highly similar to known V. corneae keratitis strains from Taiwan and other countries. Furthermore, five isolates, which were collected from recreation areas A, C, E and F, were very similar to Vittaforma-like diarrhea strains isolated in Portugal. Cold spring water tubs and public foot bath pools had the highest detection rate (50%), suggesting that hot springs might be contaminated via untreated water sources. Comparing the detection rate across different regions of Taiwan, Taitung, which is in the east of the island, gave the highest positive rate (37.5%). Statistical analysis showed that outdoor/soil exposure and a high heterotrophic plate count (HPC) were risk factors for the occurrence of V. corneae. Our findings provide empirical evidence

  8. Determination of arsenic and bromine in hot spring waters by neutron activation analysis

    International Nuclear Information System (INIS)

    Kikawada, Y.; Kawai, S.; Oi, T.

    2004-01-01

    Concentrations of arsenic and bromine dissolved in hot spring waters have been determined by neutron activation analysis using 0.5 cm 3 of sample waters without any chemical pretreatment. The samples prepared for neutron irradiation were simply pieces of filter papers which were infiltrated with samples. With the results of satisfactorily high accuracy and precision, this analytical method was found to be very convenient for the determinations of arsenic and bromine dissolved in water at ppm to sub-ppm levels. (author)

  9. Pediatric deep burns caused by hot incense ashes during 2014 Spring Festival in Fuyang city, China.

    Science.gov (United States)

    Wang, Jian; Zhou, Bo; Tao, Ren Qin; Chen, Xu Lin

    2016-01-01

    The Chinese people in Fuyang city, a northwest city of Anhui Province, are accustomed to burning incense at home for blessing during the Spring Festival. Their children, especially toddlers, like playing around the burning incense and are at risk of burning by hot incense ashes. The purpose of this study was to describe the unique cause and clinical characteristics of pediatric deep burns caused by hot incense ashes during 2014 Spring Festival. Twelve consecutive children admitted to our Burn Center and Fuyang People's Hospital during 2014 Spring Festival, with burn injuries caused by hot incense ashes which were epidemiologically studied retrospectively. Data on age, gender, size, depth and site of burn, incidence by day, number of operation, hospital stay, and causes of burns were collected. All patients came from Fuyang city. Of the 12 patients, the average age was 2.17 years, with a range of 1-6. The boy-to-girl ratio was 2: 1. The mean total burn surface area (TBSA) was 5.83%, and 91.67% of the children sustained full-thickness burn. Hands were the most common parts of the body to be injured. Dry necrosis developed in 14 fingers of 3 patients. January 31, 2014, the first day of the Chinese New Year, was the time of highest incidence. Six patients (50%) required surgical intervention while the number of operations including escharectomy, excision, skin grafting, or amputation of necrotic fingers, per patient was 2. A total of 14 fingers were amputated of the necrotic parts. All children survived and mean length of hospital stay of the patients was 20 days. Hot incense ashes cause serious injuries to children in Fuyang city during the Spring Festival. Preventive programs should be directed towards high risk groups to reduce the incidence of this burn.

  10. The cyanobacterium Mastigocladus fulfills the nitrogen demand of a terrestrial hot spring microbial mat.

    Science.gov (United States)

    Estrella Alcamán, María; Fernandez, Camila; Delgado, Antonio; Bergman, Birgitta; Díez, Beatriz

    2015-10-01

    Cyanobacteria from Subsection V (Stigonematales) are important components of microbial mats in non-acidic terrestrial hot springs. Despite their diazotrophic nature (N2 fixers), their impact on the nitrogen cycle in such extreme ecosystems remains unknown. Here, we surveyed the identity and activity of diazotrophic cyanobacteria in the neutral hot spring of Porcelana (Northern Patagonia, Chile) during 2009 and 2011-2013. We used 16S rRNA and the nifH gene to analyze the distribution and diversity of diazotrophic cyanobacteria. Our results demonstrate the dominance of the heterocystous genus Mastigocladus (Stigonematales) along the entire temperature gradient of the hot spring (69-38 °C). In situ nitrogenase activity (acetylene reduction), nitrogen fixation rates (cellular uptake of (15)N2) and nifH transcription levels in the microbial mats showed that nitrogen fixation and nifH mRNA expression were light-dependent. Nitrogen fixation activities were detected at temperatures ranging from 58 °C to 46 °C, with maximum daily rates of 600 nmol C2H4 cm(-2) per day and 94.1 nmol N cm(-2) per day. These activity patterns strongly suggest a heterocystous cyanobacterial origin and reveal a correlation between nitrogenase activity and nifH gene expression during diurnal cycles in thermal microbial mats. N and C fixation in the mats contributed ~3 g N m(-2) per year and 27 g C m(-2) per year, suggesting that these vital demands are fully met by the diazotrophic and photoautotrophic capacities of the cyanobacteria in the Porcelana hot spring.

  11. Molecular diversity of thermophilic bacteria isolated from Pasinler hot spring (Erzurum, Turkey)

    OpenAIRE

    ADIGÜZEL, Ahmet; İNAN, Kadriye; ŞAHİN, Fikrettin; ARASOĞLU, Tulin; GÜLLÜCE, Medine

    2011-01-01

    The present study was conducted to determine the phenotypic and genotypic characterization of thermophilic bacteria isolated from Pasinler hot spring, Erzurum, Turkey. Fatty acid profiles, BOX PCR fingerprints, and 16S rDNA sequence data were used for the phenotypic and genotypic characterization of thermophilic bacteria. Totally 9 different bacterial strains were selected based on morphological, physiological, and biochemical tests. These strains were characterized by molecular tests includi...

  12. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    OpenAIRE

    Aanniz,Tarik; Ouadghiri,Mouna; Melloul,Marouane; Swings,Jean; Elfahime,Elmostafa; Ibijbijen,Jamal; Ismaili,Mohamed; Amar,Mohamed

    2015-01-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. ...

  13. 16S RRNA Gene Analysis of Chlorate Reducing Thermophilic Bacteria From Local Hot Spring

    OpenAIRE

    Aminin, Agustina L. N; Katulistiwasari, Puri; Mulyani, Nies Suci

    2011-01-01

    Chlorates waste remediation by biological processes has been the object of current research. Strain CR, the chlorate reducing bacteria was isolated from Gedongsongo hot spring using minimal medium broth containing chlorates and acetate at 55oC. The determination of chlorate reduction from medium was carried out using turbidimetric method. CR isolate showed reducing ability 18% after four days of incubation. The phenotypic character of CR isolate including rod-shaped cells, gram-positive bacte...

  14. Thermostable 𝜶-Amylase Activity from Thermophilic Bacteria Isolated from Bora Hot Spring, Central Sulawesi

    Science.gov (United States)

    Gazali, F. M.; Suwastika, I. N.

    2018-03-01

    α-Amylase is one of the most important enzyme in biotechnology field, especially in industrial application. Thermostability of α-Amylase produced by thermophilic bacteria improves industrial process of starch degradation in starch industry. The present study were concerned to the characterization of α-Amylase activity from indigenous thermophilic bacteria isolated from Bora hot spring, Central Sulawesi. There were 18 isolates which had successfully isolated from 90°C sediment samples of Bora hot spring and 13 of them showed amylolytic activity. The α-Amylase activity was measured qualitatively at starch agar and quantitatively based on DNS (3,5-Dinitrosalicylic acid) methods, using maltose as standard solution. Two isolates (out of 13 amylolytic bacteria), BR 002 and BR 015 showed amylolytic index of 0.8 mm and 0.5 mm respectively, after being incubated at 55°C in the 0.002% Starch Agar Medium. The α-Amylase activity was further characterized quantitatively which includes the optimum condition of pH and temperature of α-Amylase crude enzyme from each isolate. To our knowledge, this is the first report on isolation and characterization of a thermostable α-Amylase from thermophilic bacteria isolated from Central Sulawesi particularly from Bora hot spring.

  15. Effects of Misasa hot spring water on the growth of vegetables (Joint research)

    International Nuclear Information System (INIS)

    Yamada, Satoshi; Kita, Makoto; Goto, Yukari; Ishimori, Yuu

    2011-11-01

    Tottori University and Japan Atomic Energy Agency started a joint study to investigate the effect of hot spring water on the growth of vegetable plants in 2009. The aim of the study is to examine a feasibility of producing a regionally special vegetable with considering the characteristics of the Misasa district, where radon hot springs are historically famous. This report illustrates the intermediate results obtained from the study carried out from 2009 to 2010. (1) Screening test: Eighteen plants were examined for screening. As the results, Misasa hot spring water used in the water culture enlarged the growths of 14 plants. Lastly, 9 plants were selected as candidate plants for further examinations. (2) Sample preparation: Plants sampled in the water culture were lyophilized and stored in a freezer for nutrio-physiological analyses to select the suitable plant from the 9 plants. (3) Examination in labor-saving cultivation: Preliminary examinations were performed with a large-scale system to establish a practical labor-saving water culture system. (author)

  16. Lipid Biomarkers and Stable Isotope Signatures of Microbial Mats in Hot Springs of Kamchatka, Russia

    Science.gov (United States)

    Romanek, C. S.; Mills, G. L.; Jones, M. E.; Paddock, L.; Li, Y.; Zhang, C. L.; Wiegel, J.

    2004-12-01

    Various hot springs of the Uzon Caldera, Kamchatka, were analyzed for their chemical and stable isotope composition to better understand the relationship(s) between thermophilic microorganisms and the environments in which they live. The springs had water temperatures ranging from 40-90\\deg C and pH ranging from 5.6-5.9. Gases that emanated from the springs were composed predominantly of CO2 (20 to 90%), with lesser amounts of CH4, (Archaea. Results of PLFA showed 16:0 as the most abundant fatty acid (33-44%), which is universal in all living organisms. Other significant biomarkers included 18:1ω (19 to 24%), 18:2ω (5 to 13%), 16:1ω (3 to 12%), and 18:0 (2 to 7%). These biomarkers are characteristic of cyanobacteria, green-sulfur bacteria, and green non-sulfur bacteria, respectively, which are common autotrophic organisms in terrestrial hot springs. On the other hand, biomarkers of heterotrophic bacteria, such as iso- and anteiso-15:0 were low (2-8%), indicating that the bacterial carbon cycle was dominated by autotrophic organisms. Analogous archaeal constituents were present in significant abundance in the ether lipids fraction.

  17. Hot spring deposits on a cliff face: A case study from Jifei, Yunnan Province, China

    Science.gov (United States)

    Jones, Brian; Peng, Xiaotong

    2014-04-01

    A cliff face in the Jifei karst area, southwest China, is covered by a spectacular succession of precipitates that formed from the hot spring water that once flowed down its surface. This layered succession is formed of aragonite layers that are formed largely of “fountain dendrites”, calcite layers that are formed mostly of “cone dendrites”, and microlaminated layers that contain numerous microbes and extracellular polymeric substances (EPS). Many of the aragonite crystals are hollow due to preferential dissolution of their cores. The calcite cone dendrites are commonly covered with biofilms, reticulate Si-Mg coatings, and other precipitates. The microbial layers include dodecahedral calcite crystals and accessory minerals that include opal-A, amorphous Si-Mg coatings, trona, barite, potassium sulfate crystals, mirabillite, and gaylussite. Interpretation of the δ18O(calcite) and δ18O(aragonite) indicates precipitation from water with a temperature of 54 to 66 °C. The active hot spring at the top of the cliff presently ejects water at a temperature of 65 °C. Layers, 1 mm to 6 cm thick, record temporal changes in the fluids from which the precipitates formed. This succession is not, however, formed of recurring cycles that can be linked to diurnal or seasonal changes in the local climate. Indeed, it appears that the climatic contrast between the wet season and the dry season had little impact on precipitation from the spring waters that flowed down the cliff face. Integration of currently available evidence suggests that the primary driving force was aperiodic changes in the CO2 content of the spring waters because that seems to be the prime control on the saturation levels that underpinned precipitation of the calcite and aragonite as well as the dissolution of the aragonite. Such variations in the CO2 content of the spring water were probably due to changes that took place in the subterranean plumbing system of the spring.

  18. High Prevalence, Genetic Diversity and Intracellular Growth Ability of Legionella in Hot Spring Environments

    Science.gov (United States)

    Zhou, Haijian; Wang, Huanxin; Xu, Ying; Zhao, Mingqiang; Guan, Hong; Li, Machao; Shao, Zhujun

    2013-01-01

    Background Legionella is the causative agent of Legionnaires' disease, and hot springs are a major source of outbreaks of this disease. It is important from a public health perspective to survey hot spring environments for the presence of Legionella. Methods Prospective surveillance of the extent of Legionella pollution was conducted at three hot spring recreational areas in Beijing, China in 2011. Pulsed-field gel electrophoresis (PFGE) and sequence-based typing (SBT) were used to describe the genetic polymorphism of isolates. The intracellular growth ability of the isolates was determined by interacting with J774 cells and plating the dilutions onto BCYE agar plates. Results Overall, 51.9% of spring water samples showed Legionella-positive, and their concentrations ranged from 1 CFU/liter to 2,218 CFU/liter. The positive rates of Legionella were significantly associated with a free chlorine concentration of ≥0.2 mg/L, urea concentration of ≥0.05 mg/L, total microbial counts of ≥400 CFU/ml and total coliform of ≥3 MPN/L (pLegionella concentrations were significantly associated with sample temperature, pH, total microbial counts and total coliform (pLegionella pneumophila was the most frequently isolated species (98.9%), and the isolated serogroups included serogroups 3 (25.3%), 6 (23.4%), 5 (19.2%), 1 (18.5%), 2 (10.2%), 8 (0.4%), 10 (0.8%), 9 (1.9%) and 12 (0.4%). Two hundred and twenty-eight isolates were analyzed by PFGE and 62 different patterns were obtained. Fifty-seven L. pneumophila isolates were selected for SBT analysis and divided into 35 different sequence types with 5 main clonal groups. All the 57 isolates had high intracellular growth ability. Conclusions Our results demonstrated high prevalence and genetic polymorphism of Legionella in springs in Beijing, China, and the SBT and intracellular growth assay results suggested that the Legionella isolates of hot spring environments were pathogenic. Improved control and prevention strategies are

  19. High prevalence, genetic diversity and intracellular growth ability of Legionella in hot spring environments.

    Directory of Open Access Journals (Sweden)

    Tian Qin

    Full Text Available BACKGROUND: Legionella is the causative agent of Legionnaires' disease, and hot springs are a major source of outbreaks of this disease. It is important from a public health perspective to survey hot spring environments for the presence of Legionella. METHODS: Prospective surveillance of the extent of Legionella pollution was conducted at three hot spring recreational areas in Beijing, China in 2011. Pulsed-field gel electrophoresis (PFGE and sequence-based typing (SBT were used to describe the genetic polymorphism of isolates. The intracellular growth ability of the isolates was determined by interacting with J774 cells and plating the dilutions onto BCYE agar plates. RESULTS: Overall, 51.9% of spring water samples showed Legionella-positive, and their concentrations ranged from 1 CFU/liter to 2,218 CFU/liter. The positive rates of Legionella were significantly associated with a free chlorine concentration of ≥0.2 mg/L, urea concentration of ≥0.05 mg/L, total microbial counts of ≥400 CFU/ml and total coliform of ≥3 MPN/L (p<0.01. The Legionella concentrations were significantly associated with sample temperature, pH, total microbial counts and total coliform (p<0.01. Legionella pneumophila was the most frequently isolated species (98.9%, and the isolated serogroups included serogroups 3 (25.3%, 6 (23.4%, 5 (19.2%, 1 (18.5%, 2 (10.2%, 8 (0.4%, 10 (0.8%, 9 (1.9% and 12 (0.4%. Two hundred and twenty-eight isolates were analyzed by PFGE and 62 different patterns were obtained. Fifty-seven L. pneumophila isolates were selected for SBT analysis and divided into 35 different sequence types with 5 main clonal groups. All the 57 isolates had high intracellular growth ability. CONCLUSIONS: Our results demonstrated high prevalence and genetic polymorphism of Legionella in springs in Beijing, China, and the SBT and intracellular growth assay results suggested that the Legionella isolates of hot spring environments were pathogenic. Improved control

  20. Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site

    Energy Technology Data Exchange (ETDEWEB)

    Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

    1984-05-01

    An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

  1. Cost modelling of electricity producing hot dry rock (HDR) geothermal systems in the UK

    International Nuclear Information System (INIS)

    Doherty, P.S.

    1992-03-01

    A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. (Author)

  2. Preliminary investigation of two areas in New York State in terms of possible potential for hot dry rock geothermal energy. [Adirondack Mountains and Catskill Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Isachsen, Y.W.

    1978-09-27

    Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similar dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.

  3. Geochemistry and hydrothermal alteration at selected Utah hot springs. Final report: Volume 3 (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Parry, W.T.; Benson, N.L.; Miller, C.D.

    1976-07-01

    Application of Na-K-Ca geothermometry to warm springs in Utah indicates several areas with sufficiently high apparent temperatures to be of interest as geothermal exploration targets. A zone of warm springs in the Bonneville Basin show Na-K-Ca temperatures from 150/sup 0/C to 233/sup 0/C. Examination of Great Salt Lake, Bonneville sediment pore water, and Jordan Valley well-water chemistry indicates that mixing a small percent of these fluids with warm spring water can cause substantial errors in Na-K-Ca temperature estimates. Other saline deposits which may influence Na-K-Ca temperature estimates are the Paradox formation in southeastern Utah, the Muddy Creek formation in southwestern Utah, the Arapien shale in central Utah, the Preuss formation in northeastern Utah, and Playa salts in much of western Utah. The Roosevelt KGRA is the most attractive target identified by Na-K-Ca geothermometry. Hydrothermal alteration, heavy metal distribution, and water chemistry provide additional characterization of the Roosevelt system. Chemistry of a cool water seep (25/sup 0/C) shows Na-K-Ca temperature of 241/sup 0/C and SiO/sub 2/ temperature of 125/sup 0/C. A Phillips well flowing from below 1500' (457m) shows Na-K-Ca temperature of 262/sup 0/C, SiO/sub 2/ temperature of 262/sup 0/C, and K of 1.5 times the surface spring value. The near surface alteration assemblage is best explained in terms of a decrease in pH of near surface fluids as sulfide oxidizes. Increasing potassium and pH with depth indicates that a K-feldspar stable zone may be intersected with deeper drilling. Geology and alteration were mapped in the Monroe KGRA. (JGB)

  4. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs

    Directory of Open Access Journals (Sweden)

    Florence eSchubotz

    2015-02-01

    Full Text Available Streamer biofilm communities (SBC are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae, Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and ‘Bison Pool’, using various 13C-labeled substrates (bicarbonate, formate, acetate and glucose to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10 to 30 times lower uptake across most fatty acids. 13C bicarbonate uptake, signifying the presence of autotrophic communities was only significant at ‘Bison Pool’ and was observed predominantly in non-specific saturated C16, C18, C20 and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at ‘Bison Pool’ and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C uptake into archaeal lipids occurred predominantly with 13C acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being

  5. Geothermal prospects in British Columbia: Resource, market and regulatory aspects

    International Nuclear Information System (INIS)

    Ghomshei, M.M.; Brown, T.L.S.; MacRae, J.M.

    1992-01-01

    British Columbia is host to about 15 young volcanic centres and 60 hot springs, all evidence of presence of geothermal resources. Most high-grade geothermal prospects in British Columbia are located along 3 volcanic belts in the south-western region of the province. It is estimated that a minimum of 800 MWe can be generated from the known prospects in this region. Significant low-grade geothermal resources exist in several provincial regions. Market applications consistent with the geothermal resources known and expected to occur in British Columbia include electrical generation, process and other direct heat uses and recreation. Leasing, exploration and development operations for high-grade geothermal resources are addressed by the British Columbia open-quotes Geothermal Resources Actclose quotes which defines geothermal resources and reserves all rights to the Crown in the right of the Province

  6. Geothermal studies in China

    Science.gov (United States)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then

  7. Hydrogen Peroxide Cycling in High-Temperature Acidic Geothermal Springs and Potential Implications for Oxidative Stress Response

    Directory of Open Access Journals (Sweden)

    Margaux M. Meslé

    2017-05-01

    Full Text Available Hydrogen peroxide (H2O2, superoxide (O2•-, and hydroxyl radicals (OH• are produced in natural waters via ultraviolet (UV light-induced reactions between dissolved oxygen (O2 and organic carbon, and further reaction of H2O2 and Fe(II (i.e., Fenton chemistry. The temporal and spatial dynamics of H2O2 and other dissolved compounds [Fe(II, Fe(III, H2S, O2] were measured during a diel cycle (dark/light in surface waters of three acidic geothermal springs (Beowulf Spring, One Hundred Springs Plain, and Echinus Geyser Spring; pH = 3–3.5, T = 68–80°C in Norris Geyser Basin, Yellowstone National Park. In situ analyses showed that H2O2 concentrations were lowest (ca. 1 μM in geothermal source waters containing high dissolved sulfide (and where oxygen was below detection and increased by 2-fold (ca. 2–3 μM in oxygenated waters corresponding to Fe(III-oxide mat formation down the water channel. Small increases in dissolved oxygen and H2O2 were observed during peak photon flux, but not consistently across all springs sampled. Iron-oxide microbial mats were sampled for molecular analysis of ROS gene expression in two primary autotrophs of acidic Fe(III-oxide mat ecosystems: Metallosphaera yellowstonensis (Archaea and Hydrogenobaculum sp. (Bacteria. Expression (RT-qPCR assays of specific stress-response genes (e.g., superoxide dismutase, peroxidases of the primary autotrophs were used to evaluate possible changes in transcription across temporal, spatial, and/or seasonal samples. Data presented here documented the presence of H2O2 and general correlation with dissolved oxygen. Moreover, two dominant microbial populations expressed ROS response genes throughout the day, but showed less expression of key genes during peak sunlight. Oxidative stress response genes (especially external peroxidases were highly-expressed in microorganisms within Fe(III-oxide mat communities, suggesting a significant role for these proteins during survival and growth in

  8. Isolation and Distribution of a Novel Iron-Oxidizing Crenarchaeon from Acidic Geothermal Springs in Yellowstone National Park▿ †

    Science.gov (United States)

    Kozubal, M.; Macur, R. E.; Korf, S.; Taylor, W. P.; Ackerman, G. G.; Nagy, A.; Inskeep, W. P.

    2008-01-01

    Novel thermophilic crenarchaea have been observed in Fe(III) oxide microbial mats of Yellowstone National Park (YNP); however, no definitive work has identified specific microorganisms responsible for the oxidation of Fe(II). The objectives of the current study were to isolate and characterize an Fe(II)-oxidizing member of the Sulfolobales observed in previous 16S rRNA gene surveys and to determine the abundance and distribution of close relatives of this organism in acidic geothermal springs containing high concentrations of dissolved Fe(II). Here we report the isolation and characterization of the novel, Fe(II)-oxidizing, thermophilic, acidophilic organism Metallosphaera sp. strain MK1 obtained from a well-characterized acid-sulfate-chloride geothermal spring in Norris Geyser Basin, YNP. Full-length 16S rRNA gene sequence analysis revealed that strain MK1 exhibits only 94.9 to 96.1% sequence similarity to other known Metallosphaera spp. and less than 89.1% similarity to known Sulfolobus spp. Strain MK1 is a facultative chemolithoautotroph with an optimum pH range of 2.0 to 3.0 and an optimum temperature range of 65 to 75°C. Strain MK1 grows optimally on pyrite or Fe(II) sorbed onto ferrihydrite, exhibiting doubling times between 10 and 11 h under aerobic conditions (65°C). The distribution and relative abundance of MK1-like 16S rRNA gene sequences in 14 acidic geothermal springs containing Fe(III) oxide microbial mats were evaluated. Highly related MK1-like 16S rRNA gene sequences (>99% sequence similarity) were consistently observed in Fe(III) oxide mats at temperatures ranging from 55 to 80°C. Quantitative PCR using Metallosphaera-specific primers confirmed that organisms highly similar to strain MK1 comprised up to 40% of the total archaeal community at selected sites. The broad distribution of highly related MK1-like 16S rRNA gene sequences in acidic Fe(III) oxide microbial mats is consistent with the observed characteristics and growth optima of

  9. Microscopic Examination of Distribution and Phenotypic Properties of Phylogenetically Diverse Chloroflexaceae-Related Bacteria in Hot Spring Microbial Mats

    DEFF Research Database (Denmark)

    Nübel, U.; Bateson, Mary M.; Vandieken, V.

    2002-01-01

    We investigated the diversity, distribution, and phenotypes of uncultivated Chloroflexaceae-related bacteria in photosynthetic microbial mats of an alkaline hot spring (Mushroom Spring, Yellowstone National Park). By applying a directed PCR approach, molecular cloning, and sequence analysis of 16S...

  10. The distribution and abundance of archaeal tetraether lipids in U.S. Great Basin hot springs

    Directory of Open Access Journals (Sweden)

    Julienne J. eParaiso

    2013-08-01

    Full Text Available Isoprenoidal glycerol dialkyl glycerol tetraethers (iGDGTs are core membrane lipids of many archaea that enhance the integrity of cytoplasmic membranes in extreme environments. We examined the iGDGT profiles and corresponding aqueous geochemistry in 40 hot spring sediment and microbial mat samples from the U.S. Great Basin with temperatures ranging from 31 to 95°C and pH ranging from 6.8 to 10.7. The absolute abundance of iGDGTs correlated negatively with pH and positively with temperature. High lipid concentrations, distinct lipid profiles, and a strong relationship between polar and core lipids in hot spring samples suggested in situ production of most iGDGTs rather than contamination from local soils. Two-way cluster analysis and non-metric multidimensional scaling (NMS of polar iGDGTs indicated that the relative abundance of individual lipids was most strongly related to temperature (r2 = 0.546, with moderate correlations with pH (r2 = 0.359, nitrite (r2 = 0.286, oxygen (r2 = 0.259, and nitrate (r2 = 0.215. Relative abundance profiles of individual polar iGDGTs indicated potential temperature optima for iGDGT-0 (≤70°C, iGDGT-3 (≥55°C, and iGDGT -4 (≥60°C. These relationships likely reflect both physiological adaptations and community-level population shifts in response to temperature differences, such as a shift from cooler samples with more abundant methanogens to higher-temperature samples with more abundant Crenarchaeota. Crenarchaeol was widely distributed across the temperature gradient, which is consistent with other reports of abundant crenarchaeol in Great Basin hot springs and suggests a wide distribution for thermophilic ammonia-oxidizing archaea (AOA.

  11. Cost modelling of electricity-producing hot dry rock (HDR) geothermal systems in the United Kingdom

    International Nuclear Information System (INIS)

    Doherty, P.; Harrison, R.

    1995-01-01

    A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. The geometrical arrangement and the shape of the reservoir constitute major uncertainties in HDR systems. Their effect on temperature has a major influence on system performance, and therefore a range of theoretically possible geometries have been studied and the importance of geometrical effects on HDR electricity costs assessed. The most cost effective HDR arrangement in terms of optimized volumes and flow rates has been investigated for a world-wide range of thermal settings. The main conclusions from this study suggests that for HDR electricity to be economic, thermal gradients of 55 o C/km and above, well depths of 5 km or less, and production fluid temperatures of 210 o C and above are required. (UK)

  12. Studying Prokaryotic Communities in Iron Depositing Hot Springs (IDHS): Implication for Early Mars Habitability

    Science.gov (United States)

    Sarkisova, S. A.; Tringe, S. G.; Thomas-Keprta, K. L.; Allen, C. c.; Garrison, D. H.; McKay, David S.; Brown, I. I.

    2010-01-01

    We speculate that both external and intracellular iron precipitate in iron-tolerant CB might be involved in oxidative stress suppression shown by [9]. Significant differences are apparent between a set of proteins involved in the maintenance of Fe homeostasis and oxidative stress protection in iron-tolerant and fresh-water and marine CB. Correspondingly, these properties may help to make iron-tolerant CB as dominant organisms in IDHS and probably on early Earth and Mars. Further comparative analyses of hot springs metagenomes and the genomes of iron-tolerant microbes versus fresh-water/marine ones may point out to different habitable zones on early Mars.

  13. Near-infrared detection of ammonium minerals at Ivanhoe Hot Springs, Nevada

    Science.gov (United States)

    Krohn, M. D.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data were collected over the fossil hot spring deposit at Ivanhoe, Nevada in order to determine the surface distribution of NH4-bearing minerals. Laboratory studies show that NH4-bearing minerals have characteristic absorption features in the near-infrared (NIR). Ammonium-bearing feldspars and alunites were observed at the surface of Ivanhoe using a hand-held radiometer. However, first look analysis of the AIS images showed that the line was about 500 m east of its intended mark, and the vegetation cover was sufficiently dense to inhibit preliminary attempts at making relative reflectance images for detection of ammonium minerals.

  14. A radioecological survey of eatable organisms for natural radionuclides in hot spring water

    International Nuclear Information System (INIS)

    Zhu, H.; Huang, X.; Song, H.; Li, J.; Zhang, J.

    1993-01-01

    This paper reports a radioecological survey on some aquatic eatable organisms raised in a hot spring water, which is rich in 226 Ra, in Hubei Province; and on agricultural products irrigated with the water. The contents of 226 Ra, 210 Pb and 210 Po in the water, some aquatic organisms, rice, vegetable an some other connected environmental samples were determined. The Concentration Factor (CF) or Transfer Coefficient (TC) from environmental medium into the eatable parts of the organisms for these nuclides as well as relative Distribution Factor (DF) was calculated. (author). 6 refs, 1 fig., 9 tabs

  15. A new assessment of combined geothermal electric generation and desalination in western Saudi Arabia: targeted hot spot development

    KAUST Repository

    Missimer, Thomas M.

    2014-07-17

    High heat flow associated with the tectonic spreading of the Red Sea make western Saudi Arabia a region with high potential for geothermal energy development. The hydraulic properties of the Precambrian-age rocks occurring in this region are not conducive to direct production of hot water for heat exchange, which will necessitate use of the hot dry rock (HDR) heat harvesting method. This would require the construction of coupled deep wells; one for water injection and the other for steam recovery. There are some technological challenges in the design, construction, and operation of HDR geothermal energy systems. Careful geotechnical evaluation of the heat reservoir must be conducted to ascertain the geothermal gradient at the chosen site to allow pre-design modeling of the system for assessment of operational heat flow maintenance. Also, naturally occurring fractures or faults must be carefully evaluated to make an assessment of the potential for induced seismicity. It is anticipated that the flow heat exchange capacity of the system will require enhancement by the use of horizontal drilling and hydraulic fracturing in the injection well with the production well drilled into the fracture zone to maximum water recovery efficiency and reduce operating pressure. The heated water must be maintained under pressure and flashed to steam at surface to produce to the most effective energy recovery. Most past evaluations of geothermal energy development in this region have been focused on the potential for solely electricity generation, but direct use of produced steam could be coupled with thermally driven desalination technologies such as multi-effect distillation, adsorption desalination, and/or membrane distillation to provide a continuous source of heat to allow very efficient operation of the plants. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  16. A new assessment of combined geothermal electric generation and desalination in western Saudi Arabia: targeted hot spot development

    KAUST Repository

    Missimer, Thomas M.; Mai, Martin; Ghaffour, NorEddine

    2014-01-01

    High heat flow associated with the tectonic spreading of the Red Sea make western Saudi Arabia a region with high potential for geothermal energy development. The hydraulic properties of the Precambrian-age rocks occurring in this region are not conducive to direct production of hot water for heat exchange, which will necessitate use of the hot dry rock (HDR) heat harvesting method. This would require the construction of coupled deep wells; one for water injection and the other for steam recovery. There are some technological challenges in the design, construction, and operation of HDR geothermal energy systems. Careful geotechnical evaluation of the heat reservoir must be conducted to ascertain the geothermal gradient at the chosen site to allow pre-design modeling of the system for assessment of operational heat flow maintenance. Also, naturally occurring fractures or faults must be carefully evaluated to make an assessment of the potential for induced seismicity. It is anticipated that the flow heat exchange capacity of the system will require enhancement by the use of horizontal drilling and hydraulic fracturing in the injection well with the production well drilled into the fracture zone to maximum water recovery efficiency and reduce operating pressure. The heated water must be maintained under pressure and flashed to steam at surface to produce to the most effective energy recovery. Most past evaluations of geothermal energy development in this region have been focused on the potential for solely electricity generation, but direct use of produced steam could be coupled with thermally driven desalination technologies such as multi-effect distillation, adsorption desalination, and/or membrane distillation to provide a continuous source of heat to allow very efficient operation of the plants. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  17. Functional genes and thermophilic microorganisms responsible for arsenite oxidation from the shallow sediment of an untraversed hot spring outlet.

    Science.gov (United States)

    Yang, Ye; Mu, Yao; Zeng, Xian-Chun; Wu, Weiwei; Yuan, Jie; Liu, Yichen; Guoji, E; Luo, Feng; Chen, Xiaoming; Li, Hao; Wang, Jianing

    2017-05-01

    Hot Springs have unique geochemical features. Microorganisms-mediated arsenite oxidation is one of the major biogeochemical processes occurred in some hot springs. This study aimed to understand the diversities of genes and microorganisms involved in arsenite oxidation from the outlet of an untraversed hot spring located at an altitude of 4226 m. Microcosm assay indicated that the microbial community from the hot spring was able to efficiently oxidize As(III) using glucose, lactic acid, yeast extract or sodium bicarbonate as the sole carbon source. The microbial community contained 7 phyla of microorganisms, of which Proteobacteria and Firmicutes are largely dominant; this composition is unique and differs significantly from those of other described hot springs. Twenty one novel arsenite oxidase genes were identified from the samples, which are affiliated with the arsenite oxidase families of α-Proteobacteria, β-Proteobacteria or Archaea; this highlights the high diversity of the arsenite-oxidizing microorganisms from the hot spring. A cultivable arsenite-oxidizer Chelatococcu sp. GHS311 was also isolated from the sample using enrichment technique. It can completely convert 75.0 mg/L As(III) into As(V) in 18 days at 45 °C. The arsenite oxidase of GHS311 shares the maximal sequence identity (84.7%) to that of Hydrogenophaga sp. CL3, a non-thermotolerant bacterium. At the temperature lower than 30 °C or higher than 65 °C, the growth of this strain was completely inhibited. These data help us to better understand the diversity and functional features of the thermophilic arsenite-oxidizing microorganisms from hot springs.

  18. Annotated geothermal bibliography of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Budding, K.E.; Bugden, M.H. (comps.)

    1986-01-01

    The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

  19. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems

    Science.gov (United States)

    Nordstrom, D. Kirk; Guo, Qinghai; McCleskey, R. Blaine

    2014-01-01

    Explanations for the lack of acid geothermal springs in Tibet are inferred from a comprehensive hydrochemical comparison of Tibetan geothermal waters with those discharged from Yellowstone (USA) and two active volcanic areas, Nevado del Ruiz (Colombia) and Miravalles (Costa Rica) where acid springs are widely distributed and diversified in terms of geochemical characteristic and origin. For the hydrothermal areas investigated in this study, there appears to be a relationship between the depths of magma chambers and the occurrence of acid, chloride-rich springs formed via direct magmatic fluid absorption. Nevado del Ruiz and Miravalles with magma at or very close to the surface (less than 1–2 km) exhibit very acidic waters containing HCl and H2SO4. In contrast, the Tibetan hydrothermal systems, represented by Yangbajain, usually have fairly deep-seated magma chambers so that the released acid fluids are much more likely to be fully neutralized during transport to the surface. The absence of steam-heated acid waters in Tibet, however, may be primarily due to the lack of a confining layer (like young impermeable lavas at Yellowstone) to separate geothermal steam from underlying neutral chloride waters and the possible scenario that the deep geothermal fluids below Tibet carry less H2S than those below Yellowstone.

  20. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems

    Science.gov (United States)

    Guo, Qinghai; Kirk Nordstrom, D.; Blaine McCleskey, R.

    2014-11-01

    Explanations for the lack of acid geothermal springs in Tibet are inferred from a comprehensive hydrochemical comparison of Tibetan geothermal waters with those discharged from Yellowstone (USA) and two active volcanic areas, Nevado del Ruiz (Colombia) and Miravalles (Costa Rica) where acid springs are widely distributed and diversified in terms of geochemical characteristic and origin. For the hydrothermal areas investigated in this study, there appears to be a relationship between the depths of magma chambers and the occurrence of acid, chloride-rich springs formed via direct magmatic fluid absorption. Nevado del Ruiz and Miravalles with magma at or very close to the surface (less than 1-2 km) exhibit very acidic waters containing HCl and H2SO4. In contrast, the Tibetan hydrothermal systems, represented by Yangbajain, usually have fairly deep-seated magma chambers so that the released acid fluids are much more likely to be fully neutralized during transport to the surface. The absence of steam-heated acid waters in Tibet, however, may be primarily due to the lack of a confining layer (like young impermeable lavas at Yellowstone) to separate geothermal steam from underlying neutral chloride waters and the possible scenario that the deep geothermal fluids below Tibet carry less H2S than those below Yellowstone.

  1. The furnace in the basement: Part 1, The early days of the Hot Dry Rock Geothermal Energy Program, 1970--1973

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.C.

    1995-09-01

    This report presents the descriptions of the background information and formation of the Los Alamos Scientific Laboratory Geothermal Energy Group. It discusses the organizational, financial, political, public-relations,geologic, hydrologic, physical, and mechanical problems encountered by the group during the period 1970--1973. It reports the failures as well as the successes of this essential first stage in the development of hot dry rock geothermal energy systems.

  2. Assets of geothermal energy for buildings: heating, cooling and domestic hot water

    International Nuclear Information System (INIS)

    2016-01-01

    This publication first proposes a brief overview on the status, context and perspectives of geothermal energy in France by evoking the great number of heat pumps installed during the last decades and the choice made by public and private clients for this source of heating and cooling. While indicating how geothermal energy intervenes during a building project, this publication outlines that this energy is discrete and renewable, and that its technology is proven. Some examples are then evoked: use of geothermal energy for a public building in Saint-Malo, for estate projects near Paris, for a shopping centre in Roissy, and for office buildings

  3. Dual stable isotopes of CH 4 from Yellowstone hot-springs suggest hydrothermal processes involving magmatic CO 2

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Whitmore, Laura M.; Jay, Zackary J.; Jennings, Ryan deM.; Beam, Jacob P.; Kreuzer, Helen W.; Inskeep, William P.

    2017-07-01

    Volcanism and post-magmatism contribute both significant annual CH4 fluxes to the atmosphere (on par with other natural sources such as forest fire and wild animal emissions) and have been implicated in past climate-change events. The Yellowstone hot spot is one of the largest volcanic systems on Earth and is known to emit methane in addition to other greenhouse gases (e.g. carbon dioxide) but the ultimate source of this methane flux has not been elucidated. Here we use dual stable isotope analysis (δ2H and δ13C) of CH4(g) sampled from ten high-temperature geothermal pools in Yellowstone National Park to show that the predominant flux of CH4(g) is abiotic. The average δ13C and δ2H values of CH4(g) emitted from hot springs (-26.7 (±2.4) and -236.9 (±12.0) ‰, respectively) are not consistent with biotic (microbial or thermogenic) methane sources, but are within previously reported ranges for abiotic methane production. Correlation between δ13CCH4 and δ13C-dissolved inorganic C (DIC) also suggests that CO2 is a parent C source for the observed CH4(g). Moreover, CH4-CO2 isotopic geothermometry was used to estimate CH4(g) formation temperatures ranging from ~ 250 - 350°C, which is just below the temperature estimated for the hydrothermal reservoir and consistent with the hypothesis that subsurface, rock-water interactions are responsible for large methane fluxes from this volcanic system. An understanding of conditions leading to the abiotic production of methane and associated isotopic signatures are central to understanding the evolutionary history of deep carbon sources on Earth.

  4. Diversity of Cultured Thermophilic Anaerobes in Hot Springs of Yunnan Province, China

    Science.gov (United States)

    Lin, L.; Lu, Y.; Dong, X.; Liu, X.; Wei, Y.; Ji, X.; Zhang, C.

    2010-12-01

    Thermophilic anaerobes including Archaea and Bacteria refer to those growing optimally at temperatures above 50°C and do not use oxygen as the terminal electron acceptor for growth. Study on thermophilic anaerobes will help to understand how life thrives under extreme conditions. Meanwhile thermophilic anaerobes are of importance in potential application and development of thermophilic biotechnology. We have surveyed culturable thermophilic anaerobes in hot springs (pH6.5-7.5; 70 - 94°C) in Rehai of Tengchong, Bangnazhang of Longlin, Eryuan of Dali,Yunnan, China. 50 strains in total were cultured from the hot springs water using Hungate anaerobic technique, and 30 strains were selected based on phenotypic diversity for analysis of 16S rDNA sequences. Phylogenetic analysis showed that 28 strains belonged to the members of five genera: Caldanaerobacter, Calaramator, Thermoanaerobacter, Dictyoglomus and Fervidobacterium, which formed five branches on the phylogenetic tree. Besides, 2 strains of methanogenic archaea were obtained. The majority of the isolates were the known species, however, seven strains were identified as novel species affiliated to the five genera based on the lower 16S rDNA sequence similarities (less than 93 - 97%) with the described species. This work would provide the future study on their diversity, distribution among different regions and the potential application of thermophilic enzyme. Supported by State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences(SKLMR-080605)and the Foundation of State Natural Science (30660009, 30960022, 31081220175).

  5. Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia).

    Science.gov (United States)

    Kublanov, Ilya V; Perevalova, Anna A; Slobodkina, Galina B; Lebedinsky, Aleksander V; Bidzhieva, Salima K; Kolganova, Tatyana V; Kaliberda, Elena N; Rumsh, Lev D; Haertlé, Thomas; Bonch-Osmolovskaya, Elizaveta A

    2009-01-01

    Samples of water from the hot springs of Uzon Caldera with temperatures from 68 to 87 degrees C and pHs of 4.1 to 7.0, supplemented with proteinaceous (albumin, casein, or alpha- or beta-keratin) or carbohydrate (cellulose, carboxymethyl cellulose, chitin, or agarose) biological polymers, were filled with thermal water and incubated at the same sites, with the contents of the tubes freely accessible to the hydrothermal fluid. As a result, several enrichment cultures growing in situ on different polymeric substrates were obtained. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene fragments obtained after PCR with Bacteria-specific primers showed that the bacterial communities developing on carbohydrates included the genera Caldicellulosiruptor and Dictyoglomus and that those developing on proteins contained members of the Thermotogales order. DGGE analysis performed after PCR with Archaea- and Crenarchaeota-specific primers showed that archaea related to uncultured environmental clones, particularly those of the Crenarchaeota phylum, were present in both carbohydrate- and protein-degrading communities. Five isolates obtained from in situ enrichments or corresponding natural samples of water and sediments represented the bacterial genera Dictyoglomus and Caldanaerobacter as well as new archaea of the Crenarchaeota phylum. Thus, in situ enrichment and consequent isolation showed the diversity of thermophilic prokaryotes competing for biopolymers in microbial communities of terrestrial hot springs.

  6. [Isolation and identification of seven thermophilic and anaerobic bacteria from hot springs in Tengchong Rehai].

    Science.gov (United States)

    Lu, Yueqing; Chen, Bo; Liu, Xiaoli; Ji, Xiuling; Wei, Yunlin; Lin, Lianbing

    2009-09-01

    In order to study the taxonomic characteristic and physiological, biochemical properties of anaerobic bacteria from hot springs in Tengchong Rehai, Yunnan Province, China. Using Hungate anaerobic technique We isolated seven strains from hot springs in Tengchong Rehai, Yunnan province, and analyzed their 16S rRNA gene sequences. The seven isolates were rod-shaped, Gram-negative, obligate anaerobe, and spores formation was not observed. All strains could grow well at 70 degrees C. Growth of strain RH0802 occurred between 60 and 80 degrees C, optimally around 70 degrees C. The pH range for its growth was between 5.5 and 8.5, with an optimum around 7.0. Strain RH0802 grew on a wide range of carbon sources, including glucose, starch, mannitol, mannose, ribose, maltose, cellobiose, xylose, fructose, galactose, xylan and glycerol, but it could not utilize sucrose or pyruvate. 16S rRNA gene phylogenetic analysis showed that the maximum similarity between the five strains and the strains of genus Caldanaerobacter was up to 98%, except RH0804 and RH0806, which reached to 96% and 93%, respectively. The two isolates were presumed to be potential novel species. The GenBank accession numbers of RH0802 to RH0808 were FJ748766, FJ748762, FJ748761, FJ748763, FJ748765, FJ748764 and FJ748767. The results showed that the seven thermophilic anaerobes belonged to the genus Caldanaerobacter.

  7. Geothermal energy in Washington: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.

    1979-04-01

    This is an attempt to identify the factors which have affected and will continue to affect geothermal assessment and development in the state. The eight potential sites chosen for detailed analysis include: Indian Heaven KGRA, Mount St. Helens KGRA, Kennedy Hot Springs KGRA, Mount Adams PGRA (Potential Geothermal Resource Area), Mount Rainier PGRA, Mount Baker PGRA, Olympic-Sol Duc Hot Springs, and Yakima. The following information is included for each site: site data, site location and physical description, geological/geophysical description, reservoir characteristics, land ownership and leasing, geothermal development status, institutional characteristics, environmental factors, transportation and utilities, and population. A number of serious impediments to geothermal development were identified which can be solved only by legislative action at the state or federal level and/or changes in attitudes by regulatory agencies. (MHR)

  8. Metagenomic Analysis of Hot Springs in Central India Reveals Hydrocarbon Degrading Thermophiles and Pathways Essential for Survival in Extreme Environments

    Science.gov (United States)

    Saxena, Rituja; Dhakan, Darshan B.; Mittal, Parul; Waiker, Prashant; Chowdhury, Anirban; Ghatak, Arundhuti; Sharma, Vineet K.

    2017-01-01

    Extreme ecosystems such as hot springs are of great interest as a source of novel extremophilic species, enzymes, metabolic functions for survival and biotechnological products. India harbors hundreds of hot springs, the majority of which are not yet explored and require comprehensive studies to unravel their unknown and untapped phylogenetic and functional diversity. The aim of this study was to perform a large-scale metagenomic analysis of three major hot springs located in central India namely, Badi Anhoni, Chhoti Anhoni, and Tattapani at two geographically distinct regions (Anhoni and Tattapani), to uncover the resident microbial community and their metabolic traits. Samples were collected from seven distinct sites of the three hot spring locations with temperature ranging from 43.5 to 98°C. The 16S rRNA gene amplicon sequencing of V3 hypervariable region and shotgun metagenome sequencing uncovered a unique taxonomic and metabolic diversity of the resident thermophilic microbial community in these hot springs. Genes associated with hydrocarbon degradation pathways, such as benzoate, xylene, toluene, and benzene were observed to be abundant in the Anhoni hot springs (43.5–55°C), dominated by Pseudomonas stutzeri and Acidovorax sp., suggesting the presence of chemoorganotrophic thermophilic community with the ability to utilize complex hydrocarbons as a source of energy. A high abundance of genes belonging to methane metabolism pathway was observed at Chhoti Anhoni hot spring, where methane is reported to constitute >80% of all the emitted gases, which was marked by the high abundance of Methylococcus capsulatus. The Tattapani hot spring, with a high-temperature range (61.5–98°C), displayed a lower microbial diversity and was primarily dominated by a nitrate-reducing archaeal species Pyrobaculum aerophilum. A higher abundance of cell metabolism pathways essential for the microbial survival in extreme conditions was observed at Tattapani. Taken together

  9. Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches.

    Science.gov (United States)

    Nishiyama, Minako; Yamamoto, Shuichi; Kurosawa, Norio

    2013-08-01

    Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.

  10. Geochemistry of hydrothermal alteration at the Roosevelt Hot Springs thermal area, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Parry, W T; Ballantyne, J M; Bryant, N L; Dedolph, R E

    1980-01-01

    Hot spring deposits in the Roosevelt thermal area consist of opaline sinter and sinter-cemented alluvium. Alluvium, plutonic rocks, and amphibolite-facies gneiss have been altered by acid-sulfate water to alunite and opal at the surface, and alunite, kaolinite, montmorillonite, and muscovite to a depth of 70 m. Marcasite, pyrite, chlorite, and calcite occur below the water table at about 30 m. The thermal water is dilute (ionic strength 0.1 to 0.2) sodium-chloride brine. The spring water now contains 10 times as much Ca, 100 times as much Mg, and up to 2.5 times as much SO/sub 4/ as the deep water. Although the present day spring temperature is 25/sup 0/C, the temperature was 85/sup 0/C in 1950. A model for development of the observed alteration is supported by observation and irreversible mass transfer calculations. Hydrothermal fluid convectively rises along major fractures. Water cools by conduction and steam separation, and the pH rises due to carbon dioxide escape. At the surface, hydrogen and sulfate ions are produced by oxidation of H/sub 2/S. The low pH water percolates downward and reacts with feldspar in the rocks to produce alunite, kaolinite, montmorillonite, and muscovite as hydrogen ion is consumed. 4 figures, 4 tables.

  11. Preferential soft-tissue preservation in the Hot Creek carbonate spring deposit, British Columbia, Canada

    Science.gov (United States)

    Rainey, Dustin K.; Jones, Brian

    2010-05-01

    The relict Holocene Hot Creek carbonate spring deposit in southeast British Columbia is characterized by excellent preservation of soft-tissue organisms (e.g. cyanobacteria), but poor preservation of organisms with hard-tissue (e.g. wood, diatoms). The deposit is formed mainly of calcified cyanobacteria, with fewer mineralized macrophytes (plants), bryophytes (mosses), wood, and diatoms. Cyanobacteria grew as solitary filaments ( Lyngbya) and as radiating hemispherical colonies ( Rivularia). Both were preserved by encrustation and encapsulation while alive, and as casts after filament death and decay. Sheath impregnation was rare to absent. Filament encrustation, whereby calcite crystals nucleated on, and grew away from the sheath exterior, produced moulds that replicated external filament morphology, but hastened filament decay. Filament encapsulation, whereby calcite nucleated in the vicinity of, and grew towards the encapsulated filament, promoted sheath preservation even after trichome decay. Subsequent calcite precipitation inside the hollow sheath generated sheath casts. The inability of mineralizing spring water to penetrate durable cell walls meant that bryophytes, macrophytes, and most wood was preserved by encrustation. Some wood resisted complete decay for several thousand years, and its lignified cell walls allowed rare permineralizations. Diatoms were not preserved in the relict deposit because the frustules were dissolved by the basic spring water. Amorphous calcium carbonate produced by photosynthetic CO 2 removal may have acted as nucleation sites for physicochemically precipitated calcite. Thus, metabolic activities of floral organisms probably initiated biotic mineralization, but continuous inorganic calcite precipitation on and in flora ensured that soft tissues were preserved.

  12. Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes.

    Science.gov (United States)

    Becraft, Eric D; Dodsworth, Jeremy A; Murugapiran, Senthil K; Ohlsson, J Ingemar; Briggs, Brandon R; Kanbar, Jad; De Vlaminck, Iwijn; Quake, Stephen R; Dong, Hailiang; Hedlund, Brian P; Swingley, Wesley D

    2016-02-15

    The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This "microbial dark matter" represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum "Calescamantes" (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India.

    Science.gov (United States)

    Badhai, Jhasketan; Ghosh, Tarini S; Das, Subrata K

    2015-01-01

    This study describes microbial diversity in four tropical hot springs representing moderately thermophilic environments (temperature range: 40-58°C; pH: 7.2-7.4) with discrete geochemistry. Metagenome sequence data showed a dominance of Bacteria over Archaea; the most abundant phyla were Chloroflexi and Proteobacteria, although other phyla were also present, such as Acetothermia, Nitrospirae, Acidobacteria, Firmicutes, Deinococcus-Thermus, Bacteroidetes, Thermotogae, Euryarchaeota, Verrucomicrobia, Ignavibacteriae, Cyanobacteria, Actinobacteria, Planctomycetes, Spirochaetes, Armatimonadetes, Crenarchaeota, and Aquificae. The distribution of major genera and their statistical correlation analyses with the physicochemical parameters predicted that the temperature, aqueous concentrations of ions (such as sodium, chloride, sulfate, and bicarbonate), total hardness, dissolved solids and conductivity were the main environmental variables influencing microbial community composition and diversity. Despite the observed high taxonomic diversity, there were only little variations in the overall functional profiles of the microbial communities in the four springs. Genes involved in the metabolism of carbohydrates and carbon fixation were the most abundant functional class of genes present in these hot springs. The distribution of genes involved in carbon fixation predicted the presence of all the six known autotrophic pathways in the metagenomes. A high prevalence of genes involved in membrane transport, signal transduction, stress response, bacterial chemotaxis, and flagellar assembly were observed along with genes involved in the pathways of xenobiotic degradation and metabolism. The analysis of the metagenomic sequences affiliated to the candidate phylum Acetothermia from spring TB-3 provided new insight into the metabolism and physiology of yet-unknown members of this lineage of bacteria.

  14. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India

    Directory of Open Access Journals (Sweden)

    Subrata K Das

    2015-10-01

    Full Text Available This study describes microbial diversity in four tropical hot springs representing moderately thermophilic environments (temperature range: 40-58 °C; pH: 7.2-7.4 with discrete geochemistry. Metagenome sequence data showed a dominance of Bacteria over Archaea; the most abundant phyla were Chloroflexi and Proteobacteria, although other phyla were also present, such as Acetothermia, Nitrospirae, Acidobacteria, Firmicutes, Deinococcus-Thermus, Bacteroidetes, Thermotogae, Euryarchaeota, Verrucomicrobia, Ignavibacteriae, Cyanobacteria, Actinobacteria, Planctomycetes, Spirochaetes, Armatimonadetes, Crenarchaeota, and Aquificae. The distribution of major genera and their statistical correlation analyses with the physicochemical parameters predicted that the temperature, aqueous concentrations of ions (such as sodium, chloride, sulfate, and bicarbonate, total hardness, dissolved solids and conductivity were the main environmental variables influencing microbial community composition and diversity. Despite the observed high taxonomic diversity, there were only little variations in the overall functional profiles of the microbial communities in the four springs. Genes involved in the metabolism of carbohydrates and carbon fixation were the most abundant functional class of genes present in these hot springs. The distribution of genes involved in carbon fixation predicted the presence of all the six known autotrophic pathways in the metagenomes. A high prevalence of genes involved in membrane transport, signal transduction, stress response, bacterial chemotaxis and flagellar assembly were observed along with genes involved in the pathways of xenobiotic degradation and metabolism. The analysis of the metagenomic sequences affiliated to the candidate phylum Acetothermia from spring TB-3 provided new insight into the metabolism and physiology of yet-unknown members of this lineage of bacteria.

  15. Intrinsic versus extrinsic controls on the development of calcite dendrite bushes, Shuzhishi Spring, Rehai geothermal area, Tengchong, Yunnan Province, China

    Science.gov (United States)

    Jones, Brian; Peng, Xiaotong

    2012-04-01

    In the Rehai geothermal area, located near Tengchong, there is an old succession of crystalline calcite that formed from a spring that is no longer active. The thin-bedded succession, exposed on the south bank of Zaotang River, is formed of three-dimensional dendrite bushes that are up to 6 cm high and 3 cm in diameter with multiple levels of branching. Bedding is defined by color, which ranges from white to gray to almost black and locally accentuated by differential weathering that highlights the branching motif of the dendrites. The succession developed through repeated tripartite growth cycles that involved: Phase I that was characterized by rapid vertical growth of the dendrite bushes with ever-increasing branching; Phase II that developed once growth of the dendrites had almost or totally ceased, and involved an initial phase of etching that was followed by the precipitation of various secondary minerals (sheet calcite, trigonal calcite crystals, hexagonal calcite crystals, hexagonal plates formed of Ca and P, Mn precipitates, Si-Mg reticulate coatings, opal-CT lepispheres) on the branches of the calcite dendrites, and Phase III that involved deposition of detrital quartz, feldspar, clay, and calcite on top of the dendrite bushes. The tripartite growth cycle is attributed primarily to aperiodic cycles in the CO2 content of the spring water that was controlled by subsurface igneous activity rather than climatic controls. High CO2 coupled with rapid CO2 degassing triggered growth of the dendrite bushes. As CO2 levels waned, saturation levels in the spring water decreased and calcite dendrite growth ceased and precipitation of the secondary minerals took place, possibly in the microcosms of microbial mats. Deposition of the detrital sediment was probably related to surface runoff that was triggered by periods of high rainfall. Critically, this study shows that intrinsic factors rather than extrinsic factors (e.g., climate) were the prime control on the

  16. Geophysical investigations of the Seferihisar geothermal area, Western Anatolia, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Drahor, Mahmut G.; Berge, Meric A. [Dokuz Eyluel University, Engineering Faculty, Department of Geophysics, Tinaztepe Campus, 35160 Buca-Izmir (Turkey)

    2006-06-15

    Self-potential (SP), magnetic and very low frequency electromagnetic (EM-VLF) surveys were carried out in the Seferihisar geothermal area to identify major and minor fault zones and characterize the geothermal system. The SP study provided useful information on the local faults and subsurface fluid flow. The main SP anomalies appear mostly along and near active fault zones in the area of the Cumali, Tuzla and Doganbey hot springs. Two of these anomalies near the Tuzla hot springs were further evaluated by SP modelling. Total magnetic field values increase from the Doganbey to the Cumali hot springs. Modelling performed on the magnetic data indicates that between these two spring areas are four different regions or units that can be distinguished on the basis of their magnetic susceptibility values. Fraser filtering of EM-VLF data also indicates that there are three significant conductive zones in the regions around the Cumali, Tuzla and Doganbey hot springs, and that they lie between important fault systems. The EM-VLF and total (stacked) SP data show that the conductive tilt anomalies obtained by Fraser filtering generally coincide with negative SP areas. According to our geophysical investigations, new exploratory wells should be drilled into the conductive zones located between the Cumali and Tuzla hot springs. We further recommend that resistivity and magnetotelluric methods be carried out in the area to obtain additional information on the Seferihisar geothermal system. (author)

  17. Thermal modeling of the Clear Lake magmatic system, California: Implications for conventional and hot dry rock geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Stimac, J.; Goff, F.; Wohletz, K.

    1997-06-01

    The combination of recent volcanism, high heat flow ({ge} HFU or 167 mW/m{sup 2}), and high conductive geothermal gradient (up to 120{degree} C/km) makes the Clear Lake region of northern California one of the best prospects for hot dry rock (HDR) geothermal development in the US. The lack of permeability in exploration wells and lack of evidence for widespread geothermal reservoirs north of the Collayomi fault zone are not reassuring indications for conventional geothermal development. This report summarizes results of thermal modeling of the Clear Lake magmatic system, and discusses implications for HDR site selection in the region. The thermal models incorporate a wide range of constraints including the distribution and nature of volcanism in time and space, water and gas geochemistry, well data, and geophysical surveys. The nature of upper crustal magma bodies at Clear Lake is inferred from studying sequences of related silicic lavas, which tell a story of multistage mixing of silicic and mafic magma in clusters of small upper crustal chambers. Thermobarometry on metamorphic xenoliths yield temperature and pressure estimates of {approximately}780--900 C and 4--6 kb respectively, indicating that at least a portion of the deep magma system resided at depths from 14 to 21 km (9 to 12 mi). The results of thermal modeling support previous assessments of the high HDR potential of the area, and suggest the possibility that granitic bodies similar to The Geysers felsite may underlie much of the Clear Lake region at depths as little as 3--6 km. This is significant because future HDR reservoirs could potentially be sited in relatively shallow granitoid plutons rather than in structurally complex Franciscan basement rocks.

  18. Community phylogenetic diversity of cyanobacterial mats associated with geothermal springs along a tropical intertidal gradient.

    Science.gov (United States)

    Jing, Hongmei; Lacap, Donnabella C; Lau, Chui Yim; Pointing, Stephen B

    2006-04-01

    The 16S rRNA gene-defined bacterial diversity of tropical intertidal geothermal vents subject to varying degrees of seawater inundation was investigated. Shannon-Weaver diversity estimates of clone library-derived sequences revealed that the hottest pools located above the mean high-water mark that did not experience seawater inundation were most diverse, followed by those that were permanently submerged below the mean low-water mark. Pools located in the intertidal were the least biodiverse, and this is attributed to the fluctuating conditions caused by periodic seawater inundation rather than physicochemical conditions per se. Phylogenetic analysis revealed that a ubiquitous Oscillatoria-like phylotype accounted for 83% of clones. Synechococcus-like phylotypes were also encountered at each location, whilst others belonging to the Chroococcales, Oscillatoriales, and other non-phototrophic bacteria occurred only at specific locations along the gradient. All cyanobacterial phylotypes displayed highest phylogenetic affinity to terrestrial thermophilic counterparts rather than marine taxa.

  19. Environmental Assessment and Finding of No Significant Impact: Kalina Geothermal Demonstration Project Steamboat Springs, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-02-22

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) to provide the DOE and other public agency decision makers with the environmental documentation required to take informed discretionary action on the proposed Kalina Geothermal Demonstration project. The EA assesses the potential environmental impacts and cumulative impacts, possible ways to minimize effects associated with partial funding of the proposed project, and discusses alternatives to DOE actions. The DOE will use this EA as a basis for their decision to provide financial assistance to Exergy, Inc. (Exergy), the project applicant. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human or physical environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  20. The missing link between submarine volcano and promising geothermal potential in Jinshan, Northern Taiwan

    Science.gov (United States)

    Wang, S. C.; Hutchings, L.; Chang, C. C.; Lee, C. S.

    2017-12-01

    The Tatun volcanic group (TVG) and the Keelung submarine volcano (KSV) are active volcanoes and surrounding three nuclear plant sites in north Taiwan. The famous Jinshan-Wanli hot springs locates between TVG and KSV, moreover, the geochemical anomalies of acidic boiling springs on the seacoast infer that the origin is from magmatic fluids, sea water and meteoric water mixture, strongly implying that mantle fluids ascends into the shallow crust. The evidence for a magma chamber, submarine volcano, and boiling springs have a close spatial relationship. Based on UNECE specifications to Geothermal Energy Resources (2016), the Jinshan-Wanli geothermal area could be classified as Known Geothermal Energy Source for geothermal direct use and Potential Geothermal Energy Source for conventional geothermal system. High resolution reservoir exploration and modeling in Jinshan-Wanli geothermal area is developing for drilling risk mitigation. The geothermal team of National Taiwan Ocean University and local experts are cooperating for further exploration drilling and geothermal source evaluation. Keywords: geothermal resource evaluation, Jinshan-Wanli geothermal area, submarine volcano

  1. Geochemical Study of Ampallas Geothermal Area, Mamuju District, West Sulawesi Province

    Science.gov (United States)

    Fauziyyah, F.; Prabowo, T. R.; Shalihin, M. G. J.; Setiawan, D. I.; Yushantarti, A.

    2016-09-01

    Ampallas is one of the areas with geothermal potential which located in Mamuju district, near from the capital city of West Sulawesi. This research was carried out to understand the characteristic of this geothermal field based on chemistry of the surface manifestation, including fluid characteristic and soil anomaly. Geothermal research in Ampallas area focused on 4 hot springs; Ampallas, Batupane, Karema, and Gantungan. With average temperature around 34 - 67°C. Ampallas 1,2,3,4,7,8 hot springs water type is chloride - bicarbonate, which means it came from the reservoir while Batupane, Gantungan, Karema and Ampallas 5 are all bicarbonate type. Ampallas 1,2,3,4,7,8, Karema and Gantungan hot springs fluid plotted in partial equilibrium zone while Batupane and Ampallas 5 plotted in immature water zone. It means the Ampallas hot springs (except Ampallas-5) mixed with meteoric water right after reached the equilibrium state. It is also concluded that Ampallas 5 hot springs came from the same reservoir with Batupane, but not Gantungan and Karema hot springs. The speculative resource potential of Ampallas geothermal system is estimated around 30 MWe. But if detailed geophysical method was applied the result could be more accurate.

  2. Report on achievements in fiscal 1974 in Sunshine Project. Study on hot water systems in geothermal areas; 1974 nendo chinetsu chiiki no netsusuikei ni kansuru kenkyu seika chukan hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This study has begun in fiscal 1973 under a five year plan with an objective to elucidate origin and maintenance of reservoirs of geothermal fluids. To achieve the objective, estimation was made on the systems of infiltration, storage and gushing of the fluids, particularly on infiltration areas. In the hydraulic flow rate study, observation was carried out in the Onikubi area on amount of rainfall, air pressures, temperatures, electric conductivity, and pH, and in ten fluid sources on flow rates, temperatures and pH. Flow rate observation was started at three rivers. In the Kuju area, flow rate observation was started on four fluid sources. Observations were started on temperatures, electric conductivity, flow rates, amount of rainfall by using the Takenoyu geothermal steal wells, and on amount of rainfall in the Teraono and Hacchobara areas. In the study of isotopic geology, site analyses and water collection were carried out in the Kuju area for underground water in six locations, hot spring water in seven locations, and 17 test samples from two geothermal wells. As a study on reservoirs, observation was started in the southern Hachimantai area on measurement of ground fluctuation in association with steam collection. In parallel, fracture survey and gravity measurement were carried out. In order to investigate transformed geology, analytic samples were collected from 12 survey wells in the Onikubi area. A spinner flow mater was tested in that area. (NEDO)

  3. Clumped isotopologue constraints on the origin of methane at seafloor hot springs

    Science.gov (United States)

    Wang, David T.; Reeves, Eoghan P.; McDermott, Jill M.; Seewald, Jeffrey S.; Ono, Shuhei

    2018-02-01

    Hot-spring fluids emanating from deep-sea vents hosted in unsedimented ultramafic and mafic rock commonly contain high concentrations of methane. Multiple hypotheses have been proposed for the origin(s) of this methane, ranging from synthesis via reduction of aqueous inorganic carbon (∑CO2) during active fluid circulation to leaching of methane-rich fluid inclusions from plutonic rocks of the oceanic crust. To further resolve the process(es) responsible for methane generation in these systems, we determined the relative abundances of several methane isotopologues (including 13CH3D, a "clumped" isotopologue containing two rare isotope substitutions) in hot-spring source fluids sampled from four geochemically-distinct hydrothermal vent fields (Rainbow, Von Damm, Lost City, and Lucky Strike). Apparent equilibrium temperatures retrieved from methane clumped isotopologue analyses average 310-42+53 °C, with no apparent relation to the wide range of fluid temperatures (96-370 °C) and chemical compositions (pH, [H2], [∑CO2], [CH4]) represented. Combined with very similar bulk stable isotope ratios (13C/12C and D/H) of methane across the suite of hydrothermal fluids, all available geochemical and isotopic data suggest a common mechanism of methane generation at depth that is disconnected from active fluid circulation. Attainment of equilibrium amongst methane isotopologues at temperatures of ca. 270-360 °C is compatible with the thermodynamically-favorable reduction of CO2 to CH4 at temperatures at or below ca. 400 °C under redox conditions characterizing intrusive rocks derived from sub-ridge melts. Collectively, the observations support a model where methane-rich aqueous fluids, known to be trapped in rocks of the oceanic lithosphere, are liberated from host rocks during hydrothermal circulation and perhaps represent the major source of methane venting with thermal waters at unsedimented hydrothermal fields. The results also provide further evidence that water

  4. Investigation of origin, subsurface processes and reservoir temperature of geothermal springs around Koh-i-Sultan volcano, Chagai, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Iqbal, N.; Fazil, M.

    2009-07-01

    In Chagai area, seven springs with maximum surface temperature of 32.2 deg. C located in the vicinity of Miri Crater of Koh-i-Sultan Volcano were investigated using isotope and chemical techniques. Two springs of Padagi Kaur are MgSO/sub 4/ type, while all the other springs at Batal Kaur, Miri Kaur and Chigin Dik are Na-Cl type. Alteration of water to SO/sub 4/ type takes place by absorption of magmatic H/sub 2/S and the acidic solution is further responsible to dissolve rock salt and carbonate minerals. EC increases from Padagi springs (4940 and 8170 S/cm) to Chigin Dik springs (45600 S/cm). Chagai thermal manifestations receive recharge from meteoric waters in the vicinity of Padagi Kaur (east side of Miri Crater), which is heated by the hot magma chamber of Koh-i-Sultan most probably through deep circulation. Movement of the thermal water is from Miri Crater towards Chigin Dik area. Residence time is more than 60 years. The thermal waters do not have any contribution of shallow young groundwater and they have high 1/sup 8/O-shift (6 to 8%) due to rock-water interaction. Reservoir temperatures estimated by different chemical geo thermometers like Na-K, Na-K-Ca, Na-K-Mg 1/2 (triangular plot) are quite high (200-300 deg. C), while the silica and (SO/sub 4/-H/sub 2/O) geo thermometers give relatively low temperature ranges (107-144 deg. C and 112-206 deg. C respectively). (author)

  5. Multi proxy approach to evaluate and delineate the potential of hot springs in the Kotli District (Kashmir, Pakistan)

    Energy Technology Data Exchange (ETDEWEB)

    Anees, M.; Shah, M.; Qureshi, A.; Manzoor, S.

    2017-11-01

    Tattapani hot springs are located near the Kotli District of Azad Kashmir, Pakistan. This study evaluates these hot springs based on surface geological information, radon emission measurements, hydro-geochemical and isotopic signatures and potential source mechanisms. Field observations reveal that the hot springs are located at the crest of the Tattapani anticline along the faulted contact of Cambrian carbonates with Paleocene siliciclastics. In addition, remnants of igneous intrusions in the Cambrian carbonates are commonly observed. Spatial distribution of radon emissions (ranging between 2.1 and 29.5KBq m-3) indicates an anomalous zone located over the Cambrian-Paleocene faulted contact. Hydro-geochemical data show sodium-bicarbonate affinity of hot springs. The highest surface temperature of these springs is recorded at 60.8ºC. Average reservoir temperatures based on silica and cation geo-thermometers are 101ºC and 115ºC, respectively. Giggenbach ternary diagram (Na-K-Mg) suggests a non-equilibrium state between fluid and rock, whereas isotopic and chemical data indicate heat loss by conductive cooling and mixing with groundwater during the flow of thermal water up to the surface. Oxygen and deuterium isotopes indicate that thermal water is of meteoric origin, rain and/or snow in the north at higher altitudes providing the potential recharge. Furthermore, absence of tritium in the thermal water suggests a residence time of more than 50 years.

  6. Autecology of an arsenite chemolithotroph: sulfide constraints on function and distribution in a geothermal spring.

    Science.gov (United States)

    D'Imperio, Seth; Lehr, Corinne R; Breary, Michele; McDermott, Timothy R

    2007-11-01

    Previous studies in an acid-sulfate-chloride spring in Yellowstone National Park found that microbial arsenite [As(III)] oxidation is absent in regions of the spring outflow channel where H(2)S exceeds approximately 5 microM and served as a backdrop for continued efforts in the present study. Ex situ assays with microbial mat samples demonstrated immediate As(III) oxidation activity when H(2)S was absent or at low concentrations, suggesting the presence of As(III) oxidase enzymes that could be reactivated if H(2)S is removed. Cultivation experiments initiated with mat samples taken from along the H(2)S gradient in the outflow channel resulted in the isolation of an As(III)-oxidizing chemolithotroph from the low-H(2)S region of the gradient. The isolate was phylogenetically related to Acidicaldus and was characterized in vitro for spring-relevant properties, which were then compared to its distribution pattern in the spring as determined by denaturing gradient gel electrophoresis and quantitative PCR. While neither temperature nor oxygen requirements appeared to be related to the occurrence of this organism within the outflow channel, H(2)S concentration appeared to be an important constraint. This was verified by in vitro pure-culture modeling and kinetic experiments, which suggested that H(2)S inhibition of As(III) oxidation is uncompetitive in nature. In summary, the studies reported herein illustrate that H(2)S is a potent inhibitor of As(III) oxidation and will influence the niche opportunities and population distribution of As(III) chemolithotrophs.

  7. National uranium resource evaluation, Hot Springs Quadrangle, South Dakota and Nebraska

    International Nuclear Information System (INIS)

    Truesdell, D.B.; Daddazio, P.L.; Martin, T.S.

    1982-06-01

    The Hot Springs Quadrangle, South Dakota and Nebraska, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The evaluation used criteria developed by the National Uranium Resource Evaluation program. Surface reconnaissance was conducted using a portable scintillometer and a gamma spectrometer. Geochemical sampling was carried out in all geologic environments accessible within the quadrangle. Additional investigations included the followup of aerial radiometric and hydrogeochemical anomalies and a subsurface study. Environments favorable for sandstone-type deposits occur in the Inyan Kara Group and Chadron Member of the White River Group. Environments favorable for marine black-shale deposits occur in the Hayden Member of the Minnelusa Formation. A small area of the Harney Peak Granite is favorable for authigenic deposits. Environments considered unfavorable for uranium deposits are the Precambrian granitic and metasedimentary rocks and Paleozoic, Mesozoic, and Tertiary sedimentary rocks other than those previously mentioned

  8. Legionella thermalis sp. nov., isolated from hot spring water in Tokyo, Japan.

    Science.gov (United States)

    Ishizaki, Naoto; Sogawa, Kazuyuki; Inoue, Hiroaki; Agata, Kunio; Edagawa, Akiko; Miyamoto, Hiroshi; Fukuyama, Masafumi; Furuhata, Katsunori

    2016-03-01

    Strain L-47(T) of a novel bacterial species belonging to the genus Legionella was isolated from a sample of hot spring water from Tokyo, Japan. The 16S rRNA gene sequences (1477 bp) of this strain (accession number AB899895) had less than 95.0% identity with other Legionella species. The dominant fatty acids of strain L-47(T) were a15:0 (29.6%) and the major ubiquinone was Q-12 (71.1%). It had a guanine-plus-cytosine content of 41.5 mol%. The taxonomic description of Legionella thermalis sp. nov. is proposed to be type strain L-47(T) (JCM 30970(T)  = KCTC 42799(T)). © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  9. Characterization of Thermophilic Halotolerant Aeribacillus pallidus TD1 from Tao Dam Hot Spring, Thailand

    OpenAIRE

    Yasawong, Montri; Areekit, Supatra; Pakpitchareon, Arda; Santiwatanakul, Somchai; Chansiri, Kosum

    2011-01-01

    The bacterial strain TD1 was isolated from Tao Dam hot spring in Thailand. Strain TD1 was Gram positive, rod-shaped, aerobic, motile, and endospore forming. The cell was 2.0–40 mm in length and about 0.4 mm in diameter. The optimum growth occurred at 55–60 °C and at pH 7–8. Strain TD1 was able to grow on medium containing up to 10% NaCl. The DNA G+C content was 38.9 mol%. The cellular fatty acid content was mainly C16:0, which comprised 25.04% of the total amount of cellular fatty acid. 16S r...

  10. Natural radioactivity of bedrock bath instruments and hot spring instruments in Japan

    International Nuclear Information System (INIS)

    Kazuki Iwaoka; Hiroyuki Tabe; Hidenori Yonehara

    2013-01-01

    In Japan, bedrock bath instruments and hot spring instruments that contain natural radioactive nuclides are commercially available. In this study, such instruments containing natural radioactive nuclides, currently distributed in Japan, were collected and the radioactivity concentration of 238 U series, 232 Th series, and 40 K in them was determined by gamma ray spectrum analyses. Effective doses to workers and general consumers handling the materials were estimated, revealing the radioactivity concentration of 238 U series, 232 Th series, and 40 K to be lower than critical values given in the IAEA Safety Guide. The maximum effective doses to workers and general consumers were 210 and 6.1 μSv y -1 , respectively. These values are lower than the intervention exemption level (1,000 μSv y -1 ) given in ICRP Publ. 82. (author)

  11. Novel Anoxybacillus flavithermus AK1: A Thermophile Isolated from a Hot Spring in Saudi Arabia

    KAUST Repository

    Khalil, Amjad

    2017-06-14

    Anoxybacillus flavithermus AK1 is a thermophilic bacterium that is able to survive at temperatures ranging from 55 to 60∘C. The AK1 strain was isolated from the hot spring “Al-Ain Alhara” located at a distance of 50 km southeast of the city of Gazan, Saudi Arabia. This study presents the morphological characterization of A. flavithermus AK1, including a detailed description of its complete genome sequence. A total of 50 contigs were used to produce a genome sequence of 2,630,664 bp that includes 2724 protein-coding genes and 75 RNA genes, 18 of which are rRNA genes. A comparison of this genome sequence with those of Anoxybacillus flavithermus strains that were previously submitted to NCBI revealed that the AK1 strain has the smallest genome size with the highest GC content. The strain can therefore be exploited for several biotechnological applications based on its high thermophilic potential.

  12. Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sudip Kumar; Raut, Sangeeta; Dora, Tapas Kumar [Department of Biotechnology, Gandhi Institute of Engineering and Technology, Gunupur, Rayagada 765 022, Odisha (India); Mohapatra, Pradeep Kumar Das, E-mail: pkdmvu@gmail.com [Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal (India)

    2014-01-30

    Highlights: • Adsorption of cadmium and lead using hot spring microbial consortium. • Development of empirical models for % adsorption using ANOVA and response surface methodology. • Fitting of the kinetics of adsorption to Freundlich and Langmuir model. • Optimization of the operating parameters to maximize the % of adsorption. -- Abstract: In the present investigation, a number of experiments have been conducted to isolate microbial strains from Taptapani Hot Spring Odisha, India for bioremediation of cadmium and lead. The strains Stenotrophomonas maltophilia (SS1), Aeromonas veronii (SS2) and Bacillus barbaricus (SS3) have shown better adaptation to metal tolerance test, with different concentrations of cadmium and lead and hence have been selected for further studies of metal microbial interaction and optimization. The results of bioremediation process indicate that consortium of thermophilic isolates adsorbed heavy metals more effectively than the individually treated isolates. Therefore, A 24 full factorial central composite design has been employed to analyze the effect of metal ion concentration, microbial concentration and time on removal of heavy metals with consortium. Analysis of variance (ANOVA) shows a high coefficient of determination value. The kinetic data have been fitted to pseudo-first order and second-order models. The isotherm equilibrium data have been well fitted by the Langmuir and Freundlich models. The optimum removal conditions determined for initial ion concentration was 0.3 g/l; contact time 72 h; microbial concentration, 3 ml/l; and pH 7. At optimum adsorption conditions, the adsorption of cadmium and lead are found to be 92% and 93%, respectively, and presence of metals was confirmed through EDS analysis.

  13. Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model

    International Nuclear Information System (INIS)

    Sen, Sudip Kumar; Raut, Sangeeta; Dora, Tapas Kumar; Mohapatra, Pradeep Kumar Das

    2014-01-01

    Highlights: • Adsorption of cadmium and lead using hot spring microbial consortium. • Development of empirical models for % adsorption using ANOVA and response surface methodology. • Fitting of the kinetics of adsorption to Freundlich and Langmuir model. • Optimization of the operating parameters to maximize the % of adsorption. -- Abstract: In the present investigation, a number of experiments have been conducted to isolate microbial strains from Taptapani Hot Spring Odisha, India for bioremediation of cadmium and lead. The strains Stenotrophomonas maltophilia (SS1), Aeromonas veronii (SS2) and Bacillus barbaricus (SS3) have shown better adaptation to metal tolerance test, with different concentrations of cadmium and lead and hence have been selected for further studies of metal microbial interaction and optimization. The results of bioremediation process indicate that consortium of thermophilic isolates adsorbed heavy metals more effectively than the individually treated isolates. Therefore, A 24 full factorial central composite design has been employed to analyze the effect of metal ion concentration, microbial concentration and time on removal of heavy metals with consortium. Analysis of variance (ANOVA) shows a high coefficient of determination value. The kinetic data have been fitted to pseudo-first order and second-order models. The isotherm equilibrium data have been well fitted by the Langmuir and Freundlich models. The optimum removal conditions determined for initial ion concentration was 0.3 g/l; contact time 72 h; microbial concentration, 3 ml/l; and pH 7. At optimum adsorption conditions, the adsorption of cadmium and lead are found to be 92% and 93%, respectively, and presence of metals was confirmed through EDS analysis

  14. Screening of Thermophilic Bacteria Produce Xylanase from Sapan Sungai Aro Hot Spring South Solok

    Science.gov (United States)

    Irdawati, I.; Syamsuardi, S.; Agustien, A.; Rilda, Y.

    2018-04-01

    xylanase is one of the enzymes with great prospects as hemicellulose hydrolyzing enzyme. Global annual market demand for this enzyme reach US 200 million. This enzyme catalyzes the xylan (hemicellulose) reactions breaking into xilooligosakarida and xylose. Xylanase can be applied to various industrial sectors such as bread, sugar xylose, biofuels, especially in bleaching paper (bleaching) pulp. Xylanase Isable to replace conventional chemical bleaching using chlorine that is not friendly for the environment. Currently xylanase production is extracted from the thermophilic bacteria for enzyme stability at high temperatures that are suitable for industrial applications. Thermophilic bacteria can be isolated from a hot spring, one of the which is a source of Sapan Sungai Aro Hot Spring, located in the district South Solok. The aim of this study was to select and identification of thermophilic bacteria can produce xylanase.This roomates is a descriptive study, which was Carried out in the Laboratory of Microbiology, Mathematic and Science Faculty of Padang State University, and Laboratory of Bacteriology, BasoVeterinary Research Center. The research procedure consisted of the preparation and sterilization of materials and tools, medium manufacturing, regeneration, selection and identification. Selection is performed by using a semiquantitative screening plate that contains xylan substrate. Identification is based on microscopic and biochemical characteristics until the genus level.Selection results Showed 12 out of 16 isolates had xilanolitik activity, with the highest activity is SSA2 with xilanolitik index of 0.74. The top five index producehigestxilanolitik isolates that are SSA2, SSA3 and SSA4 identified as Bacillus sp. 1., and SSAS6 and SSA7 is Bacillus sp. 2.

  15. NANA Geothermal Assessment Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson

    2010-06-22

    In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in the Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.

  16. Hydrogen-producing microflora and Fe-Fe hydrogenase diversities in seaweed bed associated with marine hot springs of Kalianda, Indonesia.

    Science.gov (United States)

    Xu, Shou-Ying; He, Pei-Qing; Dewi, Seswita-Zilda; Zhang, Xue-Lei; Ekowati, Chasanah; Liu, Tong-Jun; Huang, Xiao-Hang

    2013-05-01

    Microbial fermentation is a promising technology for hydrogen (H(2)) production. H(2) producers in marine geothermal environments are thermophilic and halotolerant. However, no one has surveyed an environment specifically for thermophilic bacteria that produce H(2) through Fe-Fe hydrogenases (H(2)ase). Using heterotrophic medium, several microflora from a seaweed bed associated with marine hot springs were enriched and analyzed for H(2) production. A H(2)-producing microflora was obtained from Sargassum sp., 16S rRNA genes and Fe-Fe H(2)ase diversities of this enrichment were also analyzed. Based on 16S rRNA genes analysis, 10 phylotypes were found in the H(2)-producing microflora showing 90.0-99.5 % identities to known species, and belonged to Clostridia, Gammaproteobacteria, and Bacillales. Clostridia were the most abundant group, and three Clostridia phylotypes were most related to known H(2) producers such as Anaerovorax odorimutans (94.0 % identity), Clostridium papyrosolvens (98.4 % identity), and Clostridium tepidiprofundi (93.1 % identity). For Fe-Fe H(2)ases, seven phylotypes were obtained, showing 63-97 % identities to known Fe-Fe H(2)ases, and fell into four distinct clusters. Phylotypes HW55-3 and HM55-1 belonged to thermophilic and salt-tolerant H(2)-producing Clostridia, Halothermothrix orenii-like Fe-Fe H(2)ases (80 % identity), and cellulolytic H(2)-producing Clostridia, C. papyrosolvens-like Fe-Fe H(2)ases (97 % identity), respectively. The results of both 16S rRNA genes and Fe-Fe H(2)ases surveys suggested that the thermophilic and halotolerant H(2)-producing microflora in seaweed bed of hot spring area represented previously unknown H(2) producers, and have potential application for H(2) production.

  17. Structure, mineralogy and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania

    Directory of Open Access Journals (Sweden)

    Cristian eComan

    2015-03-01

    Full Text Available Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32ºC, 49ºC and 65ºC around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32ºC and 49ºC, the microbialites show a laminated structure with visible microbial mat-carbonate crystal interactions. At 65ºC, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32ºC (1%. The dominant bacterial groups at 32ºC were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes and Defferibacteres. At 49ºC, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65ºC sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3] and Nitrospirae. Several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along thermal and geochemical gradients.

  18. Exposure to Particle Matters and Hazardous Volatile Organic Compounds in Selected Hot Spring Hotels in Guangdong, China

    Directory of Open Access Journals (Sweden)

    Qiusheng He

    2016-04-01

    Full Text Available In Guangdong province, many hot springs were exploited and developed into popular places for tourist. In addition, hotels have been set up near hot spring sites to attract people, including local citizens, to spend their spare time inside these so-called “spring hotels”. In our study, indoor air quality was investigated in four hot spring hotels in Guangdong province, China. Measured indoor pollutants included CO2, CO, PM10, PM2.5 and Volatile Organic Compounds (VOCs. As the result show, high concentrations of carbon dioxide might be attributed to poor ventilation; and the variations of indoor PM10, PM2.5 concentrations were related to occupants’ activities. Alpha-pinene and toluene were the most common VOC species in the hot spring hotels other than monocyclic aromatic hydrocarbons like Benzene, Toluene, Ethylbenzene and Xylenes (BTEX, which were at medium levels among the reported indoor pollutants. High cancer risk of benzene in the newly decorated rooms should be seriously taken into consideration in the future. Indoor to Outdoor air concentration ratios (I/O for CO2 and VOCs were higher than 1, indicating their strong indoor sources. Negative correlations were found between indoor CO2 and all the other compounds, and VOCs were shown to be significantly correlated (p < 0.01 to each other, including aromatic hydrocarbons and mono-terpenes. For indoor and outdoor air compounds, correlation coefficients among all compounds did not show a significant correlation, which indicated that these pollutants had different sources. Principal components analysis by SPSS showed that indoor materials, inhabitants’ activities and respiration, cleaning products and outdoor sources were the main sources of indoor detected pollutants in hot spring hotels.

  19. SMA spring-based artificial muscle actuated by hot and cool water using faucet-like valve

    Science.gov (United States)

    Park, Cheol Hoon; Son, Young Su

    2017-04-01

    An artificial muscle for a human arm-like manipulator with high strain and high power density are under development, and an SMA(Shape memory alloy) spring is a good actuator for this application. In this study, an artificial muscle composed of a silicon tube and a bundle of SMA(Shape memory alloy) springs is evaluated. A bundle of SMA springs consists of five SMA springs which are fabricated by using SMA wires with a diameter of 0.5 mm, and hot and cool water actuates it by heating and cooling SMA springs. A faucet-like valve was also developed to mix hot water and cool water and control the water temperature. The mass of silicon tube and a bundle of SMA springs is only 3.3 g and 2.25 g, respectively, and the total mass of artificial muscle is 5.55 g. It showed good actuating performance for a load with a mass of 2.3 kg and the power density was more than 800 W/kg for continuous valve switching with a cycle of 0.6 s. The faucet-like valve can switch a water output from hot water to cold water within 0.3s, and the artificial muscle is actuated well in response to the valve position and speed. It is also presented that the temperature of the mixed water can be controlled depending on the valve position, and the displacement of the artificial muscle can be controlled well by the mixed water. Based on these results, SMA spring-based artificial muscle actuated by hot and cool water could be applicable to the human arm-like robot manipulators.

  20. Magnetotelluric-Geochemistry Investigations of Blawan Geothermal Field, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Sukir Maryanto

    2017-06-01

    Full Text Available An integrated magnetotelluric (MT and geochemical study of the Blawan geothermal field has been performed. The character of the hot springs, the reservoir temperature, and geothermal reserve potential of Blawan geothermal field are assessed. MT measurements, with 250 m up to 1200 m spacings, were made at 19 sites, and 6 locations at the Blawan hot springs have been sampled for geochemical survey. The results of 2D modelling indicated that the geothermal system in the research area consisted of a cap rock zone (≤32 Ω•m, reservoir zone (>32 – ≤512 Ω•m, and heat source zone (>512 Ω•m, and also identified faults. The characteristics of the hot spring water were identified through analyzing the major and minor elements. A ternary diagram (Cl-SO4-HCO3 showed that the Blawan hot springs consist of bicarbonate water (at locations of AP-01, AP-02, AP-03 and chloride water (at locations of AP-04, AP-05, and AP-06, with a reservoir temperature of approximately 90 °C based on the Na–K–Ca geothermometer results. An estimate of the geothermal energy using the volumetric method, gave a total geothermal reserve potential of 1.823 MWe.

  1. The influence of fluvial reservoir architecture on geothermal energy production in Hot Sedimentary Aquifers

    NARCIS (Netherlands)

    Willems, C.J.L.

    2014-01-01

    Currently six geothermal doublets are realized in the WNB. Five of these doublets target the same Lower Cretaceous fluvial sandstone interval, the Nieuwerkerk Formation. About 40 exploration licences are granted. Many of them also have sandstones in the same fluvial interval, the Nieuwerkerk

  2. On the connectivity anisotropy in fluvial Hot Sedimentary Aquifers and its influence on geothermal doublet performance

    DEFF Research Database (Denmark)

    Willems, Cees J.L.; Nick, Hamid; Donselaar, Marinus E.

    2017-01-01

    This study finds that the geothermal doublet layout with respect to the paleo flow direction in fluvial sedimentary reservoirs could significantly affect pump energy losses. These losses can be reduced by up to 10% if a doublet well pair is oriented parallel to the paleo flow trend compared...

  3. Geologic setting and geochemistry of thermal water and geothermal assessment, Trans-Pecos Texas. Final report, June 1, 1976-May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Henry, C.D.

    1977-01-01

    Hot springs and wells in West Texas and adjacent Mexico are manifestations of active convective geothermal systems, concentrated in a zone along the Rio Grande between the Quitman Mountains and Big Bend National Park. Maximum temperatures are 47/sup 0/ and 72/sup 0/C for hot springs and wells in Texas and 90/sup 0/C for hot springs in Mexico within 5 km of the border. Existing information is summarized and the results of a 1-year intensive study of the area are presented. The study includes several overlapping phases: (1) compilation of existing geologic information, both regional studies of geology, structure and geophysics, and more detailed local studies of individual hot spring areas; (2) detailed geologic mapping of hot spring areas to understand the origin and geologic controls of hot springs; (3) field measurement and sampling of hot spring or well waters for geochemical analysis; and (4) synthesis and interpretation of the data.

  4. The relation between well spacing and Net Present Value in fluvial Hot Sedimentary Aquifer geothermal doublets : a West Netherlands Basin case study

    NARCIS (Netherlands)

    Willems, C.J.L.; Goense, T.; Maghami Nick, Hamidreza M.; Bruhn, D.F.

    2016-01-01

    This paper analyzes the relation between well spacing and Net Present Value of a Hot Sedimentary Aquifer geothermal doublet. First, a sensitivity analysis is carried out to evaluate the effect of uncertainty of geological and production parameters on the Net present Value. Second a finite-element

  5. Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Dini Andreote, Fernando; Chaves, Diego; Montaña, José Salvador; Osorio-Forero, Cesar; Junca, Howard; Zambrano, María Mercedes; Baena, Sandra

    2012-01-01

    A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads

  6. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland

    DEFF Research Database (Denmark)

    Larsen, L.; Nielsen, P.; Ahring, B.K.

    1997-01-01

    The extremely thermophilic ethanol-producing strain A3 was isolated from a hot spring in Iceland, The cells were rod-shaped, motile, and had terminal spores: cells from the mid-to-late exponential growth phase stained gram-variable but had a gram-positive cell wall structure when viewed...

  7. Genome Sequence of Anoxybacillus flavithermus Strain AK1, a Thermophile Isolated from a Hot Spring in Saudi Arabia

    KAUST Repository

    Khalil, Amjad

    2015-06-04

    Anoxybacillus flavithermus strain AK1 was isolated from Al-Ain Alhara, a thermal hot spring located 50 km southeast of the city of Gazan, Saudi Arabia (16°56ʹN, 43°15ʹE). The sequenced and annotated genome is 2,630,664 bp and encodes 2,799 genes.

  8. Genome Sequence of Anoxybacillus flavithermus Strain AK1, a Thermophile Isolated from a Hot Spring in Saudi Arabia

    KAUST Repository

    Khalil, Amjad; Neelamegam, Sivakumar; Alqarawi, Sami

    2015-01-01

    Anoxybacillus flavithermus strain AK1 was isolated from Al-Ain Alhara, a thermal hot spring located 50 km southeast of the city of Gazan, Saudi Arabia (16°56ʹN, 43°15ʹE). The sequenced and annotated genome is 2,630,664 bp and encodes 2,799 genes.

  9. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  10. Viruses in acidic geothermal environments of the Kamchatka Peninsula

    DEFF Research Database (Denmark)

    Bize, Ariane; Peng, Xu; Prokofeva, Maria

    2008-01-01

    Screening for viruses in samples taken from acidic hot springs of Kamchatka (Russia) revealed a collection of morphotypes, including linear, spherical and complex fusiform shapes, which show partial similarity to those found in acidic geothermal environments in other geographical locations. One...

  11. Boise geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  12. Geothermal Resource Exploration by Stream pH Mapping in Mutsu Hiuchi Dake Volcano, Japan

    Directory of Open Access Journals (Sweden)

    Yota Suzuki

    2017-07-01

    Full Text Available Although pH measurements of hot spring water are taken in conventional geothermal resource research, previous studies have seldom created pH distribution maps of stream and spring waters for an entire geothermal field as a technique for geothermal exploration. In this study, a pH distribution map was created by measuring stream and spring water pH at 75 sites in the Mutsu Hiuchi Dake geothermal field, Japan. Areas of abnormally high pH were detected in midstream sections of the Ohaka and Koaka rivers; these matched the location of the Mutsu Hiuchi Dake East Slope Fault, which is believed to have formed a geothermal reservoir. The abnormally high pH zone is attributed to the trapping of rising volcanic gases in a mature geothermal reservoir with neutral geothermal water. This causes the gas to dissolve and prevents it from reaching the surface. Thus, the mapping of stream water pH distribution in a geothermal field could provide a new and effective method for estimating the locations of geothermal reservoirs. As the proposed method does not require laboratory analysis, and is more temporally and economically efficient than conventional methods, it might help to promote geothermal development in inaccessible and remote regions.

  13. Cleanings of the silica scale settled in the transportation-pipes of the geothermal hot water of the Onuma Geothermal Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Ito, J

    1978-09-01

    At the Onuma Geothermal Power Station, silica scale deposits in the hot water transportation pipes between production wells and injection wells, increased the thickness. The operations for cleaning the scale were effectively carried out by the following three methods. (1) Poli-Pig method: The shell-shaped plastic foam sponge mass named Poli-Pig was pressed in the pipes. Various shaped Poli-Pig such as armed by the steel spikes made scratches on the surface of the scale, and then stripped off. This method is effective when thickness of the scale is thinner than 20 mm. (2) Impact-Cutter method. Various shaped steel cutter blocks were attached at the end of a flexible shaft, and gave continuous impact by rotation on the scale and then smashing it away. This method is effective for various thickness, but pipes had to be cut off matched to the length of the flexible shaft. (3) Water-jet method. High pressured water jet through the special nozzle smashed away the scale. For this method the pipe had to be cut off at every joint.

  14. Relative importance of H2 and H2S as energy sources for primary production in geothermal springs.

    Science.gov (United States)

    D'Imperio, Seth; Lehr, Corinne R; Oduro, Harry; Druschel, Greg; Kühl, Michael; McDermott, Timothy R

    2008-09-01

    Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H(2) and H(2)S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H(2)S and H(2) concentration gradients were observed in the outflow channel, and vertical H(2)S and O(2) gradients were evident within the microbial mat. H(2)S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H(2). Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O(2) requirements varied, as did energy source utilization: some isolates could grow only with H(2)S, some only with H(2), while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H(2)S and H(2) and that represented the dominant phylotype (70% of the PCR clones) showed that H(2)S and H(2) were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H(2)S was better than that with H(2). The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H(2)S can dominate over H(2

  15. Environmental monitoring for the hot dry rock geothermal energy development project. Annual report, July 1975--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Pettitt, R.A. (comp.)

    1976-09-01

    The objectives of this environmental monitoring report are to provide a brief conceptual and historical summary of the Hot Dry Rock Geothermal Project, a brief overview of the environmental monitoring responsibilities and activities of the Los Alamos Scientific Laboratory, and descriptions of the studies, problems, and results obtained from the various monitoring programs. Included are descriptions of the work that has been done in three major monitoring areas: (1) water quality, both surface and subsurface; (2) seismicity, with a discussion of the monitoring strategy of regional, local, and close-in detection networks; and (3) climatology. The purpose of these programs is to record baseline data, define potential effects from the project activities, and determine and record any impacts that may occur.

  16. Multi-usages of the Ilan geothermal field, NE Taiwan

    Science.gov (United States)

    Lee, C. S.; Tseng, P.; Wang, S.; Chang, C.

    2017-12-01

    The tectonics of Taiwan is very dynamic. The area produces more than 30,000 earthquakes/year; the mountains uplift 4-5 cm/year; the rainfall culminates 3,000 mm/year; there are some 4,000 hot spring operators. One of the two hot geothermal areas is located in NE Taiwan - the Ilan geothermal field. In order to develop the geothermal energy for the electricity need, the Ministry of Science and Technology have provided the fund to drill two 2,500 deep wells. The results are not so encourage for the need of an Enhanced Geothermal System. However, one of the wells has a bottom temperature of 160oC and the water up loading with 60 ton/hr. This can be combined with the near-by wells drilled by the private drilling company and the Cardinal Tien Junior College of Healthcare and Management to develop the multi-usages of the geothermal energy, such as 1 MW of electricity for the college and village, the long-term healthcare and hot spring medicare, aquaculture and agriculture need etc. The universities and private drilling company cooperate together to join the development. Hope this will provide a new model for the need of a self-sufficient community. The geothermal is a clean, renewable, and no pollution energy. Taiwan is in an initial stage of using this green energy.

  17. Fairbanks Geothermal Energy Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Karl, Bernie [CHSR,LLC Owner

    2013-05-31

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  18. Discovery and characterizaton of a novel lipase with transesterification activity from hot spring metagenomic library

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2017-03-01

    Full Text Available A new gene encoding a lipase (designated as Lip-1 was identified from a metagenomic bacterial artificial chromosome(BAC library prepared from a concentrated water sample collected from a hot spring field in Niujie, Eryuan of Yunnan province in China. The open reading frame of this gene encoded 622 amino acid residues. It was cloned, fused with the oleosin gene and over expressed in Escherichia coli to prepare immobilized lipase artificial oil body AOB-sole-lip-1. The monomeric Sole-lip-1 fusion protein presented a molecular mass of 102.4 kDa. Enzyme assays using olive oil and methanol as the substrates in petroleum ether confirmed its transesterification activity. Hexadecanoic acid methyl ester, 8,11-Octadecadienoic acid methyl ester, 8-Octadecenoic acid methyl ester, and Octadecanoic acid methyl ester were detected. It showed favorable transesterification activity with optimal temperature 45 °C. Besides, the maximal biodiesel yield was obtained when the petroleum ether system as the organic solvent and the substrate methanol in 350 mmol/L (at a molar ratio of methanol of 10.5:1 and the water content was 1%. In light of these advantages, this lipase presents a promising resource for biodiesel production.

  19. Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov., a thermophilic bacterium isolated from a hot spring in Batman.

    Science.gov (United States)

    Gul-Guven, Reyhan; Guven, Kemal; Poli, Annarita; Nicolaus, Barbara

    2008-12-01

    A new thermophilic spore-forming strain KG8(T) was isolated from the mud of Taslidere hot spring in Batman. Strain KG8(T) was aerobe, Gram-positive, rod-shaped, motile, occurring in pairs or filamentous. Growth was observed from 35-65 degrees C (optimum 55 degrees C) and at pH 5.5-9.5 (optimum pH 7.5). It was capable of utilizing starch, growth was observed until 3% NaCl (w/v) and it was positive for nitrate reduction. On the basis of 16S rRNA gene sequence similarity, strain KG8(T) was shown to be related most closely to Anoxybacillus species. Chemotaxonomic data (major isoprenoid quinone-menaquinone-7; major fatty acid-iso-C15:0 and iso-C17:0) supported the affiliation of strain KG8(T) to the genus Anoxybacillus. The results of DNA-DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain KG8(T). Based on these results we propose assigning a novel subspecies of Anoxybacillus kamchatkensis, to be named Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov. with the type strain KG8(T) (DSM 18475(T)=CIP 109280(T)).

  20. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils.

    Science.gov (United States)

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-06-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  1. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    Directory of Open Access Journals (Sweden)

    Tarik Aanniz

    2015-06-01

    Full Text Available The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240 thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5% represented by B. licheniformis (119, B. aerius (44, B. sonorensis (33, B. subtilis (subsp. spizizenii (2 and subsp. inaquosurum (6, B. amyloliquefaciens (subsp. amyloliquefaciens (4 and subsp. plantarum (4, B. tequilensis (3, B. pumilus (3 and Bacillus sp. (19. Only six isolates (2.5% belonged to the genus Aeribacillus represented by A. pallidus (4 and Aeribacillus sp. (2. In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  2. Characterization of Thermophilic Halotolerant Aeribacillus pallidus TD1 from Tao Dam Hot Spring, Thailand

    Directory of Open Access Journals (Sweden)

    Somchai Santiwatanakul

    2011-08-01

    Full Text Available The bacterial strain TD1 was isolated from Tao Dam hot spring in Thailand. Strain TD1 was Gram positive, rod-shaped, aerobic, motile, and endospore forming. The cell was 2.0–40 mm in length and about 0.4 mm in diameter. The optimum growth occurred at 55–60 °C and at pH 7–8. Strain TD1 was able to grow on medium containing up to 10% NaCl. The DNA G+C content was 38.9 mol%. The cellular fatty acid content was mainly C16:0, which comprised 25.04% of the total amount of cellular fatty acid. 16S rDNA showed 99% identity to Aeribacillus pallidus DSM 3670T. Bayesian tree analysis strongly supported the idea that strain TD1 is affiliated with genus Aeribacillus, as Aeribacillus pallidus strain TD1. Although the 16S rDNA of A. pallidus strain TD1 is similar to that of A. pallidus DSM 3670T, some physiological properties and the cellular fatty acid profiles differ significantly. A. pallidus strain TD1 can produce extracellular pectate lyase, which has not been reported elsewhere for other bacterial strains in the genus Aeribacillus. A. pallidus strain TD1 may be a good candidate as a pectate lyase producer, which may have useful industrial applications.

  3. Characterization of thermophilic halotolerant Aeribacillus pallidus TD1 from Tao Dam Hot Spring, Thailand.

    Science.gov (United States)

    Yasawong, Montri; Areekit, Supatra; Pakpitchareon, Arda; Santiwatanakul, Somchai; Chansiri, Kosum

    2011-01-01

    The bacterial strain TD1 was isolated from Tao Dam hot spring in Thailand. Strain TD1 was Gram positive, rod-shaped, aerobic, motile, and endospore forming. The cell was 2.0-40 μm in length and about 0.4 μm in diameter. The optimum growth occurred at 55-60 °C and at pH 7-8. Strain TD1 was able to grow on medium containing up to 10% NaCl. The DNA G+C content was 38.9 mol%. The cellular fatty acid content was mainly C(16:0), which comprised 25.04% of the total amount of cellular fatty acid. 16S rDNA showed 99% identity to Aeribacillus pallidus DSM 3670(T). Bayesian tree analysis strongly supported the idea that strain TD1 is affiliated with genus Aeribacillus, as Aeribacillus pallidus strain TD1. Although the 16S rDNA of A. pallidus strain TD1 is similar to that of A. pallidus DSM 3670(T), some physiological properties and the cellular fatty acid profiles differ significantly. A. pallidus strain TD1 can produce extracellular pectate lyase, which has not been reported elsewhere for other bacterial strains in the genus Aeribacillus. A. pallidus strain TD1 may be a good candidate as a pectate lyase producer, which may have useful industrial applications.

  4. Caldanaerobacter uzonensis sp. nov., an anaerobic, thermophilic, heterotrophic bacterium isolated from a hot spring.

    Science.gov (United States)

    Kozina, Irina V; Kublanov, Ilya V; Kolganova, Tatyana V; Chernyh, Nikolai A; Bonch-Osmolovskaya, Elizaveta A

    2010-06-01

    An anaerobic thermophilic bacterium, strain K67(T), was isolated from a terrestrial hot spring of Uzon Caldera, Kamchatka Peninsula. Analysis of the 16S rRNA gene sequence revealed that the novel isolate belongs to the genus Caldanaerobacter, with 95 % 16S rRNA gene sequence similarity to Caldanaerobacter subterraneus subsp. subterraneus SEBR 7858(T), suggesting that it represents a novel species of the genus Caldanaerobacter. Strain K67(T) was characterized as an obligate anaerobe, a thermophile (growth at 50-75 degrees capital ES, Cyrillic; optimum 68-70 degrees C), a neutrophile (growth at pH(25 degrees C) 4.8-8.0; optimum pH(25 degrees C) 6.8) and an obligate organotroph (growth by fermentation of various sugars, peptides and polysaccharides). Major fermentation products were acetate, H2 and CO2; ethanol, lactate and l-alanine were formed in smaller amounts. Thiosulfate stimulated growth and was reduced to hydrogen sulfide. Nitrate, sulfate, sulfite and elemental sulfur were not reduced and did not stimulate growth. Thus, according to the strain's phylogenetic position and phenotypic novelties (lower upper limit of temperature range for growth, the ability to grow on arabinose, the inability to reduce elemental sulfur and the formation of alanine as a minor fermentation product), the novel species Caldanaerobacter uzonensis sp. nov. is proposed, with the type strain K67(T) (=DSM 18923(T) =VKM capital VE, Cyrillic-2408(T)).

  5. Evaluation of radon in hot spring waters in Zacatecas State, Mexico

    International Nuclear Information System (INIS)

    Favila R, E.; Lopez del Rio, H.; Davila R, I.; Mireles G, F.

    2010-10-01

    It is well know that radon is a potent human carcinogen. Because of the health concern of radon exposure, concentrations of 222 Rn were determined in ten hot spring water samples from the Mexican state of Zacatecas. The thermal water is collected in pools and used mainly for recreational purposes. In addition to radon level, the water samples were characterized for temperature, conductivity, and ph. Liquid scintillation spectrometry was used to measure 222 Rn and its decay products by mixing directly an aliquot of water with a commercial liquid scintillation. All measurements were carried out using a liquid scintillation counter (Wallac 1411). The water temperature ranged from 28 to 59 C, while the ph varied from 7.2 to 9.0, and the water conductivity was between 202.4 and 1072 μS/cm. The 222 Rn concentration varied in the range 3.9-32.6 Bq/L. In addition, the risk to radon exposure was assessed by considering three -real and possible- radon exposure scenarios: 1) ingestion of bottled thermal water, 2) direct ingestion of thermal water; and 3) vapor inhalation. The annual effective dose calculated for ingestion of bottled thermal water was 0.010-0.083 mSv/yr; for ingestion of water was 0.65-5.47 mSv/yr; and for inhalation was 0.28-2.81 mSv/yr. (Author)

  6. Profitability Evaluation of a Hybrid Geothermal and CO2 Sequestration Project for a Coastal Hot Saline Aquifer.

    Science.gov (United States)

    Plaksina, Tatyana; Kanfar, Mohammed

    2017-11-01

    With growing interest in commercial projects involving industrial volume CO2 sequestration, a concern about proper containment and control over the gas plume becomes particularly prominent. In this study, we explore the potential of using a typical coastal geopressured hot saline aquifer for two commercial purposes. The first purpose is to harvest geothermal heat of the aquifer for electricity generation and/or direct use and the second one is to utilize the same rock volume for safe and controlled CO2 sequestration without interruption of heat production. To achieve these goals, we devised and economically evaluated a scheme that recovers operational and capital costs within first 4 years and yields positive internal rate of return of about 15% at the end of the operations. Using our strategic design of well placement and operational scheduling, we were able to achieve in our numerical simulation study the following results. First, the hot water production rates allowed to run a 30 MW organic Rankine cycle plant for 20 years. Second, during the last 10 years of operation we managed to inject into the same reservoir (volume of 0.8 x 109 m3) approximately 10 million ton of the supercritical gas. Third, decades of numerical monitoring the plume after the end of the operations showed that this large volume of CO2 is securely sequestrated inside the reservoir without compromising the caprock integrity.

  7. Profitability Evaluation of a Hybrid Geothermal and CO2 Sequestration Project for a Coastal Hot Saline Aquifer.

    Directory of Open Access Journals (Sweden)

    Plaksina Tatyana

    2017-01-01

    Full Text Available With growing interest in commercial projects involving industrial volume CO2 sequestration, a concern about proper containment and control over the gas plume becomes particularly prominent. In this study, we explore the potential of using a typical coastal geopressured hot saline aquifer for two commercial purposes. The first purpose is to harvest geothermal heat of the aquifer for electricity generation and/or direct use and the second one is to utilize the same rock volume for safe and controlled CO2 sequestration without interruption of heat production. To achieve these goals, we devised and economically evaluated a scheme that recovers operational and capital costs within first 4 years and yields positive internal rate of return of about 15% at the end of the operations. Using our strategic design of well placement and operational scheduling, we were able to achieve in our numerical simulation study the following results. First, the hot water production rates allowed to run a 30 MW organic Rankine cycle plant for 20 years. Second, during the last 10 years of operation we managed to inject into the same reservoir (volume of 0.8 x 109 m3 approximately 10 million ton of the supercritical gas. Third, decades of numerical monitoring the plume after the end of the operations showed that this large volume of CO2 is securely sequestrated inside the reservoir without compromising the caprock integrity.

  8. A Brief History With Lessons Learned From The Hot Dry Rock Geothermal Energy Program At Fenton Hill, New Mexico, USA

    Science.gov (United States)

    Kelkar, S.; Woldegabriel, G. W.; Rehfeldt, K. R.

    2009-12-01

    Important lessons were learned that continue to be relevant today from the world’s first successful demonstration of a Hot Dry Rock (HDR) system for extracting underground geothermal energy conducted at Fenton Hill, New Mexico. This experiment, conducted in hot, low-permeability, low-water context, crystalline basement rock was fundamentally different from the Enhanced Geothermal Systems (EGS) development currently underway at several sites in the U.S. and world. The HDR concept was developed in 1970’s at Los Alamos National Laboratory (LANL). Two HDR reservoirs with two wells each were created and tested at the Fenton Hill site. In spite of its proximity to the Valles caldera and the Rio Grande rift, geological information and heat-flow data were used successfully to select the Fenton Hill experimental site within a block of intact crystalline basement rocks. Deep crystalline basement rocks marginal to active fault/recent volcanic centers were good candidates for HDR systems: these rocks had high heat content, and low matrix permeability leading to low water losses. Reconnaissance surveys indicated significant potential HDR geothermal resources through out the USA. Drilling and completion operations in hot crystalline rocks were challenging requiring further R&D. Hydraulic stimulation activities were carried out successfully in deep, hot crystalline rocks. Logging tools and instruments were developed that could operate successfully in the ~250oC environment. Development of techniques and tools for microseismic data monitoring, analysis, and interpretation was found to be enormously valuable. It was found that the systematic process that should be followed in developing HDR reservoirs is to drill and stimulate the first well, use the microseismic data to locate the target zone, and then complete the additional wells. The largest fraction of the flow impedance was found to be near the production well. Combined interpretation of the pressure testing, microseismic

  9. Southwest Alaska Regional Geothermal Energy Projec

    Energy Technology Data Exchange (ETDEWEB)

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  10. Probability-based classifications for spatially characterizing the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region, Taiwan.

    Science.gov (United States)

    Jang, Cheng-Shin

    2015-05-01

    Accurately classifying the spatial features of the water temperatures and discharge rates of hot springs is crucial for environmental resources use and management. This study spatially characterized classifications of the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region of Northern Taiwan by using indicator kriging (IK). The water temperatures and discharge rates of the springs were first assigned to high, moderate, and low categories according to the two thresholds of the proposed spring classification criteria. IK was then used to model the occurrence probabilities of the water temperatures and discharge rates of the springs and probabilistically determine their categories. Finally, nine combinations were acquired from the probability-based classifications for the spatial features of the water temperatures and discharge rates of the springs. Moreover, various combinations of spring water features were examined according to seven subzones of spring use in the study region. The research results reveal that probability-based classifications using IK provide practicable insights related to propagating the uncertainty of classifications according to the spatial features of the water temperatures and discharge rates of the springs. The springs in the Beitou (BT), Xingyi Road (XYR), Zhongshanlou (ZSL), and Lengshuikeng (LSK) subzones are suitable for supplying tourism hotels with a sufficient quantity of spring water because they have high or moderate discharge rates. Furthermore, natural hot springs in riverbeds and valleys should be developed in the Dingbeitou (DBT), ZSL, Xiayoukeng (XYK), and Macao (MC) subzones because of low discharge rates and low or moderate water temperatures.

  11. Low enthalpy geothermal for oil sands (LEGO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Geothermal energy is generated by the slow decay of radioactive materials within the Earth. Geothermal energy resources include the water from hot springs used for heating; the withdrawal of high temperature steam from deep wells; and the use of stable ground or water temperatures near the Earth's surface to heat or cool buildings or in industrial processes. Heat pumps are used to transfer heat or water from the ground into buildings in winter. This paper discussed low enthalpy geothermal options for oil sands processes in order to reduce the use of natural gas and emissions from greenhouse gases (GHGs). The study was also conducted to aid in the development of a portfolio of renewable energy options for the oil and gas sector. The study estimated the costs and benefits of operating a shallow geothermal borehole cluster for meeting a portion of process heat demands for the Nexen's Albian mine. The costs and benefits of operating thermo-chillers integrated with a shallow geothermal borehole cluster for waste heat mitigation were also evaluated. The study showed that geothermal designs can be used to meet a portion of oil sands process heat and cooling demands. Mining operators may reduce carbon emissions and energy costs for process heat demands by installing closed loop borehole heat exchangers. Geothermal heat storage capacity can also be used to increase the efficiency of thermal chillers. It was concluded that pilot plant studies would contribute to a better understanding of the technology. tabs., figs.

  12. Hot spring microbial community composition, morphology, and carbon fixation: implications for interpreting the ancient rock record

    Science.gov (United States)

    Schuler, Caleb G.; Havig, Jeff R.; Hamilton, Trinity L.

    2017-11-01

    Microbial communities in hydrothermal systems exist in a range of macroscopic morphologies including stromatolites, mats, and filaments. The architects of these structures are typically autotrophic, serving as primary producers. Structures attributed to microbial life have been documented in the rock record dating back to the Archean including recent reports of microbially-related structures in terrestrial hot springs that date back as far as 3.5 Ga. Microbial structures exhibit a range of complexity from filaments to more complex mats and stromatolites and the complexity impacts preservation potential. As a result, interpretation of these structures in the rock record relies on isotopic signatures in combination with overall morphology and paleoenvironmental setting. However, the relationships between morphology, microbial community composition, and primary productivity remain poorly constrained. To begin to address this gap, we examined community composition and carbon fixation in filaments, mats, and stromatolites from the Greater Obsidian Pool Area (GOPA) of the Mud Volcano Area, Yellowstone National Park, WY. We targeted morphologies dominated by bacterial phototrophs located in close proximity within the same pool which are exposed to similar geochemistry as well as bacterial mat, algal filament and chemotrophic filaments from nearby springs. Our results indicate i) natural abundance δ13C values of biomass from these features (-11.0 to -24.3 ‰) are similar to those found in the rock record; ii) carbon uptake rates of photoautotrophic communities is greater than chemoautotrophic; iii) oxygenic photosynthesis, anoxygenic photosynthesis, and chemoautotrophy often contribute to carbon fixation within the same morphology; and iv) increasing phototrophic biofilm complexity corresponds to a significant decrease in rates of carbon fixation—filaments had the highest uptake rates whereas carbon fixation by stromatolites was significantly lower. Our data highlight

  13. Hot Spring Microbial Community Composition, Morphology, and Carbon Fixation: Implications for Interpreting the Ancient Rock Record

    Directory of Open Access Journals (Sweden)

    Caleb G. Schuler

    2017-11-01

    Full Text Available Microbial communities in hydrothermal systems exist in a range of macroscopic morphologies including stromatolites, mats, and filaments. The architects of these structures are typically autotrophic, serving as primary producers. Structures attributed to microbial life have been documented in the rock record dating back to the Archean including recent reports of microbially-related structures in terrestrial hot springs that date back as far as 3.5 Ga. Microbial structures exhibit a range of complexity from filaments to more complex mats and stromatolites and the complexity impacts preservation potential. As a result, interpretation of these structures in the rock record relies on isotopic signatures in combination with overall morphology and paleoenvironmental setting. However, the relationships between morphology, microbial community composition, and primary productivity remain poorly constrained. To begin to address this gap, we examined community composition and carbon fixation in filaments, mats, and stromatolites from the Greater Obsidian Pool Area (GOPA of the Mud Volcano Area, Yellowstone National Park, WY. We targeted morphologies dominated by bacterial phototrophs located in close proximity within the same pool which are exposed to similar geochemistry as well as bacterial mat, algal filament and chemotrophic filaments from nearby springs. Our results indicate (i natural abundance δ13C values of biomass from these features (−11.0 to −24.3‰ are similar to those found in the rock record; (ii carbon uptake rates of photoautotrophic communities is greater than chemoautotrophic; (iii oxygenic photosynthesis, anoxygenic photosynthesis, and chemoautotrophy often contribute to carbon fixation within the same morphology; and (iv increasing phototrophic biofilm complexity corresponds to a significant decrease in rates of carbon fixation—filaments had the highest uptake rates whereas carbon fixation by stromatolites was significantly lower

  14. Molecular Phylogenetic Exploration of Bacterial Diversity in a Bakreshwar (India) Hot Spring and Culture of Shewanella-Related Thermophiles

    Science.gov (United States)

    Ghosh, Dhritiman; Bal, Bijay; Kashyap, V. K.; Pal, Subrata

    2003-01-01

    The bacterial diversity of a hot spring in Bakreshwar, India, was investigated by a culture-independent approach. 16S ribosomal DNA clones derived from the sediment samples were found to be associated with gamma-Proteobacteria, cyanobacteria, and green nonsulfur and low-GC gram-positive bacteria. The first of the above phylotypes cobranches with Shewanella, a well-known iron reducer. This phylogenetic correlation has been exploited to develop culture conditions for thermophilic iron-reducing microorganisms. PMID:12839826

  15. Small Scale Biodiversity of an Alkaline Hot Spring in Yellowstone National Park

    Science.gov (United States)

    Walther, K.; Oiler, J.; Meyer-Dombard, D. R.

    2012-12-01

    To date, many phylogenetic diversity studies have been conducted in Yellowstone National Park (YNP) [1-7] focusing on the amplification of the 16S rRNA gene and "metagenomic" datasets. However, few reports focus on diversity at small scales. Here, we report on a small scale biodiversity study of sediment and biofilm communities within a confined area of a YNP hot spring, compare and contrast these communities to other sediment and biofilm communities from previous studies [1-7], and with other sediment and biofilm communities in the same system. Sediment and biofilm samples were collected, using a 30 x 50 cm sampling grid divided in 5 x 5 cm squares, which was placed in the outflow channel of "Bat Pool", an alkaline (pH 7.9) hot spring in YNP. Accompanying geochemical data included a full range of spectrophotometry measurements along with major ions, trace elements, and DIC/DOC. In addition, in situ temperature and conductivity arrays were placed within the grid location. The temperature array closest to the source varied between 83-88°C, while the temperature array 40 cm downstream varied between ~83.5-86.5°C. The two conductivity arrays yielded measurements of 5632 μS and 5710 μS showing little variation within the sampling area. Within the grid space, DO ranged from 0.5-1.33 mg/L, with relatively similar, but slightly lower values down the outflow channel. Sulfide values within the grid ranged from 1020-1671 μg/L, while sulfide values outside of the grid region fluctuated, but generally followed the trend of decreasing from source down the outflow. Despite the relative heterogeneity of chemical and physical parameters in the grid space, there was biological diversity in sediments and biofilms at the 5 cm scale. Small scale biodiversity was analyzed by selecting a representative number of samples from within the grid. DNA was extracted and variable regions V3 and V6 (Archaea and Bacteria, respectively) were sequenced with 454 pyrosequencing. The datasets

  16. Subsurface Geology of the Fenton Hill Hot Dry Rock Geothermal Energy Site

    Energy Technology Data Exchange (ETDEWEB)

    Levey, Schon S.

    2010-12-01

    The Precambrian rock penetrated by wells EE-2A and -3A belongs to one or more granitic to granodioritic plutons. The plutonic rock contains two major xenolith zones of amphibolite, locally surrounded by fine-grained mafic rock of hybrid igneous origin. The granodiorite is cut by numerous leucogranite dikes that diminish in abundance with depth. The most prominent structural feature is the main breccia zone, in which the rock is highly fractured and moderately altered. This zone is at least 75 m thick and is of uncertain but near-horizontal orientation. Fracture abundance decreases with increasing depth below the main breccia zone, and fractures tend to be associated with leucogranite dikes. This association suggests that at least some of the fractures making up the geothermal reservoir are of Precambrian age or have long-range orientations controlled by the presence of Precambrian-age granitic dikes.

  17. Effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats.

    Science.gov (United States)

    Kim, Dong-Hyun; Yeo, Sang Won

    2013-01-01

    This prospective, randomized, and controlled study examined the effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats. The study comprised two control groups (untreated and saline-treated) and three experimental groups of Sprague Dawley rats. The experimental groups received an instillation of lipopolysaccharide (LPS) only, LPS+normal saline (LPS/saline), or LPS+selenium-enriched hot spring water (LPS/selenium). Histopathological changes were identified using hematoxylin-eosin staining. Leakage of exudate was identified using fluorescence microscopy. Microvascular permeability was measured using the Evans blue dye technique. Expression of the Muc5ac gene was measured using reverse transcription-polymerase chain reaction. Mucosal edema and expression of the Muc5ac gene were significantly lower in the LPS/saline group than in the LPS group. Microvascular permeability, mucosal edema, and expression of the Muc5ac gene were significantly lower in the LPS/selenium group than in the LPS group. Mucosal edema was similar in the LPS/selenium group and LPS/saline group, but capillary permeability and Muc5ac expression were lower in the LPS/selenium group. This study shows that normal saline and selenium-enriched hot spring water reduce inflammatory activity and mucus hypersecretion in LPS-induced rhinosinusitis in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Phylogenetic Analysis and Antimicrobial Profiles of Cultured Emerging Opportunistic Pathogens (Phyla Actinobacteria and Proteobacteria) Identified in Hot Springs.

    Science.gov (United States)

    Jardine, Jocelyn Leonie; Abia, Akebe Luther King; Mavumengwana, Vuyo; Ubomba-Jaswa, Eunice

    2017-09-15

    Hot spring water may harbour emerging waterborne opportunistic pathogens that can cause infections in humans. We have investigated the diversity and antimicrobial resistance of culturable emerging and opportunistic bacterial pathogens, in water and sediment of hot springs located in Limpopo, South Africa. Aerobic bacteria were cultured and identified using 16S ribosomal DNA (rDNA) gene sequencing. The presence of Legionella spp. was investigated using real-time polymerase chain reaction. Isolates were tested for resistance to ten antibiotics representing six different classes: β-lactam (carbenicillin), aminoglycosides (gentamycin, kanamycin, streptomycin), tetracycline, amphenicols (chloramphenicol, ceftriaxone), sulphonamides (co-trimoxazole) and quinolones (nalidixic acid, norfloxacin). Gram-positive Kocuria sp. and Arthrobacter sp. and gram-negative Cupriavidus sp., Ralstonia sp., Cronobacter sp., Tepidimonas sp., Hafnia sp. and Sphingomonas sp. were isolated, all recognised as emerging food-borne pathogens. Legionella spp. was not detected throughout the study. Isolates of Kocuria , Arthrobacter and Hafnia and an unknown species of the class Gammaproteobacteria were resistant to two antibiotics in different combinations of carbenicillin, ceftriaxone, nalidixic acid and chloramphenicol. Cronobacter sp. was sensitive to all ten antibiotics. This study suggests that hot springs are potential reservoirs for emerging opportunistic pathogens, including multiple antibiotic resistant strains, and highlights the presence of unknown populations of emerging and potential waterborne opportunistic pathogens in the environment.

  19. Production and Early Preservation of Lipid Biomarkers in Iron Hot Springs

    Energy Technology Data Exchange (ETDEWEB)

    Parenteau, Mary N.; Jahnke, Linda L.; Farmer, Jack D.; Cady, Sherry L.

    2014-06-01

    The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51–54°C, pH 5.5–6.0, and are very high in dissolved Fe(II) at 5.8–5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. Finally, this study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs—environmental conditions that have been previously identified as highly relevant for Mars exploration.

  20. Comparative study on radon effects and thermal effects on humans in radon hot spring therapy

    International Nuclear Information System (INIS)

    Yamaoka, K.; Mitsunobu, F.; Hanamoto, K.; Tanizaki, Y.; Sugita, K.; Kohima, S.

    2003-01-01

    Full text: The radon therapy is used radon ( 222 Rn) gas, which mainly emits alpha-rays, and induces a small amount of active oxygen in the body. Because most of the diseases to which the radon therapy as well as the thermal therapy is applied are related to activated oxygen, in this study the effects of the radioactivity of radon and thermal effects were compared under the room or the hot spring condition with the similar chemical component, using as the parameters which are closely involved in the clinical for radon therapy. In the results, the radon and thermal therapy enhanced the antioxidation function, such as the activities of superoxide dismutase (SOD) and catalase, which inhibit lipid peroxidation and total cholesterol produce in the body. Moreover the therapy enhanced concanavalin A (ConA)-induced mitogen response, and increased the level of CD4, which is the marker of helper T cell, and decreased the level of CD8, which is the common marker of killer T cell and supresser T cell, in the white cell differentiation antigen (CD4/CD8) assay. Furthermore, the therapy increased the levels of alpha atrial natriuretic polypeptide (alpha ANP), beta endorphin, adrenocorticotropic hormone (ACTH), insulin and glucose-phosphate dehydrogenase (G-6-PDH), and decreased the vasopression level. The results were on the whole larger in the radon group than in the thermal group. The findings suggest that the radon therapy more contributes to the prevention of life style-related diseases related to peroxidation reactions and immune depression than thermal therapy. Moreover these indicate what may be a part of the mechanism for the alleviation of hypertension, osteoarthritis (pain) and diabetes mellitus brought about more radon therapy than thermal therapy

  1. Streptomyces caldifontis sp. nov., isolated from a hot water spring of Tatta Pani, Kotli, Pakistan.

    Science.gov (United States)

    Amin, Arshia; Ahmed, Iftikhar; Khalid, Nauman; Osman, Ghenijan; Khan, Inam Ullah; Xiao, Min; Li, Wen-Jun

    2017-01-01

    A Gram-staining positive, non-motile, rod-shaped, catalase positive and oxidase negative bacterium, designated NCCP-1331 T , was isolated from a hot water spring soil collected from Tatta Pani, Kotli, Azad Jammu and Kashmir, Pakistan. The isolate grew at a temperature range of 18-40 °C (optimum 30 °C), pH 6.0-9.0 (optimum 7.0) and with 0-6 % NaCl (optimum 2 % NaCl (w/v)). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain NCCP-1331 T belonged to the genus Streptomyces and is closely related to Streptomyces brevispora BK160 T with 97.9 % nucleotide similarity, followed by Streptomyces drosdowiczii NRRL B-24297 T with 97.8 % nucleotide similarity. The DNA-DNA relatedness values of strain NCCP-1331 T with S. brevispora KACC 21093 T and S. drosdowiczii CBMAI 0498 T were 42.7 and 34.7 %, respectively. LL-DAP was detected as diagnostic amino acid along with alanine, glycine, leucine and glutamic acid. The isolate contained MK-9(H 8 ) as the predominant menaquinone. Major polar lipids detected in NCCP-1331 T were phosphatidylethanolamine, phosphatidylinositol and unidentified phospholipids. Major fatty acids were iso-C 16: 0 , summed feature 8 (18:1 ω7c/18:1 ω6c), anteiso-C 15:0 and C 16:0 . The genomic DNA G + C content was 69.8 mol %. On the basis of phylogenetic, phenotypic and chemotaxonomic analysis, it is concluded that strain NCCP-1331 T represents a novel species of the genus Streptomyces, for which the name Streptomyces caldifontis sp. nov. is proposed. The type strain is NCCP-1331 T (=KCTC 39537 T  = CPCC 204147 T ).

  2. Isolation and characterization of a radiation resistant thermophilic bacterium from radon hot spring

    International Nuclear Information System (INIS)

    Liang Xinle; Yang Long; Zhang Hong; Zhang Lei

    2011-01-01

    A radiation resistant and thermophilic bacterium strain R4-33 was isolated from radon hot spring water samples, pretreated with 60 Co γ-rays and UV irradiation. Tests on morphological, physiological and biochemical characters, fatty acid compositions, (G + C) mol% contents, and 16S rDNA sequencing were conducted. The results showed that strain R4-33 was of rod-shape, Gram-negative, atrichous, and endospore-forming. The optimum growth temperature and pH were 60 ℃ and 7.5, respectively. The strain utilized glucose, maltose and trehalose as carbon sources, and hydrolyzed casein and starch. Its catalase positive. The strain was sensitive to penicillin, neomycin, erythromycin, vancomycin, streptomycin, gentamycin, amikacin and ampicillin. The major cellular fatty acids were C 14:1 (48.8%) and C 15:1 (15.2%). The (G + C) mol% content of DNA was 58.2%. Phylogenetic tree based on 16S rDNA sequence showed R4-33 shared highly similarity to those of species in genus Anoxybacillus, especially to that of Anoxybacillus gonensis (99.5%). Based on the above, the strain R4-33 was proposed to the evolution branch of Anoxybacillus and designated as Anoxybacillu sp. R4-33. The UV and γ-radiation tests showed that the strain R4-33 had an ability of resistance to UV of 396 J/m 2 and 60 Co γ-rays irradiation of 14.0 kGy, indicating that the strain was a radiation resistant and thermophilic bacterium. (authors)

  3. A Metastable Equilibrium Model for the Relative Abundances of Microbial Phyla in a Hot Spring

    Science.gov (United States)

    Dick, Jeffrey M.; Shock, Everett L.

    2013-01-01

    Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the

  4. Brockia lithotrophica gen. nov., sp. nov., an anaerobic thermophilic bacterium from a terrestrial hot spring.

    Science.gov (United States)

    Perevalova, Anna A; Kublanov, Ilya V; Baslerov, R V; Zhang, Gengxin; Bonch-Osmolovskaya, Elizaveta A

    2013-02-01

    A novel thermophilic bacterium, strain Kam1851(T), was isolated from a terrestrial hot spring of the Uzon Caldera, Kamchatka Peninsula, Russia. Cells of strain Kam1851(T) were spore-forming rods with a gram-positive type of cell wall. Growth was observed between 46 and 78 °C, and pH 5.5-8.5. The optimal growth (doubling time, 6.0 h) was at 60-65 °C and pH 6.5. The isolate was an obligate anaerobe growing in pre-reduced medium only. It grew on mineral medium with molecular hydrogen or formate as electron donors, and elemental sulfur, thiosulfate or polysulfide as electron acceptors. The main cellular fatty acids were C(16 : 0) (34.2 %), iso-C(16 : 0) (18 %), C(18 : 0) (12.8 %) and iso-C(17 : 0) (11.1 %). The G+C content of the genomic DNA of strain Kam1851(T) was 63 mol%. 16S rRNA gene sequence analysis showed that strain Kam1851(T) belonged to the order Thermoanaerobacterales, but it was not closely related to representatives of any genera with validly published names. The most closely related strains, which had no more than 89.2 % sequence similarity, were members of the genera Ammonifex and Caldanaerobacter. On the basis of its phylogenetic position and novel phenotypic features, isolate Kam1851(T) is proposed to represent a novel species in a new genus, Brockia lithotrophica gen. nov., sp. nov.; the type strain of Brockia lithotrophica is Kam1851(T) ( = DSM 22653(T) = VKM B-2685(T)).

  5. Geothermal energy

    International Nuclear Information System (INIS)

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  6. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  7. Geothermal Play-Fairway Analysis of the Tatun Volcano Group, Taiwan

    Science.gov (United States)

    Chen, Yan-Ru; Song, Sheng-Rong

    2017-04-01

    Geothermal energy is a sustainable and low-emission energy resource. It has the advantage of low-cost and withstanding nature hazards. Taiwan is located on the western Ring of Fire and characteristic of widespread hot spring and high surface heat flows, especially on the north of Taiwan. Many previous studies reveal that the Tatun Volcano Group (TVG) has great potential to develop the geothermal energy. However, investment in geothermal development has inherent risk and how to reduce the exploration risk is the most important. The exploration risk can be lowered by using the play-fairway analysis (PFA) that integrates existing data representing the composite risk segments in the region in order to define the exploration strategy. As a result, this study has adapted this logic for geothermal exploration in TVG. There are two necessary factors in geothermal energy, heat and permeability. They are the composite risk segments for geothermal play-fairway analysis. This study analyzes existing geologic, geophysical and geochemical data to construct the heat and permeability potential models. Heat potential model is based on temperature gradient, temperature of hot spring, proximity to hot spring, hydrothermal alteration zones, helium isotope ratios, and magnetics. Permeability potential model is based on fault zone, minor fault, and micro-earthquake activities. Then, these two potential models are weighted by using the Analytical Hierarchy Process (AHP) and combined to rank geothermal favorability. Uncertainty model is occurred by the quality of data and spatial accuracy of data. The goal is to combine the potential model with the uncertainty model as a risk map to find the best drilling site for geothermal exploration in TVG. Integrated results indicate where geothermal potential is the highest and provide the best information for those who want to develop the geothermal exploration in TVG.

  8. Preliminary study of Songa-Wayaua geothermal prospect area using volcanostratigraphy and remote sensing analysis

    Science.gov (United States)

    Asokawaty, Ribka; Nugroho, Indra; Satriana, Joshua; Hafidz, Muhamad; Suryantini

    2017-12-01

    Songa-Wayaua geothermal prospect area is located on Bacan Island, Northern Molluca Province. Geothermal systems in this area associated with three Quartenary volcanoes, such as Mt. Pele-pele, Mt. Lansa, and Mt. Bibinoi. Based on literature study, five surface manifestations such as hot springs and alteration occurred within this area. The active manifestations indicate that Songa-Wayaua area has potential geothermal resource. This study objective is to evaluate Songa-Wayaua geothermal system on preliminary study stage by using volcanostratigraphy and remote sensing analysis to delineate the boundary of geothermal system area. The result of this study showed that Songa-Wayaua prospect area has four heat sources potential (e.g. Pele-pele Hummock, Lansa Hummock, Songa Hummock, and Bibinoi Hummock), controlled by geological structure presented by Pele-pele Normal Fault, and had three places as the recharge and discharge area which are very fulfilling as a geothermal system.

  9. Hydrochemical variations in selected geothermal groundwater and carbonated springs in Korea: a baseline study for early detection of CO2 leakage.

    Science.gov (United States)

    Choi, Hanna; Piao, Jize; Woo, Nam C; Cho, Heuynam

    2017-02-01

    A baseline hydrochemistry of the above zone aquifer was examined for the potential of CO 2 early detection monitoring. Among the major ionic components and stable isotope ratios of oxygen, hydrogen, and carbon, components with a relative standard deviation (RSD) of leakage into the above zone. As an analog to the zone above CO 2 storage formation, we sampled deep groundwater, including geothermal groundwater from well depths of 400-700 m below the ground surface (bgs) and carbonated springs with a high CO 2 content in Korea. Under the natural conditions of inland geothermal groundwater, pH, electrical conductivity (EC), bicarbonate (HCO 3 ), δ 18 O, δ 2 H, and δ 13 C were relatively stable as well as sensitive to the introduction of CO 2 (g), thus showing good potential as monitoring parameters for early detection of CO 2 leakage. In carbonated springs, the parameters identified were pH, δ 18 O, and δ 2 H. Baseline hydrochemistry monitoring could provide information on parameters useful for detecting anomalies caused by CO 2 leakage as measures for early warning.

  10. Microbiological monitoring in geothermal plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Seibt, A.; Wolfgramm, M.; Würdemann, H.

    2009-12-01

    In times of increasing relevance of alternative energy resources the utilization of geothermal energy and subsurface energy storage gains importance and arouses increasing interest of scientists. The research project “AquiScreen” investigates the operational reliability of geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Microbiological analyses based on fluid and solid phases of geothermal systems are conducted to evaluate the impact of microbial populations on these systems. The presentation focuses on first results obtained from microbiological monitoring of geothermal plants located in two different regions of Germany: the North German Basin and the Molasse Basin in the southern part characterized by different salinities and temperatures. Fluid and filter samples taken during regular plant operation were investigated using genetic fingerprinting based on PCR-amplified 16S rRNA genes to characterize the microbial biocenosis of the geothermal aquifer. Sequencing of dominant bands of the fingerprints and the subsequent comparison to 16S rRNA genes from public databases enables a correlation to metabolic classes and provides information about the biochemical processes in the deep biosphere. The genetic profiles revealed significant differences in microbiological community structures of geothermal aquifers investigated. Phylogenetic analyses indicate broad metabolical diversity adapted to the specific conditions in the aquifers. Additionally a high amount of so far uncultivated microorganisms was detected indicating very specific indigenous biocenosis. However, in all geothermal plants bacteria were detected despite of fluid temperatures from 45° to 120°C. The identified microorganisms are closely related to thermophilic and hyperthermophilic species detectable in hot wells and hot springs, like Thermus scotoductus and Thermodesulfovibrio yellowstonii, respectively. Halophilic species were detected in

  11. Dissolved gas concentrations of the geothermal fluids in Taiwan

    Science.gov (United States)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  12. Geothermal wells: a forecast of drilling activity

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  13. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes

    International Nuclear Information System (INIS)

    Tan, Hongbing; Zhang, Yanfei; Zhang, Wenjie; Kong, Na; Zhang, Qing; Huang, Jingzhong

    2014-01-01

    Highlights: • Unique geothermal resources in Tibetan Plateau were discussed. • Isotopes were used to trace circulation of geothermal water. • Magmatic water mixing dominates geothermal water evolution. - Abstract: With the uplift of the Tibetan Plateau, many of the world’s rarest and most unique geothermal fields have been developed. This study aims to systematically analyze the characteristics of the hydrogen and oxygen isotopic data of geothermal, river, and lake waters to understand the circulation of groundwater and to uncover the mechanism of geothermal formation in the Tibetan Plateau. Field observations and isotopic data show that geothermal water has higher temperatures and hydraulic pressures, as well as more depleted D and 18 O isotopic compositions than river and lake waters. Thus, neither lakes nor those larger river waters are the recharge source of geothermal water. Snow-melt water in high mountains can vertically infiltrate and deeply circulate along some stretching tensile active tectonic belts or sutures and recharge geothermal water. After deep circulation, cold surface water evolves into high-temperature thermal water and is then discharged as springs at the surface again in a low area, under high water-head difference and cold–hot water density difference. Therefore, the large-scale, high-temperature, high-hydraulic-pressure geothermal systems in the Tibetan Plateau are developed and maintained by rapid groundwater circulation and the heat source of upwelled residual magmatic water. Inevitably, the amount of geothermal water will increase if global warming accelerates the melting of glaciers in high mountains

  14. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    Science.gov (United States)

    López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  15. Fiscal 1998 report on data processing for geothermal energy development enhancement. No. A-4 Mount Kumbetsu area (primary data processing); 1998 nendo chinetsu kaihatsu sokushin chosa data shori hokokusho. No.A-4. Kunbetsu chiiki (dai 1 ji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This is part of the state-operated 'geothermal energy development enhancement' project, under which a comprehensive analysis is conducted into the results of a survey of geothermal resources in existence in the Mount Kumbetsu area. The local geothermal structure is examined, and the Kumbetsu hot spring area, the Uebetsu river middle reach area, and the Unabetsu hot spring area are extracted as promising high-temperature supply areas. The Kumbetsu hot spring area and the Uebetsu river middle reach area lie on a heave positioned west of the Mount Musa/Mount Shitabanupuri fault. There is a distinguished bending in the zone of discontinuous resistivity, and, when geology is considered, it is inferred that there exists a geothermal fluid field formed by the Mount Musa/Mount Shitabanupuri fault running NNW-SSW and a fracture zone that runs across the fault. The two areas are located at spots where gravity gradient is sharp. It is concluded that, with the alteration zone, temperature distribution, etc., also taken into account, the Kumbetsu hot spring area is the more promising as a source of geothermal energy. The water of the Kumbetsu hot spring is of the Cl-SO{sub 4} type, 64.5 degrees C hot and neutral, and arises from the depth where water of meteoric origin is heated by heat conduction. The heat source is supposedly the magma reservoir whose eruption once formed Mount Unabetsu etc. (NEDO)

  16. Cultivation and Genomic Analysis of "Candidatus Nitrosocaldus islandicus," an Obligately Thermophilic, Ammonia-Oxidizing Thaumarchaeon from a Hot Spring Biofilm in Graendalur Valley, Iceland.

    Science.gov (United States)

    Daebeler, Anne; Herbold, Craig W; Vierheilig, Julia; Sedlacek, Christopher J; Pjevac, Petra; Albertsen, Mads; Kirkegaard, Rasmus H; de la Torre, José R; Daims, Holger; Wagner, Michael

    2018-01-01

    Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the Nitrosocaldus clade, group 1.1b and group 1.1a Thaumarchaeota in terrestrial high-temperature habitats, only one enrichment culture of an AOA thriving above 50°C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a newly discovered thaumarchaeon from the deep-branching Nitrosocaldaceae family of which we have obtained a high (∼85%) enrichment from biofilm of an Icelandic hot spring (73°C). This AOA, which we provisionally refer to as " Candidatus Nitrosocaldus islandicus," is an obligately thermophilic, aerobic chemolithoautotrophic ammonia oxidizer, which stoichiometrically converts ammonia to nitrite at temperatures between 50 and 70°C. " Ca. N. islandicus" encodes the expected repertoire of enzymes proposed to be required for archaeal ammonia oxidation, but unexpectedly lacks a nirK gene and also possesses no identifiable other enzyme for nitric oxide (NO) generation. Nevertheless, ammonia oxidation by this AOA appears to be NO-dependent as " Ca. N. islandicus" is, like all other tested AOA, inhibited by the addition of an NO scavenger. Furthermore, comparative genomics revealed that " Ca. N. islandicus" has the potential for aromatic amino acid fermentation as its genome encodes an indolepyruvate oxidoreductase ( iorAB ) as well as a type 3b hydrogenase, which are not present in any other sequenced AOA. A further surprising genomic feature of this thermophilic ammonia oxidizer is the absence of DNA polymerase D genes - one of the predominant replicative DNA polymerases in all other ammonia-oxidizing Thaumarchaeota. Collectively, our findings suggest that metabolic versatility and DNA replication might differ substantially between obligately thermophilic and other AOA.

  17. Cultivation and Genomic Analysis of “Candidatus Nitrosocaldus islandicus,” an Obligately Thermophilic, Ammonia-Oxidizing Thaumarchaeon from a Hot Spring Biofilm in Graendalur Valley, Iceland

    Science.gov (United States)

    Daebeler, Anne; Herbold, Craig W.; Vierheilig, Julia; Sedlacek, Christopher J.; Pjevac, Petra; Albertsen, Mads; Kirkegaard, Rasmus H.; de la Torre, José R.; Daims, Holger; Wagner, Michael

    2018-01-01

    Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the Nitrosocaldus clade, group 1.1b and group 1.1a Thaumarchaeota in terrestrial high-temperature habitats, only one§ enrichment culture of an AOA thriving above 50°C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a newly discovered thaumarchaeon from the deep-branching Nitrosocaldaceae family of which we have obtained a high (∼85%) enrichment from biofilm of an Icelandic hot spring (73°C). This AOA, which we provisionally refer to as “Candidatus Nitrosocaldus islandicus,” is an obligately thermophilic, aerobic chemolithoautotrophic ammonia oxidizer, which stoichiometrically converts ammonia to nitrite at temperatures between 50 and 70°C. “Ca. N. islandicus” encodes the expected repertoire of enzymes proposed to be required for archaeal ammonia oxidation, but unexpectedly lacks a nirK gene and also possesses no identifiable other enzyme for nitric oxide (NO) generation§. Nevertheless, ammonia oxidation by this AOA appears to be NO-dependent as “Ca. N. islandicus” is, like all other tested AOA, inhibited by the addition of an NO scavenger. Furthermore, comparative genomics revealed that “Ca. N. islandicus” has the potential for aromatic amino acid fermentation as its genome encodes an indolepyruvate oxidoreductase (iorAB) as well as a type 3b hydrogenase, which are not present in any other sequenced AOA. A further surprising genomic feature of this thermophilic ammonia oxidizer is the absence of DNA polymerase D genes§ – one of the predominant replicative DNA polymerases in all other ammonia-oxidizing Thaumarchaeota. Collectively, our findings suggest that metabolic versatility and DNA replication might differ substantially between obligately thermophilic and

  18. Cultivation and Genomic Analysis of “Candidatus Nitrosocaldus islandicus,” an Obligately Thermophilic, Ammonia-Oxidizing Thaumarchaeon from a Hot Spring Biofilm in Graendalur Valley, Iceland

    Directory of Open Access Journals (Sweden)

    Anne Daebeler

    2018-02-01

    Full Text Available Ammonia-oxidizing archaea (AOA within the phylum Thaumarchaeota are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the Nitrosocaldus clade, group 1.1b and group 1.1a Thaumarchaeota in terrestrial high-temperature habitats, only one§ enrichment culture of an AOA thriving above 50°C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a newly discovered thaumarchaeon from the deep-branching Nitrosocaldaceae family of which we have obtained a high (∼85% enrichment from biofilm of an Icelandic hot spring (73°C. This AOA, which we provisionally refer to as “Candidatus Nitrosocaldus islandicus,” is an obligately thermophilic, aerobic chemolithoautotrophic ammonia oxidizer, which stoichiometrically converts ammonia to nitrite at temperatures between 50 and 70°C. “Ca. N. islandicus” encodes the expected repertoire of enzymes proposed to be required for archaeal ammonia oxidation, but unexpectedly lacks a nirK gene and also possesses no identifiable other enzyme for nitric oxide (NO generation§. Nevertheless, ammonia oxidation by this AOA appears to be NO-dependent as “Ca. N. islandicus” is, like all other tested AOA, inhibited by the addition of an NO scavenger. Furthermore, comparative genomics revealed that “Ca. N. islandicus” has the potential for aromatic amino acid fermentation as its genome encodes an indolepyruvate oxidoreductase (iorAB as well as a type 3b hydrogenase, which are not present in any other sequenced AOA. A further surprising genomic feature of this thermophilic ammonia oxidizer is the absence of DNA polymerase D genes§ – one of the predominant replicative DNA polymerases in all other ammonia-oxidizing Thaumarchaeota. Collectively, our findings suggest that metabolic versatility and DNA replication might differ substantially between obligately

  19. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  20. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  1. Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Dick

    Full Text Available Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

  2. Trial approach to the function of the volcanoes, geothermal sources, and spa from a standpoint of radioactivity (part 2)

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Yukio

    1987-11-30

    General aspects of solar energy generation, composition of the earth's crust, and geothermal energy utilization, etc. are described. 1) Formation of the elements and explosion of the supernovas: Discussion is made on the solar energy generation from the existence probability of elenents in the universe. 2) Chemical composition of the earth's crust, and uranium and sodium: Chemical composition is estimated from the amount of radioactive elements in the crust. 3) Generation of magma. 4) Geothermal energy and fossile nuclear reactor: Analysis of nuclear physical data in the thermal history of the earth indicates that a nuclear reactor was naturally generated. 5) Heat escaping from the earth's surface: Flow rate of the earth's crust heat is estimated. 6) Geothermal reservoir and the formation of hot springs: Relation between the geothermal flow and the site of hot springs is estimated. 7) Utilization of thermal energy endowed by the earth: This is a natural benefit and should be wisely utilized. (11 figs, 16 tabs, 95 refs)

  3. Geothermal absorption refrigeration for food processing industries. Final report, December 13, 1976--November 13, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.L.; Olson, G.K.; Mah, C.S.; Bujalski, J.H.

    1977-11-01

    The first step in the economic analysis of the integration of geothermally powered absorption refrigeration into a food processing plant was an evaluation of the potential geothermal sites in the Western United States. The evaluation covered availability of raw materials, transportation, adequate geothermal source, labor, and other requirements for food processing plants. Several attractive geothermal sites were identified--Raft River, Idaho; Sespe Hot Springs, California; Vale Hot Springs, Oregon; Weisler-Crane Creek, Idaho; Cosco Hot Springs, California; and the Imperial Valley, California. The most economically attractive food processing industry was then matched to the site based on its particular energy, raw material, and transportation requirements. The more promising food processors identified were for frozen potato or vegetable products, freeze-dried products, and meat processing. For the refrigeration temperature range of +32/sup 0/F to -40/sup 0/F and geothermal temperature range of 212/sup 0/F to 300/sup 0/F, an absorption refrigeration system had to be identified, designed, and evaluated. Both the conventional ammonia/water and an organic absorption refrigeration system using monochlorodifluoromethane (R-22) as the refrigerant and dimethyl formamide (DMF) as the absorbent were studied. In general, only a 60/sup 0/F to 100/sup 0/F temperature drop would be effectively used for refrigeration leaving the remainder of the allowable temperature drop available for other use. The economic evaluation of the geothermal system installed in a food processing plant required the comparison of several principal alternatives. These alternatives were evaluated for three different food processing plants located at their optimum geothermal site: a forzen potato product processing plant located at Raft River, Idaho; a freeze-dried product plant located at Sespe Hot Springs, California; a beef slaughter operation located in the Imperial Valley of California. (JGB)

  4. [Identification of two cyanobacterial strains isolated from the Kotel'nikovskii hot spring of the Baikal rift].

    Science.gov (United States)

    Sorokovnikova, E G; Tikhonova, I V; Belykh, O I; Klimenkov, I V; Likhoshvaĭ, E V

    2008-01-01

    Two cyanobacterial strains, Pseudanabaena sp. 0411 and Synechococcus sp. 0431, were isolated from a sample collected in the Kotel'nikovskii hot spring of the Baikal rift. According to the results of light and transmission electron microscopy, as well as of the phylogenetic analysis of the 16S rRNA gene, these cyanobacteria were classified as Pseudanabaena sp. nov. and Synechococcus bigranulatus Skuja. The constructed phylogenetic tree shows that the studied strains are positioned in the clades of cyanobacteria isolated from hydrothermal vents of Asia and New Zealand, separately from marine and freshwater members of these genera, including those isolated from Lake Baikal.

  5. Biodiversity of Thermophilic Prokaryotes with Hydrolytic Activities in Hot Springs of Uzon Caldera, Kamchatka (Russia)▿ †

    OpenAIRE

    Kublanov, Ilya V.; Perevalova, Anna A.; Slobodkina, Galina B.; Lebedinsky, Aleksander V.; Bidzhieva, Salima K.; Kolganova, Tatyana V.; Kaliberda, Elena N.; Rumsh, Lev D.; Haertlé, Thomas; Bonch-Osmolovskaya, Elizaveta A.

    2008-01-01

    Samples of water from the hot springs of Uzon Caldera with temperatures from 68 to 87°C and pHs of 4.1 to 7.0, supplemented with proteinaceous (albumin, casein, or α- or β-keratin) or carbohydrate (cellulose, carboxymethyl cellulose, chitin, or agarose) biological polymers, were filled with thermal water and incubated at the same sites, with the contents of the tubes freely accessible to the hydrothermal fluid. As a result, several enrichment cultures growing in situ on different polymeric su...

  6. Caldimonas meghalayensis sp. nov., a novel thermophilic betaproteobacterium isolated from a hot spring of Meghalaya in northeast India

    Digital Repository Service at National Institute of Oceanography (India)

    Rakshak, K.; Ravinder, K.; Nupur, T.N.R.; Srinivas, P.; Kumar, A.

    can provide thermostable novel enzymes. While studying the bacteria from Jakrem, a hot spring of Meghalaya we obtained a strain designated AK31T whose phylogenetic analysis based on 16S rRNA gene sequence showed that it is closely related... variation that incubation of the bacteria were performed at 50°C. Biochemical and enzymatic characterization were also performed using Vitek 2 GN kits (BioMe´rieux, France) with incubation at 50 °C, according to the manufacturer’s protocol. Determinations...

  7. Metagenomics of Kamchatkan hot spring filaments reveal two new major (hyper)thermophilic lineages related to Thaumarchaeota.

    Science.gov (United States)

    Eme, Laura; Reigstad, Laila J; Spang, Anja; Lanzén, Anders; Weinmaier, Thomas; Rattei, Thomas; Schleper, Christa; Brochier-Armanet, Céline

    2013-06-01

    Based on phylogenetic analyses and gene distribution patterns of a few complete genomes, a new distinct phylum within the Archaea, the Thaumarchaeota, has recently been proposed. Here we present analyses of six archaeal fosmid sequences derived from a microbial hot spring community in Kamchatka. The phylogenetic analysis of informational components (ribosomal RNAs and proteins) reveals two major (hyper-)thermophilic clades ("Hot Thaumarchaeota-related Clade" 1 and 2, HTC1 and HTC2) related to Thaumarchaeota, representing either deep branches of this phylum or a new archaeal phylum and provides information regarding the ancient evolution of Archaea and their evolutionary links with Eukaryotes. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Geothermal fields of China

    Science.gov (United States)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  9. Development of Genetic Occurrence Models for Geothermal Prospecting

    Science.gov (United States)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity

  10. Japanese geothermics

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo

  11. Geothermal energy: opportunities for California commerce. Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    California's geographic and end-use markets which could directly use low and moderate temperature geothermal resources are ranked and described, as well as those which have the highest potential for near-term commercial development of these resources. Building on previous market surveys, the assessment determined that out of 38 geothermal resource areas with characteristics for direct use development, five areas have no perceived impediments to near-term development: Susanville, Litchfield, Ontario Hot Springs, Lake Elsinore, and the Salton Sea Geothermal Field. Twenty-nine applications were compared with previously selected criteria to determine their near-term potential for direct use of geothermal fluids. Seven categories were found to have the least impediments to development; agriculture and district heating applications are considered the highest. Ten-year projections were conducted for fossil fuel displacement from the higher rated applications. It is concluded that greenhouses have the greatest displacement of 18 x 10/sup 6/ therms per year.

  12. International Workshop on Hot Dry Rock. Creation and evaluation of geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-11-04

    At the above-named event which met on November 4 and 5, 1988, a number of essays were presented concerning the fracture system, exploration, evaluation, geophysical measurement application, etc., as developed in the U.S., France, Sweden, Italy, Japan, England, etc. Novel technologies are necessary for a breakthrough in HDR (hot dry rock) exploitation. In the designing of an HDR system, the orientation and dimensions of a fracture to be hydraulically produced have to be appropriately predicted, for which knowledge of rock physical properties and geological structures and the technology of simulating them will be useful. Drilling and geophysical probing of rock mass are some means for fracture observation. Seismometer-aided mapping by AE (acoustic emission) observation is performed while hydraulic fracturing is under way. Upon completion of an HDR circulation system, evaluation of the reservoir by experiment or theory becomes necessary. The heat exchanging area and deposition are estimated using the geochemical data, temperature fall, etc., of the liquid in circulation. If fracture impedance or water loss is out of the designed level, the fracture needs improvement. (NEDO)

  13. Proceedings 43rd Stanford Geothermal Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Stuart; Kirby, Stefan; Verplanck, Philip; Kelley, Karen

    2018-02-12

    Herein we summarize the results of an investigation dealing with the concentrations and inventories of strategic, critical and valuable materials (SCVM) in produced fluids from geothermal and hydrocarbon reservoirs (50-250° C) in Nevada and Utah. Water samples were collected from thirty-four production wells across eight geothermal fields, the Uinta Basin oil/gas province in northeast Utah, and the Covenant oil field in southwestern Utah; additional water samples were collected from six hot springs in the Sevier Thermal Belt in southwestern Utah. Most SCVM concentrations in produced waters range from <0.1 to 100 µg/kg; the main exception is lithium, which has concentrations that range from <1000 to 25,000 ug/kg. Relatively high concentrations of gallium, germanium, scandium, selenium, and tellurium are measured too. Geothermal waters contain very low concentrations of REEs, below analytical detections limits (0.01 µg/kg), but the concentrations of lanthanum, cerium, and europium range from 0.05 to 5 µg/kg in Uinta basin waters. Among the geothermal fields, the Roosevelt Hot Spring reservoir appears to have the largest inventories of germanium and lithium, and Patua appears to have the largest inventories of gallium, scandium, selenium, and tellurium. By comparison, the Uinta basin has larger inventories of gallium. The concentrations of gallium, germanium, lithium, scandium, selenium, and tellurium in produced waters appear to be partly related to reservoir temperature and concentrations of total dissolved salts. The relatively high concentration and large inventory of lithium occurring at Roosevelt Hot Springs may be related to granitic-gneissic crystalline rocks, which host the reservoir. Analyses of calcite scales from Dixie Valley indicate enrichments in cobalt, gallium, gold, palladium, selenium and tellurium, and these metals appear to be depositing at deep levels in production wells due to boiling. Comparisons with SCVM mineral deposits suggest that

  14. Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan

    Science.gov (United States)

    Chan, Hai-Po; Chang, Chung-Pai; Dao, Phuong D.

    2018-01-01

    Geothermal energy is an increasingly important component of green energy in the globe. A prerequisite for geothermal energy development is to acquire the local and regional geothermal prospects. Existing geophysical methods of estimating the geothermal potential are usually limited to the scope of prospecting because of the operation cost and site reachability in the field. Thus, explorations in a large-scale area such as the surface temperature and the thermal anomaly primarily rely on satellite thermal infrared imagery. This study aims to apply and integrate thermal infrared (TIR) remote sensing technology with existing geophysical methods for the geothermal exploration in Taiwan. Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) imagery is used to retrieve the land surface temperature (LST) in Ilan plain. Accuracy assessment of satellite-derived LST is conducted by comparing with the air temperature data from 11 permanent meteorological stations. The correlation coefficient of linear regression between air temperature and LST retrieval is 0.76. The MODIS LST product is used for the cross validation of Landsat derived LSTs. Furthermore, Landsat ETM+ multi-temporal brightness temperature imagery for the verification of the LST anomaly results were performed. LST Results indicate that thermal anomaly areas appear correlating with the development of faulted structure. Selected geothermal anomaly areas are validated in detail by field investigation of hot springs and geothermal drillings. It implies that occurrences of hot springs and geothermal drillings are in good spatial agreement with anomaly areas. In addition, the significant low-resistivity zones observed in the resistivity sections are echoed with the LST profiles when compared with in the Chingshui geothermal field. Despite limited to detecting the surficial and the shallow buried geothermal resources, this work suggests that TIR remote sensing is a valuable tool by providing an effective way of mapping

  15. Insights into the biological source and environmental gradients shaping the distribution of H-shaped glycerol dialkyl glycerol tetraethers in Yellowstone National Park geothermal springs

    Science.gov (United States)

    Jia, C.; Xie, W.; Wang, J.; Boyd, E. S.; Zhang, C.

    2013-12-01

    Archaea are ubiquitous in natural environments. The unique tetraether lipids in archaeal membranes enable the maintenance of ion permeability across broad environmental gradients. H-shaped isoprenoid glycerol dialkyl glycerol tetraethers (H-GDGTs), in which the two biphytanyl carbon skeletons are covalently bound by a carbon-carbon bond, have been recently identified in both marine and geothermal environments. Here we report the core H-GDGTs (C-H-GDGTs) and polar H-GDGTs (P-H-GDGTs) associated with sediments sampled from geothermal springs in Yellowstone National Park and investigate their abundance in relation to environmental gradients. The abundance of C- and P-H-GDGTs exhibit strong and negative correlation with pH (P = 0.007), suggesting that H-shaped GDGTs help to maintain cell membrane fluidity in acidic environments. Reanalysis of archaeal 16S rRNA gene pyrotags published previously from (Boyd E. Hamilton T. L., Wang J., He L., Zhang C. L. 2013. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity. Frontiers in Terrestrial Microbiology. 4: doi: 10.3389/fmicb.2013.00062) indicates that these H-GDGTs are associated with environments dominanted by Thermoplasmatales, which are thermoacidiphiles. Two equations were established to define the relationships between the abundance of H-GDGTs, the abundance of archaeal taxa based on 16S rRNA gene phylogenetic affiliations, and pH. Both equations have high predictive capacity in predicting the distribution of archaeal lipids in the geothermal system. These observations provide new insight into the biological source of H-GDGTs and suggest a prominent role for these lipids in the diversification of archaea into or out of acidic high temperature environments.

  16. Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes.

    Directory of Open Access Journals (Sweden)

    Diego Javier Jiménez

    Full Text Available A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level acidic hot spring El Coquito (EC. A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation, and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ, associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment.

  17. Phylogenetic Evidence for the Existence of Novel Thermophilic Bacteria in Hot Spring Sulfur-Turf Microbial Mats in Japan

    Science.gov (United States)

    Yamamoto, Hiroyuki; Hiraishi, Akira; Kato, Kenji; Chiura, Hiroshi X.; Maki, Yonosuke; Shimizu, Akira

    1998-01-01

    So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bacteria in sulfur-turf mats by direct cloning and sequencing of 16S rRNA genes amplified from the bulk DNAs of the mats. Common clones with 16S rDNA sequences with similarity levels of 94.8 to 99% were isolated from sulfur-turf mat samples from two geographically remote hot springs. Phylogenetic analysis showed that the phylotypes of the common clones formed a major cluster with members of the Aquifex-Hydrogenobacter complex, which represents the most deeply branching lineage of the domain bacteria. Furthermore, the bacteria of the sulfur-turf mat phylotypes formed a clade distinguishable from that of other members of the Aquifex-Hydrogenobacter complex at the order or subclass level. In situ hybridization with clone-specific probes for 16S rRNA revealed that the common phylotype of sulfur-turf mat bacteria is that of the predominant sausage-shaped bacteria. PMID:9572936

  18. Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes

    Science.gov (United States)

    Jiménez, Diego Javier; Andreote, Fernando Dini; Chaves, Diego; Montaña, José Salvador; Osorio-Forero, Cesar; Junca, Howard; Zambrano, María Mercedes; Baena, Sandra

    2012-01-01

    A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation), and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ), associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA) indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment. PMID:23251687

  19. The plumbing system of the Pagosa thermal Springs, Colorado: Application of geologically constrained geophysical inversion and data fusion

    Science.gov (United States)

    Revil, A.; Cuttler, S.; Karaoulis, M.; Zhou, J.; Raynolds, B.; Batzle, M.

    2015-06-01

    Fault and fracture networks usually provide the plumbing for movement of hydrothermal fluids in geothermal fields. The Big Springs of Pagosa Springs in Colorado is known as the deepest geothermal hot springs in the world. However, little is known about the plumbing system of this hot spring, especially regarding the position of the reservoir (if any) or the position of the major tectonic faults controlling the flow of the thermal water in this area. The Mancos shale, a Cretaceous shale, dominates many of the surface expressions around the springs and impede an easy recognition of the fault network. We use three geophysical methods (DC resistivity, self-potential, and seismic) to image the faults in this area, most of which are not recognized in the geologic fault map of the region. Results from these surveys indicate that the hot Springs (the Big Spring and a warm spring located 1.8 km further south) are located at the intersection of the Victoire Fault, a major normal crustal fault, and two north-northeast trending faults (Fault A and B). Self-potential and DC resistivity tomographies can be combined and a set of joint attributes defined to determine the localization of the flow of hot water associated with the Eight Miles Mesa Fault, a second major tectonic feature responsible for the occurrence of warm springs further West and South from the Big Springs of Pagosa Springs.

  20. Letting Off Steam and Getting Into Hot Water - Harnessing the Geothermal Energy Potential of Heavy Oil Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Teodoriu, Catalin; Falcone, Gioia; Espinel, Arnaldo

    2007-07-01

    The oil industry is turning its attention to the more complex development of heavy oil fields in order to meet the ever increasing demands of the manufacturing sector. The current thermal recovery techniques of heavy oil developments provide an opportunity to benefit from the geothermal energy created during the heavy oil production process. There is scope to improve the current recovery factors of heavy oil reservoirs, and there is a need to investigate the associated geothermal energy potential that has been historically neglected. This paper presents a new concept of harnessing the geothermal energy potential of heavy oil reservoirs with the co-production of incremental reserves. (auth)

  1. Filamentous Morphology as a Means for Thermophilic Bacteria to Survive Steep Physical and Chemical Gradients in Yellowstone Hot Springs

    Science.gov (United States)

    Dong, Y.; Srivastava, V.; Bulone, V.; Keating, K. M.; Khetani, R. S.; Fields, C. J.; Inskeep, W.; Sanford, R. A.; Yau, P. M.; Imai, B. S.; Hernandez, A. G.; Wright, C.; Band, M.; Cann, I. K.; Ahrén, D.; Fouke, K. W.; Sivaguru, M.; Fried, G.; Fouke, B. W.

    2017-12-01

    The filamentous heat-loving bacterium Sulfurihydrogenibium yellowstonense makes up more than 90% of the microbial community that inhabits turbulent, dysoxic hot spring outflow channels (66-71°C, 6.2-6.5 pH, 0.5-0.75 m/s flow rate) at Mammoth Hot Spring in Yellowstone National Park. These environments contain abundantly available inorganic substrates (e.g., CO2, sulfide and thiosulfate) and are associated with extensive CaCO3 (travertine) precipitation driven in part by CO2 off-gassing. Evidence from integrated Meta-Omics analyses of DNA, RNA, and proteins (metagenomics, metatranscriptomics and metaproteomics) extracted from these S. yellowstonense-dominated communities have detected 1499 non-rRNA open reading frames (ORFs), their transcripts and cognate proteins. During chemoautotrophy and CO2 carbon fixation, chaperons facilitate enzymatic stability and functionalities under elevated temperature. High abundance transcripts and proteins for Type IV pili and exopolysaccharides (EPS) are consistent with S. yellowstonense forming strong (up to 0.5 m) intertwined microbial filaments (fettuccini streamers) composed of linked individual cells that withstand hydrodynamic shear forces and extremely rapid travertine mineralization. Their primary energy source is the oxidation of reduced sulfur (e.g., sulphide, sulfur or thiosulfate) and the simultaneous uptake of extremely low concentrations of dissolved O2 facilitated by bd-type cytochromes. Field observations indicate that the fettuccini microbial filaments build up ridged travertine platforms on the bottom of the springs, parallel to the water flow, where living filaments attach almost exclusively to the top of each ridge. This maximizes their access to miniscule amounts of dissolved oxygen, while optimizing their ability to rapidly form down-flow branched filaments and thus survive in these stressful environments that few other microbes can inhabit.

  2. Characterization of novel bacteriochlorophyll-a-containing red filaments from alkaline hot springs in Yellowstone National Park.

    Science.gov (United States)

    Boomer, S M; Pierson, B K; Austinhirst, R; Castenholz, R W

    2000-09-01

    Novel red, filamentous, gliding bacteria formed deep red layers in several alkaline hot springs in Yellowstone National Park. Filaments contained densely layered intracellular membranes and bacteriochlorophyll a. The in vivo absorption spectrum of the red layer filaments was distinct from other phototrophs, with unusual bacteriochlorophyll a signature peaks in the near-infrared (IR) region (807 nm and 911 nm). These absorption peaks were similar to the wavelengths penetrating to the red layer of the mats as measured with in situ spectroradiometry. The filaments also demonstrated maximal photosynthetic uptake of radiolabeled carbon sources at these wavelengths. The red layer filaments displayed anoxygenic photoheterotrophy, as evidenced by the specific incorporation of acetate, not bicarbonate, and by the absence of oxygen production. Photoheterotrophy was unaffected by sulfide and oxygen, but was diminished by high-intensity visible light. Near-IR radiation supported photoheterotrophy. Morphologically and spectrally similar filaments were observed in several springs in Yellowstone National Park, including Octopus Spring. Taken together, these data suggest that the red layer filaments are most similar to the photoheterotroph, Heliothrix oregonensis. Notable differences include mat position and coloration, absorption spectra, and prominent intracellular membranes.

  3. Application of Environmental Isotope and Hydrogeochemical Techniques in Investigating the Geothermal Resources

    International Nuclear Information System (INIS)

    Kamarudin Samuding; Noor Akhmal Kamarudin; Mohd Shahrizal Mohamed Sharifodin; Azrul Arifin; Kamaruzaman Mohamad

    2016-01-01

    An investigation of geothermal resources at Ulu Slim has been carried out using integrated environmental isotope and hydro-geochemical techniques. Environmental isotope Oxygen-18 ("1"8O) and Deuterium ("2H) and Tritium ("3H) were used to identify the recharge zones and origin of the water, whereas the hydro-geochemical technique is used to determine the water type and the level of solutes in the geothermal waters out flowing at the surface as well as in shallow and deep groundwater system. The sampling programme includes precipitations, surface waters, hot springs, groundwater for isotopes and hydro-geochemical analyses. The plot graph of (δ"1"8O vs δ"2H) show that the stable isotope composition of hot spring is relatively depleted as compared to surface water and groundwater. This indicates that the recharge of the hot spring is likely to occur from farther and higher elevation areas of the geothermal system. Tritium content in hot spring, groundwater and surface water is ranged between 0.85 - 0.92 TU, 0.81- 1.05 TU, 1.60-2.07 TU respectively. The values of TU in hot spring and groundwater is seen similar suggests that these samples are older than the surface water. Based on the plot of Ternary Major Anion diagram (Cl-SO_4- HCO_3) and Tri-linear Piper diagram, all the water samples are identified from the type of bicarbonate (HCO_3). Nevertheless, the content of sodium (Na) in hot spring is detected relatively higher as compared to surface water. Tri-linear Piper diagram also shows that there is no mixing process between hot spring and surface water. (author)

  4. Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential

    DEFF Research Database (Denmark)

    Klatt, C. G.; Wood, J. M.; Rusch, D. B.

    2011-01-01

    Phototrophic microbial mat communities from 60¿°C and 65¿°C regions in the effluent channels of Mushroom and Octopus Springs (Yellowstone National Park, WY, USA) were investigated by shotgun metagenomic sequencing. Analyses of assembled metagenomic sequences resolved six dominant chlorophototrophic...

  5. Isotope and hydrogeochemical studies of southern Jiangxi geothermal systems, China

    International Nuclear Information System (INIS)

    Zhou Wenbin; Li Xueli; Shi Weijun; Sun Zhanxue

    1999-01-01

    Southern Jiangxi is a geothermally active region, especially in Hengjing area. According to the work plan of IAEA Regional Collaboration in the Development of Geothermal Energy Resources and Environment Management through Isotope Techniques in East Asia and the Pacific (RAS-8-075), field investigation was carried out in Hengjing, southern Jiangxi Province, to demonstrate the use of isotope and geochemical techniques in low to medium temperature geothermal system. During the field investigation, 19 samples were taken from cold springs, hot springs and surface water in the area to determine their hydrochemical and gas compositions, hydrogen, oxygen, carbon and helium isotopes. The results of the study have shown that the geothermal waters in the studying region are of the same characteristics with the local meteoric water in oxygen and hydrogen isotope composition, indicating the geothermal waters are mainly derived from the local precipitation, while the gas composition and carbon and helium isotopes reveal that some gases in the geothermal waters have mantle origin. (author)

  6. Early colonization of thermal niches in a silica-depositing hot spring in central Tibet.

    Science.gov (United States)

    Lau, C Y; Aitchison, J C; Pointing, S B

    2008-03-01

    Thermophilic microbial mats dominated by the anoxygenic phototroph Roseiflexus castenholzii commonly develop around sinter-depositing geysers in the Daggyai Tso geothermal field of central Tibet. In this study we used morphological and molecular genetic techniques to reveal a diverse pioneer biofilm community including both archaea and bacteria involved in early colonization of such thermal niches at temperatures ranging from 46 to 77 degrees C. Sinter precipitation and biomineralization were evident at all locations, but the latter was selective between taxa and most evident on filamentous cells. Evidence for possible indirect biosignatures from biofilms overwhelmed by sinter deposition was found. Succession to a mature community appeared to relate to the growth rate for key taxa outpacing that of silicification within an optimum temperature range of 54-61 degrees C. The thin surface layer of silicification-resistant cyanobacteria that developed on the surface of mature mats may play a role in preventing biomineralization of the susceptible R. castenholzii beneath within these communities.

  7. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  8. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  9. Electricity Generation from Geothermal Resources on the Fort Peck Reservation in Northeast Montana

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Garry J. [Gradient Geophysics Inc., Missoula, MT (United States); Birkby, Jeff [Birkby Consulting LLC, Missoula, MT (United States)

    2015-05-12

    Tribal lands owned by Assiniboine and Sioux Tribes on the Fort Peck Indian Reservation, located in Northeastern Montana, overlie large volumes of deep, hot, saline water. Our study area included all the Fort Peck Reservation occupying roughly 1,456 sq miles. The geothermal water present in the Fort Peck Reservation is located in the western part of the Williston Basin in the Madison Group complex ranging in depths of 5500 to 7500 feet. Although no surface hot springs exist on the Reservation, water temperatures within oil wells that intercept these geothermal resources in the Madison Formation range from 150 to 278 degrees F.

  10. Geothermal development promotion survey report. No. 22. Noboribetsu region; 1987-1990 chinetsu kaihatsu sokushin chosa hokokusho. No. 22 Noboribetsu chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    The results of surveys conducted in the Noboribetsu region, Hokkaido, in fiscal 1987-1989 are compiled in this report. Conducted in the surveys were a geological/alteration zone survey, geochemical survey, electromagnetic surveillance (simplified magnetotelluric method), electric prospecting (Schlumberger method), electric prospecting (mise-a-la-masse method), heat flow rate survey, structural boring, precision structural boring, environmental exploration well, geothermal water survey, environmental impact survey, and so forth. Conclusions reached on the basis of the survey results are described below. It is supposed that a horizon, positioned in the Osarugawa stratum in the Karls Noboribetsu zone or in a fissure system in the Omagarisawa stratum below the Osarugawa stratum, contains a geothermal reservoir. The hot water at the Noboribetsu hot spring originates in gas or geothermal water separated from the deep-seated geothermal water while that at the Karls hot spring or the like originates in meteoric water built up in higher places. Although an area abundant in geothermal fluids is supposed to exist in the Karls-Noboribetsu zone, yet a section located between the Karls-Noboribetsu zone and the Noboribetsu hot spring area also draws attention as a zone having a potential to store geothermal fluids. (NEDO)

  11. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system

    Science.gov (United States)

    Tang, Xianchun; Zhang, Jian; Pang, Zhonghe; Hu, Shengbiao; Tian, Jiao; Bao, Shujing

    2017-10-01

    The eastern Tibetan Plateau geothermal belt (ETGB), which is located in 98-102°E, 28-32°N, belongs to the eastern part of the Mediterranean-Himalayan geothermal belt. Recently, about 248 natural hot springs have been found in the ETGB. > 60% of these springs have temperatures of > 40 °C, and 11 springs have temperature above the local water boiling point. Using the helium isotopic data, gravity, magnetic and seismic data, we analyzed the thermal structure and the relationship between hydrothermal activity and geothermal dynamics of the ETGB. Results show that: (1) the 248 springs can be divided into three geothermal fields: Kangding-Luhuo geothermal field (KGF), Litang-Ganzi geothermal field (LGF) and Batang-Xiangcheng geothermal field (BGF). The BGF and LGF have hot crust and warm mantle, and are characterized by the higher heat flux (66.26 mW/m2), and higher ratios of crust-derived heat flux to total flux (47.46-60.62%). The KGF has cool crust and hot mantle, and is characterized by the higher heat flux and lower Qc/Qm; (2) there is a relatively 4-6 m higher gravimetric geoid anomaly dome which is corresponding with the ETGB. And in hydrothermal activity areas of the BGF and LGF, there is a northwest - southeast-trending tensile stress area and the upper-middle crust uplift area; (3) an abnormal layer exists in the middle-lower crust at a depth of 13-30 km beneath the ETGB, and this layer is 8-10 km thick and is characterized by lower velocity (Vp 2.5), high conductivity ( 10 Ω·m) and high temperature (850-1000 °C). Finally, based on the heat source and geological and geophysical background, we propose Kangding-type and Batang-type hydrothermal system models in the ETGB.

  12. Research on geochemical exploration in geotherm development

    International Nuclear Information System (INIS)

    Hirowatari, Kazuo; Imaizumi, Yukio; Koga, Akito; Iwanaga, Tatsuto.

    1987-01-01

    The decisive factor of geotherm development is to improve the exploration techniques. By effectively carrying out the selection of promising development spots and the decision of well drilling positions, the geotherm development exceeding existing energy sources becomes feasible. There have been many problems in conventional geotherm exploration such as the high cost and long work period, therefore, it was decided to advance the research on geochemical exploration techniques which are relatively simple and can be carried out with low cost. When the techniques of geochemistry are used, for example, in the case that there are hot springs or fumaroles, the temperature, origin, properties and so on of underground hot water reservoirs can be estimated from their chemical composition. The method of examining the mercury concentration in soil and soil air has been in practical use in the geothermal districts where the ground surface symptom lacks. This time, the method of investigation using radon, thoron and gamma ray as the exploration indices was newly studied. The index compositions for geochemical exploration, new exploration index compositions, the method of measurement, the basic investigation and on-the-spot investigation are reported. (Kako, I.)

  13. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Ghanashyam [Idaho National Lab. (INL) and Center for Advanced Energy Studies, Idaho Falls, ID (United States); Mattson, Earl D. [Idaho National Lab. (INL) and Center for Advanced Energy Studies, Idaho Falls, ID (United States); McLing, Travis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Center for Advanced Energy Studies; Palmer, Carl D. [Univ. of Idaho, Idaho Falls, ID (United States); Smith, Robert W. [Univ. of Idaho and Center for Advanced Energy Studies, Idaho Falls, ID (United States); Wood, Thomas R. [Univ. of Idaho and Center for Advanced Energy Studies, Idaho Falls, ID (United States); Podgorney, Robert K. [Idaho National Lab. (INL) and Center for Advanced Energy Studies, Idaho Falls, ID (United States)

    2015-03-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 ºC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 ºC) to over 175 ºC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  14. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    International Nuclear Information System (INIS)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.; Smith, Robert W.; Wood, Thomas R.; Podgorney, Robert K.

    2015-01-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 - 61 °C/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 °C) to over 175 °C. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  15. Assessment of the geothermal energy potential of the 'Canton de Vaud', Switzerland; Evaluation du potentiel geothermique du canton de Vaud

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, J. [Jules Wilhelm, Pully (Switzerland); Bianchetti, G. [ALPGEO, Sierre (Switzerland); Vuataz, F.-D. [University of Neuchatel, Neuchatel (Switzerland)

    2003-07-01

    This report presents an assessment of the geothermal energy potential in the provincial state of Vaud in western Switzerland. According to the authors the prospect for the three current main technologies: low-temperature surface water, deep hot water springs and advanced geothermal systems, is good. In about 10 years it would be possible to extract some 3.6x10{sup 6} MJ per year from low-temperature surface water while the energy production from deep hot springs could be near to 2x10{sup 4} MJ. Finally, in the forthcoming 20 years the construction of 3 advanced geothermal power plants ('Deep Heat Mining', i.e. the extraction of deep-rock thermal energy by water circulation) could produce about 30 MW electricity in a cogeneration operation mode. Recommendations are given regarding measures needed at the political level to promote geothermal power plants.

  16. Description, field test and data analysis of a controlled-source EM system (EM-60). [Leach Hot Springs, Grass Valley

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H.F.; Goldstein, N.E.; Hoversten, M.; Oppliger, G.; Riveros, C.

    1978-10-01

    The three sections describe the transmitter, the receiver, and data interpretations and indicate the advances made toward the development of a large moment electromagnetic (EM) system employing a magnetic dipole source. A brief description is given of the EM-60 transmitter, its general design, and the consideration involved in the selection of a practical coil size and weight for routine field operations. A programmable, multichannel, multi-frequency, phase-sensitive receiver is described. A field test of the EM-60, the data analysis and interpretation procedures, and a comparison between the survey results and the results obtained using other electrical techniques are presented. The Leach Hot Springs area in Grass Valley, Pershing County, Nevada, was chosen for the first field site at which the entire system would be tested. The field tests showed the system capable of obtaining well-defined sounding curves (amplitude and phase of magnetic fields) from 1 kHz down to 0.1 Hz. (MHR)

  17. Energy from the Earth's core. Using geothermal power efficiently; Heisse Energiequellen. Erdwaerme effizient nutzen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2013-09-01

    The heat stored and flowing beneath the surface of the Earth is an endless source of natural energy. It powers volcanoes, hot springs and geysers - and could supply the world with warmth and power. Linde engineers are using innovative technologies to help capture this geothermal energy efficiently. (orig.)

  18. Thermal springs, fumaroles and gas vents of continental Yemen: Their relation with active tectonics, regional hydrology and the country's geothermal potential

    International Nuclear Information System (INIS)

    Minissale, Angelo; Mattash, Mohamed A.; Vaselli, Orlando; Tassi, Franco; Al-Ganad, Ismail N.; Selmo, Enrico; Shawki, Nasr M.; Tedesco, Dario; Poreda, Robert; Ad-Dukhain, Abdassalam M.; Hazzae, Mohammad K.

    2007-01-01

    Most thermal springs of continental Yemen (about 65 emergences at 48 sampling sites) and a couple of fumaroles and boiling water pools have been sampled and analyzed for chemical and isotopic composition in the liquid phase and the associated free-gas phase. Whatever the emergence, all the water discharges have an isotopic signature of meteoric origin. Springs seeping out from high altitudes in the central volcanic plateau show a prevalent Na-HCO 3 -composition, clearly affected by an anomalous flux of deep CO 2 deriving from active hydrothermal systems located in the Jurassic Amran Group limestone sequence and/or the Cretaceous Tawilah Group, likely underlying the 2000-3000 m thick volcanic suite. At lower elevations, CO 2 also affects the composition of some springs emerging at the borders of the central volcanic plateau. Although mixing to a limited extent with organic CO 2 infiltrating together with the meteoric recharge waters cannot be ruled out, all the CO 2 -rich gas samples have a δ 13 C-CO 2 signature that falls in the range of mantle CO 2 (-3 13 C 3 He/ 4 He (1 a 2 -rich springs and also some mixed N 2 -CO 2 gas vents in the far east Hadramaut region support the presence of mantle magmas and related hydrothermal systems residing at the crust level in several areas of Yemen. This well agrees with the presence of Quaternary basaltic magmatic activity along the Gulf of Aden, as well as inside the central Yemen volcanic plateau. Presently, the thermal springs of Yemen are prevalently used for spas and/or bathing. Nevertheless, liquid- and gas-geothermometry and geological considerations suggest that there are at least three areas (Al Lisi, Al Makhaya and Damt) inside the Yemen volcanic plateau (around Dhamar) that may be promising prospects for the future development of geothermal energy in Yemen. Alternatively, they could be used as a source of energy for small-to-medium scale agriculture and/or industrial purposes. Moreover, most of the thermal water

  19. Thermal springs, fumaroles and gas vents of continental Yemen: Their relation with active tectonics, regional hydrology and the country's geothermal potential

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, Angelo [CNR - Italian Council for Research, Institute of Geosciences and Earth Resources of Florence, Via La Pira 4, 50121 Florence (Italy)]. E-mail: minissa@igg.cnr.it; Mattash, Mohamed A. [Ministry of Oil and Mineral Resources, Geological Survey and Minerals Resources Board, P.O. Box 297, Sana' a (Yemen); Vaselli, Orlando [Department of Earth Sciences, Via La Pira 4, 50121 Firenze (Italy); CNR - Italian Council for Research, Institute of Geosciences and Earth Resources of Florence, Via La Pira 4, 50121 Firenze (Italy); Tassi, Franco [Department of Earth Sciences, Via La Pira 4, 50121 Firenze (Italy); Al-Ganad, Ismail N. [Ministry of Oil and Mineral Resources, Geological Survey and Minerals Resources Board, P.O. Box 297, Sana' a (Yemen); Selmo, Enrico [Department of Earth Sciences, Parco Area delle Scienze 157A, 43100 Parma (Italy); Shawki, Nasr M. [Department of Geology, University of Ta' iz, P.O. Box 5679, Ta' iz (Yemen); Tedesco, Dario [Department of Environmental Sciences, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy); Poreda, Robert [Department of Earth and Environmental Sciences, 227 Hutchinson Hall, Rochester, NY 14627 (United States); Ad-Dukhain, Abdassalam M. [Ministry of Oil and Mineral Resources, Geological Survey and Minerals Resources Board, P.O. Box 297, Sana' a (Yemen); Hazzae, Mohammad K. [Ministry of Oil and Mineral Resources, Geological Survey and Minerals Resources Board, P.O. Box 297, Sana' a (Yemen)

    2007-04-15

    Most thermal springs of continental Yemen (about 65 emergences at 48 sampling sites) and a couple of fumaroles and boiling water pools have been sampled and analyzed for chemical and isotopic composition in the liquid phase and the associated free-gas phase. Whatever the emergence, all the water discharges have an isotopic signature of meteoric origin. Springs seeping out from high altitudes in the central volcanic plateau show a prevalent Na-HCO{sub 3}-composition, clearly affected by an anomalous flux of deep CO{sub 2} deriving from active hydrothermal systems located in the Jurassic Amran Group limestone sequence and/or the Cretaceous Tawilah Group, likely underlying the 2000-3000 m thick volcanic suite. At lower elevations, CO{sub 2} also affects the composition of some springs emerging at the borders of the central volcanic plateau. Although mixing to a limited extent with organic CO{sub 2} infiltrating together with the meteoric recharge waters cannot be ruled out, all the CO{sub 2}-rich gas samples have a {delta} {sup 13}C-CO{sub 2} signature that falls in the range of mantle CO{sub 2} (-3 < {delta} {sup 13}C < -7 per mille V-PDB). The relatively high {sup 3}He/{sup 4}He (1 < R/R {sub a} < 3.2) ratios measured in all the CO{sub 2}-rich springs and also some mixed N{sub 2}-CO{sub 2} gas vents in the far east Hadramaut region support the presence of mantle magmas and related hydrothermal systems residing at the crust level in several areas of Yemen. This well agrees with the presence of Quaternary basaltic magmatic activity along the Gulf of Aden, as well as inside the central Yemen volcanic plateau. Presently, the thermal springs of Yemen are prevalently used for spas and/or bathing. Nevertheless, liquid- and gas-geothermometry and geological considerations suggest that there are at least three areas (Al Lisi, Al Makhaya and Damt) inside the Yemen volcanic plateau (around Dhamar) that may be promising prospects for the future development of geothermal energy

  20. Caldimonas meghalayensis sp. nov., a novel thermophilic betaproteobacterium isolated from a hot spring of Meghalaya in northeast India.

    Science.gov (United States)

    Rakshak, K; Ravinder, K; Nupur; Srinivas, T N R; Kumar, P Anil

    2013-12-01

    While studying the microbial diversity of hot springs of North-east India we isolated a strain AK31T from the Jakrem hot spring of Meghalaya. The strain formed light yellow colonies on nutrient agar and was Gram negative, non spore-forming rods, motile with single polar flagellum. The strain was positive for oxidase and catalase and hydrolysed starch and weakly urea. The predominant cellular fatty acids were C16:0 (34.8 %), C17:0 cyclo (27.1 %), C16:1 ω7c and/or iso-C15:0 2OH (summed feature 3) (9.6 %), C10:0 3OH (8.0 %), C12:0 (5.8 %), C14:0 (5.3 %) and C18:1 ω7c (5.3 %). Strain AK31T contained ubiquinone-8 as the major respiratory quinone and diphosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids and one unidentified glycolipid as the polar lipids. The G + C content of the DNA of the strain AK31T was 66.7 mol%. The 16S rRNA gene sequence analysis indicated that strain AK31T was member of the genus Caldimonas and closely related to Caldimonas manganoxidans JCM 10698T and Caldimonas taiwanensis On1T with 96.9 % similarity and with Aquincola tertiaricarbonis L10T and Azohydromonas australica IAM 12664T with 96.5 and 96.4 % similarity respectively. Phylogenetic analyses indicated that the strain AK31T clustered with C. manganoxidans JCM 10698T and C. taiwanensis On1T with a phylogenetic distance of 3.25 %. Based on data from the current polyphasic study, strain AK31T is proposed as a novel species of the genus Caldimonas, for which the name Caldimonas meghalayensis sp. nov. is proposed. The type strain of C. meghalayensis is AK31T (= MTCC 11703T = JCM 18786T).

  1. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring

    Science.gov (United States)

    Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

    1999-01-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

  2. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope and Water Chemistry Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41 deg 32'N, 120 deg 5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4(2-), respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth

  3. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope aud Water Chemistry Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41º32'N, 120º5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4 2-, respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth estimated

  4. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    Science.gov (United States)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  5. FY 1992 report on the survey of geothermal development promotion. Geochemical survey (Survey of geothermal water) (No.36 - Hongu area); 1992 nendo chinetsu kaihatsu sokushin chosa. Chikagaku chosa (Nessui no chosa) hokokusho (No.36 Hongu chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The test on jetting of geothermal water by the induced jetting, sampling of geothermal water and analysis/survey were carried out in the structure drilling well of N4-HG-2 in the Hongu area, Wakayama Prefecture. The induced jetting of the well was conducted by the Swabbing method up to the total pumping amount of 459.9m{sup 3} that is equal to about 24 times as much as the inner quantity of the well, but it did not result in jetting. The maximum temperature of geothermal water was 65.6 degrees C, pH was 6.6-7.5, electric conductivity was 2,800-2,900 {mu}S/cm, and Cl concentration was 500-700ppm. The geothermal water was classified into the HCO{sub 3} type that is neutral, and the spring quality and liquidity were the same as those of existing hot springs in this area. In the Hongu area, the distribution of new volcanic rocks has not known. The K-Ar age of quartz porphyry intrusive rocks was made about 13Ma, and it was considered that a possibility was low of the rocks being heat sources of geothermal activities. It was also considered that the geothermal water/hot spring water in this area, which originate in the surface water, were heated in heat transfer by magma activities in the deep underground and were flowing forming a small scale of hydrothermal convection system. (NEDO)

  6. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  7. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource.

    Science.gov (United States)

    White, Jeremy T.; Karakhanian, Arkadi; Connor, Chuck; Connor, Laura; Hughes, Joseph D.; Malservisi, Rocco; Wetmore, Paul

    2015-01-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  8. Cyanobacterial ecotypes in different optical microenvironments of a 68 C hot spring mat community revealed by 16S-23S rRNA internal transcribed spacer region variation

    DEFF Research Database (Denmark)

    Ferris, Mike J.; Kühl, Michael; Wieland, Andrea

    2003-01-01

    We examined the population of unicellular cyanobacteria (Synechococcus) in the upper 3-mm vertical interval of a 68°C region of a microbial mat in a hot spring effluent channel (Yellowstone National Park, Wyoming). Fluorescence microscopy and microsensor measurements of O2 and oxygenic photosynth...

  9. Distribution of sequence-based types of legionella pneumophila serogroup 1 strains isolated from cooling towers, hot springs, and potable water systems in China.

    Science.gov (United States)

    Qin, Tian; Zhou, Haijian; Ren, Hongyu; Guan, Hong; Li, Machao; Zhu, Bingqing; Shao, Zhujun

    2014-04-01

    Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discrimination [IOD], 0.711), 19 STs (IOD, 0.934), and 3 STs (IOD, 0.151), respectively. The genetic variation among the potable water isolates was lower than that among cooling tower and hot spring isolates. ST1 was the predominant type, accounting for 49.4% of analyzed strains (n = 81), followed by ST154. With the exception of two strains, all potable water isolates (92.3%) belonged to ST1. In contrast, 53.1% (51/96) and only 14.3% (6/42) of cooling tower and hot spring, respectively, isolates belonged to ST1. There were differences in the distributions of clone groups among the water sources. The comparisons among L. pneumophila strains isolated in China, Japan, and South Korea revealed that similar clones (ST1 complex and ST154 complex) exist in these countries. In conclusion, in China, STs had several unique allelic profiles, and ST1 was the most prevalent sequence type of environmental L. pneumophila serogroup 1 isolates, similar to its prevalence in Japan and South Korea.

  10. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Hot Springs Mobile Home Park in Willard, Utah - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents activities performed for and results obtained from the arsenic removal treatment technology demonstration project at the Hot Springs Mobile Home Park (HSMHP) in Willard, UT. The objectives of the project were to evaluate the effectiveness of Adsorbsia™ GTO™...

  11. Subaqueous hot springs in Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay (SW Turkey): Locations, chemistry and origins

    KAUST Repository

    Avşar, Ö zgü r; Avsar, Ulas; Arslan, Şebnem; Kurtuluş, Bedri; Niedermann, Samuel; Gü leç , Nilgü n

    2017-01-01

    In this study, horizontal temperature measurements along organized grids have been used to detect subaqueous hot springs. The study area, located in the southwest of Turkey and comprised of Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay

  12. Numerical simulation of hot-pressed veneer products: Forming - Spring back – Distortion

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Sandberg, Dick

    2007-01-01

    Customers demand very high quality of veneered furniture products with regard to surface appearance, shape stability and stiffness. To meet these requirements, it is important to improve the manufacturing process by a better understanding of the thermo-hygro-mechanical behaviour of the individual...... veneers. During the manufacture of strongly curved products, the veneers are exposed to large membrane and bending deformations and to high pressure in the radial fibre direction. When hot-press forming is used, the veneers are also exposed to a high surface temperature during the pressing time (curing...... time). These severe conditions can result in plastic deformation perpendicular to the veneer surface as well as mechano-sorptive strains in the curved regions, since the heating can have a significant influence on the moisture distribution. How strong an influence these factors have on the distortion...

  13. Hydrogeochemistry of high-temperature geothermal systems in China: A review

    International Nuclear Information System (INIS)

    Guo, Qinghai

    2012-01-01

    toxic elements. Since local drinking water sources may be mixed with geothermal water, and irrigation with water containing geothermally-derived harmful elements, possibly leading to accumulation in crops consumed by human beings, the natural geothermal spring discharge or anthropogenic geothermal wastewater drainage of these fields poses a threat to the environment and human health. Future research work should focus on estimation of stable O and H isotope compositions of magmatic water related to high-temperature hydrothermal systems in China, which is of significance for the quantitative source study of geothermal fluid recharged by degassed magmatic waters. Attention should also be paid to some constituent species in geothermal fluid of strong environmental significance, such as thioarsenate that is crucial for the fate of As discharged from geothermal springs, especially sulfidic hot springs.

  14. Coordination of geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, A.M.; Drury, M.J.

    1983-01-01

    Visits were made in 1983 to various investigators and institutions in Canada to examine developments in geothermal research. Proposals for drilling geothermal wells to provide hot water for heating at a college in Prince Edward Island were made. In Alberta, the first phase of a program examining the feasibility of mapping sedimentary geothermal reservoirs was discussed. Some sites for possible geothermal demonstration projects were identified. In British Columbia, discussions were held between BC Hydro and Energy, Mines and Resources Canada on the drilling of a research hole into the peak of a temperature anomaly in the Meager Creek Valley. The British Columbia government has offered blocks of land in the Mount Cayley volcanic complex for lease to develop geothermal resources. A list of papers of interest to the Canadian geothermal energy program is appended.

  15. FY 1997 report on the data processing of the geothermal development promotion survey. Primary. No.B-5 Mt. Musadake area; 1997 nendo chinetsu kaihatsu sokushin chosa data shori hokokusho. No. B-5 Musadake chiiki (Dai 1 ji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    As part of the geothermal development promotion survey, the comprehensive analysis was made on the survey of the existence amount of geothermal resource in the Mt. Musadake area, Shibetsu county, Hokkaido, which was conducted in FY 1997. In the surface survey, the following were carried out: survey of geology/alteration zone, age determination of rocks, alteration age determination by thermoluminescence method, geochemical survey (hot spring gas, hot spring water), gravity exploration and electromagnetic exploration. In the survey of environmental effects, survey of flora/fauna and survey of hot spring variations were made. The results of the analysis were outlined as follows. The geothermal system in this area seems to be controlled by the Mt. Musadake - Mt. Shitabanupuri fault, folding zone along the fault and Graben-state structure extending southeast of the zone. At deep underground, the existence of the deep geothermal water forming geothermal reservoirs is presumed, and the deep geothermal water seems to be helped by the thermal conduction and volcanic effluences from the magma reservoir related to a series of volcanoes, centered on Mt. Musadake that is regarded as heat source. The geothermal water has a temperature of over 250 degrees C and a high Cl concentration. (NEDO)

  16. [Abundances of ammonia-oxidizing archaeal accA and amoA genes in response to NO2 - and NO3 - of hot springs in Yunnan province].

    Science.gov (United States)

    Song, Zhaoqi; Wang, Li; Zhou, Enmin; Wang, Fengping; Xiao, Xiang; Zhang, Chuanlun; Li, Wenjun

    2014-12-04

    Yunnan hot springs have highly diverseammonia-oxidizing archaea (AOA), which are autotrophic and can fix CO2 using the 3-hydroxypropionate/ 4-hydroxybutyrate (HP/HD) pathway. In this study, we investigated the abundances of prokaryotic 16S rRNA gene and archaeal accA and amoA genes in the sediments of hot springs of Yunnan Province, and analysed the correlations between the above gene abundances and environmental factors. We selected the sediments of twenty representative hot springs, and detected the gene abundances by quantitative polymerase chain reaction (qPCR). The principal component analysis (PCA) and the Mantel test in the R software package were performed for the correlations of gene abundance and environmental variables. The bacterial and archaeal 16S rRNA gene abundances were from 6.6 x 10(7) to 4.19 x 10(11) and from 1.27 x 10(6) to 1.51 x 10(11) copies/g sediment, respectively; Archaeal accA and amoA genes were from 8.89 x 10(3) to 6.49 x 10(5) and from 7.64 x 10(3) to 4.36 x 10(5) copies/g sediment, respectively. The results of mantel test showed that accA gene was significantly (R = 0.98, P < 0.001) correlated with amoA gene; Both of them also were correlated significantly with NO2- and NO3 -, but not with pH. The abundances of bacterial and archaeal 16S rRNA genes and the ratio between them varied significantly among Yunnan hot springs. The archaealaccA and amoA genes showed significant correlation with each other, validating our previous finding that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  17. Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey.

    KAUST Repository

    Balk, Melike

    2009-08-23

    A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayaş, Turkey. The cells were straight to curved rods, 0.4-0.6 microm in diameter and 3.5-10 microm in length. Spores were terminal and round. The temperature range for growth was 40-80 degrees C, with an optimum at 70 degrees C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H(2), and CO(2). Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H(2) and CO(2) formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA-DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans.

  18. Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey.

    KAUST Repository

    Balk, Melike; Heilig, Hans G H J; van Eekert, Miriam H A; Stams, Alfons J M; Rijpstra, Irene C; Sinninghe-Damsté , Jaap S; de Vos, Willem M; Kengen, Servé W M

    2009-01-01

    A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayaş, Turkey. The cells were straight to curved rods, 0.4-0.6 microm in diameter and 3.5-10 microm in length. Spores were terminal and round. The temperature range for growth was 40-80 degrees C, with an optimum at 70 degrees C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H(2), and CO(2). Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H(2) and CO(2) formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA-DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans.

  19. Hydrothermal alteration at Roosevelt Hot Springs KGRA - DDH 1976-1

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, N.L.; Parry, W.T.

    1977-09-01

    Hot waters of the Roosevelt Thermal Area, Utah, have altered granitic rocks and detritus of the Mineral Range pluton, Utah. Petrographic, x-ray, and chemical methods were used to characterize systematic changes in chemistry and mineralogy. Major alteration zones include: 1) an advanced argillic zone in the upper 30 feet of altered detritus containing alunite, opal, vermiculite, and relic quartz; 2) an argillic zone from 30 feet to 105 feet containing kaolinite, muscovite, and minor alunite; and 3) a propylitic zone from 105 to 200 feet containing muscovite, pyrite, marcasite, montmorillonite, and chlorite in weakly altered quartz monzonite. Comparison of the alternation mineral assemblages with known water chemistry and equilibrium activity diagrams suggests that a simple solution equilibrium model cannot account for the alteration. A model is proposed in which upward moving thermal water supersaturated with respect to quartz and a downward moving cool water undersaturated with respect to quartz produces the observed alteration. An estimate of the heat flow contributions from hydrothermal alteration was made by calculating reaction enthalpies for alteration reactions at each depth.

  20. Hydrothermal alteration at Roosevelt Hot Springs KGRA: DDH 1976-1

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, N.L.; Parry, W.T.

    1977-09-01

    Hot waters of the Roosevelt Thermal Area, Utah, have altered granitic rocks and detritus of the Mineral Range pluton, Utah. Alteration and mineral deposition recognized in a 200' drill core from DDH 1-76 is most intense in the upper 100 feet which consists of altered alluvium and opal deposits; the lower 100 feet is weakly altered quartz monzonite. Petrographic, x-ray, and chemical methods were used to characterize systematic changes in chemistry and mineralogy. Comparison of the alteration mineral assemblages with known water chemistry and equilibrium activity diagrams suggests that a simple solution equilibrium model cannot account for the alteration. A model is proposed in which upward moving thermal water supersaturated with respect to quartz and a downward moving cool water undersaturated with respect to quartz produces the observed alteration. An estimate of the heat flow contributions from hydrothermal alteration was made by calculating reaction enthalpies for alteration reactions at each depth. The estimated heat flow varied from .02 HFU (for 200' depth, 400,000 yr duration, and no sulfur oxidation) to 67 HFU (for 5,000' depth, 1,000 yr duration, and all sulfur oxidized from sulfide). Heat flow contributions from hydrothermal alteration are comparable with those from a cooling granitic magma.

  1. Bruneau Known Geothermal Resource Area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Bruneau Known Geothermal Resource Area (KGRA) is part of the Bruneau-Grandview thermal anomaly, the largest geothermal area in the western US. This part of Owyhee County is the driest part of Idaho. The KGRA is associated with the southern boundary fault zone of the Snake River Plain. Thermal water, produced from numerous artesian wells in the region, is supplied from two major aquifers. Ecological concerns include the threatened Astragalus mulfordiae and the numerous birds of prey nesting in the Snake River canyon northwest of the KGRA. Extensive geothermal development may strain the limited health care facilities in the county. Ethnographic information suggests that there is a high probability of prehistoric cultural materials being remnant in the Hot Spring locality.

  2. Characterization of a hot dry rock reservoir at Acoculco geothermal zone, Pue.; Caracterizacion de un yacimiento de roca seca caliente en la zona geotermica de Acoculco, Pue.

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo Pulido, Cecilia; Flores Armenta, Magaly Ramirez Silva, German [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: cecilia-lorenzo@cfe.gob.mx

    2011-01-15

    Hot dry rock (HDR) geothermal resources, also called enhanced (or engineered) geothermal systems (EGS), have been researched for a long time. The HDR concept is simple. Most of the reservoirs are found at depths of around 5000 m and comprised of impermeable rocks at temperatures between 150 degrees Celsius and 300 degrees Celsius -lacking fluid. Rock temperature is a main economic criterion, since to generate electric energy initial temperatures above 200 degrees Celsius are required. To develop a HDR system, two wells are drilled. Cold water is introduced in one well and hot water is obtained from the other well by passing the water through the hot rock. Since June 2008, a 1.5 MWe power plant has been operating in France, part of the Soultz-sous-Foret project financed by the European Deep Geothermal Energy Programme. To characterize the HDR reservoir multi-disciplinary information was gathered regarding: (1) the heat source origin, (2) qualitative information on temperature and transfer mechanisms of natural heat, (3) natural faults and fractures, (4) local stresses, and (5) the basement rock. The information was applied to a geothermal zone in Acoculco, Pue.. The zone was explored by the Exploration Department with wells EAC-1 and EAC-2, defining the presence of a high temperature reservoir (from 220 degrees Celsius to more than 250 degrees Celsius ). The zone presents the following features: (1) heat source origin: volcano-tectonic, (2) temperature logs show values of 263.8 degrees Celsius and 307.3 degrees Celsius at depths of 1900 m and 2000 m, respectively, (3) the exploration wells are located in a graben-like structure, and the core and cutting samples show evidences of natural faults and fractures partially or completely sealed by hydrothermal minerals such as epidote, quartz and pyrite, (4) stress analyses indicate the local NW-SE and E-W systems are the main systems in the geothermal zone, and (5) the basement rock is composed of limestones with contact

  3. U, Th, and Pb isotopes in hot springs on the Juan de Fuca Ridge

    International Nuclear Information System (INIS)

    Chen, J.H.

    1987-01-01

    The concentrations and isotopic compositions of U, Th, and Pb in three hydrothermal fluids from the Juan de Fuca Ridge were determined. The samples consisted of 10.2--57.6% of the pure hydrothermal end-members based on Mg contents. The Pb contents of the samples ranged from 34 to 87 ng/g, U from 1.3 to 3.0 ng/g, and Th from 0.2 to 7.7 pg/g. These samples showed large enrichments of Pb and Th relative to deep-sea water and some depletion of U. They did not show coherent relationships with Mg, however, indicating nonideal mixings between the hot hydrothermal fluids and cold ambient seawater. Particles filtered from these hydrothermal fluids contained significant amounts of Th and Pb which may effectively increase the concentration of these elements in the fluids when acidified. The /sup 234/U//sup 238/U values in all samples show a /sup 234/U enrichment relative to the equilibrium value and have a seawater signature. The Pb isotopic composition of the Juan de Fuca hydrothermal fluids resembles that of 21 0 N East Pacific Rise and has a uniform mid-ocean ridge basalt signature. The hydrothermal systems at oceanic spreading ridges have circulated through a large volume of basalts. Therefore Pb in these fluids may represent the best average value of the local oceanic crust. From the effects of U deposition from seawater to the crust and Pb extraction from rock to the ocean, the U/Pb ratio in the hydrothermally altered oceanic crust may be increased significantly. copyright American Geophysical Union 1987

  4. Thermal springs of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, R.M.; Hinckley, B.S.

    1978-01-01

    This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

  5. Multispectral Analysis of Surface Wave (MASW) Analysis of Near-Surface Structure at Brady Hot Springs from Active Source and Ambient Noise Using a 8700-meter Distributed Acoustic Sensing (DAS) Array

    Science.gov (United States)

    Wang, H. F.; Lord, N. E.; Zeng, X.; Fratta, D.; Feigl, K. L.; Team, P.

    2016-12-01

    The Porotomo research team deployed 8700-meters of Distributed Acoustic Sensing (DAS) cable in a shallow trench on the surface and 400 meters down a borehole at Brady Hot Springs, Nevada in March 2016. The goal of the experiment was to detect changes in geophysical properties associated with hydrologic changes. The DAS cable occupied a natural laboratory of 1500-by-500-by-400-meters overlying a commercial, geothermal field operated by Ormat Technologies. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 120-meters in length. A large Vibroseis truck (T-Rex) provided the seismic source with a sweep frequency between 5 and 80 Hz over 20 seconds. Over the 15 days of the experiment, the Vibroseis truck re-occupied approximately 250 locations outside and within the array days while changes were made in water reinjection from the power plant into wells in the field. At each source location, one vertical and two orthogonal horizontal modes were excited. Dispersion curves were constructed using MASW and a Vibroseis source location approximately in line with each DAS cable segment or from ambient noise correlation functions. Representative fence diagrams of S-wave profiles were constructed by inverting the dispersion curves obtained for several different line segments.

  6. Chemistry of Hot Spring Pool Waters in Calamba and Los Banos and Potential Effect on the Water Quality of Laguna De Bay

    Science.gov (United States)

    Balangue, M. I. R. D.; Pena, M. A. Z.; Siringan, F. P.; Jago-on, K. A. B.; Lloren, R. B.; Taniguchi, M.

    2014-12-01

    Since the Spanish Period (1600s), natural hot spring waters have been harnessed for balneological purposes in the municipalities of Calamba and Los Banos, Laguna, south of Metro Manila. There are at more than a hundred hot spring resorts in Brgy. Pansol, Calamba and Tadlac, Los Banos. These two areas are found at the northern flanks of Mt. Makiling facing Laguna de Bay. This study aims to provide some insights on the physical and chemical characteristics of hot spring resorts and the possible impact on the lake water quality resulting from the disposal of used water. Initial ocular survey of the resorts showed that temperature of the pool water ranges from ambient (>300C) to as high as 500C with an average pool size of 80m3. Water samples were collected from a natural hot spring and pumped well in Los Banos and another pumped well in Pansol to determine the chemistry. The field pH ranges from 6.65 to 6.87 (Pansol springs). Cation analysis revealed that the thermal waters belonged to the Na-K-Cl-HCO3 type with some trace amount of heavy metals. Methods for waste water disposal are either by direct discharge down the drain of the pool or by discharge in the public road canal. Both methods will dump the waste water directly into Laguna de Bay. Taking in consideration the large volume of waste water used especially during the peak season, the effect on the lake water quality would be significant. It is therefore imperative for the environmental authorities in Laguna to regulate and monitor the chemistry of discharges from the pool to protect both the lake water as well as groundwater quality.

  7. A novel acidophilic, thermophilic iron and sulfur-oxidizing archaeon isolated from a hot spring of tengchong, yunnan, China

    Directory of Open Access Journals (Sweden)

    Jiannan Ding

    2011-06-01

    Full Text Available A novel thermoacidophilic iron and sulfur-oxidizing archaeon, strain YN25, was isolated from an in situ enriched acid hot spring sample collected in Yunnan, China. Cells were irregular cocci, about 0.9-1.02 µm×1.0-1.31 µm in the medium containing elemental sulfur and 1.5-2.22 µm×1.8-2.54 µm in ferrous sulfate medium. The ranges of growth and pH were 50-85 (optimum 65 and pH 1.0-6.0 (optimum 1.5-2.5. The acidophile was able to grow heterotrophically on several organic substrates, including various monosaccharides, alcohols and amino acids, though the growth on single substrate required yeast extract as growth factor. Growth occurred under aerobic conditions or via anaerobic respiration using elemental sulfur as terminal electron acceptor. Results of morphology, physiology, fatty acid analysis and analysis based on 16S rRNA gene sequence indicated that the strain YN25 should be grouped in the species Acidianus manzaensis. Bioleaching experiments indicated that this strain had excellent leaching capacity, with a copper yielding ratio up to 79.16% in 24 d. The type strain YN25 was deposited in China Center for Type Culture Collection (=CCTCCZNDX0050.

  8. Study on the thorium-based breeder with molten fluoride salt blanket in the Nuclear Hot Spring - 5420

    International Nuclear Information System (INIS)

    Bing, X.; Yingzhong, L.

    2015-01-01

    Nuclear Hot Spring (NHS) is an innovative reactor type featured by pool-type molten-salt-cooled pebble-bed reactor core with the capability of natural circulation under full power operation. Except for the potential applications in power generation and high temperature process heat, thorium-based breeding is also a promising feature of the NHS. In order to take advantage of both the highly inherent safety and the on-line processing capability of fluid thorium-based fuels, a breeder design of NHS equipped with a blanket of molten salt with thorium fluoride outside the pebble-bed core is proposed in this work. For the purpose of keeping cleanness of the primary loop and blanket loop, both loops are isolated physically from each other, and the rapid on-line extraction of converted 233 Pa and 233 U is employed for the processing of blanket salt. The conversion ratio, defined as the ratio of converted 233 Pa and 233 U to the consumed fissile uranium in seed fuels, is investigated by varying the relevant parameters such as the circulation flux of blanket salt and the discharge burn-up of seed fuels. It is found that breeding can be achieved for the pure 233 U seed scheme with relatively low discharge burn-up and low blanket salt flux. However, the reprocessing for the HTGR fuels with TRISO particles has to be taken into account to ensure the breeding. (authors)

  9. Characterization Of A Novel Hydrolytic Enzyme Producing Thermophilic Bacterium Isolated From The Hot Spring Of Azad Kashmir-Pakistan

    Directory of Open Access Journals (Sweden)

    Sana Zahoor

    Full Text Available ABSTRACT A thermophilic bacterium (TP-2 was isolated from the Tatta Pani hot spring in Azad Kashmir and was characterized using phenotypic and genotypic characters. The strain developed cream colored, round, smooth, flat and slimy colonies while the cells were Gram positive rods that ranged in size from about 2.1-3.6 μm to 0.2-0.3 μm in width. Sequence analysis of its 16S rRNA gene showed that isolate TP-2 had 89% homology with Geobacillus debilis. It grew within pH range of 5.5 to 8.5 with optimum growth at pH 7.0. The isolate showed optimum growth at 65ºC and gave positive res