WorldWideScience

Sample records for hot self-similar relativistic

  1. Self-similar Hot Accretion Flow onto a Neutron Star

    Science.gov (United States)

    Medvedev, Mikhail V.; Narayan, Ramesh

    2001-06-01

    We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling between the protons and electrons, as well as free-free cooling from the electrons. We show that the accretion flow has an extended settling region that can be described by means of two analytical self-similar solutions: a two-temperature solution that is valid in an inner zone, r~102.5. In both zones the density varies as ρ~r-2 and the angular velocity as Ω~r-3/2. We solve the flow equations numerically and confirm that the analytical solutions are accurate. Except for the radial velocity, all gas properties in the self-similar settling zone, such as density, angular velocity, temperature, luminosity, and angular momentum flux, are independent of the mass accretion rate; these quantities do depend sensitively on the spin of the neutron star. The angular momentum flux is outward under most conditions; therefore, the central star is nearly always spun down. The luminosity of the settling zone arises from the rotational energy that is released as the star is braked by viscosity, and the contribution from gravity is small; hence, the radiative efficiency, η=Lacc/Mc2, is arbitrarily large at low M. For reasonable values of the gas adiabatic index γ, the Bernoulli parameter is negative; therefore, in the absence of dynamically important magnetic fields, a strong outflow or wind is not expected. The flow is also convectively stable but may be thermally unstable. The described solution is not advection dominated; however, when the spin of the star is small enough, the flow transforms smoothly to an advection-dominated branch of solution.

  2. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points

    Science.gov (United States)

    Piñeiro Orioli, Asier; Boguslavski, Kirill; Berges, Jürgen

    2015-07-01

    We investigate universal behavior of isolated many-body systems far from equilibrium, which is relevant for a wide range of applications from ultracold quantum gases to high-energy particle physics. The universality is based on the existence of nonthermal fixed points, which represent nonequilibrium attractor solutions with self-similar scaling behavior. The corresponding dynamic universality classes turn out to be remarkably large, encompassing both relativistic as well as nonrelativistic quantum and classical systems. For the examples of nonrelativistic (Gross-Pitaevskii) and relativistic scalar field theory with quartic self-interactions, we demonstrate that infrared scaling exponents as well as scaling functions agree. We perform two independent nonperturbative calculations, first by using classical-statistical lattice simulation techniques and second by applying a vertex-resummed kinetic theory. The latter extends kinetic descriptions to the nonperturbative regime of overoccupied modes. Our results open new perspectives to learn from experiments with cold atoms aspects about the dynamics during the early stages of our universe.

  3. General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology

    CERN Document Server

    Smoller, Joel

    2012-01-01

    We prove that the Einstein equations in Standard Schwarzschild Coordinates close to form a system of three ordinary differential equations for a family of spherically symmetric, self-similar expansion waves, and the critical ($k=0$) Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology (FRW), is embedded as a single point in this family. Removing a scaling law and imposing regularity at the center, we prove that the family reduces to an implicitly defined one parameter family of distinct spacetimes determined by the value of a new {\\it acceleration parameter} $a$, such that $a=1$ corresponds to FRW. We prove that all self-similar spacetimes in the family are distinct from the non-critical $k\

  4. Hot relativistic winds and the Crab nebula

    International Nuclear Information System (INIS)

    Fujimura, F.S.; Kennel, C.F.

    1981-01-01

    Efforts are reviewed to construct a self-consistent model of pulsar magnetospheres that links the particle source near the pulsar to the outflowing relativistic wind and couples the wind to the surrounding nebula. (Auth.)

  5. Intense EM filamentation in relativistic hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang-Lin [Department of Physics, Jinggangshan University, Ji' an, Jiangxi 343009 (China); Chen, Zhong-Ping [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314 (India)

    2017-03-03

    Highlights: • Breaking up of an intense EM pulse into filaments is a spectacular demonstration of the nonlinear wave-plasma interaction. • Filaments are spectacularly sharper, highly extended and longer lived at relativistic temperatures. • EM energy concentration can trigger new nonlinear phenomena with absolute consequences for high energy density matter. - Abstract: Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The “relativistic” filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  6. Relativistic kinetics of baryon production in hot Universe

    International Nuclear Information System (INIS)

    Ignat'ev, Yu.G.

    1985-01-01

    The process of baryon production in the hot Universe is investigated in the framework of the relativistic kinetic theory. The exact solution of kinetic equations for supermassive bosons is obtained, thus giving the possibility to correct the results of previous papers: the known optimum domain of baryon production m sub(X) > α sub(X)msub(PI)√N js complemented by the small-mass boson domain, m sub(X) << α sub(X) m sub(PI)√N; as a result, the cosmological lower-limit restriction on the superheavy bosons masses js removed

  7. The case for the relativistic hot big bang cosmology

    Science.gov (United States)

    Peebles, P. J. E.; Schramm, D. N.; Kron, R. G.; Turner, E. L.

    1991-01-01

    What has become the standard model in cosmology is described, and some highlights are presented of the now substantial range of evidence that most cosmologists believe convincingly establishes this model, the relativistic hot big bang cosmology. It is shown that this model has yielded a set of interpretations and successful predictions that substantially outnumber the elements used in devising the theory, with no well-established empirical contradictions. Brief speculations are made on how the open puzzles and work in progress might affect future developments in this field.

  8. Self-similar cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Chao, W Z [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics

    1981-07-01

    The kinematics and dynamics of self-similar cosmological models are discussed. The degrees of freedom of the solutions of Einstein's equations for different types of models are listed. The relation between kinematic quantities and the classifications of the self-similarity group is examined. All dust local rotational symmetry models have been found.

  9. Self-similar factor approximants

    International Nuclear Information System (INIS)

    Gluzman, S.; Yukalov, V.I.; Sornette, D.

    2003-01-01

    The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving an improved type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are called self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Pade approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions, which include a variety of nonalgebraic functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Pade approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties

  10. Self-similar gravitational clustering

    International Nuclear Information System (INIS)

    Efstathiou, G.; Fall, S.M.; Hogan, C.

    1979-01-01

    The evolution of gravitational clustering is considered and several new scaling relations are derived for the multiplicity function. These include generalizations of the Press-Schechter theory to different densities and cosmological parameters. The theory is then tested against multiplicity function and correlation function estimates for a series of 1000-body experiments. The results are consistent with the theory and show some dependence on initial conditions and cosmological density parameter. The statistical significance of the results, however, is fairly low because of several small number effects in the experiments. There is no evidence for a non-linear bootstrap effect or a dependence of the multiplicity function on the internal dynamics of condensed groups. Empirical estimates of the multiplicity function by Gott and Turner have a feature near the characteristic luminosity predicted by the theory. The scaling relations allow the inference from estimates of the galaxy luminosity function that galaxies must have suffered considerable dissipation if they originally formed from a self-similar hierarchy. A method is also developed for relating the multiplicity function to similar measures of clustering, such as those of Bhavsar, for the distribution of galaxies on the sky. These are shown to depend on the luminosity function in a complicated way. (author)

  11. On different forms of self similarity

    International Nuclear Information System (INIS)

    Aswathy, R.K.; Mathew, Sunil

    2016-01-01

    Fractal geometry is mainly based on the idea of self-similar forms. To be self-similar, a shape must able to be divided into parts that are smaller copies, which are more or less similar to the whole. There are different forms of self similarity in nature and mathematics. In this paper, some of the topological properties of super self similar sets are discussed. It is proved that in a complete metric space with two or more elements, the set of all non super self similar sets are dense in the set of all non-empty compact sub sets. It is also proved that the product of self similar sets are super self similar in product metric spaces and that the super self similarity is preserved under isometry. A characterization of super self similar sets using contracting sub self similarity is also presented. Some relevant counterexamples are provided. The concepts of exact super and sub self similarity are introduced and a necessary and sufficient condition for a set to be exact super self similar in terms of condensation iterated function systems (Condensation IFS’s) is obtained. A method to generate exact sub self similar sets using condensation IFS’s and the denseness of exact super self similar sets are also discussed.

  12. Decay of hot nuclei produced by relativistic light ions

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1995-01-01

    In collisions of light relativistic projectiles (p, 4 He) with heavy nuclei (Au) very excited target spectators are created, which decay via multiple emission of intermediate mass fragments. It was found that the mean IMF multiplicities are equal (within 15%) to 2.0, 2.6 and 3.0 at proton energies 2.16, 3.6 and 8.1 GeV respectively. These values are comparable with those obtained with heavy ions in the same beam energy range. This is considered to indicate that this observable is not sensitive to the collision dynamics and is determined by the phase space factor. IMF energy spectra are described by the statistical model of multifragmentation neglecting dynamics of the expansion stage before the break up. The expansion velocity is estimated to be ≤ 0.02 c. The mean lifetime of a fragmentating system is found to be ≤ 75 fm/c from IMF-IMF-angular correlations for 4 He (14.6 GeV) +Au collisions. The results support a scenario of true 'thermal' multifragmentation. 26 refs., 10 figs., 1 tab

  13. Hot QCD equations of state and relativistic heavy ion collisions

    Science.gov (United States)

    Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.

    2007-11-01

    We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.

  14. Testing Self-Similarity Through Lamperti Transformations

    KAUST Repository

    Lee, Myoungji; Genton, Marc G.; Jun, Mikyoung

    2016-01-01

    extensively, while statistical tests for self-similarity are scarce and limited to processes indexed in one dimension. This paper proposes a statistical hypothesis test procedure for self-similarity of a stochastic process indexed in one dimension and multi

  15. Naked singularities in self-similar spherical gravitational collapse

    International Nuclear Information System (INIS)

    Ori, A.; Piran, T.

    1987-01-01

    We present general-relativistic solutions of self-similar spherical collapse of an adiabatic perfect fluid. We show that if the equation of state is soft enough (Γ-1<<1), a naked singularity forms. The singularity resembles the shell-focusing naked singularities that arise in dust collapse. This solution increases significantly the range of matter fields that should be ruled out in order that the cosmic-censorship hypothesis will hold

  16. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  17. Testing Self-Similarity Through Lamperti Transformations

    KAUST Repository

    Lee, Myoungji

    2016-07-14

    Self-similar processes have been widely used in modeling real-world phenomena occurring in environmetrics, network traffic, image processing, and stock pricing, to name but a few. The estimation of the degree of self-similarity has been studied extensively, while statistical tests for self-similarity are scarce and limited to processes indexed in one dimension. This paper proposes a statistical hypothesis test procedure for self-similarity of a stochastic process indexed in one dimension and multi-self-similarity for a random field indexed in higher dimensions. If self-similarity is not rejected, our test provides a set of estimated self-similarity indexes. The key is to test stationarity of the inverse Lamperti transformations of the process. The inverse Lamperti transformation of a self-similar process is a strongly stationary process, revealing a theoretical connection between the two processes. To demonstrate the capability of our test, we test self-similarity of fractional Brownian motions and sheets, their time deformations and mixtures with Gaussian white noise, and the generalized Cauchy family. We also apply the self-similarity test to real data: annual minimum water levels of the Nile River, network traffic records, and surface heights of food wrappings. © 2016, International Biometric Society.

  18. On self-similar Tolman models

    International Nuclear Information System (INIS)

    Maharaj, S.D.

    1988-01-01

    The self-similar spherically symmetric solutions of the Einstein field equation for the case of dust are identified. These form a subclass of the Tolman models. These self-similar models contain the solution recently presented by Chi [J. Math. Phys. 28, 1539 (1987)], thereby refuting the claim of having found a new solution to the Einstein field equations

  19. Self-Similar Traffic In Wireless Networks

    OpenAIRE

    Jerjomins, R.; Petersons, E.

    2005-01-01

    Many studies have shown that traffic in Ethernet and other wired networks is self-similar. This paper reveals that wireless network traffic is also self-similar and long-range dependant by analyzing big amount of data captured from the wireless router.

  20. Self-similar continued root approximants

    International Nuclear Information System (INIS)

    Gluzman, S.; Yukalov, V.I.

    2012-01-01

    A novel method of summing asymptotic series is advanced. Such series repeatedly arise when employing perturbation theory in powers of a small parameter for complicated problems of condensed matter physics, statistical physics, and various applied problems. The method is based on the self-similar approximation theory involving self-similar root approximants. The constructed self-similar continued roots extrapolate asymptotic series to finite values of the expansion parameter. The self-similar continued roots contain, as a particular case, continued fractions and Padé approximants. A theorem on the convergence of the self-similar continued roots is proved. The method is illustrated by several examples from condensed-matter physics.

  1. On self-similarity of crack layer

    Science.gov (United States)

    Botsis, J.; Kunin, B.

    1987-01-01

    The crack layer (CL) theory of Chudnovsky (1986), based on principles of thermodynamics of irreversible processes, employs a crucial hypothesis of self-similarity. The self-similarity hypothesis states that the value of the damage density at a point x of the active zone at a time t coincides with that at the corresponding point in the initial (t = 0) configuration of the active zone, the correspondence being given by a time-dependent affine transformation of the space variables. In this paper, the implications of the self-similarity hypothesis for qusi-static CL propagation is investigated using polystyrene as a model material and examining the evolution of damage distribution along the trailing edge which is approximated by a straight segment perpendicular to the crack path. The results support the self-similarity hypothesis adopted by the CL theory.

  2. The baryonic self similarity of dark matter

    International Nuclear Information System (INIS)

    Alard, C.

    2014-01-01

    The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominated regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M 1/4 . These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.

  3. Universal self-similarity of propagating populations.

    Science.gov (United States)

    Eliazar, Iddo; Klafter, Joseph

    2010-07-01

    This paper explores the universal self-similarity of propagating populations. The following general propagation model is considered: particles are randomly emitted from the origin of a d-dimensional Euclidean space and propagate randomly and independently of each other in space; all particles share a statistically common--yet arbitrary--motion pattern; each particle has its own random propagation parameters--emission epoch, motion frequency, and motion amplitude. The universally self-similar statistics of the particles' displacements and first passage times (FPTs) are analyzed: statistics which are invariant with respect to the details of the displacement and FPT measurements and with respect to the particles' underlying motion pattern. Analysis concludes that the universally self-similar statistics are governed by Poisson processes with power-law intensities and by the Fréchet and Weibull extreme-value laws.

  4. Universal self-similarity of propagating populations

    Science.gov (United States)

    Eliazar, Iddo; Klafter, Joseph

    2010-07-01

    This paper explores the universal self-similarity of propagating populations. The following general propagation model is considered: particles are randomly emitted from the origin of a d -dimensional Euclidean space and propagate randomly and independently of each other in space; all particles share a statistically common—yet arbitrary—motion pattern; each particle has its own random propagation parameters—emission epoch, motion frequency, and motion amplitude. The universally self-similar statistics of the particles’ displacements and first passage times (FPTs) are analyzed: statistics which are invariant with respect to the details of the displacement and FPT measurements and with respect to the particles’ underlying motion pattern. Analysis concludes that the universally self-similar statistics are governed by Poisson processes with power-law intensities and by the Fréchet and Weibull extreme-value laws.

  5. A self-similar isochoric implosion for fast ignition

    International Nuclear Information System (INIS)

    Clark, D.S.; Tabak, M.

    2007-01-01

    Various gain models have shown the potentially great advantages of fast ignition (FI) inertial confinement fusion (ICF) over its conventional hot spot ignition counterpart (e.g. Atzeni S. 1999 Phys. Plasmas 6 3316; Tabak M. et al 2006 Fusion Sci. Technol. 49 254). These gain models, however, all assume nearly uniform density fuel assemblies. In contrast, conventional ICF implosions yield hollowed fuel assemblies with a high-density shell of fuel surrounding a low-density, high-pressure hot spot. Hence, to realize fully the advantages of FI, an alternative implosion design must be found which yields nearly isochoric fuel assemblies without substantial hot spots. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley (1942 Luftfahrtforschung 19 302) may be employed to yield precisely such quasi-isochoric imploded states. The difficulty remains, however, of accessing these self-similarly imploding configurations from initial conditions representing an actual ICF target, namely a uniform, solid-density shell at rest. Furthermore, these specialized implosions must be realized for practicable drive parameters and at the scales and energies of interest in ICF. A direct-drive implosion scheme is presented which meets all of these requirements and reaches a nearly isochoric assembled density of 300 g cm -3 and areal density of 2.4 g cm -2 using 485 kJ of laser energy

  6. Stochastic self-similar and fractal universe

    International Nuclear Information System (INIS)

    Iovane, G.; Laserra, E.; Tortoriello, F.S.

    2004-01-01

    The structures formation of the Universe appears as if it were a classically self-similar random process at all astrophysical scales. An agreement is demonstrated for the present hypotheses of segregation with a size of astrophysical structures by using a comparison between quantum quantities and astrophysical ones. We present the observed segregated Universe as the result of a fundamental self-similar law, which generalizes the Compton wavelength relation. It appears that the Universe has a memory of its quantum origin as suggested by R. Penrose with respect to quasi-crystal. A more accurate analysis shows that the present theory can be extended from the astrophysical to the nuclear scale by using generalized (stochastically) self-similar random process. This transition is connected to the relevant presence of the electromagnetic and nuclear interactions inside the matter. In this sense, the presented rule is correct from a subatomic scale to an astrophysical one. We discuss the near full agreement at organic cell scale and human scale too. Consequently the Universe, with its structures at all scales (atomic nucleus, organic cell, human, planet, solar system, galaxy, clusters of galaxy, super clusters of galaxy), could have a fundamental quantum reason. In conclusion, we analyze the spatial dimensions of the objects in the Universe as well as space-time dimensions. The result is that it seems we live in an El Naschie's E-infinity Cantorian space-time; so we must seriously start considering fractal geometry as the geometry of nature, a type of arena where the laws of physics appear at each scale in a self-similar way as advocated long ago by the Swedish school of astrophysics

  7. Emergent self-similarity of cluster coagulation

    Science.gov (United States)

    Pushkin, Dmtiri O.

    A wide variety of nonequilibrium processes, such as coagulation of colloidal particles, aggregation of bacteria into colonies, coalescence of rain drops, bond formation between polymerization sites, and formation of planetesimals, fall under the rubric of cluster coagulation. We predict emergence of self-similar behavior in such systems when they are 'forced' by an external source of the smallest particles. The corresponding self-similar coagulation spectra prove to be power laws. Starting from the classical Smoluchowski coagulation equation, we identify the conditions required for emergence of self-similarity and show that the power-law exponent value for a particular coagulation mechanism depends on the homogeneity index of the corresponding coagulation kernel only. Next, we consider the current wave of mergers of large American banks as an 'unorthodox' application of coagulation theory. We predict that the bank size distribution has propensity to become a power law, and verify our prediction in a statistical study of the available economical data. We conclude this chapter by discussing economically significant phenomenon of capital condensation and predicting emergence of power-law distributions in other economical and social data. Finally, we turn to apparent semblance between cluster coagulation and turbulence and conclude that it is not accidental: both of these processes are instances of nonlinear cascades. This class of processes also includes river network formation models, certain force-chain models in granular mechanics, fragmentation due to collisional cascades, percolation, and growing random networks. We characterize a particular cascade by three indicies and show that the resulting power-law spectrum exponent depends on the indicies values only. The ensuing algebraic formula is remarkable for its simplicity.

  8. Spherically symmetric self-similar universe

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C [Toronto Univ., Ontario (Canada)

    1979-10-01

    A spherically symmetric self-similar dust-filled universe is considered as a simple model of a hierarchical universe. Observable differences between the model in parabolic expansion and the corresponding homogeneous Einstein-de Sitter model are considered in detail. It is found that an observer at the centre of the distribution has a maximum observable redshift and can in principle see arbitrarily large blueshifts. It is found to yield an observed density-distance law different from that suggested by the observations of de Vaucouleurs. The use of these solutions as central objects for Swiss-cheese vacuoles is discussed.

  9. Self-similar magnetohydrodynamic boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel; Lastra, Alberto, E-mail: mnjmhd@am.uva.e [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2010-10-15

    The boundary layer created by parallel flow in a magnetized fluid of high conductivity is considered in this paper. Under appropriate boundary conditions, self-similar solutions analogous to the ones studied by Blasius for the hydrodynamic problem may be found. It is proved that for these to be stable, the size of the Alfven velocity at the outer flow must be smaller than the flow velocity, a fact that has a ready physical explanation. The process by which the transverse velocity and the thickness of the layer grow with the size of the Alfven velocity is detailed.

  10. Self-similar magnetohydrodynamic boundary layers

    International Nuclear Information System (INIS)

    Nunez, Manuel; Lastra, Alberto

    2010-01-01

    The boundary layer created by parallel flow in a magnetized fluid of high conductivity is considered in this paper. Under appropriate boundary conditions, self-similar solutions analogous to the ones studied by Blasius for the hydrodynamic problem may be found. It is proved that for these to be stable, the size of the Alfven velocity at the outer flow must be smaller than the flow velocity, a fact that has a ready physical explanation. The process by which the transverse velocity and the thickness of the layer grow with the size of the Alfven velocity is detailed.

  11. Self-similarity in applied superconductivity

    International Nuclear Information System (INIS)

    Dresner, Lawrence

    1981-09-01

    Self-similarity is a descriptive term applying to a family of curves. It means that the family is invariant to a one-parameter group of affine (stretching) transformations. The property of self-similarity has been exploited in a wide variety of problems in applied superconductivity, namely, (i) transient distribution of the current among the filaments of a superconductor during charge-up, (ii) steady distribution of current among the filaments of a superconductor near the current leads, (iii) transient heat transfer in superfluid helium, (iv) transient diffusion in cylindrical geometry (important in studying the growth rate of the reacted layer in A15 materials), (v) thermal expulsion of helium from quenching cable-in-conduit conductors, (vi) eddy current heating of irregular plates by slow, ramped fields, and (vii) the specific heat of type-II superconductors. Most, but not all, of the applications involve differential equations, both ordinary and partial. The novel methods explained in this report should prove of great value in other fields, just as they already have done in applied superconductivity. (author)

  12. Self-similar pattern formation and continuous mechanics of self-similar systems

    Directory of Open Access Journals (Sweden)

    A. V. Dyskin

    2007-01-01

    Full Text Available In many cases, the critical state of systems that reached the threshold is characterised by self-similar pattern formation. We produce an example of pattern formation of this kind – formation of self-similar distribution of interacting fractures. Their formation starts with the crack growth due to the action of stress fluctuations. It is shown that even when the fluctuations have zero average the cracks generated by them could grow far beyond the scale of stress fluctuations. Further development of the fracture system is controlled by crack interaction leading to the emergence of self-similar crack distributions. As a result, the medium with fractures becomes discontinuous at any scale. We develop a continuum fractal mechanics to model its physical behaviour. We introduce a continuous sequence of continua of increasing scales covering this range of scales. The continuum of each scale is specified by the representative averaging volume elements of the corresponding size. These elements determine the resolution of the continuum. Each continuum hides the cracks of scales smaller than the volume element size while larger fractures are modelled explicitly. Using the developed formalism we investigate the stability of self-similar crack distributions with respect to crack growth and show that while the self-similar distribution of isotropically oriented cracks is stable, the distribution of parallel cracks is not. For the isotropically oriented cracks scaling of permeability is determined. For permeable materials (rocks with self-similar crack distributions permeability scales as cube of crack radius. This property could be used for detecting this specific mechanism of formation of self-similar crack distributions.

  13. Hot metastable state of abnormal matter in relativistic nuclear field theory

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1987-01-01

    Because of their non-linearity, the field equations of relativistic nuclear field theory admit of additional solutions besides the normal state of matter. One of these is a finite-temperature abnormal phase. Over a narrow range in temperature, matter can exist in the abnormal phase at zero pressure. This is a hot metastable state, for which there is a barrier against decay, because the field configuration is different than in the normal state, the baryon masses are far removed from their vacuum masses, there is an abundance of pairs also far removed from their vacuum masses, and a correspondingly high entropy. The abundance of baryon-antibaryon pairs is the glue that holds this matter together. The signals associated with this novel state are quite unusual. A fragment of such matter will cool by emitting a spectrum of black-body radiation, consisting principally of photons, lepton pairs and pions, rather than by baryon emission, because the latter are far removed from their vacuum masses. If produced at the upper end of its temperature range, a large fraction of the original energy, more than half in the examples studied here, is radiated in this way. The baryons and light elements produced in the eventual decay, after the abnormal matter has cooled to a domain where its pressure becomes positive, will account for only a fraction of the original energy. The energy domain of this state depends sensitively on the coupling constants, and within a reasonable range as determined by nuclear matter properties, can lie in the range of GeV to tens of GeV per nucleon. (orig.)

  14. Observable relations in an inhomogeneous self-similar cosmology

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1979-01-01

    An exact self-similar solution is taken in general relativity as a model for an inhomogeneous cosmology. The self-similarity property means (conceptually) that the model is scale-free and (mathematically) that its essential parameters are functions of only one dimensionless variable zeta (equivalentct/R, where R and t are distance and time coordinates and c is the velocity of light). It begins inhomogeneous (zeta=0 or t=0), and tends to a homogeneous Einstein--de Sitter type state as zeta (or t) →infinity. Such a model can be used (a) for evaluating the observational effects of a clumpy universe; (b) for studying astrophysical processes such as galaxy formation and the growth and decay of inhomogeneities in initially clumpy cosmologies; and (c) as a relativistic basis for cosmological models with extended clustering of the de Vaucouleurs and Peebles types. The model has two adjustable parameters, namely, the observer's coordinate zeta 0 and a constant α/sub s/ that fixes the effect of the inhomogeneity. Expressions are obtained for the redshift, Hubble parameter, deceleration parameter, magnitude-redshift relation, and (number density of objects) --redshift relation. Expected anisotropies in the 3 K microwave background are also examined. There is no conflict with observation if zeta 0 /α/sub s/> or approx. =10, and four tests of the model are suggested that can be used to further determine the acceptability of inhomogeneous cosmologies of this type. The ratio α/sub s//zeta 0 on presently available data is α/sub s//zeta 0 < or approx. =10% and this, loosely speaking, means that the universe at the present epoch is globally homogeneous to within about 10%

  15. Gait Recognition Using Image Self-Similarity

    Directory of Open Access Journals (Sweden)

    Chiraz BenAbdelkader

    2004-04-01

    Full Text Available Gait is one of the few biometrics that can be measured at a distance, and is hence useful for passive surveillance as well as biometric applications. Gait recognition research is still at its infancy, however, and we have yet to solve the fundamental issue of finding gait features which at once have sufficient discrimination power and can be extracted robustly and accurately from low-resolution video. This paper describes a novel gait recognition technique based on the image self-similarity of a walking person. We contend that the similarity plot encodes a projection of gait dynamics. It is also correspondence-free, robust to segmentation noise, and works well with low-resolution video. The method is tested on multiple data sets of varying sizes and degrees of difficulty. Performance is best for fronto-parallel viewpoints, whereby a recognition rate of 98% is achieved for a data set of 6 people, and 70% for a data set of 54 people.

  16. Self-similar transmission properties of aperiodic Cantor potentials in gapped graphene

    Science.gov (United States)

    Rodríguez-González, Rogelio; Rodríguez-Vargas, Isaac; Díaz-Guerrero, Dan Sidney; Gaggero-Sager, Luis Manuel

    2016-01-01

    We investigate the transmission properties of quasiperiodic or aperiodic structures based on graphene arranged according to the Cantor sequence. In particular, we have found self-similar behaviour in the transmission spectra, and most importantly, we have calculated the scalability of the spectra. To do this, we implement and propose scaling rules for each one of the fundamental parameters: generation number, height of the barriers and length of the system. With this in mind we have been able to reproduce the reference transmission spectrum, applying the appropriate scaling rule, by means of the scaled transmission spectrum. These scaling rules are valid for both normal and oblique incidence, and as far as we can see the basic ingredients to obtain self-similar characteristics are: relativistic Dirac electrons, a self-similar structure and the non-conservation of the pseudo-spin.

  17. Self-similar spherical gravitational collapse and the cosmic censorship hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Ori, A.; Piran, T.

    1988-01-01

    The authors show that a self-similar general relativistic spherical collapse of a perfect fluid with an adiabatic equation of state p = (lambda -1)rho and low enough lambda values, results in a naked singularity. The singularity is tangent to an event horizon which surrounds a massive singularity and the redshift along a null geodesic from the singularity to an external observer is infinite. The authors believe that this is the most serious counter example to cosmic censorship obtained so far.

  18. Self-similar analysis of the spherical implosion process

    International Nuclear Information System (INIS)

    Ishiguro, Yukio; Katsuragi, Satoru.

    1976-07-01

    The implosion processes caused by laser-heating ablation has been studied by self-similarity analysis. Attention is paid to the possibility of existence of the self-similar solution which reproduces the implosion process of high compression. Details of the self-similar analysis are reproduced and conclusions are drawn quantitatively on the gas compression by a single shock. The compression process by a sequence of shocks is discussed in self-similarity. The gas motion followed by a homogeneous isentropic compression is represented by a self-similar motion. (auth.)

  19. Plasma waves in hot relativistic beam-plasma systems: Pt. 1

    International Nuclear Information System (INIS)

    Magneville, A.

    1990-01-01

    Dispersion relations of plasma waves in a beam-plasma system are computed in the general case where the plasma and beam temperatures, and the velocity of the beam, may be relativistic. The two asymptotic temperature cases, and different contributions of plasma or beam particles to wave dispersion are considered. (author)

  20. Lipschitz equivalence of self-similar sets with touching structures

    International Nuclear Information System (INIS)

    Ruan, Huo-Jun; Wang, Yang; Xi, Li-Feng

    2014-01-01

    Lipschitz equivalence of self-similar sets is an important area in the study of fractal geometry. It is known that two dust-like self-similar sets with the same contraction ratios are always Lipschitz equivalent. However, when self-similar sets have touching structures the problem of Lipschitz equivalence becomes much more challenging and intriguing at the same time. So far, all the known results only cover self-similar sets in R with no more than three branches. In this study we establish results for the Lipschitz equivalence of self-similar sets with touching structures in R with arbitrarily many branches. Key to our study is the introduction of a geometric condition for self-similar sets called substitutable. (paper)

  1. Ultra-relativistic heavy-ion collisions - a hot cocktail of hydrodynamics, resonances and jets

    Directory of Open Access Journals (Sweden)

    Zabrodin E.

    2015-01-01

    Full Text Available Ultra-relativistic heavy-ion collisions at energies of RHIC and LHC are considered. For comparison with data the HYDJET++ model, which contains the treatment of both soft and hard processes, is employed. The study focuses mainly on the interplay of ideal hydrodynamics, final state interactions and jets, and its influence on the development of harmonics of the anisotropic flow. It is shown that jets are responsible for violation of the number-of-constituent-quark (NCQ scaling at LHC energies. The interplay between elliptic and triangular flows and their contribution to higher flow harmonics and dihadron angular correlations, including ridge, is also discussed.

  2. Self-similar solution for coupled thermal electromagnetic model ...

    African Journals Online (AJOL)

    An investigation into the existence and uniqueness solution of self-similar solution for the coupled Maxwell and Pennes Bio-heat equations have been done. Criteria for existence and uniqueness of self-similar solution are revealed in the consequent theorems. Journal of the Nigerian Association of Mathematical Physics ...

  3. Self-similarity in incompressible Navier-Stokes equations.

    Science.gov (United States)

    Ercan, Ali; Kavvas, M Levent

    2015-12-01

    The self-similarity conditions of the 3-dimensional (3D) incompressible Navier-Stokes equations are obtained by utilizing one-parameter Lie group of point scaling transformations. It is found that the scaling exponents of length dimensions in i = 1, 2, 3 coordinates in 3-dimensions are not arbitrary but equal for the self-similarity of 3D incompressible Navier-Stokes equations. It is also shown that the self-similarity in this particular flow process can be achieved in different time and space scales when the viscosity of the fluid is also scaled in addition to other flow variables. In other words, the self-similarity of Navier-Stokes equations is achievable under different fluid environments in the same or different gravity conditions. Self-similarity criteria due to initial and boundary conditions are also presented. Utilizing the proposed self-similarity conditions of the 3D hydrodynamic flow process, the value of a flow variable at a specified time and space can be scaled to a corresponding value in a self-similar domain at the corresponding time and space.

  4. Temporal self-similar synchronization patterns and scaling in ...

    Indian Academy of Sciences (India)

    Repulsively coupled oscillators; synchronization patterns; self-similar ... system, one expects multistable behavior in analogy to ..... More about the scaling relation between the long-period ... The third type of representation of phases is via.

  5. Mixed quantization dimensions of self-similar measures

    International Nuclear Information System (INIS)

    Dai Meifeng; Wang Xiaoli; Chen Dandan

    2012-01-01

    Highlights: ► We define the mixed quantization dimension of finitely many measures. ► Formula of mixed quantization dimensions of self-similar measures is given. ► Illustrate the behavior of mixed quantization dimension as a function of order. - Abstract: Classical multifractal analysis studies the local scaling behaviors of a single measure. However recently mixed multifractal has generated interest. The purpose of this paper is some results about the mixed quantization dimensions of self-similar measures.

  6. Mechanics of ultra-stretchable self-similar serpentine interconnects

    International Nuclear Information System (INIS)

    Zhang, Yihui; Fu, Haoran; Su, Yewang; Xu, Sheng

    2013-01-01

    Graphical abstract: We developed analytical models of flexibility and elastic-stretchability for self-similar interconnect. The analytic solutions agree very well with the finite element analyses, both demonstrating that the elastic-stretchability more than doubles when the order of self-similar structure increases by one. Design optimization yields 90% and 50% elastic stretchability for systems with surface filling ratios of 50% and 70% of active devices, respectively. The analytic models are useful for the development of stretchable electronics that simultaneously demand large coverage of active devices, such as stretchable photovoltaics and electronic eye-ball cameras. -- Abstract: Electrical interconnects that adopt self-similar, serpentine layouts offer exceptional levels of stretchability in systems that consist of collections of small, non-stretchable active devices in the so-called island–bridge design. This paper develops analytical models of flexibility and elastic stretchability for such structures, and establishes recursive formulae at different orders of self-similarity. The analytic solutions agree well with finite element analysis, with both demonstrating that the elastic stretchability more than doubles when the order of the self-similar structure increases by one. Design optimization yields 90% and 50% elastic stretchability for systems with surface filling ratios of 50% and 70% of active devices, respectively

  7. Properties of hot and dense matter created in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Arsene, Ionut Cristian

    2009-07-01

    In this thesis we tried to characterize a few aspects of the rich field of relativistic heavy ion collisions at intermediate and high energies. In chapter 2 we used two different microscopic string models, UrQMD and QGSM, to study the formation and evolution of the locally equilibrated matter in the central zone of heavy ion collisions at energies spanning from sq root sNN approx 4 GeV up to 17.3 GeV. The calculations were performed both in the cubic central cell of fixed volume V = 5 centre dot 5 centre dot 5 fm3 and for the instantly expanding volume of homogeneous energy density. To decide whether or not equilibrium is reached we used a traditional approach based on the fulfillment of the conditions of kinetic, thermal and chemical equilibrium. Both models favor the formation of equilibrated matter for a period of about 10 fm/c in which the matter expands isentropically with constant entropy per baryon. The square of the speed of sound c{sub s}2 has been found to vary in UrQMD from 0.13 at AGS to 0.15 at SPS energies and in QGSM from 0.11 at AGS to 0.15 at SPS. In both models the rise in c{sub s}2 slows down at sq rootsNN approx 9 GeV. Chapter 3 describes the HYDJET++ model as a superposition of the soft, hydrotype state and the hard state resulting from multi-parton fragmentation. Both states are treated independently. The hard part is an NN collision generator called PYQUEN which modifies the 'standard' jet event obtained with the PYTHIA generator and includes radiative and collisional energy loss for partons. Initial state effects like shadowing are included also. The soft part is the thermal hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parametrization of relativistic hydrodynamics. We found that this model gives a good description of soft observables at top RHIC energy, like the p{sub T} spectrum, elliptic flow and HBT correlations. The hard part of the model describes well the high-p{sub T

  8. Self-similar potential in the near wake

    International Nuclear Information System (INIS)

    Diebold, D.; Hershkowitz, N.; Intrator, T.; Bailey, A.

    1987-01-01

    The plasma potential is measured near the edge of an electrically floating obstacle placed in a steady-state, supersonic, unmagnetized, neutral plasma flow. Equipotential contours show the sheath of the upstream side of the obstacle wrapping around the edge of the obstacle and fanning out into the near wake. Both fluid theory and the data find the near-wake plasma potential to be self-similar when ionization, charge exchange, and magnetic field can be neglected. The theory also finds that fluid velocity is self-similar, the near wake is nonneutral, and plasma density is not self-similar. Strong electric fields are found near the obstacle and equipotential contours are found to conform to all boundaries

  9. Self-similarity of the negative binomial multiplicity distributions

    International Nuclear Information System (INIS)

    Calucci, G.; Treleani, D.

    1998-01-01

    The negative binomial distribution is self-similar: If the spectrum over the whole rapidity range gives rise to a negative binomial, in the absence of correlation and if the source is unique, also a partial range in rapidity gives rise to the same distribution. The property is not seen in experimental data, which are rather consistent with the presence of a number of independent sources. When multiplicities are very large, self-similarity might be used to isolate individual sources in a complex production process. copyright 1997 The American Physical Society

  10. Self-similar expansion of dusts in a plasma

    International Nuclear Information System (INIS)

    Luo, H.; Yu, M.Y.

    1992-01-01

    The self-similar expansion of two species of dust particles in an equilibrium plasma is investigated by means of fluid as well as Vlasov theories. It is found that under certain conditions the density of the dust with the smaller charge-to-mass ratio can vanish at a finite value of the self-similar variable, while the density of the remaining dust species attains a plateau. The kinetic theory predicts a secondary decay in which the latter density eventually also vanishes

  11. Self-similar solutions of the modified nonlinear schrodinger equation

    International Nuclear Information System (INIS)

    Kitaev, A.V.

    1986-01-01

    This paper considers a 2 x 2 matrix linear ordinary differential equation with large parameter t and irregular singular point of fourth order at infinity. The leading order of the monodromy data of this equation is calculated in terms of its coefficients. Isomonodromic deformations of the equation are self-similar solutions of the modified nonlinear Schrodinger equation, and therefore inversion of the expressions obtained for the monodromy data gives the leading term in the time-asymptotic behavior of the self-similar solution. The application of these results to the type IV Painleve equation is considered in detail

  12. Self-Similar Symmetry Model and Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Tomohide eSonoda

    2016-05-01

    Full Text Available In this paper, we present the self-similar symmetry (SSS model that describes the hierarchical structure of the universe. The model is based on the concept of self-similarity, which explains the symmetry of the cosmic microwave background (CMB. The approximate length and time scales of the six hierarchies of the universe---grand unification, electroweak unification, the atom, the pulsar, the solar system, and the galactic system---are derived from the SSS model. In addition, the model implies that the electron mass and gravitational constant could vary with the CMB radiation temperature.

  13. Self-similar Langmuir collapse at critical dimension

    International Nuclear Information System (INIS)

    Berge, L.; Dousseau, Ph.; Pelletier, G.; Pesme, D.

    1991-01-01

    Two spherically symmetric versions of a self-similar collapse are investigated within the framework of the Zakharov equations, namely, one relative to a vectorial electric field and the other corresponding to a scalar modeling of the Langmuir field. Singular solutions of both of them depend on a linear time contraction rate ξ(t) = V(t * -t), where t * and V = -ξ denote, respectively, the collapse time and the constant collapse velocity. It is shown that under certain conditions, only the scalar model admits self-similar solutions, varying regularly as a function of the control parameter V from the subsonic (V >1) regime. (author)

  14. PHOG analysis of self-similarity in aesthetic images

    Science.gov (United States)

    Amirshahi, Seyed Ali; Koch, Michael; Denzler, Joachim; Redies, Christoph

    2012-03-01

    In recent years, there have been efforts in defining the statistical properties of aesthetic photographs and artworks using computer vision techniques. However, it is still an open question how to distinguish aesthetic from non-aesthetic images with a high recognition rate. This is possibly because aesthetic perception is influenced also by a large number of cultural variables. Nevertheless, the search for statistical properties of aesthetic images has not been futile. For example, we have shown that the radially averaged power spectrum of monochrome artworks of Western and Eastern provenance falls off according to a power law with increasing spatial frequency (1/f2 characteristics). This finding implies that this particular subset of artworks possesses a Fourier power spectrum that is self-similar across different scales of spatial resolution. Other types of aesthetic images, such as cartoons, comics and mangas also display this type of self-similarity, as do photographs of complex natural scenes. Since the human visual system is adapted to encode images of natural scenes in a particular efficient way, we have argued that artists imitate these statistics in their artworks. In support of this notion, we presented results that artists portrait human faces with the self-similar Fourier statistics of complex natural scenes although real-world photographs of faces are not self-similar. In view of these previous findings, we investigated other statistical measures of self-similarity to characterize aesthetic and non-aesthetic images. In the present work, we propose a novel measure of self-similarity that is based on the Pyramid Histogram of Oriented Gradients (PHOG). For every image, we first calculate PHOG up to pyramid level 3. The similarity between the histograms of each section at a particular level is then calculated to the parent section at the previous level (or to the histogram at the ground level). The proposed approach is tested on datasets of aesthetic and

  15. Self-Similar Solutions for Viscous and Resistive Advection ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this paper, self-similar solutions of resistive advection dominated accretion flows (ADAF) in the presence of a pure azimuthal magnetic field are investigated. The mechanism of energy dissipation is assumed to be the viscosity and the magnetic diffusivity due to turbulence in the accretion flow.

  16. Self-similar solutions of certain coupled integrable systems

    CERN Document Server

    Chakravarty, S; Kent, S L

    2003-01-01

    Similarity reductions of the coupled nonlinear Schroedinger equation and an integrable version of the coupled Maxwell-Bloch system are obtained by applying non-translational symmetries. The reduced system of coupled ordinary differential equations are solved in terms of Painleve transcendents, leading to new exact self-similar solutions for these integrable equations.

  17. Self-similar solutions of certain coupled integrable systems

    International Nuclear Information System (INIS)

    Chakravarty, S; Halburd, R G; Kent, S L

    2003-01-01

    Similarity reductions of the coupled nonlinear Schroedinger equation and an integrable version of the coupled Maxwell-Bloch system are obtained by applying non-translational symmetries. The reduced system of coupled ordinary differential equations are solved in terms of Painleve transcendents, leading to new exact self-similar solutions for these integrable equations

  18. Spherical anharmonic oscillator in self-similar approximation

    International Nuclear Information System (INIS)

    Yukalova, E.P.; Yukalov, V.I.

    1992-01-01

    The method of self-similar approximation is applied here for calculating the eigenvalues of the three-dimensional spherical anharmonic oscillator. The advantage of this method is in its simplicity and high accuracy. The comparison with other known analytical methods proves that this method is more simple and accurate. 25 refs

  19. Self-similarity in the inertial region of wall turbulence.

    Science.gov (United States)

    Klewicki, J; Philip, J; Marusic, I; Chauhan, K; Morrill-Winter, C

    2014-12-01

    The inverse of the von Kármán constant κ is the leading coefficient in the equation describing the logarithmic mean velocity profile in wall bounded turbulent flows. Klewicki [J. Fluid Mech. 718, 596 (2013)] connects the asymptotic value of κ with an emerging condition of dynamic self-similarity on an interior inertial domain that contains a geometrically self-similar hierarchy of scaling layers. A number of properties associated with the asymptotic value of κ are revealed. This is accomplished using a framework that retains connection to invariance properties admitted by the mean statement of dynamics. The development leads toward, but terminates short of, analytically determining a value for κ. It is shown that if adjacent layers on the hierarchy (or their adjacent positions) adhere to the same self-similarity that is analytically shown to exist between any given layer and its position, then κ≡Φ(-2)=0.381966..., where Φ=(1+√5)/2 is the golden ratio. A number of measures, derived specifically from an analysis of the mean momentum equation, are subsequently used to empirically explore the veracity and implications of κ=Φ(-2). Consistent with the differential transformations underlying an invariant form admitted by the governing mean equation, it is demonstrated that the value of κ arises from two geometric features associated with the inertial turbulent motions responsible for momentum transport. One nominally pertains to the shape of the relevant motions as quantified by their area coverage in any given wall-parallel plane, and the other pertains to the changing size of these motions in the wall-normal direction. In accord with self-similar mean dynamics, these two features remain invariant across the inertial domain. Data from direct numerical simulations and higher Reynolds number experiments are presented and discussed relative to the self-similar geometric structure indicated by the analysis, and in particular the special form of self-similarity

  20. Self-similar oscillations of the Extrap pinch

    International Nuclear Information System (INIS)

    Tendler, M.

    1987-11-01

    The method of the dynamic stabilization is invoked to explain the enhanced stability of a Z-pinch in EXTRAP configuration. The oscillatory motion is assumed to be forced on EXTRAP due to self-similar oscillations of a Z-pinch. Using a scaling for the net energy loss with plasma density and temperature typical for divertor configurations, a new analytic, self-similar solution of the fluid equations is presented. Strongly unharmonic oscillations of the plasma parameters in the pinch arise. These results are used in a discussion on the stability of EXTRAP, considered as a system with a time dependent internal magnetic field. The effect of the dynamic stabilization is considered by taking estimates. (author)

  1. Tokunaga self-similarity arises naturally from time invariance

    Science.gov (United States)

    Kovchegov, Yevgeniy; Zaliapin, Ilya

    2018-04-01

    The Tokunaga condition is an algebraic rule that provides a detailed description of the branching structure in a self-similar tree. Despite a solid empirical validation and practical convenience, the Tokunaga condition lacks a theoretical justification. Such a justification is suggested in this work. We define a geometric branching process G (s ) that generates self-similar rooted trees. The main result establishes the equivalence between the invariance of G (s ) with respect to a time shift and a one-parametric version of the Tokunaga condition. In the parameter region where the process satisfies the Tokunaga condition (and hence is time invariant), G (s ) enjoys many of the symmetries observed in a critical binary Galton-Watson branching process and reproduces the latter for a particular parameter value.

  2. Self-similar radiation from numerical Rosenau-Hyman compactons

    International Nuclear Information System (INIS)

    Rus, Francisco; Villatoro, Francisco R.

    2007-01-01

    The numerical simulation of compactons, solitary waves with compact support, is characterized by the presence of spurious phenomena, as numerically induced radiation, which is illustrated here using four numerical methods applied to the Rosenau-Hyman K(p, p) equation. Both forward and backward radiations are emitted from the compacton presenting a self-similar shape which has been illustrated graphically by the proper scaling. A grid refinement study shows that the amplitude of the radiations decreases as the grid size does, confirming its numerical origin. The front velocity and the amplitude of both radiations have been studied as a function of both the compacton and the numerical parameters. The amplitude of the radiations decreases exponentially in time, being characterized by a nearly constant scaling exponent. An ansatz for both the backward and forward radiations corresponding to a self-similar function characterized by the scaling exponent is suggested by the present numerical results

  3. Self-similar oscillations of a Z pinch

    International Nuclear Information System (INIS)

    Felber, F.S.

    1982-01-01

    A new analytic, self-similar solution of the equations of ideal magnetohydrodynamics describes cylindrically symmetric plasmas conducting constant current. The solution indicates that an adiabatic Z pinch oscillates radially with a period typically of the order of a few acoustic transit times. A stability analysis, which shows the growth rate of the sausage instability to be a saturating function of wavenumber, suggests that the oscillations are observable

  4. One dimensional beam. Asymptotic and self similar solutions

    International Nuclear Information System (INIS)

    Feix, M.R.; Duranceau, J.L.; Besnard, D.

    1982-06-01

    Rescaling transformations provide a useful tool to solve nonlinear problems described by partial derivative equations. A brief review of this method is presented together with the connection with the self similar solutions obtained by compacting the independent variable with one of them (the time). The general theory is reported through examples found in Plasma Physics with a careful distinction between systems described by Hamiltonian and others where irreversible phenomena, like diffusion, are taken into account

  5. Log-periodic self-similarity: an emerging financial law?

    OpenAIRE

    S. Drozdz; F. Grummer; F. Ruf; J. Speth

    2002-01-01

    A hypothesis that the financial log-periodicity, cascading self-similarity through various time scales, carries signatures of a law is pursued. It is shown that the most significant historical financial events can be classified amazingly well using a single and unique value of the preferred scaling factor lambda=2, which indicates that its real value should be close to this number. This applies even to a declining decelerating log-periodic phase. Crucial in this connection is identification o...

  6. Self-similar slip distributions on irregular shaped faults

    Science.gov (United States)

    Herrero, A.; Murphy, S.

    2018-06-01

    We propose a strategy to place a self-similar slip distribution on a complex fault surface that is represented by an unstructured mesh. This is possible by applying a strategy based on the composite source model where a hierarchical set of asperities, each with its own slip function which is dependent on the distance from the asperity centre. Central to this technique is the efficient, accurate computation of distance between two points on the fault surface. This is known as the geodetic distance problem. We propose a method to compute the distance across complex non-planar surfaces based on a corollary of the Huygens' principle. The difference between this method compared to others sample-based algorithms which precede it is the use of a curved front at a local level to calculate the distance. This technique produces a highly accurate computation of the distance as the curvature of the front is linked to the distance from the source. Our local scheme is based on a sequence of two trilaterations, producing a robust algorithm which is highly precise. We test the strategy on a planar surface in order to assess its ability to keep the self-similarity properties of a slip distribution. We also present a synthetic self-similar slip distribution on a real slab topography for a M8.5 event. This method for computing distance may be extended to the estimation of first arrival times in both complex 3D surfaces or 3D volumes.

  7. Self-Similar Spin Images for Point Cloud Matching

    Science.gov (United States)

    Pulido, Daniel

    based on the concept of self-similarity to aid in the scale and feature matching steps. An open problem in fusion is how best to extract features from two point clouds and then perform feature-based matching. The proposed approach for this matching step is the use of local self-similarity as an invariant measure to match features. In particular, the proposed approach is to combine the concept of local self-similarity with a well-known feature descriptor, Spin Images, and thereby define "Self-Similar Spin Images". This approach is then extended to the case of matching two points clouds in very different coordinate systems (e.g., a geo-referenced Lidar point cloud and stereo-image derived point cloud without geo-referencing). The use of Self-Similar Spin Images is again applied to address this problem by introducing a "Self-Similar Keyscale" that matches the spatial scales of two point clouds. Another open problem is how best to detect changes in content between two point clouds. A method is proposed to find changes between two point clouds by analyzing the order statistics of the nearest neighbors between the two clouds, and thereby define the "Nearest Neighbor Order Statistic" method. Note that the well-known Hausdorff distance is a special case as being just the maximum order statistic. Therefore, by studying the entire histogram of these nearest neighbors it is expected to yield a more robust method to detect points that are present in one cloud but not the other. This approach is applied at multiple resolutions. Therefore, changes detected at the coarsest level will yield large missing targets and at finer levels will yield smaller targets.

  8. Self-Similar Vacuums Arc Plasma Cloud Expansion

    International Nuclear Information System (INIS)

    Gidalevich, E.; Goldsmith, S.; Boxman, R.L.

    1999-01-01

    A spherical plasma cloud generated by a vacuum are, is considered as expanding in an ambient neutral gas in a self-similar approximation. Under the assumption that the cathode erosion rate as well as density of the ambient neutral gas are constant during the plasma expansion, the self-similarity parameter is A = (1/ρ 3 dM/dt) 1/3 where ρ 3 is the density of undisturbed gas, M is the mass of the expanding metal vapor, and t is time, while the dimensionless independent variable is ξ = r/At 1/3 , where r is the distance from the cloud center. The equations of plasma motion and continuity are: ∂v/∂t + ∂n/∂r +1∂p/ρ∂r = 0 ∂ρ/∂t + ∂ρ/∂r + ρ(∂v/∂r + 2v/r) = 0 where v, ρ, P are plasma velocity, density and pressure, transformed in the self-similar form and solved numerically. Boundary conditions were formulated on the front of the plasma expansion taking into account that 1) the front edge of the shock wave expanding in the ambient neutral gas and 2) the rate of cathode erosion is a constant. For an erosion rate of 104 g/C, a cathode ion current of about 20 A and an ambient gas pressure about 0.1 Torr, the radius of the plasma cloud is r (m) = 0.834 x t 1/3 . At t = 10 -5 s, the plasma cloud radius is about 0.018 m, while the front velocity is v f = 600 m/s

  9. Self-similar perturbations of a Friedmann universe

    International Nuclear Information System (INIS)

    Carr, B.J.; Yahil, A.

    1990-01-01

    The present analysis of spherically symmetric self-similar solutions to the Einstein equations gives attention to those solutions that are asymptotically k = 0 Friedmann at large z values, and possess finite but perturbed density at the origin. Such solutions represent nonlinear density fluctuations which grow at the same rate as the universe's particle horizon. The overdense solutions span only a narrow range of parameters, and resemble static isothermal gas spheres just within the sonic point; the underdense solutions may have arbitrarily low density at the origin while exhibiting a unique relationship between amplitude and scale. Their relevance to large-scale void formation is considered. 36 refs

  10. Algebraic decay in self-similar Markov chains

    International Nuclear Information System (INIS)

    Hanson, J.D.; Cary, J.R.; Meiss, J.D.

    1985-01-01

    A continuous-time Markov chain is used to model motion in the neighborhood of a critical invariant circle for a Hamiltonian map. States in the infinite chain represent successive rational approximants to the frequency of the invariant circle. For the case of a noble frequency, the chain is self-similar and the nonlinear integral equation for the first passage time distribution is solved exactly. The asymptotic distribution is a power law times a function periodic in the logarithm of the time. For parameters relevant to the critical noble circle, the decay proceeds as t/sup -4.05/

  11. Self similar asymptotics of the drift ion acoustic waves

    International Nuclear Information System (INIS)

    Taranov, V.B.

    2004-01-01

    A 3D model for the coupled drift and ion acoustic waves is considered. It is shown that self-similar solutions can exist due to the symmetry extension in asymptotic regimes. The form of these solutions is determined in the presence of the magnetic shear as well as in the shear less case. Some of the most symmetric exact solutions are obtained explicitly. In particular, solutions describing asymptotics of zonal flow interaction with monochromatic waves are presented and corresponding frequency shifts are determined

  12. Self-similarity and scaling theory of complex networks

    Science.gov (United States)

    Song, Chaoming

    Scale-free networks have been studied extensively due to their relevance to many real systems as diverse as the World Wide Web (WWW), the Internet, biological and social networks. We present a novel approach to the analysis of scale-free networks, revealing that their structure is self-similar. This result is achieved by the application of a renormalization procedure which coarse-grains the system into boxes containing nodes within a given "size". Concurrently, we identify a power-law relation between the number of boxes needed to cover the network and the size of the box defining a self-similar exponent, which classifies fractal and non-fractal networks. By using the concept of renormalization as a mechanism for the growth of fractal and non-fractal modular networks, we show that the key principle that gives rise to the fractal architecture of networks is a strong effective "repulsion" between the most connected nodes (hubs) on all length scales, rendering them very dispersed. We show that a robust network comprised of functional modules, such as a cellular network, necessitates a fractal topology, suggestive of a evolutionary drive for their existence. These fundamental properties help to understand the emergence of the scale-free property in complex networks.

  13. A self-similar hierarchy of the Korean stock market

    Science.gov (United States)

    Lim, Gyuchang; Min, Seungsik; Yoo, Kun-Woo

    2013-01-01

    A scaling analysis is performed on market values of stocks listed on Korean stock exchanges such as the KOSPI and the KOSDAQ. Different from previous studies on price fluctuations, market capitalizations are dealt with in this work. First, we show that the sum of the two stock exchanges shows a clear rank-size distribution, i.e., the Zipf's law, just as each separate one does. Second, by abstracting Zipf's law as a γ-sequence, we define a self-similar hierarchy consisting of many levels, with the numbers of firms at each level forming a geometric sequence. We also use two exponential functions to describe the hierarchy and derive a scaling law from them. Lastly, we propose a self-similar hierarchical process and perform an empirical analysis on our data set. Based on our findings, we argue that all money invested in the stock market is distributed in a hierarchical way and that a slight difference exists between the two exchanges.

  14. Self-similar compression of a magnetized plasma filled liner

    International Nuclear Information System (INIS)

    Felber, F.S.; Liberman, M.A.; Velikovich, A.L.

    1985-01-01

    New analytic, one-dimensional, self-similar solutions of magnetohydrodynamic equations describing the compression of a magnetized plasma by a thin cylindrical liner are presented. The solutions include several features that have not been included in an earlier self-similar solution of the equations of ideal magnetohydrodynamics. These features are the effects of finite plasma electrical conductivity, induction heating, thermal conductivity and related thermogalvanomagnetic effects, plasma turbulence, and plasma boundary effects. These solutions have been motivated by recent suggestions for production of ultrahigh magnetic fields by new methods. The methods involve radially imploding plasmas in which axial magnetic fields have been entrained. These methods may be capable of producing controlled magnetic fields up to approx. = 100 MG. Specific methods of implosion suggested were by ablative radial acceleration of a liner by a laser and by a gas-puff Z pinch. The model presented here addresses the first of these methods. The solutions derived here are used to estimate magnetic flux losses out of the compression volume, and to indicate conditions under which an impulsively-accelerated, plasma-filled liner may compress an axial magnetic field to large magnitude

  15. Vere-Jones' self-similar branching model

    International Nuclear Information System (INIS)

    Saichev, A.; Sornette, D.

    2005-01-01

    Motivated by its potential application to earthquake statistics as well as for its intrinsic interest in the theory of branching processes, we study the exactly self-similar branching process introduced recently by Vere-Jones. This model extends the ETAS class of conditional self-excited branching point-processes of triggered seismicity by removing the problematic need for a minimum (as well as maximum) earthquake size. To make the theory convergent without the need for the usual ultraviolet and infrared cutoffs, the distribution of magnitudes m ' of daughters of first-generation of a mother of magnitude m has two branches m ' ' >m with exponent β+d, where β and d are two positive parameters. We investigate the condition and nature of the subcritical, critical, and supercritical regime in this and in an extended version interpolating smoothly between several models. We predict that the distribution of magnitudes of events triggered by a mother of magnitude m over all generations has also two branches m ' ' >m with exponent β+h, with h=d√(1-s), where s is the fraction of triggered events. This corresponds to a renormalization of the exponent d into h by the hierarchy of successive generations of triggered events. For a significant part of the parameter space, the distribution of magnitudes over a full catalog summed over an average steady flow of spontaneous sources (immigrants) reproduces the distribution of the spontaneous sources with a single branch and is blind to the exponents β,d of the distribution of triggered events. Since the distribution of earthquake magnitudes is usually obtained with catalogs including many sequences, we conclude that the two branches of the distribution of aftershocks are not directly observable and the model is compatible with real seismic catalogs. In summary, the exactly self-similar Vere-Jones model provides an attractive new approach to model triggered seismicity, which alleviates delicate questions on the role of

  16. Self-similarity of higher-order moving averages

    Science.gov (United States)

    Arianos, Sergio; Carbone, Anna; Türk, Christian

    2011-10-01

    In this work, higher-order moving average polynomials are defined by straightforward generalization of the standard moving average. The self-similarity of the polynomials is analyzed for fractional Brownian series and quantified in terms of the Hurst exponent H by using the detrending moving average method. We prove that the exponent H of the fractional Brownian series and of the detrending moving average variance asymptotically agree for the first-order polynomial. Such asymptotic values are compared with the results obtained by the simulations. The higher-order polynomials correspond to trend estimates at shorter time scales as the degree of the polynomial increases. Importantly, the increase of polynomial degree does not require to change the moving average window. Thus trends at different time scales can be obtained on data sets with the same size. These polynomials could be interesting for those applications relying on trend estimates over different time horizons (financial markets) or on filtering at different frequencies (image analysis).

  17. Self-similar anomalous diffusion and Levy-stable laws

    International Nuclear Information System (INIS)

    Uchaikin, Vladimir V

    2003-01-01

    Stochastic principles for constructing the process of anomalous diffusion are considered, and corresponding models of random processes are reviewed. The self-similarity and the independent-increments principles are used to extend the notion of diffusion process to the class of Levy-stable processes. Replacing the independent-increments principle with the renewal principle allows us to take the next step in generalizing the notion of diffusion, which results in fractional-order partial space-time differential equations of diffusion. Fundamental solutions to these equations are represented in terms of stable laws, and their relationship to the fractality and memory of the medium is discussed. A new class of distributions, called fractional stable distributions, is introduced. (reviews of topical problems)

  18. Self-similar current decay experiment in RFX-mod

    International Nuclear Information System (INIS)

    Zanca, Paolo

    2007-01-01

    The self-similar current decay (SSCD) has been suggested as a promising operation for reversed field pinch devices by numerical simulations, which show a decrease in modes amplitude and stochasticity when the magnetic field is forced to decay at a suitable rate at a fixed radial profile (Nebel et al 2002 Phys. Plasmas 9 4968). The first experimental test of SSCD has recently been performed in RFX-mod. An initial fast decrease in the mode amplitudes (about 40% of the initial value) is observed. After that, a regime characterized by transient states close to the single-helicity condition (Cappello and Paccagnella 1992 Phys. Fluids B 4 611, Finn et al 1992 Phys. Fluids B 4 1262) is established. This brings about a 50% increase in the global confinement parameters

  19. Bianchi VI0 and III models: self-similar approach

    International Nuclear Information System (INIS)

    Belinchon, Jose Antonio

    2009-01-01

    We study several cosmological models with Bianchi VI 0 and III symmetries under the self-similar approach. We find new solutions for the 'classical' perfect fluid model as well as for the vacuum model although they are really restrictive for the equation of state. We also study a perfect fluid model with time-varying constants, G and Λ. As in other studied models we find that the behaviour of G and Λ are related. If G behaves as a growing time function then Λ is a positive decreasing time function but if G is decreasing then Λ 0 is negative. We end by studying a massive cosmic string model, putting special emphasis in calculating the numerical values of the equations of state. We show that there is no SS solution for a string model with time-varying constants.

  20. A self-similar magnetohydrodynamic model for ball lightnings

    International Nuclear Information System (INIS)

    Tsui, K. H.

    2006-01-01

    Ball lightning is modeled by magnetohydrodynamic (MHD) equations in two-dimensional spherical geometry with azimuthal symmetry. Dynamic evolutions in the radial direction are described by the self-similar evolution function y(t). The plasma pressure, mass density, and magnetic fields are solved in terms of the radial label η. This model gives spherical MHD plasmoids with axisymmetric force-free magnetic field, and spherically symmetric plasma pressure and mass density, which self-consistently determine the polytropic index γ. The spatially oscillating nature of the radial and meridional field structures indicate embedded regions of closed field lines. These regions are named secondary plasmoids, whereas the overall self-similar spherical structure is named the primary plasmoid. According to this model, the time evolution function allows the primary plasmoid expand outward in two modes. The corresponding ejection of the embedded secondary plasmoids results in ball lightning offering an answer as how they come into being. The first is an accelerated expanding mode. This mode appears to fit plasmoids ejected from thundercloud tops with acceleration to ionosphere seen in high altitude atmospheric observations of sprites and blue jets. It also appears to account for midair high-speed ball lightning overtaking airplanes, and ground level high-speed energetic ball lightning. The second is a decelerated expanding mode, and it appears to be compatible to slowly moving ball lightning seen near ground level. The inverse of this second mode corresponds to an accelerated inward collapse, which could bring ball lightning to an end sometimes with a cracking sound

  1. Subshifts of finite type and self-similar sets

    Science.gov (United States)

    Jiang, Kan; Dajani, Karma

    2017-02-01

    Let K\\subset {R} be a self-similar set generated by some iterated function system. In this paper we prove, under some assumptions, that K can be identified with a subshift of finite type. With this identification, we can calculate the Hausdorff dimension of K as well as the set of elements in K with unique codings using the machinery of Mauldin and Williams (1988 Trans. Am. Math. Soc. 309 811-29). We give three different applications of our main result. Firstly, we calculate the Hausdorff dimension of the set of points of K with multiple codings. Secondly, in the setting of β-expansions, when the set of all the unique codings is not a subshift of finite type, we can calculate in some cases the Hausdorff dimension of the univoque set. Motivated by this application, we prove that the set of all the unique codings is a subshift of finite type if and only if it is a sofic shift. This equivalent condition was not mentioned by de Vries and Komornik (2009 Adv. Math. 221 390-427, theorem 1.8). Thirdly, for the doubling map with asymmetrical holes, we give a sufficient condition such that the survivor set can be identified with a subshift of finite type. The third application partially answers a problem posed by Alcaraz Barrera (2014 PhD Thesis University of Manchester).

  2. Root Growth Optimizer with Self-Similar Propagation

    Directory of Open Access Journals (Sweden)

    Xiaoxian He

    2015-01-01

    Full Text Available Most nature-inspired algorithms simulate intelligent behaviors of animals and insects that can move spontaneously and independently. The survival wisdom of plants, as another species of biology, has been neglected to some extent even though they have evolved for a longer period of time. This paper presents a new plant-inspired algorithm which is called root growth optimizer (RGO. RGO simulates the iterative growth behaviors of plant roots to optimize continuous space search. In growing process, main roots and lateral roots, classified by fitness values, implement different strategies. Main roots carry out exploitation tasks by self-similar propagation in relatively nutrient-rich areas, while lateral roots explore other places to seek for better chance. Inhibition mechanism of plant hormones is applied to main roots in case of explosive propagation in some local optimal areas. Once resources in a location are exhausted, roots would shrink away from infertile conditions to preserve their activity. In order to validate optimization effect of the algorithm, twelve benchmark functions, including eight classic functions and four CEC2005 test functions, are tested in the experiments. We compared RGO with other existing evolutionary algorithms including artificial bee colony, particle swarm optimizer, and differential evolution algorithm. The experimental results show that RGO outperforms other algorithms on most benchmark functions.

  3. Tokunaga and Horton self-similarity for level set trees of Markov chains

    International Nuclear Information System (INIS)

    Zaliapin, Ilia; Kovchegov, Yevgeniy

    2012-01-01

    Highlights: ► Self-similar properties of the level set trees for Markov chains are studied. ► Tokunaga and Horton self-similarity are established for symmetric Markov chains and regular Brownian motion. ► Strong, distributional self-similarity is established for symmetric Markov chains with exponential jumps. ► It is conjectured that fractional Brownian motions are Tokunaga self-similar. - Abstract: The Horton and Tokunaga branching laws provide a convenient framework for studying self-similarity in random trees. The Horton self-similarity is a weaker property that addresses the principal branching in a tree; it is a counterpart of the power-law size distribution for elements of a branching system. The stronger Tokunaga self-similarity addresses so-called side branching. The Horton and Tokunaga self-similarity have been empirically established in numerous observed and modeled systems, and proven for two paradigmatic models: the critical Galton–Watson branching process with finite progeny and the finite-tree representation of a regular Brownian excursion. This study establishes the Tokunaga and Horton self-similarity for a tree representation of a finite symmetric homogeneous Markov chain. We also extend the concept of Horton and Tokunaga self-similarity to infinite trees and establish self-similarity for an infinite-tree representation of a regular Brownian motion. We conjecture that fractional Brownian motions are also Tokunaga and Horton self-similar, with self-similarity parameters depending on the Hurst exponent.

  4. Levy Stable Processes. From Stationary to Self-Similar Dynamics and Back. An Application to Finance

    International Nuclear Information System (INIS)

    Burnecki, K.; Weron, A.

    2004-01-01

    We employ an ergodic theory argument to demonstrate the foundations of ubiquity of Levy stable self-similar processes in physics and present a class of models for anomalous and nonextensive diffusion. A relationship between stationary and self-similar models is clarified. The presented stochastic integral description of all Levy stable processes could provide new insights into the mechanism underlying a range of self-similar natural phenomena. Finally, this effect is illustrated by self-similar approach to financial modelling. (author)

  5. A generalized self-similar spectrum for decaying homogeneous and isotropic turbulence

    Science.gov (United States)

    Yang, Pingfan; Pumir, Alain; Xu, Haitao

    2017-11-01

    The spectrum of turbulence in dissipative and inertial range can be described by the celebrated Kolmogorov theory. However, there is no general solution of the spectrum in the large scales, especially for statistically unsteady turbulent flows. Here we propose a generalized self-similar form that contains two length-scales, the integral scale and the Kolmogorov scale, for decaying homogeneous and isotropic turbulence. With the help of the local spectral energy transfer hypothesis by Pao (Phys. Fluids, 1965), we derive and solve for the explicit form of the energy spectrum and the energy transfer function, from which the second- and third-order velocity structure functions can also be obtained. We check and verify our assumptions by direct numerical simulations (DNS), and our solutions of the velocity structure functions compare well with hot-wire measurements of high-Reynolds number wind-tunnel turbulence. Financial supports from NSFC under Grant Number 11672157, from the Alexander von Humboldt Foundation, and from the MPG are gratefully acknowledged.

  6. Relativistic Outflows from ADAFs

    Science.gov (United States)

    Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes

    2001-04-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  7. Exact self-similar solutions of the Korteweg de Vries equation

    International Nuclear Information System (INIS)

    Nakach, R.

    1975-12-01

    It is shown that the exact analytic self-similar solution of the Korteweg de Vries equation is connected with the second Painleve transcendent. When the self-similar independant variable tends to infinity the asymptotic solutions are given by a nonlinear differential equation which can be integrated to yield Jacobian elliptic functions [fr

  8. Self-similar solutions for toroidal magnetic fields in a turbulent jet

    International Nuclear Information System (INIS)

    Komissarov, S.S.; Ovchinnikov, I.L.

    1989-01-01

    Self-similar solutions for weak toroidal magnetic fields transported by a turbulent jet of incompressible fluid are obtained. It is shown that radial profiles of the self-similar solutions form a discrete spectrum of eigenfunctions of a linear differential operator. The strong depatures from the magnetic flux conservation law, used frequently in turbulent jet models for extragalactic radio sources, are found

  9. Self-similar drop-size distributions produced by breakup in chaotic flows

    International Nuclear Information System (INIS)

    Muzzio, F.J.; Tjahjadi, M.; Ottino, J.M.; Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003; Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208)

    1991-01-01

    Deformation and breakup of immiscible fluids in deterministic chaotic flows is governed by self-similar distributions of stretching histories and stretching rates and produces populations of droplets of widely distributed sizes. Scaling reveals that distributions of drop sizes collapse into two self-similar families; each family exhibits a different shape, presumably due to changes in the breakup mechanism

  10. The self-similar field and its application to a diffusion problem

    International Nuclear Information System (INIS)

    Michelitsch, Thomas M

    2011-01-01

    We introduce a continuum approach which accounts for self-similarity as a symmetry property of an infinite medium. A self-similar Laplacian operator is introduced which is the source of self-similar continuous fields. In this way ‘self-similar symmetry’ appears in an analogous manner as transverse isotropy or cubic symmetry of a medium. As a consequence of the self-similarity the Laplacian is a non-local fractional operator obtained as the continuum limit of the discrete self-similar Laplacian introduced recently by Michelitsch et al (2009 Phys. Rev. E 80 011135). The dispersion relation of the Laplacian and its Green’s function is deduced in closed forms. As a physical application of the approach we analyze a self-similar diffusion problem. The statistical distributions, which constitute the solutions of this problem, turn out to be Lévi-stable distributions with infinite variances characterizing the statistics of one-dimensional Lévi flights. The self-similar continuum approach introduced in this paper has the potential to be applied on a variety of scale invariant and fractal problems in physics such as in continuum mechanics, electrodynamics and in other fields. (paper)

  11. Models for discrete-time self-similar vector processes with application to network traffic

    Science.gov (United States)

    Lee, Seungsin; Rao, Raghuveer M.; Narasimha, Rajesh

    2003-07-01

    The paper defines self-similarity for vector processes by employing the discrete-time continuous-dilation operation which has successfully been used previously by the authors to define 1-D discrete-time stochastic self-similar processes. To define self-similarity of vector processes, it is required to consider the cross-correlation functions between different 1-D processes as well as the autocorrelation function of each constituent 1-D process in it. System models to synthesize self-similar vector processes are constructed based on the definition. With these systems, it is possible to generate self-similar vector processes from white noise inputs. An important aspect of the proposed models is that they can be used to synthesize various types of self-similar vector processes by choosing proper parameters. Additionally, the paper presents evidence of vector self-similarity in two-channel wireless LAN data and applies the aforementioned systems to simulate the corresponding network traffic traces.

  12. Advanced Models and Algorithms for Self-Similar IP Network Traffic Simulation and Performance Analysis

    Science.gov (United States)

    Radev, Dimitar; Lokshina, Izabella

    2010-11-01

    The paper examines self-similar (or fractal) properties of real communication network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Advanced fractal models of sequentional generators and fixed-length sequence generators, and efficient algorithms that are used to simulate self-similar behavior of IP network traffic data are developed and applied. Numerical examples are provided; and simulation results are obtained and analyzed.

  13. A novel numerical framework for self-similarity in plasticity: Wedge indentation in single crystals

    DEFF Research Database (Denmark)

    Juul, K. J.; Niordson, C. F.; Nielsen, K. L.

    2018-01-01

    -viscoplastic single crystal. However, the framework may be readily adapted to any constitutive law of interest. The main focus herein is the development of the self-similar framework, while the indentation study serves primarily as verification of the technique by comparing to existing numerical and analytical......A novel numerical framework for analyzing self-similar problems in plasticity is developed and demonstrated. Self-similar problems of this kind include processes such as stationary cracks, void growth, indentation etc. The proposed technique offers a simple and efficient method for handling...

  14. Self-similar optical pulses in competing cubic-quintic nonlinear media with distributed coefficients

    International Nuclear Information System (INIS)

    Zhang Jiefang; Tian Qing; Wang Yueyue; Dai Chaoqing; Wu Lei

    2010-01-01

    We present a systematic analysis of the self-similar propagation of optical pulses within the framework of the generalized cubic-quintic nonlinear Schroedinger equation with distributed coefficients. By appropriately choosing the relations between the distributed coefficients, we not only retrieve the exact self-similar solitonic solutions, but also find both the approximate self-similar Gaussian-Hermite solutions and compact solutions. Our analytical and numerical considerations reveal that proper choices of the distributed coefficients could make the unstable solitons stable and could restrict the nonlinear interaction between the neighboring solitons.

  15. Observations and analysis of self-similar branching topology in glacier networks

    Science.gov (United States)

    Bahr, D.B.; Peckham, S.D.

    1996-01-01

    Glaciers, like rivers, have a branching structure which can be characterized by topological trees or networks. Probability distributions of various topological quantities in the networks are shown to satisfy the criterion for self-similarity, a symmetry structure which might be used to simplify future models of glacier dynamics. Two analytical methods of describing river networks, Shreve's random topology model and deterministic self-similar trees, are applied to the six glaciers of south central Alaska studied in this analysis. Self-similar trees capture the topological behavior observed for all of the glaciers, and most of the networks are also reasonably approximated by Shreve's theory. Copyright 1996 by the American Geophysical Union.

  16. A Numerical Framework for Self-Similar Problems in Plasticity: Indentation in Single Crystals

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Niordson, Christian Frithiof; Nielsen, Kim Lau

    A new numerical framework specialized for analyzing self-similar problems in plasticity is developed. Self-similarity in plasticity is encountered in a number of different problems such as stationary cracks, void growth, indentation etc. To date, such problems are handled by traditional Lagrangian...... procedures that may be associated with severe numerical difficulties relating to sufficient discretization, moving contact points, etc. In the present work, self-similarity is exploited to construct the numerical framework that offers a simple and efficient method to handle self-similar problems in history...... numerical simulations [3] when possible. To mimic the condition for the analytical predictions, the wedge indenter is considered nearly flat and the material is perfectly plastic with a very low yield strain. Under these conditions, [1][2] proved analytically the existence of discontinuities in the slip...

  17. Hausdorff dimension of the arithmetic sum of self-similar sets

    NARCIS (Netherlands)

    Jiang, Kan

    Let β>1. We define a class of similitudes S:=(fi(x)=xβni+ai:ni∈N+,ai∈R). Taking any finite collection of similitudes (fi(x))i=1m from S, it is well known that there is a unique self-similar set K1 satisfying K1=∪i=1mfi(K1). Similarly, another self-similar set K2 can be generated via the finite

  18. Effects of Self-Similar Collisions in the Theory of Pressure Broadening and Shift

    International Nuclear Information System (INIS)

    Kharintsev, S.S.; Salakhov, M.Kh.

    1999-01-01

    In the present paper the self-similar collision model is developed in terms of fractal Brownian motion. Within this model framework, collisions are assumed to carry a non-Markovian character and, therefore, possible memory collisional effects are not taken into account. Applying a self-similar collision model for the motion of the radiator and Anderson-Talman phase-shift theory of collisional broadening, a general formula for the correlation function in the impact limit is described. (author)

  19. Effective Summation and Interpolation of Series by Self-Similar Root Approximants

    Directory of Open Access Journals (Sweden)

    Simon Gluzman

    2015-06-01

    Full Text Available We describe a simple analytical method for effective summation of series, including divergent series. The method is based on self-similar approximation theory resulting in self-similar root approximants. The method is shown to be general and applicable to different problems, as is illustrated by a number of examples. The accuracy of the method is not worse, and in many cases better, than that of Padé approximants, when the latter can be defined.

  20. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  1. From nucleotides to DNA analysis by a SERS substrate of a self similar chain of silver nanospheres

    KAUST Repository

    Coluccio, M L

    2015-11-01

    In this work we realized a device of silver nanostructures designed so that they have a great ability to sustain the surface-enhanced Raman scattering effect. The nanostructures were silver self-similar chains of three nanospheres, having constant ratios between their diameters and between their reciprocal distances. They were realized by electron beam lithography, to write the pattern, and by silver electroless deposition technique, to fill it with the metal. The obtained device showed the capability to increase the Raman signal coming from the gap between the two smallest nanospheres (whose size is around 10 nm) and so it allows the detection of biomolecules fallen into this hot spot. In particular, oligonucleotides with 6 DNA bases, deposited on these devices with a drop coating method, gave a Raman spectrum characterized by a clear fingerprint coming from the hot spot and, with the help of a fitting method, also oligonucleotides of 9 bases, which are less than 3 nm long, were resolved. In conclusion the silver nanolens results in a SERS device able to measure all the molecules, or part of them, held into the hot spot of the nanolenses, and thus it could be a future instrument with which to analyze DNA portions.

  2. Two-halo term in stacked thermal Sunyaev-Zel'dovich measurements: Implications for self-similarity

    Science.gov (United States)

    Hill, J. Colin; Baxter, Eric J.; Lidz, Adam; Greco, Johnny P.; Jain, Bhuvnesh

    2018-04-01

    The relation between the mass and integrated electron pressure of galaxy group and cluster halos can be probed by stacking maps of the thermal Sunyaev-Zel'dovich (tSZ) effect. Perhaps surprisingly, recent observational results have indicated that the scaling relation between integrated pressure and mass follows the prediction of simple, self-similar models down to halo masses as low as 1 012.5 M⊙ . Hydrodynamical simulations that incorporate energetic feedback processes suggest that gas should be depleted from such low-mass halos, thus decreasing their tSZ signal relative to self-similar predictions. Here, we build on the modeling of V. Vikram, A. Lidz, and B. Jain, Mon. Not. R. Astron. Soc. 467, 2315 (2017), 10.1093/mnras/stw3311 to evaluate the bias in the interpretation of stacked tSZ measurements due to the signal from correlated halos (the "two-halo" term), which has generally been neglected in the literature. We fit theoretical models to a measurement of the tSZ-galaxy group cross-correlation function, accounting explicitly for the one- and two-halo contributions. We find moderate evidence of a deviation from self-similarity in the pressure-mass relation, even after marginalizing over conservative miscentering effects. We explore pressure-mass models with a break at 1 014 M⊙, as well as other variants. We discuss and test for sources of uncertainty in our analysis, in particular a possible bias in the halo mass estimates and the coarse resolution of the Planck beam. We compare our findings with earlier analyses by exploring the extent to which halo isolation criteria can reduce the two-halo contribution. Finally, we show that ongoing third-generation cosmic microwave background experiments will explicitly resolve the one-halo term in low-mass groups; our methodology can be applied to these upcoming data sets to obtain a clear answer to the question of self-similarity and an improved understanding of hot gas in low-mass halos.

  3. Self-similar hierarchical energetics in the ICM of massive galaxy clusters

    Science.gov (United States)

    Miniati, Francesco; Beresnyak, Andrey

    type of self-similarity in cosmology. Their specific values, while consistent with current data, indicate that thermal energy dominates the ICM energetics and the turbulent dynamo is always far from saturation, unlike the condition in other familiar astrophysical fluids (stars, interstellar medium of galaxies, compact objects, etc.). In addition, they have important physical meaning as their specific values encodes information about the efficiency of turbulent heating (the fraction of ICM thermal energy produced by turbulent dissipation) and the efficiency of dynamo action in the ICM (CE ).

  4. Testing statistical self-similarity in the topology of river networks

    Science.gov (United States)

    Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.

    2010-01-01

    Recent work has demonstrated that the topological properties of real river networks deviate significantly from predictions of Shreve's random model. At the same time the property of mean self-similarity postulated by Tokunaga's model is well supported by data. Recently, a new class of network model called random self-similar networks (RSN) that combines self-similarity and randomness has been introduced to replicate important topological features observed in real river networks. We investigate if the hypothesis of statistical self-similarity in the RSN model is supported by data on a set of 30 basins located across the continental United States that encompass a wide range of hydroclimatic variability. We demonstrate that the generators of the RSN model obey a geometric distribution, and self-similarity holds in a statistical sense in 26 of these 30 basins. The parameters describing the distribution of interior and exterior generators are tested to be statistically different and the difference is shown to produce the well-known Hack's law. The inter-basin variability of RSN parameters is found to be statistically significant. We also test generator dependence on two climatic indices, mean annual precipitation and radiative index of dryness. Some indication of climatic influence on the generators is detected, but this influence is not statistically significant with the sample size available. Finally, two key applications of the RSN model to hydrology and geomorphology are briefly discussed.

  5. Scaling Relations and Self-Similarity of 3-Dimensional Reynolds-Averaged Navier-Stokes Equations.

    Science.gov (United States)

    Ercan, Ali; Kavvas, M Levent

    2017-07-25

    Scaling conditions to achieve self-similar solutions of 3-Dimensional (3D) Reynolds-Averaged Navier-Stokes Equations, as an initial and boundary value problem, are obtained by utilizing Lie Group of Point Scaling Transformations. By means of an open-source Navier-Stokes solver and the derived self-similarity conditions, we demonstrated self-similarity within the time variation of flow dynamics for a rigid-lid cavity problem under both up-scaled and down-scaled domains. The strength of the proposed approach lies in its ability to consider the underlying flow dynamics through not only from the governing equations under consideration but also from the initial and boundary conditions, hence allowing to obtain perfect self-similarity in different time and space scales. The proposed methodology can be a valuable tool in obtaining self-similar flow dynamics under preferred level of detail, which can be represented by initial and boundary value problems under specific assumptions.

  6. Effects of self-similar correlations on the spectral line shape in the neutral gas

    International Nuclear Information System (INIS)

    Kharintsev, S.S.; Salakhov, M.Kh.

    2001-01-01

    The paper is devoted to the study of the influence of self-similar correlations on the Doppler and pressure broadening within the non-equilibrium Boltzmann gas. The diffuse model for the thermal motion of the radiator and the self-similar mechanism of interference of scalar perturbations for phase shifts of an atomic oscillator are developed. It is shown that taking into account self-similar correlation in a description of the spectral line shape allows one to explain, on the one hand, the additional spectral line Dicke-narrowing in the Doppler regime, and, on the other hand, the asymmetry in wings of the spectral line in a high pressure region

  7. Discrete Self-Similarity in Interfacial Hydrodynamics and the Formation of Iterated Structures.

    Science.gov (United States)

    Dallaston, Michael C; Fontelos, Marco A; Tseluiko, Dmitri; Kalliadasis, Serafim

    2018-01-19

    The formation of iterated structures, such as satellite and subsatellite drops, filaments, and bubbles, is a common feature in interfacial hydrodynamics. Here we undertake a computational and theoretical study of their origin in the case of thin films of viscous fluids that are destabilized by long-range molecular or other forces. We demonstrate that iterated structures appear as a consequence of discrete self-similarity, where certain patterns repeat themselves, subject to rescaling, periodically in a logarithmic time scale. The result is an infinite sequence of ridges and filaments with similarity properties. The character of these discretely self-similar solutions as the result of a Hopf bifurcation from ordinarily self-similar solutions is also described.

  8. Irreversible thermodynamics, parabolic law and self-similar state in grain growth

    International Nuclear Information System (INIS)

    Rios, P.R.

    2004-01-01

    The formalism of the thermodynamic theory of irreversible processes is applied to grain growth to investigate the nature of the self-similar state and its corresponding parabolic law. Grain growth does not reach a steady state in the sense that the entropy production remains constant. However, the entropy production can be written as a product of two factors: a scale factor that tends to zero for long times and a scaled entropy production. It is suggested that the parabolic law and the self-similar state may be associated with the minimum of this scaled entropy production. This result implies that the parabolic law and the self-similar state have a sound irreversible thermodynamical basis

  9. Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae

    Science.gov (United States)

    Suzuki, Akihiro; Maeda, Keiichi

    2017-04-01

    The hydrodynamical interaction between freely expanding supernova ejecta and a relativistic wind injected from the central region is studied in analytic and numerical ways. As a result of the collision between the ejecta and the wind, a geometrically thin shell surrounding a hot bubble forms and expands in the ejecta. We use a self-similar solution to describe the early dynamical evolution of the shell and carry out a two-dimensional special relativistic hydrodynamic simulation to follow further evolution. The Rayleigh-Taylor instability inevitably develops at the contact surface separating the shocked wind and ejecta, leading to the complete destruction of the shell and the leakage of hot gas from the hot bubble. The leaking hot materials immediately catch up with the outermost layer of the supernova ejecta and thus different layers of the ejecta are mixed. We present the spatial profiles of hydrodynamical variables and the kinetic energy distributions of the ejecta. We stop the energy injection when a total energy of 1052 erg, which is 10 times larger than the initial kinetic energy of the supernova ejecta, is deposited into the ejecta and follow the subsequent evolution. From the results of our simulations, we consider expected emission from supernova ejecta powered by the energy injection at the centre and discuss the possibility that superluminous supernovae and broad-lined Ic supernovae could be produced by similar mechanisms.

  10. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  11. Discretely Self-Similar Solutions to the Navier-Stokes Equations with Besov Space Data

    Science.gov (United States)

    Bradshaw, Zachary; Tsai, Tai-Peng

    2017-12-01

    We construct self-similar solutions to the three dimensional Navier-Stokes equations for divergence free, self-similar initial data that can be large in the critical Besov space {\\dot{B}_{p,∞}^{3/p-1}} where 3 1. These results extend those of uc(Bradshaw) and uc(Tsai) (Ann Henri Poincaré 2016. https://doi.org/10.1007/s00023-016-0519-0) which dealt with initial data in L 3 w since {L^3_w\\subsetneq \\dot{B}_{p,∞}^{3/p-1}} for p > 3. We also provide several concrete examples of vector fields in the relevant function spaces.

  12. Chirped self-similar solutions of a generalized nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Fei Jin-Xi [Lishui Univ., Zhejiang (China). College of Mathematics and Physics; Zheng Chun-Long [Shaoguan Univ., Guangdong (China). School of Physics and Electromechanical Engineering; Shanghai Univ. (China). Shanghai Inst. of Applied Mathematics and Mechanics

    2011-01-15

    An improved homogeneous balance principle and an F-expansion technique are used to construct exact chirped self-similar solutions to the generalized nonlinear Schroedinger equation with distributed dispersion, nonlinearity, and gain coefficients. Such solutions exist under certain conditions and impose constraints on the functions describing dispersion, nonlinearity, and distributed gain function. The results show that the chirp function is related only to the dispersion coefficient, however, it affects all of the system parameters, which influence the form of the wave amplitude. As few characteristic examples and some simple chirped self-similar waves are presented. (orig.)

  13. Dynamic stability of self-similar solutions for a plasma pinch

    International Nuclear Information System (INIS)

    Ma, Sifeng.

    1988-01-01

    Linear Magnetohydrodynamic (MHD) stability theory is applied to a class of self-similar solutions which describe implosion, expansion and oscillation of an infinitely conducting plasma column. The equations of perturbation are derived in the Lagrangian coordinate system. Numerical procedures via the finite-element method are formulated, and general aspects of dynamic stability are discussed, The dynamic stability of the column when it is oscillatory is studied in detail using the Floquet theory, and the characteristic exponent is calculated numerically. A-pinch configuration is examined. It is found that self-similar oscillations in general destabilize the continua in the MHD spectrum, and parametric instability results

  14. Cosmological model with anisotropic dark energy and self-similarity of the second kind

    International Nuclear Information System (INIS)

    Brandt, Carlos F. Charret; Silva, Maria de Fatima A. da; Rocha, Jaime F. Villas da; Chan, Roberto

    2006-01-01

    We study the evolution of an anisotropic fluid with self-similarity of the second kind. We found a class of solution to the Einstein field equations by assuming an equation of state where the radial pressure of the fluid is proportional to its energy density (p r =ωρ) and that the fluid moves along time-like geodesics. The equation of state and the anisotropy with self-similarity of second kind imply ω = -1. The energy conditions, geometrical and physical properties of the solutions are studied. We have found that for the parameter α=-1/2 , it may represent a Big Rip cosmological model. (author)

  15. Stable non-Gaussian self-similar processes with stationary increments

    CERN Document Server

    Pipiras, Vladas

    2017-01-01

    This book provides a self-contained presentation on the structure of a large class of stable processes, known as self-similar mixed moving averages. The authors present a way to describe and classify these processes by relating them to so-called deterministic flows. The first sections in the book review random variables, stochastic processes, and integrals, moving on to rigidity and flows, and finally ending with mixed moving averages and self-similarity. In-depth appendices are also included. This book is aimed at graduate students and researchers working in probability theory and statistics.

  16. Self-similar photonic crystal cavity with ultrasmall mode volume for single-photon nonlinearities

    DEFF Research Database (Denmark)

    Choi, Hyeongrak; Heuck, Mikkel; Englund, Dirk

    2017-01-01

    We propose a photonic crystal cavity design with self-similar structure to achieve ultrasmall mode volume. We describe the concept with a silicon-air nanobeam cavity at λ ∼ 1550nm, reaching a mode volume of ∼ 7.01 × 10∼5λ3.......We propose a photonic crystal cavity design with self-similar structure to achieve ultrasmall mode volume. We describe the concept with a silicon-air nanobeam cavity at λ ∼ 1550nm, reaching a mode volume of ∼ 7.01 × 10∼5λ3....

  17. Self-similarity of proton spin and asymmetry of jet production

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Zborovský, Imrich

    2015-01-01

    Roč. 12, č. 2 (2015), s. 214-220 ISSN 1547-4771 R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : asymmetry * high energy * jets * polarization * proton-proton collisions * Self-similarity Subject RIV: BE - Theoretical Physics

  18. Smooth Optical Self-similar Emission of Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Lipunov, Vladimir; Simakov, Sergey; Gorbovskoy, Evgeny; Vlasenko, Daniil, E-mail: lipunov2007@gmail.com [Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky prospect, 13, 119992, Moscow (Russian Federation)

    2017-08-10

    We offer a new type of calibration for gamma-ray bursts (GRB), in which some class of GRB can be marked and share a common behavior. We name this behavior Smooth Optical Self-similar Emission (SOS-similar Emission) and identify this subclasses of GRBs with optical light curves described by a universal scaling function.

  19. Isomonodromic deformations and self-similar solutions of the Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Kitaev, A.V.

    1992-01-01

    It is shown that the self-similar solutions of the Einstein-Maxwell equations in the cylindrical case describe the isomonodromic deformations of ordinary linear differential equations with rational coefficients. New types of such solutions, expressed in terms of the fifth Painleve transcendent, are found. 24 refs

  20. Non-self-similar cracking in unidirectional metal-matrix composites

    International Nuclear Information System (INIS)

    Rajesh, G.; Dharani, L.R.

    1993-01-01

    Experimental investigations on the fracture behavior of unidirectional Metal Matrix Composites (MMC) show the presence of extensive matrix damage and non-self-similar cracking of fibers near the notch tip. These failures are primarily observed in the interior layers of an MMC, presenting experimental difficulties in studying them. Hence an investigation of the matrix damage and fiber fracture near the notch tip is necessary to determine the stress concentration at the notch tip. The classical shear lag (CLSL) assumption has been used in the present study to investigate longitudinal matrix damage and nonself-similar cracking of fibers at the notch tip of an MMC. It is seen that non-self-similar cracking of fibers reduces the stress concentration at the notch tip considerably and the effect of matrix damage is negligible after a large number of fibers have broken beyond the notch tip in a non-self-similar manner. Finally, an effort has been made to include non-self-similar fiber fracture and matrix damage to model the fracture behavior of a unidirectional boron/aluminum composite for two different matrices viz. a 6061-0 fully annealed aluminum matrix and a heat treated 6061-T6 aluminum matrix. Results have been drawn for several characteristics pertaining to the shear stiffnesses and the shear yield stresses of the two matrices and compared with the available experimental results

  1. Self-similar cosmological solutions with dark energy. II. Black holes, naked singularities, and wormholes

    International Nuclear Information System (INIS)

    Maeda, Hideki; Harada, Tomohiro; Carr, B. J.

    2008-01-01

    We use a combination of numerical and analytical methods, exploiting the equations derived in a preceding paper, to classify all spherically symmetric self-similar solutions which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ-1)μ with 0<γ<2/3. The expansion of the Friedmann universe is accelerated in this case. We find a one-parameter family of self-similar solutions representing a black hole embedded in a Friedmann background. This suggests that, in contrast to the positive pressure case, black holes in a universe with dark energy can grow as fast as the Hubble horizon if they are not too large. There are also self-similar solutions which contain a central naked singularity with negative mass and solutions which represent a Friedmann universe connected to either another Friedmann universe or some other cosmological model. The latter are interpreted as self-similar cosmological white hole or wormhole solutions. The throats of these wormholes are defined as two-dimensional spheres with minimal area on a spacelike hypersurface and they are all nontraversable because of the absence of a past null infinity

  2. Self-similarity in the equation of motion of a ship

    Directory of Open Access Journals (Sweden)

    Gyeong Joong Lee

    2014-06-01

    Full Text Available If we want to analyze the motion of a body in fluid, we should use rigid-body dynamics and fluid dynamics together. Even if the rigid-body and fluid dynamics are each self-consistent, there arises the problem of self-similar structure in the equation of motion when the two dynamics are coupled with each other. When the added mass is greater than the mass of a body, the calculated motion is divergent because of its self-similar structure. This study showed that the above problem is an inherent problem. This problem of self-similar structure may arise in the equation of motion in which the fluid dynamic forces are treated as external forces on the right hand side of the equation. A reconfiguration technique for the equation of motion using pseudo-added-mass was proposed to resolve the self-similar structure problem; specifically for the case when the fluid force is expressed by integration of the fluid pressure.

  3. Self-similar drag reduction in plug-flow of suspensions of macroscopic fibers

    NARCIS (Netherlands)

    Gillissen, J.J.J.; Hoving, J.P.

    2012-01-01

    Pipe flow experiments show that turbulent drag reduction in plug-flow of concentrated suspensions of macroscopic fibers is a self-similar function of the wall shear stress over the fiber network yield stress. We model the experimental observations, by assuming a central fiber network plug, whose

  4. Self-Similarity and helical symmetry in vortex generator flow simulations

    DEFF Research Database (Denmark)

    Fernandez, U.; Velte, Clara Marika; Réthoré, Pierre-Elouan

    2014-01-01

    According to experimental observations, the vortices generated by vortex generators have previously been observed to be self-similar for both the axial (uz) and azimuthal (uӨ) velocity profiles. Further, the measured vortices have been observed to obey the criteria for helical symmetry...

  5. Self-similarity of the union of 3-part Cantor set with its two translations

    Energy Technology Data Exchange (ETDEWEB)

    Dai Meifeng [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)], E-mail: daimf@ujs.edu.cn; Tian Lixin [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)], E-mail: tianlx@ujs.edu.cn

    2008-07-15

    For 3-part Cantor set, we first discuss the relationship between iterated function systems and the union of the set with its two translations. Then we obtain the necessary and sufficient condition that the union is a self-similar set with the open set condition.

  6. Collapsing perfect fluid in self-similar five dimensional space-time and cosmic censorship

    International Nuclear Information System (INIS)

    Ghosh, S.G.; Sarwe, S.B.; Saraykar, R.V.

    2002-01-01

    We investigate the occurrence and nature of naked singularities in the gravitational collapse of a self-similar adiabatic perfect fluid in a five dimensional space-time. The naked singularities are found to be gravitationally strong in the sense of Tipler and thus violate the cosmic censorship conjecture

  7. A NUMERICAL STUDY OF UNIVERSALITY AND SELF-SIMILARITY IN SOME FAMILIES OF FORCED LOGISTIC MAPS

    NARCIS (Netherlands)

    Rabassa, Pau; Jorba, Angel; Carles Tatjer, Joan

    We explore different two-parametric families of quasi-periodically Forced Logistic Maps looking for universality and self-similarity properties. In the bifurcation diagram of the one-dimensional Logistic Map, it is well known that there exist parameter values s(n) where the 2(n)-periodic orbit is

  8. Generalized Ornstein-Uhlenbeck processes and associated self-similar processes

    International Nuclear Information System (INIS)

    Lim, S C; Muniandy, S V

    2003-01-01

    We consider three types of generalized Ornstein-Uhlenbeck processes: the stationary process obtained from the Lamperti transformation of fractional Brownian motion, the process with stretched exponential covariance and the process obtained from the solution of the fractional Langevin equation. These stationary Gaussian processes have many common properties, such as the fact that their local covariances share a similar structure and they exhibit identical spectral densities at large frequency limit. In addition, the generalized Ornstein-Uhlenbeck processes can be shown to be local stationary representations of fractional Brownian motion. Two new self-similar Gaussian processes, in addition to fractional Brownian motion, are obtained by applying the (inverse) Lamperti transformation to the generalized Ornstein-Uhlenbeck processes. We study some of the properties of these self-similar processes such as the long-range dependence. We give a simulation of their sample paths based on numerical Karhunan-Loeve expansion

  9. Generalized Ornstein-Uhlenbeck processes and associated self-similar processes

    CERN Document Server

    Lim, S C

    2003-01-01

    We consider three types of generalized Ornstein-Uhlenbeck processes: the stationary process obtained from the Lamperti transformation of fractional Brownian motion, the process with stretched exponential covariance and the process obtained from the solution of the fractional Langevin equation. These stationary Gaussian processes have many common properties, such as the fact that their local covariances share a similar structure and they exhibit identical spectral densities at large frequency limit. In addition, the generalized Ornstein-Uhlenbeck processes can be shown to be local stationary representations of fractional Brownian motion. Two new self-similar Gaussian processes, in addition to fractional Brownian motion, are obtained by applying the (inverse) Lamperti transformation to the generalized Ornstein-Uhlenbeck processes. We study some of the properties of these self-similar processes such as the long-range dependence. We give a simulation of their sample paths based on numerical Karhunan-Loeve expansi...

  10. Tests of peak flow scaling in simulated self-similar river networks

    Science.gov (United States)

    Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.

    2001-01-01

    The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.

  11. Reply to ''Comment on 'Extended self-similarity in turbulent flows' ''

    International Nuclear Information System (INIS)

    Benzi, R.; Ciliberto, S.; Tripiccione, R.; Baudet, C.; Massaioli, F.; Succi, S.

    1995-01-01

    In this Reply we question the conclusion of van de Water and Herweijer (WH) [preceding Comment, Phys. Rev. E 51, 2669 (1995)] about the evidence of multiscaling behavior in the dissipation range of turbulence. We perform the same analysis suggested by WH for the data set used by Benzi et al. [Phys. Rev. E 48, 29, (1993)] to establish extended self-similarity. At variance with WH, we do not observe any evidence of multiscaling. We argue that data filtering in WH could produce a misleading effect at very small scales. The combined effect of multiscaling and extended self-similarity is an important question that needs to be investigated in more detail, both theoretically and experimentally

  12. Self-similar formation of the Kolmogorov spectrum in the Leith model of turbulence

    International Nuclear Information System (INIS)

    Nazarenko, S V; Grebenev, V N

    2017-01-01

    The last stage of evolution toward the stationary Kolmogorov spectrum of hydrodynamic turbulence is studied using the Leith model [1]. This evolution is shown to manifest itself as a reflection wave in the wavenumber space propagating from the largest toward the smallest wavenumbers, and is described by a self-similar solution of a new (third) kind. This stage follows the previously studied stage of an initial explosive propagation of the spectral front from the smallest to the largest wavenumbers reaching arbitrarily large wavenumbers in a finite time, and which was described by a self-similar solution of the second kind [2–4]. Nonstationary solutions corresponding to ‘warm cascades’ characterised by a thermalised spectrum at large wavenumbers are also obtained. (paper)

  13. Violation of self-similarity in the expansion of a one-dimensional Bose gas

    International Nuclear Information System (INIS)

    Pedri, P.; Santos, L.; Oehberg, P.; Stringari, S.

    2003-01-01

    The expansion of a one-dimensional Bose gas after releasing its initial harmonic confinement is investigated employing the Lieb-Liniger equation of state within the local-density approximation. We show that during the expansion the density profile of the gas does not follow a self-similar solution, as one would expect from a simple scaling ansatz. We carry out a variational calculation, which recovers the numerical results for the expansion, the equilibrium properties of the density profile, and the frequency of the lowest compressional mode. The variational approach allows for the analysis of the expansion in all interaction regimes between the mean-field and the Tonks-Girardeau limits, and in particular shows the range of parameters for which the expansion violates self-similarity

  14. Self-similarity of proton spin and asymmetry of jet production

    International Nuclear Information System (INIS)

    Tokarev, M.V.; Zborovsky, I.

    2014-01-01

    Self-similarity of jet production in polarized p + p collisions is studied. The concept of z-scaling is applied for description of inclusive spectra obtained with different orientations of proton spin. New data on the double longitudinal spin asymmetry, A LL , of jets produced in proton-proton collisions at √s = 200 GeV measured by the STAR Collaboration at RHIC are analyzed in the z-scaling approach. Hypotheses of self-similarity and fractality of internal spin structure are formulated. A possibility to extract information on spin-dependent fractal dimensions of proton from the asymmetry of jet production is justified. The spin-dependent fractal dimensions for the process p-bar+p-bar→jet+X are estimated.

  15. Exact self-similar solutions for the magnetized Noh Z pinch problem

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Giuliani, J. L.; Thornhill, J. W.; Zalesak, S. T.; Gardiner, T. A.

    2012-01-01

    A self-similar solution is derived for a radially imploding cylindrical plasma with an embedded, azimuthal magnetic field. The plasma stagnates through a strong, outward propagating shock wave of constant velocity. This analysis is an extension of the classic Noh gasdynamics problem to its ideal magnetohydrodynamics (MHD) counterpart. The present exact solution is especially suitable as a test for MHD codes designed to simulate linear Z pinches. To demonstrate the application of the new solution to code verification, simulation results from the cylindrical R-Z version of Mach2 and the 3D Cartesian code Athena are compared against the analytic solution. Alternative routines from the default ones in Athena lead to significant improvement of the results, thereby demonstrating the utility of the self-similar solution for verification.

  16. Wind loads and competition for light sculpt trees into self-similar structures.

    Science.gov (United States)

    Eloy, Christophe; Fournier, Meriem; Lacointe, André; Moulia, Bruno

    2017-10-18

    Trees are self-similar structures: their branch lengths and diameters vary allometrically within the tree architecture, with longer and thicker branches near the ground. These tree allometries are often attributed to optimisation of hydraulic sap transport and safety against elastic buckling. Here, we show that these allometries also emerge from a model that includes competition for light, wind biomechanics and no hydraulics. We have developed MECHATREE, a numerical model of trees growing and evolving on a virtual island. With this model, we identify the fittest growth strategy when trees compete for light and allocate their photosynthates to grow seeds, create new branches or reinforce existing ones in response to wind-induced loads. Strikingly, we find that selected trees species are self-similar and follow allometric scalings similar to those observed on dicots and conifers. This result suggests that resistance to wind and competition for light play an essential role in determining tree allometries.

  17. Rayleigh-Taylor instability of a self-similar spherical expansion

    International Nuclear Information System (INIS)

    Bernstein, I.B.; Book, D.L.

    1978-01-01

    The self-similar motion of a spherically symmetric isentropic cloud of ideal gas driven outward by an expanding low-density medium (e.g., radiation pressure from a pulsar) is shown to be unstable to Rayleigh-Taylor modes which develop in the neighborhood of the interface. A complete solution of the linearized equations of motion is obtained. The implications for astrophysical phenomena are discussed

  18. Self-similar regimes of fast ionization waves in shielded discharge tubes

    International Nuclear Information System (INIS)

    Gerasimov, D.N.; Sinkevich, O.A.

    1999-01-01

    An analytical self-similar solution to the problem of the propagation of a fast ionization wave (FIW) in a long shielded tube is constructed. An expression determining the influence of the device parameters on the FIW velocity is obtained; the velocity is found to be the nonmonotonic function of the working-gas pressure. The theoretical predictions are compared with the results of experiments carried out with helium and nitrogen. The calculation and experimental results agree within experimental errors

  19. Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities

    DEFF Research Database (Denmark)

    Choi, Hyeongrak; Heuck, Mikkel; Englund, Dirk R.

    2017-01-01

    We propose a photonic crystal nanocavity design with self-similar electromagnetic boundary conditions, achieving ultrasmall mode volume (V-eff). The electric energy density of a cavity mode can be maximized in the air or dielectric region, depending on the choice of boundary conditions. We illust...... at the single-photon level. These features open new directions in cavity quantum electrodynamics, spectroscopy, and quantum nonlinear optics....

  20. Self-similar solutions for implosion and reflection of strong and weak shocks in a plasma

    International Nuclear Information System (INIS)

    Desai, B.N.; Chavda, L.K.

    1980-06-01

    We present an improved approximation scheme for finding approximate solutions in analytic form to the self-similar equations of gas dynamics. The method gives better agreement with exact results not only for the weak shocks which were considered previously but also for strong shocks for which the previous method gave poor results. We have considered various shock configurations in spherical and cylindrical geometries. (author)

  1. Self-similar structure in the distribution and density of the partition function zeros

    International Nuclear Information System (INIS)

    Huang, M.-C.; Luo, Y.-P.; Liaw, T.-M.

    2003-01-01

    Based on the knowledge of the partition function zeros for the cell-decorated triangular Ising model, we analyze the similar structures contained in the distribution pattern and density function of the zeros. The two own the same symmetries, and the arising of the similar structure in the road toward the infinite decoration-level is exhibited explicitly. The distinct features of the formation of the self-similar structure revealed from this model may be quite general

  2. Self-similarities of periodic structures for a discrete model of a two-gene system

    International Nuclear Information System (INIS)

    Souza, S.L.T. de; Lima, A.A.; Caldas, I.L.; Medrano-T, R.O.; Guimarães-Filho, Z.O.

    2012-01-01

    We report self-similar properties of periodic structures remarkably organized in the two-parameter space for a two-gene system, described by two-dimensional symmetric map. The map consists of difference equations derived from the chemical reactions for gene expression and regulation. We characterize the system by using Lyapunov exponents and isoperiodic diagrams identifying periodic windows, denominated Arnold tongues and shrimp-shaped structures. Period-adding sequences are observed for both periodic windows. We also identify Fibonacci-type series and Golden ratio for Arnold tongues, and period multiple-of-three windows for shrimps. -- Highlights: ► The existence of noticeable periodic windows has been reported recently for several nonlinear systems. ► The periodic window distributions appear highly organized in two-parameter space. ► We characterize self-similar properties of Arnold tongues and shrimps for a two-gene model. ► We determine the period of the Arnold tongues recognizing a Fibonacci-type sequence. ► We explore self-similar features of the shrimps identifying multiple period-three structures.

  3. Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas.

    Science.gov (United States)

    Bellido, Edson P; Bernasconi, Gabriel D; Rossouw, David; Butet, Jérémy; Martin, Olivier J F; Botton, Gianluigi A

    2017-11-28

    We investigate the plasmonic behavior of Koch snowflake fractal geometries and their possible application as broadband optical antennas. Lithographically defined planar silver Koch fractal antennas were fabricated and characterized with high spatial and spectral resolution using electron energy loss spectroscopy. The experimental data are supported by numerical calculations carried out with a surface integral equation method. Multiple surface plasmon edge modes supported by the fractal structures have been imaged and analyzed. Furthermore, by isolating and reproducing self-similar features in long silver strip antennas, the edge modes present in the Koch snowflake fractals are identified. We demonstrate that the fractal response can be obtained by the sum of basic self-similar segments called characteristic edge units. Interestingly, the plasmon edge modes follow a fractal-scaling rule that depends on these self-similar segments formed in the structure after a fractal iteration. As the size of a fractal structure is reduced, coupling of the modes in the characteristic edge units becomes relevant, and the symmetry of the fractal affects the formation of hybrid modes. This analysis can be utilized not only to understand the edge modes in other planar structures but also in the design and fabrication of fractal structures for nanophotonic applications.

  4. Self-similarities of periodic structures for a discrete model of a two-gene system

    Energy Technology Data Exchange (ETDEWEB)

    Souza, S.L.T. de, E-mail: thomaz@ufsj.edu.br [Departamento de Física e Matemática, Universidade Federal de São João del-Rei, Ouro Branco, MG (Brazil); Lima, A.A. [Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, São Paulo, SP (Brazil); Medrano-T, R.O. [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP (Brazil); Guimarães-Filho, Z.O. [Aix-Marseille Univ., CNRS PIIM UMR6633, International Institute for Fusion Science, Marseille (France)

    2012-03-12

    We report self-similar properties of periodic structures remarkably organized in the two-parameter space for a two-gene system, described by two-dimensional symmetric map. The map consists of difference equations derived from the chemical reactions for gene expression and regulation. We characterize the system by using Lyapunov exponents and isoperiodic diagrams identifying periodic windows, denominated Arnold tongues and shrimp-shaped structures. Period-adding sequences are observed for both periodic windows. We also identify Fibonacci-type series and Golden ratio for Arnold tongues, and period multiple-of-three windows for shrimps. -- Highlights: ► The existence of noticeable periodic windows has been reported recently for several nonlinear systems. ► The periodic window distributions appear highly organized in two-parameter space. ► We characterize self-similar properties of Arnold tongues and shrimps for a two-gene model. ► We determine the period of the Arnold tongues recognizing a Fibonacci-type sequence. ► We explore self-similar features of the shrimps identifying multiple period-three structures.

  5. Neural processing of race during imitation: self-similarity versus social status

    Science.gov (United States)

    Reynolds Losin, Elizabeth A.; Cross, Katy A.; Iacoboni, Marco; Dapretto, Mirella

    2017-01-01

    People preferentially imitate others who are similar to them or have high social status. Such imitative biases are thought to have evolved because they increase the efficiency of cultural acquisition. Here we focused on distinguishing between self-similarity and social status as two candidate mechanisms underlying neural responses to a person’s race during imitation. We used fMRI to measure neural responses when 20 African American (AA) and 20 European American (EA) young adults imitated AA, EA and Chinese American (CA) models and also passively observed their gestures and faces. We found that both AA and EA participants exhibited more activity in lateral fronto-parietal and visual regions when imitating AAs compared to EAs or CAs. These results suggest that racial self-similarity is not likely to modulate neural responses to race during imitation, in contrast with findings from previous neuroimaging studies of face perception and action observation. Furthermore, AA and EA participants associated AAs with lower social status than EAs or CAs, suggesting that the social status associated with different racial groups may instead modulate neural activity during imitation of individuals from those groups. Taken together, these findings suggest that neural responses to race during imitation are driven by socially-learned associations rather than self-similarity. This may reflect the adaptive role of imitation in social learning, where learning from higher-status models can be more beneficial. This study provides neural evidence consistent with evolutionary theories of cultural acquisition. PMID:23813738

  6. Soliton shock wave fronts and self-similar discontinuities in dispersion hydrodynamics

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Meshcherkin, A.P.

    1987-01-01

    Nonlinear flows in nondissipative dispersion hydrodynamics are examined. It is demonstrated that in order to describe such flows it is necessary to incorporate a new concept: a special discontinuity called a ''self-similar'' discontinuity consisting of a nondissipative shock wave and a powerful slow wave discontinuity in regular hydrodynamics. The ''self similar discontinuity'' expands linearly over time. It is demonstrated that this concept may be introduced in a solution to Euler equations. The boundary conditions of the ''self similar discontinuity'' that allow closure of Euler equations for dispersion hydrodynamics are formulated, i.e., those that replace the shock adiabatic curve of standard dissipative hydrodynamics. The structure of the soliton front and of the trailing edge of the shock wave is investigated. A classification and complete solution are given to the problem of the decay of random initial discontinuities in the hydrodynamics of highly nonisothermic plasma. A solution is derived to the problem of the decay of initial discontinuities in the hydrodynamics of magnetized plasma. It is demonstrated that in this plasma, a feature of current density arises at the point of soliton inversion

  7. Self-similarity in high Atwood number Rayleigh-Taylor experiments

    Science.gov (United States)

    Mikhaeil, Mark; Suchandra, Prasoon; Pathikonda, Gokul; Ranjan, Devesh

    2017-11-01

    Self-similarity is a critical concept in turbulent and mixing flows. In the Rayleigh-Taylor instability, theory and simulations have shown that the flow exhibits properties of self-similarity as the mixing Reynolds number exceeds 20000 and the flow enters the turbulent regime. Here, we present results from the first large Atwood number (0.7) Rayleigh-Taylor experimental campaign for mixing Reynolds number beyond 20000 in an effort to characterize the self-similar nature of the instability. Experiments are performed in a statistically steady gas tunnel facility, allowing for the evaluation of turbulence statistics. A visualization diagnostic is used to study the evolution of the mixing width as the instability grows. This allows for computation of the instability growth rate. For the first time in such a facility, stereoscopic particle image velocimetry is used to resolve three-component velocity information in a plane. Velocity means, fluctuations, and correlations are considered as well as their appropriate scaling. Probability density functions of velocity fields, energy spectra, and higher-order statistics are also presented. The energy budget of the flow is described, including the ratio of the kinetic energy to the released potential energy. This work was supported by the DOE-NNSA SSAA Grant DE-NA0002922.

  8. Self-similar dynamic converging shocks - I. An isothermal gas sphere with self-gravity

    Science.gov (United States)

    Lou, Yu-Qing; Shi, Chun-Hui

    2014-07-01

    We explore novel self-similar dynamic evolution of converging spherical shocks in a self-gravitating isothermal gas under conceivable astrophysical situations. The construction of such converging shocks involves a time-reversal operation on feasible flow profiles in self-similar expansion with a proper care for the increasing direction of the specific entropy. Pioneered by Guderley since 1942 but without self-gravity so far, self-similar converging shocks are important for implosion processes in aerodynamics, combustion, and inertial fusion. Self-gravity necessarily plays a key role for grossly spherical structures in very broad contexts of astrophysics and cosmology, such as planets, stars, molecular clouds (cores), compact objects, planetary nebulae, supernovae, gamma-ray bursts, supernova remnants, globular clusters, galactic bulges, elliptical galaxies, clusters of galaxies as well as relatively hollow cavity or bubble structures on diverse spatial and temporal scales. Large-scale dynamic flows associated with such quasi-spherical systems (including collapses, accretions, fall-backs, winds and outflows, explosions, etc.) in their initiation, formation, and evolution are likely encounter converging spherical shocks at times. Our formalism lays an important theoretical basis for pertinent astrophysical and cosmological applications of various converging shock solutions and for developing and calibrating numerical codes. As examples, we describe converging shock triggered star formation, supernova explosions, and void collapses.

  9. Waveguiding and mirroring effects in stochastic self-similar and Cantorian ε(∞) universe

    International Nuclear Information System (INIS)

    Iovane, G.

    2005-01-01

    A waveguiding effect is considered with respect to the large scale structure of the Universe, where the structures formation appears as if it were a classically self-similar random process at all astrophysical scales. The result is that it seems we live in an El Naschie's ε (∞) Cantorian space-time, where gravitational lensing and waveguiding effects can explain the appearing Universe. In particular, we consider filamentary and planar large scale structures as possible refraction channels for electromagnetic radiation coming from cosmological structures. From this vision the Universe appears like a large self-similar adaptive mirrors set. Consequently, an infinite Universe is just an optical illusion that is produced by mirroring effects connected with the large scale structure of a finite and not so large Universe. Thanks to the presented analytical model supported by a numerical simulation, it is possible to explain the quasar luminosity distribution and the presence of 'twin' or 'brother' objects. More generally, the infinity and the abundance of astrophysical objects could be just a mirroring effect due to the peculiar self-similarity of the Universe

  10. A novel numerical framework for self-similarity in plasticity: Wedge indentation in single crystals

    Science.gov (United States)

    Juul, K. J.; Niordson, C. F.; Nielsen, K. L.; Kysar, J. W.

    2018-03-01

    A novel numerical framework for analyzing self-similar problems in plasticity is developed and demonstrated. Self-similar problems of this kind include processes such as stationary cracks, void growth, indentation etc. The proposed technique offers a simple and efficient method for handling this class of complex problems by avoiding issues related to traditional Lagrangian procedures. Moreover, the proposed technique allows for focusing the mesh in the region of interest. In the present paper, the technique is exploited to analyze the well-known wedge indentation problem of an elastic-viscoplastic single crystal. However, the framework may be readily adapted to any constitutive law of interest. The main focus herein is the development of the self-similar framework, while the indentation study serves primarily as verification of the technique by comparing to existing numerical and analytical studies. In this study, the three most common metal crystal structures will be investigated, namely the face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close packed (HCP) crystal structures, where the stress and slip rate fields around the moving contact point singularity are presented.

  11. Self-Similarity Superresolution for Resource-Constrained Image Sensor Node in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yuehai Wang

    2014-01-01

    Full Text Available Wireless sensor networks, in combination with image sensors, open up a grand sensing application field. It is a challenging problem to recover a high resolution (HR image from its low resolution (LR counterpart, especially for low-cost resource-constrained image sensors with limited resolution. Sparse representation-based techniques have been developed recently and increasingly to solve this ill-posed inverse problem. Most of these solutions are based on an external dictionary learned from huge image gallery, consequently needing tremendous iteration and long time to match. In this paper, we explore the self-similarity inside the image itself, and propose a new combined self-similarity superresolution (SR solution, with low computation cost and high recover performance. In the self-similarity image super resolution model (SSIR, a small size sparse dictionary is learned from the image itself by the methods such as KSVD. The most similar patch is searched and specially combined during the sparse regulation iteration. Detailed information, such as edge sharpness, is preserved more faithfully and clearly. Experiment results confirm the effectiveness and efficiency of this double self-learning method in the image super resolution.

  12. Self-similarity of high-pT hadron production in cumulative processes and violation of discrete symmetries at small scales (suggestion for experiment)

    International Nuclear Information System (INIS)

    Tokarev, M.V.; Zborovsky, I.

    2009-01-01

    The hypothesis of self-similarity of hadron production in relativistic heavy ion collisions for search for phase transition in a nuclear matter is discussed. It is offered to use the established features of z-scaling for revealing signatures of new physics in cumulative region. It is noted that selection of events on centrality in cumulative region could help to localize a position of a critical point. Change of parameters of the theory (a specific heat and fractal dimensions) near to a critical point is considered as a signature of new physics. The relation of the power asymptotic of ψ(z) at high z, anisotropy of momentum space due to spontaneous symmetry breaking, and discrete (C, P, T) symmetries is emphasized

  13. Graphical user interface based computer simulation of self-similar modes of a paraxial slow self-focusing laser beam for saturating plasma nonlinearities

    International Nuclear Information System (INIS)

    Batra, Karuna; Mitra, Sugata; Subbarao, D.; Sharma, R.P.; Uma, R.

    2005-01-01

    The task for the present study is to make an investigation of self-similarity in a self-focusing laser beam both theoretically and numerically using graphical user interface based interactive computer simulation model in MATLAB (matrix laboratory) software in the presence of saturating ponderomotive force based and relativistic electron quiver based plasma nonlinearities. The corresponding eigenvalue problem is solved analytically using the standard eikonal formalism and the underlying dynamics of self-focusing is dictated by the corrected paraxial theory for slow self-focusing. The results are also compared with computer simulation of self-focusing by the direct fast Fourier transform based spectral methods. It is found that the self-similar solution obtained analytically oscillates around the true numerical solution equating it at regular intervals. The simulation results are the main ones although a feasible semianalytical theory under many assumptions is given to understand the process. The self-similar profiles are called as self-organized profiles (not in a strict sense), which are found to be close to Laguerre-Gaussian curves for all the modes, the shape being conserved. This terminology is chosen because it has already been shown from a phase space analysis that the width of an initially Gaussian beam undergoes periodic oscillations that are damped when any absorption is added in the model, i.e., the beam width converges to a constant value. The research paper also tabulates the specific values of the normalized phase shift for solutions decaying to zero at large transverse distances for first three modes which can, however, be extended to higher order modes

  14. Transition to Δ matter from hot, dense nuclear matter within a relativistic mean field formulation of the nonlinear σ and ω model

    International Nuclear Information System (INIS)

    Li, Z.; Zhuo, Y.; Li, Z.; Mao, G.; Zhuo, Y.; Mao, G.; Greiner, W.

    1997-01-01

    An investigation of the transition to Δ matter is performed based on a relativistic mean field formulation of the nonlinear σ and ω model. We demonstrate that in addition to the Δ-meson coupling, the occurrence of the baryon resonance isomer also depends on the nucleon-meson coupling. Our results show that for the favored phenomenological value of m * and K, the Δ isomer exists at baryon density ∼2 3ρ 0 if β=1.31 is adopted. For universal coupling of the nucleon and Δ, the Δ density at baryon density ∼2 3ρ 0 and temperature ∼0.4 0.5 fm -1 is about normal nuclear matter density, which is in accord with a recent experimental finding. copyright 1997 The American Physical Society

  15. Size distribution of dust grains: A problem of self-similarity

    International Nuclear Information System (INIS)

    Henning, TH.; Dorschner, J.; Guertler, J.

    1989-01-01

    Distribution functions describing the results of natural processes frequently show the shape of power laws. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all

  16. Self-similar solutions for multi-species plasma mixing by gradient driven transport

    Science.gov (United States)

    Vold, E.; Kagan, G.; Simakov, A. N.; Molvig, K.; Yin, L.

    2018-05-01

    Multi-species transport of plasma ions across an initial interface between DT and CH is shown to exhibit self-similar species density profiles under 1D isobaric conditions. Results using transport theory from recent studies and using a Maxwell–Stephan multi-species approximation are found to be in good agreement for the self-similar mix profiles of the four ions under isothermal and isobaric conditions. The individual ion species mass flux and molar flux profile results through the mixing layer are examined using transport theory. The sum over species mass flux is confirmed to be zero as required, and the sum over species molar flux is related to a local velocity divergence needed to maintain pressure equilibrium during the transport process. The light ion species mass fluxes are dominated by the diagonal coefficients of the diffusion transport matrix, while for the heaviest ion species (C in this case), the ion flux with only the diagonal term is reduced by about a factor two from that using the full diffusion matrix, implying the heavy species moves more by frictional collisions with the lighter species than by its own gradient force. Temperature gradient forces were examined by comparing profile results with and without imposing constant temperature gradients chosen to be of realistic magnitude for ICF experimental conditions at a fuel-capsule interface (10 μm scale length or greater). The temperature gradients clearly modify the relative concentrations of the ions, for example near the fuel center, however the mixing across the fuel-capsule interface appears to be minimally influenced by the temperature gradient forces within the expected compression and burn time. Discussion considers the application of the self-similar profiles to specific conditions in ICF.

  17. Seismodynamics of extended underground structures and soils: Statement of the problem and self-similar solutions

    Science.gov (United States)

    Georgievskii, D. V.; Israilov, M. Sh.

    2015-07-01

    In the problems of common vibrations of extended underground structures (pipelines and tunnels) and soil, an approach of the one-dimensional deformation of the medium is developed; this approach is based on the assumption that the soil deformation in the direction of seismic wave propagation coinciding with the pipeline axis is prevailing. The analytic solutions are obtained in the cases where the wave velocity in the soil is respectively less or greater than the wave velocity in the pipeline. The parameters influencing the pipeline fracture are revealed and methods for increasing the seismic stability of such structures are given. The possibility of the pipeline fatigue fracture is pointed out. The statements and solutions of parabolic problems modeling the physical phenomena in soils in the case of discontinuous velocity on the boundaries at the initial time are given. The notion of generalized vorticity diffusion is introduced and the cases of self-similarity existence are classified. A detailed analysis is performed for the non-Newtonian polynomial fluid, the medium close in properties to the rigidly ideally plastic body, and the viscoplastic Shvedov—Bingham body. In the case of physically linear medium, new self-similar solutions are obtained which describe the process of unsteady axially symmetric shear in spherical coordinates. The first approximation to the asymptotic solution of the problem of the vortex sheet diffusion is constructed in a medium with small polynomial nonlinearity. The solutions polynomially decreasing to zero as the self-similar variable increases are proposed in the class of two-constant fluids.

  18. Earthquake source scaling and self-similarity estimation from stacking P and S spectra

    Science.gov (United States)

    Prieto, GermáN. A.; Shearer, Peter M.; Vernon, Frank L.; Kilb, Debi

    2004-08-01

    We study the scaling relationships of source parameters and the self-similarity of earthquake spectra by analyzing a cluster of over 400 small earthquakes (ML = 0.5 to 3.4) recorded by the Anza seismic network in southern California. We compute P, S, and preevent noise spectra from each seismogram using a multitaper technique and approximate source and receiver terms by iteratively stacking the spectra. To estimate scaling relationships, we average the spectra in size bins based on their relative moment. We correct for attenuation by using the smallest moment bin as an empirical Green's function (EGF) for the stacked spectra in the larger moment bins. The shapes of the log spectra agree within their estimated uncertainties after shifting along the ω-3 line expected for self-similarity of the source spectra. We also estimate corner frequencies and radiated energy from the relative source spectra using a simple source model. The ratio between radiated seismic energy and seismic moment (proportional to apparent stress) is nearly constant with increasing moment over the magnitude range of our EGF-corrected data (ML = 1.8 to 3.4). Corner frequencies vary inversely as the cube root of moment, as expected from the observed self-similarity in the spectra. The ratio between P and S corner frequencies is observed to be 1.6 ± 0.2. We obtain values for absolute moment and energy by calibrating our results to local magnitudes for these earthquakes. This yields a S to P energy ratio of 9 ± 1.5 and a value of apparent stress of about 1 MPa.

  19. Effective self-similar expansion for the Gross-Pitaevskii equation

    Science.gov (United States)

    Modugno, Michele; Pagnini, Gianni; Valle-Basagoiti, Manuel Angel

    2018-04-01

    We consider an effective scaling approach for the free expansion of a one-dimensional quantum wave packet, consisting in a self-similar evolution to be satisfied on average, i.e., by integrating over the coordinates. A direct comparison with the solution of the Gross-Pitaevskii equation shows that the effective scaling reproduces with great accuracy the exact evolution—the actual wave function is reproduced with a fidelity close to one—for arbitrary values of the interactions. This result represents a proof of concept of the effectiveness of the scaling ansatz, which has been used in different forms in the literature but never compared against the exact evolution.

  20. Anomalous Traffic Detection and Self-Similarity Analysis in the Environment of ATMSim

    Directory of Open Access Journals (Sweden)

    Hae-Duck J. Jeong

    2017-12-01

    Full Text Available Internet utilisation has steadily increased, predominantly due to the rapid recent development of information and communication networks and the widespread distribution of smartphones. As a result of this increase in Internet consumption, various types of services, including web services, social networking services (SNS, Internet banking, and remote processing systems have been created. These services have significantly enhanced global quality of life. However, as a negative side-effect of this rapid development, serious information security problems have also surfaced, which has led to serious to Internet privacy invasions and network attacks. In an attempt to contribute to the process of addressing these problems, this paper proposes a process to detect anomalous traffic using self-similarity analysis in the Anomaly Teletraffic detection Measurement analysis Simulator (ATMSim environment as a research method. Simulations were performed to measure normal and anomalous traffic. First, normal traffic for each attack, including the Address Resolution Protocol (ARP and distributed denial-of-service (DDoS was measured for 48 h over 10 iterations. Hadoop was used to facilitate processing of the large amount of collected data, after which MapReduce was utilised after storing the data in the Hadoop Distributed File System (HDFS. A new platform on Hadoop, the detection system ATMSim, was used to identify anomalous traffic after which a comparative analysis of the normal and anomalous traffic was performed through a self-similarity analysis. There were four categories of collected traffic that were divided according to the attack methods used: normal local area network (LAN traffic, DDoS attack, and ARP spoofing, as well as DDoS and ARP attack. ATMSim, the anomaly traffic detection system, was used to determine if real attacks could be identified effectively. To achieve this, the ATMSim was used in simulations for each scenario to test its ability to

  1. Self-similar solutions for poloidal magnetic field in turbulent jet

    International Nuclear Information System (INIS)

    Komissarov, S.S.; Ovchinnikov, I.L.

    1990-01-01

    Evolution of a large-scale magnetic field in a turbulent extragalactic source radio jets is considered. Self-similar solutions for a weak poloidal magnetic field transported by turbulent jet of incompressible fluid are found. It is shown that the radial profiles of the solutions are the eigenfunctions of a linear differential operator. In all the solutions, the strength of a large-scale field decreases more rapidly than that of a small-scale turbulent field. This can be understood as a decay of a large-scale field in the turbulent jet

  2. Non self-similar collapses described by the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Berge, L.; Pesme, D.

    1992-01-01

    We develop a rapid method in order to find the contraction rates of the radially symmetric collapsing solutions of the nonlinear Schroedinger equation defined for space dimensions exceeding a threshold value. We explicitly determine the asymptotic behaviour of these latter solutions by solving the non stationary linear problem relative to the nonlinear Schroedinger equation. We show that the self-similar states associated with the collapsing solutions are characterized by a spatial extent which is bounded from the top by a cut-off radius

  3. Dimensional analysis and self-similarity methods for engineers and scientists

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This ground-breaking reference provides an overview of key concepts in dimensional analysis, and then pushes well beyond traditional applications in fluid mechanics to demonstrate how powerful this tool can be in solving complex problems across many diverse fields. Of particular interest is the book's coverage of  dimensional analysis and self-similarity methods in nuclear and energy engineering. Numerous practical examples of dimensional problems are presented throughout, allowing readers to link the book's theoretical explanations and step-by-step mathematical solutions to practical impleme

  4. Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains

    International Nuclear Information System (INIS)

    Haque, Masudul

    2010-01-01

    For an anisotropic Heisenberg (XXZ) spin chain, we show that an open boundary induces a series of approximately self-similar features at different energy scales, high up in the eigenvalue spectrum. We present a nonequilibrium phenomenon related to this fractal structure, involving states in which a connected block near the edge is polarized oppositely to the rest of the chain. We show that such oppositely polarized blocks can be 'locked' to the edge of the spin chain and that there is a hierarchy of edge-locking effects at various orders of the anisotropy. The phenomenon enables dramatic control of quantum-state transmission and magnetization control.

  5. A self-similar model for conduction in the plasma erosion opening switch

    International Nuclear Information System (INIS)

    Mosher, D.; Grossmann, J.M.; Ottinger, P.F.; Colombant, D.G.

    1987-01-01

    The conduction phase of the plasma erosion opening switch (PEOS) is characterized by combining a 1-D fluid model for plasma hydrodynamics, Maxwell's equations, and a 2-D electron-orbit analysis. A self-similar approximation for the plasma and field variables permits analytic expressions for their space and time variations to be derived. It is shown that a combination of axial MHD compression and magnetic insulation of high-energy electrons emitted from the switch cathode can control the character of switch conduction. The analysis highlights the need to include additional phenomena for accurate fluid modeling of PEOS conduction

  6. Similarity and self-similarity in high energy density physics: application to laboratory astrophysics

    International Nuclear Information System (INIS)

    Falize, E.

    2008-10-01

    The spectacular recent development of powerful facilities allows the astrophysical community to explore, in laboratory, astrophysical phenomena where radiation and matter are strongly coupled. The titles of the nine chapters of the thesis are: from high energy density physics to laboratory astrophysics; Lie groups, invariance and self-similarity; scaling laws and similarity properties in High-Energy-Density physics; the Burgan-Feix-Munier transformation; dynamics of polytropic gases; stationary radiating shocks and the POLAR project; structure, dynamics and stability of optically thin fluids; from young star jets to laboratory jets; modelling and experiences for laboratory jets

  7. Self-similar collapse with cooling and heating in an expanding universe

    OpenAIRE

    Uchida, Shuji; Yoshida, Tatsuo

    2003-01-01

    We derive self-similar solutions including cooling and heating in an Einstein de-Sitter universe, and investigate the effects of cooling and heating on the gas density and temperature distributions. We assume that the cooling rate has a power-law dependence on the gas density and temperature, $\\Lambda$$\\propto$$\\rho^{A}T^{B}$, and the heating rate is $\\Gamma$$\\propto$$\\rho T$. The values of $A$ and $B$ are chosen by requiring that the cooling time is proportional to the Hubble time in order t...

  8. On the nature and impact of self-similarity in real-time systems

    OpenAIRE

    Enrique Hernández-Orallo; Vila Carbó, Juan Antonio

    2012-01-01

    In real-time systems with highly variable task execution times simplistic task models are insufficient to accurately model and to analyze the system. Variability can be tackled using distributions rather than a single value, but the proper charac- terization depends on the degree of variability. Self-similarity is one of the deep- est kinds of variability. It characterizes the fact that a workload is not only highly variable, but it is also bursty on many time-scales. This paper identifies in...

  9. Vertex labeling and routing in self-similar outerplanar unclustered graphs modeling complex networks

    International Nuclear Information System (INIS)

    Comellas, Francesc; Miralles, Alicia

    2009-01-01

    This paper introduces a labeling and optimal routing algorithm for a family of modular, self-similar, small-world graphs with clustering zero. Many properties of this family are comparable to those of networks associated with technological and biological systems with low clustering, such as the power grid, some electronic circuits and protein networks. For these systems, the existence of models with an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization) and also to understand the underlying mechanisms that have shaped their particular structure.

  10. A self-similar transformation for a dodecagonal quasiperiodic covering with T-clusters

    International Nuclear Information System (INIS)

    Liao, Longguang; Zhang, Wenbin; Yu, Tongxu; Cao, Zexian

    2013-01-01

    A single cluster covering for the ship tiling of a dodecagonal quasiperiodic structure is obtained via a self-similar transformation, by which a turtle-like cluster, dubbed as a T-cluster, comprising seven squares, twenty regular triangles and two 30°-rhombuses, is changed into twenty scaled-down T-clusters, each centering at a vertex of the original one. Remarkably, there are three types of transformations according to the distinct configuration of the 20 scaled-down T-clusters. Detailed data for the transformations are specified. The results are expected to be helpful for the study of the physical and structural properties of dodecagonal quasicrystals. (paper)

  11. Strange hadrons and antiprotons as probes of hot and dense nuclear matter in relativistic heavy-ion collisions; Seltsame Hadronen und Antiprotonen als Proben heisser und dichter Kernmaterie in relativistischen Schwerionenkollisionen

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Henry

    2010-09-15

    Strange particles play an important role as probes of relativistic heavy-ion collisions where hot and dense matter is studied. The focus of this thesis is on the production of strange particles within a transport model of Boltzmann-Uehling-Uhlenbeck (BUU) type. Current data of the HADES Collaboration concerning K{sup {+-}} and {phi} spectra provide the appropriate experimental framework. Moreover, the double-strange hyperon {xi}{sup -} is analyzed below the free NN production threshold. Hadron multiplicities, transversemomentum and rapidity spectra are compared with recent experimental data. Further important issues are in-medium mass shifts, the nuclear equation of state as well as the mean field of nucleons. Besides the study of AA collisions a comparison with recent ANKE data regarding the {phi} yield in pA collisions is done. Transparency ratios are determined and primarily investigated for absorption of {phi} mesons by means of the BUU transport code. Thereby, secondary {phi} production channels, isospin asymmetry and detector acceptance are important issues. A systematic analysis is presented for different system sizes. The momentum integrated Boltzmann equations describe dense nuclear matter on a hadronic level appearing in the Big Bang as well as in little bangs, in the context of kinetic off-equilibrium dynamics. This theory is applied to antiprotons and numerically calculated under consideration of various expansion models. Here, the evolution of proton- and antiproton densities till freeze-out is analyzed for ultra-relativistic heavy-ion collisions within a hadrochemic resonance gas model acting as a possible ansatz for solving the ''antiproton puzzle''. Furthermore, baryonic matter and antimatter is investigated in the early universe and the adiabatic path of cosmic matter is sketched in the QCD phase diagram. (orig.)

  12. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  13. An application of superpositions of two-state Markovian sources to the modelling of self-similar behaviour

    DEFF Research Database (Denmark)

    Andersen, Allan T.; Nielsen, Bo Friis

    1997-01-01

    We present a modelling framework and a fitting method for modelling second order self-similar behaviour with the Markovian arrival process (MAP). The fitting method is based on fitting to the autocorrelation function of counts a second order self-similar process. It is shown that with this fittin...

  14. Self-Similar Solutions of Variable-Coefficient Cubic-Quintic Nonlinear Schroedinger Equation with an External Potential

    International Nuclear Information System (INIS)

    Wu Hongyu; Fei Jinxi; Zheng Chunlong

    2010-01-01

    An improved homogeneous balance principle and an F-expansion technique are used to construct exact self-similar solutions to the cubic-quintic nonlinear Schroedinger equation. Such solutions exist under certain conditions, and impose constraints on the functions describing dispersion, nonlinearity, and the external potential. Some simple self-similar waves are presented. (general)

  15. Characterization of self-similarity properties of turbulence in magnetized plasmas

    International Nuclear Information System (INIS)

    Scipioni, A.; Rischette, P.; Bonhomme, G.; Devynck, P.

    2008-01-01

    The understanding of turbulence in magnetized plasmas and its role in the cross field transport is still greatly incomplete. Several previous works reported on evidences of long-time correlations compatible with an avalanche-type of radial transport. Persistence properties in time records have been deduced from high values of the Hurst exponent obtained with the rescaled range R/S analysis applied to experimental probe data acquired in the edge of tokamaks. In this paper the limitations of this R/S method, in particular when applied to signals having mixed statistics are investigated, and the great advantages of the wavelets decomposition as a tool to characterize the self-similarity properties of experimental signals are highlighted. Furthermore the analysis of modified simulated fractional Brownian motions (fBm) and fractional Gaussian noises (fGn) allows us to discuss the relationship between high values of the Hurst exponent and long range correlations. It is shown that for such simulated signals with mixed statistics persistence at large time scales can still reflect the self-similarity properties of the original fBm and do not imply the existence of long range correlations, which are destroyed. It is thus questionable to assert the existence of long range correlations for experimental signals with non-Gaussian and mixed statistics just from high values of the Hurst exponent.

  16. A solvable self-similar model of the sausage instability in a resistive Z pinch

    International Nuclear Information System (INIS)

    Lampe, M.

    1991-01-01

    A solvable model is developed for the linearized sausage mode within the context of resistive magnetohydrodynamics. The model is based on the assumption that the fluid motion of the plasma is self-similar, as well as several assumptions pertinent to the limit of wavelength long compared to the pinch radius. The perturbations to the magnetic field are not assumed to be self-similar, but rather are calculated. Effects arising from time dependences of the z-independent perturbed state, e.g., current rising as t α , Ohmic heating, and time variation of the pinch radius, are included in the analysis. The formalism appears to provide a good representation of ''global'' modes that involve coherent sausage distortion of the entire cross section of the pinch, but excludes modes that are localized radially, and higher radial eigenmodes. For this and other reasons, it is expected that the model underestimates the maximum instability growth rates, but is reasonable for global sausage modes. The net effect of resistivity and time variation of the unperturbed state is to decrease the growth rate if α approx-lt 1, but never by more than a factor of about 2. The effect is to increase the growth rate if α approx-gt 1

  17. Spectral analysis of multi-dimensional self-similar Markov processes

    International Nuclear Information System (INIS)

    Modarresi, N; Rezakhah, S

    2010-01-01

    In this paper we consider a discrete scale invariant (DSI) process {X(t), t in R + } with scale l > 1. We consider a fixed number of observations in every scale, say T, and acquire our samples at discrete points α k , k in W, where α is obtained by the equality l = α T and W = {0, 1, ...}. We thus provide a discrete time scale invariant (DT-SI) process X(.) with the parameter space {α k , k in W}. We find the spectral representation of the covariance function of such a DT-SI process. By providing the harmonic-like representation of multi-dimensional self-similar processes, spectral density functions of them are presented. We assume that the process {X(t), t in R + } is also Markov in the wide sense and provide a discrete time scale invariant Markov (DT-SIM) process with the above scheme of sampling. We present an example of the DT-SIM process, simple Brownian motion, by the above sampling scheme and verify our results. Finally, we find the spectral density matrix of such a DT-SIM process and show that its associated T-dimensional self-similar Markov process is fully specified by {R H j (1), R j H (0), j = 0, 1, ..., T - 1}, where R H j (τ) is the covariance function of jth and (j + τ)th observations of the process.

  18. Self-similar cosmological solutions with dark energy. I. Formulation and asymptotic analysis

    International Nuclear Information System (INIS)

    Harada, Tomohiro; Maeda, Hideki; Carr, B. J.

    2008-01-01

    Based on the asymptotic analysis of ordinary differential equations, we classify all spherically symmetric self-similar solutions to the Einstein equations which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ-1)μ with 0 1). However, in the latter case there is an additional parameter associated with the weak discontinuity at the sonic point and the solutions are only asymptotically 'quasi-Friedmann', in the sense that they exhibit an angle deficit at large distances. In the 0<γ<2/3 case, there is no sonic point and there exists a one-parameter family of solutions which are genuinely asymptotically Friedmann at large distances. We find eight classes of asymptotic behavior: Friedmann or quasi-Friedmann or quasistatic or constant-velocity at large distances, quasi-Friedmann or positive-mass singular or negative-mass singular at small distances, and quasi-Kantowski-Sachs at intermediate distances. The self-similar asymptotically quasistatic and quasi-Kantowski-Sachs solutions are analytically extendible and of great cosmological interest. We also investigate their conformal diagrams. The results of the present analysis are utilized in an accompanying paper to obtain and physically interpret numerical solutions

  19. Quantum mechanical analysis of fractal conductance fluctuations: a picture using self-similar periodic orbits

    International Nuclear Information System (INIS)

    Ogura, Tatsuo; Miyamoto, Masanori; Budiyono, Agung; Nakamura, Katsuhiro

    2007-01-01

    Fractal magnetoconductance fluctuations are often observed in experiments on ballistic quantum dots. Although the analysis of the exact self-affine fractal has been given by the semiclassical theory using self-similar periodic orbits in systems with a soft-walled potential with a saddle, there has been no corresponding quantum mechanical investigation. We numerically calculate the quantum conductance with use of the recursive Green's function method applied to open cavities characterized by a Henon-Heiles type potential. The conductance fluctuations show exact self-affinity just as in some of the experimental observations. The enlargement factor for the horizontal axis can be explained by the scaling factor of the area of self-similar periodic orbits, and therefore be attributed to the curvature of the saddle in the cavity potential. The fractal dimension obtained through the box counting method agrees with those evaluated with use of the Hurst exponent, and coincides with the semiclassical prediction. We further investigate the variation of the fractal dimension by changing the control parameters between the classical and quantum domains. (fast track communication)

  20. Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence.

    Science.gov (United States)

    Sharma, A S; Moarref, R; McKeon, B J

    2017-03-13

    Previous work has established the usefulness of the resolvent operator that maps the terms nonlinear in the turbulent fluctuations to the fluctuations themselves. Further work has described the self-similarity of the resolvent arising from that of the mean velocity profile. The orthogonal modes provided by the resolvent analysis describe the wall-normal coherence of the motions and inherit that self-similarity. In this contribution, we present the implications of this similarity for the nonlinear interaction between modes with different scales and wall-normal locations. By considering the nonlinear interactions between modes, it is shown that much of the turbulence scaling behaviour in the logarithmic region can be determined from a single arbitrarily chosen reference plane. Thus, the geometric scaling of the modes is impressed upon the nonlinear interaction between modes. Implications of these observations on the self-sustaining mechanisms of wall turbulence, modelling and simulation are outlined.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  1. CAN AGN FEEDBACK BREAK THE SELF-SIMILARITY OF GALAXIES, GROUPS, AND CLUSTERS?

    Energy Technology Data Exchange (ETDEWEB)

    Gaspari, M. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching (Germany); Brighenti, F. [Astronomy Department, University of Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Temi, P. [Astrophysics Branch, NASA/Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States); Ettori, S., E-mail: mgaspari@mpa-garching.mpg.de [INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy)

    2014-03-01

    It is commonly thought that active galactic nucleus (AGN) feedback can break the self-similar scaling relations of galaxies, groups, and clusters. Using high-resolution three-dimensional hydrodynamic simulations, we isolate the impact of AGN feedback on the L {sub x}-T {sub x} relation, testing the two archetypal and common regimes, self-regulated mechanical feedback and a quasar thermal blast. We find that AGN feedback has severe difficulty in breaking the relation in a consistent way. The similarity breaking is directly linked to the gas evacuation within R {sub 500}, while the central cooling times are inversely proportional to the core density. Breaking self-similarity thus implies breaking the cool core, morphing all systems to non-cool-core objects, which is in clear contradiction with the observed data populated by several cool-core systems. Self-regulated feedback, which quenches cooling flows and preserves cool cores, prevents dramatic evacuation and similarity breaking at any scale; the relation scatter is also limited. The impulsive thermal blast can break the core-included L {sub x}-T {sub x} at T {sub 500} ≲ 1 keV, but substantially empties and overheats the halo, generating a perennial non-cool-core group, as experienced by cosmological simulations. Even with partial evacuation, massive systems remain overheated. We show that the action of purely AGN feedback is to lower the luminosity and heat the gas, perpendicular to the fit.

  2. Self-similarity of solitary waves on inertia-dominated falling liquid films.

    Science.gov (United States)

    Denner, Fabian; Pradas, Marc; Charogiannis, Alexandros; Markides, Christos N; van Wachem, Berend G M; Kalliadasis, Serafim

    2016-03-01

    We propose consistent scaling of solitary waves on inertia-dominated falling liquid films, which accurately accounts for the driving physical mechanisms and leads to a self-similar characterization of solitary waves. Direct numerical simulations of the entire two-phase system are conducted using a state-of-the-art finite volume framework for interfacial flows in an open domain that was previously validated against experimental film-flow data with excellent agreement. We present a detailed analysis of the wave shape and the dispersion of solitary waves on 34 different water films with Reynolds numbers Re=20-120 and surface tension coefficients σ=0.0512-0.072 N m(-1) on substrates with inclination angles β=19°-90°. Following a detailed analysis of these cases we formulate a consistent characterization of the shape and dispersion of solitary waves, based on a newly proposed scaling derived from the Nusselt flat film solution, that unveils a self-similarity as well as the driving mechanism of solitary waves on gravity-driven liquid films. Our results demonstrate that the shape of solitary waves, i.e., height and asymmetry of the wave, is predominantly influenced by the balance of inertia and surface tension. Furthermore, we find that the dispersion of solitary waves on the inertia-dominated falling liquid films considered in this study is governed by nonlinear effects and only driven by inertia, with surface tension and gravity having a negligible influence.

  3. Method of synthesis of abstract images with high self-similarity

    Science.gov (United States)

    Matveev, Nikolay V.; Shcheglov, Sergey A.; Romanova, Galina E.; Koneva, Ð.¢atiana A.

    2017-06-01

    Abstract images with high self-similarity could be used for drug-free stress therapy. This based on the fact that a complex visual environment has a high affective appraisal. To create such an image we can use the setup based on the three laser sources of small power and different colors (Red, Green, Blue), the image is the pattern resulting from the reflecting and refracting by the complicated form object placed into the laser ray paths. The images were obtained experimentally which showed the good therapy effect. However, to find and to choose the object which gives needed image structure is very difficult and requires many trials. The goal of the work is to develop a method and a procedure of finding the object form which if placed into the ray paths can provide the necessary structure of the image In fact the task means obtaining the necessary irradiance distribution on the given surface. Traditionally such problems are solved using the non-imaging optics methods. In the given case this task is very complicated because of the complicated structure of the illuminance distribution and its high non-linearity. Alternative way is to use the projected image of a mask with a given structure. We consider both ways and discuss how they can help to speed up the synthesis procedure for the given abstract image of the high self-similarity for the setups of drug-free therapy.

  4. CAN AGN FEEDBACK BREAK THE SELF-SIMILARITY OF GALAXIES, GROUPS, AND CLUSTERS?

    International Nuclear Information System (INIS)

    Gaspari, M.; Brighenti, F.; Temi, P.; Ettori, S.

    2014-01-01

    It is commonly thought that active galactic nucleus (AGN) feedback can break the self-similar scaling relations of galaxies, groups, and clusters. Using high-resolution three-dimensional hydrodynamic simulations, we isolate the impact of AGN feedback on the L x -T x relation, testing the two archetypal and common regimes, self-regulated mechanical feedback and a quasar thermal blast. We find that AGN feedback has severe difficulty in breaking the relation in a consistent way. The similarity breaking is directly linked to the gas evacuation within R 500 , while the central cooling times are inversely proportional to the core density. Breaking self-similarity thus implies breaking the cool core, morphing all systems to non-cool-core objects, which is in clear contradiction with the observed data populated by several cool-core systems. Self-regulated feedback, which quenches cooling flows and preserves cool cores, prevents dramatic evacuation and similarity breaking at any scale; the relation scatter is also limited. The impulsive thermal blast can break the core-included L x -T x at T 500 ≲ 1 keV, but substantially empties and overheats the halo, generating a perennial non-cool-core group, as experienced by cosmological simulations. Even with partial evacuation, massive systems remain overheated. We show that the action of purely AGN feedback is to lower the luminosity and heat the gas, perpendicular to the fit

  5. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  6. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  7. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  8. The role of self-similarity in singularities of partial differential equations

    International Nuclear Information System (INIS)

    Eggers, Jens; Fontelos, Marco A

    2009-01-01

    We survey rigorous, formal and numerical results on the formation of point-like singularities (or blow-up) for a wide range of evolution equations. We use a similarity transformation of the original equation with respect to the blow-up point, such that self-similar behaviour is mapped to the fixed point of a dynamical system. We point out that analysing the dynamics close to the fixed point is a useful way of characterizing the singularity, in that the dynamics frequently reduces to very few dimensions. As far as we are aware, examples from the literature either correspond to stable fixed points, low-dimensional centre-manifold dynamics, limit cycles or travelling waves. For each 'class' of singularity, we give detailed examples. (invited article)

  9. Self-similar measures in multi-sector endogenous growth models

    International Nuclear Information System (INIS)

    La Torre, Davide; Marsiglio, Simone; Mendivil, Franklin; Privileggi, Fabio

    2015-01-01

    We analyze two types of stochastic discrete time multi-sector endogenous growth models, namely a basic Uzawa–Lucas (1965, 1988) model and an extended three-sector version as in La Torre and Marsiglio (2010). As in the case of sustained growth the optimal dynamics of the state variables are not stationary, we focus on the dynamics of the capital ratio variables, and we show that, through appropriate log-transformations, they can be converted into affine iterated function systems converging to an invariant distribution supported on some (possibly fractal) compact set. This proves that also the steady state of endogenous growth models—i.e., the stochastic balanced growth path equilibrium—might have a fractal nature. We also provide some sufficient conditions under which the associated self-similar measures turn out to be either singular or absolutely continuous (for the three-sector model we only consider the singularity).

  10. Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K.

    2012-01-01

    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  11. Bianchi VI{sub 0} and III models: self-similar approach

    Energy Technology Data Exchange (ETDEWEB)

    Belinchon, Jose Antonio, E-mail: abelcal@ciccp.e [Departamento de Fisica, ETS Arquitectura, UPM, Av. Juan de Herrera 4, Madrid 28040 (Spain)

    2009-09-07

    We study several cosmological models with Bianchi VI{sub 0} and III symmetries under the self-similar approach. We find new solutions for the 'classical' perfect fluid model as well as for the vacuum model although they are really restrictive for the equation of state. We also study a perfect fluid model with time-varying constants, G and LAMBDA. As in other studied models we find that the behaviour of G and LAMBDA are related. If G behaves as a growing time function then LAMBDA is a positive decreasing time function but if G is decreasing then LAMBDA{sub 0} is negative. We end by studying a massive cosmic string model, putting special emphasis in calculating the numerical values of the equations of state. We show that there is no SS solution for a string model with time-varying constants.

  12. Renormalization of the fragmentation equation: Exact self-similar solutions and turbulent cascades

    Science.gov (United States)

    Saveliev, V. L.; Gorokhovski, M. A.

    2012-12-01

    Using an approach developed earlier for renormalization of the Boltzmann collision integral [Saveliev and Nanbu, Phys. Rev. E1539-375510.1103/PhysRevE.65.051205 65, 051205 (2002)], we derive an exact divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation in size space, with the flux given explicitly. This allows us to obtain self-similar solutions and to find the integral of motion for these solutions (we call it the bare flux). We show how these solutions can be applied as a description of cascade processes in three- and two-dimensional turbulence. We also suggested an empirical cascade model of impact fragmentation of brittle materials.

  13. Compression of dark halos by baryon infall - Self-similar solutions

    International Nuclear Information System (INIS)

    Ryden, B.S.

    1991-01-01

    The compression of dissipationless halos by dissipative baryon infall is examined through the use of self-similar models. The models are spherically symmetric, with asymptotic density profiles of given form. A fraction f of the matter consists of freely falling baryons; the remainder of the matter, consisting of dark matter with initial dispersion anisotropy beta is gravitationally compressed by the infalling baryons. Analytic results are presented in the limiting cases f = 1 and f = 0. Numerical results are given for halos with varying values of alpha, beta, and f. The compression of the dark matter is found to be adiabatic and has a Mach number less than 1 throughout the halo. 10 refs

  14. Analytic self-similar solutions of the Oberbeck–Boussinesq equations

    International Nuclear Information System (INIS)

    Barna, I.F.; Mátyás, L.

    2015-01-01

    In this article we will present pure two-dimensional analytic solutions for the coupled non-compressible Newtonian–Navier–Stokes — with Boussinesq approximation — and the heat conduction equation. The system was investigated from E.N. Lorenz half a century ago with Fourier series and pioneered the way to the paradigm of chaos. We present a novel analysis of the same system where the key idea is the two-dimensional generalization of the well-known self-similar Ansatz of Barenblatt which will be interpreted in a geometrical way. The results, the pressure, temperature and velocity fields are all analytic and can be expressed with the help of the error functions. The temperature field shows a strongly damped single periodic oscillation which can mimic the appearance of Rayleigh–Bénard convection cells. Finally, it is discussed how our result may be related to nonlinear or chaotic dynamical regimes

  15. Local self-similarity descriptor for point-of-interest reconstruction of real-world scenes

    International Nuclear Information System (INIS)

    Gao, Xianglu; Wan, Weibing; Zhao, Qunfei; Zhang, Xianmin

    2015-01-01

    Scene reconstruction is utilized commonly in close-range photogrammetry, with diverse applications in fields such as industry, biology, and aerospace industries. Presented surfaces or wireframe three-dimensional (3D) model reconstruction applications are either too complex or too inflexible to accommodate various types of real-world scenes, however. This paper proposes an algorithm for acquiring point-of-interest (referred to throughout the study as POI) coordinates in 3D space, based on multi-view geometry and a local self-similarity descriptor. After reconstructing several POIs specified by a user, a concise and flexible target object measurement method, which obtains the distance between POIs, is described in detail. The proposed technique is able to measure targets with high accuracy even in the presence of obstacles and non-Lambertian surfaces. The method is so flexible that target objects can be measured with a handheld digital camera. Experimental results further demonstrate the effectiveness of the algorithm. (paper)

  16. Observation of Self-Similar Behavior of the 3D, Nonlinear Rayleigh-Taylor Instability

    International Nuclear Information System (INIS)

    Sadot, O.; Smalyuk, V.A.; Delettrez, J.A.; Sangster, T.C.; Goncharov, V.N.; Meyerhofer, D.D.; Betti, R.; Shvarts, D.

    2005-01-01

    The Rayleigh-Taylor unstable growth of laser-seeded, 3D broadband perturbations was experimentally measured in the laser-accelerated, planar plastic foils. The first experimental observation showing the self-similar behavior of the bubble size and amplitude distributions under ablative conditions is presented. In the nonlinear regime, the modulation σ rms grows as α σ gt 2 , where g is the foil acceleration, t is the time, and α σ is constant. The number of bubbles evolves as N(t)∝(ωt√(g)+C) -4 and the average size evolves as (t)∝ω 2 gt 2 , where C is a constant and ω=0.83±0.1 is the measured scaled bubble-merging rate

  17. Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity

    Directory of Open Access Journals (Sweden)

    Paolo Napoletano

    2018-01-01

    Full Text Available Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.

  18. The effective thermal conductivity of porous media based on statistical self-similarity

    International Nuclear Information System (INIS)

    Kou Jianlong; Wu Fengmin; Lu Hangjun; Xu Yousheng; Song Fuquan

    2009-01-01

    A fractal model is presented based on the thermal-electrical analogy technique and statistical self-similarity of fractal saturated porous media. A dimensionless effective thermal conductivity of saturated fractal porous media is studied by the relationship between the dimensionless effective thermal conductivity and the geometrical parameters of porous media with no empirical constant. Through this study, it is shown that the dimensionless effective thermal conductivity decreases with the increase of porosity (φ) and pore area fractal dimension (D f ) when k s /k g >1. The opposite trends is observed when k s /k g t ). The model predictions are compared with existing experimental data and the results show that they are in good agreement with existing experimental data.

  19. Odd-parity perturbations of the self-similar LTB spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Emily M; Nolan, Brien C, E-mail: emilymargaret.duffy27@mail.dcu.ie, E-mail: brien.nolan@dcu.ie [School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2011-05-21

    We consider the behaviour of odd-parity perturbations of those self-similar LemaItre-Tolman-Bondi spacetimes which admit a naked singularity. We find that a perturbation which evolves from initially regular data remains finite on the Cauchy horizon. Finiteness is demonstrated by considering the behaviour of suitable energy norms of the perturbation (and pointwise values of these quantities) on natural spacelike hypersurfaces. This result holds for a general choice of initial data and initial data surface. Finally, we examine the perturbed Weyl scalars in order to provide a physical interpretation of our results. Taken on its own, this result does not support cosmic censorship; however, a full perturbation of this spacetime would include even-parity perturbations, so we cannot conclude that this spacetime is stable to all linear perturbations.

  20. Internal structures of self-organized relaxed states and self-similar decay phase

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi

    1992-03-01

    A thought analysis on relaxation due to nonlinear processes is presented to lead to a set of general thoughts applicable to general nonlinear dynamical systems for finding out internal structures of the self-organized relaxed state without using 'invariant'. Three applications of the set of general thoughts to energy relaxations in resistive MHD plasmas, incompressible viscous fluids, and incompressible viscous MHD fluids are shown to lead to the internal structures of the self-organized relaxed states. It is shown that all of the relaxed states in these three dynamical systems are followed by self-similar decay phase without significant change of the spatial structure. The well known relaxed state of ∇ x B = ±λ B is shown to be derived generally in the low β plasma limit. (author)

  1. Self-similar density turbulence in the TCV tokamak scrape-off layer

    International Nuclear Information System (INIS)

    Graves, J P; Horacek, J; Pitts, R A; Hopcraft, K I

    2005-01-01

    Plasma fluctuations in the scrape-off layer (SOL) of the TCV tokamak exhibit statistical properties which are universal across a broad range of discharge conditions. Electron density fluctuations, from just inside the magnetic separatrix to the plasma-wall interface, are described well by a gamma distributed random variable. The density fluctuations exhibit clear evidence of self-similarity in the far SOL, such that the corresponding probability density functions collapse upon renormalization solely by the mean particle density. This constitutes a demonstration that the amplitude of the density fluctuations is simply proportional to the mean density and is consistent with the further observation that the radial particle flux fluctuations scale solely with the mean density over two orders of magnitude. Such findings indicate that it may be possible to improve the prediction of transport in the critical plasma-wall interaction region of future large scale tokamaks. (letter to the editor)

  2. Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study

    Science.gov (United States)

    Abkar, Mahdi; Dabiri, John O.

    2017-04-01

    Large eddy simulation (LES) is coupled with a turbine model to study the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a tuning-free anisotropic minimum dissipation model is used to parameterise the subfilter stress tensor, while the turbine-induced forces are modelled with an actuator line technique. The LES framework is first validated in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit can be well characterised by a two-dimensional multivariate Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine. Also, a simple parameterisation of VAWTs for LES with very coarse grid resolutions is proposed, in which the turbine is modelled as a rectangular porous plate with the same thrust coefficient. The simulation results show that, after some downwind distance (x/D ≈ 6), both actuator line and rectangular porous plate models have similar predictions for the mean velocity deficit. These results are of particular importance in simulations of large wind farms where, due to the coarse spatial resolution, the flow around individual VAWTs is not resolved.

  3. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  4. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  5. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  6. Computing the variations in the self-similar properties of the various gait intervals in Parkinson disease patients.

    Science.gov (United States)

    Manjeri Keloth, Sana; Arjunan, Sridhar P; Kumar, Dinesh

    2017-07-01

    This study has investigated the stride, swing, stance and double support intervals of gait for Parkinson's disease (PD) patients with different levels of severity. Self-similar properties of the gait signal were analyzed to investigate the changes in the gait pattern of the healthy and PD patients. To understand the self-similar property, detrended fluctuation analysis was performed. The analysis shows that the PD patients have less defined gait when compared to healthy. The study also shows that among the stance and swing phase of stride interval, the self-similarity is less for swing interval when compared to the stance interval of gait and decreases with the severity of gait. Also, PD patients show decreased self-similar patterns in double support interval of gait. This suggest that there are less rhythmic gait intervals and a sense of urgency to remain in support phase of gait by the PD patients.

  7. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation (Invited)

    Science.gov (United States)

    Xie, S.; Archer, C. L.

    2013-12-01

    In this study, a new large-eddy simulation code, the Wind Turbine and Turbulence Simulator (WiTTS), is developed to study the wake generated from a single wind turbine in the neutral ABL. The WiTTS formulation is based on a scale-dependent Lagrangian dynamical model of the sub-grid shear stress and uses actuator lines to simulate the effects of the rotating blades. WiTTS is first tested against wind tunnel experiments and then used to study the commonly-used assumptions of self-similarity and axis-symmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. The mean velocity deficit shows good self-similarity properties following a normal distribution in the horizontal plane at the hub-height level. Self-similarity is a less valid approximation in the vertical near the ground, due to strong wind shear and ground effects. The mean velocity deficit is strongly dependent on the thrust coefficient or induction factor. A new relationship is proposed to model the mean velocity deficit along the centerline at the hub-height level to fit the LES results piecewise throughout the wake. A logarithmic function is used in the near and intermediate wake regions whereas a power function is used in the far-wake. These two functions provide a better fit to both simulated and observed wind velocity deficits than other functions previously used in wake models such as WAsP. The wind shear and impact with the ground cause an anisotropy in the expansion of the wake such that the wake grows faster horizontally than vertically. The wake deforms upon impact with the ground and spreads laterally. WiTTS is also used to study the turbulence characteristics in the wake. Aligning with the mean wind direction, the streamwise component of turbulence intensity is the dominant among the three components and thus it is further studied. The highest turbulence intensity occurs near the top-tip level. The added turbulence intensity increases fast in the near

  8. Momentum transport process in the quasi self-similar region of free shear mixing layer

    Science.gov (United States)

    Takamure, K.; Ito, Y.; Sakai, Y.; Iwano, K.; Hayase, T.

    2018-01-01

    In this study, we performed a direct numerical simulation (DNS) of a spatially developing shear mixing layer covering both developing and developed regions. The aim of this study is to clarify the driving mechanism and the vortical structure of the partial counter-gradient momentum transport (CGMT) appearing in the quasi self-similar region. In the present DNS, the self-similarity is confirmed in x/L ≥ 0.67 (x/δU0 ≥ 137), where L and δU0 are the vertical length of the computational domain and the initial momentum thickness, respectively. However, the trend of CGMT is observed at around kδU = 0.075 and 0.15, where k is the wavenumber, δU is the normalized momentum thickness at x/L = 0.78 (x/δU0 = 160), and kδU = 0.075 corresponds to the distance between the vortical/stretching regions of the coherent structure. The budget analysis for the Reynolds shear stress reveals that it is caused by the pressure diffusion term at the off-central region and by -p (∂ u /∂ y ) ¯ in the pressure-strain correlation term at the central region. As the flow moves toward the downstream direction, the appearance of those terms becomes random and the unique trend of CGMT at the specific wavenumber bands disappears. Furthermore, we investigated the relationship between the CGMT and vorticity distribution in the vortex region of the mixing layer, in association with the spatial development. In the upstream location, the high-vorticity region appears in the boundary between the areas of gradient momentum transport and CGMT, although the high-vorticity region is not actively producing turbulence. The negative production area gradually spreads by flowing toward the downstream direction, and subsequently, the fluid mass with high-vorticity is transported from the forehead stretching region toward the counter-gradient direction. In this location, the velocity fluctuation in the high-vorticity region is large and turbulence is actively produced. In view of this, the trend of

  9. Human-based percussion and self-similarity detection in electroacoustic music

    Science.gov (United States)

    Mills, John Anderson, III

    Electroacoustic music is music that uses electronic technology for the compositional manipulation of sound, and is a unique genre of music for many reasons. Analyzing electroacoustic music requires special measures, some of which are integrated into the design of a preliminary percussion analysis tool set for electroacoustic music. This tool set is designed to incorporate the human processing of music and sound. Models of the human auditory periphery are used as a front end to the analysis algorithms. The audio properties of percussivity and self-similarity are chosen as the focus because these properties are computable and informative. A collection of human judgments about percussion was undertaken to acquire clearly specified, sound-event dimensions that humans use as a percussive cue. A total of 29 participants was asked to make judgments about the percussivity of 360 pairs of synthesized snare-drum sounds. The grouped results indicate that of the dimensions tested rise time is the strongest cue for percussivity. String resonance also has a strong effect, but because of the complex nature of string resonance, it is not a fundamental dimension of a sound event. Gross spectral filtering also has an effect on the judgment of percussivity but the effect is weaker than for rise time and string resonance. Gross spectral filtering also has less effect when the stronger cue of rise time is modified simultaneously. A percussivity-profile algorithm (PPA) is designed to identify those instants in pieces of music that humans also would identify as percussive. The PPA is implemented using a time-domain, channel-based approach and psychoacoustic models. The input parameters are tuned to maximize performance at matching participants' choices in the percussion-judgment collection. After the PPA is tuned, the PPA then is used to analyze pieces of electroacoustic music. Real electroacoustic music introduces new challenges for the PPA, though those same challenges might affect

  10. Scaling of peak flows with constant flow velocity in random self-similar networks

    Directory of Open Access Journals (Sweden)

    R. Mantilla

    2011-07-01

    Full Text Available A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E and φ(E that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E and φ(E and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit

  11. Scaling of peak flows with constant flow velocity in random self-similar networks

    Science.gov (United States)

    Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.

    2011-01-01

    A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs) with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E) and φ(E) that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E) and φ(E) and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E) and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit hydrograph theory and flow dynamics. Our results provide a reference framework to study scaling exponents under more complex scenarios

  12. The management and containment of self-similar rogue waves in the inhomogeneous nonlinear Schrödinger equation

    International Nuclear Information System (INIS)

    Dai Chaoqing; Wang Yueyue; Tian Qing; Zhang Jiefang

    2012-01-01

    We present, analytically, self-similar rogue wave solutions (rational solutions) of the inhomogeneous nonlinear Schrödinger equation (NLSE) via a similarity transformation connected with the standard NLSE. Then we discuss the propagation behaviors of controllable rogue waves under dispersion and nonlinearity management. In an exponentially dispersion-decreasing fiber, the postponement, annihilation and sustainment of self-similar rogue waves are modulated by the exponential parameter σ. Finally, we investigate the nonlinear tunneling effect for self-similar rogue waves. Results show that rogue waves can tunnel through the nonlinear barrier or well with increasing, unchanged or decreasing amplitudes via the modulation of the ratio of the amplitudes of rogue waves to the barrier or well height. - Highlights: ► Self-similar rogue wave solutions of the inhomogeneous NLSE are obtained.► Postponement, annihilation and sustainment of self-similar rogue waves are discussed. ► Nonlinear tunneling effects for self-similar rogue waves are investigated.

  13. Small-world organization of self-similar modules in functional brain networks

    Science.gov (United States)

    Sigman, Mariano; Gallos, Lazaros; Makse, Hernan

    2012-02-01

    The modular organization of the brain implies the parallel nature of brain computations. These modules have to remain functionally independent, but at the same time they need to be sufficiently connected to guarantee the unitary nature of brain perception. Small-world architectures have been suggested as probable structures explaining this behavior. However, there is intrinsic tension between shortcuts generating small-worlds and the persistence of modularity. In this talk, we study correlations between the activity in different brain areas. We suggest that the functional brain network formed by the percolation of strong links is highly modular. Contrary to the common view, modules are self-similar and therefore are very far from being small-world. Incorporating the weak ties to the network converts it into a small-world preserving an underlying backbone of well-defined modules. Weak ties are shown to follow a pattern that maximizes information transfer with minimal wiring costs. This architecture is reminiscent of the concept of weak-ties strength in social networks and provides a natural solution to the puzzle of efficient infomration flow in the highly modular structure of the brain.

  14. MAGNETIC FIELDS AND COSMIC RAYS IN GRBs: A SELF-SIMILAR COLLISIONLESS FORESHOCK

    International Nuclear Information System (INIS)

    Medvedev, Mikhail V.; Zakutnyaya, Olga V.

    2009-01-01

    Cosmic rays accelerated by a shock form a streaming distribution of outgoing particles in the foreshock region. If the ambient fields are negligible compared to the shock and cosmic ray energetics, a stronger magnetic field can be generated in the shock upstream via the streaming (Weibel-type) instability. Here we develop a self-similar model of the foreshock region and calculate its structure, e.g., the magnetic field strength, its coherence scale, etc., as a function of the distance from the shock. Our model indicates that the entire foreshock region of thickness ∼R/(2Γ 2 sh ), being comparable to the shock radius in the late afterglow phase when Γ sh ∼ 1, can be populated with large-scale and rather strong magnetic fields (of subgauss strengths with the coherence length of order 10 16 cm) compared with the typical interstellar medium magnetic fields. The presence of such fields in the foreshock region is important for high efficiency of Fermi acceleration at the shock. Radiation from accelerated electrons in the foreshock fields can constitute a separate emission region radiating in the UV/optical through radio band, depending on time and shock parameters. We also speculate that these fields being eventually transported into the shock downstream can greatly increase radiative efficiency of a gamma-ray burst afterglow shock.

  15. Fundamental statistical features and self-similar properties of tagged networks

    International Nuclear Information System (INIS)

    Palla, Gergely; Farkas, Illes J; Pollner, Peter; Vicsek, Tamas; Derenyi, Imre

    2008-01-01

    We investigate the fundamental statistical features of tagged (or annotated) networks having a rich variety of attributes associated with their nodes. Tags (attributes, annotations, properties, features, etc) provide essential information about the entity represented by a given node, thus, taking them into account represents a significant step towards a more complete description of the structure of large complex systems. Our main goal here is to uncover the relations between the statistical properties of the node tags and those of the graph topology. In order to better characterize the networks with tagged nodes, we introduce a number of new notions, including tag-assortativity (relating link probability to node similarity), and new quantities, such as node uniqueness (measuring how rarely the tags of a node occur in the network) and tag-assortativity exponent. We apply our approach to three large networks representing very different domains of complex systems. A number of the tag related quantities display analogous behaviour (e.g. the networks we studied are tag-assortative, indicating possible universal aspects of tags versus topology), while some other features, such as the distribution of the node uniqueness, show variability from network to network allowing for pin-pointing large scale specific features of real-world complex networks. We also find that for each network the topology and the tag distribution are scale invariant, and this self-similar property of the networks can be well characterized by the tag-assortativity exponent, which is specific to each system.

  16. Self-similar regimes of turbulence in weakly coupled plasmas under compression

    Science.gov (United States)

    Viciconte, Giovanni; Gréa, Benoît-Joseph; Godeferd, Fabien S.

    2018-02-01

    Turbulence in weakly coupled plasmas under compression can experience a sudden dissipation of kinetic energy due to the abrupt growth of the viscosity coefficient governed by the temperature increase. We investigate in detail this phenomenon by considering a turbulent velocity field obeying the incompressible Navier-Stokes equations with a source term resulting from the mean velocity. The system can be simplified by a nonlinear change of variable, and then solved using both highly resolved direct numerical simulations and a spectral model based on the eddy-damped quasinormal Markovian closure. The model allows us to explore a wide range of initial Reynolds and compression numbers, beyond the reach of simulations, and thus permits us to evidence the presence of a nonlinear cascade phase. We find self-similarity of intermediate regimes as well as of the final decay of turbulence, and we demonstrate the importance of initial distribution of energy at large scales. This effect can explain the global sensitivity of the flow dynamics to initial conditions, which we also illustrate with simulations of compressed homogeneous isotropic turbulence and of imploding spherical turbulent layers relevant to inertial confinement fusion.

  17. Brief communication: A nonlinear self-similar solution to barotropic flow over varying topography

    Science.gov (United States)

    Ibanez, Ruy; Kuehl, Joseph; Shrestha, Kalyan; Anderson, William

    2018-03-01

    Beginning from the shallow water equations (SWEs), a nonlinear self-similar analytic solution is derived for barotropic flow over varying topography. We study conditions relevant to the ocean slope where the flow is dominated by Earth's rotation and topography. The solution is found to extend the topographic β-plume solution of Kuehl (2014) in two ways. (1) The solution is valid for intensifying jets. (2) The influence of nonlinear advection is included. The SWEs are scaled to the case of a topographically controlled jet, and then solved by introducing a similarity variable, η = cxnxyny. The nonlinear solution, valid for topographies h = h0 - αxy3, takes the form of the Lambert W-function for pseudo velocity. The linear solution, valid for topographies h = h0 - αxy-γ, takes the form of the error function for transport. Kuehl's results considered the case -1 ≤ γ < 1 which admits expanding jets, while the new result considers the case γ < -1 which admits intensifying jets and a nonlinear case with γ = -3.

  18. An accurate algorithm to calculate the Hurst exponent of self-similar processes

    International Nuclear Information System (INIS)

    Fernández-Martínez, M.; Sánchez-Granero, M.A.; Trinidad Segovia, J.E.; Román-Sánchez, I.M.

    2014-01-01

    In this paper, we introduce a new approach which generalizes the GM2 algorithm (introduced in Sánchez-Granero et al. (2008) [52]) as well as fractal dimension algorithms (FD1, FD2 and FD3) (first appeared in Sánchez-Granero et al. (2012) [51]), providing an accurate algorithm to calculate the Hurst exponent of self-similar processes. We prove that this algorithm performs properly in the case of short time series when fractional Brownian motions and Lévy stable motions are considered. We conclude the paper with a dynamic study of the Hurst exponent evolution in the S and P500 index stocks. - Highlights: • We provide a new approach to properly calculate the Hurst exponent. • This generalizes FD algorithms and GM2, introduced previously by the authors. • This method (FD4) results especially appropriate for short time series. • FD4 may be used in both unifractal and multifractal contexts. • As an empirical application, we show that S and P500 stocks improved their efficiency

  19. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction

    Directory of Open Access Journals (Sweden)

    Geoff Boeing

    2016-11-01

    Full Text Available Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive dependence on initial conditions. Chaotic systems are always deterministic and may be very simple, yet they produce completely unpredictable and divergent behavior. Systems of nonlinear equations are difficult to solve analytically, and scientists have relied heavily on visual and qualitative approaches to discover and analyze the dynamics of nonlinearity. Indeed, few fields have drawn as heavily from visualization methods for their seminal innovations: from strange attractors, to bifurcation diagrams, to cobweb plots, to phase diagrams and embedding. Although the social sciences are increasingly studying these types of systems, seminal concepts remain murky or loosely adopted. This article has three aims. First, it argues for several visualization methods to critically analyze and understand the behavior of nonlinear dynamical systems. Second, it uses these visualizations to introduce the foundations of nonlinear dynamics, chaos, fractals, self-similarity and the limits of prediction. Finally, it presents Pynamical, an open-source Python package to easily visualize and explore nonlinear dynamical systems’ behavior.

  20. Self-similar Lagrangian hydrodynamics of beam-heated solar flare atmospheres

    International Nuclear Information System (INIS)

    Brown, J.C.; Emslie, A.G.

    1989-01-01

    The one-dimensional hydrodynamic problem in Lagrangian coordinates (Y, t) is considered for which the specific energy input Q has a power-law dependence on both Y and t, and the initial density distribution is rho(0) which is directly proportional to Y exp gamma. In regimes where the contributions of radiation, conduction, quiescent heating, and gravitational terms in the energy equation are negligible compared to those arising from Q, the problem has a self-similar solution, with the hydrodynamic variables depending only on a single independent variable which is a combination of Y, t, and the dimensional constants of the problem. It is then shown that the problem of solar flare chromospheric heating due to collisional interaction of a beam of electrons (or protons) with a power-law energy spectrum can be approximated by such forms of Q(Y, t) and rho(0)(Y), and that other terms are negligible compared to Q over a restricted regime early in the flare. 29 refs

  1. Landau-Ginzburg Limit of Black Hole's Quantum Portrait: Self Similarity and Critical Exponent

    CERN Document Server

    Dvali, Gia

    2012-01-01

    Recently we have suggested that the microscopic quantum description of a black hole is an overpacked self-sustained Bose-condensate of N weakly-interacting soft gravitons, which obeys the rules of 't Hooft's large-N physics. In this note we derive an effective Landau-Ginzburg Lagrangian for the condensate and show that it becomes an exact description in a semi-classical limit that serves as the black hole analog of 't Hooft's planar limit. The role of a weakly-coupled Landau-Ginzburg order parameter is played by N. This description consistently reproduces the known properties of black holes in semi-classical limit. Hawking radiation, as the quantum depletion of the condensate, is described by the slow-roll of the field N. In the semiclassical limit, where black holes of arbitrarily small size are allowed, the equation of depletion is self similar leading to a scaling law for the black hole size with critical exponent 1/3.

  2. Fast Diffusion to Self-Similarity: Complete Spectrum, Long-Time Asymptotics, and Numerology

    Science.gov (United States)

    Denzler, Jochen; McCann, Robert J.

    2005-03-01

    The complete spectrum is determined for the operator on the Sobolev space W1,2ρ(Rn) formed by closing the smooth functions of compact support with respect to the norm Here the Barenblatt profile ρ is the stationary attractor of the rescaled diffusion equation in the fast, supercritical regime m the same diffusion dynamics represent the steepest descent down an entropy E(u) on probability measures with respect to the Wasserstein distance d2. Formally, the operator H=HessρE is the Hessian of this entropy at its minimum ρ, so the spectral gap H≧α:=2-n(1-m) found below suggests the sharp rate of asymptotic convergence: from any centered initial data 0≦u(0,x) ∈ L1(Rn) with second moments. This bound improves various results in the literature, and suggests the conjecture that the self-similar solution u(t,x)=R(t)-nρ(x/R(t)) is always slowest to converge. The higher eigenfunctions which are polynomials with hypergeometric radial parts and the presence of continuous spectrum yield additional insight into the relations between symmetries of Rn and the flow. Thus the rate of convergence can be improved if we are willing to replace the distance to ρ with the distance to its nearest mass-preserving dilation (or still better, affine image). The strange numerology of the spectrum is explained in terms of the number of moments of ρ.

  3. Dark energy in six nearby galaxy flows: Synthetic phase diagrams and self-similarity

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M. J.; Byrd, G. G.

    2012-09-01

    Outward flows of galaxies are observed around groups of galaxies on spatial scales of about 1 Mpc, and around galaxy clusters on scales of 10 Mpc. Using recent data from the Hubble Space Telescope (HST), we have constructed two synthetic velocity-distance phase diagrams: one for four flows on galaxy-group scales and the other for two flows on cluster scales. It has been shown that, in both cases, the antigravity produced by the cosmic dark-energy background is stronger than the gravity produced by the matter in the outflow volume. The antigravity accelerates the flows and introduces a phase attractor that is common to all scales, corresponding to a linear velocity-distance relation (the local Hubble law). As a result, the bundle of outflow trajectories mostly follow the trajectory of the attractor. A comparison of the two diagrams reveals the universal self-similar nature of the outflows: their gross phase structure in dimensionless variables is essentially independent of their physical spatial scales, which differ by approximately a factor of 10 in the two diagrams.

  4. Self-similar solutions with compactly supported profile of some nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Pascal Begout

    2014-04-01

    Full Text Available ``Sharp localized'' solutions (i.e. with compact support for each given time t of a singular nonlinear type Schr\\"odinger equation in the whole space $\\mathbb{R}^N$ are constructed here under the assumption that they have a self-similar structure. It requires the assumption that the external forcing term satisfies that $\\mathbf{f}(t,x=t^{-(\\mathbf{p}-2/2}\\mathbf{F}(t^{-1/2}x$ for some complex exponent $\\mathbf{p}$ and for some profile function $\\mathbf{F}$ which is assumed to be with compact support in $\\mathbb{R}^N$. We show the existence of solutions of the form $\\mathbf{u}(t,x=t^{\\mathbf{p}/2}\\mathbf{U}(t^{-1/2}x$, with a profile $\\mathbf{U}$, which also has compact support in $\\mathbb{R}^N$. The proof of the localization of the support of the profile $\\mathbf{U}$ uses some suitable energy method applied to the stationary problem satisfied by $\\mathbf{U}$ after some unknown transformation.

  5. The self-similar turbulent flow of low-pressure water vapor

    Science.gov (United States)

    Konyukhov, V. K.; Stepanov, E. V.; Borisov, S. K.

    2018-05-01

    We studied turbulent flows of water vapor in a pipe connecting two closed vessels of equal volume. The vessel that served as a source of water vapor was filled with adsorbent in the form of corundum ceramic balls. These ceramic balls were used to obtain specific conditions to lower the vapor pressure in the source vessel that had been observed earlier. A second vessel, which served as a receiver, was empty of either air or vapor before each vapor sampling. The rate of the pressure increase in the receiver vessel was measured in a series of six samplings performed with high precision. The pressure reduction rate in the source vessel was found to be three times lower than the pressure growth rate in the receiver vessel. We found that the pressure growth rates in all of the adjacent pairs of samples could be arranged in a combination that appeared to be identical for all pairs, and this revealed the existence of a rather interesting and peculiar self-similarity law for the sampling processes under consideration.

  6. Analyzing self-similar and fractal properties of the C. elegans neural network.

    Directory of Open Access Journals (Sweden)

    Tyler M Reese

    Full Text Available The brain is one of the most studied and highly complex systems in the biological world. While much research has concentrated on studying the brain directly, our focus is the structure of the brain itself: at its core an interconnected network of nodes (neurons. A better understanding of the structural connectivity of the brain should elucidate some of its functional properties. In this paper we analyze the connectome of the nematode Caenorhabditis elegans. Consisting of only 302 neurons, it is one of the better-understood neural networks. Using a Laplacian Matrix of the 279-neuron "giant component" of the network, we use an eigenvalue counting function to look for fractal-like self similarity. This matrix representation is also used to plot visualizations of the neural network in eigenfunction coordinates. Small-world properties of the system are examined, including average path length and clustering coefficient. We test for localization of eigenfunctions, using graph energy and spacial variance on these functions. To better understand results, all calculations are also performed on random networks, branching trees, and known fractals, as well as fractals which have been "rewired" to have small-world properties. We propose algorithms for generating Laplacian matrices of each of these graphs.

  7. Kovasznay modes in the linear stability analysis of self-similar ablation flows

    International Nuclear Information System (INIS)

    Lombard, V.

    2008-12-01

    Exact self-similar solutions of gas dynamics equations with nonlinear heat conduction for semi-infinite slabs of perfect gases are used for studying the stability of ablative flows in inertial confinement fusion, when a shock wave propagates in front of a thermal front. Both the similarity solutions and their linear perturbations are numerically computed with a dynamical multi-domain Chebyshev pseudo-spectral method. Laser-imprint results, showing that maximum amplification occurs for a laser-intensity modulation of zero transverse wavenumber have thus been obtained (Abeguile et al. (2006); Clarisse et al. (2008)). Here we pursue this approach by proceeding for the first time to an analysis of perturbations in terms of Kovasznay modes. Based on the analysis of two compressible and incompressible flows, evolution equations of vorticity, acoustic and entropy modes are proposed for each flow region and mode couplings are assessed. For short times, perturbations are transferred from the external surface to the ablation front by diffusion and propagate as acoustic waves up to the shock wave. For long times, the shock region is governed by the free propagation of acoustic waves. A study of perturbations and associated sources allows us to identify strong mode couplings in the conduction and ablation regions. Moreover, the maximum instability depends on compressibility. Finally, a comparison with experiments of flows subjected to initial surface defects is initiated. (author)

  8. An accurate algorithm to calculate the Hurst exponent of self-similar processes

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Martínez, M., E-mail: fmm124@ual.es [Department of Mathematics, Faculty of Science, Universidad de Almería, 04120 Almería (Spain); Sánchez-Granero, M.A., E-mail: misanche@ual.es [Department of Mathematics, Faculty of Science, Universidad de Almería, 04120 Almería (Spain); Trinidad Segovia, J.E., E-mail: jetrini@ual.es [Department of Accounting and Finance, Faculty of Economics and Business, Universidad de Almería, 04120 Almería (Spain); Román-Sánchez, I.M., E-mail: iroman@ual.es [Department of Accounting and Finance, Faculty of Economics and Business, Universidad de Almería, 04120 Almería (Spain)

    2014-06-27

    In this paper, we introduce a new approach which generalizes the GM2 algorithm (introduced in Sánchez-Granero et al. (2008) [52]) as well as fractal dimension algorithms (FD1, FD2 and FD3) (first appeared in Sánchez-Granero et al. (2012) [51]), providing an accurate algorithm to calculate the Hurst exponent of self-similar processes. We prove that this algorithm performs properly in the case of short time series when fractional Brownian motions and Lévy stable motions are considered. We conclude the paper with a dynamic study of the Hurst exponent evolution in the S and P500 index stocks. - Highlights: • We provide a new approach to properly calculate the Hurst exponent. • This generalizes FD algorithms and GM2, introduced previously by the authors. • This method (FD4) results especially appropriate for short time series. • FD4 may be used in both unifractal and multifractal contexts. • As an empirical application, we show that S and P500 stocks improved their efficiency.

  9. Self-similar distribution of oil spills in European coastal waters

    International Nuclear Information System (INIS)

    Redondo, Jose M; Platonov, Alexei K

    2009-01-01

    Marine pollution has been highlighted thanks to the advances in detection techniques as well as increasing coverage of catastrophes (e.g. the oil tankers Amoco Cadiz, Exxon Valdez, Erika, and Prestige) and of smaller oil spills from ships. The new satellite based sensors SAR and ASAR and new methods of oil spill detection and analysis coupled with self-similar statistical techniques allow surveys of environmental pollution monitoring large areas of the ocean. We present a statistical analysis of more than 700 SAR images obtained during 1996-2000, also comparing the detected small pollution events with the historical databases of great marine accidents during 1966-2004 in European coastal waters. We show that the statistical distribution of the number of oil spills as a function of their size corresponds to Zipf's law, and that the common small spills are comparable to the large accidents due to the high frequency of the smaller pollution events. Marine pollution from tankers and ships, which has been detected as oil spills between 0.01 and 100 km 2 , follows the marine transit routes. Multi-fractal methods are used to distinguish between natural slicks and spills, in order to estimate the oil spill index in European coastal waters, and in particular, the north-western Mediterranean Sea, which, due to the influence of local winds, shows optimal conditions for oil spill detection.

  10. Self-similar variables and the problem of nonlocal electron heat conductivity

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Bakunin, O.G.

    1993-10-01

    Self-similar solutions of the collisional electron kinetic equation are obtained for the plasmas with one (1D) and three (3D) dimensional plasma parameter inhomogeneities and arbitrary Z eff . For the plasma parameter profiles characterized by the ratio of the mean free path of thermal electrons with respect to electron-electron collisions, γ T , to the scale length of electron temperature variation, L, one obtains a criterion for determining the effect that tail particles with motion of the non-diffusive type have on the electron heat conductivity. For these conditions it is shown that the use of a open-quotes symmetrizedclose quotes kinetic equation for the investigation of the strong nonlocal effect of suprathermal electrons on the electron heat conductivity is only possible at sufficiently high Z eff (Z eff ≥ (L/γ T ) 1/2 ). In the case of 3D inhomogeneous plasma (spherical symmetry), the effect of the tail electrons on the heat transport is less pronounced since they are spread across the radius r

  11. Levy flights and self-similar exploratory behaviour of termite workers: beyond model fitting.

    Directory of Open Access Journals (Sweden)

    Octavio Miramontes

    Full Text Available Animal movements have been related to optimal foraging strategies where self-similar trajectories are central. Most of the experimental studies done so far have focused mainly on fitting statistical models to data in order to test for movement patterns described by power-laws. Here we show by analyzing over half a million movement displacements that isolated termite workers actually exhibit a range of very interesting dynamical properties--including Lévy flights--in their exploratory behaviour. Going beyond the current trend of statistical model fitting alone, our study analyses anomalous diffusion and structure functions to estimate values of the scaling exponents describing displacement statistics. We evince the fractal nature of the movement patterns and show how the scaling exponents describing termite space exploration intriguingly comply with mathematical relations found in the physics of transport phenomena. By doing this, we rescue a rich variety of physical and biological phenomenology that can be potentially important and meaningful for the study of complex animal behavior and, in particular, for the study of how patterns of exploratory behaviour of individual social insects may impact not only their feeding demands but also nestmate encounter patterns and, hence, their dynamics at the social scale.

  12. Linear perturbations of a self-similar solution of hydrodynamics with non-linear heat conduction

    International Nuclear Information System (INIS)

    Dubois-Boudesocque, Carine

    2000-01-01

    The stability of an ablative flow, where a shock wave is located upstream a thermal front, is of importance in inertial confinement fusion. The present model considers an exact self-similar solution to the hydrodynamic equations with non-linear heat conduction for a semi-infinite slab. For lack of an analytical solution, a high resolution numerical procedure is devised, which couples a finite difference method with a relaxation algorithm using a two-domain pseudo-spectral method. Stability of this solution is studied by introducing linear perturbation method within a Lagrangian-Eulerian framework. The initial and boundary value problem is solved by a splitting of the equations between a hyperbolic system and a parabolic equation. The boundary conditions of the hyperbolic system are treated, in the case of spectral methods, according to Thompson's approach. The parabolic equation is solved by an influence matrix method. These numerical procedures have been tested versus exact solutions. Considering a boundary heat flux perturbation, the space-time evolution of density, velocity and temperature are shown. (author) [fr

  13. Self-similarity of temperature profiles in distant galaxy clusters: the quest for a universal law

    Science.gov (United States)

    Baldi, A.; Ettori, S.; Molendi, S.; Gastaldello, F.

    2012-09-01

    Context. We present the XMM-Newton temperature profiles of 12 bright (LX > 4 × 1044 erg s-1) clusters of galaxies at 0.4 high-redshift clusters, to investigate their properties, and to define a universal law to describe the temperature radial profiles in galaxy clusters as a function of both cosmic time and their state of relaxation. Methods: We performed a spatially resolved spectral analysis, using Cash statistics, to measure the temperature in the intracluster medium at different radii. Results: We extracted temperature profiles for the clusters in our sample, finding that all profiles are declining toward larger radii. The normalized temperature profiles (normalized by the mean temperature T500) are found to be generally self-similar. The sample was subdivided into five cool-core (CC) and seven non cool-core (NCC) clusters by introducing a pseudo-entropy ratio σ = (TIN/TOUT) × (EMIN/EMOUT)-1/3 and defining the objects with σ ratio σ is detected by fitting a function of r and σ, showing an indication that the outer part of the profiles becomes steeper for higher values of σ (i.e. transitioning toward the NCC clusters). No significant evidence of redshift evolution could be found within the redshift range sampled by our clusters (0.4 high-z sample with intermediate clusters at 0.1 0.4 has been attempted. We were able to define the closest possible relation to a universal law for the temperature profiles of galaxy clusters at 0.1 < z < 0.9, showing a dependence on both the relaxation state of the clusters and the redshift. Appendix A is only available in electronic form at http://www.aanda.org

  14. Signal-noise separation based on self-similarity testing in 1D-timeseries data

    Science.gov (United States)

    Bourdin, Philippe A.

    2015-08-01

    The continuous improvement of the resolution delivered by modern instrumentation is a cost-intensive part of any new space- or ground-based observatory. Typically, scientists later reduce the resolution of the obtained raw-data, for example in the spatial, spectral, or temporal domain, in order to suppress the effects of noise in the measurements. In practice, only simple methods are used that just smear out the noise, instead of trying to remove it, so that the noise can nomore be seen. In high-precision 1D-timeseries data, this usually results in an unwanted quality-loss and corruption of power spectra at selected frequency ranges. Novel methods exist that are based on non-local averaging, which would conserve much of the initial resolution, but these methods are so far focusing on 2D or 3D data. We present here a method specialized for 1D-timeseries, e.g. as obtained by magnetic field measurements from the recently launched MMS satellites. To identify the noise, we use a self-similarity testing and non-local averaging method in order to separate different types of noise and signals, like the instrument noise, non-correlated fluctuations in the signal from heliospheric sources, and correlated fluctuations such as harmonic waves or shock fronts. In power spectra of test data, we are able to restore significant parts of a previously know signal from a noisy measurement. This method also works for high frequencies, where the background noise may have a larger contribution to the spectral power than the signal itself. We offer an easy-to-use software tools set, which enables scientists to use this novel technique on their own noisy data. This allows to use the maximum possible capacity of the instrumental hardware and helps to enhance the quality of the obtained scientific results.

  15. Asymmetric Effects of Subaerial and Subaqueous Basement Slopes on Self-Similar Morphology of Prograding Deltas

    Science.gov (United States)

    Lai, Steven Yueh Jen; Hsiao, Yung-Tai; Wu, Fu-Chun

    2017-12-01

    Deltas form over basements of various slope configurations. While the morphodynamics of prograding deltas over single-slope basements have been studied previously, our understanding of delta progradation over segmented basements is still limited. Here we use experimental and analytical approaches to investigate the deltaic morphologies developing over two-slope basements with unequal subaerial and subaqueous slopes. For each case considered, the scaled profiles of the evolving delta collapse to a single profile for constant water and sediment influxes, allowing us to use the analytical self-similar profiles to investigate the individual effects of subaerial/subaqueous slopes. Individually varying the subaerial/subaqueous slopes exerts asymmetric effects on the morphologies. Increasing the subaerial slope advances the entire delta; increasing the subaqueous slope advances the upstream boundary of the topset yet causes the downstream boundary to retreat. The delta front exhibits a first-retreat-then-advance migrating trend with increasing subaqueous slope. A decrease in subaerial topset length is always accompanied by an increase in subaqueous volume fraction, no matter which segment is steepened. Applications are presented for estimating shoreline retreat caused by steepening of basement slopes, and estimating subaqueous volume and delta front using the observed topset length. The results may have implications for real-world delta systems subjected to upstream tectonic uplift and/or downstream subsidence. Both scenarios would exhibit reduced topset lengths, which are indicative of the accompanied increases in subaqueous volume and signal tectonic uplift and/or subsidence that are at play. We highlight herein the importance of geometric controls on partitioning of sediment between subaerial and subaqueous delta components.

  16. Inter-relationship between scaling exponents for describing self-similar river networks

    Science.gov (United States)

    Yang, Soohyun; Paik, Kyungrock

    2015-04-01

    Natural river networks show well-known self-similar characteristics. Such characteristics are represented by various power-law relationships, e.g., between upstream length and drainage area (exponent h) (Hack, 1957), and in the exceedance probability distribution of upstream area (exponent ɛ) (Rodriguez-Iturbe et al., 1992). It is empirically revealed that these power-law exponents are within narrow ranges. Power-law is also found in the relationship between drainage density (the total stream length divided by the total basin area) and specified source area (the minimum drainage area to form a stream head) (exponent η) (Moussa and Bocquillon, 1996). Considering that above three scaling relationships all refer to fundamental measures of 'length' and 'area' of a given drainage basin, it is natural to hypothesize plausible inter-relationship between these three scaling exponents. Indeed, Rigon et al. (1996) demonstrated the relationship between ɛ and h. In this study, we expand this to a more general ɛ-η-h relationship. We approach ɛ-η relationship in an analytical manner while η-h relationship is demonstrated for six study basins in Korea. Detailed analysis and implications will be presented. References Hack, J. T. (1957). Studies of longitudinal river profiles in Virginia and Maryland. US, Geological Survey Professional Paper, 294. Moussa, R., & Bocquillon, C. (1996). Fractal analyses of tree-like channel networks from digital elevation model data. Journal of Hydrology, 187(1), 157-172. Rigon, R., Rodriguez-Iturbe, I., Maritan, A., Giacometti. A., Tarboton, D. G., & Rinaldo, A. (1996). On Hack's Law. Water Resources Research, 32(11), 3367-3374. Rodríguez-Iturbe, I., Ijjasz-Vasquez, E. J., Bras, R. L., & Tarboton, D. G. (1992). Power law distributions of discharge mass and energy in river basins. Water Resources Research, 28(4), 1089-1093.

  17. Nonlinear dynamics in the relativistic field equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Kado, Tatsuhiko; Zhao, Hua-An

    2007-01-01

    We have investigated relativistic equations and chaotic behaviors of the gravitational field with the use of general relativity and nonlinear dynamics. The space component of the Friedmann equation shows chaotic behaviors in case of the inflation (h=G-bar /G>0) and open (ζ=-1) universe. In other cases (h= 0 andx-bar 0 ) and the parameters (a, b, c and d); (2) the self-similarity of solutions in the x-x-bar plane and the x-ρ plane. We carried out the numerical calculations with the use of the microsoft EXCEL. The self-similarity and the hierarchy structure of the universe have been also discussed on the basis of E-infinity theory

  18. Relativistic field theory of neutron stars and their hyperon populations

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1986-01-01

    The nuclear many-body problem is examined by means of the formulation of an effective relativistic field theory of interacting hadrons. A relativistic field theory of hadronic matter is especially appropriate for the description of hot or dense matter, because of the appearance of antiparticles and higher baryon resonances and because it automatically respects causality. 8 refs., 7 figs., 1 tab

  19. On the relativistic Vlasov equation in guiding-center coordinates

    International Nuclear Information System (INIS)

    Salimullah, M.; Chaudhry, M.B.; Hassan, M.H.A.

    1989-11-01

    The relativistic Vlasov equation has been expressed in terms of the guiding-center coordinates in a hot magnetized plasma. It is noted that the relativistic effect reduces the cyclotron resonance frequency for electrostatic and electromagnetic waves propagating transverse to the direction of the static magnetic field in the plasma. (author). 4 refs

  20. Collapse of a self-similar cylindrical scalar field with non-minimal coupling II: strong cosmic censorship

    International Nuclear Information System (INIS)

    Condron, Eoin; Nolan, Brien C

    2014-01-01

    We investigate self-similar scalar field solutions to the Einstein equations in whole cylinder symmetry. Imposing self-similarity on the spacetime gives rise to a set of single variable functions describing the metric. Furthermore, it is shown that the scalar field is dependent on a single unknown function of the same variable and that the scalar field potential has exponential form. The Einstein equations then take the form of a set of ODEs. Self-similarity also gives rise to a singularity at the scaling origin. We extend the work of Condron and Nolan (2014 Class. Quantum Grav. 31 015015), which determined the global structure of all solutions with a regular axis in the causal past of the singularity. We identified a class of solutions that evolves through the past null cone of the singularity. We give the global structure of these solutions and show that the singularity is censored in all cases. (paper)

  1. A nonlinear eigenvalue problem for self-similar spherical force-free magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther Universität, D-06099 Halle (Germany); Low, B. C. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80307 (United States)

    2014-10-15

    An axisymmetric force-free magnetic field B(r, θ) in spherical coordinates is defined by a function r sin θB{sub φ}=Q(A) relating its azimuthal component to its poloidal flux-function A. The power law r sin θB{sub φ}=aA|A|{sup 1/n}, n a positive constant, admits separable fields with A=(A{sub n}(θ))/(r{sup n}) , posing a nonlinear boundary-value problem for the constant parameter a as an eigenvalue and A{sub n}(θ) as its eigenfunction [B. C. Low and Y. Q Lou, Astrophys. J. 352, 343 (1990)]. A complete analysis is presented of the eigenvalue spectrum for a given n, providing a unified understanding of the eigenfunctions and the physical relationship between the field's degree of multi-polarity and rate of radial decay via the parameter n. These force-free fields, self-similar on spheres of constant r, have basic astrophysical applications. As explicit solutions they have, over the years, served as standard benchmarks for testing 3D numerical codes developed to compute general force-free fields in the solar corona. The study presented includes a set of illustrative multipolar field solutions to address the magnetohydrodynamics (MHD) issues underlying the observation that the solar corona has a statistical preference for negative and positive magnetic helicities in its northern and southern hemispheres, respectively; a hemispherical effect, unchanging as the Sun's global field reverses polarity in successive eleven-year cycles. Generalizing these force-free fields to the separable form B=(H(θ,φ))/(r{sup n+2}) promises field solutions of even richer topological varieties but allowing for φ-dependence greatly complicates the governing equations that have remained intractable. The axisymmetric results obtained are discussed in relation to this generalization and the Parker Magnetostatic Theorem. The axisymmetric solutions are mathematically related to a family of 3D time-dependent ideal MHD solutions for a polytropic fluid of index γ = 4

  2. Self-similarity of high-pT hadron production in π-p and π- A collisions

    International Nuclear Information System (INIS)

    Tokarev, M.V.; Panebrattsev, Yu.A.; Skoro, G.P.; Zborovsky, I.

    2002-01-01

    Self-similar properties of hadron production in π - p and π - A collisions over a high-p T region are studied. The analysis if experimental data is performed in the framework of z-scaling. The scaling variable depends on the anomalous fractal dimension of the incoming pion. Its value is found to be δ π ≅ 0.1. Independence of the scaling function Ψ(z) on the collision energy is shown. A-dependence of data z-presentation confirms self-similarity of particle formation in πA collisions

  3. Relativistic Astronomy

    Science.gov (United States)

    Zhang, Bing; Li, Kunyang

    2018-02-01

    The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.

  4. Relativistic magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)

    2017-05-02

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  5. Self-similarity of hard cumulative processes in fixed target experiment for BES-II at STAR

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Zborovský, Imrich; Aparin, A. A.

    2015-01-01

    Roč. 12, č. 2 (2015), s. 221-229 ISSN 1547-4771 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : critical point * cumulative process * heavy ions * high energy * phase transition * self-similarity Subject RIV: BE - Theoretical Physics

  6. Self-Similarity of Jet Production in pp and p{/bar p} Collisions at RHIC, Tevatron and LHC

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Dedovich, T. G.; Zborovský, Imrich

    2012-01-01

    Roč. 27, č. 21 (2012), s. 815-820 ISSN 0217-751X R&D Projects: GA MŠk LA08002; GA MŠk LA08015 Institutional support: RVO:61389005 Keywords : jets * self-similarity * high energy * scaling Subject RIV: BE - Theoretical Physics Impact factor: 1.127, year: 2012

  7. Uniqueness of Mass-Conserving Self-similar Solutions to Smoluchowski's Coagulation Equation with Inverse Power Law Kernels

    Science.gov (United States)

    Laurençot, Philippe

    2018-03-01

    Uniqueness of mass-conserving self-similar solutions to Smoluchowski's coagulation equation is shown when the coagulation kernel K is given by K(x,x_*)=2(x x_*)^{-α } , (x,x_*)\\in (0,∞)^2 , for some α >0.

  8. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification

    Science.gov (United States)

    Luo, Daping; Liu, Yang; Gu, Chenglin; Wang, Chao; Zhu, Zhiwei; Zhang, Wenchao; Deng, Zejiang; Zhou, Lian; Li, Wenxue; Zeng, Heping

    2018-02-01

    We report a fiber self-similar-amplification (SSA) comb system that delivers a 250-MHz, 109-W, 42-fs pulse train with a 10-dB spectral width of 85 nm at 1056 nm. A pair of grisms is employed to compensate the group velocity dispersion and third-order dispersion of pre-amplified pulses for facilitating a self-similar evolution and a self-phase modulation (SPM). Moreover, we analyze the stabilities and noise characteristics of both the locked carrier envelope phase and the repetition rate, verifying the stability of the generated high-power comb. The demonstration of the SSA comb at such high power proves the feasibility of the SPM-based low-noise ultrashort comb.

  9. On the Isomorphism between Dissipative Systems, Fractal Self-Similarity and Electrodynamics. Toward an Integrated Vision of Nature

    Directory of Open Access Journals (Sweden)

    Giuseppe Vitiello

    2014-05-01

    Full Text Available In electrodynamics there is a mutual exchange of energy and momentum between the matter field and the electromagnetic field and the total energy and momentum are conserved. For a constant magnetic field and harmonic scalar potential, electrodynamics is shown to be isomorph to a system of damped/amplified harmonic oscillators. These can be described by squeezed coherent states which in turn are isomorph to self-similar fractal structures. Under the said conditions of constant magnetic field and harmonic scalar potential, electrodynamics is thus isomorph to fractal self-similar structures and squeezed coherent states. At a quantum level, dissipation induces noncommutative geometry with the squeezing parameter playing a relevant role. Ubiquity of fractals in Nature and relevance of coherent states and electromagnetic interaction point to a unified, integrated vision of Nature.

  10. Self-similar solutions for implosion and reflection of coalesced shocks in a plasma : spherical and cylindrical geometries

    International Nuclear Information System (INIS)

    Chavda, L.K.

    1978-01-01

    Approximate analytic solutions to the self-similar equations of gas dynamics for a plasma, treated as an ideal gas with specific heat ratio γ=5/3 are obtained for the implosion and subsequent reflection of various types of shock sequences in spherical and cylindrical geometries. This is based on the lowest-order polynomial approximation in the reduced fluid velocity, for a suitable nonlinear function of the sound velocity and the fluid velocity. However, the method developed here is powerful enough to be extended analytically to higher order polynomial approximations, to obtain successive approximations to the exact self-similar solutions. Also obtained, for the first time, are exact asymptotic solutions, in analytic form, for the reflected shocks. Criteria are given that may enable one to make a choice between the two geometries for maximising compression or temperature of the gas. These solutions should be useful in the study of inertial confinement of a plasma. (author)

  11. The dynamics of single protein molecules is non-equilibrium and self-similar over thirteen decades in time

    Science.gov (United States)

    Hu, Xiaohu; Hong, Liang; Dean Smith, Micholas; Neusius, Thomas; Cheng, Xiaolin; Smith, Jeremy C.

    2016-02-01

    Internal motions of proteins are essential to their function. The time dependence of protein structural fluctuations is highly complex, manifesting subdiffusive, non-exponential behaviour with effective relaxation times existing over many decades in time, from ps up to ~102 s (refs ,,,). Here, using molecular dynamics simulations, we show that, on timescales from 10-12 to 10-5 s, motions in single proteins are self-similar, non-equilibrium and exhibit ageing. The characteristic relaxation time for a distance fluctuation, such as inter-domain motion, is observation-time-dependent, increasing in a simple, power-law fashion, arising from the fractal nature of the topology and geometry of the energy landscape explored. Diffusion over the energy landscape follows a non-ergodic continuous time random walk. Comparison with single-molecule experiments suggests that the non-equilibrium self-similar dynamical behaviour persists up to timescales approaching the in vivo lifespan of individual protein molecules.

  12. On the self-similar solution to the Euler equations for an incompressible fluid in three dimensions

    Science.gov (United States)

    Pomeau, Yves

    2018-03-01

    The equations for a self-similar solution to an inviscid incompressible fluid are mapped into an integral equation that hopefully can be solved by iteration. It is argued that the exponents of the similarity are ruled by Kelvin's theorem of conservation of circulation. The end result is an iteration with a nonlinear term entering a kernel given by a 3D integral for a swirling flow, likely within reach of present-day computational power. Because of the slow decay of the similarity solution at large distances, its kinetic energy diverges, and some mathematical results excluding non-trivial solutions of the Euler equations in the self-similar case do not apply. xml:lang="fr"

  13. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  14. A Study of Wavelet Analysis and Data Extraction from Second-Order Self-Similar Time Series

    Directory of Open Access Journals (Sweden)

    Leopoldo Estrada Vargas

    2013-01-01

    Full Text Available Statistical analysis and synthesis of self-similar discrete time signals are presented. The analysis equation is formally defined through a special family of basis functions of which the simplest case matches the Haar wavelet. The original discrete time series is synthesized without loss by a linear combination of the basis functions after some scaling, displacement, and phase shift. The decomposition is then used to synthesize a new second-order self-similar signal with a different Hurst index than the original. The components are also used to describe the behavior of the estimated mean and variance of self-similar discrete time series. It is shown that the sample mean, although it is unbiased, provides less information about the process mean as its Hurst index is higher. It is also demonstrated that the classical variance estimator is biased and that the widely accepted aggregated variance-based estimator of the Hurst index results biased not due to its nature (which is being unbiased and has minimal variance but to flaws in its implementation. Using the proposed decomposition, the correct estimation of the Variance Plot is described, as well as its close association with the popular Logscale Diagram.

  15. Self-organization phenomena and decaying self-similar state in two-dimensional incompressible viscous fluids

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi; Serizawa, Shunsuke; Nakano, Akihiro; Takahashi, Toshiki; Van Dam, James W.

    2004-01-01

    The final self-similar state of decaying two-dimensional (2D) turbulence in 2D incompressible viscous flow is analytically and numerically investigated for the case with periodic boundaries. It is proved by theoretical analysis and simulations that the sinh-Poisson state cω=-sinh(βψ) is not realized in the dynamical system of interest. It is shown by an eigenfunction spectrum analysis that a sufficient explanation for the self-organization to the decaying self-similar state is the faster energy decay of higher eigenmodes and the energy accumulation to the lowest eigenmode for given boundary conditions due to simultaneous normal and inverse cascading by nonlinear mode couplings. The theoretical prediction is demonstrated to be correct by simulations leading to the lowest eigenmode of {(1,0)+(0,1)} of the dissipative operator for the periodic boundaries. It is also clarified that an important process during nonlinear self-organization is an interchange between the dominant operators, which leads to the final decaying self-similar state

  16. Self-similar and self-affine pionization in nuclear interactions at a few AgeV

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Deb, Argha; Chattopadhyay, Keya Dutta; Sarkar, Rinku; Dutta, Ishita Sen

    2004-01-01

    Self-affine multiplicity scaling is investigated in the framework of two-dimensional factorial moment methodology using the concept of the Hurst exponent (H) considering different bins of the phase space. We have investigated the fluctuation pattern of emitted pions in 24 Mg-AgBr interactions at 4.5 AGeV and this study reveals that the fluctuation is self-similar in some bins, whereas it is self-affine in other bins, that is, the multiplicity scaling is bin-dependent. (author)

  17. Self-similarly evolving and minimally dissipated stable states of plasmas realized after relaxation and self-organization processes

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi; Hakoiwa, Toru; Okada, Akihito; Kobayashi, Naohiro; Takahashi, Toshiki

    2006-01-01

    A novel set of simultaneous eigenvalue equations having dissipative terms are derived to find self-similarly evolving and minimally dissipated stable states of plasmas realized after relaxation and self-organization processes. By numerically solving the set of eigenvalue equations in a cylindrical model, typical spatial profiles of plasma parameters, electric and magnetic fields and diffusion factors are presented, all of which determine self-consistently with each other by physical laws and mutual relations among them, just as in experimental plasmas. (author)

  18. Self-Similar Nonlinear Dynamical Solutions for One-Component Nonneutral Plasma in a Time-Dependent Linear Focusing Field

    International Nuclear Information System (INIS)

    Qin, Hong; Davidson, Ronald C.

    2011-01-01

    In a linear trap confining a one-component nonneutral plasma, the external focusing force is a linear function of the configuration coordinates and/or the velocity coordinates. Linear traps include the classical Paul trap and the Penning trap, as well as the newly proposed rotating-radio- frequency traps and the Mobius accelerator. This paper describes a class of self-similar nonlinear solutions of nonneutral plasma in general time-dependent linear focusing devices, with self-consistent electrostatic field. This class of nonlinear solutions includes many known solutions as special cases.

  19. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  20. Applications of Analytical Self-Similar Solutions of Reynolds-Averaged Models for Instability-Induced Turbulent Mixing

    Science.gov (United States)

    Hartland, Tucker; Schilling, Oleg

    2017-11-01

    Analytical self-similar solutions to several families of single- and two-scale, eddy viscosity and Reynolds stress turbulence models are presented for Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz instability-induced turbulent mixing. The use of algebraic relationships between model coefficients and physical observables (e.g., experimental growth rates) following from the self-similar solutions to calibrate a member of a given family of turbulence models is shown. It is demonstrated numerically that the algebraic relations accurately predict the value and variation of physical outputs of a Reynolds-averaged simulation in flow regimes that are consistent with the simplifying assumptions used to derive the solutions. The use of experimental and numerical simulation data on Reynolds stress anisotropy ratios to calibrate a Reynolds stress model is briefly illustrated. The implications of the analytical solutions for future Reynolds-averaged modeling of hydrodynamic instability-induced mixing are briefly discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. New self-similar radiation-hydrodynamics solutions in the high-energy density, equilibrium diffusion limit

    International Nuclear Information System (INIS)

    Lane, Taylor K; McClarren, Ryan G

    2013-01-01

    This work presents semi-analytic solutions to a radiation-hydrodynamics problem of a radiation source driving an initially cold medium. Our solutions are in the equilibrium diffusion limit, include material motion and allow for radiation-dominated situations where the radiation energy is comparable to (or greater than) the material internal energy density. As such, this work is a generalization of the classical Marshak wave problem that assumes no material motion and that the radiation energy is negligible. Including radiation energy density in the model serves to slow down the wave propagation. The solutions provide insight into the impact of radiation energy and material motion, as well as present a novel verification test for radiation transport packages. As a verification test, the solution exercises the radiation–matter coupling terms and their v/c treatment without needing a hydrodynamics solve. An example comparison between the self-similar solution and a numerical code is given. Tables of the self-similar solutions are also provided. (paper)

  2. On the kinetic theory of parametric resonance in relativistic plasma

    International Nuclear Information System (INIS)

    El-Ashry, M.Y.

    1982-08-01

    The instability of relativistic hot plasma located in high-frequency external electric field is studied. The dispersion relation, in the case when the plasma electrons have relativistic oscillatory motion, is obtained. It is shown that if the electron Deby's radius is less than the wave length of plasma oscillation and far from the resonance on the overtones of the external field frequency, the oscillation build-up is possible. It is also shown that taking into account the relativistic motion of electrons leads to a considerable decrease in the frequency at which the parametric resonance takes place. (author)

  3. Relativistic laser channeling in plasmas for fast ignition

    Science.gov (United States)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  4. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  5. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  6. Multidimensional Riemann problem with self-similar internal structure. Part II - Application to hyperbolic conservation laws on unstructured meshes

    Science.gov (United States)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-04-01

    Multidimensional Riemann solvers that have internal sub-structure in the strongly-interacting state have been formulated recently (D.S. Balsara (2012, 2014) [5,16]). Any multidimensional Riemann solver operates at the grid vertices and takes as its input all the states from its surrounding elements. It yields as its output an approximation of the strongly interacting state, as well as the numerical fluxes. The multidimensional Riemann problem produces a self-similar strongly-interacting state which is the result of several one-dimensional Riemann problems interacting with each other. To compute this strongly interacting state and its higher order moments we propose the use of a Galerkin-type formulation to compute the strongly interacting state and its higher order moments in terms of similarity variables. The use of substructure in the Riemann problem reduces numerical dissipation and, therefore, allows a better preservation of flow structures, like contact and shear waves. In this second part of a series of papers we describe how this technique is extended to unstructured triangular meshes. All necessary details for a practical computer code implementation are discussed. In particular, we explicitly present all the issues related to computational geometry. Because these Riemann solvers are Multidimensional and have Self-similar strongly-Interacting states that are obtained by Consistency with the conservation law, we call them MuSIC Riemann solvers. (A video introduction to multidimensional Riemann solvers is available on http://www.elsevier.com/xml/linking-roles/text/html". The MuSIC framework is sufficiently general to handle general nonlinear systems of hyperbolic conservation laws in multiple space dimensions. It can also accommodate all self-similar one-dimensional Riemann solvers and subsequently produces a multidimensional version of the same. In this paper we focus on unstructured triangular meshes. As examples of different systems of conservation laws we

  7. Relativistic nuclear fluid dynamics and VUU kinetic theory

    International Nuclear Information System (INIS)

    Molitoris, J.J.; Hahn, D.; Alonso, C.; Collazo, I.; D'Alessandris, P.; McAbee, T.; Wilson, J.; Zingman, J.

    1987-01-01

    Relativistic kinetic theory may be used to understand hot dense hadronic matter. We address the questions of collective flow and pion production in a 3 D relativistic fluid dynamic model and in the VUU microscopic theory. The GSI/LBL collective flow and pion data point to a stiff equation of state. The effect of the nuclear equation of state on the thermodynamic parameters is discussed. The properties of dense hot hadronic matter are studied in Au + Au collisions from 0.1 to 10 GeV/nucleon. 22 refs., 5 figs

  8. Gauge invariant perturbations of self-similar Lemaitre-Tolman-Bondi spacetime: Even parity modes with l≥2

    International Nuclear Information System (INIS)

    Waters, Thomas J.; Nolan, Brien C.

    2009-01-01

    In this paper we consider gauge invariant linear perturbations of the metric and matter tensors describing the self-similar Lemaitre-Tolman-Bondi (timelike dust) spacetime containing a naked singularity. We decompose the angular part of the perturbation in terms of spherical harmonics and perform a Mellin transform to reduce the perturbation equations to a set of ordinary differential equations with singular points. We fix initial data so the perturbation is finite on the axis and the past null cone of the singularity, and follow the perturbation modes up to the Cauchy horizon. There we argue that certain scalars formed from the modes of the perturbation remain finite, indicating linear stability of the Cauchy horizon.

  9. Probing multi-scale self-similarity of tissue structures using light scattering spectroscopy: prospects in pre-cancer detection

    Science.gov (United States)

    Chatterjee, Subhasri; Das, Nandan K.; Kumar, Satish; Mohapatra, Sonali; Pradhan, Asima; Panigrahi, Prasanta K.; Ghosh, Nirmalya

    2013-02-01

    Multi-resolution analysis on the spatial refractive index inhomogeneities in the connective tissue regions of human cervix reveals clear signature of multifractality. We have thus developed an inverse analysis strategy for extraction and quantification of the multifractality of spatial refractive index fluctuations from the recorded light scattering signal. The method is based on Fourier domain pre-processing of light scattering data using Born approximation, and its subsequent analysis through Multifractal Detrended Fluctuation Analysis model. The method has been validated on several mono- and multi-fractal scattering objects whose self-similar properties are user controlled and known a-priori. Following successful validation, this approach has initially been explored for differentiating between different grades of precancerous human cervical tissues.

  10. Self-similar decay to the marginally stable ground state in a model for film flow over inclined wavy bottoms

    Directory of Open Access Journals (Sweden)

    Tobias Hacker

    2012-04-01

    Full Text Available The integral boundary layer system (IBL with spatially periodic coefficients arises as a long wave approximation for the flow of a viscous incompressible fluid down a wavy inclined plane. The Nusselt-like stationary solution of the IBL is linearly at best marginally stable; i.e., it has essential spectrum at least up to the imaginary axis. Nevertheless, in this stable case we show that localized perturbations of the ground state decay in a self-similar way. The proof uses the renormalization group method in Bloch variables and the fact that in the stable case the Burgers equation is the amplitude equation for long waves of small amplitude in the IBL. It is the first time that such a proof is given for a quasilinear PDE with spatially periodic coefficients.

  11. Self-Similar Solutions of Rényi’s Entropy and the Concavity of Its Entropy Power

    Directory of Open Access Journals (Sweden)

    Agapitos N. Hatzinikitas

    2015-08-01

    Full Text Available We study the class of self-similar probability density functions with finite mean and variance, which maximize Rényi’s entropy. The investigation is restricted in the Schwartz space S(Rd and in the space of l-differentiable compactly supported functions Clc (Rd. Interestingly, the solutions of this optimization problem do not coincide with the solutions of the usual porous medium equation with a Dirac point source, as occurs in the optimization of Shannon’s entropy. We also study the concavity of the entropy power in Rd with respect to time using two different methods. The first one takes advantage of the solutions determined earlier, while the second one is based on a setting that could be used for Riemannian manifolds.

  12. MAGIICAT III. Interpreting self-similarity of the circumgalactic medium with virial mass using Mg II absorption

    International Nuclear Information System (INIS)

    Churchill, Christopher W.; Trujillo-Gomez, Sebastian; Nielsen, Nikole M.; Kacprzak, Glenn G.

    2013-01-01

    In Churchill et al., we used halo abundance matching applied to 182 galaxies in the Mg II Absorber-Galaxy Catalog (MAGIICAT) and showed that the mean Mg II λ2796 equivalent width follows a tight inverse-square power law, W r (2796)∝(D/R vir ) –2 , with projected location relative to the galaxy virial radius and that the Mg II absorption covering fraction is effectively invariant with galaxy virial mass, M h , over the range 10.7 ≤ log M h /M ☉ ≤ 13.9. In this work, we explore multivariate relationships between W r (2796), virial mass, impact parameter, virial radius, and the theoretical cooling radius that further elucidate self-similarity in the cool/warm (T = 10 4 -10 4.5 K) circumgalactic medium (CGM) with virial mass. We show that virial mass determines the extent and strength of the Mg II absorbing gas such that the mean W r (2796) increases with virial mass at fixed distance while decreasing with galactocentric distance for fixed virial mass. The majority of the absorbing gas resides within D ≅ 0.3 R vir , independent of both virial mass and minimum absorption threshold; inside this region, and perhaps also in the region 0.3 < D/R vir ≤ 1, the mean W r (2796) is independent of virial mass. Contrary to absorber-galaxy cross-correlation studies, we show there is no anti-correlation between W r (2796) and virial mass. We discuss how simulations and theory constrained by observations support self-similarity of the cool/warm CGM via the physics governing star formation, gas-phase metal enrichment, recycling efficiency of galactic scale winds, filament and merger accretion, and overdensity of local environment as a function of virial mass.

  13. MAGIICAT III. Interpreting self-similarity of the circumgalactic medium with virial mass using Mg II absorption

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, Christopher W.; Trujillo-Gomez, Sebastian; Nielsen, Nikole M. [New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia)

    2013-12-10

    In Churchill et al., we used halo abundance matching applied to 182 galaxies in the Mg II Absorber-Galaxy Catalog (MAGIICAT) and showed that the mean Mg II λ2796 equivalent width follows a tight inverse-square power law, W{sub r} (2796)∝(D/R {sub vir}){sup –2}, with projected location relative to the galaxy virial radius and that the Mg II absorption covering fraction is effectively invariant with galaxy virial mass, M {sub h}, over the range 10.7 ≤ log M {sub h}/M {sub ☉} ≤ 13.9. In this work, we explore multivariate relationships between W{sub r} (2796), virial mass, impact parameter, virial radius, and the theoretical cooling radius that further elucidate self-similarity in the cool/warm (T = 10{sup 4}-10{sup 4.5} K) circumgalactic medium (CGM) with virial mass. We show that virial mass determines the extent and strength of the Mg II absorbing gas such that the mean W{sub r} (2796) increases with virial mass at fixed distance while decreasing with galactocentric distance for fixed virial mass. The majority of the absorbing gas resides within D ≅ 0.3 R {sub vir}, independent of both virial mass and minimum absorption threshold; inside this region, and perhaps also in the region 0.3 < D/R {sub vir} ≤ 1, the mean W{sub r} (2796) is independent of virial mass. Contrary to absorber-galaxy cross-correlation studies, we show there is no anti-correlation between W{sub r} (2796) and virial mass. We discuss how simulations and theory constrained by observations support self-similarity of the cool/warm CGM via the physics governing star formation, gas-phase metal enrichment, recycling efficiency of galactic scale winds, filament and merger accretion, and overdensity of local environment as a function of virial mass.

  14. Using self-similarity compensation for improving inter-layer prediction in scalable 3D holoscopic video coding

    Science.gov (United States)

    Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.

    2013-09-01

    Holoscopic imaging, also known as integral imaging, has been recently attracting the attention of the research community, as a promising glassless 3D technology due to its ability to create a more realistic depth illusion than the current stereoscopic or multiview solutions. However, in order to gradually introduce this technology into the consumer market and to efficiently deliver 3D holoscopic content to end-users, backward compatibility with legacy displays is essential. Consequently, to enable 3D holoscopic content to be delivered and presented on legacy displays, a display scalable 3D holoscopic coding approach is required. Hence, this paper presents a display scalable architecture for 3D holoscopic video coding with a three-layer approach, where each layer represents a different level of display scalability: Layer 0 - a single 2D view; Layer 1 - 3D stereo or multiview; and Layer 2 - the full 3D holoscopic content. In this context, a prediction method is proposed, which combines inter-layer prediction, aiming to exploit the existing redundancy between the multiview and the 3D holoscopic layers, with self-similarity compensated prediction (previously proposed by the authors for non-scalable 3D holoscopic video coding), aiming to exploit the spatial redundancy inherent to the 3D holoscopic enhancement layer. Experimental results show that the proposed combined prediction can improve significantly the rate-distortion performance of scalable 3D holoscopic video coding with respect to the authors' previously proposed solutions, where only inter-layer or only self-similarity prediction is used.

  15. Rarefaction wave in relativistic steady magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    Sapountzis, Konstantinos, E-mail: ksapountzis@phys.uoa.gr; Vlahakis, Nektarios, E-mail: vlahakis@phys.uoa.gr [Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece)

    2014-07-15

    We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.

  16. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  17. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  18. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  19. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  20. Two views on the Bjorken scenario for ultra-relativistic heavy-ion collisions

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    The sketch describes the Bjorken scenario foreseen for the collision of ultra-relativistic heavy-ions, leading to the creation of strongly-interacting hot and dense deconfined matter, the so-called Quark-Gluon Plasma (QGP).

  1. Physical processes in relativistic plasmas

    International Nuclear Information System (INIS)

    Svensson, R.

    1984-01-01

    The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)

  2. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  3. (RN) pair production by photons in a hot Maxwellian plasma

    International Nuclear Information System (INIS)

    Haug, E.

    2004-01-01

    The production of electron-positron pairs by photons in the Coulomb Field of electrons and positrons (triplet production) in hot thermal plasmas is investigated. The pair production rate for this process is calculated as a function of the photon energy and compared with the rate of photon-nucleus pair production for semi-relativistic and relativistic plasma temperatures. (author)

  4. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  5. Reynolds stress structures in a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation.

    Science.gov (United States)

    Atkinson, C.; Sekimoto, A.; Jiménez, J.; Soria, J.

    2018-04-01

    Mean Reynolds stress profiles and instantaneous Reynolds stress structures are investigated in a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL) at the verge of separation using data from direct numerical simulations. The use of a self-similar APG-TBL provides a flow domain in which the flow gradually approaches a constant non-dimensional pressure gradient, resulting in a flow in which the relative contribution of each term in the governing equations is independent of streamwise position over a domain larger than two boundary layer thickness. This allows the flow structures to undergo a development that is less dependent on the upstream flow history when compared to more rapidly decelerated boundary layers. This APG-TBL maintains an almost constant shape factor of H = 2.3 to 2.35 over a momentum thickness based Reynolds number range of Re δ 2 = 8420 to 12400. In the APG-TBL the production of turbulent kinetic energy is still mostly due to the correlation of streamwise and wall-normal fluctuations, 〈uv〉, however the contribution form the other components of the Reynolds stress tensor are no longer negligible. Statistical properties associated with the scale and location of sweeps and ejections in this APG-TBL are compared with those of a zero pressure gradient turbulent boundary layer developing from the same inlet profile, resulting in momentum thickness based range of Re δ 2 = 3400 to 3770. In the APG-TBL the peak in both the mean Reynolds stress and the production of turbulent kinetic energy move from the near wall region out to a point consistent with the displacement thickness height. This is associated with a narrower distribution of the Reynolds stress and a 1.6 times higher relative number of wall-detached negative uv structures. These structures occupy 5 times less of the boundary layer volume and show a similar reduction in their streamwise extent with respect to the boundary layer thickness. A significantly lower percentage

  6. A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks.

    Science.gov (United States)

    Gallos, Lazaros K; Makse, Hernán A; Sigman, Mariano

    2012-02-21

    The human brain is organized in functional modules. Such an organization presents a basic conundrum: Modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. It is commonly accepted that small-world architecture of short paths and large local clustering may solve this problem. However, there is intrinsic tension between shortcuts generating small worlds and the persistence of modularity, a global property unrelated to local clustering. Here, we present a possible solution to this puzzle. We first show that a modified percolation theory can define a set of hierarchically organized modules made of strong links in functional brain networks. These modules are "large-world" self-similar structures and, therefore, are far from being small-world. However, incorporating weaker ties to the network converts it into a small world preserving an underlying backbone of well-defined modules. Remarkably, weak ties are precisely organized as predicted by theory maximizing information transfer with minimal wiring cost. This trade-off architecture is reminiscent of the "strength of weak ties" crucial concept of social networks. Such a design suggests a natural solution to the paradox of efficient information flow in the highly modular structure of the brain.

  7. Detailed investigation of the bifurcation diagram of capacitively coupled Josephson junctions in high-Tc superconductors and its self similarity

    Science.gov (United States)

    Hamdipour, Mohammad

    2018-04-01

    We study an array of coupled Josephson junction of superconductor/insulator/superconductor type (SIS junction) as a model for high temperature superconductors with layered structure. In the current-voltage characteristics of this system there is a breakpoint region in which a net electric charge appear on superconducting layers, S-layers, of junctions which motivate us to study the charge dynamics in this region. In this paper first of all we show a current voltage characteristics (CVC) of Intrinsic Josephson Junctions (IJJs) with N=3 Junctions, then we show the breakpoint region in that CVC, then we try to investigate the chaos in this region. We will see that at the end of the breakpoint region, behavior of the system is chaotic and Lyapunov exponent become positive. We also study the route by which the system become chaotic and will see this route is bifurcation. Next goal of this paper is to show the self similarity in the bifurcation diagram of the system and detailed analysis of bifurcation diagram.

  8. Contributions to the stability analysis of self-similar supersonic heat waves related to inertial confinement fusion

    International Nuclear Information System (INIS)

    Dastugue, Laurent

    2013-01-01

    Exact self-similar solutions of gas dynamics equations with nonlinear heat conduction for semi-infinite slabs of perfect gases are used for studying the stability of flows in inertial confinement fusion. Both the similarity solutions and their linear perturbations are computed with a multi domain Chebyshev pseudo-spectral method, allowing us to account for, without any other approximation, compressibility and unsteadiness. Following previous results (Clarisse et al., 2008; Lombard, 2008) representative of the early ablation of a target by a nonuniform laser flux (electronic conduction, subsonic heat front downstream of a quasi-perfect shock front), we explore here other configurations. For this early ablation phase, but for a nonuniform incident X-radiation (radiative conduction), we study a compressible and a weakly compressible flow. In both cases, we recover the behaviours obtained for compressible flows with electronic heat conduction with a maximal instability for a zero wavenumber. Besides, the spectral method is extended to compute similarity solutions taking into account the supersonic heat wave ahead of the shock front. Based on an analysis of the reduced equations singularities (infinitely stiff front), this method allows us to describe the supersonic heat wave regime proper to the initial irradiation of the target and to recover the ablative solutions which were obtained under a negligible fore-running heat wave approximation. (author) [fr

  9. APPLICATION OF A SELF-SIMILAR PRESSURE PROFILE TO SUNYAEV-ZEL'DOVICH EFFECT DATA FROM GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Mroczkowski, Tony; Miller, Amber; Bonamente, Max; Carlstrom, John E.; Culverhouse, Thomas L.; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Loh, Michael; Marrone, Daniel P.; Pryke, Clem; Sharp, Matthew; Hawkins, David; Lamb, James W.; Woody, David; Joy, Marshall; Maughan, Ben; Muchovej, Stephen; Nagai, Daisuke

    2009-01-01

    We investigate the utility of a new, self-similar pressure profile for fitting Sunyaev-Zel'dovich (SZ) effect observations of galaxy clusters. Current SZ imaging instruments-such as the Sunyaev-Zel'dovich Array (SZA)-are capable of probing clusters over a large range in a physical scale. A model is therefore required that can accurately describe a cluster's pressure profile over a broad range of radii from the core of the cluster out to a significant fraction of the virial radius. In the analysis presented here, we fit a radial pressure profile derived from simulations and detailed X-ray analysis of relaxed clusters to SZA observations of three clusters with exceptionally high-quality X-ray data: A1835, A1914, and CL J1226.9+3332. From the joint analysis of the SZ and X-ray data, we derive physical properties such as gas mass, total mass, gas fraction and the intrinsic, integrated Compton y-parameter. We find that parameters derived from the joint fit to the SZ and X-ray data agree well with a detailed, independent X-ray-only analysis of the same clusters. In particular, we find that, when combined with X-ray imaging data, this new pressure profile yields an independent electron radial temperature profile that is in good agreement with spectroscopic X-ray measurements.

  10. Nonlinear theory for axisymmetric self-similar two-dimensional oscillations of electrons in cold plasma with constant proton background

    Science.gov (United States)

    Osherovich, V. A.; Fainberg, J.

    2018-01-01

    We consider simultaneous oscillations of electrons moving both along the axis of symmetry and also in the direction perpendicular to the axis. We derive a system of three nonlinear ordinary differential equations which describe self-similar oscillations of cold electrons in a constant proton density background (np = n0 = constant). These three equations represent an exact class of solutions. For weak nonlinear conditions, the frequency spectra of electric field oscillations exhibit split frequency behavior at the Langmuir frequency ωp0 and its harmonics, as well as presence of difference frequencies at low spectral values. For strong nonlinear conditions, the spectra contain peaks at frequencies with values ωp0(n +m √{2 }) , where n and m are integer numbers (positive and negative). We predict that both spectral types (weak and strong) should be observed in plasmas where axial symmetry may exist. To illustrate possible applications of our theory, we present a spectrum of electric field oscillations observed in situ in the solar wind by the WAVES experiment on the Wind spacecraft during the passage of a type III solar radio burst.

  11. Effects of initial conditions on self-similarity in a co-flowing axi-symmetric round jet

    International Nuclear Information System (INIS)

    Uddin, M.; Pollard, A.

    2004-01-01

    The effect of initial conditions of a spatially developing coflowing jet is investigated using an LES at Re D = 7,300. A co-flow velocity to initial jet centerline velocity ratio of 1:11 and a co-flow to initial jet diameter ratio of 35:1 are used to match the flow cases of Reference 11. The 35D x 135D simulation volume is divided into 1024 x 256 x 128 control volumes in the longitudinal, radial and azimuthal directions respectively. Time averaged results of the effect of initial conditions on mean flow, the decay of jet centreline velocity, growth of the jet and the distribution of Reynolds stresses in the near, and far field of the shear layer is presented. These quantities show good agreement with the measurements of Reference 11. Our results suggest that the first order moments, e.g., decay of centreline velocity excess, the radial mean velocity profiles, have little dependence on the initial conditions. As well, the Reynolds shear stress appears to have lesser sensitivity to the variation of initial velocity profiles. However, initial conditions have pronounced effect on the self-similarity of normal stresses. Additionally, the computations indicate little Reynolds number dependency, which is consistent with Townsend's school of thought. (author)

  12. Characterizing multi-scale self-similar behavior and non-statistical properties of fluctuations in financial time series

    Science.gov (United States)

    Ghosh, Sayantan; Manimaran, P.; Panigrahi, Prasanta K.

    2011-11-01

    We make use of wavelet transform to study the multi-scale, self-similar behavior and deviations thereof, in the stock prices of large companies, belonging to different economic sectors. The stock market returns exhibit multi-fractal characteristics, with some of the companies showing deviations at small and large scales. The fact that, the wavelets belonging to the Daubechies’ (Db) basis enables one to isolate local polynomial trends of different degrees, plays the key role in isolating fluctuations at different scales. One of the primary motivations of this work is to study the emergence of the k-3 behavior [X. Gabaix, P. Gopikrishnan, V. Plerou, H. Stanley, A theory of power law distributions in financial market fluctuations, Nature 423 (2003) 267-270] of the fluctuations starting with high frequency fluctuations. We make use of Db4 and Db6 basis sets to respectively isolate local linear and quadratic trends at different scales in order to study the statistical characteristics of these financial time series. The fluctuations reveal fat tail non-Gaussian behavior, unstable periodic modulations, at finer scales, from which the characteristic k-3 power law behavior emerges at sufficiently large scales. We further identify stable periodic behavior through the continuous Morlet wavelet.

  13. Stretchable human-machine interface based on skin-conformal sEMG electrodes with self-similar geometry

    Science.gov (United States)

    Dong, Wentao; Zhu, Chen; Hu, Wei; Xiao, Lin; Huang, Yong'an

    2018-01-01

    Current stretchable surface electrodes have attracted increasing attention owing to their potential applications in biological signal monitoring, wearable human-machine interfaces (HMIs) and the Internet of Things. The paper proposed a stretchable HMI based on a surface electromyography (sEMG) electrode with a self-similar serpentine configuration. The sEMG electrode was transfer-printed onto the skin surface conformally to monitor biological signals, followed by signal classification and controlling of a mobile robot. Such electrodes can bear rather large deformation (such as >30%) under an appropriate areal coverage. The sEMG electrodes have been used to record electrophysiological signals from different parts of the body with sharp curvature, such as the index finger, back of the neck and face, and they exhibit great potential for HMI in the fields of robotics and healthcare. The electrodes placed onto the two wrists would generate two different signals with the fist clenched and loosened. It is classified to four kinds of signals with a combination of the gestures from the two wrists, that is, four control modes. Experiments demonstrated that the electrodes were successfully used as an HMI to control the motion of a mobile robot remotely. Project supported by the National Natural Science Foundation of China (Nos. 51635007, 91323303).

  14. Chemical dynamics between wells across a time-dependent barrier: Self-similarity in the Lagrangian descriptor and reactive basins.

    Science.gov (United States)

    Junginger, Andrej; Duvenbeck, Lennart; Feldmaier, Matthias; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2017-08-14

    In chemical or physical reaction dynamics, it is essential to distinguish precisely between reactants and products for all times. This task is especially demanding in time-dependent or driven systems because therein the dividing surface (DS) between these states often exhibits a nontrivial time-dependence. The so-called transition state (TS) trajectory has been seen to define a DS which is free of recrossings in a large number of one-dimensional reactions across time-dependent barriers and thus, allows one to determine exact reaction rates. A fundamental challenge to applying this method is the construction of the TS trajectory itself. The minimization of Lagrangian descriptors (LDs) provides a general and powerful scheme to obtain that trajectory even when perturbation theory fails. Both approaches encounter possible breakdowns when the overall potential is bounded, admitting the possibility of returns to the barrier long after the trajectories have reached the product or reactant wells. Such global dynamics cannot be captured by perturbation theory. Meanwhile, in the LD-DS approach, it leads to the emergence of additional local minima which make it difficult to extract the optimal branch associated with the desired TS trajectory. In this work, we illustrate this behavior for a time-dependent double-well potential revealing a self-similar structure of the LD, and we demonstrate how the reflections and side-minima can be addressed by an appropriate modification of the LD associated with the direct rate across the barrier.

  15. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  16. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  17. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  18. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  19. Relativistic Quantum Revivals

    International Nuclear Information System (INIS)

    Strange, P.

    2010-01-01

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  20. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  1. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  2. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  3. Development and Parameters of a Non-Self-Similar CME Caused by the Eruption of a Quiescent Prominence

    Science.gov (United States)

    Kuzmenko, I. V.; Grechnev, V. V.

    2017-10-01

    The eruption of a large quiescent prominence on 17 August 2013 and an associated coronal mass ejection (CME) were observed from different vantage points by the Solar Dynamics Observatory (SDO), the Solar-Terrestrial Relations Observatory (STEREO), and the Solar and Heliospheric Observatory (SOHO). Screening of the quiet Sun by the prominence produced an isolated negative microwave burst. We estimated the parameters of the erupting prominence from a radio absorption model and measured them from 304 Å images. The variations of the parameters as obtained by these two methods are similar and agree within a factor of two. The CME development was studied from the kinematics of the front and different components of the core and their structural changes. The results were verified using movies in which the CME expansion was compensated for according to the measured kinematics. We found that the CME mass (3.6 × 10^{15} g) was mainly supplied by the prominence (≈ 6 × 10^{15} g), while a considerable part drained back. The mass of the coronal-temperature component did not exceed 10^{15} g. The CME was initiated by the erupting prominence, which constituted its core and remained active. The structural and kinematical changes started in the core and propagated outward. The CME structures continued to form during expansion, which did not become self-similar up to 25 R_{⊙}. The aerodynamic drag was insignificant. The core formed during the CME rise to 4 R_{⊙} and possibly beyond. Some of its components were observed to straighten and stretch outward, indicating the transformation of tangled structures of the core into a simpler flux rope, which grew and filled the cavity as the CME expanded.

  4. Electromagnetic wave propagation in relativistic magnetized plasmas

    International Nuclear Information System (INIS)

    Weiss, I.

    1985-01-01

    An improved mathematical technique and a new code for deriving the conductivity tensor for collisionless plasmas have been developed. The method is applicable to a very general case, including both hot (relativistic) and cold magnetized plasmas, with only isotropic equilibrium distributions being considered here. The usual derivation starts from the relativistic Vlasov equation and leads to an integration over an infinite sum of Bessel functions which has to be done numerically. In the new solution the integration is carried out over a product of two Bessel functions only. This reduces the computing time very significantly. An added advantage over existing codes is our capability to perform the computations for waves propagating obliquely to the magnetic field. Both improvements greatly facilitate investigations of properties of the plasma under conditions hitherto unexplored

  5. THE SELF-SIMILARITY OF THE CIRCUMGALACTIC MEDIUM WITH GALAXY VIRIAL MASS: IMPLICATIONS FOR COLD-MODE ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, Christopher W.; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Victoria 3122 (Australia)

    2013-02-01

    We apply halo abundance matching to obtain galaxy virial masses, M{sub h}, and radii, R{sub vir}, for 183 'isolated' galaxies from the 'Mg II Absorber-Galaxy Catalog'. All galaxies have spectroscopic redshifts (0.07 {<=} z {<=} 1.12) and their circumgalactic medium (CGM) is probed in Mg II absorption within projected galactocentric distances D {<=} 200 kpc. We examine the behavior of equivalent width, W{sub r} (2796), and covering fraction, f{sub c} , as a function of D, D/R{sub vir}, and M{sub h}. Bifurcating the sample at the median mass log M{sub h}/M{sub Sun} = 12, we find (1) systematic segregation of M{sub h} on the W{sub r} (2796)-D plane (4.0{sigma}); high-mass halos are found at higher D with larger W{sub r} (2796) compared to low-mass halos. On the W{sub r} (2796)-D/R{sub vir} plane, mass segregation vanishes and we find W{sub r} (2796){proportional_to}(D/R{sub vir}){sup -2} (8.9{sigma}). (2) High-mass halos have larger f{sub c} at a given D, whereas f{sub c} is independent of M{sub h} at all D/R{sub vir}. (3) f{sub c} is constant with M{sub h} over the range 10.7 {<=} log M{sub h}/M{sub Sun} {<=} 13.9 within a given D or D/R{sub vir}. The combined results suggest the Mg II absorbing CGM is self-similar with halo mass, even above log M{sub h}/M{sub Sun} {approx_equal} 12, where cold mode accretion is predicted to be quenched. If theory is correct, either outflows or sub-halos must contribute to absorption in high-mass halos such that low- and high-mass halos are observationally indistinguishable using Mg II absorption strength once impact parameter is scaled by halo mass. Alternatively, the data may indicate predictions of a universal shut down of cold-mode accretion in high-mass halos may require revision.

  6. Self-similar bumps and wiggles: Isolating the evolution of the BAO peak with power-law initial conditions

    International Nuclear Information System (INIS)

    Orban, Chris; Weinberg, David H.

    2011-01-01

    Motivated by cosmological surveys that demand accurate theoretical modeling of the baryon acoustic oscillation (BAO) feature in galaxy clustering, we analyze N-body simulations in which a BAO-like Gaussian bump modulates the linear theory correlation function ξ L (r)=(r 0 /r) n+3 of an underlying self-similar model with initial power spectrum P(k)=Ak n . These simulations test physical and analytic descriptions of BAO evolution far beyond the range of most studies, since we consider a range of underlying power spectra (n=-0.5, -1, -1.5) and evolve simulations to large effective correlation amplitudes (equivalent to σ 8 =4-12 for r bao =100h -1 Mpc). In all cases, nonlinear evolution flattens and broadens the BAO bump in ξ(r) while approximately preserving its area. This evolution resembles a diffusion process in which the bump width σ bao is the quadrature sum of the linear theory width and a length proportional to the rms relative displacement Σ pair (r bao ) of particle pairs separated by r bao . For n=-0.5 and n=-1, we find no detectable shift of the location of the BAO peak, but the peak in the n=-1.5 model shifts steadily to smaller scales, following r peak /r bao =1-1.08(r 0 /r bao ) 1.5 . The perturbation theory scheme of McDonald (2007) [P. McDonald, Phys. Rev. D 75, 043514 (2007).] and, to a lesser extent, standard 1-loop perturbation theory are fairly successful at explaining the nonlinear evolution of the Fourier power spectrum of our models. Analytic models also explain why the ξ(r) peak shifts much more for n=-1.5 than for n≥-1, though no ab initio model we have examined reproduces all of our numerical results. Simulations with L box =10r bao and L box =20r bao yield consistent results for ξ(r) at the BAO scale, provided one corrects for the integral constraint imposed by the uniform density box.

  7. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  8. Hot hadronic matter in the early universe

    International Nuclear Information System (INIS)

    Bowers, R.L.; Dykema, P.G.; Gleeson, A.M.

    1977-04-01

    A fully relativistic equation of state for hot baryonic matter was used to investigate the strong interaction contribution to the equation of motion of the Friedmann universe. A pronounced softening of the equation of state is observed near nuclear density. The significance of the results is analyzed in terms of analytic solutions for the Friedmann cosmology

  9. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)

  10. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  11. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  12. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  13. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  14. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  15. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  16. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  17. 12th Italian-Korean Symposium on Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Won Lee, Hyung; Remo Riffini; Vereshchagin

    2013-01-01

    This series of biannual symposia, since 1987, has been boosting exchange of information and collaborations between Italian and Korean astrophysicists on new and hot issues in the field of Relativistic Astrophysics. These symposia cover relativistic field theories, astrophysics and cosmology, topics such as gamma-ray bursts and compact stars, high energy cosmic rays, dark energy and dark matter, general relativity, black holes, and new physics related to cosmology. The organizers are confident that this symposium could deepen the understanding of not only astrophysics and cosmology but also Eastern and Western cultures.

  18. Discriminating males and unpredictable females: males differentiate self-similar facial cues more than females in the judgment of opposite-sex attractiveness.

    Directory of Open Access Journals (Sweden)

    Jin-Ying Zhuang

    Full Text Available Attractiveness judgment in the context of mate preferences is thought to reflect an assessment of mate quality in relation to an absolute scale of genetic fitness and a relative scale of self-similarity. In this study, subjects judged the attractiveness and trustworthiness of faces in composite images that were manipulated to produce self-similar (self-resemblance and dissimilar (other-resemblance images. Males differentiated between self- and other-resemblance as well as among different degrees of self-resemblance in their attractiveness ratings; females did not. Specifically, in Experiment 1, using a morphing technique, we created previously unseen face images possessing different degrees (0%, 30%, 40%, or 50% of incorporation of the subject's images (different degrees of self-resemblance and found that males preferred images that were closer to average (0% rather than more self-similar, whereas females showed no preference for any degree of self-similarity. In Experiment 2, we added a pro-social question about trustworthiness. We replicated the Experiment 1 attractiveness rating results and further found that males differentiated between self- and other-resemblance for the same degree of composites; women did not. Both males and females showed a similar preference for self-resemblances when judging trustworthiness. In conclusion, only males factored self-resemblance into their attractiveness ratings of opposite-sex individuals in a manner consistent with cues of reproductive fitness, although both sexes favored self-resemblance when judging trustworthiness.

  19. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  20. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  1. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  2. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  3. Relativistic Wigner functions

    Directory of Open Access Journals (Sweden)

    Bialynicki-Birula Iwo

    2014-01-01

    Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.

  4. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  5. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  6. Relativistic Polarizable Embedding

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob

    2017-01-01

    Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...

  7. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  8. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  9. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  10. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  11. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  12. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  13. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  14. 2D Relativistic MHD simulations of the Kruskal-Schwarzschild instability in a relativistic striped wind

    Science.gov (United States)

    Gill, Ramandeep; Granot, Jonathan; Lyubarsky, Yuri

    2018-03-01

    We study the linear and non-linear development of the Kruskal-Schwarzchild instability in a relativisitically expanding striped wind. This instability is the generalization of Rayleigh-Taylor instability in the presence of a magnetic field. It has been suggested to produce a self-sustained acceleration mechanism in strongly magnetized outflows found in active galactic nuclei, gamma-ray bursts, and micro-quasars. The instability leads to magnetic reconnection, but in contrast with steady-state Sweet-Parker reconnection, the dissipation rate is not limited by the current layer's small aspect ratio. We performed two-dimensional (2D) relativistic magnetohydrodynamic (RMHD) simulations featuring two cold and highly magnetized (1 ≤ σ ≤ 103) plasma layers with an anti-parallel magnetic field separated by a thin layer of relativistically hot plasma with a local effective gravity induced by the outflow's acceleration. Our simulations show how the heavier relativistically hot plasma in the reconnecting layer drips out and allows oppositely oriented magnetic field lines to reconnect. The instability's growth rate in the linear regime matches the predictions of linear stability analysis. We find turbulence rather than an ordered bulk flow near the reconnection region, with turbulent velocities up to ˜0.1c, largely independent of model parameters. However, the magnetic energy dissipation rate is found to be much slower, corresponding to an effective ordered bulk velocity inflow into the reconnection region vin = βinc of 10-3 ≲ βin ≲ 5 × 10-3. This occurs due to the slow evacuation of hot plasma from the current layer, largely because of the Kelvin-Helmholtz instability experienced by the dripping plasma. 3D RMHD simulations are needed to further investigate the non-linear regime.

  15. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  16. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  17. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  18. Self-similar rupture implied by scaling properties of volcanic earthquakes occurring during the 2004-2008 eruption of Mount St. Helens, Washington

    Science.gov (United States)

    Harrington, Rebecca M.; Kwiatek, Grzegorz; Moran, Seth C.

    2015-01-01

    We analyze a group of 6073 low-frequency earthquakes recorded during a week-long temporary deployment of broadband seismometers at distances of less than 3 km from the crater at Mount St. Helens in September of 2006. We estimate the seismic moment (M0) and spectral corner frequency (f0) using a spectral ratio approach for events with a high signal-to-noise (SNR) ratio that have a cross-correlation coefficient of 0.8 or greater with at least five other events. A cluster analysis of cross-correlation values indicates that the group of 421 events meeting the SNR and cross-correlation criteria forms eight event families that exhibit largely self-similar scaling. We estimate the M0 and f0 values of the 421 events and calculate their static stress drop and scaled energy (ER/M0) values. The estimated values suggest self-similar scaling within families, as well as between five of eight families (i.e.,  and  constant). We speculate that differences in scaled energy values for the two families with variable scaling may result from a lack of resolution in the velocity model. The observation of self-similar scaling is the first of its kind for such a large group of low-frequency volcanic tectonic events occurring during a single active dome extrusion eruption.

  19. Estimating serial correlation and self-similarity in financial time series-A diversification approach with applications to high frequency data

    Science.gov (United States)

    Gerlich, Nikolas; Rostek, Stefan

    2015-09-01

    We derive a heuristic method to estimate the degree of self-similarity and serial correlation in financial time series. Especially, we propagate the use of a tailor-made selection of different estimation techniques that are used in various fields of time series analysis but until now have not consequently found their way into the finance literature. Following the idea of portfolio diversification, we show that considerable improvements with respect to robustness and unbiasedness can be achieved by using a basket of estimation methods. With this methodological toolbox at hand, we investigate real market data to show that noticeable deviations from the assumptions of constant self-similarity and absence of serial correlation occur during certain periods. On the one hand, this may shed a new light on seemingly ambiguous scientific findings concerning serial correlation of financial time series. On the other hand, a proven time-changing degree of self-similarity may help to explain high-volatility clusters of stock price indices.

  20. Relativistic charged Bose gas

    International Nuclear Information System (INIS)

    Hines, D.F.; Frankel, N.E.

    1979-01-01

    The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed

  1. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D M

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  2. Relativistic Ideal Clock

    OpenAIRE

    Bratek, Łukasz

    2015-01-01

    Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...

  3. Relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs

  4. Effect of phase transition on QGP fluid in ultra-relativistic heavy ion collision

    International Nuclear Information System (INIS)

    Nonaka, Chiho; Miyamura, Osamu; Muroya, Shin

    2001-01-01

    A full (3+1)-dimensional calculation using the Lagrangian hydrodynamics is proposed for relativistic nuclear collisions. The calculation enables us to evaluate anisotropic flow of hot and dense matter which appears in non-central and/or asymmetrical relativistic nuclear collisions. The relativistic hydrodynamical model is related to the equation of the state and the useful for the verification of quark-gluon plasma state. By virtue of the Lagrangian hydrodynamics we can easily trace the trajectory which corresponds to the adiabatic paths in the T-μ plane. We evaluate the directly of the influence of the phase transition to physical phenomena in the ultra-relativistic nuclear collisions. Using our relativistic hydrodynamical model, we discuss the effect of the phase transition on the collective flow. (author)

  5. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  6. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  7. Box-counting dimension revisited: presenting an efficient method of minimising quantisation error and an assessment of the self-similarity of structural root systems

    Directory of Open Access Journals (Sweden)

    Martin eBouda

    2016-02-01

    Full Text Available Fractal dimension (FD, estimated by box-counting, is a metric used to characterise plant anatomical complexity or space-filling characteristic for a variety of purposes. The vast majority of published studies fail to evaluate the assumption of statistical self-similarity, which underpins the validity of the procedure. The box-counting procedure is also subject to error arising from arbitrary grid placement, known as quantisation error (QE, which is strictly positive and varies as a function of scale, making it problematic for the procedure's slope estimation step. Previous studies either ignore QE or employ inefficient brute-force grid translations to reduce it. The goals of this study were to characterise the effect of QE due to translation and rotation on FD estimates, to provide an efficient method of reducing QE, and to evaluate the assumption of statistical self-similarity of coarse root datasets typical of those used in recent trait studies. Coarse root systems of 36 shrubs were digitised in 3D and subjected to box-counts. A pattern search algorithm was used to minimise QE by optimising grid placement and its efficiency was compared to the brute force method. The degree of statistical self-similarity was evaluated using linear regression residuals and local slope estimates.QE due to both grid position and orientation was a significant source of error in FD estimates, but pattern search provided an efficient means of minimising it. Pattern search had higher initial computational cost but converged on lower error values more efficiently than the commonly employed brute force method. Our representations of coarse root system digitisations did not exhibit details over a sufficient range of scales to be considered statistically self-similar and informatively approximated as fractals, suggesting a lack of sufficient ramification of the coarse root systems for reiteration to be thought of as a dominant force in their development. FD estimates did

  8. Formation of stable, high-beta, relativistic-electron plasmas using electron cyclotron heating

    International Nuclear Information System (INIS)

    Guest, G.E.; Miller, R.L.

    1988-01-01

    A one-dimensional, steady-state, relativistic Fokker-Planck model of electron cyclotron heating (ECH) is used to analyse the heating kinetics underlying the formation of the two-component hot-electron plasmas characteristic of ECH in magnetic mirror configurations. The model is first applied to the well diagnosed plasmas obtained in SM-1 and is then used to simulate the effective generation of relativistic electrons by upper off-resonant heating (UORH), as demonstrated empirically in ELMO. The characteristics of unstable whistler modes and cyclotron maser modes are then determined for two-component hot-electron plasmas sustained by UORH. Cyclotron maser modes are shown to be strongly suppressed by the colder background electron species, while the growth rates of whistler modes are reduced by relativistic effects to levels that may render them unobservable, provided the hot-electron pressure anisotropy is below an energy dependent threshold. (author). 29 refs, 10 figs, 1 tab

  9. Elliptic flow based on a relativistic hydrodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Tetsufumi [Department of Physics, Waseda Univ., Tokyo (Japan)

    1999-08-01

    Based on the (3+1)-dimensional hydrodynamic model, the space-time evolution of hot and dense nuclear matter produced in non-central relativistic heavy-ion collisions is discussed. The elliptic flow parameter v{sub 2} is obtained by Fourier analysis of the azimuthal distribution of pions and protons which are emitted from the freeze-out hypersurface. As a function of rapidity, the pion and proton elliptic flow parameters both have a peak at midrapidity. (author)

  10. Bose-Einstein condensation in the relativistic ideal Bose gas.

    Science.gov (United States)

    Grether, M; de Llano, M; Baker, George A

    2007-11-16

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.

  11. Bose-Einstein Condensation in the Relativistic Ideal Bose Gas

    International Nuclear Information System (INIS)

    Grether, M.; Llano, M. de; Baker, George A. Jr.

    2007-01-01

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state

  12. Collective flow of pions in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Russkikh, V.N.; Ivanov, Yu.B.

    1995-02-01

    The transverse-momentum distributions of pions in the Au(1 GeV/nucleon)+Au collisions are analyzed. The calculations are carried out within relativistic meanfield one- and two-fluid models. The rapidity distributions of the mean transverse momentum of pions are found to be fairly sensitive to the nuclear equation of state and, especially, to the stopping power. It is shown that the collective flow of pions in the reaction plane always correlates with the 'hot' flow of nucleons (i.e. those emitted from hot regions of nuclear system), while not always, with the total nucleon flow. This 'hot' nucleon flow can be experimentally singled out by selecting nucleons with sufficiently high transverse momenta. We predict that the 'hot' nucleon flow selected in this way will always correlate with the pion flow. Available experimental data on transverse-momentum spectra of pions are compared with calculations employing various equations of state and stopping power. (orig.)

  13. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  14. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  15. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    Science.gov (United States)

    De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico

    2012-02-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  16. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; López-Cámara, Diego

    2012-01-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρ∝r –k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  17. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    De Colle, Fabio; Ramirez-Ruiz, Enrico [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)

    2012-02-20

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the

  18. Parametric decay of an extraordinary electromagnetic wave in relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dorofeenko, V. G. [Institute for Advanced Studies (Austria); Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Peoples’ Friendship University of Russia (Russian Federation)

    2015-03-15

    Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.

  19. Relativistic twins or sextuplets?

    International Nuclear Information System (INIS)

    Sheldon, Eric

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back

  20. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  1. Relativistic quantum cryptography

    Science.gov (United States)

    Kaniewski, Jedrzej

    Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).

  2. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  3. Localization of relativistic particles

    International Nuclear Information System (INIS)

    Omnes, R.

    1997-01-01

    In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics

  4. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  5. Relativistic quarkonium dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1985-06-01

    We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters

  6. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  7. Relativistic nuclear collisions: theory

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1980-07-01

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures

  8. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1991-01-01

    The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described

  9. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  10. Relativistic dynamics without conservation laws

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan

    2006-01-01

    We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.

  11. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  12. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  13. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  14. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1992-01-01

    In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given

  15. A self-similar solution of a curved shock wave and its time-dependent force variation for a starting flat plate airfoil in supersonic flow

    Directory of Open Access Journals (Sweden)

    Zijun CHEN

    2018-02-01

    Full Text Available The problem of aeroelasticity and maneuvering of command surface and gust wing interaction involves a starting flow period which can be seen as the flow of an airfoil attaining suddenly an angle of attack. In the linear or nonlinear case, compressive Mach or shock waves are generated on the windward side and expansive Mach or rarefaction waves are generated on the leeward side. On each side, these waves are composed of an oblique steady state wave, a vertically-moving one-dimensional unsteady wave, and a secondary wave resulting from the interaction between the steady and unsteady ones. An analytical solution in the secondary wave has been obtained by Heaslet and Lomax in the linear case, and this linear solution has been borrowed to give an approximate solution by Bai and Wu for the nonlinear case. The structure of the secondary shock wave and the appearance of various force stages are two issues not yet considered in previous studies and has been studied in the present paper. A self-similar solution is obtained for the secondary shock wave, and the reason to have an initial force plateau as observed numerically is identified. Moreover, six theoretical characteristic time scales for pressure load variation are determined which explain the slope changes of the time-dependent force curve. Keywords: Force, Self-similar solution, Shock-shock interaction, Shock waves, Unsteady flow

  16. Relativistic Outflows from Advection-dominated Accretion Disks around Black Holes

    Science.gov (United States)

    Becker, Peter A.; Subramanian, Prasad; Kazanas, Demosthenes

    2001-05-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter and are therefore gravitationally unbound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a pseudo-Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self-similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Hence, our self-similar solution may help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approaches the unique form M~r1/2, with an associated density variation given by ρ~r-1. This density variation agrees with that implied by the dependence of the hard X-ray time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the predictions made using our self-similar solution need to be confirmed in the future using a detailed model that includes a physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  17. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  18. Photoionization at relativistic energies

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.

    2000-11-01

    At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)

  19. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  20. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1993-01-01

    This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given

  1. Relativistic plasma dispersion functions

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1986-01-01

    The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived

  2. Relativistic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  3. Relativistic Light Sails

    International Nuclear Information System (INIS)

    Kipping, David

    2017-01-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  4. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  5. Some problems in relativistic thermodynamics

    International Nuclear Information System (INIS)

    Veitsman, E. V.

    2007-01-01

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived

  6. SCALING LAW OF RELATIVISTIC SWEET-PARKER-TYPE MAGNETIC RECONNECTION

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki R.; Kudoh, Takahiro; Masada, Youhei; Matsumoto, Jin

    2011-01-01

    Relativistic Sweet-Parker-type magnetic reconnection is investigated by relativistic resistive magnetohydrodynamic (RRMHD) simulations. As an initial setting, we assume anti-parallel magnetic fields and a spatially uniform resistivity. A perturbation imposed on the magnetic fields triggers magnetic reconnection around a current sheet, and the plasma inflows into the reconnection region. The inflows are then heated due to ohmic dissipation in the diffusion region and finally become relativistically hot outflows. The outflows are not accelerated to ultrarelativistic speeds (i.e., Lorentz factor ≅ 1), even when the magnetic energy dominates the thermal and rest mass energies in the inflow region. Most of the magnetic energy in the inflow region is converted into the thermal energy of the outflow during the reconnection process. The energy conversion from magnetic to thermal energy in the diffusion region results in an increase in the plasma inertia. This prevents the outflows from being accelerated to ultrarelativistic speeds. We find that the reconnection rate R obeys the scaling relation R≅S -0.5 , where S is the Lundquist number. This feature is the same as that of non-relativistic reconnection. Our results are consistent with the theoretical predictions of Lyubarsky for Sweet-Parker-type magnetic reconnection.

  7. Conductivity of a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  8. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  9. Conductivity of a relativistic plasma

    International Nuclear Information System (INIS)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab

  10. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  11. HOT 2017

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis.......HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis....

  12. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  13. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  14. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.

    1989-01-01

    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  15. Ultra-relativistic ion acceleration in the laser-plasma interactions

    International Nuclear Information System (INIS)

    Huang Yongsheng; Wang Naiyan; Tang Xiuzhang; Shi Yijin; Xueqing Yan

    2012-01-01

    An analytical relativistic model is proposed to describe the relativistic ion acceleration in the interaction of ultra-intense laser pulses with thin-foil plasmas. It is found that there is a critical value of the ion momentum to make sure that the ions are trapped by the light sail and accelerated in the radiation pressure acceleration (RPA) region. If the initial ion momentum is smaller than the critical value, that is in the classical case of RPA, the potential has a deep well and traps the ions to be accelerated, as the same described before by simulation results [Eliasson et al., New J. Phys. 11, 073006 (2009)]. There is a new ion acceleration region different from RPA, called ultra-relativistic acceleration, if the ion momentum exceeds the critical value. In this case, ions will experience a potential downhill. The dependence of the ion momentum and the self-similar variable at the ion front on the acceleration time has been obtained. In the ultra-relativistic limit, the ion momentum at the ion front is proportional to t 4/5 , where t is the acceleration time. In our analytical hydrodynamical model, it is naturally predicted that the ion distribution from RPA is not monoenergetic, although the phase-stable acceleration mechanism is effective. The critical conditions of the laser and plasma parameters which identify the two acceleration modes have been achieved.

  16. Ultra-relativistic ion acceleration in the laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yongsheng; Wang Naiyan; Tang Xiuzhang; Shi Yijin [China Institute of Atomic Energy, Beijing 102413 (China); Xueqing Yan [Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2012-09-15

    An analytical relativistic model is proposed to describe the relativistic ion acceleration in the interaction of ultra-intense laser pulses with thin-foil plasmas. It is found that there is a critical value of the ion momentum to make sure that the ions are trapped by the light sail and accelerated in the radiation pressure acceleration (RPA) region. If the initial ion momentum is smaller than the critical value, that is in the classical case of RPA, the potential has a deep well and traps the ions to be accelerated, as the same described before by simulation results [Eliasson et al., New J. Phys. 11, 073006 (2009)]. There is a new ion acceleration region different from RPA, called ultra-relativistic acceleration, if the ion momentum exceeds the critical value. In this case, ions will experience a potential downhill. The dependence of the ion momentum and the self-similar variable at the ion front on the acceleration time has been obtained. In the ultra-relativistic limit, the ion momentum at the ion front is proportional to t{sup 4/5}, where t is the acceleration time. In our analytical hydrodynamical model, it is naturally predicted that the ion distribution from RPA is not monoenergetic, although the phase-stable acceleration mechanism is effective. The critical conditions of the laser and plasma parameters which identify the two acceleration modes have been achieved.

  17. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  18. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  19. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  20. Relativistic positioning systems: perspectives and prospects

    Science.gov (United States)

    Coll Bartolomé

    2013-11-01

    Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).

  1. Relativistic theory of gravity

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1985-01-01

    This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes

  2. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  3. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  4. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    International Nuclear Information System (INIS)

    Parvazian, A.; Javani, A.

    2010-01-01

    Fast ignition is a new method for inertial confinement fusion in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel. More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0.25 and 0.5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. Magnetized target fusion in dual hot spot can be considered as an appropriate substitution for the current inertial confinement fusion techniques.

  5. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2010-12-01

    Full Text Available Fast ignition is a new method for inertial confinement fusion (ICF in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel . More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion (MTF. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0. 25 and 0. 5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. MTF in dual hot spot can be considered as an appropriate substitution for the current ICF techniques.

  6. Fractal Hypothesis of the Pelagic Microbial Ecosystem—Can Simple Ecological Principles Lead to Self-Similar Complexity in the Pelagic Microbial Food Web?

    Science.gov (United States)

    Våge, Selina; Thingstad, T. Frede

    2015-01-01

    Trophic interactions are highly complex and modern sequencing techniques reveal enormous biodiversity across multiple scales in marine microbial communities. Within the chemically and physically relatively homogeneous pelagic environment, this calls for an explanation beyond spatial and temporal heterogeneity. Based on observations of simple parasite-host and predator-prey interactions occurring at different trophic levels and levels of phylogenetic resolution, we present a theoretical perspective on this enormous biodiversity, discussing in particular self-similar aspects of pelagic microbial food web organization. Fractal methods have been used to describe a variety of natural phenomena, with studies of habitat structures being an application in ecology. In contrast to mathematical fractals where pattern generating rules are readily known, however, identifying mechanisms that lead to natural fractals is not straight-forward. Here we put forward the hypothesis that trophic interactions between pelagic microbes may be organized in a fractal-like manner, with the emergent network resembling the structure of the Sierpinski triangle. We discuss a mechanism that could be underlying the formation of repeated patterns at different trophic levels and discuss how this may help understand characteristic biomass size-spectra that hint at scale-invariant properties of the pelagic environment. If the idea of simple underlying principles leading to a fractal-like organization of the pelagic food web could be formalized, this would extend an ecologists mindset on how biological complexity could be accounted for. It may furthermore benefit ecosystem modeling by facilitating adequate model resolution across multiple scales. PMID:26648929

  7. Studies of Ionic Photoionization Using Relativistic Random Phase Approximation and Relativistic Multichannel Quantum Defect Theory

    Science.gov (United States)

    Haque, Ghousia Nasreen

    The absorption of electromagnetic radiation by positive ions is one of the fundamental processes of nature which occurs in every intensely hot environment. Due to the difficulties in producing sufficient densities of ions in a laboratory, there are very few measurements of ionic photoabsorption parameters. On the theoretical side, some calculations have been made of a few major photoionization parameters, but generally speaking, most of the work done so far has employed rather simple single particle models and any theoretical work which has adequately taken into account intricate atomic many-body and relativistic effects is only scanty. In the present work, several complex aspects of atomic/ionic photoabsorption parameters have been studied. Non -resonant photoionization in neon and argon isonuclear as well as isoelectronic sequences has been studied using a very sophisticated technique, namely the relativistic random phase approximation (RRPA). This technique takes into account relativistic effects as well as an important class of major many-body effects on the same footing. The present calculations confirmed that gross features of photoionization parameters calculated using simpler models were not an artifact of the simple model. Also, the present RRPA calculations on K^+ ion and neutral Ar brought out the relative importance of various many-body effects such the inter-channel coupling. Inter-channel coupling between discrete bound state photoexcitation channels from an inner atomic/ionic level and photoionization continuum channels from an outer atomic/ionic level leads to the phenomena of autoionization resonances in the photoionization process. These resonances lead to very complex effects in the atomic/ionic photoabsorption spectra. These resonances have been calculated and studied in the present work in the neon and magnesium isoelectronic sequences using the relativistic multi-channel quantum defect theory (RMQDT) within the framework of the RRPA. The

  8. Scale-relativistic cosmology

    International Nuclear Information System (INIS)

    Nottale, Laurent

    2003-01-01

    The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the

  9. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  10. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  11. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  12. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  13. Apparent unambiguousness of relativistic time dilation

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs

  14. Relativistic generalization of strong plasma turbulence

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1982-01-01

    Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt

  15. Quantum gates via relativistic remote control

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Martínez, Eduardo, E-mail: emartinm@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Dept. Applied Math., University of Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Sutherland, Chris [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2014-12-12

    We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build 1-qubit quantum gates.

  16. grmonty: A MONTE CARLO CODE FOR RELATIVISTIC RADIATIVE TRANSPORT

    International Nuclear Information System (INIS)

    Dolence, Joshua C.; Gammie, Charles F.; Leung, Po Kin; Moscibrodzka, Monika

    2009-01-01

    We describe a Monte Carlo radiative transport code intended for calculating spectra of hot, optically thin plasmas in full general relativity. The version we describe here is designed to model hot accretion flows in the Kerr metric and therefore incorporates synchrotron emission and absorption, and Compton scattering. The code can be readily generalized, however, to account for other radiative processes and an arbitrary spacetime. We describe a suite of test problems, and demonstrate the expected N -1/2 convergence rate, where N is the number of Monte Carlo samples. Finally, we illustrate the capabilities of the code with a model calculation, a spectrum of the slowly accreting black hole Sgr A* based on data provided by a numerical general relativistic MHD model of the accreting plasma.

  17. Self-similar dynamics of air film entrained by a solid disk in confined space: A simple prototype of topological transitions

    Science.gov (United States)

    Nakazato, Hana; Yamagishi, Yuki; Okumura, Ko

    2018-05-01

    In hydrodynamic topological transitions, one mass of fluid breaks into two or two merge into one. For example, in honey-drop formation when honey is dripping from a spoon, honey is extended to separate into two masses as the liquid neck bridging them thins down to the micron scale. At the moment when the topology changes due to the breakup, physical observables such as surface curvature locally diverge. Such singular dynamics has widely attracted physicists, revealing universality in self-similar dynamics, which shares much in common with critical phenomena in thermodynamics. Many experimental examples have been found, including an electric spout and vibration-induced jet eruption. However, only a few cases have been physically understood on the basis of equations that govern the singular dynamics and even in such a case the physical understanding is mathematically complicated, inevitably involving delicate numerical calculations. Here we study the breakup of air film entrained by a solid disk into viscous liquid in a confined space, which leads to formation, thinning, and breakup of the neck of air. As a result, we unexpectedly find that equations governing the neck dynamics can be solved analytically by virtue of two remarkable experimental features: Only a single length scale linearly dependent on time remains near the singularity and two universal scaling functions describing the singular neck shape and velocity field are both analytic. The present solvable case would be essential for a better understanding of the singular dynamics and will help reveal the physics of unresolved examples intimately related to daily-life phenomena and diverse practical applications.

  18. ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY

    International Nuclear Information System (INIS)

    Davies, J. A.; Perry, C. H.; Harrison, R. A.; Trines, R. M. G. M.; Lugaz, N.; Möstl, C.; Liu, Y. D.; Steed, K.

    2013-01-01

    The twin-spacecraft STEREO mission has enabled simultaneous white-light imaging of the solar corona and inner heliosphere from multiple vantage points. This has led to the development of numerous stereoscopic techniques to investigate the three-dimensional structure and kinematics of solar wind transients such as coronal mass ejections (CMEs). Two such methods—triangulation and the tangent to a sphere—can be used to determine time profiles of the propagation direction and radial distance (and thereby radial speed) of a solar wind transient as it travels through the inner heliosphere, based on its time-elongation profile viewed by two observers. These techniques are founded on the assumption that the transient can be characterized as a point source (fixed φ, FP, approximation) or a circle attached to Sun-center (harmonic mean, HM, approximation), respectively. These geometries constitute extreme descriptions of solar wind transients, in terms of their cross-sectional extent. Here, we present the stereoscopic expressions necessary to derive propagation direction and radial distance/speed profiles of such transients based on the more generalized self-similar expansion (SSE) geometry, for which the FP and HM geometries form the limiting cases; our implementation of these equations is termed the stereoscopic SSE method. We apply the technique to two Earth-directed CMEs from different phases of the STEREO mission, the well-studied event of 2008 December and a more recent event from 2012 March. The latter CME was fast, with an initial speed exceeding 2000 km s –1 , and highly geoeffective, in stark contrast to the slow and ineffectual 2008 December CME

  19. Multidimensional Riemann problem with self-similar internal structure - part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems

    Science.gov (United States)

    Balsara, Dinshaw S.; Nkonga, Boniface

    2017-10-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.

  20. Instability in relativistic nuclear matter

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1979-11-01

    The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)

  1. Cyberinfrastructure for Computational Relativistic Astrophysics

    OpenAIRE

    Ott, Christian

    2012-01-01

    Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.

  2. Future relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned

  3. A relativistic radiation transfer benchmark

    International Nuclear Information System (INIS)

    Munier, A.

    1988-01-01

    We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame

  4. Relativistic models of nuclear structure

    International Nuclear Information System (INIS)

    Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.

    1991-01-01

    The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)

  5. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  6. Dynamics and stability of relativistic gamma-ray-bursts blast waves

    Science.gov (United States)

    Meliani, Z.; Keppens, R.

    2010-09-01

    Aims: In gamma-ray-bursts (GRBs), ultra-relativistic blast waves are ejected into the circumburst medium. We analyse in unprecedented detail the deceleration of a self-similar Blandford-McKee blast wave from a Lorentz factor 25 to the nonrelativistic Sedov phase. Our goal is to determine the stability properties of its frontal shock. Methods: We carried out a grid-adaptive relativistic 2D hydro-simulation at extreme resolving power, following the GRB jet during the entire afterglow phase. We investigate the effect of the finite initial jet opening angle on the deceleration of the blast wave, and identify the growth of various instabilities throughout the coasting shock front. Results: We find that during the relativistic phase, the blast wave is subject to pressure-ram pressure instabilities that ripple and fragment the frontal shock. These instabilities manifest themselves in the ultra-relativistic phase alone, remain in full agreement with causality arguments, and decay slowly to finally disappear in the near-Newtonian phase as the shell Lorentz factor drops below 3. From then on, the compression rate decreases to levels predicted to be stable by a linear analysis of the Sedov phase. Our simulations confirm previous findings that the shell also spreads laterally because a rarefaction wave slowly propagates to the jet axis, inducing a clear shell deformation from its initial spherical shape. The blast front becomes meridionally stratified, with decreasing speed from axis to jet edge. In the wings of the jetted flow, Kelvin-Helmholtz instabilities occur, which are of negligible importance from the energetic viewpoint. Conclusions: Relativistic blast waves are subject to hydrodynamical instabilities that can significantly affect their deceleration properties. Future work will quantify their effect on the afterglow light curves.

  7. Analysis of core plasma heating and ignition by relativistic electrons

    International Nuclear Information System (INIS)

    Nakao, Y.

    2002-01-01

    Clarification of the pre-compressed plasma heating by fast electrons produced by relativistic laser-plasma interaction is one of the most important issues of the fast ignition scheme in ICF. On the basis of overall calculations including the heating process, both by relativistic hot electrons and alpha-particles, and the hydrodynamic evolution of bulk plasma, we examine the feature of core plasma heating and the possibility of ignition. The deposition of the electron energy via long-range collective mode, i.e. Langmuir wave excitation, is shown to be comparable to that through binary electron-electron collisions; the calculation neglecting the wave excitation considerably underestimates the core plasma heating. The ignition condition is also shown in terms of the intensity I(h) and temperature T(h) of hot electrons. It is found that I(h) required for ignition increases in proportion to T(h). For efficiently achieving the fast ignition, electron beams with relatively 'low' energy (e.g.T(h) below 1 MeV) are desirable. (author)

  8. Relativistic Descriptions of Few-Body Systems

    International Nuclear Information System (INIS)

    Karmanov, V. A.

    2011-01-01

    A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)

  9. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  10. Dynamical properties for the problem of a particle in an electric field of wave packet: Low velocity and relativistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [Institute for Multiscale Simulations, Friedrich-Alexander Universität, D-91052, Erlangen (Germany); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatística, Matemática Aplicada e Computação, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Departamento de Física, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, 13506-900, Rio Claro, SP (Brazil)

    2012-11-01

    We study some dynamical properties for the problem of a charged particle in an electric field considering both the low velocity and relativistic cases. The dynamics for both approaches is described in terms of a two-dimensional and nonlinear mapping. The structure of the phase spaces is mixed and we introduce a hole in the chaotic sea to let the particles to escape. By changing the size of the hole we show that the survival probability decays exponentially for both cases. Additionally, we show for the relativistic dynamics, that the introduction of dissipation changes the mixed phase space and attractors appear. We study the parameter space by using the Lyapunov exponent and the average energy over the orbit and show that the system has a very rich structure with infinite family of self-similar shrimp shaped embedded in a chaotic region.

  11. Relativistic quantum mechanics an introduction to relativistic quantum fields

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.

  12. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  13. Simulation studies on stability of hot electron plasma

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu

    1985-01-01

    Stability of a hot electron plasma in an NBT(EBT)-like geometry is studied by using a 2-1/2 dimensional relativistic, electromagnetic particle code. For the low-frequency hot electron interchange mode, comparison of the simulation results with the analytical predictions of linear stability theory show fairly good agreement with the magnitude of the growth rates calculated without hot electron finite Larmor radius effects. Strong stabilizing effects by finite Larmor radius of the hot electrons are observed for short wavelength modes. As for the high-frequency hot electron interchange mode, there is a discrepancy between the simulation results and the theory. The high-frequency instability is not observed though a parameter regime is chosen in which the high-frequency hot electron interchange mode is theoretically predicted to grow. Strong cross-field diffusion in a poloidal direction of the hot electrons might explain the stability. Each particle has a magnetic drift velocity, and the speed of the magnetic drift is proportional to the kinetic energy of each particle. Hence, if the particles have high temperature, the spread of the magnetic drift velocity is large. This causes a strong cross-field diffusion of the hot electrons. In the simulation for this interchange mode, an enhanced temperature relaxation is observed between the hot and cold electrons although the theoretically predicted high frequency modes are stable. (Nogami, K.)

  14. Relativistic quantum mechanics of bosons

    International Nuclear Information System (INIS)

    Ghose, P.; Home, D.; Sinha Roy, M.N.

    1993-01-01

    We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)

  15. Kinetic approach to relativistic dissipation

    Science.gov (United States)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  16. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  17. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  18. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  19. Volatility smile as relativistic effect

    Science.gov (United States)

    Kakushadze, Zura

    2017-06-01

    We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.

  20. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  1. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  2. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  3. Physical processes in hot cosmic plasmas

    International Nuclear Information System (INIS)

    Fabian, A.G.; Giovannelli, F.

    1990-01-01

    The interpretation of many high energy astrophysical phenomena relies on a detailed knowledge of radiation and transport processes in hot plasmas. The understanding of these plasma properties is one of the aims of terrestrial plasma physics. While the microscopic properties of astrophysical plasmas can hardly be determined experimentally, laboratory plasmas are more easily accessible to experimental techniques, but transient phenomena and the interaction of the plasma with boundaries often make the interpretation of measurements cumbersome. This book contains the talks given at the NATO Advanced Research Workshop on astro- and plasma-physics in Vulcano, Sicily, May 29-June 2, 1989. The book focuses on three main areas: radiation transport processes in hot (astrophysical and laboratory) plasmas; magnetic fields; their generation, reconnection and their effects on plasma transport properties; relativistic and ultra-high density plasmas

  4. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  5. Analytic approaches to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, Yoshitaka

    2016-12-15

    I summarize our recent work towards finding and utilizing analytic solutions of relativistic hydrodynamic. In the first part I discuss various exact solutions of the second-order conformal hydrodynamics. In the second part I compute flow harmonics v{sub n} analytically using the anisotropically deformed Gubser flow and discuss its dependence on n, p{sub T}, viscosity, the chemical potential and the charge.

  6. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  7. Characteristic manifolds in relativistic hypoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Giambo, S [Messina Univ. (Italy). Istituto di Matematica

    1978-10-02

    The relativistic hypoelasticity is considered and the characteristic manifolds are determined by using the Cauchy-Kovalevski theorem for the Cauchy problem with analytic initial conditions. Taking into account that the characteristic manifold represents the image of the front-wave in the space-time, it is possible to determine the velocities of propagation. Three wave-species are obtained: material waves, longitudinal waves and transverse waves.

  8. A relativistic quarkonium potential model

    International Nuclear Information System (INIS)

    Klima, B.; Maor, U.

    1984-04-01

    We review a recently developed relativistic quark-antiquark bound state equation using the expansion in intermediate states. Using a QCD motivated potential we succeeded very well to fit both the heavy systems (banti b, canti c) and the light systems (santi s, uanti u and danti d). Here we emphasize our results on heavy-light sustems and on the possible (tanti t) family. (orig.)

  9. Coordinates in relativistic Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1984-01-01

    The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field

  10. Relativistic mechanics with reduced fields

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1996-01-01

    A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru

  11. Theory of a relativistic peniotron

    International Nuclear Information System (INIS)

    Zhurakhovskii, V.A.

    1986-01-01

    A normalized mathematical model for describing the motion of electrons in a relativistic peniotron with smoothly varying magnetostatic field, which provides a state of exact gyroresonance along the entire length of the device, is constructed. The results of computer calculations of the energetics of this device are presented and an example of an effective choice of its parameterse corresponding to high electronic efficiency of a one-velocity flow are presented

  12. Existence condition of the relativistic ion-acoustic soliton in plasma

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1981-07-01

    Stationary solutions which descrite longitudinal waves in a hot ion-electron plasma, taking in account the relativistic effect of the particle dynamics, are investigated. The solution of the problem can be reduced to two equations related with energy-momentum conservation of the system. Particular attention to the existence condition of the solitary wave solution is given. It is shown that the Langmuir mode (Te=Ti) only admits infinite train-like wave solutions, the existence of solitary-like wave solutions being not possible. On the other hand, in the case of hot electrons and cold ions, an appropriate choice of the boundary conditions produces localized wave solutions, which describe relativistic ion-acoustic solitons. (L.C.) [pt

  13. Relativistic beaming and quasar statistics

    International Nuclear Information System (INIS)

    Orr, M.J.L.; Browne, I.W.A.

    1982-01-01

    The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)

  14. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  15. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-04-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs

  16. Open heavy-flavor measurements in ultra-relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, Ralf

    2016-12-15

    Recent results from open heavy-flavor measurements in proton-proton (pp), proton/deuteron-nucleus (p/d-A), and nucleus-nucleus collisions (A-A) at RHIC and at the LHC are presented. Predictions from theoretical models are compared with the data, and implications for the properties of the hot and dense medium produced in ultra-relativistic heavy-ion collisions are discussed.

  17. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  18. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  19. Loading relativistic Maxwell distributions in particle simulations

    International Nuclear Information System (INIS)

    Zenitani, Seiji

    2015-01-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms

  20. Loading relativistic Maxwell distributions in particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  1. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  2. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  3. Relativistic heavy-ion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, H.G.

    1981-08-01

    Objectives of high energy nucleus-nucleus studies are outlined. Bevalac experiments on the formation of hot high-density equilibrated nuclear matter are discussed. Future programs are outlined, including research at the CERN ISR.

  4. Relativistic fluids in spherically symmetric space

    International Nuclear Information System (INIS)

    Dipankar, R.

    1977-12-01

    Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat

  5. Relativistic ion acceleration by ultraintense laser interactions

    International Nuclear Information System (INIS)

    Nakajima, K.; Koga, J.K.; Nakagawa, K.

    2001-01-01

    There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV

  6. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  7. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  8. Thermodynamics of polarized relativistic matter

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,PO Box 1700 STN CSC, Victoria BC, V8W 2Y2 (Canada)

    2016-07-05

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  9. Observation of relativistic antihydrogen atoms

    International Nuclear Information System (INIS)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 0 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e + e - pair creation near a nucleus with the e + being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure

  10. Similarity flows in relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Blaizot, J.P.; Ollitrault, J.Y.

    1986-01-01

    In ultra-relativistic heavy ion collisions, one expects in particular to observe a deconfinement transition leading to a formation of quark gluon plasma. In the framework of the hydrodynamic model, experimental signatures of such a plasma may be looked for as observable consequences of a first order transition on the evolution of the system. In most of the possible scenario, the phase transition is accompanied with discontinuities in the hydrodynamic flow, such as shock waves. The method presented in this paper has been developed to treat without too much numerical effort such discontinuous flow. It relies heavily on the use of similarity solutions of the hydrodynamic equations

  11. Relativistic heavy ion facilities: worldwide

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1986-05-01

    A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs

  12. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  13. The magnetosphere in relativistic physics

    International Nuclear Information System (INIS)

    Zapffe, C.A.

    1982-01-01

    The present paper takes off from the author's earlier epistemological analysis and criticism of the Special Theory of Relativity, identifies the problem as lying in Einstein's choice of the inertial frame of Newtonian mechanics rather than the electromagnetic frame of the locally embedding Maxwellian field when discussing electrodynamics, then proposes this Maxwellian field of the magnetosphere as the specific rest frame proper to all experimentation of optical or electromagnetic sort conducted within its bounds. The result is shown to remove all paradoxes from relativistic physics. (author)

  14. Relativistic Quantum Transport in Graphene Systems

    Science.gov (United States)

    2015-07-09

    dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied

  15. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...

  16. Relativistic corrections to molecular dynamic dipole polarizabilities

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Oddershede, Jens; Jensen, Hans Jørgen Aagaard

    1995-01-01

    obtained from the use of the Darwin and mass-velocity operators to first order are included at both levels of approximation. We find that correlation and relativistic contributions are not even approximately additive for the two molecules. The importance of the relativistic corrections is smallest...

  17. A Primer to Relativistic MOND Theory

    NARCIS (Netherlands)

    Bekenstein, J.D..; Sanders, R.H.

    2005-01-01

    Abstract: We first review the nonrelativistic lagrangian theory as a framework for the MOND equation. Obstructions to a relativistic version of it are discussed leading up to TeVeS, a relativistic tensor-vector-scalar field theory which displays both MOND and Newtonian limits. The whys for its

  18. Relativistic astrophysics and theory of gravity

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1982-01-01

    A brief historical review of the development of astrophysical science in the State Astrophysical Institute named after Shternberg (SAISh) has been given in a popular form. The main directions of the SAISh astrophysical investigations have been presented: relativistic theory of gravity, relativistic astrophysics of interplanetary medium and cosmology

  19. Einstein Never Approved of Relativistic Mass

    Science.gov (United States)

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  20. Hot tub folliculitis

    Science.gov (United States)

    ... survives in hot tubs, especially tubs made of wood. Symptoms The first symptom of hot tub folliculitis ... may help prevent the problem. Images Hair follicle anatomy References D'Agata E. Pseudomonas aeruginosa and other ...

  1. grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Mani; Gammie, Charles F. [Department of Astronomy, University of Illinois, 1110 West Green Street, Urbana, IL, 61801 (United States); Foucart, Francois, E-mail: manic@illinois.edu, E-mail: gammie@illinois.edu, E-mail: fvfoucart@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2017-03-01

    Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variable inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.

  2. Random phase approximation in relativistic approach

    International Nuclear Information System (INIS)

    Ma Zhongyu; Yang Ding; Tian Yuan; Cao Ligang

    2009-01-01

    Some special issues of the random phase approximation(RPA) in the relativistic approach are reviewed. A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei. The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states. The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed. The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established. A separable form of the paring force is introduced in the relativistic quasi-particle RPA. (authors)

  3. Loading relativistic Maxwell distributions in particle simulations

    Science.gov (United States)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  4. Relativistic theory of spontaneous emission

    International Nuclear Information System (INIS)

    Barut, A.O.; Salamin, Y.I.

    1987-06-01

    We derive a formula for the relativistic decay rates in atoms in a formulation of Quantum Electrodynamics based upon the electron's self energy. Relativistic Coulomb wavefunctions are used, the full spin calculation is carried out and the dipole approximation is not employed. The formula has the correct nonrelativistic limit and is used here for calculating the decay rates in Hydrogen and Muonium for the transitions 2P → 1S 1/2 and 2S 1/2 → 1S 1/2 . The results for Hydrogen are: Γ(2P → 1S 1/2 )=6.2649x10 8 s -1 and Γ(2S 1/2 → 1S 1/2 )=2.4946x10 -6 s -1 . Our result for the 2P → 1S 1/2 transition rate is in perfect agreement with the best nonrelativistic calculations as well as with the results obtained from the best known radiative decay lifetime measurements. As for the Hydrogen 2S 1/2 → 1S 1/2 decay rate, the result obtained here is also in good agreement with the best known magnetic dipole calculations. For Muonium we get: Γ(2P → 1S 1/2 )=6.2382x10 8 s -1 and Γ(2S 1/2 → 1S 1/2 )=2.3997x10 -6 s -1 . (author). 23 refs, 4 tabs

  5. 24-Hour Relativistic Bit Commitment.

    Science.gov (United States)

    Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo

    2016-09-30

    Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.

  6. Contribution of Higher-Order Dispersion to Nonlinear Electron-Acoustic Solitary Waves in a Relativistic Electron Beam Plasma System

    International Nuclear Information System (INIS)

    Zahran, M.A.; El-Shewy, E.K.

    2008-01-01

    The nonlinear properties of solitary wave structures are reported in an unmagnetized collisionless plasma comprising of cold relativistic electron fluid, Maxwellian hot electrons, relativistic electron beam, and stationary ions. The Korteweg--de Vries (KdV) equation has been derived using a reductive perturbation theory. As the wave amplitude increases, the width and velocity of the soliton deviate from the prediction of the KdV equation i.e. the breakdown of the KdV approximation. On the other hand, to overcome this weakness we extend our analysis to obtain the KdV equation with fifth-order dispersion term. The solution of the resulting equation has been obtained

  7. Ultra-relativistic heavy ions and the CBA

    International Nuclear Information System (INIS)

    McLerran, L.D.

    1982-01-01

    The study of ultra-relativistic heavy ions at an accelerator such as the CBA provides a unique glimpse of matter as it may have appeared in the early universe. This hot dense matter very probably appears as a quark-gluon plasma which expands and cools into hadronic matter. The CBA would provide data at the very highest energies, and produce matter at the highest energy densities. The possibility of using a cyclotron to inject very heavy ions into the AGS and then into the CBA would also allow the production of quark-gluon matter at higher energy densities than would light ions, and would make the matter in a larger volume where surface effects are minimized. At the highest energies with very heavy ions, there is great flexibility in the experimental signals which might be studied, as well as the nature of the matter which is produced. Some of the possibilities are discussed

  8. Photons from Ultra-Relativistic Heavy Ion Collisions

    CERN Document Server

    Sarkar, S

    2000-01-01

    It is believed that a novel state of matter - Quark Gluon Plasma (QGP) will be transiently produced if normal hadronic matter is subjected to sufficiently high temperature and/or density. We have investigated the possibility of QGP formation in the ultra-relativistic collisions of heavy ions through the electromagnetic probes - photons and dileptons. The formulation of the real and virtual photon production rate from strongly interacting matter is studied in the framework of Thermal Field Theory. Since signals from the QGP will pick up large backgrounds from hadronic matter we have performed a detailed study of the changes in the hadronic properties induced by temperature within the ambit of the Quantum Hadrodynamic model, gauged linear and non-linear sigma models, hidden local symmetry approach and QCD sum rule approach. The possibility of observing the direct thermal photons and lepton pairs from quark gluon plasma has been contrasted with that from hot hadronic matter with and without medium effects for va...

  9. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  10. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  11. Relativistic effects in resonance absorption

    International Nuclear Information System (INIS)

    Drake, J.F.; Lee, Y.C.

    1976-01-01

    The role of the relativistic-electron-mass variation in the generation of plasma waves by the linear mode conversion of intense electromagnetic waves is investigated. The increase in the electron mass in high intensity regions of the mode-converted wave reduces the local plasma frequency and thereby strongly modifies the plasma-driver resonance. A spatial discontinuity in the structure of the mode-converted wave results and causes the wave to break. Under rather modest restrictions, the wave breaking resulting from these effects occurs before the wave amplitude is limited either by thermal convection or by breaking caused by previously investigated nonrelativistic effects. Consequently, the amplitude of the mode-converted plasma wave should saturate at a much lower level than previously predicted. For simplicity, the analysis is limited to the initial stages of mode conversion where the ion dynamics can be neglected. The validity of this approximation is discussed

  12. Parton distribution in relativistic hadrons

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Lapidus, L.I.; Zamolodchikov, Al.B.

    1979-01-01

    The distribution in the slow-parton number in the relativistic hadron is considered as a function of its rapidity (y). Neglecting corrections due to the tarton chain recombination the equation is derived and its explicit solution is found. It describes this distribution depending on the initial distribution at y approximately 1. Comparison with the reggeon diagrams results in relations between the parton model and the regaeon field theory parameters. The interpretation of the cutting rules in the framework of the parton model is presented. The numerical estimation of the parton model parameters is performed. It is shown that the slow-parton density corresponding to accessible energies seems to be close to the saturated density. Therefore, the enhanced graphs contributions turn out to be of considerable importance

  13. Relativistic three-particle theory

    International Nuclear Information System (INIS)

    Hochauser, S.

    1979-01-01

    In keeping with recent developments in experimental nuclear physics, a formalism is developed to treat interactions between three relativistic nuclear particles. The concept of unitarity and a simple form of analyticity are used to construct coupled, integral, Faddeev-type equations and, with the help of analytic separable potentials, these are cast in simple, one-dimensional form. Energy-dependent potentials are introduced so as to take into account the sign-change of some phase shifts in the nucleon-nucleon interaction and parameters for these potentials are obtained. With regard to the success of such local potentials as the Yukawa potential, a recently developed method for expanding these in separable form is discussed. Finally, a new method for the numerical integration of the Faddeev equations along the real axis is introduced, thus avoiding the traditional need for contour rotations into the complex plane. (author)

  14. Examining Relativistic Electron Loss in the Outer Radiation Belt

    Science.gov (United States)

    Green, J. C.; Onsager, T. G.; O'Brien, P.

    2003-12-01

    Since the discovery of earth's radiation belts researchers have sought to identify the mechanisms that dictate the seemingly erratic relativistic electron flux levels in the outer belt. Contrary to intuition, relativistic electron flux levels do not always increase during geomagnetic storms even though these storms signify enhanced energy input from the solar wind to the magnetosphere [Reeves et al., 2003; O'Brien et al., 2001]. The fickle response of the radiation belt electrons to geomagnetic activity suggests that flux levels are determined by the outcome of a continuous competition between acceleration and loss. Some progress has been made developing and testing acceleration mechanisms but little is known about how relativistic electrons are lost. We examine relativistic electron losses in the outer belt focusing our attention on flux decrease events of the type first described by Onsager et al. [2002]. The study showed a sudden decrease of geosynchronous >2MeV electron flux occurring simultaneously with local stretching of the magnetic field. The decrease was first observed near 15:00 MLT and progressed to all local times after a period of ˜10 hours. Expanding on the work of Onsager et al. [2002], we have identified ˜ 51 such flux decrease events in the GOES and LANL data and present the results of a superposed epoch analysis of solar wind data, geomagnetic activity indicators, and locally measured magnetic field and plasma data. The analysis shows that flux decreases occur after 1-2 days of quiet condition. They begin when either the solar wind dynamic pressure increases or Bz turns southward pushing hot dense plasma earthward to form a partial ring current and stretched magnetic field at dusk. Adiabatic electron motion in response to the stretched magnetic field may explain the initial flux reduction; however, often the flux does not recover with the magnetic field recovery, indicating that true loss from the magnetosphere is occurring. Using Polar and

  15. Relativistic thermodynamics of Fluids. l

    International Nuclear Information System (INIS)

    Havas, P.; Swenson, R.J.

    1979-01-01

    In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail

  16. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Vlieks, A.E.; Wilson, P.B.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. In this paper the authors report on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future

  17. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannesfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. They report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  18. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  19. Relativistic Theory of Few Body Systems

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross

    2002-11-01

    Very significant advances have been made in the relativistic theory of few body systems since I visited Peter Sauer and his group in Hannover in 1983. This talk provides an opportunity to review the progress in this field since then. Different methods for the relativistic calculation of few nucleon systems are briefly described. As an example, seven relativistic calculations of the deuteron elastic structure functions, A, B, and T{sub 20}, are compared. The covariant SPECTATOR {copyright} theory, among the more successful and complete of these methods, is described in more detail.

  20. Penetration of relativistic heavy ions through matter

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Geissel, H.

    1997-07-01

    New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)