WorldWideScience

Sample records for hot single-crystal diffractometer

  1. HEiDi: Single crystal diffractometer at hot source

    Directory of Open Access Journals (Sweden)

    Martin Meven

    2015-08-01

    Full Text Available The single crystal diffractometer HEiDi, which is operated by the Institute of Crystallography, RWTH Aachen University and JCNS, Forschungszentrum Jülich, is designed for detailed studies on structural and magnetic properties of single crystals using unpolarised neutrons and Bragg’s Law: 2dhklsinθ = λ (typically 0.55 Å <λ< 1.2 Å.

  2. POLI: Polarised hot neutron diffractometer

    Directory of Open Access Journals (Sweden)

    Vladimir Hutanu

    2015-08-01

    Full Text Available POLI, which is operated by the Institute of Crystallography, RWTH Aachen University in cooperation with JCNS, Forschungszentrum Jülich, is a versatile two axes single crystal diffractometer with broad field of applications. Mostly dedicated to the investigation of magnetic structures in single crystals using neutron spin polarisation, POLI is also used for classical structural investigations under extreme conditions. High intensity hot neutrons flux makes it attractive also for the other applications like study of parity violations phenomena in nuclear physics or BNCT (boron neutron-capture therapy in medicine.

  3. The new single crystal diffractometer SC3

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, J.; Koch, M.; Keller, P.; Fischer, S.; Thut, R. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    Single crystal diffraction is a powerful method for the determination of precise structure parameters, superlattices, stress. Neutron single crystal diffraction gives additionally to X-rays information on magnetic structures, both commensurate and incommensurate, hydrogen positions, hydrogen bonding behavior and accurate bondlengths, e.g. important in cuprates. The method is therefore especially powerful if combined with X-ray diffraction results. The new instrument at SINQ has been designed for inorganic materials and is positioned at a thermal beam tube, pointing on a water scatterer. This scatterer is presently operating with H{sub 2}O at ambient temperature, but a change to another medium at different temperature is possible. The instrument will be equipped with three area detectors, moving at fixed difference in 2{Theta}. each detector may be individually moved around a vertical circle (tilting angle {gamma}), allowing to use not only 4-circle geometry in the temperature range from 1.5 to 380 K, but also any equipment from a dilution refrigerator (7 mK) to a heavy magnet. A high temperature furnace for 4-circle geometry is foreseen as a future option. (author) 6 figs., 1 tab., 7 refs.

  4. Standard Reference Material (SRM 1990) for Single Crystal Diffractometer Alignment

    Science.gov (United States)

    Wong-Ng, W.; Siegrist, T.; DeTitta, G.T.; Finger, L.W.; Evans, H.T.; Gabe, E.J.; Enright, G.D.; Armstrong, J.T.; Levenson, M.; Cook, L.P.; Hubbard, C.R.

    2001-01-01

    An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material?? for single crystal diffractometer alignment. This SRM is a set of ???3500 units of Cr-doped Al2O3, or ruby spheres [(0 420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals' the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 A?? ?? 0.0062 A??, and c=12.9979 A?? ?? 0.020 A?? (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Ha??gg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies_ are rhombohedral, with space group R3c. The certified mean unit cell parameters are a=4.76080 ?? 0.00029 A??, and c=12 99568 A?? ?? 0.00087 A?? (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Ha??gg transmission measurements on five samples of powdered rubies (a=4.7610 A?? ?? 0

  5. Neutron beam applications - Development of single crystal structure analysis technique using the HANARO neutron four circle diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Il Hwan; Kim, Moon Jib; Kim, Jin Gyu [Chungnam National University, Taejon (Korea)

    2000-04-01

    As the four circle diffractometer (FCD) has been set up in HANARO, it has become possible to study the single crystal structures by means of the neutron diffraction. Taking account of the geometry of the FCD, a program for the control of te FCD and neutron data acquisition operating under Windows' circumstance has been accomplished. Also, a computer program which can automatically measure the diffraction intensity data has been developed. All data obtained from the FCD are processed automatically for further work and a software for the single crystal structure analyses has been prepared. A KC1 single crystal was selected as first test sample for a structure analysis had been successfully performed on the FCD using in-house developed program and accordingly their functionings with precision were confirmed. For regular single crystal diffraction experiments, the structure analyses of chrysoberyl and Zr(Y)0{sub 1.87} single crystals were performed using both neutron and X-ray diffraction methods, and the result showed that the neutron diffraction work is superior to the X-ray one from the viewpoint of certain crystallographic information obtainable only from the former one. 24 refs., 15 figs., 15 tabs. (Author)

  6. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  7. Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Epishin, Alexander, E-mail: alex_epishin@yahoo.de [Technical University of Berlin, Institute of Material Sciences and Technologies, Metallic Materials, secr. BH18, Ernst-Reuter-Platz 1, 10587 Berlin (Germany); Fedelich, Bernard [Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Link, Thomas [Technical University of Berlin, Institute of Material Sciences and Technologies, Metallic Materials, secr. BH18, Ernst-Reuter-Platz 1, 10587 Berlin (Germany); Feldmann, Titus [Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Svetlov, Igor L. [All-Russian Institute of Aviation Materials (VIAM), Radio Street, 105005 Moscow (Russian Federation)

    2013-12-01

    Pore annihilation during hot isostatic pressing (HIP) was investigated in the single-crystal nickel-base superalloy CMSX-4 experimentally by interrupted HIP tests at 1288 °C/103 MPa. The kinetics of pore annihilation was determined by density measurement and quantitative metallography. Transmission electron microscopy of a HIPed specimen showed that the pores shrink via dislocation movement on octahedral glide planes. Theoretically pore closure under HIP condition was modelled by the finite element method using crystal plasticity and large strain theories. The modelling gives a similar kinetics of pore annihilation as observed experimentally, however somewhat higher annihilation rate.

  8. A Novel Dual Air-Bearing Fixed-χ Diffractometer for Small-Molecule Single-Crystal X-ray Diffraction on Beamline I19 at Diamond Light Source

    Directory of Open Access Journals (Sweden)

    David . R Allan

    2017-11-01

    Full Text Available Herein, we describe the development of a novel dual air-bearing fixed-χ diffractometer for beamline I19 at Diamond Light Source. The diffractometer is designed to facilitate the rapid data collections possible with a Dectris Pilatus 2M pixel-array photon-counting detector, while allowing remote operation in conjunction with a robotic sample changer. The sphere-of-confusion is made as small as practicably possible, through the use of air-bearings for both the ω and φ axes. The design and construction of the new instrument is described in detail and an accompanying paper by Johnson et al. (also in this issue will provide a user perspective of its operation.

  9. Single Crystal Faceplate Evaluation

    Science.gov (United States)

    1993-10-25

    7]. Much the research at Allied-Signal, Inc. in garnet layer growth has been involved with the kinetics of crystallization of garnet from LPE melts...acceptable resolution and light output characteristics. Single crystal faceplates being evaluated are composed of yttrium aluminum garnet (YAG) with an...1.1 Single Crystal Faceplate Developments Allied Signal, Inc. has done extensive development work in epitaxial layering of yttrium aluminum garnet (YAG

  10. E4: The 2-Axis Diffractometer at BER II

    Directory of Open Access Journals (Sweden)

    Karel Prokes

    2017-01-01

    Full Text Available The double-axis diffractometer E4 is operated by the Helmholtz-Zentrum Berlin. It is suited for magnetic structure determinations and parametric studies on single crystals in a wide range of external conditions. Pyrolytic graphite and germanium focusing monochromators offer two fixed neutron incident wavelengths of about 1.0*106 ncm-2s-1.

  11. A Microstructure Evolution Model for the Processing of Single-Crystal Alloy CMSX-4 Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair (Part II)

    Science.gov (United States)

    Acharya, Ranadip; Bansal, Rohan; Gambone, Justin J.; Das, Suman

    2014-12-01

    Part I [Metall. Mater. Trans. B, 2014, DOI:10.1007/s11663-014-0117-9] presented a comprehensive thermal, fluid flow, and solidification model that can predict the temperature distribution and flow characteristics for the processing of CMSX-4 alloy powder through scanning laser epitaxy (SLE). SLE is an additive manufacturing technology aimed at the creation of equiaxed, directionally solidified and single-crystal (SX) deposits of nickel-based superalloys using a fast-scanning laser beam. Part II here further explores the Marangoni convection-based model to predict the solidification microstructure as a function of the conditions at the trailing edge of the melt pool formed during the SLE process. Empirical values for several microstructural characteristics such as the primary dendrite arm spacing (PDAS), the columnar-to-equiaxed transition (CET) criterion and the oriented-to-misoriented transition (OMT) criterion are obtained. Optical microscopy provides visual information on the various microstructural characteristics of the deposited material such as melt depth, CET location, OMT location, PDAS, etc. A quantitative and consistent investigation of this complex set of characteristics is both challenging and unprecedented. A customized image-analysis technique based on active contouring is developed to automatically extract these data from experimental micrographs. Quantitative metallography verifies that even for the raster scan pattern in SLE and the corresponding line heat source assumption, the PDAS follows the growth relation w ~ G -0.5 V -0.25 ( w = PDAS, G = temperature gradient and V = solidification velocity) developed for marginal stability under constrained growth. Models for the CET and OMT are experimentally validated, thereby providing powerful predictive capabilities for controlling the microstructure of SX alloys processed through SLE.

  12. High flux diffractometers on reactor neutron sources

    Science.gov (United States)

    Hewat, Alan W.

    2006-11-01

    Continuous neutron sources such as reactors can deliver a very high time-averaged flux to the sample using a relatively wide band of wavelengths, while still retaining good resolution. For example, the D20 diffractometer at ILL Grenoble, the world's highest flux neutron powder machine, can collect complete patterns at 100 ms intervals, and this has been important for the real time study of explosive SHS reactions. New very large 2D detectors, such as those recently installed on D2B and D19 at ILL, are up to an order of magnitude larger than previous designs, and will provide unmatched speed of data collection from very small samples, opening up new scientific perspectives for powder and single crystal diffraction. We will discuss future reactor based diffractometers designed for rapid data collection from small samples in special environments.

  13. Hydrogen Annealing Of Single-Crystal Superalloys

    Science.gov (United States)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  14. Patterning of Perovskite Single Crystals

    KAUST Repository

    Corzo, Daniel

    2017-06-12

    As the internet-of-things hardware integration continues to develop and the requirements for electronics keep diversifying and expanding, the necessity for specialized properties other than the classical semiconductor performance becomes apparent. The success of emerging semiconductor materials depends on the manufacturability and cost as much as on the properties and performance they offer. Solution-based semiconductors are an emerging concept that offers the advantage of being compatible with large-scale manufacturing techniques and have the potential to yield high-quality electronic devices at a lower cost than currently available solutions. In this work, patterns of high-quality MAPbBr3 perovskite single crystals in specific locations are achieved through the modification of the substrate properties and solvent engineering. The fabrication of the substrates involved modifying the surface adhesion forces through functionalization with self-assembled monolayers and patterning them by photolithography processes. Spin coating and blade coating were used to deposit the perovskite solution on the modified silicon substrates. While single crystal perovskites were obtained with the modification of substrates alone, solvent engineering helped with improving the Marangoni flows in the deposited droplets by increasing the contact angle and lowering the evaporation rate, therefore controlling and improving the shape of the grown perovskite crystals. The methodology is extended to other types of perovskites such as the transparent MAPbCl3 and the lead-free MABi2I9, demonstrating the adaptability of the process. Adapting the process to electrode arrays opened up the path towards the fabrication of optoelectronic devices including photodetectors and field-effect transistors, for which the first iterations are demonstrated. Overall, manufacturing and integration techniques permitting the fabrication of single crystalline devices, such as the method in this thesis work, are

  15. Nanoindentation of gold single crystals

    Science.gov (United States)

    McCann, Martha Mary

    Nanoindentation is an increasingly used tool to investigate the mechanical properties of very small volumes of material. Gold single crystals were chosen as a model system for surface modification studies, because of the electrochemical advantages and the simple structure of the material. Experiments on these samples displayed a spectrum of residual deformation, with measured hardness values on the same surface differing by over a factor of two. The yield point also exhibited considerable variation, but the depth of penetration was independent of this elastic-plastic transition. The onset of plastic deformation in these tests is observed at stress levels on the order of the theoretical yield strength. There are a limited number of defects in a single crystal specimen of gold, especially on the length scale required to influence nearly every indentation experiment. A test matrix was designed to change the concentrations of possible defects in a sample (dislocations, vacancies, and structural features), by altering some of the surface preparation parameters. The results of these experiments were extremely consistent. Observed trends within the matrix, combined with the observations of reduced hardness and earlier plasticity when compared to the preliminary testing, indicate a decline in the structural continuity of the sample. This is surprising considering the extensive material removal and thermal history of some of these surfaces. There is no indication of a cause for the dramatic inconsistencies in mechanical properties observed in preliminary testing, but a consistent surface enables the study of intentional modifications. Changes in contact area that were undetectable in preliminary results now demonstrate predictable shifts in hardness values. The deposition of a single monolayer of gold oxide raised the average load at yield by a factor of three and increased the hardness by over 26%. Attributing this change to the oxide is corroborated by the reduction of

  16. Ultratough single crystal boron-doped diamond

    Science.gov (United States)

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  17. Relaxor-PT Single Crystal Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2014-07-01

    Full Text Available Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and future trends of relaxor-PT sensors are also suggested in this review paper.

  18. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2016-01-28

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  19. Development of a horizontally and vertically focused neutron monochromator using stacked elastically bent Si single crystals

    CERN Document Server

    Kimura, H; Kojima, A; Noda, Y; Minakawa, N; Morii, Y; Takesue, N

    2002-01-01

    A horizontally and vertically focused monochromator has been developed for the 4-axis neutron diffractometer applied for a single crystal structure analysis. Silicon perfect single crystals are bent elastically in order to focus monochromatic neutrons horizontally. The monochromatic beam can also be focused vertically by stacking the horizontally bent crystals. Tilting motion of each stacked bent crystal is controlled independently by stepping pulse motors for optimizing and reproducing perfectly the vertical focusing at the sample position. The intensity of neutrons with a 1.57 A wavelength monochromatized by the new monochromator increases remarkably, and is comparable to that of pyrolytic graphite monochromator with a 2.44 A wavelength. The high tunability of the doubly focusing system established in the present study can be adopted easily when obtaining the shorter wavelength of neutrons.

  20. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  1. A Coupled Thermal, Fluid Flow, and Solidification Model for the Processing of Single-Crystal Alloy CMSX-4 Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair (Part I)

    Science.gov (United States)

    Acharya, Ranadip; Bansal, Rohan; Gambone, Justin J.; Das, Suman

    2014-12-01

    Scanning laser epitaxy (SLE) is a new laser-based additive manufacturing technology under development at the Georgia Institute of Technology. SLE is aimed at the creation of equiaxed, directionally solidified, and single-crystal deposits of nickel-based superalloys through the melting of alloy powders onto superalloy substrates using a fast scanning Nd:YAG laser beam. The fast galvanometer control movement of the laser (0.2 to 2 m/s) and high-resolution raster scanning (20 to 200 µm line spacing) enables superior thermal control over the solidification process and allows the production of porosity-free, crack-free deposits of more than 1000 µm thickness. Here, we present a combined thermal and fluid flow model of the SLE process applied to alloy CMSX-4 with temperature-dependent thermo-physical properties. With the scanning beam described as a moving line source, the instantaneous melt pool assumes a convex hull shape with distinct leading edge and trailing edge characteristics. Temperature gradients at the leading and trailing edges are of order 2 × 105 and 104 K/m, respectively. Detailed flow analysis provides insights on the flow characteristics of the powder incorporating into the melt pool, showing velocities of order 1 × 10-4 m/s. The Marangoni effect drives this velocity from 10 to 15 times higher depending on the operating parameters. Prediction of the solidification microstructure is based on conditions at the trailing edge of the melt pool. Time tracking of solidification history is incorporated into the model to couple the microstructure prediction model to the thermal-fluid flow model, and to predict the probability of the columnar-to-equiaxed transition. Qualitative agreement is obtained between simulation and experimental result.

  2. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...... of crystallographic texture around the tool in each weld. The extent of both dynamic recrystallisation and conventional recrystallisation varied considerably as a function of weld orientation. As the base plate begins to interact with the deformation field surrounding the tool, regions of the single crystal rotate...

  3. Single-Crystal Germanium Core Optoelectronic Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xiaoyu [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Page, Ryan L. [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Chaudhuri, Subhasis [Department of Chemistry, Pennsylvania State University, University Park PA 16802 USA; Liu, Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Yu, Shih-Ying [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Mohney, Suzanne E. [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Badding, John V. [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Department of Chemistry, Pennsylvania State University, University Park PA 16802 USA; Department of Physics, Pennsylvania State University, University Park PA 16802 USA; Gopalan, Venkatraman [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA

    2016-09-19

    Synthesis and fabrication of high-quality, small-core single-crystal germanium fibers that are photosensitive at the near-infrared and have low optical losses ≈1 dB cm-1 at 2 μm are reported. These fibers have potential applications in fiber-based spectroscopic imaging, nonlinear optical devices, and photodetection at the telecommunication wavelengths.

  4. Ionic conduction of lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, G.I.; Oparin, D.V.; Zhuravlev, N.A.; Gavrilov, F.F.

    1987-09-01

    Using the electrical-conductivity- and NMR-measurement- methods, the ionic-conduction mechanism is established in stoichiometric lithium hydride single crystals. The activation energies of migration of anion- and cation-vacancies and the formation of Schottky-pair defects are determined. They assume that the mechanisms of self-diffusion and conductivity are different in lithium hydride.

  5. Systematic hardness measurements on single crystals and ...

    Indian Academy of Sciences (India)

    Vickers and knoop hardness measurements were carried out on CsBr and CsI single crystals. Polycrystalline blanks of CsCl, CsBr and CsI were prepared by melting and characterized by X-ray diffraction. Vickers hardness measurements were carried out on these blanks. The hardness values were correlated with the lattice ...

  6. Systematic hardness measurements on single crystals and ...

    Indian Academy of Sciences (India)

    Unknown

    Indian Academy of Sciences. 203. Systematic hardness measurements on single crystals and polycrystalline blanks of cesium halides. D B SIRDESHMUKH*, P GEETA KRISHNA and K G SUBHADRA. Department of Physics, Kakatiya University, Warangal 506 009, India. MS received 1 June 2001; revised 29 March 2002.

  7. Graphene single crystals: size and morphology engineering.

    Science.gov (United States)

    Geng, Dechao; Wang, Huaping; Yu, Gui

    2015-05-13

    Recently developed chemical vapor deposition (CVD) is considered as an effective way to large-area and high-quality graphene preparation due to its ultra-low cost, high controllability, and high scalability. However, CVD-grown graphene film is polycrystalline, and composed of numerous grains separated by grain boundaries, which are detrimental to graphene-based electronics. Intensive investigations have been inspired on the controlled growth of graphene single crystals with the absence of intrinsic defects. As the two most concerned parameters, the size and morphology serve critical roles in affecting properties and understanding the growth mechanism of graphene crystals. Therefore, a precise tuning of the size and morphology will be of great significance in scale-up graphene production and wide applications. Here, recent advances in the synthesis of graphene single crystals on both metals and dielectric substrates by the CVD method are discussed. The review mainly covers the size and morphology engineering of graphene single crystals. Furthermore, recent progress in the growth mechanism and device applications of graphene single crystals are presented. Finally, the opportunities and challenges are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Neutron forward diffraction by single crystal prisms

    Indian Academy of Sciences (India)

    Abstract. We have derived analytic expressions for the deflection as well as transmitted fraction of monochromatic neutrons forward diffracted by a single crystal prism. In the vicinity of a Bragg reflection, the neutron deflection deviates sharply from that for an amorphous prism, exhibiting three orders of magnitude greater ...

  9. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    The antiferromagnetism of single crystals of dilute alloys of V, Mn and Re in Cr has been studied at 95°K and 300°K by neutron diffraction. The addition of V causes the diffraction peaks to decrease in intensity and move away from (100), while Mn and Re cause them to increase and approach (100) s...

  10. Growth of single-crystal gallium nitride

    Science.gov (United States)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Use of ultrahigh purity ammonia prevents oxygen contamination of GaN during growth, making it possible to grow the GaN at temperatures as high as 825 degrees C, at which point single crystal wafers are deposited on /0001/-oriented sapphire surfaces.

  11. Neutron detection with single crystal organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  12. Biomineralization of nanoscale single crystal hydroxyapatite.

    Science.gov (United States)

    Omokanwaye, Tiffany; Wilson, Otto C; Gugssa, Ayelle; Anderson, Winston

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague-Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54nm and 0.23nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Single-crystal vanadium pentoxide nanowires.

    Science.gov (United States)

    Gao, Shaokang; Chen, Yuzhen; Luo, Haiyan; Jiang, Lilong; Ye, Binghuo; Wei, Mingdeng; Wei, Kemei

    2008-07-01

    Single-crystal V2O5 nanowires were successfully synthesized from the starting materials V6O13 powder and water. The experimental results indicate that high purity nanowires can be obtained using this simple synthetic route in absence of templates or catalysts. The diameter of the nanowires was found to be ca. 20 approximately 60 nm and the length up to several tens of micrometers, and the phases of nanowires were determined by XRD and TEM measurements.

  14. Biomineralization of nanoscale single crystal hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Omokanwaye, Tiffany [Catholic University of America, BONE/CRAB Lab, Department of Biomedical Engineering, Washington, DC 20064 (United States); Wilson, Otto C., E-mail: wilsono@cua.edu [Catholic University of America, BONE/CRAB Lab, Department of Biomedical Engineering, Washington, DC 20064 (United States); Gugssa, Ayelle; Anderson, Winston [Howard University, Department of Biology, Washington, DC (United States)

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague–Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5 nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54 nm and 0.23 nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. - Highlights: • Nanocrystalline particles were formed during in vivo implantation of crab shell using a rat model. • High resolution TEM revealed that nanoparticles were single crystals and less than 5 nm in size. • The relative distance between spots matches the expected values for hydroxyapatite.

  15. Determination of Crystal Orientation by Ω-Scan Method in Nickel-Based Single-Crystal Turbine Blades

    Science.gov (United States)

    Gancarczyk, Kamil; Albrecht, Robert; Berger, Hans; Szeliga, Dariusz; Gradzik, Andrzej; Sieniawski, Jan

    2017-11-01

    The article presents an assessment of the crystal perfection of single-crystal turbine blades based on the crystal orientation and lattice parameter distribution on their surface. Crystal orientation analysis was conducted by the X-ray diffraction method Ω-scan and the X-ray diffractometer provided by the EFG Company. The Ω-scan method was successfully used for evaluation of the crystal orientation and lattice parameters in semiconductors. A description of the Ω-scan method and an example of measurement of crystal orientation compared to the Laue and EBSD methods are presented.

  16. Growth rate study of canavalin single crystals

    Science.gov (United States)

    Demattei, R. C.; Feigelson, R. S.

    1989-01-01

    The dependence on supersaturation of the growth rate of single crystals of the protein canavalin is studied. In the supersaturation ranges studied, the rate-limiting step for growth is best described by a screw dislocation mechanism associated with interface attachment kinetics. Using a ln-ln plot, the growth-rate data is found to fit a predictive relationship of the form G = 0.012 x the supersaturation to the 6.66, which, together with the solubility curves, allows the growth rate to be estimated under a variety of conditions.

  17. Optical properties of lithium niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Palatnikov, M.N.; Sidorov, N.V.; Biryukova, I.V.; Kalinnikov, V.T. [Institute of Chemistry, Kola Science Centre RAS, 26a Fersman str., 184200 Apatity, Murmansk region (Russian Federation); Bormanis, K. [Institute of Solid State Physics, University of Latvia, 8 Kengaraga str., Riga, LV-1063 (Latvia)

    2005-01-01

    Studies of thermal and {gamma}-irradiation effects on the optical properties in congruous lithium niobate single crystals containing Y, Mg, Gd, B, and Zn dopants including samples with double dopants Y, Mg and Gd, Mg are reported. Formation of defects at irradiation and thermal treatment of the samples is explored by electron absorption spectra. Considerable increase of absorption with the dose of {gamma}-radiation is observed at 500 nm. The changes of absorption examined under different conditions are explained by creation and destruction of Nb{sup 4+} defects. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker

    1975-01-01

    The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenologica...... data on Tb. The conduction-electron polarization at zero field and temperature is (0.33+or-0.05) mu B/ion, and the susceptibility is greater than the Pauli susceptibility calculated from the band-structure.......The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenological...... Hamiltonian including isotropic exchange interactions, effective single-ion anisotropy and magnetoelastic contributions. The parameters of this Hamiltonian were determined by fitting the theoretical results for the spin wave dispersion and energy gap as a function of temperature and magnetic field to existing...

  19. Polymorphism and structure of Nd2MoO6 single crystals

    Science.gov (United States)

    Antipin, A. M.; Sorokina, N. I.; Alekseeva, O. A.; Dudka, A. P.; Chernyshev, D. Yu.; Voronkova, V. I.

    2017-07-01

    The tetragonal and monoclinic modifications of Nd2MoO6 single crystals have been investigated by X-ray diffraction. The analysis has been on laboratory sources (2D CCD diffractometers: Xcalibur S (Shared Research Center, Institute of Crystallography, Russian Academy of Sciences) and BRUKER Smart APEX 2 (Shared Research Center, Institute of General and Inorganic Chemistry, Russian Academy of Sciences)) and on a synchrotron radiation source (ESRF, Grenoble, PILATUS@SNBL diffractometer). Local displacements of all atoms in the oxymolybdate structure have been revealed for the first time using electron density difference maps. Possible violation of the translational periodicity in the distribution of Mo and Nd atoms over types is indirectly confirmed, and statistical disorder of oxygen atoms is revealed. The results of the study confirm the previous suggestion that polymorphic transformations occur in oxymolybdates at a very low rate and, apparently, continuously in a wide temperature range. With an increase in temperature, layers undergo ordering according to the cation type as a result of the phase transition from the monoclinic to the tetragonal phase.

  20. Vibration-assisted machining of single crystal

    Science.gov (United States)

    Zahedi, S. A.; Roy, A.; Silberschmidt, V. V.

    2013-07-01

    Vibration-assisted machining offers a solution to expanding needs for improved machining, especially where accuracy and precision are of importance, such as in micromachining of single crystals of metals and alloys. Crystallographic anisotropy plays a crucial role in determining on overall response to machining. In this study, we intend to address the matter of ultra-precision machining of material at the micron scale using computational modelling. A hybrid modelling approach is implemented that combines two discrete schemes: smoothed particle hydrodynamics and continuum finite elements. The model is implemented in a commercial software ABAQUS/Explicit employing a user-defined subroutine (VUMAT) and used to elucidate the effect of crystallographic anisotropy on a response of face centred cubic (f.c.c.) metals to machining.

  1. Hybrid gold single crystals incorporating amino acids

    CERN Document Server

    Chen, Linfeng; Weber, Eva; Fitch, Andy N; Pokroy, Boaz

    2016-01-01

    Composite hybrid gold crystals are of profound interest in various research areas ranging from materials science to biology. Their importance is due to their unique properties and potential implementation, for example in sensing or in bio-nanomedicine. Here we report on the formation of hybrid organic-metal composites via the incorporation of selected amino acids histidine, aspartic acid, serine, glutamine, alanine, cysteine, and selenocystine into the crystal lattice of single crystals of gold. We used electron microscopy, chemical analysis and high-resolution synchrotron powder X ray diffraction to examine these composites. Crystal shape, as well as atomic concentrations of occluded amino acids and their impact on the crystal structure of gold, were determined. Concentration of the incorporated amino acid was highest for cysteine, followed by serine and aspartic acid. Our results indicate that the incorporation process probably occurs through a complex interaction of their individual functional groups with ...

  2. Photoluminescent properties of single crystal diamond microneedles

    Science.gov (United States)

    Malykhin, Sergey A.; Ismagilov, Rinat R.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Fedotov, Pavel V.; Ermakova, Anna; Siyushev, Petr; Katamadze, Konstantin G.; Jelezko, Fedor; Rakovich, Yury P.; Obraztsov, Alexander N.

    2018-01-01

    Single crystal needle-like diamonds shaped as rectangular pyramids were produced by combination of chemical vapor deposition and selective oxidation with dimensions and geometrical characteristics depending on the deposition process parameters. Photoluminescence spectra and their dependencies on wavelength of excitation radiation reveal presence of nitrogen- and silicon-vacancy color centers in the diamond crystallites. Photoluminescence spectra, intensity mapping, and fluorescence lifetime imaging microscopy indicate that silicon-vacancy centers are concentrated at the crystallites apex while nitrogen-vacancy centers are distributed over the whole crystallite. Dependence of the photoluminescence on excitation radiation intensity demonstrates saturation and allows estimation of the color centers density. The combination of structural parameters, geometry and photoluminescent characteristics are prospective for advantageous applications of these diamond crystallites in quantum information processing and optical sensing.

  3. Orientation Dependent Polarized Micro-XAS Study of U, Th and Sr in Single Crystal Apatites

    Science.gov (United States)

    Luo, Y.; Rakovan, J.; Wright, S.

    2009-05-01

    In order to evaluate apatite as a potential solid nuclear waste form and a contaminant sequestration agent, the complimentary use of single crystal X-ray diffraction and X-ray absorption spectroscopy (XAS) is applied to the study of U, Th, and Sr doped apatite single crystals to investigate the site preference, oxidation state, and structural distortions created by these substituents. Single crystal X-ray diffraction provides average information regarding the site occupancy of U and Th in apatites. Extended X-ray absorption fine-structure (EXAFS) yields quantitative information of the local structure of these substituents, which includes near-neighbor distances, coordination numbers and variations in bond distances; while X-ray absorption near edge structure (XANES) is used to determine the oxidation states of U. Restricted by the typical small size (20-100 μm) and volume of our synthetic samples, Micro-XAS is required. Different from studies which take full advantage of the polarization of synchrotron radiation, our Micro- XAS study on single crystal apatites was hampered by the polarization effects. In order to extract precise information of valence state and structural variation from XAS, it is necessary to know the crystallographic orientation of the sample with respect to the polarization direction of the incident X-ray beam during data collection. To do this we have designed and built a portable goniometer that duplicates the geometry of our laboratory standard Bruker Apex diffractometer goniometer. Crystal orientation is determined by X-ray diffraction at our home institution. The portable goniometer is then set up on the experimental table at synchrotron facilities and the crystal can be set in any specific known orientation. The lattice orientation determined by X-ray diffraction is applied to XAS data analysis, specifically calculation of scattering amplitudes and phase shifts, to account for polarization effects of synchrotron radiation. The goniometer

  4. Porosity Evolution in a Creeping Single Crystal (Preprint)

    Science.gov (United States)

    2012-08-01

    mechanism. Our analyses focus on the role of stress state on deformation and void growth in ductile single crystals in the dislocation creep regime. We also...orientation effects on void growth and coalescence in fcc single crystals . International Journal of Plasticity, 22, 921-942. [27] Kysar J.W., Gan Y.X...AFRL-RX-WP-TP-2012-0373 POROSITY EVOLUTION IN A CREEPING SINGLE CRYSTAL (PREPRINT) A. Srivastava and A. Needleman University of North

  5. Solar cell structure incorporating a novel single crystal silicon material

    Science.gov (United States)

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  6. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...

  7. Composite single crystal silicon scan mirror substrates Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal silicon is a desirable mirror substrate for scan mirrors in space telescopes. As diameters of mirrors become larger, existing manufacturing...

  8. Development of n- and p-type Doped Perovskite Single Crystals Using Solid-State Single Crystal Growth (SSCG) Technique

    Science.gov (United States)

    2017-10-09

    develop a new single crystal growth method which is suitable to grow chemically uniform and large “n- and p-type doped” perovskite single crystals...boundary are also fabricated using diffusion bonding process of two single crystal plates. These results demonstrate that the SSCG (solid-state...that can be used to develop new non-linear dielectrics for high-voltage and high-power applications. A major need is to better understand their

  9. Dissolution kinetics of paracetamol single crystals.

    Science.gov (United States)

    Prasad, Korlakunte V R; Ristic, Radoljub I; Sheen, David B; Sherwood, John N

    2002-05-15

    The dissolution anisotropy of paracetamol crystals grown in the presence and absence of the molecularly similar additive, p-acetoxyacetanilide (PAA) was studied under controlled conditions using a single crystal dissolution method in undersaturated aqueous solutions. Linear dissolution rates were determined for all the major habit faces by measuring their movement (regression) with time in a flow cell using a microscope. The rates of dissolution of particular faces of the pure material were distinctly different in crystals of different morphology grown at different supersaturations. The dissolution rates of [001] and [110] faces of crystals grown in the presence of PAA (6.02% w/w in solution) are higher than those of pure paracetamol. The results correlate with the distribution of strain in the crystal and support the concept that integral strain increases the solubility and hence the dissolution rate of the material. The mechanism of the dissolution process at the [001], [201;] and [110] faces was defined using optical microscopy and X-ray topography. At all undersaturations above 1% the dissolution studies yielded well developed, structurally oriented, etch pits on both [001] and [201;] faces while on the [110] face rough shallow etch pits were observed. On all three faces, this etch-pitting was considerably more widespread than the dislocation content of the sector and probably reflects a 2-dimensional nucleation process rather than a dislocation controlled mechanism.

  10. Studies on the effect of polymer coating on solution grown hygroscopic non-linear optical single crystal of L-lysine monohydrochloride.

    Science.gov (United States)

    Rani, Neelam; Vijayan, N; Maurya, K K; Haranath, D; Saini, Parveen; Rathi, Brijesh; Wahab, M A; Bhagavanarayana, G

    2012-11-01

    Nonlinear optical single crystals are getting attention because of its enormous applications in the area of fiber optic communication and optical signal processing. In this article, we are reporting the single crystal growth of l-lysine monohydrochloride by slow evaporation solution growth technique, by using double distilled water as the solvent. We found that the grown single crystal is bulk in size and fairly transparent. But after a period of time, due to its hygroscopic nature, the transparency is completely vanished and became opaque. Then we have attempted to coat the poly methyl methacrylate (PMMA) polymer on the surface of l-lysine monohydrochloride (l-LMHCL) single crystal by dip coating method. This polymer coating is giving resistance to hygroscopic nature and also acting as thin protective covering layer without affecting the other properties. Then we have systematically studied the different properties of bare, polymer coated and hygroscopic l-LMCHL single crystals. Its crystalline perfection was examined by high resolution X-ray diffractometer and found major differences in crystalline quality. Its structural and optical behavior was assessed by powder X-ray diffraction, UV-vis and luminescence analyses. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Growth of 2-amino-5-chlorobenzophenone single crystal by ...

    Indian Academy of Sciences (India)

    Abstract. Organic single crystals of 2-amino-5-chlorobenzophenone (2A5CB) were grown by Microtube Czochral- ski method using Microtube as a seed. The grown crystals were characterized by single crystal and powder X-ray diffraction. The functional groups of the grown crystal were found using Fourier transform ...

  12. Growth of 2-amino-5-chlorobenzophenone single crystal by ...

    Indian Academy of Sciences (India)

    Organic single crystals of 2-amino-5-chlorobenzophenone (2A5CB) were grown by Microtube Czochralski method using Microtube as a seed. The grown crystals were characterized by single crystal and powder X-ray diffraction. The functional groups of the grown crystal were found using Fourier transform infrared ...

  13. Growth features of ammonium hydrogen d-tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Growth features of ammonium hydrogen d-tartrate single crystals. G SAJEEVKUMAR*, R RAVEENDRAN, ... Ammonium hydrogen d-tartrate (d-AHT) single crystals were grown in silica gel. The growth fea- tures of these .... tables 1 and 2 summarize the results of the experiments car- ried out. The tables indicate that with a ...

  14. Single crystal micromechanical resonator and fabrication methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Roy H.; Friedmann, Thomas A.; Homeijer, Sara Jensen; Wiwi, Michael; Hattar, Khalid Mikhiel; Clark, Blythe; Bauer, Todd; Van Deusen, Stuart B.

    2016-12-20

    The present invention relates to a single crystal micromechanical resonator. In particular, the resonator includes a lithium niobate or lithium tantalate suspended plate. Also provided are improved microfabrication methods of making resonators, which does not rely on complicated wafer bonding, layer fracturing, and mechanical polishing steps. Rather, the methods allow the resonator and its components to be formed from a single crystal.

  15. Excitonic polaritons of zinc diarsenide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, Tiraspol, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Dorogan, A. [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of)

    2017-02-01

    Excitonic polaritons of ZnAs{sub 2} single crystals had been investigated. Parameters of singlet excitons with Г{sub 2}¯(z) symmetry and orthoexcitons 2Г{sub 1}¯(y)+Г{sub 2}¯(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V{sub 1}) and electron (C{sub 1}) bands. The values of effective masses of electrons (m{sub c}{sup *}=0.10 m{sub 0}) and holes (m{sub v1}{sup *}=0.89 m{sub 0}) had been estimated. It was revealed that the hole mass m{sub v1}{sup *} changes from 1.03 m{sub 0} to 0.55 m{sub 0} at temperature increasing from 10 K up to 230 K and that the electron mass m{sub c}{sup *} does not depend on temperature. The integral absorption A (eV cm{sup −1}) of the states n=1, 2 and 3 of Г{sub 2}¯(z) excitons depends on the A{sub n}≈n{sup −3} equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for Г{sub 2}¯(z) and Г{sub 2}¯(Ñ…) excitons differ. The ground states of B and C excitons formed by V{sub 3} – C{sub 1} and V{sub 4} – C{sub 1} bands and its parameters had been determined.

  16. Single crystal to single crystal transformation and hydrogen-atom transfer upon oxidation of a cerium coordination compound.

    Science.gov (United States)

    Williams, Ursula J; Mahoney, Brian D; Lewis, Andrew J; DeGregorio, Patrick T; Carroll, Patrick J; Schelter, Eric J

    2013-04-15

    Trivalent and tetravalent cerium compounds of the octamethyltetraazaannulene (H2omtaa) ligand have been synthesized. Electrochemical analysis shows a strong thermodynamic preference for the formal cerium(IV) oxidation state. Oxidation of the cerium(III) congener Ce(Homtaa)(omtaa) occurs by hydrogen-atom transfer that includes a single crystal to single crystal transformation upon exposure to an ambient atmosphere.

  17. Single crystal to single crystal polymerization of a columnar assembled diacetylene macrocycle

    Science.gov (United States)

    Xu, Weiwei

    Organic tubular materials have attracted lots of attentions for their potential applications as nanoscale fluidic transport systems, specific ion sensors, molecular sieves and confined molecular reaction containers. While conjugated polymers, due to delocalized Pi electrons, exhibit interesting solar cells and sensors applications. In this thesis, we developed a conjugated polymer which combines the attributes of conjugated polymers with tubular materials, which should have great potential to work as a sensing material. We reproduced and scaled-up the synthesis of a polymerizable macrocycle 1 that contains two rigidly separated diacetylene units. We found that, through hydrogen bonding, 1 can assemble into columnar crystals and can be polymerized under a single crystal to single crystal transformation process to afford porous polydiacetylene (PDA) crystals. We studied the assembly of the macrocycles 1 under different conditions to give three different crystalline forms and micro-phase crystals, and also investigated their subsequent polymerizations. The macrocycle assembly and polymerized materials were characterized by a variety of technique. Since the gas adsorption measurement exhibited PDA crystals still retained its porosity and the polymer should have ability to uptake suitable guest molecules, therefore the absorption of iodine for PDA crystals was investigated as well.

  18. Magnetic anisotropy in pyroxene single crystals

    Science.gov (United States)

    Biedermann, Andrea Regina; Hirt, Ann Marie; Pettke, Thomas; Bender Koch, Christian

    2014-05-01

    Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for the mineral fabric in a rock. This requires understanding the intrinsic magnetic anisotropy of the minerals that define the rock fabric. With their prismatic habit, pyroxenes describe the texture in mafic and ultramafic rocks. Magnetic anisotropy in pyroxene crystals often arises from both paramagnetic and ferromagnetic components that can be separated from high-field magnetic data. The paramagnetic component is related to the silicate lattice, whereas the ferromagnetic part arises from the magnetic properties of ferromagnetic inclusions that were further characterized by isothermal remanent magnetization measurements. These inclusions often have needle-like habit and are located on the well-defined cleavage planes within the pyroxenes. We characterize low-field and high-field AMS in pyroxene single crystals of diverse orthopyroxene and clinopyroxene minerals. In addition to the magnetic measurements, we analyzed their chemical composition and Fe2+/Fe3+ distribution. The anisotropy arising from inclusions in some augite crystals displays consistent principal susceptibility directions, whereas no preferred orientation is found in other crystals. The principal susceptibilities of the paramagnetic component can be related to the crystal lattice, with the intermediate susceptibility parallel to the b-axis, and minimum and maximum in the a-c-plane for diopside, augite and spodumene. The degree of anisotropy increases with iron concentration. Aegirine shows a different behavior; not only is its maximum susceptibility parallel to the c-axis, but the anisotropy degree is also lower in relation to its iron concentration. This possibly relates to a predominance of Fe3+ in aegirine, whereas Fe2+ is dominant in the other minerals. In orthopyroxene, the maximum susceptibility is parallel to the c-axis and the minimum is parallel to b. The degree of anisotropy increases linearly with iron concentration. The

  19. Growth and characterization of urea sulphamic acid single crystals

    Science.gov (United States)

    Chinnasamy, E.; Senthil, S.

    2017-05-01

    Single crystal of Urea Sulphamic acid (USA) single crystals were grown and harvested successfully at room temperature by slow solvent evaporation method. The cell parameters of the grown crystal were determined by single crystal X-ray diffraction analysis. The presence of various functional groups in the crystal is confirmed by FT-IR analysis. The optical transmission study reveals the transparency of the crystal and its optical band gap is found to be 4.74 eV. The crystal quality can be further examined by the time resolved Photoluminescence Spectroscopy. Laser damage threshold study was also carried for the grown crystal.

  20. A Single Crystal Niobium RF Cavity of the TESLA Shape

    Science.gov (United States)

    Singer, W.; Singer, X.; Kneisel, P.

    2007-08-01

    A fabrication method for single crystal niobium cavities of the TESLA shape was proposed on the basis of metallographic investigations and electron beam welding tests on niobium single crystals. These tests showed that a cavity can be produced without grain boundaries even in the welding area. An appropriate annealing allows the outgassing of hydrogen and stress relaxation of the material without destruction of the single crystal. A prototype single crystal single cell cavity was build. An accelerating gradient of 37.5 MV/m was reached after approximately 110 μm of Buffered Chemical Polishing (BCP) and in situ baking at 120°C for 6 hrs with a quality factor exceeding 2×1010 at 1.8 K. The developed fabrication method can be extended to fabrication of multi cell cavities.

  1. Process for Forming a High Temperature Single Crystal Canted Spring

    Science.gov (United States)

    DeMange, Jeffrey J (Inventor); Ritzert, Frank J (Inventor); Nathal, Michael V (Inventor); Dunlap, Patrick H (Inventor); Steinetz, Bruce M (Inventor)

    2017-01-01

    A process for forming a high temperature single crystal canted spring is provided. In one embodiment, the process includes fabricating configurations of a rapid prototype spring to fabricate a sacrificial mold pattern to create a ceramic mold and casting a canted coiled spring to form at least one canted coil spring configuration based on the ceramic mold. The high temperature single crystal canted spring is formed from a nickel-based alloy containing rhenium using the at least one coil spring configuration.

  2. Single crystal Processing and magnetic properties of gadolinium nickel

    Energy Technology Data Exchange (ETDEWEB)

    Shreve, Andrew John [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd2O3 W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

  3. Instrumentation of a manually programmed neutron diffractometer

    DEFF Research Database (Denmark)

    Hansen, K.B.; Neisig, K.E.

    1966-01-01

    This paper describes essentially the digital part of the instrumentation for a neutron diffractometer in which the measuring procedure is governed by a control unit involving a fixed number of program points. A simultaneously running test program monitors the information transfer from the data...... sources and to the print-out in table form. The experimental conditions must be set by a panel switch selected program, which allows a desired parameter program to be executed....

  4. Mechanical properties of hydroxyapatite single crystals from nanoindentation data

    Science.gov (United States)

    Zamiri, A.; De, S.

    2011-01-01

    In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492

  5. The Load Capability of Piezoelectric Single Crystal Actuators

    Science.gov (United States)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2007-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  6. Single crystal growth of the intermetallic compound InPd

    Science.gov (United States)

    Hahne, Michael; Gille, Peter

    2014-09-01

    Quite recently intermetallic compounds have been investigated as catalysts for heterogeneous catalysis as they can be highly active regarding a specific reaction and often show advantages in selectivity and long-term stability. The intermetallic phase InPd (CsCl structure type) is considered to be a possible catalyst for methanol steam reforming. Single crystals are needed to study the basic processes of catalysis. Using the Czochralski technique, InPd single crystals were grown from In-rich solutions as to reduce the vapor pressure of In. The crystals show some unusual rough surface morphology and gradients concerning the main components composition. By adjusting the growth parameters like growth temperature and growth rate we succeeded to get inclusion-free single crystals.

  7. Algorithm and program for precise determination of unit-cell parameters of single crystal taking into account the sample eccentricity

    Science.gov (United States)

    Dudka, A. P.; Smirnova, E. S.; Verin, I. A.; Bolotina, N. B.

    2017-07-01

    A technique has been developed to refine the unit-cell parameters of single crystals with minimization of the influence of instrumental errors on the result. The corresponding computational procedure HuberUB is added to the software package of Huber-5042 diffractometer with a point detector and closedcycle helium cryostat Displex DE-202. The parameters of unit cell, its orientation, the goniometer zero angles, the sample eccentricity, the distances in the goniometer, and the radiation wavelength were refined by the nonlinear least-squares method, which allows imposition of constraints on the unit-cell parameters, depending on the crystal symmetry. The technique is approved on a LuB12 single crystal. The unit-cell parameters are determined in a temperature range of 20-295 K, with an absolute error not larger than 0.0004 Å (the relative error is of 5 × 10-5). The estimates of the unit-cell parameters obtained by the proposed method are evidenced to be unbiased. Some specific features of the behavior of parameters in the ranges of 120-140 and 20-50 K are revealed, which correlate with the anomalies of the physical properties of the crystal.

  8. A Novel X-ray Diffractometer for the Florida Split Coil 25 Tesla Magnet

    Science.gov (United States)

    Wang, Shengyu; Kovalev, Alexey; Suslov, Alexey; Siegrist, Theo

    2014-03-01

    At National High Magnetic Field Laboratory (NHMFL), we are developing a unique X-ray diffractometer for the 25 Tesla Florida Split Coil Magnet for scattering experiments under extremely high static magnetic fields. The X-ray source is a sealed tube (copper or molybdenum anode), connected to the magnet by an evacuated beam tunnel. The detectors are either an image plate or a silicon drift detector, with the data acquisition system based on LabVIEW. Our preliminary experimental results showed that the performance of the detector electronics and the X-ray generator is reliable in the fringe magnetic fields produced at the highest field of 25 T. Using this diffractometer, we will make measurements on standard samples, such as LaB6, Al2O3 and Si, to calibrate the diffraction system. Magnetic samples, such as single crystal HoMnO3 and stainless steel 301 alloys will be measured subsequently. The addition of X-ray diffraction to the unique split coil magnet will significantly expand the NHMFL experimental capabilities. Therefore, external users will be able to probe spin - lattice interactions at static magnetic fields up to 25T. This project is supported by NSF-DMR Award No.1257649. NHMFL is supported by NSF Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. DoE.

  9. Fabrication of ZnO Bi-crystals with twist boundaries using Co doped ZnO single crystals

    CERN Document Server

    Ohashi, N; Ohgaki, T; Tsurumi, T; Fukunaga, O; Haneda, H; Tanaka, J

    1999-01-01

    Zn O single crystals doped with Co were grown by using a flux method and their electrical properties were investigated by Hall effect. Then, these crystals were polished with diamond paste and bonded to form bi-crystal by hot pressing under a pressure of 10 MPa at 1000 .deg. C. The bi-crystals showed nonlinear I-V curves, and the curvature of I-V relation agreed with that for Co-doped polycrystalline ZnO.

  10. Single crystal: Urea bisthiourea sodium acetate synthesis, growth and characterization

    Science.gov (United States)

    Manickam, R.; Srinivasan, G.

    2017-05-01

    Crystals of urea bisthiourea sodium acetate (UBTSA) were successfully grown from an aqueous solution by slow evaporation method at room temperature. Recrystallization process was used to increase the purity of the grown crystal. The grown crystals were characterized by single crystal XRD, FT-Raman, UV and TGA/DTA analysis. Structure and unit cell parameters were determined by single crystal XRD. Functional groups of grown crystal and their modes of vibration were identified using FT-Raman spectral analysis. Absorbance percentage of the grown crystal was studied using UV analysis. Thermo gravimetric analysis and differential thermal analysis reveal that the good thermal stability of the material.

  11. Mesoporous zeolite single crystals for catalytic hydrocarbon conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, C.H.; Hasselriis, Peter

    2005-01-01

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies......, alkylation of aromatics and present new results on isomerization of aromatics. Specifically, the shape-selective isomerization of meta-xylenc into para-xylene and ortho-xylene is studied. In all these reactions, rnesoporous zeolite single crystals prove to be unique catalysts since they provide easy...

  12. "Predicting" Polymorphs of Pharmaceuticals Using Hydrogen Bond Propensities: Probenecid and Its Two Single-Crystal-to-Single-Crystal Phase Transitions.

    Science.gov (United States)

    Nauha, Elisa; Bernstein, Joel

    2015-06-01

    The recently developed hydrogen-bonding propensity tool in the Cambridge Structural Database software package (Mercury) was tested to predict polymorphs. The compounds for the study were chosen from a list of approximately 300 pharmaceutically important compounds, for which multiple crystal forms had not been previously reported. The hydrogen-bonding propensity analysis was carried out on approximately 60 randomly selected compounds from this list. Several compounds with a high probability for exhibiting polymorphism in the analysis were chosen for a limited experimental crystal form screening. One of the compounds, probenecid, did not yield polymorphs by traditional solution crystallization screening, but differential scanning calorimetry revealed three polymorphs. All of them exhibit the same hydrogen bonding and transform via two reversible single-crystal-to single-crystal transformations, which have been characterized in detail through three single-crystal structure determinations at appropriate temperatures. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Design, syntheses, characterization and single crystal X-ray ...

    Indian Academy of Sciences (India)

    Administrator

    Design, syntheses, characterization and single crystal X-ray diffraction studies of multicomponent Zn-tetraphenylpor- phyrins: Novel building blocks for microporous crystalline solids. ATINDRA D SHUKLA 1, PARESH C DAVE 1, ERINGATHODI. SURESH 1, GOPAL PATHAK 2, AMITAVA DAS 1 and. PARTHASARATHI ...

  14. Corelli: Efficient single crystal diffraction with elastic discrimination

    Indian Academy of Sciences (India)

    technique for efficient measurement of single crystal diffuse scattering with energy discrim- ination, as will be implemented in a novel instrument, Corelli. Utilizing full experiment simulations, we show that this technique readily leads up to a fifty-fold gain in efficiency, as compared to traditional methods, for measuring single ...

  15. Microhardness studies on nonlinear optical L-alanine single crystals

    Indian Academy of Sciences (India)

    alanine single crystals by slow evaporation technique over a load range of 10–50 g on selected broad (2 0 3) plane. Vickers (Hv) and Knoop (Hk) microhardness for the above loads were found to be in the range of 60–71 kg/mm2 and 35–47 ...

  16. Some Debye temperatures from single-crystal elastic constant data

    Science.gov (United States)

    Robie, R.A.; Edwards, J.L.

    1966-01-01

    The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.

  17. Theoretical study of diaquamalonatozinc(II) single crystal for ...

    Indian Academy of Sciences (India)

    MITESH CHAKRABORTY

    2017-11-28

    Nov 28, 2017 ... and rare earth ion complexes doped in the host contain- ... Studies of the relaxation behaviour in complexes due to ZFS .... From the EPR experimental study of DAMZ single crystal with posi- tive sign of axial ZFS D and rhombic ZFS E, the dopant. Mn(II) is expected to exhibit compressed octahedron.

  18. Inspection of Single Crystal Aerospace Components with Ultrasonic Arrays

    Science.gov (United States)

    Lane, C. J. L.; Dunhill, A.; Drinkwater, B. W.; Wilcox, P. D.

    2010-02-01

    Single crystal metal alloys are used extensively in the manufacture of jet engine components for their excellent mechanical properties at elevated temperatures. The increasing use of these materials and demand for longer operational life and improved reliability motivates the requirement to have capable NDE methods available. Ultrasonic arrays are well established at detecting sub-surface defects however these methods are not currently suitable to the inspection of single crystal components due to their high elastic anisotropy causing directional variation in ultrasonic waves. In this paper a model of wave propagation in anisotropic material is used to correct an ultrasonic imaging algorithm and is applied to single crystal test specimens. The orientation of the crystal in a specimen must be known for this corrected-algorithm; therefore a crystal orientation method is also presented that utilizes surface skimming longitudinal waves under a 2D array. The work detailed in this paper allows an ultrasonic 2D array to measure the orientation of a single crystal material and then perform accurate volumetric imaging to detect and size defects.

  19. High-quality single crystals for neutron experiments

    Indian Academy of Sciences (India)

    To make headway on any problem in physics, high-quality single crystals are required. In this talk, special emphasis ... produces crystals of superior quality, circumventing many of the problems associated with, for example, flux growth from the melt. .... In these materials, it is possible to control the electric polarization by the ...

  20. Discrete dislocation plasticity modeling of short cracks in single crystals

    NARCIS (Netherlands)

    Deshpande, VS; Needleman, A; Van der Giessen, E

    2003-01-01

    The mode-I crack growth behavior of geometrically similar edge-cracked single crystal specimens of varying size subject to both monotonic and cyclic axial loading is analyzed using discrete dislocation dynamics. Plastic deformation is modeled through the motion of edge dislocations in an elastic

  1. Lattice location of helium in uranium dioxide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, F.; Nowicki, L. E-mail: lech.nowicki@fuw.edu.pl; Sattonnay, G.; Sauvage, T.; Thome, L

    2004-06-01

    Lattice location of {sup 3}He atoms implanted into UO{sub 2} single crystals was performed by means of the channeling technique combined with nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). The {sup 3}He(d,p){sup 4}He reaction was used. The experimental angular scans show that helium atoms occupy octahedral interstitial positions.

  2. Thermal behaviour of strontium tartrate single crystals grown in gel

    Indian Academy of Sciences (India)

    Unknown

    reflected petrological microscope. Hence the crystallinity is observed under a stereo binocular microscope (Carl. Zeiss) and confirmed as single crystal. In order to study the effect of dopants on the morpho- logy and growth of strontium tartrate (SrT), 10% (W/V) solution of lead nitrate was also mixed with the top solu- tion.

  3. Detection of anomalies in NLO sulphamic acid single crystals by ...

    Indian Academy of Sciences (India)

    The ultrasonic pulse echo overlap technique (PEO) has been used to measure the velocities of 10 MHz acoustic waves in sulphamic acid single crystals in the range of 300–400 K. This study evaluated all the elastic stiffnessconstants, compliance constants and Poisson's ratios of the crystal. The temperature variations of the ...

  4. On size-effects in single crystal wedge indentation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2012-01-01

    Wedge indentation in single crystals is studied numerically, with emphasis on size-effects on the micron scale. Under the assumption of a perfectly sharp wedge indenter, a linear relationship between indentation force and indentation depth would be predicted from conventional theories lacking con...

  5. Growth features of ammonium hydrogen d-tartrate single crystals

    Indian Academy of Sciences (India)

    Ammonium hydrogen -tartrate (-AHT) single crystals were grown in silica gel. The growth features of these crystals with variation of parameters like specific gravity of the gel, gel pH, acid concentrations, concentration of the feed solution and gel age were studied in detail.

  6. A new technique for making spheres of single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Y. [Tsukuba Univ., Sakura, Ibaraki (Japan). Inst. of Applied Physics; Yamamoto, K. [Tsukuba Univ., Sakura, Ibaraki (Japan). Inst. of Applied Physics; Ohshima, K. [Tsukuba Univ., Sakura, Ibaraki (Japan). Inst. of Applied Physics; Yunkino, K. [National Inst. for Research in Inorganic Materials, Tsukuba, Ibaraki (Japan); Okamura, F.P. [National Inst. for Research in Inorganic Materials, Tsukuba, Ibaraki (Japan)

    1996-04-01

    A new technique for making spheres of single crystals is briefly described. It is confirmed that this method is very effective when used to prepare spherical specimens of LaB{sub 6}, a refractory material that is widely used as a thermo-radiated material. (orig.).

  7. Employing a cylindrical single crystal in gas-surface dynamics

    NARCIS (Netherlands)

    Hahn, C.; Shan, J.; Liu, Y.; Berg, O.; Kleijn, A. W.; Juurlink, L. B. F.

    2012-01-01

    We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a

  8. Thiourea-doped ammonium dihydrogen phosphate: A single crystal ...

    Indian Academy of Sciences (India)

    A single crystal neutron diffraction investigation. A JAYARAMA1, M R SURESH KUMAR1, S M DHARMAPRAKASH1,. R CHITRA2,∗ and R R CHOUDHURY2. 1Department of Physics, Mangalore University, Mangalagangotri 574 199, India. 2Solid State Physics Division, Bhabha Atomic Research Centre, Trombay,. Mumbai ...

  9. Transverse Mode Multi-Resonant Single Crystal Transducer

    Science.gov (United States)

    Snook, Kevin A. (Inventor); Liang, Yu (Inventor); Luo, Jun (Inventor); Hackenberger, Wesley S. (Inventor); Sahul, Raffi (Inventor)

    2015-01-01

    A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d(sub 32) transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the (110) family and resonance direction is the (001) family.

  10. Is the methanation reaction over Ru single crystals structure dependent?

    DEFF Research Database (Denmark)

    Vendelbo, Søren Bastholm; Johansson, Martin; Nielsen, Jane Hvolbæk

    2011-01-01

    The influence of monoatomic steps and defects on the methanation reaction over ruthenium has been investigated. The experiments are performed on a Ru(0 1 54) ruthenium single crystal, which contains one monoatomic step atom for each 27 terrace atoms. The methanation activity is measured at one bar...

  11. Single Crystal Relaxor Ferroelectrics by Seeded Polycrystal Conversion

    National Research Council Canada - National Science Library

    Harmer, Martin

    2003-01-01

    ...) to ferroelectric materials. Initial work at Lehigh established the feasibility of using the SPC process to grow single crystals of the relaxor-based ferroelectric PbMg(1 /3)Nb(2/3))O(3-) 5mol%PbTiO3 (PMN-3 5PT...

  12. Growth and Characterization on PMN-PT-Based Single Crystals

    Directory of Open Access Journals (Sweden)

    Jian Tian

    2014-07-01

    Full Text Available Lead magnesium niobate—lead titanate (PMN-PT single crystals have been successfully commercialized in medical ultrasound imaging. The superior properties of PMN-PT crystals over the legacy piezoelectric ceramics lead zirconate titanate (PZT enabled ultrasound transducers with enhanced imaging (broad bandwidth and improved sensitivity. To obtain high quality and relatively low cost single crystals for commercial production, PMN-PT single crystals were grown with modified Bridgman method, by which crystals were grown directly from stoichiometric melt without flux. For ultrasound imaging application, [001] crystal growth is essential to provide uniform composition and property within a crystal plate, which is critical for transducer performance. In addition, improvement in crystal growth technique is under development with the goals of improving the composition homogeneity along crystal growth direction and reducing unit cost of crystals. In recent years, PIN-PMN-PT single crystals have been developed with higher de-poling temperature and coercive field to provide improved thermal and electrical stability for transducer application.

  13. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot

    DEFF Research Database (Denmark)

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal

    2016-01-01

    We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offe...

  14. Angular correlation of annihilation photons in ice single crystals

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Kvajic, G.; Eldrup, Morten Mostgaard

    1971-01-01

    Linear-slit angular-correlation curves were obtained at - 148 °C for the [0001], [10¯10], and [11¯20] directions in single crystals of ice. Besides the narrow central peak, pronounced narrow side peaks were also observed. They occurred at angles θ=2πℏgz/mc, where gz is the projection of reciproca...

  15. Zinc (tris) thiourea sulphate (ZTS): A single crystal neutron diffraction ...

    Indian Academy of Sciences (India)

    tal which is used for electro-optical (EO) applications and frequency doubling of near IR laser radiations. In this study, the crystal structure of ZTS has been ob- tained in detail by single crystal neutron diffraction technique. Using the structural parameters and an existing formalism [1] based on the theory of bond polarizability,.

  16. Single Crystal Diamond RF-FET Uniformity Performance Analysis

    Science.gov (United States)

    2017-03-01

    Single Crystal Diamond RF-FET Uniformity Performance Analysis Pankaj B Shah, James Weil, Glen Birdwell, and Tony Ivanov US Army Research...dopant, non- uniform hydrogenation and subsurface polish damage. Transient switching analysis along with capacitance / conductance based interface...hydrogenation and then AFM and Raman analysis were performed to investigate the chemical and structural quality of the surface. Then the polished

  17. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source...

  18. Powder neutron diffractometers HRPT and DMCG

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P.; Doenni, A.; Staub, U.; Zolliker, M. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    Basic properties and applications of SINQ powder neutron diffractometers are described. For optimum use of the continuous neutron beams these instruments are equipped with position sensitive detectors, and both high-intensity and high-resolution modes of operation are possible. HRPT attaining resolutions {delta}d/d{<=}10{sup -3}, d=lattice spacing, at a thermal neutron channel of the target station and DMCG at a cold neutron guide coated with m=2 supermirrors, are complementary concerning the applications: the former will be mainly used for structural studies and the latter to investigate magnetic ordering phenomena. (author) figs., tabs., refs.

  19. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single

  20. Young's Modulus of Single-Crystal Fullerene C Nanotubes

    Directory of Open Access Journals (Sweden)

    Tokushi Kizuka

    2012-01-01

    Full Text Available We performed bending tests on single-crystal nanotubes composed of fullerene C70 molecules by in situ transmission electron microscopy with measurements of loading forces by an optical deflection method. The nanotubes with the outer diameters of 270–470 nm were bent using simple-beam and cantilever-beam loading by the piezomanipulation of silicon nanotips. Young's modulus of the nanotubes increased from 61 GPa to 110 GPa as the outer diameter decreased from 470 nm to 270 nm. Young's modulus was estimated to be 66% of that of single-crystal C60 nanotubes of the same outer diameter.

  1. Ordered macro-microporous metal-organic framework single crystals

    Science.gov (United States)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  2. High pressure single crystal and powder XRD study for neighborite

    Science.gov (United States)

    Liu, H.

    2016-12-01

    After Murakami et al. (2004) identified the post-perovskite (ppv) phase transition in MgSiO3 perovskite (pv) at pressures and temperatures consistent with the onset of Earth's D" layer, lots of post-perovskite type phase transitions were founded in other similar systems. These discoveries provided a better understanding of heterogeneous structures and seismic anisotropy observed in the controversial region of the lower mantle. With previous experimental evidence showing the analogue system of neighborite NaMgF3 will transform from pv to ppv at 30 GPa, we performed high quality single crystal XRD experiment, which led to a more precise structure determination. Using helium as pressure medium, one metastable low symmetric phase before the pv-ppv structure transition was discovered, whose total energy was calculated as well. The comparison between single crystal and powder XRD data will be presented, and potential application will be discussed.

  3. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui

    2018-01-16

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  4. Geometric constraints on phase coexistence in vanadium dioxide single crystals.

    Science.gov (United States)

    McGahan, Christina; Gamage, Sampath; Liang, Jiran; Cross, Brendan; Marvel, Robert E; Haglund, Richard F; Abate, Yohannes

    2017-02-24

    The appearance of stripe phases is a characteristic signature of strongly correlated quantum materials, and its origin in phase-changing materials has only recently been recognized as the result of the delicate balance between atomic and mesoscopic materials properties. A vanadium dioxide (VO2) single crystal is one such strongly correlated material with stripe phases. Infrared nano-imaging on low-aspect-ratio, single-crystal VO2 microbeams decorated with resonant plasmonic nanoantennas reveals a novel herringbone pattern of coexisting metallic and insulating domains intercepted and altered by ferroelastic domains, unlike previous reports on high-aspect-ratio VO2 crystals where the coexisting metal/insulator domains appear as alternating stripe phases perpendicular to the growth axis. The metallic domains nucleate below the crystal surface and grow towards the surface with increasing temperature as suggested by the near-field plasmonic response of the gold nanorod antennas.

  5. Monitoring Lidocaine Single-Crystal Dissolution by Ultraviolet Imaging

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Ye, Fengbin; Rantanen, Jukka

    2011-01-01

    ) imaging for conducting single‐crystal dissolution studies was performed. Using lidocaine as a model compound, the aim was to develop a setup capable of monitoring and quantifying the dissolution of lidocaine into a phosphate buffer, pH 7.4, under stagnant conditions. A single crystal of lidocaine...... was placed in the quartz dissolution cell and UV imaging was performed at 254 nm. Spatially and temporally resolved mapping of lidocaine concentration during the dissolution process was achieved from the recorded images. UV imaging facilitated the monitoring of lidocaine concentrations in the dissolution...... media adjacent to the single crystals. The concentration maps revealed the effects of natural convection due to density gradients on the dissolution process of lidocaine. UV imaging has great potential for in vitro drug dissolution testing...

  6. Morphological and FTIR Studies of Barium Oxalate Single Crystals

    Directory of Open Access Journals (Sweden)

    Shedam M. R.

    2017-12-01

    Full Text Available The conditions for the gel growth of barium oxalate single crystals in silica gels were studied in this paper. We describe the growth mechanism, effect concentration of feed solution, interchanging of the reactants, the effect of temperature and detailed study of microstructures of barium oxalate single crystals. At higher concentration of feed solution dense fibers were observed. With interchanged feed solution precipitate and spherulites have been obtained. The effect of temperature on growth barium oxalate crystals showed that there was a decrease in nucleation density at higher temperature. The crystals growth were observed under the electron microscope which revealed that the crystal have needle and spherulites structures. We also report the FTIR studies of barium oxalate crystals.

  7. Spall behaviour of single crystal aluminium at three principal orientations

    Science.gov (United States)

    Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.

    2017-10-01

    A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.

  8. Ion implantation induced blistering of rutile single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bing-Xi [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Jiao, Yang [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250100 (China); Guan, Jing [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Wang, Lei [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China)

    2015-07-01

    The rutile single crystals were implanted by 200 keV He{sup +} ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He{sup +} ion implantation with appropriate fluence and the following thermal annealing.

  9. Study of diffusion of Ag in Cu single crystals

    CERN Document Server

    Wang, R

    2002-01-01

    4.0 MeV sup 7 Li sup + sup + RBS and AES were used for investigations of thermal diffusion of Ag in Cu single crystals. The annealing of samples was carried out in vacuum in the temperature range from 498 to 613 K. The element depth concentration profiles transformed from RBS spectra indicate that the diffusion of Ag into Cu is a typical volume diffusion. The Arrhenius parameters corresponding to the diffusion were obtained.

  10. Employing a cylindrical single crystal in gas-surface dynamics

    OpenAIRE

    Hahn, C.; Shan, J.; Liu, Y.; Berg, O.; Kleijn, A.W.; Juurlink, L.B.F.

    2012-01-01

    We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a crystal temperature range of 89 to 1100 K. A microchannel plate-based low energy electron diffraction/retarding field Auger electron spectrometer (AES) apparatus identifies surface structures present on ...

  11. The specific heat of YBCO single crystals near Tc

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, S.; Lawrie, I.D.; Howson, M.A. [Leeds Univ. (United Kingdom)

    1992-12-01

    The authors present results for the measured specific heat of YBCO single crystals between 80 and 110K. The specific heat has been measured using an a.c. optical heating technique with a temperature resolution of 15mK. The superconducting transition is marked by a sharply peaked {open_quote}Lambda{close_quote} like anomaly. The {open_quote}fluctuation{close_quote} contributions to the specific heat fit a logarithmic divergence very well.

  12. Dynamic Actuation of Single-Crystal Diamond Nanobeams

    Science.gov (United States)

    2014-08-25

    United States E-mail: loncar@seas.harvard.edu KEYWORDS: Single-crystal diamond, nanoelectromechanical systems ( NEMS ), nanofabrica- tion...actuate and transduce motion of na- noelectromechanical systems ( NEMS ) and applied to achieve mechanical resonance tuning,20 and coherent control of...wavelength used. Geometrical nonlinearity is the most common nonlinearity observed in NEMS , and according to theory results in a hardening effect.26 In

  13. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    Science.gov (United States)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  14. Residual stress measurement of fiber texture materials near single crystal

    OpenAIRE

    Mori, Toshiya; Gotoh, Masahide; Sasaki, Toshihiko; Hirose, Yukio

    2007-01-01

    In this paper, a sample having 〈111〉 fiber texture near single crystal structure made by PVD was evaluated about texture states by the pole figure and about residual stress states by the new expression for X-ray stress analysis. As a result, about 6GPa compressive residual stress existed in the film. However, measurement planes of X-ray line were influence on each stress value. Copyright © 2007 by The International Society of Offshore and Polar Engineers(ISOPE).

  15. Bridgman growth and scintillation properties of calcium tungstate single crystal

    Science.gov (United States)

    Wang, Zhenhai; Jiang, Linwen; Chen, Yaping; Chen, Peng; Chen, Hongbing; Mao, Rihua

    2017-12-01

    CaWO4 single crystal with large size was grown by Bridgman method. The results of transmission spectra show that the transmittance of CaWO4 crystal reaches 79-85% in 320-800 nm wavelength range. The refraction index is near 1.80 in visible and infrared region. CaWO4 crystal shows a broad emission band centered at 424 nm under X-ray excitation and centered at 416 nm under ultraviolet (λex = 280 nm) excitation. The decay kinetics of CaWO4 single crystal shows double-exponential decay with fast decay constant τ1 = 5.4 μs and slow decay constant τ2 = 177.1 μs. The energy resolution of CaWO4 crystal was found to be 31.6% in the net peak of 545.9 channel. Meanwhile, the absolute output is at the lever of 19,000 ± 1000 photons/MeV. The results indicate the scintillator of CaWO4 single crystal has great potential in the applications of high-energy physics and nuclear physics due to its high light output and great energy resolution.

  16. Interfacial dislocation motion and interactions in single-crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Raabe, D. [Max Planck Inst. fur Eisenforshung. Dusseldorf (Germany); Roters, F. [Max Planck Inst. fur Eisenforshung. Dusseldorf (Germany); Arsenlis, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    The early stage of high-temperature low-stress creep in single-crystal superalloys is characterized by the rapid development of interfacial dislocation networks. Although interfacial motion and dynamic recovery of these dislocation networks have long been expected to control the subsequent creep behavior, direct observation and hence in-depth understanding of such processes has not been achieved. Incorporating recent developments of discrete dislocation dynamics models, we simulate interfacial dislocation motion in the channel structures of single-crystal superalloys, and investigate how interfacial dislocation motion and dynamic recovery are affected by interfacial dislocation interactions and lattice misfit. Different types of dislocation interactions are considered: self, collinear, coplanar, Lomer junction, glissile junction, and Hirth junction. The simulation results show that strong dynamic recovery occurs due to the short-range reactions of collinear annihilation and Lomer junction formation. The misfit stress is found to induce and accelerate dynamic recovery of interfacial dislocation networks involving self-interaction and Hirth junction formation, but slow down the steady interfacial motion of coplanar and glissile junction forming dislocation networks. The insights gained from these simulations on high-temperature low-stress creep of single-crystal superalloys are also discussed.

  17. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    Science.gov (United States)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  18. TL properties of newly developed lithium tetraborate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, A.C. [Nuclear Physics Centre, Av. Prof. Gama Pinto, 2, 1049 003 Lisbon (Portugal) and Hospital de Santa Maria, Servico de Radioterapia, Av. Prof. Egas Moniz, 1049 035 Lisbon (Portugal); Instituto Politecnico de Leiria, Escola Superior de Tecnologia do Mar, Santuario Na Sra. dos Remedios, 2520 631 Peniche (Portugal)], E-mail: anafer@itn.pt; Osvay, M. [Institute of Isotopes, 1525 Budapest, P.O.B. 77 (Hungary); Santos, J.P. [Nuclear and Technological Institute, Estrada Nacional 10, 2686 953 Sacavem (Portugal); Holovey, V. [Institute of Electron Physics, NASU, 88000 Uzhgorod (Ukraine); Ignatovych, M. [Institute of Surface Chemistry, NASU, 03164 Kyiv (Ukraine)

    2008-02-15

    The thermoluminescent properties of transparent and colorless plates (6x6x1mm) of undoped and Cu-doped lithium tetraborate single crystals produced in the Institute of Electron Physics (Ukraine) were investigated using low and high LET radiations and mixed-radiation fields (photon and thermal neutrons). A comparative characterization of undoped (LTB) and Cu-doped (LTB:Cu) lithium tetraborate single crystals to TLD-100, TLD-700, TLD-700H and Al{sub 2}O{sub 3}:Mg,Y (D-3) dosemeters is also reported. The results show that LTB:Cu is approximately 50 times more sensitive to gamma radiation than LTB and 5 times more sensitive as compared with TLD-100 dosemeters. On the other hand, LTB:Cu is about 5 times less sensitive to thermal neutrons than LTB, which suggests the application of paired LTB and LTB:Cu for mixed-field dosimetry. Both LTB and LTB:Cu single crystals have negligible light sensitivities, which is a major improvement over former lithium tetraborate-based TLDs.

  19. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    Recently, a new family of crystalline zeolitic materials was reported, the so-called mesoporous zeolite single crystals featuring individual zeolite single crystals with an additional noncrystalline mesopore system interconnected with the usual micropore system of the zeolite, resulting in a hier......Recently, a new family of crystalline zeolitic materials was reported, the so-called mesoporous zeolite single crystals featuring individual zeolite single crystals with an additional noncrystalline mesopore system interconnected with the usual micropore system of the zeolite, resulting...

  20. Large pyramid shaped single crystals of BiFeO{sub 3} by solvothermal synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Sornadurai, D.; Ravindran, T. R.; Paul, V. Thomas; Sastry, V. Sankara [Condensed Matter Physics Division, Materials Science Group, Physical Metallurgy Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India); Condensed Matter Physics Division, Materials Science Group (India)

    2012-06-05

    Synthesis parameters are optimized in order to grow single crystals of multiferroic BiFeO{sub 3}. 2 to 3 mm size pyramid (tetrahedron) shaped single crystals were successfully obtained by solvothermal method. Scanning electron microscopy with EDAX confirmed the phase formation. Raman scattering spectra of bulk BiFeO3 single crystals have been measured which match well with reported spectra.

  1. Recent developments in SiC single-crystal electronics

    Science.gov (United States)

    Ivanov, P. A.; Chelnokov, V. E.

    1992-07-01

    The present paper is an analytical review of the last five or six years of research and development in SiC. It outlines the major achievements in single crystal growth and device technology. Electrical performance of SiC devices designed during these years and some new trends in SiC electronics are also discussed. During the 1980s the studies on sublimation and liquid-phase epitaxial growth of SiC single crystal were continued successfully. At that time, such methods as chemical vapour deposition, thermal oxidation, 'dry' plasma etching and ion implantation which yielded good results with silicon, came into use. As a result of the technological progress, discrete devices appeared, which incorporated the potential advantages of SiC as a wide bandgap material. Among these were high temperature (500-600 degrees C) rectifier diodes and field-effect transistors, high efficiency light-emitting diodes for the short-wave region of the visible spectrum, and detectors of ultraviolet radiation. It should be stressed that the devices were of commercial quality and could be applied in various fields (control systems of automobile engines, aerospace apparatus, geophysical equipment, colour displays in information systems, etc.). The developments in technology and the promising results of research on electrical performance of the devices already available give hope that in the near future SiC may become the basic material for power microwave devices, and for thermo- and radiation-resistant integrated circuits. This process can be stimulated by further perfection of single-crystal substrates of large area, by development of stable high temperature ohmic contacts, micro- and heterostructures.

  2. Acquisition of Single Crystal Growth and Characterization Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Maple, M. Brian; Zocco, Diego A.

    2008-12-09

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and

  3. Formation of pores in Ge single crystal by laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Medvid' , A. [Laboratory of Semiconductor Physics, Riga Technical University, LV-1048, 14 Azenes Street, Riga (Latvia)]. E-mail: medvids@latnet.lv; Mychko, A. [Laboratory of Semiconductor Physics, Riga Technical University, LV-1048, 14 Azenes Street, Riga (Latvia); Krivich, A. [Laboratory of Semiconductor Physics, Riga Technical University, LV-1048, 14 Azenes Street, Riga (Latvia); Onufrijevs, P. [Laboratory of Semiconductor Physics, Riga Technical University, LV-1048, 14 Azenes Street, Riga (Latvia)

    2005-05-15

    Formation of a porous structure on the surface of Ge single crystals by pulsed YAG:Nd laser irradiation at the intensity of {approx}25 MW/cm{sup 2} is reported. An increase of surface recombination velocity on the irradiated surface by a factor of 100 is observed and explained by increase of the geometric area of the surface due to formation of pores. The latter is attributed to inhomogeneous pressure of a pulsed laser beam on the melting irradiated surface of the crystal.

  4. Grating coupler on single-crystal lithium niobate thin film

    Science.gov (United States)

    Chen, Zhihua; Wang, Yiwen; Jiang, Yunpeng; Kong, Ruirui; Hu, Hui

    2017-10-01

    The grating coupler on single-crystal lithium niobate thin film (lithium niobate on insulator, LNOI) was designed. A bottom reflector was added in the LNOI material to improve the coupling efficiency. The grating structure was optimized by FDTD method. The material parameters such as layer thickness of lithium niobate thin film, SiO2 thickness were discussed with respect to the coupling efficiency, and the tolerances of grating period, etch depth, groove width and fiber position were also studied systematically. The simulated maximum coupling efficiency from a grating coupler with (without) bottom reflector to a single-mode fiber is about 78% (40%) in z-cut LNOI for TE polarization.

  5. Determining thermodynamic properties of molecular interactions from single crystal studies.

    Science.gov (United States)

    Vander Zanden, Crystal M; Carter, Megan; Ho, Pui Shing

    2013-11-01

    The concept of single crystals of macromolecules as thermodynamic systems is not a common one. However, it should be possible to derive thermodynamic properties from single crystal structures, if the process of crystallization follows thermodynamic rules. We review here an example of how the stabilizing potentials of molecular interactions can be measured from studying the properties of DNA crystals. In this example, we describe an assay based on the four-stranded DNA junction to determine the stabilizing potentials of halogen bonds, a class of electrostatic interactions, analogous to hydrogen bonds, that are becoming increasing recognized as important for conferring specificity in protein-ligand complexes. The system demonstrates how crystallographic studies, when coupled with calorimetric methods, allow the geometries at the atomic level to be directly correlated with the stabilizing energies of molecular interactions. The approach can be generally applied to study the effects of DNA sequence and modifications of the thermodynamic stability of the Holliday junction and, by inference, on recombination and recombination dependent processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Growth and Characterization of Lead-free Piezoelectric Single Crystals

    Directory of Open Access Journals (Sweden)

    Philippe Veber

    2015-11-01

    Full Text Available Lead-free piezoelectric materials attract more and more attention owing to the environmental toxicity of lead-containing materials. In this work, we review our first attempts of single crystal grown by the top-seeded solution growth method of BaTiO3 substituted with zirconium and calcium (BCTZ and (K0.5Na0.5NbO3 substituted with lithium, tantalum, and antimony (KNLSTN. The growth methodology is optimized in order to reach the best compositions where enhanced properties are expected. Chemical analysis and electrical characterizations are presented for both kinds of crystals. The compositionally-dependent electrical performance is investigated for a better understanding of the relationship between the composition and electrical properties. A cross-over from relaxor to ferroelectric state in BCTZ solid solution is evidenced similar to the one reported in ceramics. In KNLSTN single crystals, we observed a substantial evolution of the orthorhombic-to-tetragonal phase transition under minute composition changes.

  7. Single Crystal Diamond Needle as Point Electron Source

    Science.gov (United States)

    Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2016-10-01

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2-0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.

  8. Strength anomaly in B2 FeAl single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, K.; Hanada, S.; Yoo, M.H. [Oak Ridge National Lab., TN (United States); Matsumoto, N. [Tohoku Univ. (Japan). Graduate School

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

  9. The refractive index of zinc oxide microwire single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Czekalla, Christian; Kuehne, Philipp; Sturm, Chris; Schmidt-Grund, Ruediger; Grundmann, Marius [Universitaet Leipzig (Germany). Fakultaet fuer Physik und Geowissenschaften, Institut fuer Experimentelle Physik II

    2010-07-01

    Among a large number of applications, zinc oxide (ZnO) single crystals (bulk and micro- and nanowires) are expected to form important building blocks for future optoelectronic devices like light emitting and laser diodes. Optical resonances from ZnO structures have been observed by a number of groups in the past years. In most of the publications, modeling of the mode structure, especially in the near bandgap spectral region, is difficult because the energy dependent refractive index n(E) is typically not known. Additionally, in case of the self assembled micro- and nanowires, the structures are too small to perform spectroscopic ellipsometry to determine n(E). We compare n(E) obtained from (a) spectroscopic ellipsometry measurements of ZnO bulk single crystals and (b) spatially resolved photoluminescence measurements of ZnO microwires employing a plane wave whispering gallery mode model for the observed resonances. We discuss the differences between the results obtained from the two methods and their mutual impact, leading to a highly precise determination of n(E) in an energy range between 1.80 eV and 3.25 eV and for temperatures between 10 K and 295 K.

  10. Stress topology within silicon single-crystal cantilever beam

    Directory of Open Access Journals (Sweden)

    Alexander P. Kuzmenko

    2015-06-01

    Full Text Available Flexural elastic deformations of single-crystal silicon have been studied using microspectral Raman scattering. Results are reported on nano-scaled sign-changing shifts of the main peak of the microspectral Raman scattering within the single-crystal silicon cantilever beam during exposure to flexural stress. The maximum value of Raman shift characteristic of the 518 cm−1 silicon peak at which elasticity still remains has been found to be 8 cm−1 which corresponds to an applied deformation of 4 GPa. We report three-dimensional maps of the distribution of internal stresses at different levels of deformation up to irreversible changes and brittle fracture of the samples that clearly show compression and tension areas and an undeformed area. A qualitative explanation of the increase in the strength of the cantilever beam due to its small thickness (2 μm has been provided that agrees with the predictions of real-world physical parameters obtained in SolidWorks software environment with the SimulationXpress module. We have defined the relative strain of the beam surface which was 2% and received a confirmation of changes in the silicon lattice parameter from 0.54307 nm to 0.53195 nm by the BFGS algorithm.

  11. Strain incompatibility and residual strains in ferroelectric single crystals.

    Science.gov (United States)

    Pramanick, A; Jones, J L; Tutuncu, G; Ghosh, D; Stoica, A D; An, K

    2012-01-01

    Residual strains in ferroelectrics are known to adversely affect the material properties by aggravating crack growth and fatigue degradation. The primary cause for residual strains is strain incompatibility between different microstructural entities. For example, it was shown in polycrystalline ferroelectrics that residual strains are caused due to incompatibility between the electric-field-induced strains in grains with different crystallographic orientations. However, similar characterization of cause-effect in multidomain ferroelectric single crystals is lacking. In this article, we report on the development of plastic residual strains in [111]-oriented domain engineered BaTiO(3) single crystals. These internal strains are created due to strain incompatibility across 90° domain walls between the differently oriented domains. The average residual strains over a large crystal volume measured by in situ neutron diffraction is comparable to previous X-ray measurements of localized strains near domain boundaries, but are an order of magnitude lower than electric-field-induced residual strains in polycrystalline ferroelectrics.

  12. Single-crystal membrane for anisotropic and efficient gas permeation.

    Science.gov (United States)

    Takamizawa, Satoshi; Takasaki, Yuichi; Miyake, Ryosuke

    2010-03-10

    Development of gas separation materials has been one of the basic requirements of industry. Microporous materials have adequate pores for gas separation and have contributed to the advancement of gas purification techniques. Because the simplest and most economical method would be membrane separation, various microporous membranes have been prepared and explored for their separation properties. However, a key issue remains as to how to generate defect-free membranes with practical gas permeance. Here we report the preparation of a well-oriented single-crystal membrane with high permeance by using a flexible single crystal of [Cu(2)(bza)(4)(pyz)](n) possessing one-dimensional (1D) penetration channels; this membrane exhibits anisotropic gas permeation through the 1D channels with high permselectivity for H(2) and CO(2). Although the diameter of the neck of the narrow channels is smaller than the kinetic diameters of the sample gases, various gases pass through the 1D channels. This report provides a new way of developing gas permeation membranes as sophisticated crystal devices for gas purification techniques.

  13. Surface-assisted single-crystal formation of charged colloids

    Science.gov (United States)

    Arai, Shunto; Tanaka, Hajime

    2017-02-01

    Substrate-induced heterogeneous nucleation is a promising way to form an extended single crystal with few defects while controlling its direction. Despite its technological importance, however, the physics behind this process has remained elusive. By studying the kinetic pathway of crystal nucleation and growth at a single-particle level both experimentally and numerically, we reveal that the keys to substrate-induced monomorphic single-crystal formation are matching of the angular symmetry between locally favoured structures formed in a supercooled liquid and the most stable crystal and non-trivial coupling of the former to substrate-induced layering in the liquid. These two conditions are crucial for direct formation of the most stable crystal while keeping its unique direction relative to the substrate. We also discuss special features of charged systems. Our finding indicates that pre-ordering in a supercooled liquid state under the influence of a substrate largely dominates the course of future crystallization, providing new insights into the control of heterogeneous crystallization.

  14. Mesoscale martensitic transformation in single crystals of topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-09-05

    Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array, without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.

  15. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    Science.gov (United States)

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  16. Is the methanation reaction over Ru single crystals structure dependent?

    Science.gov (United States)

    Vendelbo, Søren B; Johansson, Martin; Nielsen, Jane H; Chorkendorff, Ib

    2011-03-14

    The influence of monoatomic steps and defects on the methanation reaction over ruthenium has been investigated. The experiments are performed on a Ru(0 1 54) ruthenium single crystal, which contains one monoatomic step atom for each 27 terrace atoms. The methanation activity is measured at one bar of hydrogen and CO in a high pressure cell, which enables simultaneous measurements of the local reactivity of the well defined single crystal surface and the global reactivity of the entire crystal and its auxiliary support. By adding sulfur we observe that the measured activity from the well defined stepped front-side of the crystal is poisoned faster than the entire crystal containing more defects. We also observe that additional sputtering of the well-defined front-side increases the reactivity measured on the surface. Based on this, we conclude that the methanation reaction takes place on undercoordinated sites, such as steps and kinks, and that the methanation reaction is extremely structure dependent. Simulations of the flow, temperature, and product distributions in the high pressure cell are furthermore presented as supplementary information.

  17. Optical, mechanical and thermal behaviors of Nitrilotriacetic acid single crystal

    Science.gov (United States)

    Deepa, B.; Philominathan, P.

    2017-11-01

    An organic nonlinear single crystal of Nitrilotriacetic acid (NTAA) was grown for the first time by employing a simple slow evaporation technique. Single crystal X-ray diffraction (XRD) analysis reveals that the grown crystal belongs to the monoclinic system with noncentrosymmetric space group CC. Fourier transform infrared (FTIR) spectral study ascertains the presence of functional groups in NTAA. The molecular structure of the grown crystal was confirmed by Nuclear Magnetic Resonance (NMR) spectral analysis. The optical parameters such as transmittance, absorption coefficient and band gap were calculated from UV-Visible and fluorescence studies. Dielectric measurements were carried out for different frequency and temperature. The mechanical strength of the grown crystal was measured using Vickers microhardness test. The high thermal stability and the melting point of the grown crystal were also estimated using thermogravimetric (TGA) and differential thermal analyses (DTA). The confirmation of the grown crystals belonging to nonlinear optical crystals was performed by Kurtz-Perry technique and found as suitable candidate for optoelectronics applications.

  18. Large single-crystal diamond substrates for ionizing radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Marco; Bellucci, Alessandro; Calvani, Paolo; Trucchi, Daniele M. [Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Sede Secondaria di Montelibretti, Monterotondo Stazione, Roma (Italy)

    2016-10-15

    The need for large active volume detectors for ionizing radiations and particles, with both large area and thickness, is becoming more and more compelling in a wide range of applications, spanning from X-ray dosimetry to neutron spectroscopy. Recently, 8.0 x 8.0 mm{sup 2} wide and 1.2 mm thick single-crystal diamond plates have been put on the market, representing a first step to the fabrication of large area monolithic diamond detectors with optimized charge transport properties, obtainable up to now only with smaller samples. The more-than-double thickness, if compared to standard plates (typically 500 μm thick), demonstrated to be effective in improving the detector response to highly penetrating ionizing radiations, such as γ-rays. Here we report on the first measurements performed on large active volume single-crystal diamond plates, both in the dark and under irradiation with optical wavelengths (190-1100 nm), X-rays, and radioactive γ-emitting sources ({sup 57}Co and {sup 22}Na). (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Twisted Single Crystals in Nonbiological Main-Chain Chiral Polyesters

    Science.gov (United States)

    Cheng, S.; Li, Y.; Bai, F.; Harris, F.; Yan, D.; Chen, L.

    1998-03-01

    A series of chiral Poly(R)-(-)-4-(w)-[2-(p-hydroxy-o-nitrophenyloxy)-1-propyloxy]-1- nonyloxy-4-biphenyl carboxylic acid has been synthesized. Singe crystals were grown from the melt. Two very distinct morphological habits can be observed: an elongated flat-on morphology and a helical twist along its long axis. The twisted single crystals show a unique left-handed helical habit with typical pitch length of about 1-2 micrometers. It is expected that this twisted morphology results from a slight deviation of a 21 symmetry in chain packing. In the past, helical morphologies were report in two classes of materials: liquid crystals from the melt and biopolymers in solutions. Liquid crystals only show this kind of morphology when their order is lower than smectic F or I phase, while biopolmers, such as bombyx mori silk fibroin, exhibit similar morphology from solutions due to the existence of the twisted b-sheets. In this case, however, the twisted morphology was identified as crystals via ED and WAXD experiments. Furthermore, neither H-bonding nor b-sheet structure exists in the chemical structure. It is believed that our observation in the twisted single crystals from the melt may represent a class of phases which has not been fully classified.

  20. Ultrafast dynamic response of single crystal β-HMX

    Science.gov (United States)

    Zaug, Joseph M.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Radousky, Harry B.; Ferranti, Louis; Swan, Raymond; Gross, Rick; Teslich, Nick E.; Wall, Mark A.; Austin, Ryan A.; Fried, Laurence E.

    2017-01-01

    We report results from ultrafast compression experiments conducted on β-HMX single crystals. Results consist of nominally 12 picosecond time-resolved wave profile data, (ultrafast time domain interferometry -TDI measurements), that were analyzed to determine high-velocity wave speeds as a function of piston velocity. TDI results are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. Our previous results derived using a 350 ps duration compression drive revealed anisotropic elastic wave response in single crystal β-HMX from (110) and (010) impact planes. Here we present results using a 1.05 ns duration compression drive with a 950 ps interferometry window to extend knowledge of the anisotropic dynamic response of β-HMX within eight microns of the initial impact plane. We observe two distinct wave profiles from (010) and three wave profiles from (010) impact planes. The (110) impact plane wave speeds typically exceed (010) impact plane wave speeds at the same piston velocities. The development of multiple hydrodynamic wave profiles begins at 20 GPa for the (110) impact plane and 28 GPa for the (10) impact plane. We compare our ultrafast TDI results with previous gun and plate impact results on β-HMX and PBX9501.

  1. Chiral multichromic single crystals for optical devices (LDRD 99406).

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  2. Consideratons Regarding the Alignment of Diffractometers for Residual stress Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Thomas R [ORNL; Cavin, Odis Burl [ORNL; Matlock, Beth [TEC/Materials testing Division; England, Roger [Cummins, Inc

    2006-01-01

    Proper alignment of an X-ray diffractometer is critical to performing credible measurements, particularly for residual stress determinations. This article will emphasize practical aspects of diffractometer alignment and standards usage with regards to residual strain measurement. Essentially, what to do when one is confronted with a residual stress problem and an unfamiliar goniometer. Various alignment techniques, use of standards, and related issues will be discussed.

  3. Ewald: an extended wide-angle Laue diffractometer for the second target station of the Spallation Neutron Source.

    Science.gov (United States)

    Coates, Leighton; Robertson, Lee

    2017-08-01

    Visualizing hydrogen atoms in biological materials is one of the biggest remaining challenges in biophysical analysis. While X-ray techniques have unrivaled capacity for high-throughput structure determination, neutron diffraction is uniquely sensitive to hydrogen atom positions in crystals of biological materials and can provide a more complete picture of the atomic and electronic structures of biological macromolecules. This information can be essential in providing predictive understanding and engineering control of key biological processes, for example, in catalysis, ligand binding and light harvesting, and to guide bioengineering of enzymes and drug design. One very common and large capability gap for all neutron atomic resolution single-crystal diffractometers is the weak flux of available neutron beams, which results in limited signal-to-noise ratios giving a requirement for sample volumes of at least 0.1 mm3. The ability to operate on crystals an order of magnitude smaller (0.01 mm3) will open up new and more complex systems to studies with neutrons which will help in our understanding of enzyme mechanisms and enable us to improve drugs against multi resistant bacteria. With this is mind, an extended wide-angle Laue diffractometer, 'Ewald', has been designed, which can collect data using crystal volumes below 0.01 mm3.

  4. A high performance neutron powder diffractometer at 3 MW Triga Mark-II research reactor in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, I., E-mail: imtiaz-kamal26@yahoo.com; Yunus, S. M., E-mail: yunussm11@yahoo.com; Datta, T. K., E-mail: tk-datta4@yahoo.com; Zakaria, A. K. M.; Das, A. K.; Aktar, S.; Hossain, S. [Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka (Bangladesh); Berliner, R., E-mail: RB@instrumentationAssociates.com [Instrumentation Associates, Durham, North Carolina (United States); Yelon, W. B., E-mail: yelonwb@hotmail.com [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2016-07-12

    A high performance neutron diffractometer called Savar Neutron Diffractometer (SAND) was built and installed at radial beam port-2 of TRIGA Mark II research reactor at AERE, Savar, Dhaka, Bangladesh. Structural studies of materials are being done by this technique to characterize materials crystallograpohically and magnetically. The micro-structural information obtainable by neutron scattering method is very essential for determining its technological applications. This technique is unique for understanding the magnetic behavior in magnetic materials. Ceramic, steel, electronic and electric industries can be benefited from this facility for improving their products and fabrication process. This instrument consists of a Popovicimonochromator with a large linear position sensitive detector array. The monochromator consists of nine blades of perfect single crystal of silicon with 6 mm thickness each. The monochromator design was optimized to provide maximum flux on 3 mm diameter cylindrical sample with a relatively flat angular dependence of resolution. Five different wave lengths can be selected by orienting the crystal at various angles. A sapphire filter was used before the primary collimator to minimize the first neutron. The detector assembly is composed of 15 linear position sensitive proportional counters placed at either 1.1 m or 1.6 m from the sample position and enclosed in a air pad supported high density polythene shield. Position sensing is obtained by charge division using 1-wide NIM position encoding modules (PEM). The PEMs communicate with the host computer via USB. The detector when placed at 1.1 m, subtends 30° (2θ) at each step and covers 120° in 4 steps. When the detector is placed at 1.6 m it subtends 20° at each step and covers 120° in 6 steps. The instrument supports both low and high temperature sample environment. The instrument supports both low and high temperature sample environment. The diffractometer is a state-of-the art technology

  5. A high performance neutron powder diffractometer at 3 MW Triga Mark-II research reactor in Bangladesh

    Science.gov (United States)

    Kamal, I.; Yunus, S. M.; Datta, T. K.; Zakaria, A. K. M.; Das, A. K.; Aktar, S.; Hossain, S.; Berliner, R.; Yelon, W. B.

    2016-07-01

    A high performance neutron diffractometer called Savar Neutron Diffractometer (SAND) was built and installed at radial beam port-2 of TRIGA Mark II research reactor at AERE, Savar, Dhaka, Bangladesh. Structural studies of materials are being done by this technique to characterize materials crystallograpohically and magnetically. The micro-structural information obtainable by neutron scattering method is very essential for determining its technological applications. This technique is unique for understanding the magnetic behavior in magnetic materials. Ceramic, steel, electronic and electric industries can be benefited from this facility for improving their products and fabrication process. This instrument consists of a Popovicimonochromator with a large linear position sensitive detector array. The monochromator consists of nine blades of perfect single crystal of silicon with 6mm thickness each. The monochromator design was optimized to provide maximum flux on 3mm diameter cylindrical sample with a relatively flat angular dependence of resolution. Five different wave lengths can be selected by orienting the crystal at various angles. A sapphire filter was used before the primary collimator to minimize the first neutron. The detector assembly is composed of 15 linear position sensitive proportional counters placed at either 1.1 m or 1.6 m from the sample position and enclosed in a air pad supported high density polythene shield. Position sensing is obtained by charge division using 1-wide NIM position encoding modules (PEM). The PEMs communicate with the host computer via USB. The detector when placed at 1.1 m, subtends 30˚ (2θ) at each step and covers 120˚ in 4 steps. When the detector is placed at 1.6 m it subtends 20˚ at each step and covers 120˚ in 6 steps. The instrument supports both low and high temperature sample environment. The instrument supports both low and high temperature sample environment. The diffractometer is a state-of-the art technology

  6. Ultrathin aluminum sample cans for single crystal inelastic neutron scattering.

    Science.gov (United States)

    Stone, M B; Loguillo, M J; Abernathy, D L

    2011-05-01

    Single crystal inelastic neutron scattering measurements are often performed using a sample environment for controlling sample temperature. One difficulty associated with this is establishing appropriate thermal coupling from the sample to the temperature controlled portion of the sample environment. This is usually accomplished via a sample can which thermally couples the sample environment to the sample can and the sample can to the sample via an exchange gas. Unfortunately, this can will contribute additional background signal to one's measurement. We present here the design of an ultrathin aluminum sample can based upon established technology for producing aluminum beverage cans. This design minimizes parasitic sample can scattering. Neutron scattering measurements comparing a machined sample can to our beverage can design clearly indicate a large reduction in scattering intensity and texture when using the ultrathin sample can design. We also examine the possibility of using standard commercial beverage cans as sample cans.

  7. Phonon interactions with methyl radicals in single crystals

    Directory of Open Access Journals (Sweden)

    James W. Wells

    2017-04-01

    Full Text Available The high temperature ESR spectra’s anomalous appearance at very low temperatures for the methyl radical created in single crystals is explained by magnetic dipole interactions with neighboring protons. These protons acting via phonon vibrations induce resonant oscillations with the methyl group to establish a very temperature sensitive ‘‘relaxation’’ mode that allows the higher energy ‘‘E’’ state electrons with spin 12 to ‘‘decay’’ into ‘‘A’’ spin 12 states. Because of the amplitude amplification with temperature, the ‘‘E’’ state population is depleted and the ‘‘A’’ state population augmented to produce the high temperature ESR spectrum. This phenomenon is found to be valid for all but the very highest barriers to methyl group tunneling. In support, a time dependent spin population study shows this temperature evolution in the state populations under this perturbation.

  8. A neutron sensor based on synthetic single crystal diamond

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, G J; Koch, J A; Lerche, R A; Moran, M J

    2003-10-17

    We report the first neutron data for a single crystal Chemical Vapor Deposition (CVD) diamond sensor. Results are presented for 2.5, 14.1, and 14.9 MeV incident neutrons. We show that the energy resolution for 14.1 MeV neutrons is at least 2.9% (as limited by the energy spread of the incident neutrons), and perhaps as good as 0.4% (as extrapolated from high resolution {alpha} particle data). This result could be relevant to fusion neutron spectroscopy at machines like the International Thermonuclear Experimental Reactor (ITER). We also show that our sensor has a high neutron linear attenuation coefficient, due to the high atomic density of diamond, and this could lead to applications in fission neutron detection.

  9. Optical studies of neutron-irradiated lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Oparin, D.V.; Pilipenko, G.I.; Tyutyunnik, O.I.; Gavrilov, F.F.; Sulimov, E.M. (Ural' skij Politekhnicheskij Inst., Sverdlovsk (USSR))

    1984-09-01

    Lithium hydride single crystals irradiated with neutrons were studied by the optical method. Wide bands belonging to the large F-aggregate and quasimetallic F-centres and to the metallic lithium colloids were discovered in the absorption spectra at room temperature. The small Fsub(n)-centres and molecular lithium centres were detected at 77 K. From the electron-vibrational structure of the absorption spectra of these centres the energies of acoustic phonons in X, W, L points of the Brillouin zone of lithium hydride have been found out: TA(L)-235 cm/sup -1/, TA(X)-27g cm/sup -1/, TA(W)-327 cm/sup -1/, LA(W)-384 cm/sup -1/, LA(X)-426 cm/sup -1/.

  10. Crystal structure and morphology of syndiotactic polypropylene single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bu, J.Z. [GE Plastics, Washington, WV (United States); Cheng, S.Z.D. [Univ. of Akron, OH (United States)

    1996-12-31

    In the past several years there have been an increased interest in the crystal structure and morphology of s-PP due to the new development of homogeneous metallocene catalysts which can produce s-PP having a high stereoregularity. In this research, the crystal structure and morphology of s-PP single crystals grown from the melt were investigated. A series of ten fractions of s-PP was studied with different molecular weights ranging from 10,300 to 234,000 (g/mol). These fractions all possess narrow molecular weight distributions (around 1.1-1.2) and high syndiotacticities ([r]{approximately}95%). The main techniques employed including transmission electron microscopy (TEM), atomic force microscopy (AFM), wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering (SAXS).

  11. Anisotropic large magnetoresistance in TaTe4 single crystals

    Science.gov (United States)

    Gao, Yuxia; Xu, Longmeng; Qiu, Yang; Tian, Zhaoming; Yuan, Songliu; Wang, Junfeng

    2017-10-01

    Strong anisotropic magnetotransport is reported in high-quality TaTe4 single crystals synthesized by flux methods. Large positive magnetoresistance (MR) and field-induced metal-semiconductor-like transition are observed at low temperatures with B perpendicular to c axis. The MR value reaches 3200% in 9 T at 2 K with B parallel to a axis, contrast to 79% for B along c axis. Angle dependent magnetoresistance with B rotated within ab plane displays eightfold symmetry and pronounced Shubnikov-de Haas (SdH) oscillations at low temperatures. The analysis of angle dependent resistivity, Hall effect and observed SdH oscillations suggest the high mobile electron and anisotropic Fermi surface responsible for the large anisotropic MR in TaTe4.

  12. Photoinduced surface voltage mapping study for large perovskite single crystals

    Science.gov (United States)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou; Liu, Shengzhong Frank

    2016-05-01

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH3NH3PbX3 (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  13. Growth of bulk single crystals of urea for photonic applications

    Science.gov (United States)

    Saranraj, Arumugam; Sathiyadhas, Sahaya Jude Dhas; Jose, Michael; Martin Britto Dhas, Sathiyadhas Amalapusham

    2017-08-01

    We report the growth of technologically important urea crystals of record size (48 × 16 × 8 mm3) by doping sulfuric acid and employing slow evaporation technique. The grown crystal was identified by single crystal X-Ray diffraction and FTIR spectral analysis. Optical properties of the grown crystal were analyzed by UV-Vis spectrum and the presence of H2SO4 was confirmed by EDAX analysis. Thermogravimetric analysis, Differential Scanning Calorimetry and Photo acoustic studies were also carried out to determine the thermal properties of the grown crystal. The dielectric properties for wide range of frequencies (1 Hz to 1 MHz) at different temperatures (35, 40, 60, 80, 100 °C) were analyzed. The second harmonic conversion efficiency of the grown H2SO4 doped urea crystal was found to be 3.75 times higher than the commercially available KDP crystals. [Figure not available: see fulltext.

  14. High pressure Raman spectra of monoglycine nitrate single crystal

    Science.gov (United States)

    Carvalho, J. O.; Moura, G. M.; Dos Santos, A. O.; Lima, R. J. C.; Freire, P. T. C.; Façanha Filho, P. F.

    2016-05-01

    Single crystal of monoglycine nitrate has been studied by Raman spectroscopy under high pressures up to 5.5 GPa. The results show changes in lattice modes in the pressure ranges of 1.1-1.6 GPa and 4.0-4.6 GPa. The first change occurs with appearance of bands related to the lattice modes as well as discontinuity in the slope of dΩ/dP of these modes. Moreover, bands associated with the skeleton of glycine suggest that the molecule undergoes conformational modifications. The appearance of a strong band at 55 cm- 1 point to a second phase transition associated with the lattice modes, while the internal modes remain unchanged. These anomalies are probably due to rearrangement of hydrogen bonds. Additionally, decompression to ambient pressure shows that the phase transitions are reversible. Finally, the results show that the nitrate anions play an important role on the stability of the monoglycine nitrate crystal.

  15. Twinning structures in near-stoichiometric lithium niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shuhua; Chen, Yanfeng [Nanjing Univ. (China). Dept. of Materials Science and Engineering; Hu, Xiaobo; Yan, Tan; Liu, Hong; Wang, Jiyang [Shandong Univ., Jinan (China). State Key Lab. of Crystal Materials; Qin, Xiaoyong [Deqing Huaying Electronics Co. (China)

    2010-04-15

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts {delta}X and {delta}Y in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {l_brace}01 anti 1 anti 2{r_brace}{sub m} planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  16. Negative magnetoresistance in YBCO single crystals: Spin fluctuations?

    Energy Technology Data Exchange (ETDEWEB)

    Overend, N.; Lawrie, I.D.; Howson, M.A. [Leeds Univ. (United Kingdom)

    1992-12-01

    The authors present results for the magnetoresistance in a number of single crystals of YBCO. They all have Tc in the vicinity of 93K with transitions widths of around 0.5K. Between 93K and 100K the positive magnetoresistance due to superconducting fluctuations is present and the authors are able to fit the data to theory yielding values of the coherence length in the {open_quote}c{close_quote} axis of around 0.2nm. However, above 100K a negative contribution to the resistivity appears. Above about 115K the magnetoresistance is dominated by this negative contribution. The negative contribution is proportional to the field and its magnitude is consistent with a spin fluctuation contribution to the magnetoresistance. The magnitude of the effect increases as the temperature is reduced until it peaks at around 100K.

  17. α-Lead tellurite from single-crystal data

    Directory of Open Access Journals (Sweden)

    Adam I. Stash

    2008-03-01

    Full Text Available The crystal structure of the title compound, α-PbTeO3 (PTO, has been reported previously by Mariolacos [Anz. Oesterr. Akad. Wiss. Math. Naturwiss. Kl. (1969, 106, 128–130], refined on powder data. The current determination at room temperature from data obtained from single crystals grown by the Czochralski method shows a significant improvement in the precision of the geometric parameters when all atoms have been refined anisotropically. The selection of a centrosymmetric (C2/c structure model was confirmed by the second harmonic generation test. The asymmetric unit contains three formula units. The structure of PTO is built up of three types of distorted [PbOx] polyhedra (x = 7 and 9 which share their O atoms with TeO3 pyramidal units. These main anionic polyhedra are responsible for establishing the two types of tunnel required for the stereochemical activity of the lone pairs of the Pb2+ and Te4+ cations.

  18. Growth of bulk single crystals of urea for photonic applications

    Science.gov (United States)

    Saranraj, Arumugam; Dhas, Sathiyadhas Sahaya Jude; Jose, Michael; Martin Britto Dhas, Sathiyadhas Amalapusham

    2018-01-01

    We report the growth of technologically important urea crystals of record size (48 × 16 × 8 mm3) by doping sulfuric acid and employing slow evaporation technique. The grown crystal was identified by single crystal X-Ray diffraction and FTIR spectral analysis. Optical properties of the grown crystal were analyzed by UV-Vis spectrum and the presence of H2SO4 was confirmed by EDAX analysis. Thermogravimetric analysis, Differential Scanning Calorimetry and Photo acoustic studies were also carried out to determine the thermal properties of the grown crystal. The dielectric properties for wide range of frequencies (1 Hz to 1 MHz) at different temperatures (35, 40, 60, 80, 100 °C) were analyzed. The second harmonic conversion efficiency of the grown H2SO4 doped urea crystal was found to be 3.75 times higher than the commercially available KDP crystals. [Figure not available: see fulltext.

  19. Platinum single crystal electrodes for the electrocatalysis of methane oxidation

    Directory of Open Access Journals (Sweden)

    Mayara Munaretto

    2011-03-01

    Full Text Available The main objective of this paper is to characterize the voltammetric profiles of platinum single crystals of low Miller indexes Pt(100 and Pt(110 and study their catalytic activities on the oxidation of methane. In this way, it was developed a metallic surface modified by presence of other metal oxide, which presents catalytic activity for this reaction. It is well known that the electrooxidation of methane (CH4 leads mainly to the formation of CO2 and H2O, however, the oxidation can also lead to the formation of CO, a reaction intermediate that has strong interaction with metal surfaces, such as platinum. This molecule tends to accumulate on the platinum surface and to passive it, due to the self-poisoning, decreasing its catalytic activity. Therefore, the main aim of this work was the development of a platinum electrode modified by deposition of titanium oxide, which presented electrocatalytic properties for the oxidation of methane.

  20. Growth of single-crystal YAG fiber optics.

    Science.gov (United States)

    Nie, Craig D; Bera, Subhabrata; Harrington, James A

    2016-07-11

    Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

  1. Dislocations and Grain Boundaries in Semiconducting Rubrene Single-Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chapman,B.; Checco, A.; Pindak, R.; Siegrist, T.; Kloc, C.

    2006-01-01

    Assessing the fundamental limits of the charge carrier mobilities in organic semiconductors is important for the development of organic electronics. Although devices such as organic field effect transistors (OFETs), organic thin film transistors (OTFTs) and organic light emitting diodes (OLEDs) are already used in commercial applications, a complete understanding of the ultimate limitations of performance and stability in these devices is still lacking at this time. Crucial to the determination of electronic properties in organic semiconductors is the ability to grow ultra-pure, fully ordered molecular crystals for measurements of intrinsic charge transport. Likewise, sensitive tools are needed to evaluate crystalline quality. We present a high-resolution X-ray diffraction and X-ray topography analysis of single-crystals of rubrene that are of the quality being reported to show mobilities as high as amorphous silicon. We show that dislocations and grain boundaries, which may limit charge transfer, are prominent in these crystals.

  2. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    Science.gov (United States)

    2015-08-01

    Interestingly, the dislocation plasticity of the single- crystal AlN strongly depends on specimen sizes. As shown in Fig. 5a and b, the large plastic...ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to-Ductile Transition of Single- Crystal Aluminum...originator. ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to-Ductile Transition of Single- Crystal

  3. Enhanced Catalysis Activity in a Coordinatively Unsaturated Cobalt-MOF Generated via Single-Crystal-to-Single-Crystal Dehydration.

    Science.gov (United States)

    Ren, Hai-Yun; Yao, Ru-Xin; Zhang, Xian-Ming

    2015-07-06

    Hydrothermal reaction of Co(NO3)2 and terphenyl-3,2",5",3'-tetracarboxyate (H4tpta) generated Co3(OH)2 chains based 3D coordination framework Co3(OH)2(tpta)(H2O)4 (1) that suffered from single-crystal-to-single-crystal dehydration by heating at 160 °C and was transformed into dehydrated Co3(OH)2(tpta) (1a). During the dehydration course, the local coordination environment of part of the Co atoms was transformed from saturated octahedron to coordinatively unsaturated tetrahedron. Heterogenous catalytic experiments on allylic oxidation of cyclohexene show that dehydrated 1a has 6 times enhanced catalytic activity than as-synthesized 1 by using tert-butyl hydroperoxide (t-BuOOH) as oxidant. The activation energy for the oxidation of cylcohexene with 1a catalyst was 67.3 kJ/mol, far below the value with 1 catalysts, which clearly suggested that coordinatively unsaturated Co(II) sites in 1a have played a significant role in decreasing the activation energy. It is interestingly found that heterogeneous catalytic oxidation of cyclohexene in 1a not only gives the higher conversion of 73.6% but also shows very high selectivity toward 2-cyclohexene-1-one (ca. 64.9%), as evidenced in high turnover numbers (ca. 161) based on the open Co(II) sites of 1a catalyst. Further experiments with a radical trap indicate a radical chain mechanism. This work demonstrates that creativity of coordinatively unsaturated metal sites in MOFs could significantly enhance heterogeneous catalytic activity and selectivity.

  4. Cryogenic Clamp-on Ultrasonic Flowmeters using Single Crystal Piezoelectric Transducers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clamp-on ultrasound cryogenic flowmeters using single crystal piezoelectric transducers are proposed to enable reliable, accurate cryogenic instrumentation needs in...

  5. Advanced Electroactive Single Crystal and Polymer Actuator Concepts for Passive Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes large stroke and high precision piezoelectric single crystal and electroactive polymer actuator concepts?HYBrid Actuation System (HYBAS)...

  6. Floating zone growth and characterization of Ca 2Fe 2O 5 single crystals

    Science.gov (United States)

    Maljuk, A.; Strempfer, J.; Lin, C. T.

    2003-11-01

    We report the growth of inclusion and sub-grain free Ca 2Fe 2O 5 (CFO) single crystals by the floating zone method. Single crystals were successfully obtained with volumes of up to 1.0 cm 3. The X-ray rocking curve of the CFO single crystal has the full-width at half-maximum (FWHM) of 0.065°. The oxygen content in the as-grown CFO single crystal was measured by the thermo-gravimetric (TG) method in Ar/H 2 flow. Two magnetic transitions at T1≈140 K and T2≈60 K were observed in the CFO crystal.

  7. Advanced Method for Single Crystal Casting of Turbine Blades for Gas Turbine Engines and Plants

    Science.gov (United States)

    Toloraiya, V. N.; Orekhov, N. G.; Kablov, E. N.

    2002-07-01

    A method for fabricating single crystal blades that combines the techniques of seed crystals and selection is suggested. The method realizes the advantages of both techniques, i.e., the high structural perfection and the possibility of fabricating single crystals with specified spatial orientation. Metallographic and x-ray diffraction analyses are used to study the processes of nucleation of the single crystal structure of blade castings fabricated from high-temperature nickel alloys by the method of selection and seed crystals. A commercial process for fabricating cast single crystal turbine blades by the new method is suggested.

  8. Diffractometer for high energy X-rays at the APS

    CERN Document Server

    Rütt, U; Strempfer, J; Jennings, G; Kurtz, C; Montano, P A

    2001-01-01

    The Basic Energy Sciences Synchrotron Radiation Center (BESSRC) has designed and built a diffractometer specialized for high energy synchrotron radiation (E>60 keV) at the Advanced Photon Source (APS). The diffractometer, which is installed at the elliptical multipole wiggler, uses linearly polarized light (U. Ruett et al., Proc. SPIE 3348 (1998) 132.). The instrument is a triple-axis diffractometer allowing high resolution measurement in two dimensions of the reciprocal space. As opposed to the other diffractometers for high photon energies at HASYLAB (Germany) and ESRF (France) (R. Bouchard et al., 5 (1998) 90; K.-D. Liss et al., J. Synchrotron Rad. 5 (1998) 82), this diffractometer utilizes the vertical scattering plane to take full advantage of the small vertical divergence of the beam and to allow horizontal focusing of the broad beam from the wiggler without disturbing the resolution of the instrument. The instrument is designed to carry heavy sample equipment up to a weight of 200 kg, while maintaining...

  9. Additive Manufacturing of Single-Crystal Superalloy CMSX-4 Through Scanning Laser Epitaxy: Computational Modeling, Experimental Process Development, and Process Parameter Optimization

    Science.gov (United States)

    Basak, Amrita; Acharya, Ranadip; Das, Suman

    2016-08-01

    This paper focuses on additive manufacturing (AM) of single-crystal (SX) nickel-based superalloy CMSX-4 through scanning laser epitaxy (SLE). SLE, a powder bed fusion-based AM process was explored for the purpose of producing crack-free, dense deposits of CMSX-4 on top of similar chemistry investment-cast substrates. Optical microscopy and scanning electron microscopy (SEM) investigations revealed the presence of dendritic microstructures that consisted of fine γ' precipitates within the γ matrix in the deposit region. Computational fluid dynamics (CFD)-based process modeling, statistical design of experiments (DoE), and microstructural characterization techniques were combined to produce metallurgically bonded single-crystal deposits of more than 500 μm height in a single pass along the entire length of the substrate. A customized quantitative metallography based image analysis technique was employed for automatic extraction of various deposit quality metrics from the digital cross-sectional micrographs. The processing parameters were varied, and optimal processing windows were identified to obtain good quality deposits. The results reported here represent one of the few successes obtained in producing single-crystal epitaxial deposits through a powder bed fusion-based metal AM process and thus demonstrate the potential of SLE to repair and manufacture single-crystal hot section components of gas turbine systems from nickel-based superalloy powders.

  10. SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    A. Wang; G. Pickrell; R. May

    2002-09-10

    Accurate measurement of temperature is essential for the safe and efficient operation and control of a wide range of industrial processes. Appropriate techniques and instrumentation are needed depending on the temperature measurement requirements in different industrial processes and working environments. Harsh environments are common in many industrial applications. These harsh environments may involve extreme physical conditions, such as high-temperature, high-pressure, corrosive agents, toxicity, strong electromagnetic interference, and high-energy radiation exposure. Due to these severe environmental conditions, conventional temperature sensors are often difficult to apply. This situation has opened a new but challenging opportunity for the sensor society to provide robust, high-performance, and cost-effective temperature sensors capable of operating in those harsh environments. The focus of this research program has been to develop a temperature measurement system for temperature measurements in the primary and secondary stages of slagging gasifiers. For this application the temperature measurement system must be able to withstand the extremely harsh environment posed by the high temperatures and corrosive agents present in these systems. Real-time, accurate and reliable monitoring of temperature for the coal gasification process is important to realize the full economic potential of these gasification systems. Long life and stability of operation in the high temperature environment is essential for the temperature measurement system to ensure the continuous running of the coal gasification system over the long term. In this high temperature and chemically corrosive environment, rather limited high temperature measurement techniques such as high temperature thermocouples and optical/acoustic pyrometers are available, each with their own limitations. In this research program, five different temperature sensing schemes based on the single crystal sapphire

  11. Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion.

    Science.gov (United States)

    Yu, Yang; Zhang, Xiao-Meng; Ma, Jian-Ping; Liu, Qi-Kui; Wang, Peng; Dong, Yu-Bin

    2014-02-11

    A porous Cu(I)-MOF was constructed from CuI and 1-benzimidazolyl-3,5-bis(4-pyridyl)benzene. This Cu(I)-MOF can be a highly sensitive naked-eye colorimetric sensor to successively detect water and formaldehyde species in a single-crystal-to-single-crystal fashion. Solid-state guest-responsive luminescence is also used to monitor the sensing process.

  12. Buckling of Single-Crystal Silicon Nanolines under Indentation

    Directory of Open Access Journals (Sweden)

    Min K. Kang

    2008-01-01

    Full Text Available Atomic force microscope-(AFM- based indentation tests were performed to examine mechanical properties of parallel single-crystal silicon nanolines (SiNLs of sub-100-nm line width, fabricated by a process combining electron-beam lithography and anisotropic wet etching. The SiNLs have straight and nearly atomically flat sidewalls, and the cross section is almost perfectly rectangular with uniform width and height along the longitudinal direction. The measured load-displacement curves from the indentation tests show an instability with large displacement bursts at a critical load ranging from 480 μN to 700 μN. This phenomenon is attributed to a transition of the buckling mode of the SiNLs under indentation. Using a set of finite element models with postbuckling analyses, we analyze the indentation-induced buckling modes and investigate the effects of tip location, contact friction, and substrate deformation on the critical load of mode transition. The results demonstrate a unique approach for the study of nanomaterials and patterned nanostructures via a combination of experiments and modeling.

  13. Ferromagnetism in Silicon Single Crystals with Positively Charged Vacancy Clusters

    Science.gov (United States)

    Liu, Yu; Zhang, Xinghong; Yuan, Quan; Han, Jiecai; Zhou, Shengqiang; Song, Bo

    Defect-induced ferromagnetism provides an alternative for organic and semiconductor spintronics. Here, we investigated the magnetism in Silicon after neutron irradiation and try to correlate the observed magnetism to particular defects in Si. Commercially available p-type Si single crystal wafer is cut into pieces for performing neutron irradiations. The magnetic impurities are ruled out as they can not be detected by secondary ion mass spectroscopy. With positron annihilation lifetime spectroscopy, the positron trapping center corresponding to lifetime 375 ps is assigned to a kind of stable vacancy clusters of hexagonal rings (V6) and its concentration is enhanced by increasing neutron doses. After irradiation, the samples still show strong diamagnetism. The weak ferromagnetic signal in Si after irradiation enhances and then weakens with increasing irradiation doses. The saturation magnetization at room temperature is almost the same as that at 5 K. The X-ray magnetic circular dichroism further provides the direct evidence that Silicon is the origin of this ferromagnetism. Using first-principles calculations, it is found that positively charged V6 brings the spin polarization and the defects have coupling with each other. The work is financially supported by the Helmholtz Postdoc Programme (Initiative and Networking Fund, PD-146).

  14. Field emission properties of single crystal chromium disilicide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, L. A.; Carpena-Nunez, J.; Yang, D.; Fonseca, L. F. [Department of Physics, University of Puerto Rico, Rio Piedras Campus, P.O. Box 70377, San Juan, 00931 (Puerto Rico)

    2013-01-07

    The composition, crystal structure, and field emission properties of high-crystallinity chromium disilicide (CrSi{sub 2}) nanowires synthesized by a vapor deposition method have been studied. High resolution transmission electron microscopy, energy dispersive spectroscopy, and selected area electron diffraction studies confirm the single-crystalline structure and composition of the CrSi{sub 2} nanowires. Field emission measurements show that an emission current density of 0.1 {mu}A/cm{sup 2} was obtained at a turn-on electric field intensity of 2.80 V/{mu}m. The maximum emission current measured was 1.86 mA/cm{sup 2} at 3.6 V/{mu}m. The relation between the emission current density and the electric field obtained follows the Fowler-Nordheim equation, with an enhancement coefficient of 1140. The electrical conductivity of single nanowires was measured by using four-point-probe specialized microdevices at different temperatures, and the calculated values are close to those reported in previous studies for highly conductive single crystal bulk CrSi{sub 2}. The thermal tolerance of the nanowires was studied up to a temperature of 1100 Degree-Sign C. The stability of the field emission current, the I-E values, their thermal tolerance, and high electrical conductivity make CrSi{sub 2} nanowires a promising material for field emission applications.

  15. Field emission properties of single crystal chromium disilicide nanowires

    Science.gov (United States)

    Valentín, L. A.; Carpena-Nuñez, J.; Yang, D.; Fonseca, L. F.

    2013-01-01

    The composition, crystal structure, and field emission properties of high-crystallinity chromium disilicide (CrSi2) nanowires synthesized by a vapor deposition method have been studied. High resolution transmission electron microscopy, energy dispersive spectroscopy, and selected area electron diffraction studies confirm the single-crystalline structure and composition of the CrSi2 nanowires. Field emission measurements show that an emission current density of 0.1 μA/cm2 was obtained at a turn-on electric field intensity of 2.80 V/μm. The maximum emission current measured was 1.86 mA/cm2 at 3.6 V/μm. The relation between the emission current density and the electric field obtained follows the Fowler-Nordheim equation, with an enhancement coefficient of 1140. The electrical conductivity of single nanowires was measured by using four-point-probe specialized microdevices at different temperatures, and the calculated values are close to those reported in previous studies for highly conductive single crystal bulk CrSi2. The thermal tolerance of the nanowires was studied up to a temperature of 1100 °C. The stability of the field emission current, the I-E values, their thermal tolerance, and high electrical conductivity make CrSi2 nanowires a promising material for field emission applications.

  16. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  17. Growth and Characterization of Morpholium Cadmium Acetoperchlorate Single Crystal

    Directory of Open Access Journals (Sweden)

    D. Shyamala

    2016-06-01

    Full Text Available In the search for novel crystal with promising nonlinear optical properties an attempt is made to grow morpholium cadmium aceto-perchlorate single crystals. The title compound is synthesized by slow evaporation technique at room temperature. The powder X-ray diffraction pattern has been recorded and the various planes of reflections are identified. The transmittance spectrum of the crystal in the UV–Vis region has been obtained. Using the FTIR spectrum, the vibrational modes of the crystal is analysed and the presence of cadmium in the crystal is confirmed. Thermogravimetric analysis and differential thermal analysis studies have been done to assess the thermal stability of the grown crystal. The dielectric measurement for the crystal is carried out in the range of 50 Hz to 5 MHz for three different temperatures 40ºC, 80ºC and 120ºC to study the electrical nature of the grown crystal. The nonlinear optical property of the grown crystal is confirmed.

  18. Plastic anisotropy in MoSi{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Maloy, S.A.

    1993-05-01

    Single crystals Of MoSi{sub 2} are an order of magnitude stronger when compressed along [001] than along any other orientation. This is because the easy slip systems, <101><100> and <110><111>, have a zero Schmid factor acting on them so that harder slip systems are forced into operation. We find that [001] crystals compressed at 1OOO{degree}C yield by slip on <103><331>. TEM shows that the 1/2<331> dislocations tend to decompose into 1/2<111> and <110> dislocations. This decomposition process apparently inhibits the mobility of 1/2<331> dislocations at higher temperatures and another system, <101><1ll>, becomes operative at 1300{degree}C and above. [021] crystals have been tested for comparison and are found to yield at much lower stresses on the easy systems. In the design of advanced high temperature structural materials based on MOSi{sub 2}, the large plastic anisotropy should be used to advantage.

  19. Defect sensitive etching of hexagonal boron nitride single crystals

    Science.gov (United States)

    Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam

    2017-12-01

    Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.

  20. Employing a cylindrical single crystal in gas-surface dynamics

    Science.gov (United States)

    Hahn, Christine; Shan, Junjun; Liu, Ying; Berg, Otto; Kleijn, Aart W.; Juurlink, Ludo B. F.

    2012-03-01

    We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a crystal temperature range of 89 to 1100 K. A microchannel plate-based low energy electron diffraction/retarding field Auger electron spectrometer (AES) apparatus identifies surface structures present on the outer surface of the cylinder, while a separate double pass cylindrical mirror analyzer AES verifies surface cleanliness. A supersonic molecular beam, skimmed by a rectangular slot, impinges molecules on a narrow longitudinal strip of the surface. Here, we use the King and Wells technique to demonstrate how surface structure influences the dissociation probability of deuterium at various kinetic energies. Finally, we introduce spatially-resolved temperature programmed desorption from areas exposed to the supersonic molecular beam to show how surface structures influence desorption features.

  1. Solidification microstructures in single-crystal stainless steel melt pools

    Energy Technology Data Exchange (ETDEWEB)

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  2. Ultraviolet Laser-induced ignition of RDX single crystal.

    Science.gov (United States)

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-02-05

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm(2). The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique.

  3. What is the role of rhenium in single crystal superalloys?

    Directory of Open Access Journals (Sweden)

    Mottura Alessandro

    2014-01-01

    Full Text Available Rhenium plays a critical role in single-crystal superalloys –its addition to first generation alloys improves creep life by a factor of at least two, with further benefits for fatigue performance. Its use in alloys such as PWA1484, CMSX-4 and Rene N5 is now widespread, and many in this community regard Re as the “magic dust”. In this paper, the latest thinking concerning the origins of the “rhenium-effect” is presented. We start by reviewing the hypothesis that rhenium clusters represent barriers to dislocation motion. Recent atom probe tomography experiments have shown that Re may instead form a solid solution with Ni at low concentrations (< 7 at.%. Density functional theory calculations indicate that, in the solid solution, short range ordering of Re may be expected. Finally, Re has been shown to diffuse slowly in the γ-Ni phase. Calculations using a semi-analytical dislocation climb/glide model based upon the work of McLean and Dyson have been used to rationalise the composition-dependence of creep deformation in these materials. All evidence points to two important factors: (i the preferred partitioning of Re to the γ phase, where dislocation activity preferentially occurs during the tertiary creep regime and (ii a retardation effect on dislocation segments at γ/γ′ interfaces, which require non-conservative climb and thus an associated vacancy flux.

  4. Series of solvent-induced single-crystal to single-crystal transformations with different sizes of solvent molecules.

    Science.gov (United States)

    He, Yuan-Chun; Yang, Jin; Liu, Ying-Ying; Ma, Jian-Fang

    2014-07-21

    A highly stable soft porous coordination polymer (PCP), namely [Cu3(TP)4(N3)2(DMF)2]·2H2O·2DMF (1), has been synthesized via an in situ synthesis of 4-tetrazole pyridine (TP) under solvothermal conditions (DMF = N,N'-dimethylformamide). Remarkably, the solvent molecules in 1 can be respectively exchanged with cyclohexane (C6H12), cyclopentane (C5H10), decahydronaphthalene (C10H18), 1,4-dioxane (C4H8O2), and tetrahydropyrane (C5H10O) in single-crystal to single-crystal (SCSC) manners to yield [Cu3(TP)4(N3)2(DMF)2]·3C6H12 (1a), [Cu3(TP)4(N3)2(DMF)2]·2C5H10 (1b), [Cu3(TP)4(N3)2(DMF)2]·H2O·C10H18 (1c), [Cu3(TP)4(N3)2(DMF)2]·C4H8O2 (1d), [Cu3(TP)4(N3)2]·3C4H8O2 (1e), and [Cu3(TP)4(N3)2]·2H2O·C5H10O (1f). Further, the occluded cyclohexane molecules in 1a can be removed by heating to give its porous guest-free form [Cu3(TP)4(N3)2(DMF)2] (1g). Particularly, in water, 1 can lose its coordinated N3(-) anions to generate [Cu(TP)2(H2O)4]·4H2O (1h). More interestingly, the soft PCP (1) demonstrates the guest selectivity for the cycloalkane solvents, namely cyclohexane, cyclopentane, and decahydronaphthalene, in SCSC manners for the first time, attributed to the synergy effect between the size and geometry of the solvent and the shape of the framework cavity. Moreover, the desolvated samples of 1e show the highly selective gas adsorption of CO2 over N2, indicating its potential application in the separation of the CO2/N2 mixture.

  5. A reconstruction strategy to synthesize mesoporous SAPO molecular sieve single crystals with high MTO catalytic activity.

    Science.gov (United States)

    Wang, Chan; Yang, Miao; Li, Mingrun; Xu, Shutao; Yang, Yue; Tian, Peng; Liu, Zhongmin

    2016-05-11

    Mesoporous SAPO-34 single crystals with tunable porosity and Si content have been fast synthesized within 4 hours by a reconstruction strategy, which show excellent hydrothermal stability and MTO catalytic activity. This new strategy is further proven to be applicable to prepare other mesoporous SAPO molecular sieve single crystals.

  6. Guest replacement in a flexible single-crystal host by mixing the surrounding gas.

    Science.gov (United States)

    Takamizawa, Satoshi; Miyake, Ryosuke

    2009-07-21

    The adsorption behavior of a single-crystal host [Cu2(bza)4(pyz)]n under vapor was studied by adsorption measurements and single-crystal X-ray analyses, demonstrating the sharp replacement of the included guest by mixing the surrounding vapor.

  7. Creep-fatigue interactions in equiaxed and single crystal Ni-base superalloys

    Directory of Open Access Journals (Sweden)

    Vacchieri E.

    2014-01-01

    Full Text Available Ni-base superalloys are employed as structural materials for the most critical hot gas path components of gas turbines. The current market requirement is to cycle the machine every day, providing energy when it is most needed. It is therefore important to understand how creep and fatigue damages interact in these components. Starting from a significant knowledge base of mechanical and microstructural behaviour established from standard tests of the equiaxed and single crystal superalloys, creep-fatigue tests have been performed to evaluate how the two damage conditions develop together. The creep-fatigue testing conditions represent the maximum temperature and strain at the critical locations in real components, while the position of hold-time has been varied from tensile to compressive to understand the effect on reduction in crack initiation endurance with respect to standard LCF tests and on the microstructural mechanisms. The experimental test results have been explained in terms of microstructural evolution and they have been correlated to that observed at critical locations in real components.

  8. Evolution of the Surface Science of Catalysis from Single Crystals to Metal Nanoparticles under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-03-06

    Vacuum studies of metal single crystal surfaces using electron and molecular beam scattering revealed that the surface atoms relocate when the surface is clean (reconstruction) and when it is covered by adsorbates (adsorbate induced restructuring). It was also discovered that atomic steps and other low coordination surface sites are active for breaking chemical bonds (H-H, O=O, C-H, C=O and C-C) with high reaction probability. Investigations at high reactant pressures using sum frequency generation (SFG)--vibrational spectroscopy and high pressure scanning tunneling microscopy (HPSTM) revealed bond breaking at low reaction probability sites on the adsorbate-covered metal surface, and the need for adsorbate mobility for continued turnover. Since most catalysts (heterogeneous, enzyme and homogeneous) are nanoparticles, colloid synthesis methods were developed to produce monodispersed metal nanoparticles in the 1-10 nm range and controlled shapes to use them as new model catalyst systems in two-dimensional thin film form or deposited in mesoporous three-dimensional oxides. Studies of reaction selectivity in multipath reactions (hydrogenation of benzene, cyclohexene and crotonaldehyde) showed that reaction selectivity depends on both nanoparticle size and shape. The oxide-metal nanoparticle interface was found to be an important catalytic site because of the hot electron flow induced by exothermic reactions like carbon monoxide oxidation.

  9. Growth of single crystals of BaFe12O19 by solid state crystal growth

    Science.gov (United States)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  10. Solid-state molecular organometallic chemistry. Single-crystal to single-crystal reactivity and catalysis with light hydrocarbon substrates.

    Science.gov (United States)

    Chadwick, F Mark; McKay, Alasdair I; Martinez-Martinez, Antonio J; Rees, Nicholas H; Krämer, Tobias; Macgregor, Stuart A; Weller, Andrew S

    2017-08-01

    Single-crystal to single-crystal solid/gas reactivity and catalysis starting from the precursor sigma-alkane complex [Rh(Cy2PCH2CH2PCy2)(η2η2-NBA)][BArF4] (NBA = norbornane; ArF = 3,5-(CF3)2C6H3) is reported. By adding ethene, propene and 1-butene to this precursor in solid/gas reactions the resulting alkene complexes [Rh(Cy2PCH2CH2PCy2)(alkene) x ][BArF4] are formed. The ethene (x = 2) complex, [Rh(Cy2PCH2CH2PCy2)(ethene)2][BArF4]-Oct, has been characterized in the solid-state (single-crystal X-ray diffraction) and by solution and solid-state NMR spectroscopy. Rapid, low temperature recrystallization using solution methods results in a different crystalline modification, [Rh(Cy2PCH2CH2PCy2)(ethene)2][BArF4]-Hex, that has a hexagonal microporous structure (P6322). The propene complex (x = 1) [Rh(Cy2PCH2CH2PCy2)(propene)][BArF4] is characterized as having a π-bound alkene with a supporting γ-agostic Rh···H3C interaction at low temperature by single-crystal X-ray diffraction, variable temperature solution and solid-state NMR spectroscopy, as well as periodic density functional theory (DFT) calculations. A fluxional process occurs in both the solid-state and solution that is proposed to proceed via a tautomeric allyl-hydride. Gas/solid catalytic isomerization of d3-propene, H2C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000

  11. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Wang, Anbo [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Yu, Zhihao [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States)

    2013-12-31

    This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, from April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal gasifier

  12. Fabrication of Single Crystal MgO Capsules

    Science.gov (United States)

    Danielson, Lisa

    2012-01-01

    A method has been developed for machining MgO crystal blocks into forms for containing metallic and silicate liquids at temperatures up to 2,400 C, and pressures up to at least 320 kilobars. Possible custom shapes include tubes, rods, insulators, capsules, and guides. Key differences in this innovative method include drilling along the crystallographic zone axes, use of a vibration minimizing material to secure the workpiece, and constant flushing of material swarf with a cooling medium/lubricant (water). A single crystal MgO block is cut into a section .5 mm thick, 1 cm on a side, using a low-speed saw with a 0.004 blade. The cut is made parallel to the direction of cleavage. The block may be cut to any thickness to achieve the desired length of the piece. To minimize drilling vibrations, the MgO block is mounted on a piece of adhesive putty in a vise. The putty wad cradles the bottom half of the entire block. Diamond coring tools are used to drill the MgO to the desired custom shape, with water used to wet and wash the surface of swarf. Compressed air may also be used to remove swarf during breaks in drilling. The MgO workpiece must be kept cool at all times with water. After all the swarf is rinsed off, the piece is left to dry overnight. If the workpiece is still attached to the base of the MgO block after drilling, it may be cut off by using a diamond cutoff wheel on a rotary hand tool or by using a low-speed saw.

  13. Charged-particle spectroscopy in organic semiconducting single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ciavatti, A.; Basiricò, L.; Fraboni, B. [Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Sellin, P. J. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Fraleoni-Morgera, A. [ELETTRA-Sincrotrone Trieste, Strada Statale 14, Km 163.5, Basovizza, Trieste (Italy); Department of Engineering and Architecture, University of Trieste, V. Valerio 10, 34100 Trieste (Italy); CNR-Nano S3 Institute, Via Campi 213/A, 41125 Modena (Italy)

    2016-04-11

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτ{sub coplanar} = (5 .5 ± 0.6 ) × 10{sup −6} cm{sup 2}/V and μτ{sub sandwich} = (1 .9 ± 0.2 ) × 10{sup −6} cm{sup 2}/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  14. Single-crystal elastic constants of natural ettringite

    KAUST Repository

    Speziale, Sergio

    2008-07-01

    The single-crystal elastic constants of natural ettringite were determined by Brillouin spectroscopy at ambient conditions. The six non-zero elastic constants of this trigonal mineral are: C11 = 35.1 ± 0.1 GPa, C12 = 21.9 ±0.1 GPa, C13 = 20.0 ± 0.5 GPa, C14 = 0.6 ± 0.2 GPa, C33 = 55 ± 1 GPa, C44 = 11.0 ± 0.2 GPa. The Hill average of the aggregate bulk, shear modulus and the polycrystal Young\\'s modulus and Poisson\\'s ratio are 27.3 ± 0.9 GPa, 9.5 ± 0.8 GPa, 25 ± 2 GPa and 0.34 ± 0.02 respectively. The longitudinal and shear elastic anisotropy are C33/C11 = 0.64 ± 0.01 and C66/C44 =0.60 ± 0.01. The elastic anisotropy in ettringite is connected to its crystallographic structure. Stiff chains of [Al(OH)6]3- octahedra alternating with triplets of Ca2+ in eight-fold coordination run parallel to the c-axis leading to higher stiffness along this direction. The determination of the elastic stiffness tensor can help in the prediction of the early age properties of cement paste when ettringite crystals precipitate and in the modeling of both internal and external sulfate attack when secondary ettringite formation leads to expansion of concrete. © 2008 Elsevier Ltd. All rights reserved.

  15. Luminescence Properties of ScPO{sub 4} Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, L.A.; Trukhin, A.N.

    1999-08-16

    Flux-grown ScPO{sub 4} single crystals exhibit a number of luminescence bands in their x-ray-excited luminescence spectra - including sharp lines arising from rare-earth elements plus a number of broad bands at 5.6 cV, 4.4 eV, and 3 eV. The band at 5.6 eV was attributed to a self-trapped exciton (STE) [l], and it could be excited at 7 eV and higher energies. This luminescence is strongly polarized (P = 70 %) along the optical axes of the crystal and exhibits a kinetic decay time constant that varies from several ns at room temperature to {approximately}10 {micro}s at 60 K and up to {approximately}1 ms at 10 K. It is assumed that the STE is localized on the SC ions. The band at 3 eV can be excited in the range of the ScPO{sub 4} crystal transparency (decay time = 3 to 4 {micro}s.) This band is attributed to a lead impurity that creates different luminescence centers. At high temperatures, the band at 4.4 eV is dominant in the x-ray-excited TSL and afterglow spectra. Its intensity increases with irradiation time beginning at zero at the initial irradiation time. The 4.4 eV band does not appear in a fast process under a pulsed electron beam, showing that accumulation is necessary for its observation. A sample of ScPO{sub 4} doped with vanadium exhibited a prevalent band at 4.4 eV at T = 480 K.

  16. Magnetic anisotropy in clinopyroxene and orthopyroxene single crystals

    Science.gov (United States)

    Biedermann, Andrea R.; Pettke, Thomas; Bender Koch, Christian; Hirt, Ann M.

    2015-03-01

    Pyroxenes constitute an important component in mafic igneous and metamorphic rocks. They often possess a prismatic habit, and their long axis, the crystallographic c axis, helps define a lineation in a textured rock. Anisotropy of magnetic susceptibility (AMS) serves as a fabric indicator in igneous and metamorphic rocks. If a rock's AMS is carried by pyroxenes, it can be related to their crystallographic preferred orientation and degree of alignment. This requires knowing the intrinsic AMS of pyroxene single crystals. This study provides a comprehensive low-field and high-field AMS investigation of chemically diverse orthopyroxene and clinopyroxene crystals in relation to crystal structure, chemical composition, oxidation state of Fe, and the possible presence of ferromagnetic inclusions. The paramagnetic anisotropy, extracted from high-field data, shows clear relationships to crystallographic directions and Fe concentration both in clinopyroxene and orthopyroxene. In the diopside-augite series, the intermediate susceptibility is parallel to b, and the maximum is at 45° to the c axis. In aegirine, the intermediate axis remains parallel to b, while the maximum susceptibility is parallel to c. The AMS of spodumene depends on Fe concentration. In enstatite, the maximum susceptibility aligns with c and the minimum with b, and in the case of hypersthene, the maximum susceptibility is normal to the exsolution lamellae. Magnetite inclusions within augite possess a ferromagnetic anisotropy with consistent orientation of the principal susceptibilities, which dominates the low-field anisotropy. These results provide better understanding of magnetic anisotropy in pyroxenes and form a solid basis for interpretation of magnetic fabrics in pyroxene-bearing rocks.

  17. A high resolution powder diffractometer using focusing optics

    Indian Academy of Sciences (India)

    Research Centre, Mumbai 400 085, India. *Corresponding author. E-mail: siruguri@csr.ernet.in. Abstract. In this paper, we describe the design, construction and performance of a new high resolution neutron powder diffractometer that has been installed at the Dhruva reactor, Trombay, India. The instrument employs novel ...

  18. MOCVD epitaxial growth of single crystal GaN, AlN and AlxGa1-xN

    Science.gov (United States)

    Matloubian, M.; Gershenzon, M.

    1985-09-01

    Ga begins to deposit from a stream of trimethylgallium (TMG) in H2 at a minimum temperature of 475‡C. Addition of sufficient amounts of NH2 results in the growth of textured polycrystalline GaN on basal plane sapphire substrates above 500‡C. A minimum temperature of 800‡C is required for the epitaxial growth of GaN on the substrate. Under similar conditions, but with the TMG replaced with trimethylaluminum (TMA), polycrystalline A1N begins forming at 400‡C (in the absence of NH3,, the TMA starts pyrolyzing at 300‡C), but single crystal growth of A1N requires a temperature of at least 1200‡C. Epitaxial single crystal layers of Alx Ga1-x N can be grown in the temperature range 800-1200‡C, tne minimum temperature being approximately proportional to x, but preferential deposition of A1N on the hot walls of the reactor (>400‡C) precludes precise control of the alloy composition. This predeposition of A1N can be retarded by keeping the walls below 400‡C by using a water-cooled jacket, by rapid flow-rates, or by injecting the TMA through a nozzle close to the surface of the substrate.

  19. Low Temperature Mechanical Properties of Boron - Single-Crystal Silicon.

    Science.gov (United States)

    Mihailovich, Robert Emilio

    We have investigated, using mechanical resonator techniques, the importance of electronic states in the scattering of audio-frequency sound waves at low temperatures. Such states are known to exist in the energy-split ground state of holes bound to acceptor impurities in semiconductors. Accordingly, we studied the mechanical response of double-paddle resonators fabricated from single-crystal silicon wafers, doped to boron concentrations of 5.6 times 10^{13}/cc, 1.4 times 10^{15}/cc, 1.1 times 10^{16 }/cc, and 5.7 times 10 ^{16}/cc. The three highest dopant oscillators show a low -strain mechanical response that is dominated by scattering from such electronic hole states. All three oscillators show a dissipation maximum at 70-100mK, whose peak value increases with doping level. The normalized period change of all oscillators exhibits crystal softening below 10K, with this period change increasing with the doping level. The acoustic scattering from the holes is very strong. The oscillator made from our highest dopant sample, with about 1ppm boron impurities, has a peak dissipation of 2 times 10^{-5} at 65mK, and a period change of 3 times 10^{-3} below 1K. The dissipation data suggests that for these three oscillators, the hole level-splittings originate in the elastic strains from oxygen impurities. The response of the lowest doping oscillator shows very low dissipation and small normalized period shifts. We obtain a dissipation at 22mK of 3 times 10^{-8}. Such oscillators, then, would be very sensitive platforms for the study of small-dissipation processes at low temperatures. In addition, we observe in all our oscillators a high-strain nonlinear response which is more pronounced below about 0.3K. This nonlinearity was studied in the frequency shift of the resonance curve peak with amplitude. These "pulled" resonance curves are well described by classical nonlinear equations. Using these equations, we have mapped out the temperature dependence of this nonlinearity

  20. Improved critical current density in Zn doped YBCO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Manzoor, E-mail: manzoorhuss98@yahoo.co [Department of Electrical and Electronic Engineering, University Technology PETRONAS, 31750 Tronoh, Perak (Malaysia); Takita, Koki [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305 (Japan)

    2010-02-15

    Magnetic measurements were made using pure YBCO and Zn doped YBa{sub 2}(Cu{sub 1-x}Zn{sub x}){sub 3}O{sub 7-s}igma. Single crystals with Zn concentration of 0.5%, 1.5%, 3.0% and 4.3%. The magnetic hysteresis loops for these samples were measured in the temperature range 0.1 <= T/T{sub c} <= 0.96 under magnetic fields of 5 T using SQUID. It was found that the critical current density J{sub c} increased for low Zn content samples up to 3% Zn concentration compared to pure YBCO sample and decreased for the higher Zn content samples. These values varied consistently when compared at magnetic fields of 1 T and 3 T. Moreover Zn doped samples showed significant values of J{sub c} in the temperature range of 0.7-0.9T{sub c}, close to critical temperature compared to pure YBCO sample. The irreversibility field H{sub irr} was also enhanced in this temperature range showing consistent decrease with increase of Zn concentration. The peak field H{sub p} above H{sub c1} and irreversibility field H{sub irr}, both show power law dependence of the form H = m{sub 1}(1 - T/T{sub c}){sup m2} in the temperature range of 0.75-0.96T{sub c}. The values of parameter m{sub 2} increased from 1.44 to 1.95 for the samples up to 3% Zn content and decreased to 1.37 for higher Zn contents. The ratio H{sub irr}/H{sub p} was found to be 3-4 for the lower Zn content samples and was 7-8 for the sample with high Zn content indicating more disorder for higher Zn content samples. The region between peak field H{sub p} and irreversibility field H{sub irr} was broadened with the increase of Zn concentration. The strong effect of Zn substitution in modifying behavior of these samples even at elevated temperatures is possibly due to the changes in the anisotropy of our samples with the increase of Zn concentration and also due to the locally induced changes in magnetic moments by Zn substitution.

  1. Effect of Metal Dopant on Ninhydrin—Organic Nonlinear Optical Single Crystals

    OpenAIRE

    Sreenivasan, R. S.; Kanagathara, N.; Ezhamani, G.; Renganathan, N. G.; Anbalagan, G.

    2013-01-01

    In the present work, metal (Cu2+)-substituted ninhydrin single crystals were grown by slow evaporation method. The grown crystals have been subjected to single crystal XRD, powder X-ray diffraction, FTIR, dielectric and SHG studies. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in monoclinic system with noncentrosymmetric space group P21 with lattice parameters a=11.28 Å, b=5.98 Å, c=5.71 Å, α=90∘, β=98.57, γ=90∘, and V=381 (Å)3, which agrees very well with ...

  2. Growth and microtopographic study of CuInSe{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat - 388120 (India); Tailor, J. P. [Applied Physics Department, S.V.N.I.T., Surat, Gujarat - 395007 (India)

    2016-05-23

    The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.

  3. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    DEFF Research Database (Denmark)

    Muhrer, G.; Schonfeldt, T.; Iverson, E. B.

    2016-01-01

    , the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability...... of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains...

  4. Development of a new micro-furnace for "in situ" high-temperature single crystal X-ray diffraction measurements

    Science.gov (United States)

    Alvaro, Matteo; Angel, Ross J.; Marciano, Claudio; Zaffiro, Gabriele; Scandolo, Lorenzo; Mazzucchelli, Mattia L.; Milani, Sula; Rustioni, Greta; Domeneghetti, Chiara M.; Nestola, Fabrizio

    2015-04-01

    Several experimental methods to reliably determine elastic properties of minerals at non-ambient conditions have been developed. In particular, different techniques for generating high-pressure and high-temperature have been successfully adopted for single-crystal and powder X-ray diffraction measurements. High temperature devices for "in-situ" measurements should provide the most controlled isothermal environment as possible across the entire sample. It is intuitive that in general, thermal gradients across the sample increase as the temperature increases. Even if the small isothermal volume required for single-crystal X-ray diffraction experiments makes such phenomena almost negligible, the design of a furnace should also aim to reduce thermal gradients by including a large thermal mass that encloses the sample. However this solution often leads to complex design that results in a restricted access to reciprocal space or attenuation of the incident or diffracted intensity (with consequent reduction of the accuracy and/or precision in lattice parameter determination). Here we present a newly-developed H-shaped Pt-Pt/Rh resistance microfurnace for in-situ high-temperature single-crystal X-ray diffraction measurements. The compact design of the furnace together with the long collimator-sample-detector distance allows us to perform measurements up to 2θ = 70° with no further restrictions on any other angular movement. The microfurnace is equipped with a water cooling system that allows a constant thermal gradient to be maintained that in turn guarantees thermal stability with oscillations smaller than 5°C in the whole range of operating T of room-T to 1200°C. The furnace has been built for use with a conventional 4-circle Eulerian geometry equipped with point detector and automated with the SINGLE software (Angel and Finger 2011) that allows the effects of crystal offsets and diffractometer aberrations to be eliminated from the refined peak positions by the 8

  5. A preliminary review of organic materials single crystal growth by the Czochralski technique

    Science.gov (United States)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-01-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  6. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.

    2013-10-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano-crystalline metals, the superiority of small single crystals has neither been fundamentally explained nor quantified to this date. Here we present a molecular dynamics study of aluminum single crystals in the size range from 4.1 nm to 40.5 nm. We show that the ultimate mechanical strength deteriorates exponentially as the single crystal size increases. The small crystals superiority is explained by their ability to continuously form vacancies and to recover them. © 2013 Published by Elsevier B.V.

  7. Single Crystal Piezoelectric Deformable Mirrors with High Actuator Density and Large Stroke Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal piezoelectric deformable mirrors with high actuator density, fine pitch, large stroke and no floating wires will be developed for future NASA science...

  8. Single Crystal Piezomotor for Large Stroke, High Precision and Cryogenic Actuations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes a novel single crystal piezomotor for large stroke, high precision, and cryogenic actuations with capability of position set-hold with...

  9. Advanced Electroactive Single Crystal and Polymer Actuators for Passive Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Large stroke and high precision electroactive single crystal and polymer actuators are desired for cryogenic passive optics such as Fabry-Perot Interferometer (FPI)...

  10. Environmental Qualification of a Single-Crystal Silicon Mirror for Spaceflight Use

    Science.gov (United States)

    Hagopian, John; Chambers, John; Rohrback. Scott; Bly, Vincent; Morell, Armando; Budinoff, Jason

    2013-01-01

    This innovation is the environmental qualification of a single-crystal silicon mirror for spaceflight use. The single-crystal silicon mirror technology is a previous innovation, but until now, a mirror of this type has not been qualified for spaceflight use. The qualification steps included mounting, gravity change measurements, vibration testing, vibration- induced change measurements, thermal cycling, and testing at the cold operational temperature of 225 K. Typical mirrors used for cold applications for spaceflight instruments include aluminum, beryllium, glasses, and glass-like ceramics. These materials show less than ideal behavior after cooldown. Single-crystal silicon has been demonstrated to have the smallest change due to temperature change, but has not been spaceflight-qualified for use. The advantage of using a silicon substrate is with temperature stability, since it is formed from a stress-free single crystal. This has been shown in previous testing. Mounting and environmental qualification have not been shown until this testing.

  11. Polycrystal deformation and single crystal deformation: Dislocation structure and flow stress in copper

    DEFF Research Database (Denmark)

    Huang, X.; Borrego, A.; Pantleon, W.

    2001-01-01

    The relation between the polycrystal deformation and single crystal deformation has been studied for pure polycrystalline copper deformed in tension. The dislocation microstructure has been analyzed for grains of different orientation by transmission electron microscopy (TEM) and three types...

  12. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    Science.gov (United States)

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure.

  13. Design of a neutron diffractometer on biological macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, I.; Niimura, N. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In order to develop a diffractometer dedicated to neutron protein crystallography, a new special detector which has a large position-sensitive area with a high positional and time resolution is eagerly required. To determine the detector specifications a simulation software is needed, which can predict both the positions and times of scattered intensities from macromolecular crystals. Its development is still under progress. If an ideal detector becomes available, the data-taking efficiency will be better by a factor of 100, compared to that of BIX-3 at JRR-3M reactor in Japan, one of the best diffractometers for biology in the world. Measurement time of less than half a day for a complete data set can be achieved. Ultimately it is intended to cover up to 200 A in unit cell dimensions and to get reliable data from crystals of less than 1 mm cube in volume. (author)

  14. Development of BATAN’s texture diffractometer (current status)

    Energy Technology Data Exchange (ETDEWEB)

    Priyanto, T. H., E-mail: thardi@batan.go.id; Bharoto,; Mugirahardjo, H.; Muslih, R.; Ramadhani, A.; Sairun [Center for Nuclear Industrial Material Technology (PTBIN) National Nuclear Energy Agency (BATAN) Kawasan Puspiptek Serpong, Tangerang Selatan (Indonesia)

    2015-04-16

    Texture Diffractometer, called DN2, is one of neutron diffractometers in BATAN which is dedicated for texture measurement using neutron diffraction method. To obtain better performance of the DN2, a flight tube goniometer have been installed between the monochromator and sample position. By adjusting the flight tube goniometer, defocusing effect at direct beam and background effect could be reduced significantly. Some experiments have been carried out to characterize DN2 performance. The flight tube goniometer alignment and neutron wavelength calibration were characterized using silicon standard sample Si640d. Data refinement of diffraction pattern was analyzed using MAUD software and it is obtained reliability factor with background, R{sub wpb}, reduced significantly, from 42.53 % to 19.36 % after setting of flight tube goniometer. Reliability factor without background (R{sub wp}) was reduced from 27.41% to 21.36%. Calibrated of neutron wavelengh, λ = 1,2799 Angstrom is obtained.

  15. A compact high-resolution X-ray powder diffractometer.

    Science.gov (United States)

    Fewster, Paul F; Trout, David R D

    2013-12-01

    A new powder diffractometer operating in transmission mode is described. It can work as a rapid very compact instrument or as a high-resolution instrument, and the sample preparation is simplified. The incident beam optics create pure Cu K α 1 radiation, giving rise to peak widths of ∼0.1° in 2θ in compact form with a sample-to-detector minimum radius of 55 mm, reducing to peak widths of advantage of this geometry is that the resolution of the diffractometer can be calculated precisely and the instrumental artefacts can be analysed easily without a sample present. The performance is demonstrated with LaB 6 and paracetamol, and a critical appraisal of the uncertainties in the measurements is presented. The instantaneous data collection offers possibilities in dynamic experiments.

  16. X-ray diffractometer configurations for thin film analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haase, A. [Rich. Seifert and Co., Analytical X-ray Systems, Ahrensburg (Germany)

    1996-09-01

    A presentation of various configurations of focusing Seemann-Bohlin diffractometer, parafocusing Bragg-Brentano diffractometer and parallel beam are demonstrated. Equipped with different thin film attachments a comparison to conventional measurements are given. The application of different detector types like scintillation, gas proportional, electroluminescence (LUX) and solid state are described. Typical instrument set-ups for reflectometry, grazing incidence diffraction, total reflection, high resolution X-ray diffraction are explained. Different elements like slits, soller slits, pinhole collimators, crystal monochromators, monofiber (FOX) and polycapillaries (multifiber lens, Kumakhov lens`), flat or curved multilayer with constant or variable d-spacing, and their combinations are presented. The comparison of different beam conditioners in peak-to-background ratios are given. Wavelength dispersive scans show the energy discrimination possibilities of different beam optics.

  17. Synthesis, single crystal structure and energy optimization of a multicomponent salt of imidazole and tetrabromoterepthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Singha, S.; Kumar, S., E-mail: skndey@gmail.com [Department of Physics, Jadavpur University, Kolkata-700032 (India); Dey, S. K., E-mail: skndey@gmail.com [Department of Physics, Jadavpur University, Kolkata-700032 (India); Department of Physics, NITMAS, 24 Paragana(S)-743368 (India)

    2015-06-24

    Single crystal of a multicomponent salt (IMTBTP) of imidazole with tetrabromoterepthalic acid has been synthesized by slow evaporation method at room temperature. The crystal structure of the salt has been determined by single crystal x-ray diffraction technique. The supramolecular structure analysis reveals that the multicomponent salt is formed by noncovalent hydrogen bonding interaction and Br···π interaction. The energy optimization and HOMO-LUMO energy gap calculation have been carried out by Density Functional Theory.

  18. Mesoporous Single-crystal CoSn(OH)6 Hollow Structures with Multilevel Interiors

    OpenAIRE

    Wang, Zhiyu; Wang, Zichen; Wu, Haobin; Lou, Xiong Wen (David)

    2013-01-01

    Hollow nanostructures represent a unique class of functional nanomaterials with many applications. In this work, a one-pot and unusual ?pumpkin-carving? protocol is demonstrated for engineering mesoporous single-crystal hollow structures with multilevel interiors. Single-crystal CoSn(OH)6 nanoboxes with uniform size and porous shell are synthesized by fast growth of CoSn(OH)6 nanocubes and kinetically-controlled etching in alkaline medium. Detailed investigation on reaction course suggests th...

  19. Characterization of Point Defects in Lithium Aluminate (LiAlO2) Single Crystals

    Science.gov (United States)

    2015-09-17

    natural lithium , so enriching lithium aluminate with 6Li during the crystal- growth process will increase the tritium production for a given volume of...CHARACTERIZATION OF POINT DEFECTS IN LITHIUM ALUMINATE (LiAlO2) SINGLE CRYSTALS DISSERTATION Maurio S. Holston, CPT, USA AFIT-ENP-DS-15-S-025...15-S-025 CHARACTERIZATION OF POINT DEFECTS IN LITHIUM ALUMINATE (LiAlO2) SINGLE CRYSTALS DISSERTATION Presented to the Faculty Graduate School of

  20. High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy

    Science.gov (United States)

    Qi, Meng; Nomoto, Kazuki; Zhu, Mingda; Hu, Zongyang; Zhao, Yuning; Protasenko, Vladimir; Song, Bo; Yan, Xiaodong; Li, Guowang; Verma, Jai; Bader, Samuel; Fay, Patrick; Xing, Huili Grace; Jena, Debdeep

    2015-12-01

    Molecular beam epitaxy grown GaN p-n vertical diodes are demonstrated on single-crystal GaN substrates. A low leakage current GaN. Single-crystal GaN substrates with very low dislocation densities enable the low leakage current and the high breakdown field in the diodes, showing significant potential for MBE growth to attain near-intrinsic performance when the density of dislocations is low.

  1. Synthesis, single crystal structure and energy optimization of a multicomponent salt of imidazole and tetrabromoterepthalic acid

    Science.gov (United States)

    Singha, S.; Dey, S. K.; Kumar, S.

    2015-06-01

    Single crystal of a multicomponent salt (IMTBTP) of imidazole with tetrabromoterepthalic acid has been synthesized by slow evaporation method at room temperature. The crystal structure of the salt has been determined by single crystal x-ray diffraction technique. The supramolecular structure analysis reveals that the multicomponent salt is formed by noncovalent hydrogen bonding interaction and Br...π interaction. The energy optimization and HOMO-LUMO energy gap calculation have been carried out by Density Functional Theory.

  2. Structural and optical properties of europium doped zirconia single crystals fibers grown by laser floating zone

    OpenAIRE

    Soares, M.R.N.; Nico, C.; Peres, M.; Ferreira, N.; Fernandes, A.J.S.; Monteiro, T.; COSTA, F.M.

    2011-01-01

    Yttria stabilized zirconia single crystal fibers doped with europium ions were developed envisaging optical applications. The laser floating zone technique was used in order to grow millimetric high quality single crystal fibers. The as-grown fibers are completely transparent and inclusion free, exhibiting a cubic structure. Under ultraviolet (UV) excitation, a broad emission band appears at 551 nm. The europium doped fibers are translucent with a tetragonal structure and exhibit an intense r...

  3. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  4. Neutron diffractometer RSND for residual stress analysis at CAEP

    Science.gov (United States)

    Li, Jian; Wang, Hong; Sun, Guangai; Chen, Bo; Chen, Yanzhou; Pang, Beibei; Zhang, Ying; Wang, Yun; Zhang, Changsheng; Gong, Jian; Liu, Yaoguang

    2015-05-01

    Residual Stress Neutron Diffractometer (RSND) has been built at China Academy of Engineering Physics (CAEP) in Mianyang. Due to its excellent flexibility, the residual stress measurement on different samples, as well as in-situ study for materials science, can be carried out through RSND. The basic tests on its intensity and resolution and some preliminary experimental results under mechanical load, demonstrate the high quality of RSND.

  5. Tricks and tips on handling a powder diffractometers

    Energy Technology Data Exchange (ETDEWEB)

    Veroli, C. [CNR, Montelibretti, Rome (Italy). Istituto Chimica dei Materiali

    1996-09-01

    In the present work, the authors illustrate the procedure to be followed when small quantities of powder have to be analysed, and they also report how to generally reduce the measurement background. In addition, they describe how the diffractometer can be used to collect thin-film spectra. The experimental procedure requires careful handling because inappropriate or careless use of the instrument can lead to its damage.

  6. Reversible Single-Crystal-to-Single-Crystal Structural Transformation in a Mixed-Ligand 2D Layered Metal-Organic Framework: Structural Characterization and Sorption Study

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-12-01

    Full Text Available A 3D supramolecular network, [Cd(bipy(C4O4(H2O2]·3H2O (1 (bipy = 4,4′-bipyridine and C4O42− = dianion of H2C4O4, constructed by mixed-ligand two-dimensional (2D metal-organic frameworks (MOFs has been reported and structurally determined by the single-crystal X-ray diffraction method and characterized by other physicochemical methods. In 1, the C4O42− and bipy both act as bridging ligands connecting the Cd(II ions to form a 2D layered MOF, which are then extended to a 3D supramolecular network via the mutually parallel and interpenetrating arrangements among the 2D-layered MOFs. Compound 1 shows a two-step dehydration process with weight losses of 11.0% and 7.3%, corresponding to the weight-loss of three guest and two coordinated water molecules, respectively, and exhibits an interesting reversible single-crystal-to-single-crystal (SCSC structural transformation upon de-hydration and re-hydration for guest water molecules. The SCSC structural transformation have been demonstrated and monitored by single-crystal and X-ray powder diffraction, and thermogravimetic analysis studies.

  7. Gallium arsenide single crystal solar cell structure and method of making

    Science.gov (United States)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  8. Growth and characterization of air annealing Mn-doped YAG:Ce single crystal for LED

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Weidong, E-mail: xiangweidong001@126.com [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China); College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Zhong, Jiasong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China); College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Zhao, Yinsheng [Pan Asia Technical Automotive Center Co. Ltd., Shanghai 201201 (China); Zhao, Binyu [College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Dong, Yongjun [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800 (China); Zhang, Zhimin; Chen, Zhaoping; Liu, Bingfeng [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China)

    2012-11-25

    Highlights: Black-Right-Pointing-Pointer The YAG:Ce,Mn single crystal was well synthesized by the Czochralski (CZ) method. Black-Right-Pointing-Pointer The emission intensity of the sample has been influenced after annealing. Black-Right-Pointing-Pointer Annealed in the air at 1200 Degree-Sign C was the most optimal annealing condition. Black-Right-Pointing-Pointer The single crystal could be used in the white light LED which emitted by blue light. - Abstract: The growth of Mn-doped YAG:Ce (yttrium aluminum garnet doped cerium) single crystal by the Czochralski (CZ) method and the characterization of its spectroscopy and color-electric parameters are presented. The absorption spectra indicate that the crystal absorbed highly in the 300-500 nm wavelength range. The emission spectrum of the crystal consists of a peak around 538 nm when excited by 460 nm blue light, which prove the YAG:Ce,Mn single crystal could be used in the white light emitting doides (LED). The different charges of Mn ions have different luminescence properties, and the air annealing process for the single crystal would change the concentration of Mn ions with different charges, which could influence the emission intensity of the single crystal.

  9. High resolution neutron diffractometer HRND at research reactor CMRR

    Science.gov (United States)

    Zhang, J.; Xia, Y.; Wang, Y.; Xie, C.; Sun, G.; Liu, L.; Pang, B.; Li, J.; Huang, C.; Liu, Y.; Gong, J.

    2018-01-01

    The high resolution neutron diffractometer HRND is located at the 20 MW China Mianyang Research Reactor (CMRR), which is a neutron powder diffractometer especially dedicated to crystal and magnetic structure studies for polycrystalline powder samples. A vertical focusing Ge (511) monochromator produce a monochromatic neutron beam with a wavelength of 1.885 Å at a fixed take-off angle of 120o. An array of 64 equidistant 3He filled proportional counters can acquire diffraction patterns with a large-scale diffraction angle range over 160o. As all the Soller slit collimators of HRND have a collimation angle of 10' and the monochromator has an average mosaicity of 0.359o, HRND obtains a best resolution of about 1.6\\textperthousand based on experiments, which makes the resolution of HRND can compete with the mainstream-level high resolution neutron powder diffractometers in the world. Equipped with a cryostat and a furnace, HRND allows structural characterization in an extremely broad temperature range. The details of the configuration and performance of the instrument are reported along with its specifications and performance assessments in the present paper.

  10. Temperature-induced reversible first-order single crystal to single crystal phase transition in Boc-γ(4)(R)Val-Val-OH: interplay of enthalpy and entropy.

    Science.gov (United States)

    Pal, Rumpa; Reddy, M B Madhusudana; Dinesh, Bhimareddy; Balaram, Padmanabhan; Guru Row, Tayur N

    2014-10-09

    Crystals of Boc-γ(4)(R)Val-Val-OH undergo a reversible first-order single crystal to single crystal phase transition at Tc ≈ 205 K from the orthorhombic space group P22121 (Z' = 1) to the monoclinic space group P21 (Z' = 2) with a hysteresis of ∼2.1 K. The low-temperature monoclinic form is best described as a nonmerohedral twin with ∼50% contributions from its two components. The thermal behavior of the dipeptide crystals was characterized by differential scanning calorimetry experiments. Visual changes in birefringence of the sample during heating and cooling cycles on a hot-stage microscope with polarized light supported the phase transition. Variable-temperature unit cell check measurements from 300 to 100 K showed discontinuity in the volume and cell parameters near the transition temperature, supporting the first-order behavior. A detailed comparison of the room-temperature orthorhombic form with the low-temperature (100 K) monoclinic form revealed that the strong hydrogen-bonding motif is retained in both crystal systems, whereas the non-covalent interactions involving side chains of the dipeptide differ significantly, leading to a small change in molecular conformation in the monoclinic form as well as a small reorientation of the molecules along the ac plane. A rigid-body thermal motion analysis (translation, libration, screw; correlation of translation and libration) was performed to study the crystal entropy. The reversible nature of the phase transition is probably the result of an interplay between enthalpy and entropy: the low-temperature monoclinic form is enthalpically favored, whereas the room-temperature orthorhombic form is entropically favored.

  11. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)

    2016-12-01

    Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  12. Synthesis and photocatalytic activity of mesoporous – (001) facets TiO{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yeshuo [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Fei, Xuening, E-mail: xueningfei@126.com [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); School of Science, Tianjin Chengjian University, Tianjin 300384 (China); Zhou, Yongzhu [School of Science, Tianjin Chengjian University, Tianjin 300384 (China)

    2017-05-01

    Highlights: • The (001) facets of TiO{sub 2} single crystals with mesoporous structure. • The (010) and (100) facets of TiO{sub 2} single crystals were covered by the flower – shaped TiO{sub 2} crystals. • This special structure could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. - Abstract: In this work, the mesoporous – (001) facets TiO{sub 2} single crystals have been successfully synthesized through a two-step solvothermal route without any template. Their structure and morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy and energy dispersive X-ray spectrometer (EDX). Based on the different characteristics and atomic arrangements on each facet of anatase TiO{sub 2} single crystals, we synthesized these mesoporous – (001) facets TiO{sub 2} single crystals by controlling the interaction characteristics of hydrofluoric acid (HF) and isopropanol (i-PrOH) on the crystal facets. It can been seen that the (001) facets of these as-synthesized TiO{sub 2} single crystals have a clear mesoporous structure through the SEM images and BET methods. Moreover, the other four facets were covered by the flower – shaped TiO{sub 2} crystals with the generation of the mesoporous – (001) facets. This special and interesting morphology could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. Moreover, it is more intuitive to reflect that the different crystal facets possess the different properties due to their atomic arrangement. Besides, according to the different synthetic routes, we proposed and discussed a plausible synthesis mechanism of these mesoporous – (001) facets TiO{sub 2} single crystals.

  13. Development of Mössbauer diffractometer by using nuclear resonant scattering at SPring-8 BL11XU

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shin, E-mail: shin@koala.mse.teikyo-u.ac.jp [Teikyo University, Department of Science and Engineering (Japan); Mitsui, Takaya [National Institutes for Quantum and Radiological Science and Technology (Japan); Fujiwara, Kosuke; Ikeda, Naoshi [Okayama University (Japan); Kobayashi, Yasuhiro [Kyoto University, Research Reactor Institute (Japan); Shimomura, Susumu [Kyoto Sangyo University (Japan)

    2016-12-15

    A Mössbauer diffractometer has been developed by using {sup 57}Fe nuclear resonant scattering apparatus at SPring-8 BL11XU in order to obtain a crystal-site-selective Mössbauer spectrum. A #Mathematical Italic Small Theta#-2#Mathematical Italic Small Theta# goniometer was newly installed between the nuclear monochromator and a detector. From a single crystal Fe{sub 3}O{sub 4} mounted on the goniometer, the 111, 222, and 220 reflected γ-rays were used to collect the diffraction spectra at room temperature. The intensity ratio of the two subspectra, corresponding to A- and B-site Fe ions, changes notably according to the reflection index. The diffraction spectrum is composed of a major absorption spectrum and a minor emission spectrum. The former is given by the γ-ray due to the electron scattering and nuclear absorption, whereas the latter is given by the γ-ray due to the nuclear resonant scattering. Interference effects between these two γ-rays are also seen as line broadenings, asymmetric line shapes, and slope of the base lines. These features can be successfully expressed by a Fano function. We consider that the emission spectrum due to the nuclear resonant scattering represents crystal-site-selective Mössbauer spectrum.

  14. Development of Mössbauer diffractometer by using nuclear resonant scattering at SPring-8 BL11XU

    Science.gov (United States)

    Nakamura, Shin; Mitsui, Takaya; Fujiwara, Kosuke; Ikeda, Naoshi; Kobayashi, Yasuhiro; Shimomura, Susumu

    2016-12-01

    A Mössbauer diffractometer has been developed by using 57Fe nuclear resonant scattering apparatus at SPring-8 BL11XU in order to obtain a crystal-site-selective Mössbauer spectrum. A 𝜃-2 𝜃 goniometer was newly installed between the nuclear monochromator and a detector. From a single crystal Fe3 O 4 mounted on the goniometer, the 111, 222, and 220 reflected γ-rays were used to collect the diffraction spectra at room temperature. The intensity ratio of the two subspectra, corresponding to A- and B-site Fe ions, changes notably according to the reflection index. The diffraction spectrum is composed of a major absorption spectrum and a minor emission spectrum. The former is given by the γ-ray due to the electron scattering and nuclear absorption, whereas the latter is given by the γ-ray due to the nuclear resonant scattering. Interference effects between these two γ-rays are also seen as line broadenings, asymmetric line shapes, and slope of the base lines. These features can be successfully expressed by a Fano function. We consider that the emission spectrum due to the nuclear resonant scattering represents crystal-site-selective Mössbauer spectrum.

  15. High-pressure catalytic reactions over single-crystal metal surfaces

    Science.gov (United States)

    Rodriguez, JoséA.; Wayne Goodman, D.

    1991-11-01

    Studies dealing with high-pressure catalytic reactions over single-crystal surfaces are reviewed. The coupling of an apparatus for the measurement of reaction kinetics at elevated pressures with an ultrahigh vacuum system for surface analysis allows detailed study of structure sensitivity, the effects of promoters and inhibitors on catalytic activity, and, in certain cases, identification of reaction intermediates by post-reaction surface analysis. Examples are provided which demonstrate the relevance of single-crystal studies for modeling the behaviour of high-surface-area supported catalysts. Studies of CO methanation and CO oxidation over single-crystal surfaces provide convincing evidence that these reactions are structure insensitive. For structure-sensitive reactions (ammonia synthesis, alkane hydrogenolysis, alkane isomerization, water-gas shift reaction, etc.) model single-crystal studies allow correlations to be established between surface structure and catalytic activity. The effects of both electronegative (S and P) and electropositive (alkali metals) impurities upon the catalytic activity of metal single crystals for ammonia synthesis, CO methanation, alkane hydrogenolysis, ethylene epoxidation and water-gas shift are discussed. The roles of "ensemble" and "ligand" effects in bimetallic catalysts are examined in light of data obtained using surfaces prepared by vapor-depositing one metal onto a crystal face of a dissimilar metal.

  16. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Zhi, E-mail: zhuang@meiji.ac.jp [Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Yoshimura, Hideyuki, E-mail: hyoshi@isc.meiji.ac.jp [Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Aizawa, Mamoru, E-mail: mamorua@isc.meiji.ac.jp [Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan)

    2013-07-01

    Hydroxyapatite (HAp) is an inorganic constituent compound of human bones and teeth, with superior biocompatibility and bioactivity characteristics. Its crystal structure is hexagonal, characterized by a(b)- and c-planes. In vertebrate long bones, HAp crystals have a c-axis orientation, while in tooth enamel, they have an a(b)-axis orientation. Many methods can be used to synthesize c-axis oriented HAp single crystals; however, to the best of our knowledge, there have been no reports on a synthesis method for a(b)-axis oriented HAp single crystals. In this study, we successfully synthesized plate-like HAp crystals at the air–liquid interface of a starting solution via an enzyme reaction of urea with urease. Crystal phase analysis and ultrastructure observations were carried out, and the results indicated that the particles were single crystals, with almost the same a(b)-axis orientation as tooth enamel. It is hoped that by utilizing their unique surface charge and atomic arrangement, the resulting particles can be used as a high-performance biomaterial, capable of adsorbing bio-related substances and a model for tooth enamel. - Highlights: ► Synthesis of plate-like hydroxyapatite crystals at air–liquid interface ► Ultrastructural analysis of plate-like hydroxyapatite crystals ► Plate-like hydroxyapatite single crystals with a high a(b)-axis orientation ► Plate-like hydroxyapatite single crystals as a model for tooth enamel.

  17. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation.

    Science.gov (United States)

    Zhang, Lin; Huang, Hu; Zhao, Hongwei; Ma, Zhichao; Yang, Yihan; Hu, Xiaoli

    2013-05-04

    The physical properties of the machining-induced new surface depend on the performance of the initial defect surface and deformed layer in the subsurface of the bulk material. In this paper, three-dimensional molecular dynamics simulations of nanoindentation are preformed on the single-point diamond turning surface of single-crystal copper comparing with that of pristine single-crystal face-centered cubic copper. The simulation results indicate that the nucleation of dislocations in the nanoindentation test on the machining-induced surface and pristine single-crystal copper is different. The dislocation embryos are gradually developed from the sites of homogeneous random nucleation around the indenter in the pristine single-crystal specimen, while the dislocation embryos derived from the vacancy-related defects are distributed in the damage layer of the subsurface beneath the machining-induced surface. The results show that the hardness of the machining-induced surface is softer than that of pristine single-crystal copper. Then, the nanocutting simulations are performed along different crystal orientations on the same crystal surface. It is shown that the crystal orientation directly influences the dislocation formation and distribution of the machining-induced surface. The crystal orientation of nanocutting is further verified to affect both residual defect generations and their propagation directions which are important in assessing the change of mechanical properties, such as hardness and Young's modulus, after nanocutting process.

  18. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-07-01

    Full Text Available Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3O3-PbTiO3 (PMN-PT have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60% near the morphotropic phase boundary (MPB. Ternary Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-PbTiO3 (PIN-PMN-PT single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed.

  19. Computer simulation tests of optimized neutron powder diffractometer configurations

    Energy Technology Data Exchange (ETDEWEB)

    Cussen, L.D., E-mail: Leo@CussenConsulting.com [Cussen Consulting, 23 Burgundy Drive, Doncaster 3108 (Australia); Lieutenant, K., E-mail: Klaus.Lieutenant@helmholtz-berlin.de [Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin (Germany)

    2016-06-21

    Recent work has developed a new mathematical approach to optimally choose beam elements for constant wavelength neutron powder diffractometers. This article compares Monte Carlo computer simulations of existing instruments with simulations of instruments using configurations chosen using the new approach. The simulations show that large performance improvements over current best practice are possible. The tests here are limited to instruments optimized for samples with a cubic structure which differs from the optimization for triclinic structure samples. A novel primary spectrometer design is discussed and simulation tests show that it performs as expected and allows a single instrument to operate flexibly over a wide range of measurement resolution.

  20. Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor

    Science.gov (United States)

    Zhao, Xiaolong; Chen, Liang; He, Yongning; Liu, Jinliang; Peng, Wenbo; Huang, Zhiyong; Qi, Xiaomeng; Pan, Zijian; Zhang, Wenting; Zhang, Zhongbing; Ouyang, Xiaoping

    2016-04-01

    The pulse radiation detectors are sorely needed in the fields of nuclear reaction monitoring, material analysis, astronomy study, spacecraft navigation, and space communication. In this work, we demonstrate a nanosecond X-ray detector based on ZnO single crystal semiconductor, which emerges as a promising compound-semiconductor radiation detection material for its high radiation tolerance and advanced large-size bulk crystal growth technique. The resistivity of the ZnO single crystal is as high as 1013 Ω cm due to the compensation of the donor defects (VO) and acceptor defects (VZn and Oi) after high temperature annealing in oxygen. The photoconductive X-ray detector was fabricated using the high resistivity ZnO single crystal. The rise time and fall time of the detector to a 10 ps pulse electron beam are 0.8 ns and 3.3 ns, respectively, indicating great potential for ultrafast X-ray detection applications.

  1. Eutectic Formation During Solidification of Ni-Based Single-Crystal Superalloys with Additional Carbon

    Science.gov (United States)

    Wang, Fu; Ma, Dexin; Bührig-Polaczek, Andreas

    2017-11-01

    γ/ γ' eutectics' nucleation behavior during the solidification of a single-crystal superalloy with additional carbon was investigated by using directional solidification quenching method. The results show that the nucleation of the γ/ γ' eutectics can directly occur on the existing γ dendrites, directly in the remaining liquid, or on the primary MC-type carbides. The γ/γ' eutectics formed through the latter two mechanisms have different crystal orientations than that of the γ matrix. This suggests that the conventional Ni-based single-crystal superalloy castings with additional carbon only guarantee the monocrystallinity of the γ matrix and some γ/ γ' eutectics and, in addition to the carbides, there are other misoriented polycrystalline microstructures existing in macroscopically considered "single-crystal" superalloy castings.

  2. Magnetic properties of single crystal alpha-benzoin oxime: An EPR study

    Science.gov (United States)

    Sayin, Ulku; Dereli, Ömer; Türkkan, Ercan; Ozmen, Ayhan

    2012-02-01

    The electron paramagnetic resonance (EPR) spectra of gamma irradiated single crystals of alpha-benzoinoxime (ABO) have been examined between 120 and 440 K. Considering the dependence on temperature and the orientation of the spectra of single crystals in the magnetic field, we identified two different radicals formed in irradiated ABO single crystals. To theoretically determine the types of radicals, the most stable structure of ABO was obtained by molecular mechanic and B3LYP/6-31G(d,p) calculations. Four possible radicals were modeled and EPR parameters were calculated for the modeled radicals using the B3LYP method and the TZVP basis set. Calculated values of two modeled radicals were in strong agreement with experimental EPR parameters determined from the spectra. Additional simulated spectra of the modeled radicals, where calculated hyperfine coupling constants were used as starting points for simulations, were well matched with experimental spectra.

  3. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    Science.gov (United States)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  4. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

    KAUST Repository

    Shi, Dong

    2015-01-29

    The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3(MA = CH3NH3 +; X = Br- or I- ) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics.We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

  5. NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer

    Science.gov (United States)

    Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

    1993-01-01

    Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

  6. Electrochemical Cycling of Polycrystalline Silver Nanoparticles Produces Single-Crystal Silver Nanocrystals.

    Science.gov (United States)

    Singh, Poonam; Carpenter, Ray W; Buttry, Daniel A

    2017-11-13

    Electrochemically driven phase transformations in redox-active nanoparticles (NPs) are important in a number of areas, including batteries and sensors. We use high-resolution electron microscopy in conjunction with ex situ electrochemical experiments on TEM grids to study the oxidative conversion of polycrystalline silver NPs to amorphous silver oxide nanoparticles and their reductive conversion back to single-crystal silver nanocrystals (NCs). Results show that during oxidation nucleation occurs uniformly at the NP surface, producing a Ag@Ag2O core@shell structure during growth. The images reveal polycrystalline Ag cores and amorphous Ag2O shells for these structures. Electron microscopy also showed that the electrochemical reduction of Ag2O NPs can produce single-crystal Ag nanocrystals, suggesting that point nucleation at the NP-electrode interface during reduction enables a growth mechanism favoring the formation of single-crystal nanoparticles.

  7. Solid state single crystal growth of three-dimensional faceted LaFeAsO crystals

    Science.gov (United States)

    Kappenberger, Rhea; Aswartham, Saicharan; Scaravaggi, Francesco; Blum, Christian G. F.; Sturza, Mihai I.; Wolter, Anja U. B.; Wurmehl, Sabine; Büchner, Bernd

    2018-02-01

    Solid state single crystal growth (SSCG) is a crystal growth technique where crystals are grown from a polycrystalline matrix. Here, we present single crystals of the iron pnictide LaFeAsO grown via SSCG using NaAs as a liquid phase to aid crystallization. The size of the as-grown crystals are up to 2 × 3 × 0.4 mm3. Typical for this method, but very uncommon for crystals of the pnictide superconductors and especially for the oxypnictides, the crystals show pronounced facets caused by considerable growth in c direction. The crystals were characterized regarding their composition, structure, magnetic, and thermodynamic properties. This sets the stage for further measurements for which single crystals are crucial such as any c axis and reciprocal space dependent measurements.

  8. Nucleation of domain walls in iron garnet single crystals grown from liquid phase epitaxy

    Science.gov (United States)

    Shirai, Kazushi; Ishikura, Kenji; Takeda, Norio

    1997-09-01

    When bismuth-substituted iron garnet (RBi)IG single crystals grown from liquid-phase-epitaxy (LPE) are magnetized, the magnetic domain structure gradually evolves. However the domain-wall nucleation that occurs during the demagnetization is not yet understood clearly. This phenomenon is important, because the working of some optical devices that utilize (RBi)IG single crystals depends directly on the formation of domains of opposite direction. In this paper, the authors present a theoretical description of domain-wall nucleation in LPE-grown (RBi)IG single crystals. It was found that the nucleation field is determined by the strength of the microscopic domain-wall which is fixed on the surface of the crystal. Furthermore, the nucleation field is modified by the addition of a magnetic field.

  9. Alloying effects of refractory elements in the dislocation of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Shiyu Ma

    2016-12-01

    Full Text Available The alloying effects of W, Cr and Re in the [100] (010 edge dislocation cores (EDC of Ni-based single crystal superalloys are investigated using first-principles based on the density functional theory (DFT. The binding energy, Mulliken orbital population, density of states, charge density and radial distribution functions are discussed, respectively. It is clearly demonstrated that the addition of refractory elements improves the stability of the EDC systems. In addition, they can form tougher bonds with their nearest neighbour (NN Ni atoms, which enhance the mechanical properties of the Ni-based single crystal superalloys. Through comparative analysis, Cr-doped system has lower binding energy, and Cr atom has evident effect to improve the systemic stability. However, Re atom has the stronger alloying effect in Ni-based single crystal superalloys, much more effectively hindering dislocation motion than W and Cr atoms.

  10. Study of structural and optical properties of YAG and Nd:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kostić, S. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Lazarević, Z.Ž., E-mail: lzorica@yahoo.com [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Radojević, V. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia); Milutinović, A.; Romčević, M.; Romčević, N.Ž. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Valčić, A. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia)

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.

  11. Synthesis and single crystal X-ray analysis of two griseofulvin metabolites

    DEFF Research Database (Denmark)

    Rønnest, Mads Holger; Harris, Pernille; Gotfredsen, Charlotte Held

    2010-01-01

    The two phenols, 6-O-desmethyl griseofulvin and 4-O-desmethyl griseofulvin are metabolites of the antifungal drug griseofulvin. Herein, we present an improved synthesis of the 6-phenol derivative, and an unequivocal proof of both structures by single-crystal X-ray analysis.......The two phenols, 6-O-desmethyl griseofulvin and 4-O-desmethyl griseofulvin are metabolites of the antifungal drug griseofulvin. Herein, we present an improved synthesis of the 6-phenol derivative, and an unequivocal proof of both structures by single-crystal X-ray analysis....

  12. Microstructure and Texture of Hydrostatic Extrusion Deformed Ni Single Crystals and Polycrystal

    Directory of Open Access Journals (Sweden)

    D. Jakubowska

    2015-01-01

    Full Text Available The differences in the microstructure and texture of two Ni single crystals, with different initial orientations (100 and 110, and of polycrystalline nickel, before and after severe plastic deformation (SPD produced by hydrostatic extrusion (HE, have been investigated. The crystals were deformed by a two-step HE process with a total deformation value of ε=1.2. The global texture, mechanical properties, and microstructure were examined after the deformation. In every investigated sample, the presence of 111 fibre texture was noted, while the starting orientation of a 100 Ni single crystal was preserved in 50% of the volume. The results obtained were compared with the relevant literature data.

  13. Method for single crystal growth of photovoltaic perovskite material and devices

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinsong; Dong, Qingfeng

    2017-11-07

    Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.

  14. Growth and characterization of nonlinear optical single crystal: Nicotinic L-tartaric

    Energy Technology Data Exchange (ETDEWEB)

    Sheelarani, V.; Shanthi, J., E-mail: shanthinelson@gmail.com [Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-641043 (India)

    2015-06-24

    Nonlinear optical single crystals were grown from Nicotinic and L-Tartaric acid by slow evaporation technique at room temperature. Structure of the grown crystal was confirmed by single crystal X-ray diffraction studies, The crystallinity of the Nicotinic L-Tartaric (NLT) crystals was confirmed from the powder XRD pattern. The transparent range and cut off wavelength of the grown crystal was studied by the UV–Vis spectroscopic analysis.The thermal stability of the crystal was studied by TG-DTA. The second harmonic generation (SHG) efficiency of NLT was confirmed by Kurtz Perry technique.

  15. Feasibility of producing photodiode bases on a single crystal strip of germanium obtained by Stephanov's method

    CERN Document Server

    Menshikova, V A; Zatalovskii, L M; Chaikin, P M; Frimer, A I

    1972-01-01

    The single-crystal strip was obtained by Stepanov's method. involving the use of a fusing shaper and a flexible priming wire holder. The epitaxial growth of a gallium arsenide layer on this strip was then studied, and photodiodes were prepared from it. The surface properties of the strip were investigated microstructurally and deposition rates for gallium arsenide recorded at different temperatures. At each stage the figures were compared with results obtained with common germanium. The characteristics of photodiodes prepared from the single-crystal strip and common germanium were compared, and the former gave greater integral sensitivity. (3 refs).

  16. Size effects on void growth in single crystals with distributed voids

    DEFF Research Database (Denmark)

    Borg, Ulrik; Niordson, Christian Frithiof; Kysar, J.W.

    2008-01-01

    The effect of void size on void growth in single crystals with uniformly distributed cylindrical voids is studied numerically using a finite deformation strain gradient crystal plasticity theory with an intrinsic length parameter. A plane strain cell model is analyzed for a single crystal...... with three in-plane slip systems. It is observed that small voids allow much larger overall stress levels than larger voids for all the stress triaxialities considered. The amount of void growth is found to be suppressed for smaller voids at low stress triaxialities. Significant differences are observed...

  17. Synthesis and Single Crystal Structures of Substituted-1,3-Selenazol-2-amines.

    Science.gov (United States)

    Hua, Guoxiong; Du, Junyi; Slawin, Alexandra M Z; Woollins, J Derek

    2016-12-29

    The synthesis and X-ray single crystal structures of a series of new 4-substituted-1,3-selenazol-2-amines is reported. The efficient preparation of these compounds was carried out by two-component cyclization of the selenoureas with equimolar amounts of α-haloketones. The selenoureas were obtained from the reaction of Woollins' reagent with cyanamides, followed by hydrolysis with water. All new compounds have been characterized by IR spectroscopy, multi-NMR (¹H, 13C, 77Se) spectroscopy, accurate mass measurement and single crystal X-ray structure analysis.

  18. Synthesis and Single Crystal Structures of Substituted-1,3-Selenazol-2-amines

    Directory of Open Access Journals (Sweden)

    Guoxiong Hua

    2016-12-01

    Full Text Available The synthesis and X-ray single crystal structures of a series of new 4-substituted-1,3-selenazol-2-amines is reported. The efficient preparation of these compounds was carried out by two-component cyclization of the selenoureas with equimolar amounts of α-haloketones. The selenoureas were obtained from the reaction of Woollins’ reagent with cyanamides, followed by hydrolysis with water. All new compounds have been characterized by IR spectroscopy, multi-NMR (1H, 13C, 77Se spectroscopy, accurate mass measurement and single crystal X-ray structure analysis.

  19. Growth and surface topography of WSe{sub 2} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Vijay, E-mail: vijdix1@gmail.com; Vyas, Chirag; Pataniya, Pratik; Jani, Mihir; Pathak, Vishal; Patel, Abhishek; Pathak, V. M., E-mail: yogvmpathak@yahoo.co.in; Patel, K. D., E-mail: kdptflspu@yahoo.com; Solanki, G. K. [Department of Physics, Sardar Patel University, Vallabh Vidya Nagar, Anand Gujarat India 388120 (India)

    2016-05-06

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe{sub 2} were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe{sub 2} crystals. Single crystalline nature of the crystals was confirmed by SAED.

  20. Antiferromagnetic transition in EuCu sub 2 Ge sub 2 single crystals

    CERN Document Server

    Hossain, Z; Yuan, H Q; Sparn, G

    2003-01-01

    Single crystals of EuCu sub 2 Ge sub 2 were grown and characterized using electrical resistivity, magnetization, specific heat and magnetoresistance measurements. The crystals exhibit antiferromagnetic transitions at T sub N sub 1 = 9 K and T sub N sub 2 = 5 K. The T sub N of the flux-grown single crystals reported here are lower than that reported for the polycrystalline sample (T sub N = 13 K) in the literature (Felner and Nowik 1978 J. Phys. Chem. Solids 39 763). The magnetoresistance is positive in the ordered state and negative in the paramagnetic state. The magnetic order could not be suppressed up to a pressure of 25 kbar.

  1. Crystallographic Orientation Dependence of Corrosion Behavior of a Single Crystal Nickel-Based Alloy

    Science.gov (United States)

    Zhang, L. N.; Ojo, O. A.

    2018-01-01

    Crystallographic orientation dependence of corrosion behavior of a nickel-based single crystal alloy IN738 was studied. Potentiodynamic polarization and electrochemical impedance spectroscopy show that corrosion performance of the single crystal alloy varies with crystallographic orientation. The dependence of passivation behavior on crystallographic orientation is influenced by environmental concentration. Potentiostatic polarization, scanning probe microscopy, and X-ray photoelectron spectroscopy were performed to understand the variation in passivation of different crystallographic orientations. The crystallographic orientation dependence of corrosion performance of the alloy can be explained by the difference of passive films in terms of chemical compositions, compactness, and porosity properties, as well as surface roughness.

  2. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    Science.gov (United States)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  3. Polarized Raman spectra of L-arginine hydrochloride monohydrated single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Faria, J.L.B. [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Dept. de Fisica; Freire, P.T.C.; Goncalves, R.O.; Melo, F.E.A.; Mendes Filho, J., E-mail: tarso@fisica.ufc.b [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica; Lima, R.J.C.; Moreno, A.J.D. [Universidade Federal do Maranhao (UFMA), Imperatriz, MA (Brazil). Centro de Ciencias Sociais, Saude e Tecnologia

    2010-09-15

    Polarized Raman spectra of L-arginine hydrochloride monohydrated single crystal in nine different scattering geometries of the two irreducible representations of factor group C{sub 2} were studied at room temperature. The experimental wavenumber values are compared with those obtained from ab-initio calculation and the assignment of the Raman bands to the respective molecular vibrations is also given. Finally, a discussion related to a previously reported phase transition undergone by L-arginine hydrochloride monohydrated single crystal at low temperature is furnished. (author)

  4. Potential Advantage of Multiple Alkali Metal Doped KNbO3 Single Crystals

    Directory of Open Access Journals (Sweden)

    Hideo Kimura

    2014-06-01

    Full Text Available Potassium niobate crystal KNbO3 (KN is a well-known crystal for lead free piezoelectric or nonlinear optical applications. The KN crystal has been studied in both single crystal form and in thin film form which has resulted in many review articles being published. In order to exceed the KN crystal, it is important to study KN phase forming and doping effects on the K site. This article summarizes the authors’ study towards a multiple alkali metal doped KN crystal and related single crystals briefly from the viewpoint of crystal growth.

  5. Fabrication of Triangular Nanobeam Waveguide Networks in Bulk diamond Using Single-Crystal Silicon Hard Masks

    CERN Document Server

    Bayn, I; Li, L; Goldstein, J A; Schröder, T; Zhang, J; Chen, E H; Gaathon, O; Lu, M; Stein, A; Ruggiero, C A; Salzman, J; Kalish, R; Englund, D

    2014-01-01

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q=2.51x10^6) photonic crystal cavities with low mode volume (Vm=1.062x({\\lambda}/n)^3), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05 dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q=3x103.

  6. Growth and characterization of pure and doped bis(thiourea) cadmium acetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Selvakumar, S. [Department of Physics, Sathyabama University, Chennai 600119 (India); Kumar, S.M. Ravi [Department of Physics, Loyola College, Chennai 600034 (India); Joseph, Ginson P. [Department of Physics, Loyola College, Chennai 600034 (India); Rajarajan, K. [Department of Physics, Loyola College, Chennai 600034 (India); Madhavan, J. [Department of Physics, Loyola College, Chennai 600034 (India); Rajasekar, S.A. [Department of Physics, Vellore Institute of Technology, Vellore 632014 (India); Sagayaraj, P. [Department of Physics, Loyola College, Chennai 600034 (India)]. E-mail: psagayaraj@hotmail.com

    2007-05-15

    Single crystals of pure and Zn{sup 2+} doped bis(thiourea) cadmium acetate (BTCA) were grown by slow solvent evaporation technique. The grown crystals were confirmed by single crystal XRD. The metal coordination with thiourea through sulphur in both pure and doped BTCA was ascertained by FTIR studies. The optical transmission spectra of pure and doped BTCA crystals were recorded and the results are discussed. The thermal decomposition of pure and doped BTCA crystals was investigated by means of thermogravimetric analysis (TGA). The dielectric response and photoconducting nature of the crystals were also investigated and reported.

  7. About some practical aspects of X-ray diffraction : From single crystal to powders

    Energy Technology Data Exchange (ETDEWEB)

    Giacovazzo, C. [Bari Univ. (Italy). Dip. Geomineralogico

    1996-09-01

    An ideal polycrystalline material or power is an ensemble of a very large number of randomly oriented crystallites. It is shown the effect that this random orientation has on the diffraction of a specimen assumed to contain only one reciprocal lattice node. The most remarkable difference with the single-crystal case is that now must think of scattering vectors not as lying on discrete nodes of reciprocal lattice vectors, the distances from the single-crystal reciprocal lattice nodes to the origin of reciprocal space.

  8. Advances in Thermionic Energy Conversion through Single-Crystal n-Type Diamond

    Directory of Open Access Journals (Sweden)

    Franz A. M. Koeck

    2017-12-01

    Full Text Available Thermionic energy conversion, a process that allows direct transformation of thermal to electrical energy, presents a means of efficient electrical power generation as the hot and cold side of the corresponding heat engine are separated by a vacuum gap. Conversion efficiencies approaching those of the Carnot cycle are possible if material parameters of the active elements at the converter, i.e., electron emitter or cathode and collector or anode, are optimized for operation in the desired temperature range. These parameters can be defined through the law of Richardson–Dushman that quantifies the ability of a material to release an electron current at a certain temperature as a function of the emission barrier or work function and the emission or Richardson constant. Engineering materials to defined parameter values presents the key challenge in constructing practical thermionic converters. The elevated temperature regime of operation presents a constraint that eliminates most semiconductors and identifies diamond, a wide band-gap semiconductor, as a suitable thermionic material through its unique material properties. For its surface, a configuration can be established, the negative electron affinity, that shifts the vacuum level below the conduction band minimum eliminating the surface barrier for electron emission. In addition, its ability to accept impurities as donor states allows materials engineering to control the work function and the emission constant. Single-crystal diamond electrodes with nitrogen levels at 1.7 eV and phosphorus levels at 0.6 eV were prepared by plasma-enhanced chemical vapor deposition where the work function was controlled from 2.88 to 0.67 eV, one of the lowest thermionic work functions reported. This work function range was achieved through control of the doping concentration where a relation to the amount of band bending emerged. Upward band bending that contributed to the work function was attributed to

  9. Neutron Fourier diffractometer FSD for internal stress analysis: first results

    Science.gov (United States)

    Bokuchava, G. D.; Aksenov, V. L.; Balagurov, A. M.; Kuzmin, E. S.; Zhuravlev, V. V.; Bulkin, A. P.; Kudryashev, V. A.; Trounov, V. A.

    At the IBR-2 pulsed reactor in Dubna a new neutron Fourier diffractometer FSD is under construction. FSD continues the development of neutron Fourier diffractometry at long-pulse neutron sources, which was started several years ago with the high-resolution Fourier diffractometer HRFD at the IBR-2. Whereas HRFD is mainly used for precise structural refinement, FSD is optimised for internal stress measurements in bulk materials. The FSD design satisfies the requirements of high luminosity, high resolution, a specific sample environment, a wide range of dhkl, and fixed scattering angles 2θ=+/-90°. It consists of a mirror neutron guide, a fast Fourier chopper for the neutron-beam intensity modulation, a +/-90° MultiCon ZnS(Ag) 6Li-loaded detector system with both geometrical and electronic focusing, a five-axis goniometer `Huber' and loading machines, and VME-based RTOF analysers for data acquisition. Examples of the first experimental results obtained with FSD are presented.

  10. Soft X-ray diffractometer for synchrotron radiation

    CERN Document Server

    Gau, T S; Liu, K Y; Chung, C H; Chen, C K; Lai, S C; Shu, C H; Huang, Y S; Chao, C H; Lee, Y R; Chen, C T; Chang, S L

    2001-01-01

    An ultra-high vacuum soft X-ray diffractometer has been constructed and commissioned at the Synchrotron Radiation Research Center (SRRC) to investigate materials structures in mesoscale. The diffractometer, housed in a UHV tank, consists of a 6-circle goniometer, together with the systems for beam-collimation, signal detection, vacuum, and control panels. The kappa-phi (cursive,open) Greek-psi goniostat is adopted for the sample orientation. Crystal samples can be rotated along a given reciprocal lattice vector by using psi scan. Two orthogonal axes, gamma (or 2 theta) and delta, are used to move the detector. The detector is a semiconductor pin diode, which can be used in UHV ambient. This 6-circle goniometer allows for sample scanning of a wide range in the momentum space. The motors used for goniometer rotation and slit selection are UHV compatible. The UHV tank is placed on an XYZ table capable of positioning the center of the goniometer onto the incident beam. Test experiments have been carried on the 1-...

  11. Crystallization and properties of CrSi2 single crystals grown from a tin solution-melt

    Science.gov (United States)

    Solomkin, F. Yu.; Zaitsev, V. K.; Kartenko, N. F.; Kolosova, A. S.; Orekhov, A. S.; Samunin, A. Yu.; Isachenko, G. N.

    2010-01-01

    Using the solution-melt method combined with the Bridgman method, CrSi2 single-crystal needles and single-crystal tubes are grown at a temperature lower than their melting (crystallization) temperature. Microcrystals thus grown feature an anomalously high thermal emf. The growth of CrSi2 single-crystal tubes is an important step forward in the production of various devices based on high-temperature thermoelectric materials.

  12. Superlocalization and Formation of Grain Structure in Ni3ge Single Crystals with Different Orientations of Deformation Axes

    Science.gov (United States)

    Solov'eva, Yu. V.; Lipatnikova, Ya. D.; Starenchenko, S. V.; Solov'ev, A. N.; Starenchenko, V. A.

    2017-09-01

    The paper describes the influence of orientation of Ni3Ge single crystal deformation axes on the high-temperature superlocalization of plastic deformation. Mechanical properties of single crystals with different orientations are studied in this paper as well as the slip traces and the evolution of the dislocation structure. Based on these investigations, the observing conditions are described for the superlocalization bands and the formation of the grain structure in local areas of the original single crystal.

  13. An in-vacuum diffractometer for resonant elastic soft x-ray scattering

    NARCIS (Netherlands)

    Hawthorn, D. G.; He, F.; Davis, H.; Achkar, A. J.; Zhang, J.; Sutarto, R.; Wadati, H.; Radi, A.; Wilson, T.; Wright, G.; Shen, K. M.; Geck, J.; Zhang, H.; Novak, V.; Sawatzky, G. A.; Venema, L.C.

    We describe the design, construction, and performance of a 4-circle in-vacuum diffractometer for resonant elastic soft x-ray scattering. The diffractometer, installed on the resonant elastic and inelastic x-ray scattering beamline at the Canadian Light Source, includes 9 in-vacuum motions driven by

  14. Angle calculations for a z-axis/(2S+2D) hybrid diffractometer

    DEFF Research Database (Denmark)

    Bunk, Oliver; Nielsen, Martin Meedom

    2004-01-01

    Efficient use of any diffractometer design requires easy translation between points in reciprocal space and the setting of diffractometer angles. While it is reasonably straightforward to go from angle to reciprocal space, the opposite direction presents more challenges. In this paper, angle...

  15. Synthesis and Single Crystal X-Ray Crystallographic Analysis of 2 ...

    African Journals Online (AJOL)

    dihydropyrimidin-1-ium) tetrachlorocobaltate(II) [H2pymo]2[CoCl4]. The compound was re-crystallized in diethyl ether to obtain a suitable single crystal for X-ray diffraction analysis which revealed a molecule crystallizes in the orthorhombic ...

  16. A cell for the controllable thermal treatment and electrochemical characterisation of single crystal alloy electrodes

    DEFF Research Database (Denmark)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Chorkendorff, Ib

    2012-01-01

    A new electrochemical cell is described which provides the opportunity to perform electrochemical experiments and apply a controllable thermal treatment without exposing the sample to the laboratory atmosphere. We report typical model experiments with Pt(111) single crystal electrodes which can...

  17. Influence of strain rate on the orientation dependence of microstructure in nickel single crystals

    DEFF Research Database (Denmark)

    Zheng, X. H.; Zhang, H. W.; Huang, X.

    2016-01-01

    The deformation microstructures of nickel single crystals (99.945 wt.%) during dynamic plastic deformation and quasi-static compression to a true strain of 0.20 were comparatively investigated. The deformation microstructures are orientation dependent, forming cell structure, slip plane aligned...

  18. Scattering of slow ions by various crystallographic planes of tungsten single crystals

    CERN Document Server

    Ermolov, S N; Kortenraad, R; Must, B; Shtinov, E D; Brongersma, K K

    2002-01-01

    The dependence of low-energy ion scattering signal intensity on single crystal surface orientation is investigated, and it is shown that this dependence is not necessarily in direct proportion to atomic density in the uppermost atomic layer. On the basis of comparison of signals from various crystallographic planes of a high purity W single crystal a conclusion is made that the ions scattered from more deep atomic layers contribute considerably to the signal measured for the surface with an open structure. It is shown that reference specimens with a known surface density are needed for quantitative analysis of surface composition by the method of low-energy ion scattering. The best reference specimens are well-oriented single crystals with close-packed planes at the surface, since in this case the low-energy ion scattering signal is proportional to atomic density of the uppermost atomic layer. It single crystals with open surface structure are used as reference specimens the contribution of deeper atomic laye...

  19. Growth rate analysis of gibbsite single crystals growing from aqueous sodium aluminate solutions

    NARCIS (Netherlands)

    Sweegers, C.; Meekes, H.L.M.; Enckevort, W.J.P. van; Hiralal, I.D.K.; Rijkeboer, A.

    2004-01-01

    In-situ optical microscopy was used to measure the growth rate of gibbsite single crystals growing from aqueous sodium aluminate solutions. The growth rate was measured for various crystal faces, i.e., {100} and {001} faces in case of twinned hexagons and {110} faces for single crystalline lozenges.

  20. Adsorbates on cobalt and platinum single crystal surfaces studied by STM

    Energy Technology Data Exchange (ETDEWEB)

    Venvik, Hilde Johnsen

    1998-12-31

    This thesis on surface physics may contribute to the understanding of catalysts and so be of interest to companies working on oil and natural gas refining. The thesis deals with room temperature experimental investigations of adsorbates of CO and C{sub 2}H{sub 4} gases on Co and Pt single crystal surfaces. 252 refs., 51 figs., 1 table

  1. Trapping effects and acoustoelectric current saturation in ZnO single crystals

    DEFF Research Database (Denmark)

    Mosekilde, Erik

    1970-01-01

    Measurements of current-voltage characteristics for ZnO single crystals at temperatures between 77 and 640 °K are reported. Because of the buildup of an intense acoustic flux, a strong current saturation sets in when the trap-controlled electron drift velocity is equal to the velocity of sound...

  2. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    Science.gov (United States)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  3. Surface Geometry and Chemistry of Hydrothermally Synthesized Single Crystal Thorium Dioxide

    Science.gov (United States)

    2015-03-01

    87 LEED ...................Low Energy Electron Diffraction...under atmospheric conditions. Then a 1 gallon plastic bag was placed over the AFM measurement device and loosely sealed at the bottom as in Figure...study of the electrical nature of single crystal ThO2. A Low Energy Electron Diffraction ( LEED ) system emitting low energy electrons could operate

  4. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    Science.gov (United States)

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVternary or quaternary III-V semiconductor active layers.

  5. Variation of low temperature internal friction of microplastic deformation of high purity molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pal-Val, P.P. (AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur); Kaufmann, H.J. (Akademie der Wissenschaften der DDR, Berlin)

    1984-08-01

    Amplitude and temperature spectra of ultrasound absorption in weakly deformed high purity molybdenum single crystals of different orientations were measured. The results were discussed in terms of parameter changes related to quasiparticle or dislocation oscillations, respectively, dislocation point defect interactions as well as defect generation at microplastic deformation.

  6. Ambipolar Cu- and Fe-phthalocyanine single-crystal field-effect transistors

    NARCIS (Netherlands)

    De Boer, R.W.I.; Stassen, A.F.; Craciun, M.F.; Mulder, C.L.; Molinari, A.; Rogge, S.; Morpurgo, A.F.

    2005-01-01

    We report the observation of ambipolar transport in field-effect transistors fabricated on single crystals of copper- and iron-phthalocyanine, using gold as a high work-function metal for the fabrication of source and drain electrodes. In these devices, the room-temperature mobility of holes reaches

  7. Formation of oriented nitrides by N{sup +} ion implantation in iron single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A.R.G. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); IST/IPFN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Silva, R.C. da [IST/IPFN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Ferreira, L.P. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Dep. Física, Fac. Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Carvalho, M.D. [CCMM/Dep. Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Silva, C. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Dep. Física, Fac. Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Franco, N. [IST/IPFN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Godinho, M. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Dep. Física, Fac. Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); and others

    2014-01-15

    Iron single crystals were implanted with nitrogen at room temperature, with a fluence of 5×10{sup 17} cm{sup −2} and 50 keV energy, to produce iron nitride phases and characterize the influence of the crystal orientation. The stability and evolution of the nitride phases and diffusion of implanted nitrogen were studied as a function of successive annealing treatments at 250 °C in vacuum. The composition, structure and magnetic properties were characterized using RBS/channeling, X-Ray Diffraction, Magnetic Force Microscopy, Magneto-optical Kerr Effect and Conversion Electron Mössbauer Spectroscopy. In the as-implanted state the formation of Fe{sub 2}N phase was clearly identified in all single crystals. This phase is not stable at 250 °C and annealing at this temperature promotes the formation of ε-Fe{sub 3}N, or γ′-Fe{sub 4}N, depending on the orientation of the substrate. - Highlights: • Oriented magnetic iron nitrides were obtained by nitrogen implantation into iron single crystals. • The stable magnetic nitride phase at 250 °C depends on the orientation of the host single crystal, being γ'-Fe{sub 4}N or ε-Fe{sub 3}N. • The easy magnetization axis was found to lay in the (100) plane for cubic γ'-Fe{sub 4}N and out of (100) plane for hexagonal ε-Fe{sub 3}N.

  8. Neutron Diffraction Studies of Dilute Cr-Re Single Crystal Alloys

    DEFF Research Database (Denmark)

    Lebech, Bente; Mikke, K.

    1972-01-01

    Neutron diffraction studies have been performed on five Cr-Re single crystal alloys with a Re content from 0 to 0·8 at. %. It was found that the wave vector of the sinusoidally modulated spin arrangement increases uniformly with temperature and concentration until a critical value of about 0·97. (2...

  9. The Way towards Ultrafast Growth of Single-Crystal Graphene on Copper.

    Science.gov (United States)

    Zhang, Zhihong; Xu, Xiaozhi; Qiu, Lu; Wang, Shaoxin; Wu, Tianwei; Ding, Feng; Peng, Hailin; Liu, Kaihui

    2017-09-01

    The exceptional properties of graphene make it a promising candidate in the development of next-generation electronic, optoelectronic, photonic and photovoltaic devices. A holy grail in graphene research is the synthesis of large-sized single-crystal graphene, in which the absence of grain boundaries guarantees its excellent intrinsic properties and high performance in the devices. Nowadays, most attention has been drawn to the suppression of nucleation density by using low feeding gas during the growth process to allow only one nucleus to grow with enough space. However, because the nucleation is a random event and new nuclei are likely to form in the very long growth process, it is difficult to achieve industrial-level wafer-scale or beyond (e.g. 30 cm in diameter) single-crystal graphene. Another possible way to obtain large single-crystal graphene is to realize ultrafast growth, where once a nucleus forms, it grows up so quickly before new nuclei form. Therefore ultrafast growth provides a new direction for the synthesis of large single-crystal graphene, and is also of great significance to realize large-scale production of graphene films (fast growth is more time-efficient and cost-effective), which is likely to accelerate various graphene applications in industry.

  10. Non-spherical voids and lattice reorientation patterning in a shock-loaded Al single crystal

    DEFF Research Database (Denmark)

    Hong, Chuanshi; Fæster, Søren; Hansen, Niels

    2017-01-01

    An Al single crystal shock loaded in the direction and captured at incipient spallation was examined by combining X-ray tomography, electron backscatter diffraction on a scanning electron microscope, and transmission electron microscopy (TEM). Octahedral voids with {1 1 1} faces were...... of dislocation cells and extended dislocation boundaries, illustrating the importance of plastic deformation during void growth....

  11. Two hardening mechanisms in single crystal thin films studied by discrete dislocation plasticity

    NARCIS (Netherlands)

    Nicola, L; Van der Giessen, E; Needleman, A

    2005-01-01

    thermal stress in single crystal thin films on a rigid substrate are used to study size effects. The relation between the residual stress and the dislocation structure in the films after cooling is analyzed using dislocation dynamics. A boundary layer characterized by a high stress gradient and a

  12. Piezoelectric properties of Sr3 Ga2 Ge4 O14 single crystals

    Indian Academy of Sciences (India)

    A new piezoelectric single crystal, Sr3Ga2Ge4O14 (SGG), has been grown successfully by the vertical Bridgman method with crucible-sealing technique. SGG crystal up to 2″ in diameter has been obtained. The relative dielectric constants, the piezoelectric strain constants, elastic compliance constants and ...

  13. Multi-color light-emitting transistors composed of organic single crystals

    NARCIS (Netherlands)

    Yomogida, Yohei; Sakai, Hayato; Sawabe, Kosuke; Gocho, Shota; Bisri, Satria Zulkarnaen; Nakanotani, Hajime; Adachi, Chihaya; Hasobe, Taku; Iwasa, Yoshihiro; Takenobu, Taishi

    2013-01-01

    We report a novel concept for multi-color light emission from an ambipolar organic single-crystal transistor using natural optical waveguides, the self-absorption effect, Davydov splitting and the unique alignment of the transition dipole moments. We used 9,10-bis(2,2-diphenylvinyl)-anthracene

  14. ORIENTATIONAL MICRO-RAMAN SPECTROSCOPY ON HYDROXYAPATITE SINGLE-CRYSTALS AND HUMAN ENAMEL CRYSTALLITES

    NARCIS (Netherlands)

    TSUDA, H; ARENDS, J

    1994-01-01

    Single crystals of synthetic hydroxyapatite have been examined by orientational micro-Raman spectroscopy. The observed Raman bands include the PO43-/OH- internal and external. modes over the spectral range from 180 to 3600 cm(-1). The Raman-active symmetry tensors (A, E(1), and E(2)) of

  15. On modeling of geometrically necessary dislocation densities in plastically deformed single crystals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2013-01-01

    A computational method for strain gradient single crystal plasticity is presented. The method accounts for both recoverable and dissipative gradient effects. The mathematical solution procedure is predicated on two minimum principles along the lines of those devised by Fleck and Willis (2009) for...

  16. Structure of KTiOAsO{sub 4} single crystals at 293 and 30 K

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, N. E., E-mail: natnov@ns.crys.ras.ru; Verin, I. A.; Sorokina, N. I.; Alekseeva, O. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Tseitlin, M. [Ariel University Center of Samaria (Israel); Roth, M. [Hebrew University of Jerusalem, Faculty of Science (Israel)

    2010-05-15

    The unit cell parameters of KTiOPO{sub 4} and KTiOAsO{sub 4} single crystals are measured in the temperature range from room temperature to 20 K. It is found that the unit cell volume of the single crystals changes smoothly. With a decrease in temperature, the c parameter remains almost unchanged. In a certain temperature range, the linear temperature dependence of the a and b parameters is violated. An X-ray diffraction study of KTiOAsO{sub 4} single crystals is performed at T = 293 and 30 K. With a decrease in temperature, the electron density in the channels of the structure undergoes a redistribution, suggesting that at room temperature the state of the potassium ions is characterized by the dynamic and static disordering. The nonuniformity of the distribution of the electron density at the junctions of TiO{sub 6} octahedra and AsO{sub 4} tetrahedra is significantly enhanced in relation to that at the corresponding junctions in the KTiOPO{sub 4} structure. It has been experimentally established that the geometry of the tetrahedral anions makes a decisive contribution to the nonlinearity of KTiOAsO{sub 4} single crystals.

  17. Elastic-Plastic Behavior of Cyclotrimethylene Trinitramine Single Crystals Under Spherical Indentation: Modeling and Simulation

    Science.gov (United States)

    2012-04-01

    implemented elsewhere to study shock loading of energetic materials cyclotetramethylene tetranitr- amine ( HMX )10 and pentaerythritol tetranitrate (PETN).11,12...Physical properties of RDX single crystals are listed in Table I. The description applies to the a phase, the stable polymorph for pressures under 3.8

  18. Band structure and optical properties of LiKB4O7 single crystal

    NARCIS (Netherlands)

    Smok, P; Seinert, H; Kityk, [No Value; Berdowski, J

    2003-01-01

    The band structure (BS), electronic charge density distribution and linear optical properties of the LiKB4O7 (LKB4) single crystal are calculated using a self-consistent norm-conserving pseudo-potential method within the framework of the local density approximation theory. Dispersion of the

  19. Single crystal growth and anisotropic crystal-fluid interface tension in soft colloidal systems

    NARCIS (Netherlands)

    Nguyen, V.D.; Hu, Z.; Schall, P.

    2011-01-01

    We measure the anisotropy of the crystal-fluid interfacial free energy in soft colloidal systems. A temperature gradient is used to direct crystal nucleation and control the growth of large single crystals in order to achieve well-equilibrated crystal-fluid interfaces. Confocal microscopy is used to

  20. Growth and thermoelectric properties of p-type layered GaTe single crystals

    Science.gov (United States)

    Vu, Thi Hoa; Pham Anh, Tuan; Duong Anh, Tuan; Nguyen van, Quang; Cho, Sunglae

    Gallium Telluride (GaTe) crystal is a member of chalcogenide crystal family as same as two-dimensional (2D) semiconductors. As for GaTe, the high dissymmetry between intra- and inter bond strengths can give rise to a strong scattering of the charge carriers by optical phonon polarized perpendicular to the layers, so thermal conductivity can be reduced. However, due to the difficulty in growth of large-size high quality crystals, it is one of the less investigated materials. In this talk, we report on the crystal structure and thermoelectric properties of p-type GaTe single crystals. The sample was obtained by the vertical temperature gradient method. The single crystal structure was determined by XRD and FE-SEM measurement. Thermoelectric and transport properties both along and perpendicular to the layered planes were evaluated in the temperature range from 20 to 400 K. We observed very high positive Seebeck coefficients in GaTe single crystal. Maximum values are about 2000 and 843 for in-plane and perpendicular direction, respectively. The results indicate a p-type semiconductor in GaTe single crystal. We will discuss on temperature and direction dependent power factor value of p-type GaTe in detail.

  1. Defect characterization of Ga4Se3S layered single crystals by ...

    Indian Academy of Sciences (India)

    Trapping centres in undoped Ga 4 Se 3 S single crystals grown by Bridgman method were characterized for the first time by thermoluminescence (TL) measurements carried out in the low temperature range of 15−300 K. After illuminating the sample with blue light (∼470 nm) at 15 K, TL glow curve exhibited one peak ...

  2. A single crystal neutron diffraction study on mixed crystal (K)0.25 ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... https://doi.org/10.1007/s12034-017-1514-x. A single crystal neutron diffraction study on mixed crystal. (K)0.25(NH4)0.75H2PO4: tuning of short strong hydrogen bonds by ionic interactions. RAJUL RANJAN CHOUDHURY. ∗ and R CHITRA. Solid State Physics Division, Bhabha Atomic Research Center, ...

  3. Ambipolar Tetraphenylpyrene (TPPy) Single-Crystal Field-Effect Transistor with Symmetric and Asymmetric Electrodes

    NARCIS (Netherlands)

    Bisri, S Z; Takahashi, T; Takenobu, T; Yahiro, M; Adachi, C; Iwasa, Y

    2008-01-01

    An ambipolar field-effect transistor (FET) based on a 1,3,6, 8-tetraphenylpyrene (TPPy) single-crystal, a high photoluminescent material, has been successfully fabricated using symmetric and asymmetric electrodes. Several kinds of metal electrodes have been employed to investigate the charge

  4. Temperature dependence of CIE-x,y color coordinates in YAG:Ce single crystal phosphor

    Czech Academy of Sciences Publication Activity Database

    Rejman, M.; Babin, Vladimir; Kučerková, Romana; Nikl, Martin

    2017-01-01

    Roč. 187, Jul (2017), s. 20-25 ISSN 0022-2313 R&D Projects: GA TA ČR TA04010135 Institutional support: RVO:68378271 Keywords : YAG:Ce * single-crystal * simulation * energy level lifetime * white LED * CIE * temperature dependence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.686, year: 2016

  5. Single crystal EPR studies of Mn (II) doped into zinc ammonium ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 1. Single crystal EPR studies of Mn(II) doped into zinc ammonium phosphate hexahydrate (ZnNH4PO4⋅6H2O): A case of interstitial site for bio-mineral analogue. H Anandalakshmi K Velavan I Sougandi Venkatesan P Sambasiva Rao. Research Articles ...

  6. Growth of large, defect-free pure C60 single crystals

    Science.gov (United States)

    Meng, R. L.; Ramirez, D.; Jiang, X.; Chow, P. C.; Diaz, C.; Matsuishi, K.; Moss, S. C.; Hor, P. H.; Chu, C. W.

    1991-01-01

    Millimeter-sized single crystals of C60 were grown by sublimation of C60 powder in a vacuum for 6-24 h. The crystals had excellent facets, were free of C70 or solvent, and showed face-centered cubic symmetry with a very small mosaic spread down to 0.01 deg.

  7. Flicker noise in degenerately doped Si single crystals near the metal ...

    Indian Academy of Sciences (India)

    Abstract. In this paper we report some of the important results of experimental investigations of the flicker noise near the metal–insulator (MI) transition in doped silicon single crystals. This is the first comprehensive work to study low-frequency noise in heavily doped Si over an extensive temperature range (2 K T. 500 K).

  8. Non-Resonant Magnetoelectric Energy Harvesting Utilizing Phase Transformation in Relaxor Ferroelectric Single Crystals

    Directory of Open Access Journals (Sweden)

    Peter Finkel

    2015-12-01

    Full Text Available Recent advances in phase transition transduction enabled the design of a non-resonant broadband mechanical energy harvester that is capable of delivering an energy density per cycle up to two orders of magnitude larger than resonant cantilever piezoelectric type generators. This was achieved in a [011] oriented and poled domain engineered relaxor ferroelectric single crystal, mechanically biased to a state just below the ferroelectric rhombohedral (FR-ferroelectric orthorhombic (FO phase transformation. Therefore, a small variation in an input parameter, e.g., electrical, mechanical, or thermal will generate a large output due to the significant polarization change associated with the transition. This idea was extended in the present work to design a non-resonant, multi-domain magnetoelectric composite hybrid harvester comprised of highly magnetostrictive alloy, [Fe81.4Ga18.6 (Galfenol or TbxDy1-xFe2 (Terfenol-D], and lead indium niobate–lead magnesium niobate–lead titanate (PIN-PMN-PT domain engineered relaxor ferroelectric single crystal. A small magnetic field applied to the coupled device causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. We have demonstrated high energy conversion in this magnetoelectric device by triggering the FR-FO transition in the single crystal by a small ac magnetic field in a broad frequency range that is important for multi-domain hybrid energy harvesting devices.

  9. Kinetic study of CO oxidation on step decorated Pt(1 1 1) vicinal single crystal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Qingsong [Institute of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante (Spain); State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Feliu, Juan M., E-mail: juan.feliu@ua.es [Institute of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante (Spain); Berna, Antonio; Climent, Victor [Institute of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante (Spain); Sun Shigang, E-mail: sgsun@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2011-07-01

    Highlights: > Chronoamperometry has been used to study CO oxidation on Pt stepped surfaces. > Adatoms step decoration allows determination of the role of steps on CO oxidation. > Rate constant decreases after step decoration with adatoms. > Tafel slopes are around 60-90 mV/dec, suggesting a Langmuir-Hinshelwood mechanism. - Abstract: In this work, surface modification at atomic level was applied to study the reactivity of step sites on platinum single crystal surfaces. Stepped platinum single crystal electrodes with (1 1 1) terraces separated by monoatomic step sites with different symmetry were decorated with irreversibly adsorbed adatoms, without blocking the terrace sites, and characterized in 0.1 M HClO{sub 4} solution. The kinetics of CO oxidation on the different platinum single crystal planes as well as on the step decorated surfaces has been studied using chronoamperometry. The apparent rate constants, which were determined by fitting the experimental data to a mean-field model, decrease after the steps of platinum single crystal electrodes have been blocked by the adatoms. This behavior indicates that steps are active sites for CO oxidation. Tafel slopes measured from the potential dependence of the apparent rate constants of CO oxidation were similar in all cases. This result demonstrates that the electrochemical oxidation of the CO adlayer on all the surfaces follows the same Langmuir-Hinshelwood model, irrespectively of step modification.

  10. Nucleation kinetics of urea succinic acid –ferroelectric single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dhivya, R. [Crystal growth and Crystallography Division, School of Advanced Sciences, VIT University, Vellore-632014, Tamilnadu (India); Voohrees College, Vellore-632014, Tamilnadu (India); Vizhi, R. Ezhil, E-mail: rezhilvizhi@vit.ac.in, E-mail: revizhi@gmail.com; Babu, D. Rajan [Crystal growth and Crystallography Division, School of Advanced Sciences, VIT University, Vellore-632014, Tamilnadu (India)

    2015-06-24

    Single crystals of Urea Succinic Acid (USA) were grown by slow cooling technique. The crystalline system was confirmed by powder X-ray diffraction. The metastable zonewidth were carried out for various temperatures i.e., 35°, 40°, 45° and 50°C. The induction period is experimentally determined and various nucleation parameters have been estimated.

  11. Toward Characterization of Single Crystal Elastic Properties in Polycrystalline Materials using Resonant Ultrasound (Preprint)

    Science.gov (United States)

    2017-04-06

    AFRL-RX-WP-JA-2017-0331 TOWARD CHARACTERIZATION OF SINGLE CRYSTAL ELASTIC PROPERTIES IN POLYCRYSTALLINE MATERIALS USING RESONANT...STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR...Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway , Suite 1204, Arlington, VA 22202-4302

  12. single crystal EPR studies of Mn(II) doped into zinc ammonium ...

    Indian Academy of Sciences (India)

    -sulphato-aquotris(imidazole) cadmium(II), the paramagnetic ion enters substi- tutionally into the host lattice giving rise to two magnetically inequivalent sites. [9]. single crystal EPR study of Mn(II)-doped magnesium bis(hydrogen maleate) hexahydrate confirms that the impurity ion not only occupies the magnesium site.

  13. Understanding the Cubic Phase Stabilization and Crystallization Kinetics in Mixed Cations and Halides Perovskite Single Crystals.

    Science.gov (United States)

    Xie, Li-Qiang; Chen, Liang; Nan, Zi-Ang; Lin, Hai-Xin; Wang, Tan; Zhan, Dong-Ping; Yan, Jia-Wei; Mao, Bing-Wei; Tian, Zhong-Qun

    2017-03-08

    The spontaneous α-to-δ phase transition of the formamidinium-based (FA) lead halide perovskite hinders its large scale application in solar cells. Though this phase transition can be inhibited by alloying with methylammonium-based (MA) perovskite, the underlying mechanism is largely unexplored. In this Communication, we grow high-quality mixed cations and halides perovskite single crystals (FAPbI3)1-x(MAPbBr3)x to understand the principles for maintaining pure perovskite phase, which is essential to device optimization. We demonstrate that the best composition for a perfect α-phase perovskite without segregation is x = 0.1-0.15, and such a mixed perovskite exhibits carrier lifetime as long as 11.0 μs, which is over 20 times of that of FAPbI3 single crystal. Powder XRD, single crystal XRD and FT-IR results reveal that the incorporation of MA+ is critical for tuning the effective Goldschmidt tolerance factor toward the ideal value of 1 and lowering the Gibbs free energy via unit cell contraction and cation disorder. Moreover, we find that Br incorporation can effectively control the perovskite crystallization kinetics and reduce defect density to acquire high-quality single crystals with significant inhibition of δ-phase. These findings benefit the understanding of α-phase stabilization behavior, and have led to fabrication of perovskite solar cells with highest efficiency of 19.9% via solvent management.

  14. PROBING STRESS EFFECTS IN SINGLE CRYSTAL ORGANIC TRANSISTORS BY SCANNING KELVIN PROBE MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Teague, L

    2010-06-11

    We report scanning Kelvin probe microscopy (SKPM) of single crystal difluoro bis(triethylsilylethynyl) anthradithiophene (diF-TESADT) organic transistors. SKPM provides a direct measurement of the intrinsic charge transport in the crystals independent of contact effects and reveals that degradation of device performance occurs over a time period of minutes as the diF-TESADT crystal becomes charged.

  15. Investigations on the optical, thermal and surface modifications of electron irradiated L-threonine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Kumar, G.; Gokul Raj, S. [Department of Physics, Presidency College, Chepauk, Chennai 600005 (India); Bogle, K.A.; Dhole, S.D.; Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411007 (India); Mohan, R. [Department of Physics, Presidency College, Chepauk, Chennai 600005 (India)], E-mail: professormohan@yahoo.co.in

    2008-06-15

    L-Threonine single crystals have been irradiated by 6 MeV electrons. Irradiated crystals at various electron fluences were subjected to various techniques such as UV-vis-NIR, atomic force microscopy (AFM) and thermomechanical analyses. Thermal strength of the irradiated crystals has also been studied through differential scanning calorimetry (DSC) measurements. The results have been discussed in detail.

  16. Influence of solvents on the habit modification of alpha lactose monohydrate single crystals

    Science.gov (United States)

    Parimaladevi, P.; Srinivasan, K.

    2013-02-01

    Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.

  17. Assembly of Nanoscale Organic Single-Crystal Cross-Wire Circuits

    DEFF Research Database (Denmark)

    Bjørnholm, Thomas

    2009-01-01

    Organic single-crystal transistors and circuits can be assembled by nanomechanical manipulation of nanowires of CuPc, F(16)CuPc, and SnO(2):Sb. The crossed bar devices have low operational voltage, high mobility and are stable in air. They can be combined into circuits, providing varied functions...

  18. Molecular Assembly of Hemin on Single-Crystal Au(111)-electrode Surfaces

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    -defined single-crystal Au(111)-electrodesurfaces using electrochemistry combined with scanning tunnelling microscopy under electrochemical control. Hemin gives two voltammetric peaks assigned to adsorbed monomers and dimmers (Fig. 1A). In situ STM shows that hemin self-assembles in ordered monolayers through non...

  19. Optical and electrical properties of ZrSe3 single crystals grown by ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Single crystals of the lamellar compound, ZrSe3, were grown by chemical vapour transport tech- nique using iodine as a transporting agent. The grown crystals were characterized with the help of energy dispersive analysis by X-ray (EDAX), which gave confirmation about the stoichiometry. The optical band gap.

  20. Reproducible low contact resistance in rubrene single-crystal field-effect transistors with nickel electrodes

    NARCIS (Netherlands)

    Hulea, I.N.; Russo, S.; Molinari, A.; Morpurgo, A.F.

    2006-01-01

    We have investigated the contact resistance of rubrene single-crystal field-effect transistors (FETs) with nickel electrodes by performing scaling experiments on devices with channel length ranging from 200 nm up to 300??m. We find that the contact resistance can be as low as 100???cm with narrowly

  1. Single-crystal charge transfer interfaces for efficient photonic devices (Conference Presentation)

    Science.gov (United States)

    Alves, Helena; Pinto, Rui M.; Maçôas, Ermelinda M. S.; Baleizão, Carlos; Santos, Isabel C.

    2016-09-01

    Organic semiconductors have unique optical, mechanical and electronic properties that can be combined with customized chemical functionality. In the crystalline form, determinant features for electronic applications such as molecular purity, the charge mobility or the exciton diffusion length, reveal a superior performance when compared with materials in a more disordered form. Combining crystals of two different conjugated materials as even enable a new 2D electronic system. However, the use of organic single crystals in devices is still limited to a few applications, such as field-effect transistors. In 2013, we presented the first system composed of single-crystal charge transfer interfaces presenting photoconductivity behaviour. The system composed of rubrene and TCNQ has a responsivity reaching 1 A/W, corresponding to an external quantum efficiency of nearly 100%. A similar approach, with a hybrid structure of a PCBM film and rubrene single crystal also presents high responsivity and the possibility to extract excitons generated in acceptor materials. This strategy led to an extended action towards the near IR. By adequate material design and structural organisation of perylediimides, we demonstrate that is possible to improve exciton diffusion efficiency. More recently, we have successfully used the concept of charge transfer interfaces in phototransistors. These results open the possibility of using organic single-crystal interfaces in photonic applications.

  2. Cascading nonlinearities in an organic single crystal core fiber: The Cerenkov regime

    NARCIS (Netherlands)

    Torruellas, William E.; Krijnen, Gijsbertus J.M.; Kim, Dug Y.; Schiek, Roland; Stegeman, George J.; Vidakovic, Petar; Zyss, Joseph

    1994-01-01

    The large nonlinear phase shifts imparted to the fundamental beam during Cerenkov second harmonic generation (SHG) in a DAN, 4-(N,N-dimethylamino)-3-acetamidonitrobenzene, single crystal core fiber are explained and modelled numerically. Cascading upconversion and downconversion processes leads to

  3. Single crystal EPR study of VO (II)-doped cadmium potassium ...

    Indian Academy of Sciences (India)

    Single crystal EPR studies of VO(II)-doped cadmium potassium phosphate hexahydrate (CPPH) have been carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice only substitutionally in place of Cd(II). Spin Hamiltonian ...

  4. High pressure effects on the photoluminescence intensity of sexithiophene single crystals

    NARCIS (Netherlands)

    Loi, M.A.; Bongiovanni, G.; Mura, A.; Cai, Q.; Martin, C.; Chandrasekhar, H.R.; Chandrasekhar, M.; Graupner, W.; Garnier, F.

    2001-01-01

    We report on the influence of interchain interactions on the light emission properties of a sexithiophene single crystal. The strength of the intermolecular interactions is controlled by applying hydrostatic pressure. The combined use of both steady-state and time-resolved photoluminescence

  5. Pressure-induced quenching of the photoluminescence in sexithiophene single crystals observed by femtosecond spectroscopy

    NARCIS (Netherlands)

    Loi, M. A.; Mura, A; Bongiovanni, G; Cai, Q; Martin, C; Chandrasekhar, HR; Chandrasekhar, M; Graupner, W; Garnier, F

    2001-01-01

    The influence of interchain interactions on the photoluminescence processes in a sexithiophene single crystal is studied by applying hydrostatic pressure up to 60 kbar, Steady state and femtosecond-time resolved optical spectroscopies indicate that an ultrafast (100 fs) formation of intermolecular

  6. Two convenient low-temperature routes to single crystals of plutonium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Meredith, Nathan A. [Departments of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 (United States); Wang, Shuao; Diwu, Juan [School of Radiation Medicine and Protection and School of Radiological and Interdisciplinary Sciences, Soochow University, Suzhou, Jiangsu 215123 (China); Albrecht-Schmitt, Thomas E., E-mail: talbrechtschmitt@gmail.com [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States)

    2014-11-15

    Highlights: • Two low-temperature routes to the growth single crystals of plutonium dioxide. • Safer methods of preparing PuO{sub 2} single crystals that do not involve solid-state synthetic techniques. • Solvothermal crystal growth of plutonium dioxide. - Abstract: During the solvothermal synthesis of a low-dimensional borate, KB{sub 5}O{sub 7}(OH){sub 2}⋅2H{sub 2}O, in the presence of Pu(III), single crystals of plutonium dioxide unexpectedly formed. Single crystals of PuO{sub 2} also formed during the hydrothermal synthesis of another borate, Na{sub 2}B{sub 5}O{sub 8}(OH)⋅2H{sub 2}O, in the presence of Pu(III). The reactions were conducted at 170 °C and 150 °C, respectively, which are much lower temperature than previously reported preparations of crystalline PuO{sub 2}. Yellow–green crystals with a tablet habit were characterized by single crystal X-ray diffraction and solid-state UV–vis–NIR absorption spectroscopy. The crystal structure was solved by direct methods with R{sub 1} = 1.26% for 19 unique observed reflections. PuO{sub 2} is cubic, space group Fm3{sup ‾}m, and adopts the fluorite structure type. The lattice parameter was determined to be a = 5.421(5) Å giving a volume of 159.3(2) Å{sup 3}. The absorption spectrum is consistent with Pu(IV)

  7. Characteristics evaluation of stilbene single crystal grown by vertical bridgman technique

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Kwang Ho

    2012-02-15

    As the nature of organic scintillator, stilbene single crystal's decay time is only a couple of nano seconds, which makes it suitable for fast neutron detection. However, the entire amount of stilbene single crystal being used relies on import currently. As the necessity of fast neutron detection equipment such as KSTAR and Sodium-cooled Fast Reactor system increases, the goal is to have our own domestic technology through the growth of stilbene single crystal. The emission wavelength of grown stilbene single crystal is confirmed, and the property of grown stilbene single crystal is assessed compared to commercial stilbene (Ukraine ISMA research center) through gamma ray and neutron tests. In this research, we have grown stilbenes through Bridgman technique, and obtained three stilbenes out of two amples. (Two ones of {Phi} 30 mm x 15 mm, and {Phi} 40 mm x 17 mm from the first ample, and size of {Phi} 25 mm x 13 mm from the other) The grown stilbene's emission wavelength and inherent property of stilbene are confirmed. As the result of gamma ray test, we have confirmed linearity of grown stilbene's scintillator, and the relative light yield ratio is proven 101% efficiency to reference stilbene. Neutron detection efficiency of the three stilbenes amounts to 80% of reference stilbene, and FOM of them is 108% efficiency to reference stilbene's one. Although Ukraine ISMA research center still holds a dominant position with world-class efficiency and performance of its stilbene, we expect to produce a better stilbene with our domestic technology development. Through this, fast neutron detection technique can be obtained, which opens up an opportunity to be used not only in neutron monitoring system in nuclear fusion reactor, but also in alternative measurement technique as the unit price of He-3 increases recently

  8. Comparative characterization of rhombohedral and tetragonal PZN-PT single crystals

    Directory of Open Access Journals (Sweden)

    D. Kobor

    2011-06-01

    Full Text Available Ferroelectric single crystals Pb(Zn1/3Nb2/3O3–PbTiO3 (PZN–PT are promising full materials for nonresonant or large bandwidth transducers due to the large values of their piezoelectric properties (dij, kij and their mechanical quality factor (Qij. However the properties of these materials depend greatly on the content of titanium which influences very significantly the symmetry of the crystal. In this paper we try to understand the influence of the percentage of Titanium in these crystals by studying the two compositions that are in very different phases at room temperature (rhombohedral and tetragonal symmetries. Crystals of pure PZN–4.5PT and PZN-12PT were grown by a Flux technique. The typical single crystals obtained are brown yellow. The room temperature dielectric permittivity along the direction is about 900 for the PZN-12PT, which is smaller than that of the PZN–4.5PT (5840. The Curie point Tc of the tetragonal crystal is about 220 °C (which is higher than that of the rhombohedral one (166 °C, while the ferroelectric phase transition temperature is 130 °C for the PZN-4.5PT single crystal. The remnant polarization and coercive field of oriented crystals measured at 1 kHz are around 40 μC/cm2 and 3.30 kV/cm, respectively for the PZN-4.5PT, 27μC/cm2 and 11.1 kV/cm for the PZN-12PT single crystal. The d33 versus uniaxial stress shows that this coefficient is more stable for the single crystal with low Ti than for that with high rate of Ti. The study of temperature stability on these crystals shows a possible presence of an unidentified phase in the low and negative range temperature for the PZN-4.5PT.

  9. Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments

    Science.gov (United States)

    Vincent, Marin; Thiebaud, Frédéric; Bel Haj Khalifa, Saifeddine; Engels-Deutsch, Marc; Ben Zineb, Tarak

    2015-10-01

    The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.

  10. Single-Crystal-to-Single-Crystal Anion Exchange in a Gadolinium MOF: Incorporation of POMs and [AuCl4]−

    Directory of Open Access Journals (Sweden)

    Javier López-Cabrelles

    2016-04-01

    Full Text Available The encapsulation of functional molecules inside porous coordination polymers (also known as metal-organic frameworks, MOFs has become of great interest in recent years at the field of multifunctional materials. In this article, we present a study of the effects of size and charge in the anion exchange process of a Gd based MOF, involving molecular species like polyoxometalates (POMs, and [AuCl4]−. This post-synthetic modification has been characterized by IR, EDAX, and single crystal diffraction, which have provided unequivocal evidence of the location of the anion molecules in the framework.

  11. Remote analysis of planetary soils: X-ray diffractometer development

    Science.gov (United States)

    Gregory, J. C.

    1973-01-01

    A system is described suitable for remote low power mineralogical analysis of lunar, planetary, or asteroid soils. It includes an X-ray diffractometer, fluorescence spectrometer, and sample preparation system. A one Curie Fe-55 source provides a monochromatic X-ray beam of 5.9 keV. Seeman-Bohlin or focusing geometry is employed in the camera, allowing peak detection to proceed simultaneously at all angles and obviating the need for moving parts. The detector system is an array of 500-600 proportional counters with a wire-spacing of 1 mm. An electronics unit comprising preamplifier, postamplifier, window discriminators, and storage flipflops requiring only 3.5 milliwatts was designed and tested. Total instrument power is less than 5 watts. Powder diffraction patterns using a flat breadboard multiwire counter were recorded.

  12. Optical properties of single crystals and vacuum-deposited thin films of a substituted oligo(p-phenylene vinylene)

    NARCIS (Netherlands)

    Brouwer, H.J.; Krasnikov, V.V.; Gill, R.E.; Hutten, P.F. van; Hadziioannou, G.

    1998-01-01

    The optical properties and structural organization of a 5-ring n-octyloxy-substituted oligo(p-phenylene vinylene) have been investigated in the solid state. For this study solution-grown single crystals and vacuum-deposited thin films were used. The unit cell of the solution-grown single crystals

  13. High pressure effect on MoS2 and MoSe2 single crystals grown by ...

    Indian Academy of Sciences (India)

    Unknown

    tetrahedral anvil apparatus up to 5 GPa. In this paper we report room temperature resistance mea- surements as a function of pressure on MoS2 and MoSe2 single crystals. In each case the resistance decreases un- der pressure due to an increase in the carrier concentration. 2. Experimental. Single crystals of MoS2 and ...

  14. Effect of Specimen Thickness on the Creep Response of a Single Crystal Superalloy (Preprint)

    Science.gov (United States)

    2012-01-01

    Whit- neys in-house Rapid Prototype Casting Laboratory. The X - ray diffraction ( Laue ) analysis and macro-etching were used to confirm that the bars were...the oxides formed during high temperature creep exposure, X - ray diffraction (XRD) experiments were carried out in a Rigaku Ultima III diffractometer...with a Cu Kα (λ = 0.15406nm) incident X - ray source. Electron backscatter diffraction known as orientation imaging microscopy (OIM) was carried out

  15. Single crystal growth and electronic structure of TlPbI{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Khyzhun, O.Y., E-mail: khyzhun@ipms.kiev.ua [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky Street, 03142 Kyiv (Ukraine); Fochuk, P.M. [Yuriy Fedkovich Chernivtsi National University, 2 Kotsyubynskogo Street, 58012 Chernivtsi (Ukraine); Kityk, I.V. [Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, PL-42-217 Czestochowa (Poland); Piasecki, M. [Institute of Physics, J.Dlugosz University Częstochowa, Armii Krajowej 13/15, Częstochowa (Poland); Levkovets, S.I. [Department of Inorganic and Physical Chemistry, Eastern European National University, 13 Voli Avenue, 43025 Lutsk (Ukraine); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, 50 Pekarska Street, 79010 Lviv (Ukraine); Parasyuk, O.V. [Department of Inorganic and Physical Chemistry, Eastern European National University, 13 Voli Avenue, 43025 Lutsk (Ukraine)

    2016-04-01

    High-quality inclusion-free TlPbI{sub 3} single crystals have been grown using Bridgman–Stockbarger method. The electronic structure of TlPbI{sub 3} is studied by using the possibilities of X-ray photoelectron spectroscopy (XPS). For the TlPbI{sub 3} crystal, XPS core-level and valence-band spectra for both pristine and Ar{sup +} ion-bombarded surfaces are recorded. The present XPS data indicate that the TlPbI{sub 3} single crystal surface is somewhat sensitive with respect to Ar{sup +} ion-bombardment. In particular, the XPS measurements reveal that thallium and lead atoms are in the formal valence +1 and +2, respectively, on the pristine TlPbI{sub 3} single crystal surface. Further, the 3.0 keV Ar{sup +} ion-bombardment of the surface induces partial transformation of lead ions to lower valence state, namely Pb{sup 0}; however, no partial loss of iodine atoms belonging to TlI{sub 8} polyhedra occurs due to the Ar{sup +} ion-bombardment of the TlPbI{sub 3} surface because after such a treatment thallium remains exclusively in the formal valence +1. The present XPS results indicate that low hygroscopicity is characteristic of the TlPbI{sub 3} single crystal surface. Photoinduced birefringence profiles in TlPbI{sub 3} are explored. - Highlights: • High-quality TlPbI{sub 3} single crystals have been grown by Bridgman–Stockbarger method. • Electronic structure of TlPbI{sub 3} is studied by the XPS method. • XPS data reveal low hygroscopicity of TlPbI{sub 3} surface. • TlPbI{sub 3} single crystal surface is sensitive with respect to Ar{sup +} ion-bombardment. • Photoinduced birefringence profiles in TlPbI{sub 3} are explored.

  16. Study of photoluminescence from annealed bulk-ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoneta, M.; Ohishi, M.; Saito, H. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Yoshino, K. [Department of Electrical and Electronic Engineering, Miyazaki University, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Honda, M. [Faculty of Science, Naruto University of Education, 748 Nakajima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2006-03-15

    We have investigated the influence of rapid thermal annealing on the photoluminescence of bulk-ZnO single crystal. As-grown ZnO wafer, illuminated by 325 nm ultraviolet light at 4.2 K, emitted the visible luminescence of pale green centered of 2.29 eV. The luminescence was observed by the anneal at the temperature range between 400 C and 1000 C, however, its intensity decreased with anneal temperature. The free-exciton and the 2.18 eV emission line were obtained by the anneal at 1200 C for 60 sec. From the X-ray diffraction and the surface morphology measurements, the improvement of the crystallinity of bulk-ZnO crystal were confirmed. We suggest that a rapid thermal annealing technique is convenience to improve the the quality of bul-ZnO single crystals. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Steady-state crack growth in single crystals under Mode I loading

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2017-01-01

    that the largest shielding effect develops in HCP crystals, while the lowest shielding exists for FCC crystals. Rate-sensitivity is found to affect the plastic zone size, but the characteristics overall remain similar for each individual crystal structure. An increasing rate-sensitivity at low crack velocities......The active plastic zone that surrounds the tip of a sharp crack growing under plane strain Mode I loading conditions at a constant velocity in a single crystal is studied. Both the characteristics of the plastic zone and its effect on the macroscopic toughness is investigated in terms of crack tip...... shielding due to plasticity (quantified by employing the Suo, Shih, and Varias set-up). Three single crystals (FCC, BCC, HCP) are modelled in a steady-state elastic visco-plastic framework, with emphasis on the influence of rate-sensitivity and crystal structures. Distinct velocity discontinuities...

  18. Faradaic current in different mullite materials. Single crystal, ceramic and cermets

    Energy Technology Data Exchange (ETDEWEB)

    Mata-Osoro, Gustavo; Moya, Jose S.; Pecharroman, Carlos [Instituto de Ciencia de Materiales de Madrid (CSIC) (Spain); Morales, Miguel [Universidad de Santiago de Compostela (Spain). LabCaF; Diaz, L. Antonio [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN-CSIC), Llanera (Spain); Schneider, Hartmut [Koeln Univ. (Germany). Inst. fuer Kristallographie

    2012-04-15

    Faradaic current measurements have been carried out on three different types of mullite: 2: 1 mullite single crystals (E perpendicular to c), 3: 2 ceramics and 11 % mullite/Mo composites. Measurements were carried out on very thin samples (60 {mu}m) at high voltages (500 to 1 000 V). Under these conditions, measurable currents were recorded even at room temperature. Results indicate notable differences between these three samples, which suggest that, although they share the same name and similar crystalline structure, binding energies and defect distributions seem to be very different. Finally, it has been seen that the excellent behaviour against dielectric breakdown of ceramic mullite does not hold for single crystals or mullite based cermets. (orig.)

  19. Crystallinity of the epitaxial heterojunction of C60 on single crystal pentacene

    Science.gov (United States)

    Tsuruta, Ryohei; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Ishii, Hisao; Nakayama, Yasuo

    2017-06-01

    The structure of pn heterojunctions is an important subject in the field of organic semiconductor devices. In this work, the crystallinity of an epitaxial pn heterojunction of C60 on single crystal pentacene is investigated by non-contact mode atomic force microscopy and high-resolution grazing incidence x-ray diffraction. Analysis shows that the C60 molecules assemble into grains consisting of single crystallites on the pentacene single crystal surface. The in-plane mean crystallite size exceeds 0.1 μm, which is at least five time larger than the size of crystallites deposited onto polycrystalline pentacene thin films grown on SiO2. The results indicate that improvement in the crystal quality of the underlying molecular substrate leads to drastic promotion of the crystallinity at the organic semiconductor heterojunction.

  20. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications.

    Science.gov (United States)

    Sun, Enwei; Cao, Wenwu

    2014-08-01

    In the past decade, domain engineered relaxor-PT ferroelectric single crystals, including (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT) and (1-x-y)Pb(In1/2Nb1/2)O3-yPb(Mg1/3Nb2/3)O3-xPbTiO3 (PIN-PMN-PT), with compositions near the morphotropic phase boundary (MPB) have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. Compared to traditional PbZr1-x Ti x O3 (PZT) ceramics, the piezoelectric coefficient d33 is increased by a factor of 5 and the electromechanical coupling factor k33 is increased from 90%. Many emerging rich physical phenomena, such as charged domain walls, multi-phase coexistence, domain pattern symmetries, etc., have posed challenging fundamental questions for scientists. The superior electromechanical properties of these domain engineered single crystals have prompted the design of a new generation electromechanical devices, including sensors, transducers, actuators and other electromechanical devices, with greatly improved performance. It took less than 7 years from the discovery of larger size PMN-PT single crystals to the commercial production of the high-end ultrasonic imaging probe "PureWave". The speed of development is unprecedented, and the research collaboration between academia and industrial engineers on this topic is truly intriguing. It is also exciting to see that these relaxor-PT single crystals are being used to replace traditional PZT piezoceramics in many new fields outside of medical imaging. The new ternary PIN-PMN-PT single crystals, particularly the ones with Mn-doping, have laid a solid foundation for innovations in high power acoustic projectors and ultrasonic motors, hinting another revolution in underwater SONARs and miniature actuation devices. This article intends to provide a comprehensive review on the development of relaxor-PT single crystals, spanning material discovery, crystal growth

  1. Elucidating the activity of stepped Pt single crystals for oxygen reduction

    DEFF Research Database (Denmark)

    Bandarenka, Aliaksandr S.; Hansen, Heine Anton; Rossmeisl, Jan

    2014-01-01

    The unexpectedly high measured activity of Pt[n(111) × (111)] and Pt[n(111) × (100)] stepped single crystal surfaces towards the oxygen reduction reaction (ORR) is explained utilizing the hydroxyl binding energy as the activity descriptor. Using this descriptor (estimated using experimental data...... obtained by different groups), a well-defined Sabatier-type volcano is observed for the activities measured for the Pt[n(111) × (111)] and Pt[n(111) × (100)] stepped single crystals, in remarkable agreement with earlier theoretical studies. We propose that the observed destabilisation of *OH species...... at these surfaces is due to the decreased solvation of the adsorbed hydroxyl intermediates on adjacent terrace sites....

  2. Effect of physicochemical factors on the microplasticity of the surface layer of molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Savenko, V.I.; Kuchumova, V.M.; Kochanova, L.A.; Shchukin, E.D.

    1984-07-01

    The microplastic properties of the surface layer of molybdenum single crystals produced by electron-beam zone melting have been investigated experimentaly using ultramicrosclerometry and microindentation techniques. It is found that the 111 plane has the highest susceptibility to plastic damage, while the 100 plane is the hardest. An analysis of the stressed state of the material under an indenter shows that the dislocation density along the loading paths, which characterizes the microplasticity of the material, is largely determined by the crystallography of the lattice, i.e., by the arrangement and the number of effective slip systems in specimens of different orientations. The effect of a monolayer octadecylamine film on the microplastic behavior of molybdenum single crystals is discussed.

  3. Structural Characterization of Doped GaSb Single Crystals by X-ray Topography

    Energy Technology Data Exchange (ETDEWEB)

    Honnicke, M.G.; Mazzaro, I.; Manica, J.; Benine, E.; M da Costa, E.; Dedavid, B. A.; Cusatis, C.; Huang, X. R.

    2009-09-13

    We characterized GaSb single crystals containing different dopants (Al, Cd and Te), grown by the Czochralski method, by x-ray topography and high angular resolution x-ray diffraction. Lang topography revealed dislocations parallel and perpendicular to the crystal's surface. Double-crystal GaSb 333 x-ray topography shows dislocations and vertical stripes than can be associated with circular growth bands. We compared our high-angular resolution x-ray diffraction measurements (rocking curves) with the findings predicted by the dynamical theory of x-ray diffraction. These measurements show that our GaSb single crystals have a relative variation in the lattice parameter ({Delta}d/d) on the order of 10{sup -5}. This means that they can be used as electronic devices (detectors, for example) and as x-ray monochromators.

  4. Determination of the refractive index of single crystal bulk samples and micro-structures

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Grund, R., E-mail: Schmidt-Grund@physik.uni-leipzig.de; Kuehne, P.; Czekalla, C.; Schumacher, D.; Sturm, C.; Grundmann, M.

    2011-02-28

    We present comparative studies for the exact determination of the refractive index of single crystals using spectroscopic ellipsometry and photonic-mode-structure investigations by means of spatially resolved photoluminescence spectroscopy, especially in the near band-gap spectral range. By applying such complementary methods we can overcome the uncertainties in the determination of the bulk refractive index introduced by surface properties. The physical effects used are the electromagnetic field reflection used by spectroscopic ellipsometry at large scale planar single crystals and the whispering-gallery-mode formation by total internal reflection in confined micro-structures. We demonstrate the applicability of such studies using the example of uniaxial ZnO bulk samples and micro-wires. By assuming a surface near region with electronic properties different from the bulk material, the method presented here gives the refractive index dispersion for both types of samples in an energy range from 1 to 3.4 eV.

  5. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-07-06

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  6. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Kaname [Department of Electronics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp [Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Yamao, Takeshi; Hotta, Shu [Faculty of Materials Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2016-08-08

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  7. Preparation and characterization of single crystal samples for high-pressure experiments

    Energy Technology Data Exchange (ETDEWEB)

    Farber, D; Antonangeli, D; Aracne, C; Benterou, J

    2005-10-26

    To date, most research utilizing the diamond anvil cell (DAC) has been conducted with polycrystalline samples, thus the results are limited to addressing average bulk properties. However, experiments on single crystals can yield data on a range of orientation dependent properties such as thermal and electrical conductivity, magnetic susceptibility, elasticity and plasticity. Here we report new procedures to produce extremely high-quality metallic single crystal samples of size compatible with DAC experiments in the Mbar range. So far, we have produced samples of zinc, Al{sub 2}O{sub 3}, cobalt, molybdenum and cerium, and have evaluated the quality of the finished samples with white-light interferometry, synchrotron x-ray diffraction and inelastic x-ray scattering.

  8. Investigation on crystalline perfection, mechanical, piezoelectric and ferroelectric properties of L-tartaric acid single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, G. Senthil, E-mail: nanosen@gmail.com; Ramasamy, P., E-mail: nanosen@gmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam, Tamilnadu - 603110 (India)

    2014-04-24

    Polar organic nonlinear optical material, L-tartaric acid single crystals have been grown from slow evaporation solution growth technique. Single crystal X-ray diffraction study indicates that the grown crystal crystallized in monoclinic system with space group P2{sub 1}. Crystalline perfection of the crystal has been evaluated by high resolution X-ray diffraction technique and it reveals that the crystal quality is good and free from structural grain boundaries. Mechanical stability of the crystal has been analyzed by Vickers microhardness measurement and it exhibits reverse indentation size effect. Piezoelectric d{sub 33} co-efficient for the crystal has been examined and its value is 47 pC/N. The ferroelectric behaviour of the crystal was analyzed by polarization-electric field hysteresis loop measurement.

  9. The method and equipment for the investigation of ions orienting transmission through thin single crystals

    CERN Document Server

    Soroka, V Y; Maznij, Y O

    2003-01-01

    A new approach is proposed to solve the task of angular distribution measurement of intensity strongly differentiated ions fluxes. Channeling effect makes this problem a regular feature of experimental study of ions orientating transmission through thin single crystals. The approach is based on the use of ions additional scattering by an amorphous (polycrystalline) target after passing through single crystal. The additional target manipulator is joined with the principal target chamber equipment with three-axis goniometer. The manipulator allows to move an additional target in the vicinity of the accelerator beam within the limits of +- 3 sup 0 in all directions and allows to measure the angular distribution of scattered ions with the accuracy of 1 min. The method and equipment were tested at the single ended electrostatic accelerator (EG-5) using a proton beam. At present the measurements have been resumed at the tandem accelerator (EG-10) of the Institute for Nuclear Research of the Academy of Sciences of U...

  10. Hardware modification of a 7 mm MAS NMR probe to a single-crystal goniometer.

    Science.gov (United States)

    Kovács, Gábor; Rohonczy, János

    2006-07-01

    Tensorial terms of the Hamiltonian can be measured by solid-state single-crystal nuclear magnetic resonance (NMR) spectroscopy which requires a goniometer NMR probehead. Goniometer probes; however, are not standard parts of solid NMR spectrometers and are available only at a much higher price than magic-angle spinning (MAS) probeheads widely used in research. Due to requirements of MAS experiments, modern probeheads are designed for small ceramic rotors, which are 1-4 mm in diameter, to reach very high angular frequencies, so there are several older 7 mm MAS probeheads used rarely todays in NMR laboratories. In this paper, a simple method is presented how to rebuild step-by-step a 7 mm Bruker MAS probehead to be suitable for single-crystal spectroscopy. In the second part (31)P chemical shift tensors of Na(4)P(2)O(7) x 10H(2)O are determined to demonstrate the functionality of the rebuilt probehead.

  11. Large single crystals of graphene on melted copper using chemical vapor deposition.

    Science.gov (United States)

    Wu, Yimin A; Fan, Ye; Speller, Susannah; Creeth, Graham L; Sadowski, Jerzy T; He, Kuang; Robertson, Alex W; Allen, Christopher S; Warner, Jamie H

    2012-06-26

    A simple method is presented for synthesizing large single crystal graphene domains on melted copper using atmospheric pressure chemical vapor deposition (CVD). This is achieved by performing the reaction above the melting point of copper (1090 °C) and using a molybdenum or tungsten support to prevent balling of the copper from dewetting. By controlling the amount of hydrogen during growth, individual single crystal domains of monolayer graphene greater than 200 μm are produced within a continuous film. Stopping growth before a complete film is formed reveals individual hexagonal domains of graphene that are epitaxially aligned in their orientation. Angular resolved photoemission spectroscopy is used to show that the graphene grown on copper exhibits a linear dispersion relationship and no sign of doping. HRTEM and electron diffraction reveal a uniform high quality crystalline atomic structure of monolayer graphene.

  12. Large rotating magnetocaloric effect in ErAlO3 single crystal

    Directory of Open Access Journals (Sweden)

    X. Q. Zhang

    2017-05-01

    Full Text Available Magnetic and magnetocaloric properties of ErAlO3 single crystal were investigated. Magnetization of ErAlO3 shows obvious anisotropy when magnetic field is applied along the a, b and c axes, which leads to large anisotropic magnetic entropy change. In particular, large rotating field entropy change from the b to c axis within the bc plane is obtained and reaches 9.7 J/kg K at 14 K in a field of 5 T. This suggests the possibility of using ErAlO3 single crystal for magnetic refrigerators by rotating its magnetization vector rather than moving it in and out of the magnet.

  13. Effects of microscopic boundary conditions on plastic deformations of small-sized single crystals

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2009-01-01

    for uniaxial plane strain compression of a single crystal block and for uniform pure bending of a single crystal foil. The compressed block has loading surfaces that are penetrable or impenetrable to dislocations. This allows for a study of the two types of higher-order boundaries available, and a significant......The finite deformation version of the higher-order gradient crystal plasticity model proposed by the authors is applied to solve plane strain boundary value problems, in order to obtain an understanding of the effect of the higher-order boundary conditions. Numerical solutions are carried out...... effect of higher-order boundary conditions on the overall deformation mode of the block is observed. The bent foil has free surfaces through which dislocations can go out of the material, and we observe a strong size-dependent mechanical response resulting from the surface condition assumed....

  14. Nano-scaled diffusional or dislocation creep analysis of single-crystal ZnO

    Directory of Open Access Journals (Sweden)

    P. H. Lin

    2016-09-01

    Full Text Available The nanoindentation time-dependent creep experiments with different peak loads are conducted on c-plane (0001, a-plane (112¯0 and m-plane (101¯0 of single-crystal ZnO. Under nano-scaled indentation, the creep behavior is crystalline orientation-dependent. For the creep on (0001, the stress exponent at low loads is ∼1 and at high loads ∼4. The stress exponents under all loads are within 3∼7 for the creep on (112¯0 and (101¯0. This means that diffusion mechanism and dislocation mechanism is operative for different planes and loads. The relative difficulty of dislocations activation is an additional factor leading to the occurring of diffusion creep on the c-plane of single-crystal ZnO.

  15. Terahertz electrical and optical properties of LiNbO3 single crystal thin films

    Science.gov (United States)

    Dutta, Moumita; Ellis, Carol; Peralta, Xomalin G.; Bhalla, Amar; Guo, Ruyan

    2015-08-01

    A study of Terahertz response of single crystal LiNbO3 thin films subjected to different structural and experimental configuration has been conducted in this work. In this work z-cut and x-cut ion-sliced Lithium Niobate thin films with and without embedded electrodes have been studied employing both Transmission and Reflection mode of Terahertz Spectroscopy along with z-cut single crystal in bulk form. The measurements have been performed in room temperature to probe distinctive THz-material interactions in the frequency range of 0.1-3 THz (3.34cm-1 - 100cm-1). The information thus obtained from the experimental investigation has been used to deduce a conclusive study on the influence of different polar domains on electrical and optical properties in THz frequency regime. Single Lorentzian oscillator model has also been used to define the THz signature thus acquired.

  16. Scintillation and dosimetric properties of Tb-doped LiCaAlF6 single crystals

    Science.gov (United States)

    Kawaguchi, Noriaki; Nakauchi, Daisuke; Hirano, Shotaro; Kawano, Naoki; Okada, Go; Fukuda, Kentaro; Yanagida, Takayuki

    2018-02-01

    We have investigated the scintillation and dosimetric properties of Tb-doped LiCaAlF6 single crystals. The X-ray-induced emission spectrum consisted of several sharp peaks due to the 4f–4f transitions of the Tb3+ ion. The thermoluminescence (TL) spectrum showed similar emission peaks as in those of the X-ray-induced luminescence. The TL intensity monotonically increased as a function of X-ray irradiation dose, and the dose response was demonstrated from 0.01 to 10 mGy. These results suggest that the Tb-doped LiCaAlF6 single crystal is a good candidate TL dosimeter material for low-dose applications.

  17. Large spin accumulation and crystallographic dependence of spin transport in single crystal gallium nitride nanowires

    Science.gov (United States)

    Park, Tae-Eon; Park, Youn Ho; Lee, Jong-Min; Kim, Sung Wook; Park, Hee Gyum; Min, Byoung-Chul; Kim, Hyung-Jun; Koo, Hyun Cheol; Choi, Heon-Jin; Han, Suk Hee; Johnson, Mark; Chang, Joonyeon

    2017-06-01

    Semiconductor spintronics is an alternative to conventional electronics that offers devices with high performance, low power and multiple functionality. Although a large number of devices with mesoscopic dimensions have been successfully demonstrated at low temperatures for decades, room-temperature operation still needs to go further. Here we study spin injection in single-crystal gallium nitride nanowires and report robust spin accumulation at room temperature with enhanced spin injection polarization of 9%. A large Overhauser coupling between the electron spin accumulation and the lattice nuclei is observed. Finally, our single-crystal gallium nitride samples have a trigonal cross-section defined by the (001), () and () planes. Using the Hanle effect, we show that the spin accumulation is significantly different for injection across the (001) and () (or ()) planes. This provides a technique for increasing room temperature spin injection in mesoscopic systems.

  18. Growth of BPO 4 single crystals from Li 2O-MoO 3 flux

    Science.gov (United States)

    Zhang, Shufeng; Zhang, Erpan; Fu, Peizhen; Wu, Yicheng

    2009-04-01

    A new flux system, Li 2O-MoO 3, has been applied to growing BPO 4 single crystals. Transparent BPO 4 single crystals with sizes up to 31×18×16 mm 3 have been successfully grown from the new flux by the top-seeded solution growth method. The viscosity of solution using this new flux decreased significantly compared with that of previously utilized Li 4P 2O 7-Li 2O flux. The solubility was measured and favorable concentration for BPO 4 crystal growth was in the range of 55-64%. The powder SHG effect of as-grown BPO 4 crystal was observed and its intensity was about twice as large as that of KDP. The laser damage threshold of BPO 4 crystal at λ=1.064 nm and τ=8.0 ns is about 10.3 GW/cm 2.

  19. Increasing 13C CP-MAS NMR resolution using single crystals: application to model octaethyl porphyrins.

    Science.gov (United States)

    Dugar, Sneha; Fu, Riqiang; Dalal, Naresh S

    2012-08-02

    Octaethyl porphyrin (OEP) and its Ni and Zn derivatives are considered as model compounds in biochemical, photophysical, and fossil fuel chemistry. They have thus been investigated by high-resolution solid-state (13)C NMR using powders, but peak assignment has been difficult because of large line widths. Arguing that a significant cause of broadening might be the anisotropic bulk magnetic susceptibility, we utilized single crystals in our (13)C cross-polarization magic angle spinning (CP-MAS) measurements and observed a nearly 2-fold line narrowing. This enhanced resolution enabled us to assign chemical shifts to each carbon for all the three compounds. The new assignments are now in agreement with X-ray structural data and allowed us to probe the motional dynamics of the methyl and methylene carbons of the OEP side chains. It is apparent that the use of single crystals in (13)C CP-MAS measurements has a significantly wider impact than previously thought.

  20. Synthesis, crystal structure and EPR spectra of tetraaquabis(methylisonicotinate) copper(II) disaccharinate single crystal

    Science.gov (United States)

    Çelik, Yunus; Bozkurt, Esat; Uçar, İbrahim; Karabulut, Bünyamin

    2011-10-01

    The crystal structure of the [Cu(mein)2(H2O)4]·(sac)2 complex (mein: methylisonicotinate, sac: saccharine) was investigated by single crystal X-ray diffraction technique. The vibrational spectrum was also discussed in relation with the other compounds containing methylisonicotinate and saccharinate complexes. The EPR spectra of [Cu(mein)2(H2O)4]·(sac)2 single crystal have been studied in the temperature range between 113 and 300 K in three mutually perpendicular planes and exhibit two sets of four hyperfine lines of Cu2+ ion. The ground state wave function of the Cu2+ ion is an admixture of dx2-y2 and dz2 states.

  1. One-step model of photoemission from single-crystal surfaces

    Science.gov (United States)

    Karkare, Siddharth; Wan, Weishi; Feng, Jun; Chiang, Tai C.; Padmore, Howard A.

    2017-02-01

    In this paper, we present a three-dimensional one-step photoemission model that can be used to calculate the quantum efficiency and momentum distributions of electrons photoemitted from ordered single-crystal surfaces close to the photoemission threshold. Using Ag(111) as an example, we show that the model can not only calculate the quantum efficiency from the surface state accurately without using any ad hoc parameters, but also provides a theoretical quantitative explanation of the vectorial photoelectric effect. This model in conjunction with other band structure and wave function calculation techniques can be effectively used to screen single-crystal photoemitters for use as electron sources for particle accelerator and ultrafast electron diffraction applications.

  2. Evaluation of undoped ZnS single crystal materials for x-ray imaging applications

    Science.gov (United States)

    Saleh, Muad; Lynn, Kelvin G.; McCloy, John S.

    2017-05-01

    ZnS-based materials have a long history of use as x-ray luminescent materials. ZnS was one of the first discovered scintillators and is reported to have one of the highest scintillator efficiencies. The use of ZnS for high energy luminescence has been thus far limited to thin powder screens, such as ZnS:Ag which is used for detecting alpha radiation, due to opacity to its scintillation light, primarily due to scattering. ZnS in bulk form (chemical vapor deposited, powder processed, and single crystal) has high transmission and low scattering compared to powder screens. In this paper, the performance of single crystalline ZnS is evaluated for low energy x-ray (PLE) of several undoped ZnS single crystals is compared to their Radioluminescence (RL) spectra. It was found that the ZnS emission wavelength varies on the excitation source energy.

  3. High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V. A., E-mail: vishal.shah@warwick.ac.uk; Gammon, P. M. [Department of Engineering, The University of Warwick, Coventry CV4 7AL (United Kingdom); Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Rhead, S. D.; Halpin, J. E.; Trushkevych, O.; Wilson, N. R.; Myronov, M.; Edwards, R. S.; Patchett, D. H.; Allred, P. S.; Prest, M. J.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R. [Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Chávez-Ángel, E. [ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Department of Physics, UAB, 08193 Bellaterra (Barcelona) (Spain); Shchepetov, A.; Prunnila, M. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Kachkanov, V.; Dolbnya, I. P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Reparaz, J. S. [ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); and others

    2014-04-14

    A thin, flat, and single crystal germanium membrane would be an ideal platform on which to mount sensors or integrate photonic and electronic devices, using standard silicon processing technology. We present a fabrication technique compatible with integrated-circuit wafer scale processing to produce membranes of thickness between 60 nm and 800 nm, with large areas of up to 3.5 mm{sup 2}. We show how the optical properties change with thickness, including appearance of Fabry-Pérot type interference in thin membranes. The membranes have low Q-factors, which allow the platforms to counteract distortion during agitation and movement. Finally, we report on the physical characteristics showing sub-nm roughness and a homogenous strain profile throughout the freestanding layer, making the single crystal Ge membrane an excellent platform for further epitaxial growth or deposition of materials.

  4. Growth and surface morphology of ErFeO3 single crystal

    Science.gov (United States)

    Chang, Fenfen; Yuan, Shujuan; Wang, Yabin; Zhan, Sheng; Cao, Shixun; Wu, Anhua; Xu, Jun

    2011-03-01

    ErFeO3 single crystal 7 mm in diameter and up to 70 mm in length has been grown by the floating zone technique using a four-mirror image furnace. Particular attention was given to the surface morphology of different cross-sections of the single crystal perpendicular to the growth direction. There are many cracks, bubbles, and precipitations on the cross-sections of the crystal observed by scanning electron microscopy. The thermal stress induced by the high growth rate might play an important role in the formation of the cracks. The bubbles might be mainly caused by high growth rate and the voids within the sintered feed rod. The energy-dispersive X-ray spectroscopy analysis indicates that there is Fe deficiency in the crystal especially in the precipitations.

  5. Experimental study of the lower critical field in high-{Tc}-single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brandstatter, C.; Boehmer, C. [Atominstitut der Oesterreichischen Univ., Wien (Austria); Weber, H.W.; Veal, B.W. [Argonne National Lab., IL (United States). Materials Science Div.

    1997-08-01

    Employing SQUID magnetometry and novel measuring and evaluation techniques, precise information on the first penetration field can be obtained and used to extract H{sub cl}. Tl- and Bi-based as well as a series of oxygen deficient Y-123 high {Tc} superconducting single crystals were investigated (H{parallel}c). In all cases, H{sub cl} is smaller than previously reported and can be described by BCS-theory.

  6. Electronic properties of C60 and alkali metal doped C60 thin films or single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yusei; Inabe, Tamotsu; Ogata, Hironori; Hoshi, Hajime; Nakamura, Naoki; Mori, Yoshihisa (Inst. for Molecular Science, Okazaki (Japan)); Achiba, Yohji; Suzuki, Shinzo; Kikuchi, Koichi; Ikemoto, Isao (Dept. of Chemistry, Tokyo Metropolitan Univ. (Japan))

    1991-12-01

    Molecular beam epitaxy technique has been applied to prepare ultra-thin films of C{sub 60} (fullerite) and some optical properties, absorption spectra and nonlinear optical activities, have been studied. Morphological studies on the sub-mono-molecular layers have been carried out with TEM and STM technique. Electrical conductivities of alkali metal doped C{sub 60} (fulleride) have been measured for single crystals as well as thin films including the detection of their superconductivity. (orig.).

  7. Organometallic halide perovskite single crystals having low deffect density and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2016-02-18

    The present disclosure presents a method of making a single crystal organometallic halide perovskites, with the formula: AMX3, wherein A is an organic cation, M is selected from the group consisting of: Pb, Sn, Cu, Ni, Co, Fe, Mn, Pd, Cd, Ge, and Eu, and X is a halide. The method comprises the use of two reservoirs containing different precursors and allowing the vapor diffusion from one reservoir to the other one. A solar cell comprising said crystal is also disclosed.

  8. Direct crystal plasticity model: Application to the investigation of single crystal fragmentation under uniaxial loading

    Science.gov (United States)

    Yants, A. Yu.; Trusov, P. V.; Teplyakova, L. A.

    2017-12-01

    The mathematical formulation and the results of solving a boundary value problem of uniaxial loading of single-crystal aluminum samples are reported. A first-type direct model was used for the solution of the boundary value problem. The material response is determined within the crystal elastoviscoplasticity theory. The fragmentation of the initially homogeneous sample into zones with different internal structure evolution is shown.

  9. Structure and Properties of Reduced Barium Niobium Oxide Single Crystals Obtained from Borate Fluxes

    NARCIS (Netherlands)

    Hessen, B.; Sunshine, S.A.; Siegrist, T.; Fiory, A.T.; Waszczak, J.V.

    1991-01-01

    Single crystals of the reduced niobate Ba2Nb15O32 are produced by heating NbO2 in BaO·3B2O3 under high-vacuum conditions. The borate acts both as a source of BaO and as a flux for crystallization. The compound Ba2Nb15O32 crystallizes in space group R3 (a = 7.777 (1) Å, c = 35.518 (6) Å) and contains

  10. Increasing the Laser Induced Damage Threshold of Single Crystal ZnGeP2

    Science.gov (United States)

    2006-03-01

    Unclassified 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 26 Jonathan Goldstein 19b. TELEPHONE NUMBER (Include Area Code) N/A...10 4. E. Buehler, J.H. Wernick , “Concerning growth of single crystals of the II-IV-V diamond-like compounds ZnSiP2, CdSiP2, ZnGeP2, and CdSnP2 and

  11. Modeling Nonlinear Elastic-plastic Behavior of RDX Single Crystals During Indentation

    Science.gov (United States)

    2012-01-01

    single crystals has also been probed using shock experiments (6, 12) and molecular dynamics simulations (12–14). RDX undergoes a polymorphic phase... HMX ) (19) and pentaerythritol tetranitrate (PETN) (20, 21). Aims of the present work are to develop and implementent a crystal plasticity model for...which is the stable polymorph for pressures under ≈ 3.8 GPa and temperatures under ≈ 480 K. High pressure phases with different structures (γ , β ) and

  12. Vapor phase epitaxial liftoff of GaAs and silicon single crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.; Kao, C.P.; Pike, G.A.; Slone, J.A.; Yablonovitch, E. [Electrical Engineering Department, University of California, Los Angeles, CA 90095-1594 (United States)

    1999-06-10

    Among the technologies for integrating GaAs devices with Si VLSI chips, epitaxial liftoff (ELO) is conspicuous for maintaining the quality of the single crystal epitaxial GaAs films. Traditionally, ELO is implemented in aqueous HF solution. It would be cleaner and simpler if ELO could be implemented in a vapor process. In this article, we will present the potential improvements in the ELO process by using a vapor phase etch to undercut thin films

  13. Facile growth of a single-crystal pattern: a case study of HKUST-1.

    Science.gov (United States)

    Li, Shaozhou; Lu, Guang; Huang, Xiao; Li, Hai; Sun, Yinghui; Zhang, Hua; Chen, Xiaodong; Huo, Fengwei

    2012-12-18

    In order to fabricate metal-organic framework (MOF) based devices, it is desirable to precisely position high-quality and mono-sized MOF crystals on supports. In this work, we demonstrate a facile solution procedure for the fabrication of oriented and monodispersed single-crystal MOF pattern. We expect that such capability will expand the scope of applications of MOFs to advanced fields.

  14. Improved Slow-Positron Yield using a Single Crystal Tungsten Moderator

    DEFF Research Database (Denmark)

    Vehanen, A.; Lynn, K. G.; Schultz, P. J.

    1983-01-01

    A well-annealed W(110) single crystal was used as a fast-to-slow positron moderator. The measured moderator efficiency at room temperature using a58Co positron source in the backscattering geometry isɛ =(3.2±0.4)×10−3, roughly a factor of three better thanɛ for the best previously reported Cu(111...

  15. Single-crystal filters for attenuating epithermal neutrons and gamma rays in reactor beams

    DEFF Research Database (Denmark)

    Rustad, B.M.; Als-Nielsen, Jens Aage; Bahnsen, A.

    1965-01-01

    Cross section of representative samples of bismuth and quartz were measured at room and liquid nitrogen temperatures over neutron energy range of 0.0007 to 2.0 ev to obtain data for design of single-crystal 32-cm bismuth filters for attenuating fast neutrons and γ-rays in reactor beams; filters may...... be constructed to optimize beam characteristics for low energy neutron experiments....

  16. Differences in the optical and photoelectrochemical behaviours of single-crystal and amorphous ferric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Redon, A.M. (Centre National de la Recherche Scientifique, Meudon-Bellevue, France); Vigneron, J.; Heindl, R.; Sella, C.; Martin, C.; Dalbera, J.P.

    1981-03-01

    The photoelectrochemical properties of n-type semiconducting ferric oxide (Fe/sub 2/O/sub 3/) were investigated using samples prepared by two different techniques: a flux-grown single crystal and a sputtered compound were used as electrodes in a photoelectrochemical cell. The transition mode, the band gap and the flat-band potential were determined by studying the photocurrent and the impedance of the electrode. The results show that the photoelectrochemical behaviors of the two compounds are very different.

  17. Growth of BPO4 single crystals from Li2Mo3O10 flux

    Science.gov (United States)

    Xu, Guogang; Li, Jing; Han, Shujuan; Guo, Yongjie; Wang, Jiyang

    2010-12-01

    Transparent single crystal of BPO4 with a typical sizes of 5 × 7 × 9 mm3 have been grown by the top-seeded solution growth (TSSG) slow-cooling method using Li2Mo3O10 as the flux. X-ray powder diffraction result shows that the as-grown crystal was well crystallized and indexed in a tetragonal system. The processing parameters and the effects of the flux on the crystal growth were investigated.

  18. Ferromagnetism in proton irradiated 4H-SiC single crystal

    Directory of Open Access Journals (Sweden)

    Ren-Wei Zhou

    2015-04-01

    Full Text Available Room-temperature ferromagnetism is observed in proton irradiated 4H-SiC single crystal. An initial increase in proton dose leads to pronounced ferromagnetism, accompanying with obvious increase in vacancy concentration. Further increase in irradiation dose lowers the saturation magnetization with the decrease in total vacancy defects due to the defects recombination. It is found that divacancies are the mainly defects in proton irradiated 4H-SiC and responsible for the observed ferromagnetism.

  19. Quasi-static crack tip fields in rate-sensitive FCC single crystals

    Indian Academy of Sciences (India)

    In this work, the effects of loading rate, material rate sensitivity and constraint level on quasi-static crack tip fields in a FCC single crystal are studied. Finite element simulations are performed within a mode I, plane strain modified boundary layer framework by prescribing the two term ( K − T ) elastic crack tip field as remote ...

  20. Effect of zinc acetate addition on crystal growth, structural, optical, thermal properties of glycine single crystals

    Directory of Open Access Journals (Sweden)

    S. Anbu Chudar Azhagan

    2017-05-01

    Full Text Available In the present study, γ-glycine has been crystallized by using zinc acetate dihydrate as an additive for the first time by slow solvent evaporation method. The second harmonic conversion efficiency of γ-glycine crystal was determined using Kurtz and Perry powder technique and was found to be 3.66 times greater than that of standard inorganic material potassium dihydrogen phosphate (KDP. The analytical grade chemicals of glycine and zinc acetate dihydrate were taken in six different molar ratios: 1:0.2, 1:0.4, 1:0.6, 1:0.7, 1:0.8, and 1:0.9 respectively to find out the γ-polymorph of glycine. The lower molar concentration of zinc acetate yield only α-polymorph where as the higher molar concentration of zinc acetate inhibits the γ-polymorph of glycine which was confirmed by single crystal XRD and powder XRD studies. Inductively coupled plasma optical emission spectrometry (ICP-OES was carried out to quantify the concentration of zinc element in the grown glycine single crystals. The concentration of zinc element in the presence of grown γ-glycine single crystal is found to be 0.73 ppm. UV–Visible–NIR transmittance spectra were recorded for the samples to analyse the transparency in visible and near infrared region (NIR. The optical band gap Eg was estimated for γ-glycine single crystal using UV–Visible–NIR study. Functional groups present in the samples were identified by FTIR spectroscopic analysis. Differential scanning calorimetry technique was employed to determine the phase transition, thermal stability and melting point of the grown crystal.

  1. Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2005-01-01

    The CERN-NA-59 experiment examined a wide range of electromagnetic processes for multi-GeV electrons and photons interacting with oriented single crystals. The various types of crystals and their orientations were used for producing photon beams and for converting and measuring their polarisation. The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised photon beams. A new crystal polarimetry technique was established for measuring the linear polarisation of the photon beam. The polarimeter is based on the dependence of the Coherent Pair Production (CPP) cross section in oriented single crystals on the direction of the photon polarisation with respect to the crystal plane. Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set of synthetic Diamond crystals were used as analyzers of the linear polarisation. A birefringence ...

  2. Structural, vibrational and thermal characterization of phase transformation in L-histidinium bromide monohydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Moura, G.M. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Universidade Federal do Sul e Sudeste do Pará, ICEN, Marabá, PA 68505-080 (Brazil); Carvalho, J.O. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Instituto Federal do Tocantins, Araguaína, TO, 77.826-170 (Brazil); Silva, M.C.D.; Façanha Filho, P.F. [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil); Santos, A.O. dos, E-mail: adenilson1@gmail.com [Universidade Federal do Maranhão, CCSST, Imperatriz, MA, 65900-410 (Brazil)

    2015-09-01

    L-Histidinium bromide monohydrate (LHBr) single crystal is a nonlinear optical material. In this work the high temperature phase transformation and the thermal stability of single crystals of LHBr was investigated by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry and Raman spectroscopy. The results showed the LHBr phase transformation of orthorhombic (P2{sub 1}2{sub 1}2{sub 1}) to monoclinic system (P 1 2 1) at 120 °C, with the lattice parameters a = 12.162(1) Å, b = 16.821(2) Å, c = 19.477(2) Å and β = 108.56(2)°. These techniques are complementary and confirm the structural phase transformation due to loss water of crystallization. - Highlights: • -histidinium bromide single crystal was grown by slow evaporation technique. • X-ray diffraction characterize the high-temperature phase transformation. • The structural phase transformation occur due to loss of water of crystallization. • The LHBr thermal expansion coefficients exhibit an anisotropic behavior.

  3. The Bridgman method growth and spectroscopic characterization of calcium fluoride single crystals

    Directory of Open Access Journals (Sweden)

    Elswie Ibrahim Hana

    2016-01-01

    Full Text Available It must be noted that the main objective of this study was to obtain single crystals of calcium fluoride - CaF2, and after that the crystals were characterized with various spectroscopic methods. The crystals were grown using the Bridgman technique. By optimizing growth conditions, oriented CaF2 crystals up to 20 mm in diameter were grown. Number of dislocations in CaF2 crystals was 5×104 - 2×105 per cm2. Selected CaF2 single crystal is cut into several tiles with the diamond saw. The plates were polished, first with the silicon carbide, then the paraffin oil, and finally with a diamond paste. The obtained crystal wаs studied by Raman and infrared -IR spectroscopy. The crystal structure is confirmed by X-ray diffraction (XRD. One Raman and two IR optical modes predicted by group theory are observed. A low photoluminescence testifies that the concentration of oxygen defects within the host CaF2 is small. All performed investigations show that the obtained CaF2 single crystal has good optical quality, which was the goal of this work. [Projekat Ministarstva nauke Republike Srbije, br. III 45003 i br. TR34011

  4. Effect of Metal Dopant on Ninhydrin—Organic Nonlinear Optical Single Crystals

    Directory of Open Access Journals (Sweden)

    R. S. Sreenivasan

    2013-01-01

    Full Text Available In the present work, metal (Cu2+-substituted ninhydrin single crystals were grown by slow evaporation method. The grown crystals have been subjected to single crystal XRD, powder X-ray diffraction, FTIR, dielectric and SHG studies. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in monoclinic system with noncentrosymmetric space group P21 with lattice parameters a=11.28 Å, b=5.98 Å, c=5.71 Å, α=90∘, β=98.57, γ=90∘, and V=381 (Å3, which agrees very well with the reported value. The sharp and strong peaks in the powder X-ray diffraction pattern confirm the good crystallinity of the grown crystals. The presence of dopants marginally altered the lattice parameters without affecting the basic structure of the crystal. The UV-Vis transmittance spectrum shows that the crystal has a good optical transmittance in the entire visible region with lower cutoff wavelength 314 nm. The vibrational frequencies of various functional groups in the crystals have been derived from FT-IR analysis. Based on the shifts in the vibrations, the presence of copper in the lattice of the grown crystal is clearly established from the pure ninhydrin crystals. Both dielectric constant and dielectric loss decrease with the increase in frequency. The second harmonic generation efficiency was measured by employing powder Kurtz method.

  5. Clinical studies of optimised single crystal and polycrystalline diamonds for radiotherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, C. [CEA-LIST (Recherche Technologique)/DETECS/SSTM/LCD, CEA/Saclay, Gif-sur-Yvette (France)], E-mail: cdescamps23@yahoo.fr; Tromson, D.; Tranchant, N. [CEA-LIST (Recherche Technologique)/DETECS/SSTM/LCD, CEA/Saclay, Gif-sur-Yvette (France); Isambert, A.; Bridier, A. [Institut Gustave Roussy, Villejuif (France); De Angelis, C.; Onori, S. [Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanita, Roma (Italy); Bucciolini, M. [Dipartimento di Fisiopatologia dell' Universita, Firenze (Italy); Bergonzo, P. [CEA-LIST (Recherche Technologique)/DETECS/SSTM/LCD, CEA/Saclay, Gif-sur-Yvette (France)

    2008-02-15

    Natural diamond based ionisation chambers commercialised by PTW are used in several hospitals, and their dosimetric properties have been reported in many papers. Nevertheless their high costs and long delivery times are strong drawbacks. Advancements in the growth of synthetic diamonds offer new possibilities. This paper presents the dosimetric analysis in terms of stability and repeatability of the signal, background signal, detector response dynamics, linearity of the signal with the absorbed dose and dose rate dependence of synthetic optimised polycrystalline and single crystal diamonds. Both were elaborated at the CEA-LIST using the chemical vapour deposition (CVD) growth technique. The first dosimetric evaluation of single crystal diamond detector, reported here, shows a repeatability better than 0.1%, a good sensitivity around 70 nC/Gy compared to 3 nC/Gy for optimised polycrystalline diamond, very fast response with rise time around 1 s. Moreover, the signal linearity vs absorbed dose and energy dependence are very satisfactory. This preliminary dosimetric study with medical linear accelerators proves that diamond, and more precisely synthetic single crystal diamond, appears as a good alternative to air ionisation chambers for quality beam control and could be a good candidate for intensity modulated radiation therapy (IMRT) beams dosimetry.

  6. Toward the synthesis of wafer-scale single-crystal graphene on copper foils.

    Science.gov (United States)

    Yan, Zheng; Lin, Jian; Peng, Zhiwei; Sun, Zhengzong; Zhu, Yu; Li, Lei; Xiang, Changsheng; Samuel, E Loïc; Kittrell, Carter; Tour, James M

    2012-10-23

    In this research, we constructed a controlled chamber pressure CVD (CP-CVD) system to manipulate graphene's domain sizes and shapes. Using this system, we synthesized large (~4.5 mm(2)) single-crystal hexagonal monolayer graphene domains on commercial polycrystalline Cu foils (99.8% purity), indicating its potential feasibility on a large scale at low cost. The as-synthesized graphene had a mobility of positive charge carriers of ~11,000 cm(2) V(-1) s(-1) on a SiO(2)/Si substrate at room temperature, suggesting its comparable quality to that of exfoliated graphene. The growth mechanism of Cu-based graphene was explored by studying the influence of varied growth parameters on graphene domain sizes. Cu pretreatments, electrochemical polishing, and high-pressure annealing are shown to be critical for suppressing graphene nucleation site density. A pressure of 108 Torr was the optimal chamber pressure for the synthesis of large single-crystal monolayer graphene. The synthesis of one graphene seed was achieved on centimeter-sized Cu foils by optimizing the flow rate ratio of H(2)/CH(4). This work should provide clear guidelines for the large-scale synthesis of wafer-scale single-crystal graphene, which is essential for the optimized graphene device fabrication.

  7. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply

    Science.gov (United States)

    Xu, Xiaozhi; Zhang, Zhihong; Qiu, Lu; Zhuang, Jianing; Zhang, Liang; Wang, Huan; Liao, Chongnan; Song, Huading; Qiao, Ruixi; Gao, Peng; Hu, Zonghai; Liao, Lei; Liao, Zhimin; Yu, Dapeng; Wang, Enge; Ding, Feng; Peng, Hailin; Liu, Kaihui

    2016-11-01

    Graphene has a range of unique physical properties and could be of use in the development of a variety of electronic, photonic and photovoltaic devices. For most applications, large-area high-quality graphene films are required and chemical vapour deposition (CVD) synthesis of graphene on copper surfaces has been of particular interest due to its simplicity and cost effectiveness. However, the rates of growth for graphene by CVD on copper are less than 0.4 μm s-1, and therefore the synthesis of large, single-crystal graphene domains takes at least a few hours. Here, we show that single-crystal graphene can be grown on copper foils with a growth rate of 60 μm s-1. Our high growth rate is achieved by placing the copper foil above an oxide substrate with a gap of ∼15 μm between them. The oxide substrate provides a continuous supply of oxygen to the surface of the copper catalyst during the CVD growth, which significantly lowers the energy barrier to the decomposition of the carbon feedstock and increases the growth rate. With this approach, we are able to grow single-crystal graphene domains with a lateral size of 0.3 mm in just 5 s.

  8. Photoluminescence Blinking of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods Induced by Surface Traps

    Science.gov (United States)

    2016-01-01

    Photoluminescence (PL) of organometal halide perovskite materials reflects the charge dynamics inside of the material and thus contains important information for understanding the electro-optical properties of the material. Interpretation of PL blinking of methylammonium lead iodide (MAPbI3) nanostructures observed on polycrystalline samples remains puzzling owing to their intrinsic disordered nature. Here, we report a novel method for the synthesis of high-quality single-crystal MAPbI3 nanorods and demonstrate a single-crystal study on MAPbI3 PL blinking. At low excitation power densities, two-state blinking was found on individual nanorods with dimensions of several hundred nanometers. A super-resolution localization study on the blinking of individual nanorods showed that single crystals of several hundred nanometers emit and blink as a whole, without showing changes in the localization center over the crystal. Moreover, both the blinking ON and OFF times showed power-law distributions, indicating trapping–detrapping processes. This is further supported by the PL decay times of the individual nanorods, which were found to correlate with the ON/OFF states. Furthermore, a strong environmental dependence of the nanorod PL blinking was revealed by comparing the measurements in vacuum, nitrogen, and air, implying that traps locate close to crystal surfaces. We explain our observations by proposing surface charge traps that are likely related to under-coordinated lead ions and methylammonium vacancies to result in the PL blinking observed here. PMID:27617323

  9. Low-frequency-dependent electro-optic properties of potassium lithium tantalate niobate single crystals

    Science.gov (United States)

    Li, Yang; Li, Jun; Zhou, Zhongxiang; Guo, Ruyan; Bhalla, Amar S.

    2013-05-01

    A series of lead-free ferroelectric potassium lithium tantalate niobate K0.95Li0.05Ta1-xNbxO3 (x = 0.78, 0.69, 0.60, 0.52) single crystals were grown using the top-seeded melt growth method. The low-frequency-dependent linear electro-optic properties of K0.95Li0.05Ta1-xNbxO3 single crystals in the tetragonal state were investigated using the Senarmont method, autoscanning Mach-Zehnder interferometer technique and AC measurement method at room temperature. The electro-optic measurements were taken with continuous low frequency (from 1 kHz to 100 kHz) of a sinusoidal electric field, and large electro-optic responses were observed. For every component, the values of the electro-optic coefficients γ33, γ13 and γc decrease with the increase of frequency. However, the γ51 shows low sensitivity to the change of frequency. γ33, γ13 and γc increase with tantalum content, but γ51 decreases with the increase of tantalum content. The electro-optic properties of high-optical-quality K0.95Li0.05Ta1-xNbxO3 single crystals forecast their outstanding potential in various electro-optic applications.

  10. Resistive switching behavior in single crystal SrTiO{sub 3} annealed by laser

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xinqiang [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Shuai, Yao, E-mail: yshuai@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wu, Chuangui, E-mail: cgwu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Luo, Wenbo [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Sun, Xiangyu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yuan, Ye; Zhou, Shengqiang [Helmholtz-Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, D-01328 Dresden (Germany); Ou, Xin [State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Wanli [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-12-15

    Highlights: • Laser annealing was used to introduce oxygen vacancies into the single crystal SrTiO{sub 3}. • The effect of laser annealing with different fluence on the single crystal SrTiO{sub 3} was systematically studied. • The concentration of oxygen vacancies can be tuned by changing the fluence of laser. • Resistive switching behavior was observed in the sample with relatively high laser fluence after an electro-forming process. - Abstract: Single crystal SrTiO{sub 3} (STO) wafers were annealed by XeCl laser (λ = 308 nm) with different fluences of 0.4 J/cm{sup 2}, 0.6 J/cm{sup 2} and 0.8 J/cm{sup 2}, respectively. Ti/Pt electrodes were sputtered on the surface of STO wafer to form co-planar capacitor-like structures of Pt/Ti/STO/Ti/Pt. Current-Voltage measurements show that the leakage current is enhanced by increasing laser fluence. Resistive switching behavior is only observed in the sample annealed by laser with relatively high fluence after an electro-forming process. The X-ray photoelectron spectroscopy measurements indicate that the amount of oxygen vacancies increases with the increase of laser fluence. This work indicates resistive switching appears when enough oxygen vacancies are generated by the laser, which form conductive filaments under an external electric field.

  11. Congruent melting of gallium nitride at 6 GPa and its application to single-crystal growth.

    Science.gov (United States)

    Utsumi, Wataru; Saitoh, Hiroyuki; Kaneko, Hiroshi; Watanuki, Tetsu; Aoki, Katsutoshi; Shimomura, Osamu

    2003-11-01

    The synthesis of large single crystals of GaN (gallium nitride) is a matter of great importance in optoelectronic devices for blue-light-emitting diodes and lasers. Although high-quality bulk single crystals of GaN suitable for substrates are desired, the standard method of cooling its stoichiometric melt has been unsuccessful for GaN because it decomposes into Ga and N(2) at high temperatures before its melting point. Here we report that applying high pressure completely prevents the decomposition and allows the stoichiometric melting of GaN. At pressures above 6.0 GPa, congruent melting of GaN occurred at about 2,220 degrees C, and decreasing the temperature allowed the GaN melt to crystallize to the original structure, which was confirmed by in situ X-ray diffraction. Single crystals of GaN were formed by cooling the melt slowly under high pressures and were recovered at ambient conditions.

  12. Hydrothermal synthesis of single crystals of transition metal vanadates in the glaserite phase

    Energy Technology Data Exchange (ETDEWEB)

    Sanjeewa, Liurukara D.; McMillen, Colin D.; Willett, Daniel; Chumanov, George; Kolis, Joseph W., E-mail: kjoseph@clemson.edu

    2016-04-15

    A series of transition metal vanadate crystals were prepared using a high temperature (580 °C) hydrothermal method. The compounds all had the general formula A{sub 2}AEM(VO{sub 4}){sub 2} (A=K, Na, Li; AE=Ba, Sr; M=Co, Fe, Mn). They are all variations of the glaserite structural type and range in symmetry from P-3m1 to P-3 to P2{sub 1}/c. Most of the derivatives contain a planar three-fold rotation operation, making them possible spin frustration candidates. Single crystal structural analyses were performed on many of the derivatives to obtain a detailed understanding of the distortions of the tetrahedral building blocks that accommodate the symmetry distortions. A hydrothermal growth method was developed to grow high quality single crystals of sizes up to 2–3 mm/edge. This method can be generalized for large crystal growth to enable magnetic and neutron diffraction studies that require relatively large single crystals. - Highlights: • The hydrothermal synthesis of glaserite-type vanadates is demonstrated. • Synthesis from stoichiometric component reactions yields 0.2–0.5 mm size crystals. • Hydrothermal recrystallization of glaserite powder yields 2–3 mm size crystals. • The structure varies according to the alkali and alkaline earth metals selected. • Ideal (P-3m1) and distorted (P-3 and P2{sub 1}/c) glaserite structures are observed.

  13. Ferromagnetism in CVT Grown Tungsten Diselenide Single Crystals with Nickel Doping.

    Science.gov (United States)

    Habib, Muhammad; Muhammad, Zahir; Khan, Rashid; Wu, Chuan Qiang; Rehman, Zia Ur; Zhou, Yu; Liu, Hengjie; Song, Li

    2018-01-09

    Two dimensional (2D) single crystal layered transition materials have got extensive considerations owing to their interesting magnetic properties originated from their lattices and strong spin-orbit coupling, which make them of vital importance for spintronic application. Herein, we present synthesis of a highly crystalline tungsten diselenide layered single crystals grown by chemical vapor transport technique and doped with nickel (Ni) to tailor its magnetic properties. The pristine WSe2 single crystal and Ni doped one were characterized and analyzed for magnetic properties from both experimental and computational aspects. It is found that the magnetic behavior of 2D layered WSe2crystal changes from diamagnetic to ferromagnetic after Ni doping at all tested temperatures. Moreover, first principle density functional theory (DFT) calculations further confirmed the origin of room temperature ferromagnetism of Ni doped WSe2, where d-orbitals of doped Ni atom promotes the spin moment and thus largely contributes the magnetism change in the 2D layered material. © 2018 IOP Publishing Ltd.

  14. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Muhrer, G. [European Spallation Source, Lund (Sweden); Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States); Schönfeldt, T. [Center for Nuclear Technologies, Technical University of Denmark, Roskilde (Denmark); European Spallation Source, Lund (Sweden); Iverson, E.B., E-mail: iversoneb@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mocko, M. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN (United States); Hügle, Th.; Gallmeier, F.X. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Klinkby, E.B. [Center for Nuclear Technologies, Technical University of Denmark, Roskilde (Denmark); European Spallation Source, Lund (Sweden)

    2016-09-11

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  15. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  16. Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods

    Directory of Open Access Journals (Sweden)

    Jinzhang Liu

    2014-04-01

    Full Text Available One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

  17. Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods.

    Science.gov (United States)

    Liu, Jinzhang; Notarianni, Marco; Rintoul, Llew; Motta, Nunzio

    2014-01-01

    One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

  18. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection

    KAUST Repository

    Shaikh, Parvez Abdul Ajij

    2016-08-16

    Schottky junctions formed between semiconductors and metal contacts are ubiquitous in modern electronic and optoelectronic devices. Here we report on the physical properties of Schottky-junctions formed on hybrid perovskite CH3NH3PbBr3 single crystals. It is found that light illumination can significantly increase the dielectric constant of perovskite junctions by 2300%. Furthermore, such Pt/perovskite junctions are used to fabricate self-biased photodetectors. A photodetectivity of 1.4 × 1010 Jones is obtained at zero bias, which increases to 7.1 × 1011 Jones at a bias of +3 V, and the photodetectivity remains almost constant in a wide range of light intensity. These devices also exhibit fast responses with a rising time of 70 μs and a falling time of 150 μs. As a result of the high crystal quality and low defect density, such single-crystal photodetectors show stable performance after storage in air for over 45 days. Our results suggest that hybrid perovskite single crystals provide a new platform to develop promising optoelectronic applications. © 2016 The Royal Society of Chemistry.

  19. Doping controlled spin reorientation in dysprosium-samarium orthoferrite single crystals

    Science.gov (United States)

    Cao, Shixun; Zhao, Weiyao; Kang, Baojuan; Zhang, Jincang; Ren, Wei

    2015-03-01

    As one of the most important phase transitions, spin reorientation (SR) in rare earth transition metal oxides draws much attention of emerging materials technologies. The origin of SR is the competition between different spin configurations which possess different free energy. We report the control of spin reorientation (SR) transition in perovskite rare earth orthoferrite Dy1-xSmxFeO3, a whole family of single crystals grown by optical floating zone method from x =0 to 1. Temperature dependence of the magnetizations under zero-field-cooling (ZFC) and field-cooling (FC) processes are studied. We have found a remarkable linear change of SR transition temperature in Sm-rich samples for x>0.2, which covers an extremely wide temperature range including room temperature. The a-axis magnetization curves under FCC process bifurcate from and then jump down to that of warming process (ZFC and FCW curves) in single crystals when x =0.5-0.9, suggesting complicated 4f-3d electron interactions among Dy3+-Sm3+, Dy3+-Fe3+, and Sm3+-Fe3+ sublattices of diverse magnetic configurations for materials physics and design. The magnetic properties and the doping effect on SR transition temperature in these single crystals might be useful in the spintronics device application. This work is supported by the National Key Basic Research Program of China (Grant No. 2015CB921600), and the National Natural Science Foundation of China (NSFC, Nos. 51372149, 50932003, 11274222).

  20. Investigations of Residual Stresses and Mechanical Properties of Single Crystal Niobium for SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Gnäupel-Herold; Ganapati Rao Myneni; Richard E. Ricker

    2007-06-01

    This work investigates properties of large grained, high purity niobium with respect to the forming of superconducting radio frequency (SRF) cavities from such large grained sheets. The yield stresses were examined using tensile specimens that were essentially single crystals in orientations evenly distributed in the standard projection triangle. No distinct yield anisotropy was found, however, vacuum annealing increased the yield strength by a factor 2..3. The deep drawing forming operation of the half cells raises the issues of elastic shape changes after the release of the forming tool (springback) and residual stresses, both of which are indicated to be negligible. This is a consequence of the low yield stress (< 100 MPa) and the large thickness (compared to typical thicknesses in sheet metal forming). However, the significant anisotropy of the transversal plastic strains after uniaxial deformation points to potentially critical thickness variations for large grained / single crystal half cells, thus raising the issue of controlling grain orientation or using single crystal sheet material.

  1. Growth and characterization of bis thiourea cadmium iodide: A semiorganic single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Caroline, M. Lydia [Department of Physics, Bharath University, Selaiyur, Chennai 600073 (India)], E-mail: lydiacaroline2006@yahoo.co.in; Vasudevan, S. [Department of Physics, Easwari Engineering College, Ramapuram, Chennai 600089 (India)], E-mail: profsvasu@hotmail.com

    2009-02-15

    Single crystals of bis thiourea cadmium iodide[CdI{sub 2}(CH{sub 4}N{sub 2}S){sub 2}], abbreviated as BTCI, a semiorganic material has been successfully grown by both slow evaporation and slow cooling methods. Crystal of dimensions up to 3.3 x 1.0 x 1.5 cm{sup 3} is reported. Single crystal X-ray diffraction analysis has been carried out to confirm monoclinic system and etching studies for their perfection. The morphology of the grown crystal was also identified by single crystal X-ray diffraction analysis. The powder X-ray diffractogram of the crystal has been recorded and the various planes of reflection are identified. The presence of functional groups and the coordination of metal ions to thiourea were confirmed by FTIR analysis. Transmission spectra reveals that the crystal has low UV cutoff of 324 nm and has a good transmittance in the entire visible region enabling its use in optical applications. The thermal behaviour of the crystal has been investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA), which indicates that the material does not decompose before melting. Studies of dielectric properties (dielectric constant and dielectric loss) both as function of frequencies (100 Hz to 5 MHz) for varying temperatures in the range 308-348 K suggests good candidate for electro optic modulators.

  2. Prediction of recrystallisation in single crystal nickel-based superalloys during investment casting

    Directory of Open Access Journals (Sweden)

    Panwisawas Chinnapat

    2014-01-01

    Full Text Available Production of gas turbines for jet propulsion and power generation requires the manufacture of turbine blades from single crystal nickel-based superalloys, most typically using investment casting. During the necessary subsequent solution heat treatment, the formation of recrystallised grains can occur. The introduction of grain boundaries into a single crystal component is potentially detrimental to performance, and therefore manufacturing processes and/or component geometries should be designed to prevent their occurrence. If the boundaries have very low strength, they can degrade the creep and fatigue properties. The root cause for recrystallisation is microscale plasticity caused by differential thermal contraction of metal, mould and core; when the plastic deformation is sufficiently large, recrystallisation takes place. In this work, numerical and thermo-mechanical modelling is carried out, with the aim of establishing computational methods by which recrystallisation during the heat treatment of single crystal nickel-based superalloys can be predicted and prevented prior to their occurrence. Elasto-plastic law is used to predict the plastic strain necessary for recrystallisation. The modelling result shows that recrystallisation is most likely to occur following 1.5–2.5% plastic strain applied at temperatures between 1000 ∘C and 1300 ∘C; this is validated with tensile tests at these elevated temperatures. This emphasises that high temperature deformation is more damaging than low temperature deformation.

  3. Ensembles of indium phosphide nanowires: physical properties and functional devices integrated on non-single crystal platforms

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Nobuhiko P.; Lohn, Andrew; Onishi, Takehiro [University of California, Santa Cruz (United States). Baskin School of Engineering; NASA Ames Research Center, Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz, Moffett Field, CA (United States); Mathai, Sagi; Li, Xuema; Straznicky, Joseph; Wang, Shih-Yuan; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Logeeswaran, V.J.; Islam, M.S. [University of California Davis, Electrical and Computer Engineering, Davis, CA (United States)

    2009-06-15

    A new route to grow an ensemble of indium phosphide single-crystal semiconductor nanowires is described. Unlike conventional epitaxial growth of single-crystal semiconductor films, the proposed route for growing semiconductor nanowires does not require a single-crystal semiconductor substrate. In the proposed route, instead of using single-crystal semiconductor substrates that are characterized by their long-range atomic ordering, a template layer that possesses short-range atomic ordering prepared on a non-single-crystal substrate is employed. On the template layer, epitaxial information associated with its short-range atomic ordering is available within an area that is comparable to that of a nanowire root. Thus the template layer locally provides epitaxial information required for the growth of semiconductor nanowires. In the particular demonstration described in this paper, hydrogenated silicon was used as a template layer for epitaxial growth of indium phosphide nanowires. The indium phosphide nanowires grown on the hydrogenerated silicon template layer were found to be single crystal and optically active. Simple photoconductors and pin-diodes were fabricated and tested with the view towards various optoelectronic device applications where group III-V compound semiconductors are functionally integrated onto non-single-crystal platforms. (orig.)

  4. Amino acid based MOFs: synthesis, structure, single crystal to single crystal transformation, magnetic and related studies in a family of cobalt and nickel aminoisophthales.

    Science.gov (United States)

    Sarma, Debajit; Ramanujachary, K V; Lofland, S E; Magdaleno, Travis; Natarajan, Srinivasan

    2009-12-21

    Four new 5-aminoisophthalates of cobalt and nickel have been prepared employing hydro/solvothermal methods: [Co(2)(C(8)H(5)NO(4))(2)(C(4)H(4)N(2))(H(2)O)(2)].3H(2)O (I), [Ni(2)(C(8)H(5)NO(4))(2)(C(4)H(4)N(2))(H(2)O)(2)].3H(2)O (II), [Co(2)(H(2)O)(mu(3)-OH)(2)(C(8)H(5)NO(4))] (III), and [Ni(2)(H(2)O)(mu(3)-OH)(2)(C(8)H(5)NO(4))] (IV). Compounds I and II are isostructural, having anion-deficient CdCl(2) related layers bridged by a pyrazine ligand, giving rise to a bilayer arrangement. Compounds III and IV have one-dimensional M-O(H)-M chains connected by the 5-aminoisophthalate units forming a three-dimensional structure. The coordinated as well as the lattice water molecules of I and II could be removed and inserted by simple heating-cooling cycles under the atmospheric conditions. The removal of the coordinated water molecule is accompanied by changes in the coordination environment around the M(2+) (M = Co, Ni) and color of the samples (purple to blue, Co; green to dark yellow, Ni). This change has been examined by a variety of techniques that include in situ single crystal to single crystal transformation studies and in situ IR and UV-vis spectroscopic studies. Magnetic studies indicate antiferromagnetic behavior in I and II, a field-induced magnetism in III, and a canted antiferromagnetic behavior in IV.

  5. Single-crystal growth of ceria-based materials; Einkristallzuechtung von Materialien auf der Basis von Cerdioxid

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, Gregor

    2015-07-23

    In this work it could be shown that Skull-Melting is a suitable method for growing ceria single crystals. Twenty different ceria-based single crystals could be manufactured. It was possible to dope ceria single crystals with Gd, Sm, Y, Zr, Ti, Ta, and Pr in different concentrations. Also co-doping with the named metals was realized. However, there remain some problems for growing ceria-based single crystals by Skull-Melting. As ignition metal zirconium was used because no ceria-based material works well. For that reason all single crystals show small zirconium contamination. Another problem is the formation of oxygen by the heat-induced reduction of ceria during the melting process. Because of that the skull of sintered material is often destroyed by gas pressure. This problem had to be solved individually for every single crystal. The obtained single crystals were characterized using different methods. To ensure the single crystal character the y were examined by Laue diffraction. All manufactured crystals are single crystals. Also powder diffraction patterns of the milled and oxidized samples were measured. For the determination of symmetry and metric the structural parameters were analyzed by the Rietveld method. All synthesized materials crystallize in space group Fm-3m known from calcium fluoride. The cubic lattice parameter a was determined for all crystals. In the case of series with different cerium and zirconium concentrations a linear correlation between cerium content and cubic lattice parameter was detected. The elemental composition was determined by WDX. All crystals show a homogeneous elemental distribution. The oxygen content was calculated because the WDX method isn't useful for determination.

  6. DREAM — a versatile powder diffractometer at the ESS

    Science.gov (United States)

    Schweika, W.; Violini, N.; Lieutenant, K.; Zendler, C.; Nekrassov, D.; Houben, A.; Jacobs, P.; Henry, P. F.

    2016-09-01

    The instrument DREAM, in construction at the long pulse European Spallation Source (ESS), is a new type of neutron time-of-flight powder diffractometer, which utilizes additional choppers to meet the typical high resolution requests. Pulses will be of symmetric shape and their width can be varied from 10 μs to 1 ms, providing an unprecedented flexibility from highest to low resolution with optimized intensities at the superior brightness of the 5 MW source. The design is driven particularly by the needs and challenges for small and complex samples, large unit cell materials, thermoelectric cage structures or metal-organic framework structures, multiphase battery materials and complex magnetic structures. Therefore, the chosen wavelength bandwidth of 3.7 Å may cover well the peak intensities of the thermal and cold moderator used simultaneously and provides a sufficient Q (and d) range for obtaining diffraction patterns in a single setting. VITESS simulations show a performance that is about two orders of magnitude higher than current best instruments.

  7. Neutron diffractometers for structural biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B.P.; Pitcher, E. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical {sup 3}He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5{Angstrom} with a flight path length of 10m and an energy resolution of 0.25{Angstrom}. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux.

  8. New hardware and software platform for experiments on a HUBER-5042 X-ray diffractometer with a DISPLEX DE-202 helium cryostat in the temperature range of 20-300 K

    Science.gov (United States)

    Dudka, A. P.; Antipin, A. M.; Verin, I. A.

    2017-09-01

    Huber-5042 diffractometer with a closed-cycle Displex DE-202 helium cryostat is a unique scientific instrument for carrying out X-ray diffraction experiments when studying the single crystal structure in the temperature range of 20-300 K. To make the service life longer and develop new experimental techniques, the diffractometer control is transferred to a new hardware and software platform. To this end, a modern computer; a new detector reader unit; and new control interfaces for stepper motors, temperature controller, and cryostat vacuum pumping system are used. The system for cooling the X-ray tube, the high-voltage generator, and the helium compressor and pump for maintaining the desired vacuum in the cryostat are replaced. The system for controlling the primary beam shutter is upgraded. A biological shielding is installed. The new program tools, which use the Linux Ubuntu operating system and SPEC constructor, include a set of drivers for control units through the aforementioned interfaces. A program for searching reflections from a sample using fast continuous scanning and a priori information about crystal is written. Thus, the software package for carrying out the complete cycle of precise diffraction experiment (from determining the crystal unit cell to calculating the integral reflection intensities) is upgraded. High quality of the experimental data obtained on this equipment is confirmed in a number of studies in the temperature range from 20 to 300 K.

  9. Anomalous behaviour of periodic domain structure in Gd-doped LiNbO{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Palatnikov, M [Institute of Chemistry, Kola Science Centre RAS, Apatity, Murmansk Region (Russian Federation); Sidorov, N [Institute of Chemistry, Kola Science Centre RAS, Apatity, Murmansk Region (Russian Federation); Bormanis, K [Institute of Solid State Physics, University of Latvia, Riga (Latvia); Smith, P G R [University of Southampton, Optoelectronic Research Centre (United Kingdom)

    2007-12-15

    Atomic force microscopy studies of etching patterns, stability of regular domain structure, and anomalies of electrical characteristics in the 300-385 K range of a series of Gddoped lithium niobate single crystals grown under equal conditions are reported.

  10. Effect of metal and aminoacid dopants on the growth and properties of L-lysine monohydrochloride dihydrate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, V. [Department of Physics, Bharathidasan University, School of Physics, Tiruchirappalli 620 024 (India); Ramesh Babu, R., E-mail: rampap2k@yahoo.co.in [Department of Physics, Bharathidasan University, School of Physics, Tiruchirappalli 620 024 (India); Bhagavannarayana, G. [Materials Characterization Division, National Physical Laboratory, New Delhi 110 012 (India); Ramamurthi, K. [Department of Physics, Bharathidasan University, School of Physics, Tiruchirappalli 620 024 (India)

    2010-11-01

    In this paper, the effect of metal (Cu{sup 2+} and Mg{sup 2+}) and aminoacid (glycine) dopants on the growth and properties of L-lysine monohydrochloride dihydrate single crystals is reported. The grown pure and doped L-LMHCl single crystals were confirmed by single crystal X-ray diffraction (XRD) and FT-IR spectral analysis. High-resolution X-ray diffraction (HRXRD) and etching studies were carried out in order to analyze the crystalline perfection and surface morphology of the grown pure and doped crystals, respectively. The mechanical properties, dielectric behaviour, optical transmittance and second harmonic generation efficiency have been studied for pure and doped L-LMHCl single crystals.

  11. Structural and optical properties of Cd{sup 2+} ion on the growth of sulphamic acid single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Rajyalakshmi, S.; Samatha, K. [Department of Physics, Andhra University, Visakhapatnam-530003 (India); Rao, Valluru Srinivasa; Reddy, P. V. S. S. S. N.; Rao, K. Ramachandra, E-mail: drkrcr@gmail.com [Crystal Growth & Nano Science Research Center, Department of Physics, Govt. College (A), Rajahmundry-533 105 (India); Krishna, V. Y. Rama [Department of Engg. Physics, Andhra University, Visakhapatnam-530003 (India)

    2016-05-06

    Transparent single crystals of Cadmium doped Sulphamic acid (SA) was grown by Conventional slow evaporation solution technique (SEST) which had the size of 13 × 8 × 7 mm{sup 3}. The grown single crystals have been characterized using single crystal X-ray diffraction UV-visible Spectral studies and Second harmonic generation (SHG) efficiency and the results were discussed. The lattice parameters of the grown Cd{sup 2+} ion doped SA crystal are confirmed by single crystal X-ray diffraction and belong to orthorhombic system. Optical transmittance of the crystal was recorded using UV-vis NIR spectrophotometer with its lower cut off wavelength around 259nm. SHG measurements indicate that the SHG efficiency of the grown Cd{sup 2+} ion doped SA crystal at a fundamental wavelength of 1064 nm is approximately equal to KDP.

  12. Influence of void density on dislocation mechanisms of void shrinkage in nickel single crystal based on molecular dynamics simulation

    Science.gov (United States)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2017-06-01

    Molecular dynamics (MD) simulations were performed to investigate influence of void density on dislocation mechanism of void shrinkage in nickel single crystal. The simulation results show that the higher void density can accelerate the yield of nickel single crystal. During the compression, all the dislocations are emitted toward the other side of the voids, which causes the atoms on the void surface to move into the voids and finally leads to the shrinkage of the voids. There exist six types of dislocations during void shrinkage of nickel single crystal, and the densities of all the six types of dislocations increase with the increase in the void density. The increase of Shockley partial dislocations enhances the slip ability of nickel single crystal, so the void size decreases with the increase in the void density at a constant stain.

  13. The growth of Mg2TiO4 single crystals using a four-mirror furnace

    Directory of Open Access Journals (Sweden)

    Golubović Aleksandar

    2011-01-01

    Full Text Available A single crystal of Mg2TiO4 was grown by the travelling solvent float zone (TSFZ method. The lattice parameter a = 0.8444(8 nm was determined by X-ray powder diffraction analysis. The optical properties of the Mg2TiO4 single crystals were studied using spectroscopic ellipsometry. The obtained results are discussed and compared with published data.

  14. A Combined Experimental and Theoretical Investigations on N, N′- Diphenylguanidine Based Single Crystals For Nonlinear Optical Applications

    OpenAIRE

    Saravana Kumar, G; Roop Kumar, R; Murugakoothan, P

    2017-01-01

    International audience; Good quality N,N′-Diphenylguanidine based nonlinear optical single crystals were grown by slow evaporation technique. The cell parameters and space group were confirmed by single crystal X-ray diffraction analysis. The UV-vis study was carried out to assess the transmittance of the title crystals. The optical band gap was determined from the UV-vis analysis. The HOMO-LUMO analysis was carried out using DFT calculations. The presence of second harmonic generation (SHG) ...

  15. Continuum dislocation-density based models for the dynamic shock response of single-crystal and polycrystalline materials

    Science.gov (United States)

    Luscher, Darby

    2017-06-01

    The dynamic thermomechanical responses of polycrystalline materials under shock loading are often dominated by the interaction of defects and interfaces. For example, polymer-bonded explosives (PBX) can initiate under weak shock impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. In such cases, heterogeneous thermomechanical interactions at the mesoscale (i.e. between single-crystal and macroscale) lead to the formation of localized hot spots. Within metals, a prescribed deformation associated with a shock wave may be accommodated by crystallographic slip, provided a sufficient population of mobile dislocations is available. However, if the deformation rate is large enough, there may be an insufficient number of freely mobile dislocations. In these cases, additional dislocations may be nucleated, or alternate mechanisms (e.g. twinning, damage) activated in order to accommodate the deformation. Direct numerical simulation at the mesoscale offers insight into these physical processes that can be invaluable to the development of macroscale constitutive theories, if the mesoscale models adequately represent the anisotropic nonlinear thermomechanical response of individual crystals and their interfaces. This talk will briefly outline a continuum mesoscale modeling framework founded upon local and nonlocal variations of dislocation-density based crystal plasticity theory. The nonlocal theory couples continuum dislocation transport with the local theory. In the latter, dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. The configuration of geometrically necessary dislocation density gives rise to a back-stress that inhibits or accentuates the flow of dislocations. Development of the local theory and application to modeling the explosive molecular crystal

  16. EPR study of gamma-irradiated amphi-phenylglyoxime single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dereli, O., E-mail: odereli@selcuk.edu.t [A. Kelesoglu Education Faculty, Department of Physics, Selcuk University, Meram, 42090, Konya (Turkey); Tuerkkan, E. [A. Kelesoglu Education Faculty, Department of Physics, Selcuk University, Meram, 42090, Konya (Turkey); Ozmen, A.; Yueksel, H. [Science Faculty, Department of Physics, Selcuk University, Selcuklu, 42079, Konya (Turkey)

    2011-06-15

    Gamma-irradiated single crystals of Amphi-phenylglyoxime (APGO) were investigated using electron paramagnetic resonance (EPR) at different orientations in a magnetic field at room temperature (298 K). Considering the chemical structure and the experimental spectra of the irradiated single-crystals of APGO, we assumed that two different paramagnetic species, labeled as R{sup *} and R{sup **}, are either two iminoxy radicals formed by the abstraction of a H atom from different oxime branches or are different conformations of an iminoxy radical. Pursuant to this assumption, RA- and RB-type iminoxy radicals were modeled by the abstraction of H atoms from different oxime branches, and conformational analysis of these modeled radicals was performed using the semi-empirical AM1 and B3LYP/6-31+G(d,p) methods. EPR parameters were calculated for the modeled radicals using the B3LYP method and EPR-III basis set. Theoretically calculated values of the most stable conformers (RA-1 and RB-1) of the modeled radicals are in good agreement with the experimental EPR parameters determined from the spectra (differences in isotropic hyperfine coupling constant values <5%, and differences in isotropic g values fall into 1 ppt). Thus, from the findings of the present study, we strongly suggest that the experimentally observed R{sup *} and R{sup **} radicals in the single crystal of amphi-phenylglyoxime are the most stable conformers of RA- and RB-type modeled iminoxy radicals, respectively. The experimental g factors and hyperfine coupling constants were found to be anisotropic, with average values of g=2.0052, A({sup 14}N)=29.50 G, A({sup 1}H)=25.30 G for R{sup *}, and g=2.0057, A({sup 14}N)=34.50 G for R{sup **}.

  17. A novel synthetic single crystal diamond device for in vivo dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, Marco; Prestopino, G., E-mail: giuseppe.prestopino@uniroma2.it; Tonnetti, A.; Verona, C.; Verona-Rinati, G. [INFN–Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata,” Via del Politecnico 1, Roma 00133 (Italy); Falco, M. D.; Bagalà, P. [Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology and Radiotherapy, Tor Vergata University General Hospital, Viale Oxford 81, Roma 00133 (Italy); Pimpinella, M.; Guerra, A. S.; De Coste, V. [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA-INMRI C R Casaccia, Via Anguillarese 301, Roma 00123 (Italy)

    2015-08-15

    Purpose: Aim of the present work is to evaluate the synthetic single crystal diamond Schottky photodiode developed at the laboratories of “Tor Vergata” University in Rome in a new dosimeter configuration specifically designed for offline wireless in vivo dosimetry (IVD) applications. Methods: The new diamond based dosimeter, single crystal diamond detector (SCDD-iv), consists of a small unwired detector and a small external reading unit that can be connected to commercial electrometers for getting the detector readout after irradiation. Two nominally identical SCDD-iv dosimeter prototypes were fabricated and tested. A basic dosimetric characterization of detector performances relevant for IVD application was performed under irradiation with {sup 60}Co and 6 MV photon beams. Preirradiation procedure, response stability, short and long term reproducibility, leakage charge, fading effect, linearity with dose, dose rate dependence, temperature dependence, and angular response were investigated. Results: The SCDD-iv is simple, with no cables linked to the patient and the readout is immediate. The range of response with dose has been tested from 1 up to 12 Gy; the reading is independent of the accumulated dose and dose rate independent in the range between about 0.5 and 5 Gy/min; its temperature dependence is within 0.5% between 25 and 38 °C, and its directional dependence is within 2% from 0° to 90°. The combined relative standard uncertainty of absorbed dose to water measurements is estimated lower than the tolerance and action level of 5%. Conclusions: The reported results indicate the proposed novel offline dosimeter based on a synthetic single crystal diamond Schottky photodiode as a promising candidate for in vivo dosimetry applications with photon beams.

  18. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Aibin, E-mail: abzhu@mail.xjtu.edu.cn; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-15

    Highlights: • The role of crystal orientation in cooper CMP by quasi-continuum was studied. • The atom displacement diagrams were obtained and analyzed. • The stress distribution diagrams and load-displacement curves were analyzed. • This research is helpful to revealing the material removal mechanism of CMP. - Abstract: The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[–211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[–211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  19. Creep and microstructural stability of ruthenium-containing nickel-base single crystal superalloys

    Science.gov (United States)

    Rowland, Laura Jill

    The creep properties and microstructural stability of single crystal nickel-base superalloys are of primary importance in the development of new alloys for turbine blade and vane applications. Ruthenium additions to nickel-base superalloys may provide improved high temperature performance relative to current commercial superalloys. As these alloys are required to operate for longer times at higher temperatures, a better understanding of creep and the sources of creep resistance in the high temperature, low stress creep regime will be essential. The objective of this study has been to examine the influence of ruthenium on the high temperature behavior of superalloy single crystals, while gaining an improved understanding of creep mechanisms at high temperatures of single crystal superalloys. This study is unique compared to other recent studies on Ru-containing alloys with respect to the broad matrix of alloys with varying chemical compositions that have been investigated. One result of the compositional variations and Ru additions in the experimental alloys was the considerable difference in gamma' precipitate morphologies, which ranged in shape from spherical to intermediately-shaped to cuboidal. Furthermore, the experimental Ru-containing superalloys had misfits which ranged from positive to near zero to negative. Large variations in the Re partitioning ratios are believed to explain the lattice misfits and resulting precipitate shapes, strongly suggesting that they are influenced by Ru and Cr additions through changes in the gamma-gamma' phase equilibrium. Not surprisingly, large variations in creep behavior between the experimental alloys are observed during creep testing at 290 MPa and 950°C. Investigations of the equilibrium and crept interfacial dislocation networks reveal an excess of dislocations at the gamma-gamma' interface beyond the amount that is necessary to relieve the lattice misfit stresses in the matrix channels. The excess interfacial

  20. A Neutron Study of the Structure and Lattice Dynamics of Single Crystal PZT

    Science.gov (United States)

    Gehring, Peter

    2011-03-01

    The outstanding piezoelectric properties of PbZr 1-x Ti x O3 (PZT) perovskite ceramics have long been exploited in numerous device applications, making PZT arguably the most technologically important ferroelectric material in use today. Efforts to understand the piezoelectric mechanism have inspired a plethora of structural studies spanning decades, but solving the PZT phase diagram has proven to be famously problematic because single crystals have not been available save for Zr- and Ti-rich compositions that lie very near the end members PbZr O3 and PbTi O3 , where the piezoelectricity is weakest. Thus, whereas PZT has been the subject of thousands of powder and ceramic investigations, no consensus regarding the crystal structures of PZT exists. We report the first neutron diffraction study of single-crystal PZT with compositions x = 0.325 and 0.460. Our data refute the thesis that the ferroelectric phases of PZT within this composition range, all of which are highly piezoelectric, are purely monoclinic (Cc or Cm). The broadening of certain Bragg peaks can be interpreted in terms of coexisting rhombohedral and monoclinic domains, whereby monoclinic order is enhanced by Ti-doping. This is consistent with the theoretical proposal that the tendency to form macroscopic monoclinic phases facilitates the mechanism of polarization rotation by reducing the energy required to reorient the electric polarization. Dispersions of the lowest energy TO and TA phonon modes were measured on a single crystal of PZT with x = 0.325 in the paraelectric phase at 650 K. The TO mode energy drops at small wave-vectors suggesting that it is a soft mode associated with the ferroelectric phase transition at 590 K. Evidence of a second soft-mode, corresponding to a phase transition at 370 K at the R-point, is provided based on the redistribution of spectral weight as a function of temperature.

  1. Surface Structure Spread Single Crystals (S4C): Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    de Alwis, A.; Holsclaw, B.; Pushkarev, V. V.; Reinicker, A.; Lawton, T. J.; Blecher, M. E.; Sykes, E. C. H.; Gellman, A. J.

    2013-02-01

    A set of six spherically curved Cu single crystals referred to as Surface Structure Spread Single Crystals (S{sup 4}Cs) has been prepared in such a way that their exposed surfaces collectively span all possible crystallographic surface orientations that can be cleaved from the face centered cubic Cu lattice. The method for preparing these S{sup 4}Cs and for finding the high symmetry pole point are described. Optical profilometry has been used to determine the true shapes of the S{sup 4}Cs and show that over the majority of the surface, the shape is extremely close to that of a perfect sphere. The local orientations of the surfaces lie within ±1{degree} of the orientation expected on the basis of the spherical shape; their orientation is as good as that of many commercially prepared single crystals. STM imaging has been used to characterize the atomic level structure of the Cu(111)±11{degree}-S{sup 4}C. This has shown that the average step densities and the average step orientations match those expected based on the spherical shape. In other words, although there is some distribution of step-step spacing and step orientations, there is no evidence of large scale reconstruction or faceting. The Cu S{sup 4}Cs have local structures based on the ideal termination of the face centered cubic Cu lattice in the direction of termination. The set of Cu S{sup 4}Cs will serve as the basis for high throughput investigations of structure sensitive surface chemistry on Cu.

  2. The Growth and Properties of Lead-Free Ferroelectric Single Crystals

    Directory of Open Access Journals (Sweden)

    Xiaobing Li

    2015-03-01

    Full Text Available Much attention is drawn to the preparation, structure and properties investigation of lead-free ferroelectrics for the next generation of piezoelectric devices. (Na0.5Bi0.5TiO3-BaTiO3 (NBT-BT lead-free solid solution piezoelectric single crystals with composition x in the range of 0–0.05 as a materials with high piezoelectric properties were successfully grown from platinum crucible by using the top-seeded solution growth (TSSG method. The dimensions of NBT-BT crystal is Ø40 × 10 mm2. X-ray powder diffraction patterns reveal that the crystal structure of NBT-BT crystal changes from rhombohedral to tetragonal symmetry with increasing amounts of BT(x. The dielectric, ferroelectric and piezoelectric properties of NBT-BT crystals with different compositions near the morphotropic phase boundary (MPB were studied systematically. Ions (Mn, Eu, Zn doped NBT and NBT-BT 95/5 crystals were also grown and studied. In addition, their piezoelectric and ferroelectric properties are investigated. Further, a high-quality and large-sized (K0.25Na0.75NbO3 (KNN25/75 single crystal has been achieved by a carefully controlled TSSG method. The dimensions of the as-grown KNN25/75 single crystal reached up to Ø30 × 10 mm2. The obtained KNN crystals provided us a superb material for the dielectric, piezoelectric, ferroelectric and electromechanical coupling property characterization along different orientations.

  3. Detailed Investigation of the Structural, Thermal, and Electronic Properties of Gold Isocyanide Complexes with Mechano-Triggered Single-Crystal-to-Single-Crystal Phase Transitions.

    Science.gov (United States)

    Seki, Tomohiro; Sakurada, Kenta; Muromoto, Mai; Seki, Shu; Ito, Hajime

    2016-02-01

    Mechano-induced phase transitions in organic crystalline materials, which can alter their properties, have received much attention. However, most mechano-responsive molecular crystals exhibit crystal-to-amorphous phase transitions, and the intermolecular interaction patterns in the daughter phase are difficult to characterize. We have investigated phenyl(phenylisocyanide)gold(I) (1) and phenyl(3,5-dimethylphenylisocyanide)gold(I) (2) complexes, which exhibit a mechano-triggered single-crystal-to-single-crystal phase transition. Previous reports of complexes 1 and 2 have focused on the relationships between the crystalline structures and photoluminescence properties; in this work we have focused on other aspects. The face index measurements of complexes 1 and 2 before and after the mechano-induced phase transitions have indicated that they undergo non-epitaxial phase transitions without a rigorous orientational relationship between the mother and daughter phases. Differential scanning calorimetry analyses revealed the phase transition of complex 1 to be enthalpically driven by the formation of new aurophilic interactions. In contrast, the phase transition of complex 2 was found to be entropically driven, with the closure of an empty void in the mother phase. Scanning electron microscopy observation showed that the degree of the charging effect of both complexes 1 and 2 was changed by the phase transitions, which suggests that the formation of the aurophilic interactions affords more effective conductive pathways. Moreover, flash-photolysis time-resolved microwave conductivity measurements revealed that complex 1 increased in conductivity after the phase change, whereas the conductivity of complex 2 decreased. These contrasting results were explained by the different patterns in the aurophilic interactions. Finally, an intriguing disappearing polymorphism of complex 2 has been reported, in which a polymorph form could not be obtained again after some period of time

  4. Experimental study of micro-milling mechanism and surface quality of a nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qi; Gong, Yadong; Zhou, Yun Guang; Wen, Xue Long [School of Mechanical Engineering and Automation, Northeastern University, Shenyang (China)

    2017-01-15

    Micro-milling is widely used as a method for machining of micro-parts with high precision and efficiency. Taking the nickel-based single-crystal superalloy DD98 as the research object, the crystal characteristics of single-crystal materials were analysed, and the removal mechanism of single-crystal micro-milled parts was described. Based on molecular dynamics, a simulation model for nickel-based single-crystal superalloy DD98 micro-milling was established. Based on the response surface method of central composite design, the influences of spindle speed, feed rate, and milling depth on the surface roughness were examined, and a second-order regression model of the DD98 surface roughness was established. Using analysis of variance and the residuals of the model, a significant influence on surface roughness was found in the following order from large to small: Feed rate, spindle speed, and milling depth. Comparisons were conducted between the micro-milling experimental values and the predicted model values for different process parameters. The results show that the model fit is relatively high, and the adaptability is good. Scanning electron microscopy analysis of the micro-milling surfaces was performed to verify the slip and the removal mechanism of single-crystal materials. These results offer a theoretical reference and experimental basis for micro-milling of single-crystal materials.

  5. Analyses of significant features of L-Prolinium Picrate single crystal: An excellent material for non linear optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Thukral, Kanika [Academy of Scientific and Innovative Research, CSIR- National Physical Laboratory, New Delhi, 110012 (India); CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110 012 (India); Vijayan, N., E-mail: nvijayan@nplindia.org [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110 012 (India); Vij, Mahak [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi, 110 012 (India); Nagaraja, C.M. [Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab (India); Jayaramakrishnan, V. [Centro De Investigations En Optica, Loma del Bosque 115, Colonia Lomas del Campestre, León, Guanajuato, Código Postal, 37150 (Mexico); Jayalakshmy, M.S. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560 (India); Kant, Rajni [Department of Physics and Electronics, University of Jammu, Jammu Tawi, 180006 (India)

    2017-06-15

    Today the fundamental aspect of the researchers is to explore maximum physical properties of the material for device fabrication. In the present article, single crystal X-ray diffraction has been carried out to verify the formation of the synthesized compound. In addition to that, powder X-ray diffraction has been performed to obtain diffraction pattern of L-Prolinium Picrate single crystal. The strain present inside the single crystal was measured using Hall-Williamson equation from PXRD measurements. The dark current and photon current was obtained from photoconductivity technique whose plot depicted that the sample was negative photoconducting material. Optical homogeneity of the single crystal was analyzed using birefringence technique. Its resistance towards Nd: YAG laser was scrutinized for L-Prolinium Picrate single crystal by applying 1 pulse per second. Different thermal parameters like thermal conductivity, thermal diffusivity, thermal effusivity and specific heat were computed using photo-pyroelectric technique. Solid state parameters were calculated from Clausius Mossotti relation by taking structural information of the title compound. Also, optical parameters like refractive index, reflectance etc were calculated through UV–Vis–NIR analysis. - Highlights: • An optically transparent L-Prolinium Picrate single crystal was harvested from slow evaporation solution growth technique. • The compound shows negative photoconducting nature. • Its optical homogeneity was analyzed using birefringence. • Single shot of laser was applied to sample to measure laser damage threshold value. • The thermal parameters were computed from Photopyroelectric technique.

  6. Single crystal growth in spin-coated films of polymorphic phthalocyanine derivative under solvent vapor

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, T.; Ohmori, M.; Ramananarivo, M. F.; Fujii, A., E-mail: afujii@opal.eei.eng.osaka-u.ac.jp; Ozaki, M. [Division of Electrical, Electronic, and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2015-12-01

    The effects of solvent vapor on spin-coated films of a polymorphic phthalocyanine derivative were investigated. Growth of single crystal films via redissolving organic films under solvent vapor was revealed by in situ microscopic observations of the films. X-ray diffraction measurement of the films after exposing to solvent vapor revealed the phase transition of polymorphs under solvent vapor. The direction of crystal growth was clarified by measuring the crystal orientation in a grown monodomain film. The mechanism of crystal growth based on redissolving organic films under solvent vapor was discussed in terms of the different solubilities of the polymorphs.

  7. Accelerated crack growth rate at low Delta K in a single crystal superalloy

    Science.gov (United States)

    Telesman, Jack; Ghosn, Louis

    1988-01-01

    The low Delta K crack growth behavior of a single crystal of the PWA 1480 nickel-based superalloy was investigated. The crystal was tested in the near (100) orientation with the side faces being in the near (001) orientation. Although in the higher Delta K region the fatigue crack growth (FCG) behavior is rather normal, at Delta K of about 8 MPa sq rt m, a transition occurs where the FCG rate appears to be independent of Delta K. This region is found to continue until Delta K of about 2.5 MPa sq rt m, where the FCG rate again decreases with decreasing Delta K.

  8. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates

    KAUST Repository

    Chao, Chunying

    2012-08-15

    Free-standing single-crystal PbTiO 3 nanoplates (see picture) were synthesized by a facile hydrothermal method. A "self-templated" crystal growth is presumed to lead to the formation of the PbTiO 3 nanoplates, which have ferroelectric single-domain structures, whose polarization areas can be manipulated by writing and reading. The nanoplates are also effective catalysts for the oxidation of carbon monoxide. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The emission of atoms and molecules accompanying fracture of single-crystal MgO

    Science.gov (United States)

    Dickinson, J. T.; Jensen, L. C.; Mckay, M. R.; Freund, F.

    1986-01-01

    The emission of particles due to deformation and fracture of materials has been investigated. The emission of electrons (exoelectron emission), ions, neutral species, photons (triboluminescence), as well as long wavelength electromagnetic radiation was observed; collectively these emissions are referred to as fractoemission. This paper describes measurements of the neutral emission accompanying the fracture of single-crystal MgO. Masses detected are tentatively assigned to the emission of H2, CH4, H2O, CO, O2, CO2, and atomic Mg. Other hydrocarbons are also observed. The time dependencies of some of these emissions relative to fracture are presented for two different loading conditions.

  10. Low Leakage Superconducting Tunnel Junctions with a Single Crystal Al2O3 Barrier

    Science.gov (United States)

    2016-03-30

    three layers were grown in situ in an ultra high vacuum (UHV) system with a nominal base pressure of ~1×10-10 Torr. First, a 120~150 nm thick...current-voltage (I-V) curves of a typical single-crystal Al2O3 tunnel junction taken at ~80 mK . One way to quantify the junction quality is to define a...80 mK on an epi-Re/epi-Al2O3/poly-Al tunnel junction. (a) Linear vertical scale. (b) Logarithmic vertical scale: absolute value is used. This

  11. Single Crystal Growth of URu2Si2 by the Modified Bridgman Technique

    Directory of Open Access Journals (Sweden)

    Andrew Gallagher

    2016-10-01

    Full Text Available We describe a modified Bridgman growth technique to produce single crystals of the strongly correlated electron material URu2Si2 and its nonmagnetic analogue ThRu2Si2. Bulk thermodynamic and electrical transport measurements show that the properties of crystals produced in this way are comparable to those previously synthesized using the Czochralski or conventional molten metal flux growth techniques. For the specimens reported here, we find residual resistivity ratios R R R = ρ 300 K / ρ 0 as large as 116 and 187 for URu2Si2 and ThRu2Si2, respectively.

  12. Analysis of the temperature dependence of the thermal conductivity of insulating single crystal oxides

    Directory of Open Access Journals (Sweden)

    E. Langenberg

    2016-10-01

    Full Text Available The temperature dependence of the thermal conductivity of 27 different single crystal oxides is reported from ≈20 K to 350 K. These crystals have been selected among the most common substrates for growing epitaxial thin-film oxides, spanning over a range of lattice parameters from ≈3.7 Å to ≈12.5 Å. Different contributions to the phonon relaxation time are discussed on the basis of the Debye model. This work provides a database for the selection of appropriate substrates for thin-film growth according to their desired thermal properties, for applications in which heat management is important.

  13. EPR study of VO/sup 2 +/ in some paramagnetic Tutton salt single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Upreti, G.C. (Indian Inst. of Tech., Kanpur. Dept. of Physics); Saraswat, R.S. (Indian Inst. of Tech., Kharagpur. Dept. of Physics)

    1984-04-01

    The EPR spectra of VO/sup 2 +/ in single crystals of some paramagnetic salts Me(II)(NH/sub 4/)/sub 2/(SO/sub 4/)/sub 2/x6H/sub 2/O (Me = Co, Fe, or Ni) and NiK/sub 2/(SO/sub 4/)/sub 2/x6H/sub 2/O have been recorded and analyzed. The vanadyl ions doped in Co and Fe double salt crystals showed sharp and well resolved EPR spectra consisting in two sets of eight-line hyperfine patterns. The spin-Hamiltonian parameters and the molecular orbital coefficients are given and the bonding in vanadyl complexes is discussed.

  14. Coherent X-radiation of relativistic electrons in a single crystal under asymmetric reflection conditions

    Science.gov (United States)

    Blazhevich, S. V.; Noskov, A. V.

    2008-09-01

    Coherent X-radiation of a relativistic electron crossing a single crystal plate with constant speed is considered in the two-wave approximation of the dynamic diffraction theory [Z. Pinsker, Dynamical Scattering of X-rays in Crystals, Springer, Berlin, 1984] in a Laue geometry. Analytical expressions describing the spectral-angular distribution of parametric X-radiation (PXR) and diffracted transition radiation (DTR) formed on a system of parallel atomic planes situated at an arbitrary angle δ to the surface of the crystal plate (asymmetric reflection) are derived. The dependences of the PXR and DTR spectral-angular density and their interference with angle δ are studied.

  15. Optical Absorption in Mo0.25W0.75Se2 Single Crystals

    Science.gov (United States)

    Makhija, D. L.; Patel, K. D.; Pathak, V. M.; Srivastava, R.

    2011-07-01

    Single crystals of Mo0.25W0.75Se2 have been grown by direct vapour transport technique. Optical absorption spectra have been measured in the range 200-2000 nm at room temperature. Results have been analyzed on the basis of three dimensional (3D). Absorption near the fundamental edge was found to be due to indirect and direct allowed transitions on the basis of 3D model. The optical energy gaps corresponding to both transitions have also been determined. Some feeble disorder in the crystal is conceived to be present.

  16. A two-axis goniometer for low-temperature nuclear magnetic resonance measurements on single crystals.

    Science.gov (United States)

    Shiroka, T; Casola, F; Mesot, J; Bachmann, W; Ott, H-R

    2012-09-01

    We report on the construction of a two-axis goniometer intended for low-temperature, single-crystal nuclear magnetic resonance (NMR) measurements. With the use of home-made and commercially available parts, our simple probe-head design achieves good sensitivity, while maintaining a high angular precision and the ability to orient samples also when cooled to liquid helium temperatures. The probe with the goniometer is adapted to be inserted into a commercial (4)He-flow cryostat, which fits into a wide-bore superconducting solenoid magnet. Selected examples of NMR measurements illustrate the operation of the device.

  17. Dislocation-source shutdown and the plastic behavior of single-crystal micropillars.

    Science.gov (United States)

    Tang, H; Schwarz, K W; Espinosa, H D

    2008-05-09

    Dislocation dynamics simulations have been used to study the stress-strain response of single-crystal micropillars containing initial dislocation networks generated via a relaxation procedure intended to approximate real thermal annealing processes. We find that, when such networks are loaded, they exhibit periods of plastic deformation, caused by the operation of single junction-stabilized spiral sources, followed by intervals of purely elastic straining when the sources shut down. The results provide insight into the mechanisms responsible for the experimentally observed staircase stress-strain behavior.

  18. A new subunit of thermoelectric generator using single crystal-like elements of laminated type

    Energy Technology Data Exchange (ETDEWEB)

    Tanji, Y. [R& D Division, Tokin Corporation, Sendai, 982 (Japan); Nakagawa, Y. [Faculty of Engineering, Tohoku Institute of Technology, Sendai, 982 (Japan); Kaneko, T. [Institute for Materials Research, Tohoku University, Sendai, 980 (Japan); Ido, H.; Kuboki, M. [Faculty of Engineering, Tohoku Gakuin University, Tagajyo, 985 (Japan); Kogo, M. [R& D Division, Tokin Corporation, Sendai, 982 (Japan); Masumoto, T. [Institute for Materials Research, Tohoku University, Sendai, 980 (Japan); Sato, R. [Faculty of Engineering, Tohoku Gakuin University, Tagajyo, 985 (Japan)

    1994-08-10

    A compact subunit of thermoelectric generator is designed using single crystal-like 288 elements of (Bi,Sb){sub 2} (Te,Se){sub 3} compounds of laminated type. It is expected that the maximum power amounts to 17.3 (W) with 11.1 (A) and 1.56 (V) at the temperature difference of 50 {degree}C. The elements are prepared by the Bridgman method using a new type of crucible. Thermoelectric properties of these elements are measured using a simple Peltier technique. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  19. Single-crystal study of highly anisotropic CeNiGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pikul, A P; Kaczorowski, D; Bukowski, Z; Plackowski, T; Gofryk, K [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw (Poland)

    2004-09-01

    High quality single crystals of CeNiGe{sub 2} have been investigated by means of magnetic susceptibility, magnetization, electrical resistivity, magnetoresistivity and thermoelectric power measurements, carried out along all three principal crystallographic directions. The compound is an antiferromagnetic Kondo system that orders magnetically at T{sub N} = 3.9 K and undergoes a spin structure rearrangement at T{sub 1} = 3.2 K. The magnetic behaviour is strongly anisotropic with the easy magnetic direction parallel to the crystallographic a-axis. The Kondo temperature and the total crystal field splitting are of the order of 20 and 100 K, respectively.

  20. Electrical transport in UNi{sub 0.5}Sb{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bukowski, Z. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland); Gofryk, K. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland); Plackowski, T. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland); Kaczorowski, D. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland)]. E-mail: D.Kaczorowski@int.pan.wroc.pl

    2005-09-01

    Single crystals of UNi{sub 0}.{sub 5}Sb{sub 2} were investigated by means of Seebeck coefficient and Hall effect measurements in the temperature range 5-300 K. The results corroborated the occurrence of two magnetic phase transitions: from para- to antiferromagnetic state at T {sub N} = 161.5 K and a spin-reorientation near T {sub t} = 64 K. The first-order character of the latter feature was proved by studying in detail the electrical resistivity and the magnetic susceptibility of single-crystalline UNi{sub 0}.{sub 5}Sb{sub 2} in the vicinity of T {sub t}.

  1. GROWTH RATE DISTRIBUTION OF BORAX SINGLE CRYSTALS ON THE (001 FACE UNDER VARIOUS FLOW RATES

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax single crystals from aqueous solutions at various flow rates in the (001 direction were measured using in situ cell method. From the growth rate data obtained, the growth rate distribution of borax crystals was investigated using Minitab Software and SPSS Software at relative supersaturation of 0807 and temperature of 25 °C. The result shows that normal, gamma, and log-normal distribution give a reasonably good fit to GRD. However, there is no correlation between growth rate distribution and flow rate of solution.   Keywords: growth rate dispersion (GRD, borax, flow rate

  2. Surface and quasi-longitudinal acoustic waves in KTiOAsO₄ single crystals.

    Science.gov (United States)

    Taziev, Rinat M

    2014-02-01

    Surface and quasi-longitudinal acoustic wave properties have been investigated in potassium titanyl arsenate (KTiOAsO₄, KTA) single crystals for the first time. Surface acoustic wave (SAW) velocity, electromechanical coupling coefficient and power flow angle characteristics have been obtained in rotated Y-cut of KTA crystals. High SAW electromechanical coupling coefficient (0.4%) is found in Z-cut of KTA crystals. For high-frequency devices it is promising the resonators on quasi-longitudinal acoustic wave in X-cut of KTA crystals with sharp response in interdigital transducer conductance at resonance frequency. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Steady-State Crack Growth in Rate-Sensitive Single Crystals

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2016-01-01

    The characteristics of the active plastic zone surrounding a crack growingin a single crystal (FCC, BCC, and HCP) at constant velocity is investigated for ModeI loading under plane strain assumptions. The framework builds upon a steady-state relation bringing the desired solution out in a frame...... the literature. The plastic zone is found to be smallest for the FCC structure andlargest for the HCP structure, which is also reected in the shielding ratio, where FCC crystals show the smallest shielding and HCP the largest shielding....

  4. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, P.A. [ILL, Grenoble (France); Pebay-Peyroula, E. [IBS-UJF Grenoble (France)

    1994-12-31

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H{sub 2}O/D{sub 2}O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished.

  5. IR cut filters for optoelectronic devices, based on CdSb, ZnSb single crystals

    Directory of Open Access Journals (Sweden)

    Ashcheulov A. A.

    2009-02-01

    Full Text Available Interference-adsorptive filters on the base of the CdSb and ZnSb semiconductor single crystals are proposed as a new type of cooling cut optical filters used in modern optoelectronics. Computer simulation of the structure of interference multilayer coatings has shown the availability of design and application of cut filters on CdSb with optimized parameters. Experimental results demonstrate high optical characteristics and mechanical strength of two-channel cut CdSb filters used in various devices.

  6. Effect of crystallographic orientation on plastic deformation of single crystal nickel-base superalloys

    Science.gov (United States)

    Westbrooke, Eboni F.

    Nickel-base superalloys, with gamma/gamma' microstructure, are the primary material used in turbines for aerospace applications. The blades in the hottest region of the turbine engine are made of single crystal Ni-base superalloys. It has been shown that the critical resolved shear stress (CRSS) of these materials is orientation dependent (also known as non-Schmid effect). The purpose of this research was to investigate the plastic deformation mechanisms of single crystal Ni-base superalloys as a function of crystallographic orientation in order to understand the factors that contribute to the non-Schmid effect. The superalloys in this study possessed alloying elements in amounts which defined them as 1st and 2nd generation superalloys. Tensile samples of various orientations were loaded to different strain levels. The mechanisms of plastic deformation were characterized by optical and scanning electron microscopy (SEM) observations of deformation bands as well as the dislocation structures using transmission electron microscopy (TEM). It was confirmed that the CRSS of the single crystals did not follow Schmid's law and the near specimens showed the lowest values. The degree of non-Schmid behavior in the specimens was diminished by HIP'ing, which resulted in closure of solidification pores. Furthermore, it was shown that the CRSS for the loaded samples was smallest when loaded along the secondary dendrite arms. The slip analysis by optical microscopy showed that the deformation bands did not follow the expected {111} slip planes for all samples. Studies in SEM proved that those slip bands that followed the {111} planes were associated with extensive shearing of gamma' particles. In addition, it was found that the presence of tri-axial stress states within the macrostructure influenced the deformation path significantly. The TEM observations of deformed specimens revealed that plastic deformation took place mainly in the gamma channels in specimens with low CRSS

  7. Isotopic effect on thermal physical properties of isotopically modified boron single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Quanli [Japan Science and Technology Corporation, Kawaguchi, Saitama (Japan); Noda, Tetsuji; Suzuki, Hiroshi; Araki, Hiroshi; Numazawa, Takenori; Hirano, Toshiyuki [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Nogi, Naoyuki; Tanaka, Satoru [University of Tokyo, Department of Quantum Engineering and Systems Science, Tokyo (Japan)

    2002-04-01

    The measurement of specific heat and thermal conductivity at low temperature for isotopically modified boron single crystals was performed between 0.5 and 100K using relaxation method and steady heat flow method, respectively. The results indicate that the specific heat has obvious divergences at T<5K. At 40K, the thermal conductivity of {sup 10}B-enriched crystal is about 570 W/m{center_dot}K, which is 40% larger than that of natural boron crystal. The influence of lattice vibration modes and the isotopic effect on specific heat and thermal conductivity for isotopically modified boron are discussed. (author)

  8. Ellipsometric studies of ErMnO3 single crystals

    DEFF Research Database (Denmark)

    Babonas, G.-J.; Grivel, Jean-Claude; Reza, A.

    2007-01-01

    Ellipsometric studies of ErMnO3 single crystals have been carried out in the spectral range of 1-5 eV by means of photometric ellipsometers. Experimental ellipsometric data were analysed in the uniaxial crystal model. For the first time, the components of dielectric function of ErMnO3 were determ......, respectively, and charge-transfer transitions O(2p)-> Mn(3d) contribute to the optical response of ErMnO3. The optical spectra and electronic energy band structure of ErMnO3 was compared with those for other manganites....

  9. Delayed crack propagation in barium titanate single crystals in humid air

    Science.gov (United States)

    Jiang, Bing; Bai, Yang; Cao, Jiang-Li; Su, Yanjing; Shi, San-Qiang; Chu, Wuyang; Qiao, Lijie

    2008-06-01

    Domain witching of ferroelectrics under mechanical or electric load in vacuum or dry air has been intensively studied. However, the effects of environments on the domain switching in ferroelectrics have not been well understood. Here, we demonstrate that domain configurations in BaTiO3 single crystal under sustained load can be significantly affected by the humidity due to the decrease in surface energy and electrostatic energy upon adsorption of polar water molecules. Consequently, the crack propagation behaviors of the ferroelectrics under sustained load can be remarkably altered.

  10. Raman scattering in heavily boron-doped single-crystal diamond

    Directory of Open Access Journals (Sweden)

    G. Faggio

    2011-09-01

    Full Text Available A series of boron-doped homoepitaxial diamond films grown by Microwave Plasma Enhanced Chemical Vapor Deposition at the University of Rome "Tor Vergata" have been investigated with Raman spectroscopy. As the boron content increases, we observed systematic modifications in the Raman spectra of single-crystal diamonds. A significant change in the lineshape of the first-order Raman peak as well as a wide and structured signal at lower wavenumbers appeared simultaneously in samples grown at higher boron content.

  11. Edge cracks in nickel and aluminium single crystals: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Sagar, E-mail: sagarc@barc.gov.in; Chavan, V. M.; Patel, R. J. [Refueling Technology Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Samal, M. K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2016-05-23

    A molecular dynamics study of edge cracks in Ni and Al single crystals under mode-I loading conditions is presented. Simulations are performed using embedded-atom method potentials for Ni and Al at a temperature of 0.5 K. The results reveal that Ni and Al show different fracture mechanisms. Overall failure behavior of Ni is brittle, while fracture in Al proceeds through void nucleation and coalescence with a zig-zag pattern of crack growth. The qualitative nature of results is discussed in the context of vacancy-formation energies and surface energies of the two FCC metals.

  12. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong

    2009-02-05

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed in comparison with the growth of ZnO nanowires. The ZnO mesoporous film was successfully applied as a gas sensor. The fabrication and growth analysis of the mesoporous ZnO thin film gi ve general guidance for the controlled growth of nanostructures. It also pro vides a unique structure with a superhigh surface-to-volume ratio for surface-related applications. © 2009 American Chemical Society.

  13. Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber

    Science.gov (United States)

    Cheng, Yujie; Hill, Cary; Liu, Bo; Yu, Zhihao; Xuan, Haifeng; Homa, Daniel; Wang, Anbo; Pickrell, Gary

    2016-06-01

    We present a large-core single-mode "windmill" single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The "windmill" SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.

  14. Domain-Reversed Lithium Niobate Single-Crystal Fibers are Potentially for Efficient Terahertz Wave Generation

    Directory of Open Access Journals (Sweden)

    Yalin Lu

    2008-01-01

    Full Text Available Nonlinear frequency conversion remains one of the dominant approaches to efficiently generate THz waves. Significant material absorption in the THz range is the main factor impeding the progress towards this direction. In this research, a new multicladding nonlinear fiber design was proposed to solve this problem, and as the major experimental effort, periodic domain structure was introduced into lithium niobate single-crystal fibers by electrical poling. The introduced periodic domain structures were nondestructively revealed using a crossly polarized optical microscope and a confocal scanning optical microscope for quality assurance.

  15. Bidomain structures formed in lithium niobate and lithium tantalate single crystals by light annealing

    Science.gov (United States)

    Kubasov, I. V.; Kislyuk, A. M.; Bykov, A. S.; Malinkovich, M. D.; Zhukov, R. N.; Kiselev, D. A.; Ksenich, S. V.; Temirov, A. A.; Timushkin, N. G.; Parkhomenko, Yu. N.

    2016-03-01

    The bidomain structures produced by light external heating in z-cut lithium niobate and lithium tantalate single crystals are formed and studied. Interdomain regions about 200 and 40 μm wide in, respectively, LiNbO3 and LiTaO3 bidomain crystals are visualized and studied by optical microscopy and piezoresponse force microscopy. Extended chains and lines of domains in the form of thin layers with a width less than 10 μm in volume, which penetrate the interdomain region and spread over distances of up to 1 mm, are found.

  16. Ni-Mn-Ga single crystals with very low twinning stress

    Energy Technology Data Exchange (ETDEWEB)

    Straka, L; Haenninen, H [Aalto University, Laboratory of Engineering Materials, PL 14200, FIN-00076 AALTO (Finland); Soroka, A; Sozinov, A, E-mail: ladislav.straka@tkk.fi [AdaptaMat Ltd., Yrityspiha 5, Helsinki, FIN-00390 (Finland)

    2011-07-06

    Twinning stress or mechanical hysteresis associated with the twin boundary motion is one of the most essential parameters which determine the actuating performance of magnetic shape memory alloys. Recent effort at AdaptaMat Ltd. to decrease the twinning stress resulted in a consistent production of Ni-Mn-Ga magnetic shape memory single crystals with the twinning stress of about 0.1 MPa, which is much lower than previously reported. In this work, the mechanical and magnetomechanical response of the developed crystals is discussed in detail and the importance of adjustment of the twin microstructure for obtaining an optimal actuating behavior is illustrated.

  17. Characterization of Plastic Deformation Evolution in Single Crystal and Nanocrystalline Cu During Shock by Atomistic Simulations

    Science.gov (United States)

    Mirzaei Sichani, Mehrdad

    The objective of this dissertation is to characterize the evolution of plastic deformation mechanisms in single crystal and nanocrystalline Cu models during shock by atomistic simulations. Molecular dynamics (MD) simulations are performed for a range of particle velocities from 0.5 to 1.7 km/s and initial temperatures of 5, 300 and 600 K for single crystal models as well as particle velocities from 1.5 to 3.4 km/s for nanocrystalline models with grain diameters of 6, 11, 16 and 26 nm. For single crystal models, four different shock directions are selected, , , and , and dislocation density behind the shock wave front generally increases with increasing particle velocity for all shock orientations. Plastic relaxation for shock in the , and directions is primarily due to a reduction in the Shockley partial dislocation density. In contrast, plastic relaxation is limited for shock in the orientation. This is partially due to the emergence of sessile stair-rod dislocations with Burgers vectors of 1/3 and 1/6 due to the reaction of Shockley partial dislocations with twin boundaries and stacking fault intersections. For shock, FCC Cu is uniaxially compressed towards the BCC structure behind the shock wave front; this process is more favorable at higher shock pressures and temperatures. For particle velocities above 0.9 km/s, regions of HCP crystal structure nucleate from uniaxially compressed Cu. Free energy calculations proves that the nucleation and growth of these HCP clusters are an artifact of the embedded-atom interatomic potential. In addition, simulated x-ray diffraction line profiles are created for shock models of single crystal Cu at the Hugoniot state. Generally, peak broadening in the x-ray diffraction line profiles increases with increasing particle velocity. For nanocrystalline models, the compression of the FCC lattice towards the BCC structure is more apparent at particle velocity of 2.4 km/s, and at this particle velocity, the atomic percentage of BCC

  18. Synthesis and characterization of rare earth coordinated with thiourea single crystal

    Science.gov (United States)

    Singh, Harjinder; Slathia, Goldy; Bamzai, K. K.

    2017-05-01

    Single crystal of yttrium chloride coordinated with thiourea was successfully grown from aqueous solution by slow solvent evaporation technique at room temperature using deionized water as a solvent. The structure of the crystal belongs to orthorhombic system and crystallizes in non-centro-symmetric space group Pn21a. The thermal stability was analyzed by thermo gravimetric / differential thermo analytical (TG/DTA). FTIR studies confirmed the compound formation and presence of functional groups in the crystal. UV-Vis-NIR spectroscopic studies show that the crystals possess wide transmittance in the visible region and significant optical band gap of 4.2ev with cut off wavelength of 246 nm.

  19. Electron irradiation effects on optical properties of semiorganic antimony thiourea bromide monohydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mahesha Upadhya, K., E-mail: mahesh.upadhya@yahoo.co [Department of Physics, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar, Karnataka 575025 (India); Udayashankar, N.K. [Department of Physics, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar, Karnataka 575025 (India)

    2010-12-15

    Antimony thiourea bromide monohydrate (ATBM) single crystals were grown by solution growth technique at room temperature for the first time. The UV-vis, FT-IR and fluorescence spectra were recorded and electron irradiation effects on these properties were studied. The optical absorption edge of the UV-vis spectrum shifts towards lower wavelength with the increase of irradiation. The fluorescence quantum yield is increased for electron irradiated ATBM crystals. The FT-IR analysis shows that the water of crystallization is weakly bonded in as-grown and electron irradiated ATBM crystals.

  20. Single-crystal diffraction at the Extreme Conditions beamline P02.2: procedure for collecting and analyzing high-pressure single-crystal data.

    Science.gov (United States)

    Rothkirch, André; Gatta, G Diego; Meyer, Mathias; Merkel, Sébastien; Merlini, Marco; Liermann, Hanns Peter

    2013-09-01

    Fast detectors employed at third-generation synchrotrons have reduced collection times significantly and require the optimization of commercial as well as customized software packages for data reduction and analysis. In this paper a procedure to collect, process and analyze single-crystal data sets collected at high pressure at the Extreme Conditions beamline (P02.2) at PETRA III, DESY, is presented. A new data image format called `Esperanto' is introduced that is supported by the commercial software package CrysAlis(Pro) (Agilent Technologies UK Ltd). The new format acts as a vehicle to transform the most common area-detector data formats via a translator software. Such a conversion tool has been developed and converts tiff data collected on a Perkin Elmer detector, as well as data collected on a MAR345/555, to be imported into the CrysAlis(Pro) software. In order to demonstrate the validity of the new approach, a complete structure refinement of boron-mullite (Al5BO9) collected at a pressure of 19.4 (2) GPa is presented. Details pertaining to the data collections and refinements of B-mullite are presented.

  1. High luminous flux from single crystal phosphor-converted laser-based white lighting system

    KAUST Repository

    Cantore, Michael

    2015-12-14

    The efficiency droop of light emitting diodes (LEDs) with increasing current density limits the amount of light emitted per wafer area. Since low current densities are required for high efficiency operation, many LED die are needed for high power white light illumination systems. In contrast, the carrier density of laser diodes (LDs) clamps at threshold, so the efficiency of LDs does not droop above threshold and high efficiencies can be achieved at very high current densities. The use of a high power blue GaN-based LD coupled with a single crystal Ce-doped yttrium aluminum garnet (YAG:Ce) sample was investigated for white light illumination applications. Under CW operation, a single phosphor-converted LD (pc-LD) die produced a peak luminous efficacy of 86.7 lm/W at 1.4 A and 4.24 V and a peak luminous flux of 1100 lm at 3.0 A and 4.85 V with a luminous efficacy of 75.6 lm/W. Simulations of a pc-LD confirm that the single crystal YAG:Ce sample did not experience thermal quenching at peak LD operating efficiency. These results show that a single pc-LD die is capable of emitting enough luminous flux for use in a high power white light illumination system.

  2. Influence of Temperature on Plastic Deformation Behavior and Mechanism of Bismuth Single Crystals

    Science.gov (United States)

    Yanaka, Yuichi; Kariya, Yoshiharu; Watanabe, Hirohiko; Hokazono, Hiroaki

    2018-01-01

    Tensile tests were performed on bismuth single crystals in the [0001] ( c-axis), [2\\bar{1}\\bar{1} 0] ( a 1-axis), [10\\bar{1} 0] and [1 \\bar{1} 00] directions of bismuth single crystals to investigate the influence of temperature on plastic deformation behavior. The plastic deformation at 298 K was caused by slip on the secondary slip system in the [0001] direction, or by twinning and slip deformation in twins subsequent to the twining deformation in the [2\\bar{1}\\bar{1} 0] direction. Those mechanisms resulted in ductile characteristics in tension. Only deformation twinning, however, was observed along the [10\\bar{1}0] and [1\\bar{1} 00] directions, which lead to brittle fracture. At elevated temperature (423 K), deformation twinning was not found to occur along any of the examined directions. Crystallographic slip was the predominant deformation mechanism along the [2\\bar{1}\\bar{1} 0], [10\\bar{1} 0] and [1\\bar{1} 00] directions at 423 K. This is attributed to the activation of the {1\\bar{1} 02} or {1\\bar{1} 02} slip system which are inactive at 298 K. Along the [0001] direction at 423 K, the {0\\bar{1} 11} was active and its critical resolved shear stress ( τ crss) does not coincide with that corresponding to the {1\\bar{1} 02} and {1\\bar{1} 02} systems. Therefore, it can be concluded that difference in τ crss between slip systems causes anisotropy in mechanical behavior at 423 K.

  3. CW-EPR study of 2,2,4,4-tetramethyl-3-pentanone oxime single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Ulku; Yuksel, Huseyin; Ozmen, Ayhan [Physics Department, Selcuk University, Konya (Turkey); Birey, Mehmet, E-mail: birey@science.ankara.edu.t [Physics Department, Ankara University, Ankara (Turkey)

    2010-12-15

    The electron paramagnetic resonance (EPR) spectra of gamma irradiated single crystals of 2,2,4,4-tetramethyl-3-pentanone oxime (TPO) have been examined between temperatures of 125 and 450 K. The spectra were found to be both dependent on temperature and orientation of single crystals with magnetic field. We attributed radiation damage centers to iminoxy radicals (RC=N{sup {center_dot}}O). There are two similar group of splitting in the spectra because of conformational isomers (R1, R2) of iminoxy radicals produced by gamma irradiation of TPO. Determined g-factor and hyperfine coupling constants for R1 and R2 conformers were found anisotropic with the average values (g{sub iso}){sub R1}=2.01057, (g{sub iso}){sub R2}=2.009337, [(a{sub N}){sub iso}]{sub R1}=28.09 G, [(a{sub N}){sub iso}]{sub R2}=36.34 G, [(a{sub H}){sub iso}]{sub R2}=9.15 G, respectively.

  4. Growth and characterization of Sm3+ doped cerium oxalate single crystals

    Directory of Open Access Journals (Sweden)

    Minu Mary C

    2016-07-01

    Full Text Available Single crystals of Sm3+ doped cerium oxalate decahydrate were synthesized using single diffusion gel technique and the conditions influencing the size, morphology, nucleation density and quality of the crystals were optimized. Highly transparent single crystals of average size 3 mm × 2 mm × 1 mm with well-defined hexagonal morphology were grown during a time period of two weeks. X-ray powder diffraction analysis revealed that the grown crystals crystallize in the monoclinic system with space group P21/c as identical with the pure cerium oxalate. The various functional groups of the oxalate ligand and the water of crystallization were identified by Fourier transform infrared spectroscopy. The photoluminescence spectrum of the Sm3+ doped cerium oxalate indicated that the Sm3+ ions are optically active in the cerium oxalate matrix. The crystal has a strong and efficient orange red emission with a wavelength peak at 595 nm and hence can be effectively used for optical amplification. Microhardness measurements of the crystal revealed that they belong to the soft material category.

  5. Enhanced optical, thermal and piezoelectric behavior in dye doped potassium acid phthalate (KAP) single crystal

    Science.gov (United States)

    Rao, G. Babu; Rajesh, P.; Ramasamy, P.

    2017-06-01

    Dye inclusion crystals have attracted researchers in the context of crystal growth for applications in solid state lasers. Pure and 0.1 mol% amaranth doped KAP single crystals, were grown from aqueous solutions by slow evaporation technique at room temperature. The grown crystals are up to the dimension of 12×10×3 mm3. Attempt is made to improve the growth rate, optical, piezoelectric and photoconductive properties of pure KAP single crystal with addition of amaranth dye as a dopant. Various characterization studies were made for both pure and dye doped KAP. Thermal stability of the crystals is tested from thermogravimetric and differential thermal analysis (TG/DTA). There is only one endothermic peak indicating decomposition point. Higher optical transparency for dye doped KAP crystal was identified from the UV-vis spectrum. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with amaranth dye. The positive photoconductive nature is observed from both pure and amaranth doped KAP.

  6. Growth, structural and characterization of a novel third order nonlinear optical Benzimidazolium Maleate single crystal

    Science.gov (United States)

    Amudha, M.; Muthu, S.; Gunasekaran, B.; Praveen Kumar, P.

    2017-10-01

    Good optical quality single crystals of Benzimidazolium Maleate (BML), a new organic charge transfer molecular complex salt, were grown successfully by the slow evaporation solution growth technique using deionised water as solvent at room temperature. The grown crystals of BML were characterised by single crystal X-ray diffraction (XRD) and powder XRD which confirm that the crystal belongs to monoclinic system with the centrosymmetric space group P21/n. The presence of functional groups in the grown crystal was confirmed by Fourier transform infrared spectral analysis. The BML crystal is thermally stable up to 147.7 °C and it is found by TG-DTA analysis. The transparency of the crystal was identified using UV-Vis spectrophotometer. Vickers microhardness analysis shows the mechanical stability of the grown crystal. The dependence of dielectric properties with frequency and temperature were also studied. Nonlinear optical absorption coefficient determined from open aperture Z-scan analysis revealed that the BML crystal can serve as a promising candidate for optical limiting applications.

  7. Agglomeration kinetics and pattern formation of Pt thin films on yttria stabilized zirconia single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Galinski, Henning; Ryll, Thomas; Schlagenhauf, Lukas; Bieberle-Huetter, Anja; Rupp, Jennifer M.; Gauckler, Ludwig [Nonmetallic Inorganic Materials, ETH Zurich (Switzerland)

    2010-07-01

    Metals and ceramics have distinct diametric bonding characteristics. Thus, the stability of a metal thin film on a ceramic substrate is conditioned by the interactions between the different bonding types across the interface. In the case of weak adhesion the minimization of free surface energies gives rise to decomposition and agglomeration of thin films. Pt thin films with thicknesses up to 180 nm were deposited via magnetron and ion-beam sputtering on yttria stabilized zirconia single crystals and subjected to heat treatments up to 1173 K for 2 hours. In the case of ion beam sputtering the single crystal has been pre-cleaned in the ion-beam before deposition. The morphological evolution of Pt thin films has been investigated by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Three main observations have been made: i) the pre-cleaning has an impact on the morphological evolution of the film during annealing, hence impurities on the surface can be regarded as additional sources for agglomeration. ii) The morphological evolution as function of time has been analyzed by means of Minkowski measures. For the stage of hole coalescences a deviation from the expected Gaussian behaviour is found. iii) The hole growth is in agreement with Brandon and Bradshaw's theory of surface energy driven diffusion.

  8. Characterization of Bi4Ge3O12 single crystal by impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Zélia Soares Macedo

    2003-12-01

    Full Text Available Bi4Ge3O12 (bismuth germanate - BGO single crystals were produced by the Czochralski technique and their electrical and dielectric properties were investigated by impedance spectroscopy. The isothermal ac measurements were performed for temperatures from room temperature up to 750 °C, but only the data taken above 500 °C presented a complete semicircle in the complex impedance diagrams. Experimental data were fitted to a parallel RC equivalent circuit, and the electrical conductivity was obtained from the resistivity values. Conductivity values from 5.4 × 10(9 to 4.3 × 10-7 S/cm were found in the temperature range of 500 to 750 °C. This electrical conductivity is thermally activated, following the Arrhenius law with an apparent activation energy of (1.41 ± 0.04 eV. The dielectric properties of BGO single crystal were also studied for the same temperature interval. Permittivity values of 20 ± 2 for frequencies higher than 10³ Hz and a low-frequency dispersion were observed. Both electric and dielectric behavior of BGO are typical of systems in which the conduction mechanism dominates the dielectric response.

  9. Structural, thermal and optical characterization of an organic NLO material—Benzaldehyde thiosemicarbazone monohydrate single crystals

    Science.gov (United States)

    Santhakumari, R.; Ramamurthi, K.

    2011-02-01

    Single crystals of the organic NLO material, benzaldehyde thiosemicarbazone (BTSC) monohydrate, were grown by slow evaporation method. Solubility of BTSC monohydrate was determined in ethanol at different temperatures. The grown crystals were characterized by single crystal X-ray diffraction analysis to determine the cell parameters and by FT-IR technique to study the presence of the functional groups. Thermogravimetric and differential thermal analyses reveal the thermal stability of the crystal. UV-vis-NIR spectrum shows excellent transmission in the region of 200-1100 nm. Theoretical calculations were carried out to determine the linear optical constants such as extinction coefficient and refractive index. Further the optical nonlinearities of BTSC have been investigated by Z-scan technique with He-Ne laser radiation of wavelength 632.8 nm. Mechanical properties of the grown crystal were studied using Vickers microhardness tester. Second harmonic generation efficiency of the powdered BTSC monohydrate was tested using Nd:YAG laser and it is found to be ˜5.3 times that of potassium dihydrogen orthophosphate.

  10. Preresonance Raman single-crystal measurements of electronic transition moment orientations in N-acetylglycinamide

    Energy Technology Data Exchange (ETDEWEB)

    Pajcini, V.; Asher, S.A.

    1999-12-01

    The authors have examined electronic coupling between the two amide electronic transitions in a dipeptide and have found strong excitonic interactions in a case where the amide planes are almost perpendicular. The absorption and resonance Raman spectra of N-methylacetamide (NMA) and acetamide (AM) are compared to that of the dipeptide N-acetylglycinamide (NAGA), which is composed of linked primary and secondary amides. The authors measured the transition moment magnitudes of each of these species and also determined the orientation of the preresonance Raman tensor of NAGA in a single crystal. From these single-crystal tensor values, the NAGA diagonal Raman tensor orientations were calculated and compared to those expected for unperturbed primary and secondary amides oriented as in the NAGA crystal. Because the primary and secondary amide III vibrations are vibrationally uncoupled and nonoverlapping, their intensities can be used to determine the contributions to their resonance enhancement from the coupled NAGA electronic transitions. The Raman tensor major axes of the primary and secondary amide III and amide I vibrations do not lie in their corresponding amide planes, indicating excitonically coupled states which mix the primary and secondary amide transitions. These results are relevant to the understanding of amide coupling in peptides and proteins; the NAGA crystal conformation is similar to that of a type I {beta}-turn in peptides and proteins, with the amide planes nearly perpendicular to each other (dihedral angle 85{degree}).

  11. The Anisotropic Dynamic Response of Ultrafast Shocked Single Crystal PETN and Beta-HMX

    Science.gov (United States)

    Zaug, Joseph; Armstrong, Michael; Crowhurst, Jonathan; Austin, Ryan; Ferranti, Louis; Fried, Laurence; Bastea, Sorin

    2015-06-01

    We report results from ultrafast shockwave experiments conducted on single crystal high explosives. Experimental results consist of 12 picosecond time-resolved dynamic response wave profile data, (ultrafast time-domain interferometry-TDI), which are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. In addition, here we present unreacted equations of state data from PETN and beta-HMX up to higher pressures than previously reported, which are used to extend the predictive confidence of hydrodynamic simulations. Our previous results derived from a 360 ps drive duration yielded anisotropic elastic wave response in single crystal beta-HMX ((110) and (010) impact planes). Here we provide results using a 3x longer drive duration to probe the plastic response regime of these materials. We compare our ultrafast time domain interferometry (TDI) results with previous gun platform results. Ultrafast time scale resolution TDI measurements further guide the development of continuum models aimed to study pore collapse and energy localization in shock-compressed crystals of beta-HMX. This work was performed under the auspices of the U.S. Department of Energy jointly by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Mesoporous single-crystal CoSn(OH)6 hollow structures with multilevel interiors.

    Science.gov (United States)

    Wang, Zhiyu; Wang, Zichen; Wu, Haobin; Lou, Xiong Wen David

    2013-01-01

    Hollow nanostructures represent a unique class of functional nanomaterials with many applications. In this work, a one-pot and unusual "pumpkin-carving" protocol is demonstrated for engineering mesoporous single-crystal hollow structures with multilevel interiors. Single-crystal CoSn(OH)6 nanoboxes with uniform size and porous shell are synthesized by fast growth of CoSn(OH)6 nanocubes and kinetically-controlled etching in alkaline medium. Detailed investigation on reaction course suggests that the formation of a passivation layer of Co(III) species around the liquid-solid interface is critical for the unusual hollowing process. With reasonable understanding on the mechanism involved, this approach shows high versatility for the synthesis of CoSn(OH)6 hollow architectures with a higher order of interior complexity, such as yolk-shell particles and multishelled nanoboxes. The obtained CoSn(OH)6 hollow nanostructures can be easily converted to hollow nanostructures of tin-based ternary metal oxides with excellent photocatalytic and electrochemical properties.

  13. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals

    KAUST Repository

    Niazi, Muhammad Rizwan

    2015-11-23

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm2 V−1 s−1, low threshold voltages of<1 V and low subthreshold swings <0.5 V dec−1). Our findings demonstrate that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  14. Randomness and Statistical Laws of Indentation-Induced Pop-Out in Single Crystal Silicon.

    Science.gov (United States)

    Huang, Hu; Zhao, Hongwei; Shi, Chengli; Zhang, Lin; Wan, Shunguang; Geng, Chunyang

    2013-04-12

    Randomness and discreteness for appearance of pop-out of the single crystal silicon with a (100) orientation were studied by a self-made indentation device. For a given maximum penetration load, the load Ppo for appearance of pop-out fluctuates in a relatively large range, which makes it hard to study the effect of the loading/unloading rate on the load Ppo. Experimental results with different maximum penetration loads indicate that the critical penetration load for appearance of pop-out is in the range of 15 mN~20 mN for the current used single crystal silicon. For a given maximum penetration load, the load Ppo for appearance of pop-out seems random and discrete, but in the point of statistics, it has an obviously increasing trend with increase of the maximum penetration load and also the fraction Ppo/Pmax approximately keeps in the range of 0.2~0.5 for different maximum penetration loads changing from 15 mN to 150 mN.

  15. Luminescence spectroscopy of Rb2KTiOF5 oxyfluoride single crystals

    Science.gov (United States)

    Kozlov, A. V.; Pustovarov, V. A.; Sarychev, M. N.; Isaenko, L. I.

    2017-09-01

    Spectra of photoluminescence (PL) and X-ray excited luminescence (XRL) in region of 1.5-5.5 eV, PL excitation spectra using synchrotron radiation (3.7-22 eV), time-resolved impulse cathode-luminescence (ICL) spectra, the temperature depending of the XRL, decay kinetics as well as thermoluminescence curves were measured for single crystals Rb2KTiOF5, a promising nonlinear optical material. Single crystals are transparent in microwave, visible and near UV range, inter-band transition energy is Eg = 4.2 eV. Crystalline structure has two disordered mixed position O/F, phase transition in the region of 215 K. All the obtained results indicate that in luminescence spectra nonelementary band 2.2 eV is connected to the emission of self-trapped excitons. Nonelementary band 2.2 eV associated with the presence local distortion in the octahedron TiOF5. It is observed that at interband excitation in VUV region at energies more than 3.5 Eg the effect of multiplication of electronic excitations appears. That determines the high output of XRL and ICL. Luminescence methods of quality control of grown crystals are proposed.

  16. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    KAUST Repository

    Shi, Dong

    2016-04-15

    We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD’s paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD’s intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells.

  17. Inside Perovskites: Quantum Luminescence from Bulk Cs4PbBr6 Single Crystals

    KAUST Repository

    de Bastiani, Michele

    2017-08-01

    Zero-dimensional perovskite-related structures (0D-PRS) are a new frontier of perovskite-based materials. 0D-PRS, commonly synthesized in powder form, manifest distinctive optical properties such as strong photoluminescence (PL), narrow emission linewidth, and high exciton binding energy. These properties make 0D-PRS compelling for several types of optoelectronic applications, including phosphor screens and electroluminescent devices. However, it would not be possible to rationally design the chemistry and structure of these materials, without revealing the origins of their optical behaviour, which is contradictory to the well-studied APbX3 perovskites. In this work, we synthesize single crystals of Cs4PbBr6 0D-PRS, and investigated the origins of their unique optical and electronic properties. The crystals exhibit a PL quantum yield higher than 40%, the highest reported for perovskite-based single crystals. Time-resolved and temperature dependent PL studies, supported by DFT calculations, and structural analysis, elucidate an emissive behaviour reminiscent of a quantum confined structure rather than a typical bulk perovskite material.

  18. Chemical vapor deposition growth of large grapheme single crystal from ethanol

    Science.gov (United States)

    Chen, Xiao; Zhao, Pei; Chiashi, Shohei; Maruyama, Shigeo

    2014-03-01

    Ethanol as a precursor has proven effective in the chemical vapor deposition (CVD) synthesis of graphene on both Ni foils and Cu capsule substrates. For applications of graphene in field effect transistors or as transparent conducting electrodes, larger singe-crystal graphene without any grain boundaries shows superior electrical performance and has attracted enormous interests. Here we report a protocol to synthesize large graphene single crystals (up to 600 μm) using ethanol as precursor on commercially-available polycrystalline Cu foils. We explored the mechanism by studying the influences of different growth parameters such as pressure, flow rate and temperature. Low partial pressure and low flow rate of ethanol is essential in achieving low nucleation density over the metal surface and therefore large graphene grains can be obtained. We found that growth temperature dramatically affects the crystallinity and the growth rate of graphene grains. Moreover, this CVD growth of large graphene single crystals involves no electro-polishing or annealing treatments to the metal surface, presenting a significant simplification to the current graphene synthesis process.

  19. Third harmonic generation and thermo-physical properties of benzophenone single crystal for photonic applications

    Science.gov (United States)

    Saranraj, A.; Sahaya Jude Dhas, S.; Vinitha, G.; Britto Dhas, S. A. Martin

    2017-10-01

    A well crystallized Benzophenone single crystal was successfully grown by vertical semi transparent Bridgman technique. The lattice parameters of the grown crystal were established by single crystal x-ray diffraction technique. Fourier transform infrared spectroscopy was performed to determine the functional groups. The UV-NIR analysis revealed that the Benzophenone crystal has high transmittance in the entire visible region and the lower cutoff wavelength has been found to be 381 nm. The optical band gap energy was calculated and it is found to be 3.08 eV. The various linear optical parameters such as, Extinction coefficient (k), Refractive index (n), Reflectance, Complex dielectric constant, Optical susceptibility, Electrical conductivity and Optical polarization of the grown crystal were estimated and its variation with respect to incident photon energy was examined. Furthermore, the third order nonlinear optical properties were investigated by the z-scan technique using continuous wave Nd-YAG laser. The obtained thermophysical properties making use of photoacoustic spectroscopy show the superiority of the crystal over few other standard NLO materials.

  20. Spatiotemporal dynamics of the spin transition in [Fe (HB(tz)3) 2] single crystals

    Science.gov (United States)

    Ridier, Karl; Rat, Sylvain; Shepherd, Helena J.; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine

    2017-10-01

    The spatiotemporal dynamics of the spin transition have been thoroughly investigated in single crystals of the mononuclear spin-crossover (SCO) complex [Fe (HB (tz )3)2] (tz = 1 ,2 ,4-triazol-1-yl) by optical microscopy. This compound exhibits an abrupt spin transition centered at 334 K with a narrow thermal hysteresis loop of ˜1 K (first-order transition). Most single crystals of this compound reveal exceptional resilience upon repeated switching (several hundred cycles), which allowed repeatable and quantitative measurements of the spatiotemporal dynamics of the nucleation and growth processes to be carried out. These experiments revealed remarkable properties of the thermally induced spin transition: high stability of the thermal hysteresis loop, unprecedented large velocities of the macroscopic low-spin/high-spin phase boundaries up to 500 µm/s, and no visible dependency on the temperature scan rate. We have also studied the dynamics of the low-spin → high-spin transition induced by a local photothermal excitation generated by a spatially localized (Ø = 2 μ m ) continuous laser beam. Interesting phenomena have been evidenced both in quasistatic and dynamic conditions (e.g., threshold effects and long incubation periods, thermal activation of the phase boundary propagation, stabilization of the crystal in a stationary biphasic state, and thermal cutoff frequency). These measurements demonstrated the importance of thermal effects in the transition dynamics, and they enabled an accurate determination of the thermal properties of the SCO compound in the framework of a simple theoretical model.

  1. Evolution of stacking fault tetrahedral and work hardening effect in copper single crystals

    Science.gov (United States)

    Liu, Hai Tao; Zhu, Xiu Fu; Sun, Ya Zhou; Xie, Wen Kun

    2017-11-01

    Stacking fault tetrahedral (SFT), generated in machining of copper single crystal as one type of subsurface defects, has significant influence on the performance of workpiece. In this study, molecular dynamics (MD) simulation is used to investigate the evolution of stacking fault tetrahedral in nano-cutting of copper single crystal. The result shows that SFT is nucleated at the intersection of differently oriented stacking fault (SF) planes and SFT evolves from the preform only containing incomplete surfaces into a solid defect. The evolution of SFT contains several stress fluctuations until the complete formation. Nano-indentation simulation is then employed on the machined workpiece from nano-cutting, through which the interaction between SFT and later-formed dislocations in subsurface is studied. In the meanwhile, force-depth curves obtained from nano-indentation on pristine and machined workpieces are compared to analyze the mechanical properties. By simulation of nano-cutting and nano-indentation, it is verified that SFT is a reason of the work hardening effect.

  2. Structural, thermal, optical and nonlinear optical properties of ethylenediaminium picrate single crystals

    Science.gov (United States)

    Indumathi, C.; T. C., Sabari Girisun; Anitha, K.; Alfred Cecil Raj, S.

    2017-07-01

    A new organic optical limiting material, ethylenediaminium picrate (EDAPA) was synthesized through acid base reaction and grown as single crystals by solvent evaporation method. Single crystal XRD analysis showed that EDAPA crystallizes in orthorhombic system with Cmca as space group. The formation of charge transfer complex during the reaction of ethylenediamine and picric acid was strongly evident through the recorded Fourier Transform Infra Red (FTIR), Raman and Nuclear Magnetic Resonance (NMR) spectrum. Thermal (TG-DTA and DSC) curves indicated that the material possesses high thermal stability with decomposition temperature at 243 °C. Optical (UV-Visible-NIR) analysis showed that the grown crystal was found to be transparent in the entire visible and NIR region. Z-scan studies with intense short pulse (532 nm, 5 ns, 100 μJ) excitations, revealed that EDAPA exhibited two photon absorption behaviour and the nonlinear absorption coefficient was found to be two orders of magnitude higher than some of the known optical limiter like Cu nano glasses. EDAPA exhibited a strong optical limiting action with low limiting threshold which make them a potential candidate for eye and photosensitive component protection against intense short pulse lasers.

  3. Transient Liquid Phase Bonding Single-Crystal Superalloys with Orientation Deviations: Creep Properties

    Science.gov (United States)

    Sheng, Naicheng; Liu, Jide; Jin, Tao; Sun, Xiaofeng; Hu, Zhuangqi

    2015-12-01

    Superalloys single crystals with various orientation deviations were bonded using transient liquid phase bonding method, then the creep properties of the bonded specimens were tested at 1033 K (760 °C)/780 MPa. It is found that the creep life of the bonded specimens decreases with the increase of the relative orientation deviations. Despite the fracture of the specimens appears on the bonding region, the deformation mechanism changes from specimens with low angle boundary to high angle boundary. In low angle boundary specimens, cleavage originated from the defects grows perpendicularly to the tensile stress and connects through the different slip planes around the cleavage planes. In this case, the deformation proceeds by the dislocations and stacking faults on multi-planes. With increasing orientation deviation, dislocation and stacking faults moved on single plane. As a result, the dislocations interact with the grain boundary and lead to fracture. Based on the present investigation, the orientation of the bonded superalloys single crystal should be controlled so that the introduced grain boundaries are relatively small and exhibit higher creep strength.

  4. Electronic phase diagram of LixCoO2 revisited with potentiostatically deintercalated single crystals

    Science.gov (United States)

    Ou-Yang, T. Y.; Huang, F.-T.; Shu, G. J.; Lee, W. L.; Chu, M.-W.; Liu, H. L.; Chou, F. C.

    2012-01-01

    Electronic phase diagram of LixCoO2 has been reexamined using potentiostatically de-intercalated single-crystal samples. Stable phases of x˜0.87, 0.72, 0.53, 0.50, 0.43, and 0.33 were found and isolated for physical property studies. A-type and chain-type antiferromagnetic orderings have been suggested from magnetic susceptibility measurement results in x˜0.87 and 0.50 below approximately 10 and 200 K, respectively, similar to those found in NaxCoO2 system. There is no Li vacancy superlattice ordering observed at room temperature for the electronically stable phase Li0.72CoO2 as revealed by synchrotron x-ray Laue diffraction. The peculiar magnetic anomaly near ˜175 K as often found in powder samples of x˜0.46-0.78 cannot be isolated through this single-crystal potentiostatic method, which supports the previously proposed explanation to be a surface stabilized phase of significant thermal hysteresis and aging character.

  5. Digital holographic tomography method for 3D observation of domain patterns in ferroelectric single crystals

    Science.gov (United States)

    Mokrý, Pavel; Psota, Pavel; Steiger, Kateřina; Václavík, Jan; Vápenka, David; Doleček, Roman; Vojtíšek, Petr; Sládek, Juraj; Lédl, Vít.

    2016-11-01

    We report on the development and implementation of the digital holographic tomography for the three-dimensio- nal (3D) observations of the domain patterns in the ferroelectric single crystals. Ferroelectric materials represent a group of materials, whose macroscopic dielectric, electromechanical, and elastic properties are greatly in uenced by the presence of domain patterns. Understanding the role of domain patterns on the aforementioned properties require the experimental techniques, which allow the precise 3D measurements of the spatial distribution of ferroelectric domains in the single crystal. Unfortunately, such techniques are rather limited at this time. The most frequently used piezoelectric atomic force microscopy allows 2D observations on the ferroelectric sample surface. Optical methods based on the birefringence measurements provide parameters of the domain patterns averaged over the sample volume. In this paper, we analyze the possibility that the spatial distribution of the ferroelectric domains can be obtained by means of the measurement of the wavefront deformation of the transmitted optical wave. We demonstrate that the spatial distribution of the ferroelectric domains can be determined by means of the measurement of the spatial distribution of the refractive index. Finally, it is demonstrated that the measurements of wavefront deformations generated in ferroelectric polydomain systems with small variations of the refractive index provide data, which can be further processed by means of the conventional tomographic methods.

  6. Magnetostrictive behaviors of Fe-Al(001 single-crystal films under rotating magnetic fields

    Directory of Open Access Journals (Sweden)

    Tetsuroh Kawai

    2016-05-01

    Full Text Available Magnetostrictive behaviors of Fe100−x − Alx(x = 0 − 30 at.%(001 single-crystal films under rotating magnetic fields are investigated along the two different crystallographic orientations, [100] and [110]. The behaviors of Fe and Fe90Al10 films show bath-tub like waveform along [100], easy magnetization axis, and triangular waveform along [110], hard magnetization axis, with respect to their four-fold magnetic anisotropy. On the other hand, the behaviors of Fe80Al20 film are different from those of Fe or Fe90Al10 film. The output of the film along [100] shows a strong magnetic field dependence. The Fe70Al30 film shows similar magnetostrictive behaviors along both [100] and [110] reflecting its magnetic properties, which are almost same for the both directions. The growth of ordered phase (B2 in Fe80Al20 and Fe70Al30 films is considered to have affected their magnetostrictive behaviors. The Al content dependence on λ100 and λ111 values shows similar tendency to that reported for the bulk samples but the values are slightly different. The Fe90Al10(001 single-crystal film shows a large magnetostriction along [100] under a very small magnetic field of 0.02 kOe, which is comparable to the saturated one, and changes the value abruptly in relation to the angle of applied magnetic field.

  7. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal.

    Science.gov (United States)

    Oh, Sang Ho; Legros, Marc; Kiener, Daniel; Dehm, Gerhard

    2009-02-01

    'Smaller is stronger' does not hold true only for nanocrystalline materials but also for single crystals. It is argued that this effect is caused by geometrical constraints on the nucleation and motion of dislocations in submicrometre-sized crystals. Here, we report the first in situ transmission electron microscopy tensile tests of a submicrometre aluminium single crystal that are capable of providing direct insight into source-controlled dislocation plasticity in a submicrometre crystal. Single-ended sources emit dislocations that escape the crystal before being able to multiply. As dislocation nucleation and loss rates are counterbalanced at about 0.2 events per second, the dislocation density remains statistically constant throughout the deformation at strain rates of about 10(-4) s(-1). However, a sudden increase in strain rate to 10(-3) s(-1) causes a noticeable surge in dislocation density as the nucleation rate outweighs the loss rate. This observation indicates that the deformation of submicrometre crystals is strain-rate sensitive.

  8. High-temperature dislocation plasticity in the single-crystal superalloy LEK94.

    Science.gov (United States)

    Kostka, A; Mälzer, G; Eggeler, G

    2006-09-01

    The evolution of the dislocation structure that forms during uniaxial creep deformation in the single-crystal superalloy LEK94 of low density and with Re additions was analysed using transmission electron microscopy. The material has a gamma/gamma'-microstructure consisting of gamma'-cubes (L12 phase, 80 vol.%) separated by thin gamma-channels (face-centred cubic). tensile creep tests were performed at 980 and 1020 degrees C at stresses of 200 and 240 MPa. The microstructure was investigated at three characteristic stages of creep (directly after loading, at 5% strain and after rupture) to show the evolution of the dislocation structure during high-temperature creep. It was found that in the early stages of creep, a(0)/2 dislocations form within the gamma-channels. Later on, dislocation networks form and gamma' cutting processes with a(0)/ superdislocations are observed. The results are in line with observations made for other superalloy single crystals in the high-temperature low-stress creep regime.

  9. Moessbauer spectroscopy evidence of intrinsic non-stoichiometry in iron telluride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kiiamov, Airat G.; Tayurskii, Dmitrii A. [Institute of Physics, Kazan Federal University (Russian Federation); Centre for Quantum Technologies, Kazan Federal University (Russian Federation); Lysogorskiy, Yury V.; Vagizov, Farit G. [Institute of Physics, Kazan Federal University (Russian Federation); Tagirov, Lenar R. [Institute of Physics, Kazan Federal University (Russian Federation); E.K. Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Kazan (Russian Federation); Croitori, Dorina [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Tsurkan, Vladimir [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Experimental Physics V, University of Augsburg (Germany); Loidl, Alois [Experimental Physics V, University of Augsburg (Germany)

    2017-04-15

    The FeTe parent compound for iron-superconductor chalcogenides was studied applying Moessbauer spectroscopy accompanied by ab initio calculations of electric field gradients at the iron nuclei. Room-temperature (RT) Moessbauer spectra of single crystals have shown asymmetric doublet structure commonly ascribed to contributions of over-stoichiometric iron or impurity phases. Low-temperature Moessbauer spectra of the magnetically ordered compound could be well described by four hyperfine-split sextets, although no other foreign phases different from Fe{sub 1.05}Te were detected by XRD and microanalysis within the sensitivity limits of the equipment. Density functional ab initio calculations have shown that over-stoichiometric iron atoms significantly affect electron charge and spin density up to the second coordination sphere of the iron sub-lattice, and, as a result, four non-equivalent groups of iron atoms are formed by their local environment. The resulting four-group model consistently describes the angular dependence of the single crystals Moessbauer spectra as well as intensity asymmetry of the doublet absorption lines in powdered samples at RT. We suppose that our approach could be extended to the entire class of Fe{sub 1+y}Se{sub 1-x}Te{sub x} compounds, which contain excess iron atoms. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Precision Control of Thermal Transport in Cryogenic Single-Crystal Silicon Devices

    Science.gov (United States)

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-01-01

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than, even when the surface is fairly smooth, 510 nm rms, and the peak thermal wavelength is 0.6 microns. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of +/-8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  11. Influence of Temperature on Plastic Deformation Behavior and Mechanism of Bismuth Single Crystals

    Science.gov (United States)

    Yanaka, Yuichi; Kariya, Yoshiharu; Watanabe, Hirohiko; Hokazono, Hiroaki

    2017-10-01

    Tensile tests were performed on bismuth single crystals in the [0001] (c-axis), [2\\bar{1}\\bar{1} 0] (a 1-axis), [10\\bar{1} 0] and [1 \\bar{1} 00] directions of bismuth single crystals to investigate the influence of temperature on plastic deformation behavior. The plastic deformation at 298 K was caused by slip on the secondary slip system in the [0001] direction, or by twinning and slip deformation in twins subsequent to the twining deformation in the [2\\bar{1}\\bar{1} 0] direction. Those mechanisms resulted in ductile characteristics in tension. Only deformation twinning, however, was observed along the [10\\bar{1} 0] and [1\\bar{1} 00] directions, which lead to brittle fracture. At elevated temperature (423 K), deformation twinning was not found to occur along any of the examined directions. Crystallographic slip was the predominant deformation mechanism along the [2\\bar{1}\\bar{1} 0], [10\\bar{1} 0] and [1\\bar{1} 00] directions at 423 K. This is attributed to the activation of the {1\\bar{1} 02} or {1\\bar{1} 02} slip system which are inactive at 298 K. Along the [0001] direction at 423 K, the {0\\bar{1} 11} was active and its critical resolved shear stress (τ crss) does not coincide with that corresponding to the {1\\bar{1} 02} and {1\\bar{1} 02} systems. Therefore, it can be concluded that difference in τ crss between slip systems causes anisotropy in mechanical behavior at 423 K.

  12. Growth and characterization of Tm-doped Y 2O 3 single crystals

    Science.gov (United States)

    Mun, J. H.; Jouini, A.; Novoselov, A.; Guyot, Y.; Yoshikawa, A.; Ohta, H.; Shibata, H.; Waseda, Y.; Boulon, G.; Fukuda, T.

    2007-07-01

    The rare-earth sesquioxides (RE2O3, RE = Lu, Y and Sc) are promising host materials for solid-state lasers due to their low phonon energy and high thermal conductivity. On the other hand, Tm3+ and Yb3+ are preferable activators for advanced laser diode pumped solid-state lasers. In addition to that, Tm-doped materials can be used for eye-safe lasers application. Tm-doped Y2O3 single crystals were grown using the micro-pulling-down method. Crystals were transparent with gray and blue colors of 4.2 mm in diameter and 13-20 mm in length. The crystallinity was characterized using X-ray rocking curve analysis. Tm-doped Y2O3 single crystals have a good compositional homogeneity along the growth axis and their thermal conductivity was calculated from the measurements of thermal diffusivity, heat capacity and density. We have also recorded absorption, fluorescence spectra and measured fluorescence lifetimes as a function of the Tm content, we have found a very attractive fluorescence around the eye-safe wavelength of 1.9 mm which corresponds to a 3F4 → 3H6 transition of Tm3+.

  13. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  14. HRTEM Analysis of Crystallographic Defects in CdZnTe Single Crystal

    Science.gov (United States)

    Yasar, Bengisu; Ergunt, Yasin; Kabukcuoglu, Merve Pinar; Parlak, Mehmet; Turan, Rasit; Kalay, Yunus Eren

    2018-01-01

    In recent years, CdZnTe has attracted much attention due to its superior electrical and structural properties for room-temperature operable gamma and x-ray detectors. However, CdZnTe (CZT) material has often suffered from crystallographic defects encountered during the growth and post-growth processes. The identification and structural characterization of these defects is crucial to synthesize defect-free CdZnTe single crystals. In this study, Cd0.95 Zn0.05 Te single crystals were grown using a three-zone vertical Bridgman system. The single crystallinity of the material was ensured by using x-ray diffraction measurements. High-resolution electron microscopy (HRTEM) was used to characterize the nano-scale defects on the CdZnTe matrix. The linear defects oriented along the ⟨211⟩ direction were examined by transmission electron microscopy (TEM) and the corresponding HRTEM image simulations were performed by using a quantitative scanning TEM simulation package.

  15. Crystallographic, Magnetic, Thermal, and Electric Transport Properties in UPtIn Single Crystal

    Science.gov (United States)

    Matsumoto, Yuji; Haga, Yoshinori; Tateiwa, Naoyuki; Yamamoto, Etsuji; Fisk, Zachary

    2018-02-01

    We have studied the crystallographic, magnetic, thermal, and electric transport properties in UPtIn, one of the UTX (T = transition metal, X = Al, Ga, In) families with the hexagonal ZrNiAl structure. A single crystal of UPtIn was prepared by the flux method for the first time. Crystallographic parameters are determined. UPtIn has strong Ising character, the magnetic easy axis being the c-axis. These results determined magnetic properties are consistent with the magnetic structure obtained by neutron scattering measurements. The residual resistivity of our single crystal is 27.9 µΩ cm which is one-third times smaller than that of polycrystalline sample. Specific heat (C) measurements show that the phase transition at 10.5 K, although the antiferromagnetic order takes place at 22 K prepared by arc melt and at 15 K prepared by solid reaction, indicating that the physical properties of UPtIn are dependent on the sample preparation. C/T deviates from T-linear behavior below 1.4 K, indicating that the electronic specific heat coefficient γ is much smaller than that of previous study. The resistivity is almost independent to the temperature below 3.7 K and A coefficient of the quadratic temperature dependence of electrical resistivity is small, indicating that the mass enhancement is small. These results indicate that UPtIn is not a heavy-fermion system.

  16. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  17. The crystallization and optical properties of LiNbO3 single crystals

    Directory of Open Access Journals (Sweden)

    SLOBODANKA NIKOLIC

    2000-06-01

    Full Text Available LiNbO3 single crystals were grown by the Czochralski technique in an air atmosphere. The critical crystal diameter Dc = 1.5 cm and the critical rate of rotation wc = 35 rpm were calculated from the dynamic of fluids equations for buoyancy-driven and forced convections under which the shape of the melt/crystal interface changed. The domain inversion was carried out at 1473 K using a 10 min 3.75 V/cm electric field. The obtained crystals were cut, polished and etched to determine the presence of dislocations and single domain structures. The lattice parameters a = 0.51494 nm, c = 1.38620 nm and V = 0.3186 nm3 were determined by X-ray powder diffraction. The optical properties were studied by infrared spectroscopy in the wave number range 20 - 5000 cm-1. With decreasing temperature, an atypical behaviour of the phonon modes, due to the ferroelectric properties of LiNbO3 single crystal, could be seen. The optical constants were calculated by Kramers-Kronig analysis and the value of the critical temperature was estimated. The obtained results are discussed and compared with published data.

  18. SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores

    Science.gov (United States)

    Chen, Qi; Wang, Yifan; Deng, Tao; Liu, Zewen

    2017-07-01

    Solid-state nanopores with feature sizes around 5 nm play a critical role in bio-sensing fields, especially in single molecule detection and sequencing of DNA, RNA and proteins. In this paper we present a systematic study on shrinkage and site-selective modification of single-crystal silicon nanopores with a conventional scanning electron microscope (SEM). Square nanopores with measurable sizes as small as 8 nm × 8 nm and rectangle nanopores with feature sizes (the smaller one between length and width) down to 5 nm have been obtained, using the SEM-induced shrinkage technique. The analysis of energy dispersive x-ray spectroscopy and the recovery of the pore size and morphology reveal that the grown material along with the edge of the nanopore is the result of deposition of hydrocarbon compounds, without structural damage during the shrinking process. A simplified model for pore shrinkage has been developed based on observation of the cross-sectional morphology of the shrunk nanopore. The main factors impacting on the task of controllably shrinking the nanopores, such as the accelerating voltage, spot size, scanned area of e-beam, and the initial pore size have been discussed. It is found that single-crystal silicon nanopores shrink linearly with time under localized irradiation by SEM e-beam in all cases, and the pore shrinkage rate is inversely proportional to the initial equivalent diameter of the pore under the same e-beam conditions.

  19. Temperature- and excitation intensity-dependent photoluminescence in TlInSeS single crystals

    CERN Document Server

    Gasanly, N M; Yuksek, N S

    2002-01-01

    Photoluminescence (PL) spectra of TlInSeS layered single crystals were investigated in the wavelength region 460-800 nm and in the temperature range 10-65 K. We observed one wide PL band centred at 584 nm (2.122 eV) at T=10 K and an excitation intensity of 7.5 W cm sup - sup 2. We have also studied the variation of the PL intensity versus excitation laser intensity in the range from 0.023 to 7.5 W cm sup - sup 2. The red shift of this band with increasing temperature and blue shift with increasing laser excitation intensity was observed. The PL was found to be due to radiative transitions from the moderately deep donor level located at 0.243 eV below the bottom of the conduction band to the shallow acceptor level at 0.023 eV located above the top of the valence band. The proposed energy-level diagram permits us to interpret the recombination processes in TlInSeS layered single crystals.

  20. Kink structures induced in nickel-based single crystal superalloys by high-Z element migration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei; Zhang, Jianxin [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Jiang, Ying [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Feng, Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Shen, Zhenju; Li, Jixue; Zhang, Ze [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Han, Xiaodong [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2015-01-05

    Highlights: • Innovative kink structures generate at the γ/γ′ interfaces in the crept superalloy. • Clusters of heavy elements congregate at the apex of the kinks. • Dislocation core absorbs hexagonal structural high-Z elements. - Abstract: Here, we investigate a new type of kink structure that is found at γ/γ′ interfaces in nickel-based single crystal superalloys. We studied these structures at the atomic and elemental level using aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The core of the dislocation absorbs high-Z elements (i.e., Co and Re) that adopt hexagonal arrangements, and it extrudes elements (i.e., Ni and Al) that adopt face centered cubic (fcc) structures. High-Z elements (i.e., Ta and W) and Cr, which is a low-Z element, are stabilized in body centered cubic (bcc) arrangements; Cr tends to behave like Re. High-Z elements, which migrate and adopt a hexagonal structure, induce kink formation at γ/γ′ interfaces. This process must be analyzed to fully understand the kinetics and dynamics of creep in nickel-based single crystal superalloys.