WorldWideScience

Sample records for hot rolled asphalt

  1. Hot Mix Asphalt Recycling : Practices and Principles

    NARCIS (Netherlands)

    Mohajeri, M.

    2015-01-01

    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a

  2. Performance prediction of hot mix asphalt from asphalt binders

    International Nuclear Information System (INIS)

    Hafeez, I.; Kamal, M.A.; Shahzad, Q.; Bashir, N.; Ahadi, M.R.

    2012-01-01

    Asphalt binder being a high weight hydrocarbon contains asphaltene and maltene and is widely used as cementing materials in the construction of flexible pavements. Its performance in hot mix asphalt also depends on combining with different proportions of aggregates. The main objective of this study was to characterize asphalt cement rheological behavior and to investigate the influence of asphalt on asphalt-aggregate mixtures prepared with virgin binders and using polymers. Binder rheology and mixtures stiffness were determined under a range of cyclic loadings and temperature conditions. Master curves were developed for the evaluation of relationship between parameters like complex modulus and phase angle at different frequencies. Horizontal shift factors were also computed to determine time and temperature response of binders and mixes. The results showed that the stiffness of both the binder and the mixes depends on temperature and frequency of load. Polymer modified binder is least susceptible to temperature variations as compared to other virgin asphalt cement. Performance of asphalt mixtures can be predicted from those of asphalt binders using the master curve technique. (author)

  3. Hot Mix Asphalt Recycling: Practices and Principles

    OpenAIRE

    Mohajeri, M.

    2015-01-01

    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a high RA content are produced in a batch plant to which a parallel drum is attached. In this drum RA is pre-heated to approximately 130°C. Since 2007 another hot mix recycling techniques became availa...

  4. Including asphalt cooling and rolling regimes in laboratory compaction procedures

    NARCIS (Netherlands)

    Bijleveld, Frank; Doree, Andries G.; Kim,

    2014-01-01

    Given the various changes occurring in the asphalt construction industry, improved process and quality control is becoming essential. The significance of appropriate rolling and compaction for the quality of asphalt is widely acknowledged and vital for improved process control. But what constitutes

  5. Analysis of the usage of rubberized asphalt in hot mix asphalt using Reclaimed Asphalt Pavement (RAP)

    Science.gov (United States)

    Dwidarma Nataadmadja, Adelia; Prahara, Eduardi; Sumbung, Pierre Christian

    2017-12-01

    There has been an increasing demand in using more environmentally friendly materials in pavement construction. One of the alternative materials that have been widely used is the Reclaimed Asphalt Pavement (RAP) aggregates. The RAP aggregates are derived from the crushed and screened pavement materials that contain asphalt and aggregates. This material is usually combined with natural aggregates and virgin asphalt binder to construct a new pavement. There have been numerous positive feedbacks in using this material although RAP aggregates also have certain weaknesses, such as questionable interaction between virgin and recycled materials and increased stiffness of RAP binder. Moreover, there has been a push on using rubber as an additive to asphalt binder to improve the welfare of rubber farmers. This research combines the usage of both latex and RAP as the ingredients to design hot mix asphalt (HMA) as latex could help in improving the flexibility of HMA and the interaction between the virgin and recycled materials. The main objective of this research is to find a suitable percentage of RAP aggregates to be used in HMA with certain percentage of latex as the binder additive.

  6. Performance of Recycled Porous Hot Mix Asphalt with Gilsonite Additive

    Directory of Open Access Journals (Sweden)

    Ludfi Djakfar

    2015-01-01

    Full Text Available The objective of the study is to evaluate the performance of porous asphalt using waste recycled concrete material and explore the effect of adding Gilsonite to the mixture. As many as 90 Marshall specimens were prepared with varied asphalt content, percentage of Gilsonite as an additive, and proportioned recycled and virgin coarse aggregate. The test includes permeability capability and Marshall characteristics. The results showed that recycled concrete materials seem to have a potential use as aggregate in the hot mix asphalt, particularly on porous hot mix asphalt. Adding Gilsonite at ranges 8–10% improves the Marshall characteristic of the mix, particularly its stability, without decreasing significantly the permeability capability of the mix. The use of recycled materials tends to increase the asphalt content of the mix at about 1 to 2% higher. With stability reaching 750 kg, the hot mix recycled porous asphalt may be suitable for use in the local roads with medium vehicle load.

  7. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  8. Density measurement verification for hot mix asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  9. Density measurement verification for hot mixed asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  10. METHOD OF HOT ROLLING URANIUM METAL

    Science.gov (United States)

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  11. Performance Evaluation of Stone Mastic Asphalt and Hot Mix Asphalt Mixtures Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Mohammad Saeed Pourtahmasb

    2014-01-01

    Full Text Available Environmental and economic considerations have encouraged civil engineers to find ways to reuse recycled materials in new constructions. The current paper presents an experimental research on the possibility of utilizing recycled concrete aggregates (RCA in stone mastic asphalt (SMA and hot mix asphalt (HMA mixtures. Three categories of RCA in various percentages were mixed with virgin granite aggregates to produce SMA and HMA specimens. The obtained results indicated that, regardless of the RCA particular sizes, the use of RCA to replace virgin aggregates increased the needed binder content in the asphalt mixtures. Moreover, it was found that even though the volumetric and mechanical properties of the asphalt mixtures are highly affected by the sizes and percentages of the RCA but, based on the demands of the project and traffic volume, utilizing specific amounts of RCA in both types of mixtures could easily satisfy the standard requirements.

  12. Steel slag in hot mix asphalt concrete : final report

    Science.gov (United States)

    2000-04-01

    In September 1994, steel slag test and control sections were constructed in Oregon to evaluate the use of steel slag in hot mix asphalt concrete (HMAC). This report covers the construction and five-year performance of a pavement constructed with 30% ...

  13. Performance of Hot Asphalt Mixtures Containing Plastic Bottles as Additive

    Directory of Open Access Journals (Sweden)

    Jan Hakeem

    2017-01-01

    Full Text Available This study focuses on evaluating the resistance of polymer modified asphalt mixes and the role played by asphalt in the realm of construction is undeniably important. Addition of polymers(PB as additives to asphalt helps to improve the strength and water repellent property of the mix and as well as helps environment in various ways and at the same time, analyzing its lower maintenance activities and service life is most important. The use of inexpensive polymers, in this case, waste polymers has without any doubt proven to be the most convenient way of reducing the cost of construction and at the same time maintaining quality. The main resolve for this research was to establish the effects of the use of plastic bottles on hot asphalt and its mixtures. In order to put this into perspective, varying percentages of asphalt mixtures were calculated and subjected to laboratory tests. The two-factor variance analysis (ANOVA was conducted to determine the significance at various confidence limits. The results indicate that the inclusion of Polyethylene Terephthalate (PET had a particularly substantial effect on the properties of asphalt. Consequently, it can encourage the re-utilization of waste in the manufacturing industry in an ecologically friendly and cost-effective way.

  14. Significance of Fines in Hot Mix Asphalt Synthesis

    Directory of Open Access Journals (Sweden)

    Kalaitzaki Elvira

    2017-07-01

    Full Text Available According to their size, aggregates are classified in coarse grained, fine grained, and fines. The determination of fines content in aggregate materials is very simple and is performed through the aggregate washing during the sieving procedure to define the gradation curve. The very fine material consists of grains having a size lower than 63 μm. The presence of fines directly influences the composition and performance of concrete and asphalt mixtures (e.g. asphalt content, elasticity, fracture. The strength and load carrying capacity of hot mix asphalt (HMA results from the aggregate framework created through particle-particle contact and interlock. Fines or mineral filler have a role in HMA. The coarse aggregate framework is filled by the sand-sized material and finally by the mineral filler. At some point, the smallest particles lose contact becoming suspended in the binder not having the particle-particle contact that is created by the larger particles. The overall effect of mineral filler in hot mix asphalt specimens has been investigated through a series of laboratory tests. It is clear that a behaviour influenced by the adherence of fines to asphalt film has been developed. The optimum bitumen content requirement in case of stone filler is almost the same as that for fly ash. It has been found that the percentage of fly ash filler is crucial if it exceeds approximately a value of 4%.

  15. Performance of Hot Mix Asphalt Mixture Incorporating Kenaf Fibre

    Science.gov (United States)

    Hainin, M. R.; Idham, M. K.; Yaro, N. S. A.; Hussein, S. O. A. E.; Warid, M. N. M.; Mohamed, A.; Naqibah, S. N.; Ramadhansyah, P. J.

    2018-04-01

    Kenaf fibre has been recognised to increase the strength of concrete, but its application in asphalt concrete is still unanswered. This research investigated the performance of Hot Mix Asphalt (HMA) incorporated with different percentages of kenaf fibre (0.1 %, 0.2% and 0.3% by weight of dry aggregate) in term of resilient modulus, rutting performance using Asphalt Pavement analyser (APA) and moisture damage using the Modified Lottman test (AASHTO-T283). The fibre was interweaved to a diameter of about 5-10 mm and length of 30 mm which is three times the nominal maximum aggregate size used in the mix. Asphaltic mixtures of asphalt concrete (AC) 10 were prepared and compacted using Marshall compactor which were subsequently tested to evaluate the resilient modulus and moisture susceptibility. Twelve cylindrical specimens (150mm diameter) from AC10, two control samples with two modified ones for each percentage of kenaf fibres compacted using Gyratory compactor were used for rutting test using APA. The laboratory results reveal that the addition of kenaf fibres slightly reduce the resilient modulus of the mixes and that asphaltic mix with 0.3% kenaf fibre can mitigate both rutting and moisture damage which makes the pavement more sustain to the loads applied even in the presence of water. 0.3% kenaf fibre content is considered to be the optimal content which had the least rut depth and the highest TSR of 81.07%. Based on grid analysis, addition of 0.3% kenaf fibre in asphaltic concrete was recommended in modifying the samples.

  16. Properties of hot rolled steels for enamelling

    International Nuclear Information System (INIS)

    Gavrilovski, Dragica; Gavrilovski, Milorad

    2003-01-01

    The results of an investigation of the structure and properties of experimental produced hot rolled steels suitable for enamelling are presented in the paper. Hot rolled steels for enamelling represent a special group of the steels for conventional enamelling. Their quality has to be adapted to the method and conditions of enamelling. Therefore, these steels should meet some specific requirements. In addition to usual investigation of the chemical composition and mechanical properties, microstructure and quality of the steel surface also were investigated. The basic aim was to examine steels capability for enamelling, i. e. steels resistance to the fish scales phenomena, by trial enamelling, as well as quality of the steel - enamel contact surface, to evaluate the binding. Also, the changes of the mechanical properties, especially the yield point, during thermal treatment, as a very specific requirement, were investigated, by simplified method. Good results were obtained confirming the steels capability for enamelling. (Original)

  17. The use of Crumb Rubber as Substitute of Fine Aggregate for Hot Asphalt Mixture using Polymer Modified Bitumen

    Science.gov (United States)

    Setyawan, A.; Nugroho, S. K.; Irsyad, A. M.; Mutaqo, H. F.; Ramadhan, P.; Sumarsono, A.; Pramesti, F. P.

    2018-03-01

    The development of road pavement to fulfilled the need of modern life is not only focused on heavy duty road, but also a light duty road for the convenience of road users according to its function. For example the use of pavement on the jogging track, rail crossing, playground and so on. Due to the need of an alternative and the innovation of a comfortable pavement layer, but sufficiently strong in holding the load on the layer. The alternative innovation that can be used for the respective requirement is the utilization of waste old tires as substitute material in pavement construction. In this case the use of crumb rubber made from old tire rubber as an 100% fine aggregate substitute on the asphalt mixtures is investigated. To improve the strength and durability of the mixtures, the addition of polymer modified bitumen was incorporated. The two types of asphalt mixture selected in this study by using a continuous gradation of asphalt concrete and a gap gradation of hot roll asphalt. Testing to be implemented in this research is volumetric characteristics, Marshall characteristics, resistance to abrasion and impact and permeability. Replacement of fine aggregate with crumb rubber on asphalt concrete mixture with 60/70 penetration grade bitumen and polymer modified asphalt SBS E-55 in this research are expected to be an alternative in improving the quality of pavement and overcoming the environmental problems by reuse the waste materials.

  18. Evaluation of Colemanite Waste as Aggregate Hot Mix Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Nihat MOROVA

    2015-09-01

    Full Text Available In this study usability of waste colemanite which is obtained after cutting block colemanite for giving proper shape to blocks as an aggregate in hot mix asphalt. For this aim asphalt concrete samples were prepared with four different aggregate groups and optimum bitumen content was determined. First of all only limestone was used as an aggregate. After that, only colemanite aggregate was used with same aggregate gradation. Then, the next step of the study, Marshall samples were produced by changing coarse and fine aggregate gradation as limestone and colemanite and Marshall test were conducted. When evaluated the results samples which produced with only limestone aggregate gave the maximum Marshall Stability value. When handled other mixture groups (Only colemanite, colemanite as coarse aggregate-limestone as fine aggregate, colemanite as fine aggregate-limestone as coarse aggregate all groups were verified specification limits. As a result, especially in areas where there is widespread colemanite waste, if transportation costs did not exceed the cost of limestone, colemanite stone waste could be used instead of limestone in asphalt concrete mixtures as fine aggregate

  19. Metallurgical analysis of spalled work roll of hot strip mill

    International Nuclear Information System (INIS)

    Khan, M.M.; Khan, M.A.

    1993-01-01

    In this study failure analysis of four work roll of the Hot Strip Mill is carried out. The microstructure is correlated with the chemical composition of shell and roll-life. It was concluded that for the longer service of the roll, cementite, graphite and martensite should be balanced (as per working requirement of the mill). (author)

  20. Investigation of using steel slag in hot mix asphalt for the surface course of flexible pavements

    Science.gov (United States)

    Nguyen, Hien Q.; Lu, Dai X.; Le, Son D.

    2018-04-01

    The rapid development of heavy industry in Vietnam leads to the establishments of steel industry. Steel slag, a by-product of steelwork industry, under Vietnamese’s law, was considered as a deleterious solid waste which needed to be processed and landfilled. However, this has changed recently, and steel slag is now seen as a normal or non-deleterious solid waste, and has been studied for reuse in the construction industry. In this study, steel slag was used, as a replacement for mineral aggregate, in hot mix asphalt. Two hot mix asphalt mixtures with an equivalent nominal aggregate size of 12.5 (C12.5) and 19 mm (C19) were produced using steel slag. In addition, one conventional hot mix asphalt mixture of C19 was produced using mineral aggregate for comparison purpose. Investigation in laboratory condition and trial sections was carried out on Marshall tests, surface roughness, skid resistance, and modulus of the pavement before and after applying a new surface course of hot mix asphalt. The study showed that all steel slag asphalt mixtures passed the Marshall stability and flow test requirements. The skid resistance of steel slag hot mix asphalt mixtures for the surface course satisfied the Vietnamese specification for asphalt. Moreover, the pavement sections with the surface course of steel slag hot mix asphalt showed a considerable higher modulus than that of the conventional one. Only the roughness of the surface course paved with C19 did not pass the requirement of the specification.

  1. Hot-rolling metals in vacuum. Information circular

    International Nuclear Information System (INIS)

    Beall, R.A.; Worthington, R.B.; Blickensderfer, R.

    1979-01-01

    The process of hot-rolling metals, alloys, and composites in vacuum is studied. First, a comprehensive review of the literature is presented, including the advantages and disadvantages of using vacuum. Next, details of hot-rolling titanium, chromium, and molybdenum-iron bimetal are given. Finally, the design of new equipment is described

  2. Mechanical Properties of Hot Mix Crumb Rubber Modified Asphalt Concrete Using Waste Tire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak Seok; Lee, Woo Yeol [Kyonggi University, Suwon (Korea)

    1998-06-30

    Wheel tracking and ravelling tests were conducted on the hot mix crumb rubber modified asphalt concrete using waste tire to evaluate the mechanical properties in comparison with conventional asphalt concrete. According to the test results, the modified product was superior to the conventional one by 50% in the resistance of permanent deformation and by 15% in the resistance of durability. The experimental results should recommend that the waste tire is positively recycled for asphalt concrete. (author). 11 refs., 6 tabs., 2 figs.

  3. 75 FR 42782 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-07-22

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil and Japan, and the suspended investigation on hot-rolled steel from Russia. SUMMARY: The... Japan, and the suspended investigation on hot-rolled steel from Russia would be likely to lead to...

  4. 75 FR 62566 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-10-12

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... antidumping duty investigation on hot-rolled steel from Russia. SUMMARY: The Commission hereby gives notice of... suspended investigation on hot-rolled steel from Russia would be likely to lead to continuation or...

  5. Use of moisture induced stress testing to evaluate stripping potential of hot mix asphalt (HMA).

    Science.gov (United States)

    2012-07-01

    Stripping of hot mix asphalt (HMA) in the field is an ongoing issue for many Departments of Transportation : (DOTs). A leading cause of stripping is hydraulic scouring. The Moisture Induced Stress Tester (MIST) is a recently : developed technology th...

  6. Field Monitoring of Experimental Hot Mix Asphalt Projects Placed in Massachusetts

    Science.gov (United States)

    2017-06-30

    Since 2000, Massachusetts has been involved with numerous field trials of experimental hot mix asphalt mixtures. These experimental mixtures included several pilot projects using the Superpave mixture design methodology, utilization of warm mix aspha...

  7. Modeling of hot-mix asphalt compaction : a thermodynamics-based compressible viscoelastic model

    Science.gov (United States)

    2010-12-01

    Compaction is the process of reducing the volume of hot-mix asphalt (HMA) by the application of external forces. As a result of compaction, the volume of air voids decreases, aggregate interlock increases, and interparticle friction increases. The qu...

  8. Performance Evaluation of Hot Mix Asphalt with Different Proportions of RAP Content

    Directory of Open Access Journals (Sweden)

    Kamil Arshad Ahmad

    2018-01-01

    Full Text Available Reclaimed Asphalt Pavement (RAP is old asphalt pavement that has been removed from a road by milling or full depth removal. The use of RAP in hot mix asphalt (HMA eliminates the need to dispose old asphalt pavements and conserves asphalt binders and aggregates, resulting in significant cost savings and benefits to society. This paper presents a study on HMA with different RAP proportions carried out to evaluate the volumetric properties and performance of asphalt mixes containing different proportions of RAP. Marshall Mix Design Method was used to produce control mix (0% RAP and asphalt mixes containing 15% RAP, 25% RAP and 35% RAP in accordance with Specifications for Road Works of Public Works Department, Malaysia for AC14 dense graded asphalt gradation. Volumetric analysis was performed to ensure that the result is compliance with specification requirements. The resilient modulus test was performed to measure the stiffness of the mixes while the Modified Lottman test was conducted to evaluate the moisture susceptibility of these mixes. The Hamburg wheel tracking test was used to evaluate the rutting performance of these mixes. The results obtained showed that there were no substantial difference in Marshall Properties, moisture susceptibility, resilient modulus and rutting resistance between asphalt mixes with RAP and the control mix. The test results indicated that recycled mixes performed as good as the performance of conventional HMA in terms of moisture susceptibility and resilient modulus. It is recommended that further research be carried out for asphalt mixes containing more than 35% RAP material.

  9. Performance Evaluation of Hot Mix Asphalt with Different Proportions of RAP Content

    Science.gov (United States)

    Kamil Arshad, Ahmad; Awang, Haryati; Shaffie, Ekarizan; Hashim, Wardati; Rahman, Zanariah Abd

    2018-03-01

    Reclaimed Asphalt Pavement (RAP) is old asphalt pavement that has been removed from a road by milling or full depth removal. The use of RAP in hot mix asphalt (HMA) eliminates the need to dispose old asphalt pavements and conserves asphalt binders and aggregates, resulting in significant cost savings and benefits to society. This paper presents a study on HMA with different RAP proportions carried out to evaluate the volumetric properties and performance of asphalt mixes containing different proportions of RAP. Marshall Mix Design Method was used to produce control mix (0% RAP) and asphalt mixes containing 15% RAP, 25% RAP and 35% RAP in accordance with Specifications for Road Works of Public Works Department, Malaysia for AC14 dense graded asphalt gradation. Volumetric analysis was performed to ensure that the result is compliance with specification requirements. The resilient modulus test was performed to measure the stiffness of the mixes while the Modified Lottman test was conducted to evaluate the moisture susceptibility of these mixes. The Hamburg wheel tracking test was used to evaluate the rutting performance of these mixes. The results obtained showed that there were no substantial difference in Marshall Properties, moisture susceptibility, resilient modulus and rutting resistance between asphalt mixes with RAP and the control mix. The test results indicated that recycled mixes performed as good as the performance of conventional HMA in terms of moisture susceptibility and resilient modulus. It is recommended that further research be carried out for asphalt mixes containing more than 35% RAP material.

  10. Contributory Factors Related to Permanent Deformation of Hot Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Alaa Husein Abd

    2017-03-01

    Full Text Available Permanent deformation (Rutting of asphalt pavements which appears in many roads in Iraq, have caused a major impact on pavement performance by reducing the useful service life of pavement and creating services hazards for highway users. The main objective of this research is investigating the effect of some contributory factors related to permanent deformation of asphalt concrete mixture. To meet the objectives of this research, available local materials are used including asphalt binder, aggregates, mineral filler and modified asphalt binder. The Superpave mix design system was adopted with varying volumetric compositions. The Superpave Gyratory Compactor was used to compact 24 asphalt concrete cylindrical specimens. To collect the required data and investigate the development of permanent deformation in asphalt concrete under repeated loadings, Wheel-Tracking apparatus has been used in a factorial testing program during which 44 slab samples; with dimensions of 400×300×50 mm; were tested to simulate . actual pavement. Based on wheel-tracking test results, it has been concluded that increasing the compaction temperature from 110 to 150ºC caused a decreasing in permanent deformation by 20.5 and 15.6 percent for coarse and fine gradation control asphalt mixtures respectively. While the permanent deformation decreased about 21.3 percent when the compaction temperature is increased from 110 to 150ºC for coarse gradation asphalt mixtures modified with styrene butadiene styrene SBS with 3 percent by asphalt binder weight.

  11. Development of dissimilar metal transition joint by hot bond rolling

    International Nuclear Information System (INIS)

    Kurokawa, Hiroyuki; Nakasuji, Kazuyuki; Kajimura, Haruhiko; Nagai, Takayuki; Takeda, Seiichiro.

    1997-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) to stainless steel piping are required for nuclear fuel reprocessing plants. The authors have developed dissimilar transition joints made of stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot bond rolling process of clad bars and clad pipes, using a newly developed mill called 'rotary reduction mill'. This report presents the manufacturing process of dissimilar transition joints produced from the clad pipe with three layers by the hot bond rolling. First, the method of hot bond rolling of clad pipe is proposed. Then, the mechanical and corrosion properties of the dissimilar transition joints are evaluated in detail by carrying out various tests. Finally, the rolling properties in the clad pipe method are discussed. (author)

  12. A Comparative Life Cycle Assessment of Hot Mixes Asphalt Containing Bituminous Binder Modified with Waste and Virgin Polymers

    NARCIS (Netherlands)

    Oliveira dos Santos, Joao Miguel; Cerezo, Veronique; Soudani, Khedoudja; Bressi, Sara

    2018-01-01

    This paper presents the results of a life cycle assessment undertaken to compare the potential environmental impacts associated with the use of asphalt surface mixtures produced with polymer modified bitumen with those of a conventional asphalt surface mixture. Seven types of hot mix asphalt

  13. Engineering characterisation of epoxidized natural rubber-modified hot-mix asphalt.

    Directory of Open Access Journals (Sweden)

    Ramez A Al-Mansob

    Full Text Available Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR-modified hot-mix asphalt. Tests were conducted using ENR-asphalt mixes prepared using the wet process. Mechanical testing on the ENR-asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR-asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR-asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress.

  14. Volumetric Analysis and Performance of Hot Mix Asphalt with Variable Rap Content

    Directory of Open Access Journals (Sweden)

    Arshad Ahmad Kamil

    2017-01-01

    Full Text Available Incorporating Reclaimed Asphalt Pavement (RAP to the asphalt concrete mixture for highway construction offer many benefits including energy consumption, conservation of natural resources and preservation of the environment to associated emissions. This paper presents a study on performance of Hot Mix Asphalt with variable RAP content. The study is carried out to evaluate the Marshall Properties and Performance of RAP-Asphalt mixes using conventional asphaltic concrete mix AC14. Marshall Mix Design Method was used to produce control mix (0% RAP and RAP-Asphalt mixes samples which consist of 15% RAP, 25% RAP and 35% RAP in accordance with Specifications for Road Works of Public Works Department, Malaysia. The Marshall Properties analysis was performed to ensure compliance with Marshall Requirements, The resilient modulus test was performed to measure the stiffness of the mixes while Modified Lottman test was conducted to evaluate the moisture susceptibility of these mixes. The results obtained showed that there were no substantial difference in Marshall Properties, moisture susceptibility and indirect tensile strength between RAP-Asphalt mixes with the control mix. The test results indicated that recycled mixes performed as good as the performance of conventional HMA in terms of moisture susceptibility and resilient modulus. It is recommended that further research be carried out for asphalt mixes containing more than 35% of RAP material.

  15. Image recognition of shape defects in hot steel rolling

    NARCIS (Netherlands)

    Balmashnova, E.; Bruurmijn, L.C.M.; Dissanayake, R.; Duits, R.; Kampmeijer, L.; Noorden, van T.L.; Boon, M.A.A.

    2013-01-01

    A frequently occurring issue in hot rolling of steel is so-called tail pinching. Prominent features of a pinched tail are ripple-like defects and a pointed tail. In this report two algorithms are presented to detect those features accurately in 2D gray scale images of steel strips. The two ripple

  16. Effect of ageing on porosity of hot mix asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, M.F.A.S. [Dept. de Estradas de Rodagem de Minas Gerais (DER/MG), Belo Horizonte, MG (Brazil); Lins, V.F.C. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil). Dept. de Engenharia Quimica], e-mail: vlins@deq.ufmg.br; Pasa, V.M.D. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil). Dept. de Quimica

    2011-01-15

    Asphalt ageing due to the action of solar radiation must be considered in the study of the performance of asphalt pavement, especially in Brazil because of its geographical characteristics. The aim of this work is to study asphalt ageing caused by the effect of xenon radiation, by using weathering tests. Sample degradation was evaluated by using Fourier transform infrared spectroscopy (FTIR). The results of FTIR indicated an oxidation process of the material, which occurred during exposure in the xenon arc chamber. The area ratio related to the bands of the aliphatic CH/OH and CH/C=O groups and those of the Si-O-Si/OH groups of bitumen decreased after exposure to xenon radiation. The samples were analyzed by using X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The porosity of the samples before and after ageing was measured by using the SEM micrographs and the image software Quantikov. (author)

  17. Evaluation system for CO2 emission of hot asphalt mixture

    Directory of Open Access Journals (Sweden)

    Bo Peng

    2015-04-01

    Full Text Available The highway construction industry plays an important role in economic and development, but is also a primary source of carbon emission. Accordingly, with the global climate change, energy conservation and reduction of carbon emissions have become critical issues in the highway construction industry. However, to date, a model for the highway construction industry has not been established. Hence, to implement a low-carbon construction model for highways, this study divided asphalt pavement construction into aggregate stacking, aggregate supply, and other stages, and compiled a list of energy consumption investigation. An appropriate calculation model of CO2 emission was then built. Based on the carbon emission calculation model, the proportion of carbon emissions in each stage was analyzed. The analytic hierarchy process was used to establish the system of asphalt pavement construction with a judgment matrix, thereby enabling calculation of the weight coefficient of each link. In addition, the stages of aggregate heating, asphalt heating, and asphalt mixture mixing were defined as key stages of asphalt pavement construction. Carbon emissions at these stages accounted for approximately 90% of the total carbon emissions. Carbon emissions at each stage and their impact on the environment were quantified and compared. The energy saving construction schemes as well as the environmental and socioeconomic benefits were then proposed. Through these schemes, significant reductions in carbon emissions and costs can be achieved. The results indicate that carbon emissions reduce by 32.30% and 35.93%, whereas costs reduce by 18.58% and 6.03%. The proposed energy-saving and emission reduction scheme can provide a theoretical basis and technical support for the development of low-carbon highway construction.

  18. Partial Replacement of Cement with Bagasse Ash in Hot Mix Asphalt ...

    African Journals Online (AJOL)

    It is in this light that a laboratory based investigation for the replacement of cement with BA in Hot Mix Asphalt (HMA) was conducted. Tests on the suitability of materials used and their performance in terms of known engineering properties was carried out. Bitumen content of 4.5%, 5.5%, 6.5% and 7.5% was adopted.

  19. Hot-mix asphalt testing for the South African pavement design method

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2010-08-01

    Full Text Available of local and international hot-mix asphalt (HMA) test methods and modify or adapt them to suit South African road pavement conditions. This paper presents various laboratory HMA test protocols developed as part of the project to revise SAPDM. Large scale...

  20. The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis.

    Science.gov (United States)

    Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan

    2017-05-24

    Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4-8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling.

  1. Simulation of Bimetallic Bush Hot Rolling Bonding Process

    Directory of Open Access Journals (Sweden)

    Yaqin Tian

    2015-01-01

    Full Text Available Three-dimensional model of bimetallic bush was established including the drive roller and the core roller. The model adopted the appropriate interface assumptions. Based on the bonding properties of bimetallic bush the hot rolling process was analyzed. The optimum reduction ratio of 28% is obtained by using the finite element simulation software MARC on the assumption of the bonding conditions. The stress-strain distribution of three dimensions was research assumptions to interface deformation of rolling. At the same time, based on the numerical simulation, the minimum reduction ratio 20% is obtained by using a double metal composite bush rolling new technology from the experiment research. The simulation error is not more than 8%.

  2. Hot rolled composite billet for nuclear control rods

    International Nuclear Information System (INIS)

    Miller, G.E.

    1976-01-01

    This invention relates to a composite plate shaped billet, useful in the fabrication of nuclear control rods, which comprises a core of stainless steel containing about 2 percent boron 10, a thin coating of zirconia on the surfaces of said core, and said zirconia coating being completely encased in a jacket of mild steel, said composite having been hot rolled between about 1075 0 and about 1165 0 C. 1 claim, 8 figures

  3. Microstructural characterization of Zr1Nb alloy after hot rolling

    Energy Technology Data Exchange (ETDEWEB)

    Souza, A.C. [Universidade Estadual do Mato Grosso do Sul (UEMS), MS (Brazil); Rossi, J.L.; Martinez, L.G.; Mucsi, C.S. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Tsakiropoulos, P. [University of Sheffield (United Kingdom); Ceoni, F.C.; Grandini, C.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2016-07-01

    Full text: The different research lines within the scope in engineering and materials science have developed new materials that can be used in different industrial sectors, such as, energy, health and transportation. For the nuclear industry, for example, the Zr alloys, are of great interest due to its good mechanical properties, excellent corrosion resistance and above all, the high permeability to thermal neutrons. In the health sector, the zirconium poses one of the lowest Young's modulus when compared to other metallic biomaterials, e.g., pure Zr is 68 GPa, bone mineral hydroxyapatite is 80 GPa, for Ti alloys is 90 GPa and above, for Nb is 105 GPa and stainless steels above 189 GPa. This is particularly important for implants in bones, whose elasticity modulus can reach 30 GPa and it is desirable an as close match as possible. However, the zirconium alloys, have great chemical affinity with oxygen and nitrogen. Moreover, oxides and nitrides may form during the melting process, heat treatment and hot rolling, changing the physic-chemical properties of the alloy. This experimental work shows the results of the evolution of the microstructure after hot rolling of the Zr1Nb alloy. It was possible to confirm the absence of formation of oxides and nitrides, thus confirming the of the experimental method of melting and hot rolling of the Zr1Nb alloy. (author)

  4. 75 FR 64246 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of...

    Science.gov (United States)

    2010-10-19

    ...-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of Antidumping Duty Order AGENCY... certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Antidumping Duty Order: Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, 67 FR 11093 (March 12, 2002...

  5. Quantifying the environmental burdens of the hot mix asphalt (HMA pavements and the production of warm mix asphalt (WMA

    Directory of Open Access Journals (Sweden)

    Mithil Mazumder

    2016-05-01

    Full Text Available Asphalt pavement has significant environmental burdens throughout its life cycle. A life cycle assessment (LCA model is used to quantify the environmental burdens for material, construction, maintenance and use phases of hot mix asphalt (HMA pavement. Two peer reviewed journals have been used to collect all of the inventory loadings as an input for the LCA model and ten impact categories have been evaluated as output. The result of the inventory analysis is a summary of all inflows and outflows related to the “functional unit”. The result of each impact category is the total of all the individually characterized inventory loadings in each category. Each life cycle phase of HMA pavement has been quantified on these ten impact categories and a comparison provided among the phases to understand the percentage contribution to the environment. Human and eco toxicity values are higher for the material phase, whereas the rest of the impact categories are significant in the use phase. The material phase contributes 97% of the overall human toxicity in water from standpoint of asphalt pavements, whereas in the material phase the production of bitumen is responsible for 90% human and eco toxicity in terms of air based burden. As a solution, the life cycle inventory of WMA has been estimated and reduction only done in HMA production. From analysis, it was estimated that WMA provides a reduction of 29% on the acidification impact and 25% reduction on both fossil fuel consumption and photo oxidant formation impact of HMA. Keywords: Life cycle analysis, Environmental burdens, Inventories, HMA, Impacts, WMA

  6. UTILIZATION OF TORAY FLY ASH AS FILLER SUBSTITUTION IN THE HOT ROLLED SHEET-WEARING COURSE (HRS-WC MIXTURE

    Directory of Open Access Journals (Sweden)

    F. Candra

    2012-02-01

    Full Text Available In road construction materials, the utilization of fly ash as additive materials is limited and also small in quantity, while the disposal of fly ash is quite high. An abundance of fly ash can be found at PT Toray Company in Jakarta and Surabaya. Toray fly ash is disposed coal ash resulting from coal-fired electricity generating power plants. Toray fly ash in this research is used as substitute mineral filler in asphalt paving mixtures. Research on utilization of Toray fly ash as filler is conducted in the Hot Rolled Sheet – Wearing Course Mixture.  Filler content in the HRS –WC mixture is 9%. Variations of Toray fly ash in the mixture tested are 0%, 25%, 50%, 75%, 100% and the variations of asphalt content are 6%, 6.5%, 7%, 7.5%, 8%. Marshall test is  performed to determine the Optimum Asphalt Content  and Marshall Stability, Indirect Tensile Strength (ITS test and Tensile Strength Ratio (TSR to select the optimum Toray fly ash utilization in the mixture based on the moisture susceptibility of specimens. The research results show that in variations of 0%, 25%, 50%, 75% and 100% Toray fly ash in the HRS-WC Mixture, the Optimum Asphalt Contents are at 6.8%, 7.0%, 7.0%, 7.1% and 7.6%  and Marshall Stability values of the variations are 1649 kg, 1541 kg, 1568 kg, 1678 kg, 1718 kg respectively. TSR values in variations of Toray fly ash are 98.32%, 90.28%, 89.38%, 87.62%, 64.71% respectively, with Minimum TSR value required is 80%. Based on the overall parameters, the optimum Toray fly ash utilization in the HRS-WC Mixture recommended is 75% of Toray fly ash at 7.1% Optimum Asphalt Content.

  7. Effects of asphalt rejuvenator on thermal and mechanical properties on oxidized hot mixed asphalt pavements

    Science.gov (United States)

    Farace, Nicholas A.; Buttlar, William G.; Reis, Henrique

    2016-04-01

    The utilization of asphalt rejuvenator, and its effectiveness for restoring thermal and mechanical properties was investigated via Disk-shaped Compact Tension (DC(T)) and acoustic emission (AE) testing for determining mechanical properties and embrittlement temperatures of the mixtures. During the DC(T) testing the fracture energies and peak loads were used to measure the resistance of the rejuvenated asphalt to low temperature cracking. The AE testing monitored the acoustic emission activity while the specimens were cooled from room temperature to -40 °C to estimate the temperature at which thermal cracking began (i.e. the embrittlement temperature). First, a baseline response was obtained by obtaining the mechanical and thermal response of virgin HMA samples and HMA samples that had been exposed to oxidative aging for 36 hours at 135°C. The results showed the virgin samples had much higher peak loads and fracture energies than the 36 hours aged samples. Acoustic Emission showed similar results with the virgin samples having embrittlement temperatures 10 °C cooler than the 36 hours aged specimens. Then, overaged for 36 hours specimens were treated different amounts of rejuvenator (10%, 15%, and 20% by weight of binder content) and left to dwell for increased amount of time periods varying from one to eight weeks. It was observed that the AE results showed an improvement of embrittlement temperature with increasing with the dwell times. The 8 weeks specimens had cooler embrittlement temperatures than the virgin specimens. Finally, the low temperature effects on fracture energy and peak load of the rejuvenated asphalt was investigated. Rejuvenator was applied (10% by weight of binder) to specimens aged 36 hours at 135 °C, and the dwell time was varied from 1 to 4 weeks. The results showed that the peak loads were restored to levels of the virgin specimens, and the fracture energies improved to levels beyond that of the virgin specimens. The results also showed a

  8. Stripping in hot mix asphalt produced by aggregates from construction and demolition waste.

    Science.gov (United States)

    Pérez, I; Pasandín, A R; Gallego, J

    2012-01-01

    This paper analyses the effect of water on the durability of hot asphalt mixtures made with recycled aggregates from construction and demolition debris. Indirect tensile stress tests were carried out to evaluate stripping behaviour. The mixtures tested were fabricated with 0, 20, 40 and 60% recycled aggregates. Two types of natural aggregates were used: schist and calcite dolomite. An increase in the percentage of recycled aggregates was found to produce a decrease in the tensile stress ratio of the hot asphalt mixtures. To study this phenomenon, two and three factor analyses of variance (ANOVA) were performed with indirect tensile stress being used as the dependent variable. The factors studied were the percentage of recycled aggregates (0, 20, 40 and 60%), the moisture state (dry, wet) and the type of natural aggregate (schist, calcite). On the basis of the ANOVA results, it was found that the most important factor affecting resistance was the moisture state (dry, wet) of the specimens. The percentage of recycled aggregate also affected indirect tensile stress, especially in the dry state. The type of natural aggregate did not have a significant effect on indirect tensile stress. The hot asphalt mixture specimens made with different percentages of recycled aggregates from construction and demolition debris and of natural quarry aggregates showed poor stripping behaviour. This stripping behaviour can be related to both the poor adhesion of the recycled aggregates and the high absorption of the mortar of cement adhered to them.

  9. Flow behavior of polymers during the roll-to-roll hot embossing process

    International Nuclear Information System (INIS)

    Deng, Yujun; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Lin, Zhongqin

    2015-01-01

    The roll-to-roll (R2R) hot embossing process is a recent advancement in the micro hot embossing process and is capable of continuously fabricating micro/nano-structures on polymers, with a high efficiency and a high throughput. However, the fast forming of the R2R hot embossing process limits the time for material flow and results in complicated flow behavior in the polymers. This study presents a fundamental investigation into the flow behavior of polymers and aims towards the comprehensive understanding of the R2R hot embossing process. A three-dimensional (3D) finite element (FE) model based on the viscoelastic model of polymers is established and validated for the fabrication of micro-pyramids using the R2R hot embossing process. The deformation and recovery of micro-pyramids on poly(vinyl chloride) (PVC) film are analyzed in the filling stage and the demolding stage, respectively. Firstly, in the analysis of the filling stage, the temperature distribution on the PVC film is discussed. A large temperature gradient is observed along the thickness direction of the PVC film and the temperature of the top surface is found to be higher than that of the bottom surface, due to the poor thermal conductivity of PVC. In addition, creep strains are demonstrated to depend highly on the temperature and are also observed to concentrate on the top layer of the PVC film because of high local temperature. In the demolding stage, the recovery of the embossed micro-pyramids is obvious. The cooling process is shown to be efficient for the reduction of recovery, especially when the mold temperature is high. In conclusion, this research advances the understanding of the flow behavior of polymers in the R2R hot embossing process and might help in the development of the highly accurate and highly efficient fabrication of microstructures on polymers. (paper)

  10. Characterizing the stretch-flangeability of hot rolled multiphase steels

    International Nuclear Information System (INIS)

    Pathak, N.; Butcher, C.; Worswick, M.; Gao, J.

    2013-01-01

    Hole expansion tests are commonly used to characterize the edge stretching limit of a material. Traditionally, a conical punch is used to expand a punched hole until a through-thickness crack appears. However, many automotive stretch flanging operations involve in-plane edge stretching that is best captured with a flat punch. In this paper, hole expansion tests were carried out on two different hot-rolled multiphase steels using both flat and conical punches. The fracture mechanisms for both punch types were investigated using scanning electron microscopy (SEM)

  11. Asphalt cement poisoning

    Science.gov (United States)

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  12. Experimental testing of hot mix asphalt mixture made of recycled aggregates.

    Science.gov (United States)

    Rafi, Muhammad Masood; Qadir, Adnan; Siddiqui, Salman Hameed

    2011-12-01

    The migration of population towards big cities generates rapid construction activities. These activities not only put pressure on natural resources but also produce construction, renovation and demolition waste. There is an urgent need to find out ways to handle this waste owing to growing environmental concerns. This can reduce pressure on natural resources as well. This paper presents the results of experimental studies which were carried out on hot mix asphalt mixture samples. These samples were manufactured by adding recycled aggregates (RA) with natural crushed stone aggregates (CSA). Three levels of addition of RA were considered in the presented studies. RA were obtained from both the concrete waste of construction, renovation and demolition activities and reclaimed asphalt pavement. Separate samples were manufactured with the coarse and fine aggregate fractions of both types of RA. Samples made with CSA were used as control specimens. The samples were prepared and tested using the Marshall method. The performance of the samples was investigated in terms of density-void and stability/flow analysis and was compared with the performance criteria as given by National Highway Authority for wearing course material in Pakistan. Based on this data optimum asphalt contents were determined. All the samples made by adding up to 50% RA conform to the specification requirements of wearing course material as given by National Highway Authority in terms of optimum asphalt contents, voids in mineral aggregates and stability/flow. A statistical analysis of variation of these samples confirmed that addition is also possible statistically.

  13. Potential of Waste Oyster Shells as a Novel Biofiller for Hot-Mix Asphalt

    Directory of Open Access Journals (Sweden)

    Nader Nciri

    2018-03-01

    Full Text Available This paper reports the use of waste oyster shells as a novel biofiller for hot-mix asphalt (HMA pavement applications. The effects of different fractions (e.g., 0, 5, 10, 15 wt % of oyster shell powder (OSP on the bitumen performance were investigated. The chemical properties of unfilled and OSP-filled asphalts were characterized by means of thin layer chromatography-ionization detection (TLC-FID, Fourier transform-infrared spectroscopy (FT-IR, X-ray diffraction (XRD, and scanning electron microscopy (SEM. Thermal characteristics were examined by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. Physical and rheological properties were assessed through penetration, softening point, ductility, and dynamic shear rheometer (DSR tests. Results showed that OSP addition increased the resins content, as well as the stiffness of blends. No obvious reactions have occurred between the filler and the asphalt. A higher dose of OSP altered the morphology of the binder, whereas lower and intermediate doses improved its thermal stability and enhanced its low-temperature, rutting, and fatigue performances with respect to the plain asphalt. Overall, the waste oyster shells could be used as filler substitute, not only to improve the quality of road pavements but also to reduce the cost of their construction and solve the waste disposal problems.

  14. Microstructure and properties of hot roll bonding layer of dissimilar metals. 2. Bonding interface microstructure of Zr/stainless steel by hot roll bonding and its controlling

    International Nuclear Information System (INIS)

    Yasuyama, Masanori; Ogawa, Kazuhiro; Taka, Takao; Nakasuji, Kazuyuki; Nakao, Yoshikuni; Nishimoto, Kazutoshi.

    1996-01-01

    The hot roll bonding of zirconium and stainless steel inserted with tantalium was investigated using the newly developed rolling mill. The effect of hot rolling temperatures of zirconium/stainless steel joints on bonding interface structure was evaluated. Intermetallic compound layer containing cracks was observed at the bonding interface between stainless steel and tantalium when the rolling temperature was above 1373K. The hardness of the bonding layer of zirconium and tantalium bonded above 1273K was higher than tantalium or zirconium base metal in spite of absence of intermetallic compound. The growth of reaction layer at the stainless steel and tantalium interface and at the tantalium and zirconium interface was conforming a parabolic low when that was isothermally heated after hot roll bonding, and the growth rate was almost same as that of static diffusion bonding without using hot roll bonding process. It is estimated that the strain caused by hot roll bonding gives no effect on the growth of reaction layer. It was confirmed that the dissimilar joint of zirconium and stainless steel with insert of tantalium having the sound bonding interface were obtained at the suitable bonding temperature of 1173K by the usage of the newly developed hot roll bonding process. (author)

  15. Numerical cooling strategy design for hot rolled dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Suwanpinij, Piyada; Prahl, Ulrich; Bleck, Wolfgang [RWTH Aachen (DE). Dept. of Ferrous Metallurgy (IEHK); Togobytska, Nataliya; Weiss, Wolf; Hoemberg, Dietmar [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)

    2010-10-21

    In this article, the Mo-Mn dual phase steel and its process parameters in hot rolling are discussed. The process window was derived by combining the experimental work in a hot deformation dilatometer and numerical calculation of process parameters using rate law models for ferrite and martensite transformation. The ferrite formation model is based on the Leblond and Devaux approach while martensite formation is based on the Koistinen- Marburger (K-M) formula. The carbon enrichment during ferrite formation is taken into account for the following martensite formation. After the completion of the parameter identification for the rate law model, the evolution of phases in multiphase steel can be addressed. Particularly, the simulations allow for predicting the preferable degree of retained strain and holding temperature on the run out table (ROT) for the required ferrite fraction. (orig.)

  16. Hot-rolled Process of Multilayered Composite Metal Plate

    Directory of Open Access Journals (Sweden)

    YU Wei

    2017-02-01

    Full Text Available For multi-layer plate, it is a difficult problem to increase product yield rate and improve bonding interface quality. A high yield hot-rolled method of multilayered plate was proposed. The raw strips and plate were fixed by argon arc welding. The combined billet was put into a metal box and vacuum pumped, and then heated and rolled by multi passes at the temperature of 1000-1200℃. The 67 layered plate with the thickness of 2.5mm was successfully produced. The interfacial microstructures and diffusion behavior were investigated and analyzed by optical microscopy and scan electronic microscopy. The tensile and shear strength were tested,and the shear fractures were analyzed. The results show that the multilayered plate yield rate is more than 90% by two steps billet combination method and rolling process optimization. The good bonding interface quality is obtained, the shear strength of multilayered plate reaches 241 MPa. Nickel interlayer between 9Cr18 and 1Cr17 can not only prevent the diffusion of carbon, but also improve the microstructure characteristics.

  17. 76 FR 34101 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2011-06-10

    ...] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia Determinations On...-quality steel products from Russia would be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. The Commission further...

  18. The Influence of Unusual Materials as Prospective Fillers in the Hot Mix Asphalt

    Science.gov (United States)

    Cavalcate Ferrão, Wallace; Moizinho, Joel Carlos

    2017-10-01

    Among the factors that influence directly the durability of the asphaltic layer on pavements, the type and percentage of filler in the hot mix asphalt pavement (HMA) is a great player. The most traditional fillers, the Portland cement and the hydrated lime, are well known for resisting to weather variations and adding extra features to the hot mixtures. The glass powder, the cladding waste (gotten from clay bricks), the ashes of rice husks and laterite powder are proposed as substitutes to the traditional ones. The materials have been sieved and classified by fitting the powder on the filler grain size required by Brazilian Rules, eventually they have been tested with asphalt 50/70. The glass powder performed a Thermic Susceptibility Index (IST) of -0.69 for 5% in weight of filler and -0.75 for 10% in weight of filler, proving that this material satisfies the Brazilian specification DNIT-EM 095/2006; on the other hand, the laterite powder presented an IST of -0.61 for 5% and 0.32 for 10%. After executing the Softening Point, Penetration and Flash Point tests, it has been confirmed that the glass and laterite powder are recommended materials as potential substitutes to the Portland cement, however the first one performs better under balmy temperatures due to its negative IST; the cladding powder and the rice husks turns the mixtures too rigid and breakable on percentages close to 10%.

  19. Patterned immobilization of antibodies within roll-to-roll hot embossed polymeric microfluidic channels.

    Directory of Open Access Journals (Sweden)

    Belachew Feyssa

    Full Text Available This paper describes a method for the patterned immobilization of capture antibodies into a microfluidic platform fabricated by roll-to-roll (R2R hot embossing on poly (methyl methacrylate (PMMA. Covalent attachment of antibodies was achieved by two sequential inkjet printing steps. First, a polyethyleneimine (PEI layer was deposited onto oxygen plasma activated PMMA foil and further cross-linked with glutaraldehyde (GA to provide an amine-reactive aldehyde surface (PEI-GA. This step was followed by a second deposition of antibody by overprinting on the PEI-GA patterned PMMA foil. The PEI polymer ink was first formulated to ensure stable drop formation in inkjet printing and the printed films were characterized using atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS. Anti-CRP antibody was patterned on PMMA foil by the developed method and bonded permanently with R2R hot embossed PMMA microchannels by solvent bonding lamination. The functionality of the immobilized antibody inside the microfluidic channel was evaluated by fluorescence-based sandwich immunoassay for detection of C-reactive protein (CRP. The antibody-antigen assay exhibited a good level of linearity over the range of 10 ng/ml to 500 ng/ml (R(2 = 0.991 with a calculated detection limit of 5.2 ng/ml. The developed patterning method is straightforward, rapid and provides a versatile approach for creating multiple protein patterns in a single microfluidic channel for multiplexed immunoassays.

  20. Effects of microalloying on hot-rolled and cold-rolled Q&P steels

    Science.gov (United States)

    Azevedo de Araujo, Ana Luiza

    Third generation advanced high strength steels (AHSS) have been a major focus in steel development over the last decade. The premise of these types of steel is based on the potential to obtain excellent combinations of strength and ductility with low-alloy compositions by forming mixed microstructures containing retained austenite (RA). The development of heat treatments able to achieve the desired structures and properties, such as quenching and partitioning (Q&P) steels, is driven by new requirements to increase vehicle fuel economy by reducing overall weight while maintaining safety and crashworthiness. Microalloying additions of niobium (Nb) and vanadium (V) in sheet products are known to provide strengthening via grain refinement and precipitation hardening and may influence RA volume fraction and transformation behavior. Additions of microalloying elements in Q&P steels have not been extensively studied to date, however. The objective of the present study was to begin to understand the potential roles of Nb and V in hot-rolled and cold-rolled Q&P steel. For that, a common Q&P steel composition was selected as a Base alloy with 0.2C-1.5Si-2.0Mn (wt. %). Two alloys with an addition of Nb (0.02 and 0.04 wt. %) and one with an addition of V (0.06 wt. %) to the Base alloy were investigated. Both hot-rolled and cold-rolled/annealed Q&P simulations were conducted. In the hot-rolled Q&P study, thermomechanical processing was simulated via hot torsion testing in a GleebleRTM 3500, and four coiling temperatures (CT) were chosen. Microstructural evaluation (including RA measurements via electron backscattered diffraction - EBSD) and hardness measurements were performed for all alloys and coiling conditions. The analysis showed that Nb additions led to overall refinement of the prior microstructure. Maximum RA fractions were measured at the 375 °C CT, and microalloying was associated with increased RA in this condition when compared to the Base alloy. A change in

  1. Enhancement of strength properties of hot rolled 10KHSND steel

    International Nuclear Information System (INIS)

    Nasibov, A.G.; Popova, L.V.; Pikulin, S.A.; Globa, N.I.

    1989-01-01

    To find out the reasons of low hot rolling yield for 10KhSND steel sheets in mechanical properties, titanium effect in the range of 0.008-0.03% concentrations is studied. It is established that the titanium content in a solid solution is conserved within 0.003-0.005%, the rest of titanium is bound to carbonitrides Ti(C, N). It is shown that alloys with 0.025-0.03% titanium content possess the increased values of ultimate and yield strength the necessary level of impact strength and good wealdability. The good steel yield, when the titanium content is sustained at the given level, increases from 40 to 85%

  2. Mechanical Properties of a Bainitic Steel Producible by Hot Rolling

    Directory of Open Access Journals (Sweden)

    Rana R.

    2017-12-01

    Full Text Available A carbide-free bainitic microstructure is suitable for achieving a combination of ultra high strength and high ductility. In this work, a steel containing nominally 0.34C-2Mn-1.5Si-1Cr (wt.% was produced via industrial hot rolling and laboratory heat treatments. The austenitization (900°C, 30 min. and austempering (300-400°C, 3 h treatments were done in salt bath furnaces. The austempering treatments were designed to approximately simulate the coiling step, following hot rolling and run-out-table cooling, when the bainitic transformation would take place and certain amount of austenite would be stabilized due to suppression of carbide precipitation. The microstructures and various mechanical properties (tensile properties, bendability, flangeability, and room and subzero temperature impact toughness relevant for applications were characterized. It was found that the mechanical properties were highly dependent on the stability of the retained austenite, presence of martensite in the microstructure and the size of the microstructural constituents. The highest amount of retained austenite (~ 27 wt.% was obtained in the sample austempered at 375°C but due to lower austenite stability and coarser overall microstructure, the sample exhibited lower tensile ductility, bendability, flangeability and impact toughness. The sample austempered at 400°C also showed poor properties due to the presence of initial martensite and coarse microstructure. The best combination of mechanical properties was achieved for the samples austempered at 325-350°C with a lower amount of retained austenite but with the highest mechanical stability.

  3. Analysis of hot rolling and hot forging effects on mechanical properties and microstructure of ZrNbMoGe alloy

    International Nuclear Information System (INIS)

    AH Ismoyo; Parikin; Bandriyana

    2014-01-01

    Research on formation technique by a combined method of rolling and forging has been carried out in order to improve the mechanical properties of ZrNbMoGe alloy to be used as fuel cladding in NPP (Nuclear Power Plant) application. The effects of rolling and forging were analyzed several tests. The tests were conducted for zirconium alloy specimen with a composition of (in % wt.) 97% Zr, 0,5% Mo, 2% Nb and 0,5% Ge, where the specimen was melted with an arc-furnace. The hot rolling and forging were conducted at 900 °C and 950 °C respectively. Hardness test was carried out by using a microhardness testing machine, while microstructure examination and crystal structure analysis were conducted with an optical microscope and an X-ray diffractometer. The results show that the hardness of the alloy increase from 141.21 HV (starting material) to 210.47 HV (hot rolled material) and 365.75 HV (hot forged material). Texturing phenomenon is clearly figured on the microstructure due to hot rolling and forging process. Analysis by diffractogram also indicates that the hot rolling and forging process has influence on the crystal orientation of dominant preferred direction in the reflection plane of (10ī1), recorded from the rise of intensity counting from about 2500 to 3000. In summary, hot forging and rolling process can change the mechanical properties (hardness and texture) and microstructure of materials. (author)

  4. 75 FR 32160 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit...

    Science.gov (United States)

    2010-06-07

    ...-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit for Preliminary Results of...-quality steel products from Brazil. See Agreement Suspending the Countervailing Duty Investigation on Hot... duty order on certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Initiation...

  5. 75 FR 77828 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit...

    Science.gov (United States)

    2010-12-14

    ...-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit for Final Results of...-Rolled Carbon Quality Steel Products From Brazil: Preliminary Results of Countervailing Duty... administrative review of the countervailing duty order on certain hot-rolled flat-rolled carbon- quality steel...

  6. 78 FR 11901 - Hot-Rolled Steel Products From China, India, Indonesia, Taiwan, Thailand, and Ukraine; Notice of...

    Science.gov (United States)

    2013-02-20

    ... 906-908 (Second Review)] Hot-Rolled Steel Products From China, India, Indonesia, Taiwan, Thailand, and... determine whether revocation of the countervailing duty orders on hot-rolled steel products from India, Indonesia, and Thailand and the revocation of the antidumping duty orders on hot-rolled steel products from...

  7. Influence of Subgrade and Unbound Granular Layers Stiffness on Fatigue Life of Hot Mix Asphalts - HMA

    Directory of Open Access Journals (Sweden)

    Hugo A. Rondón-Quintana

    2013-11-01

    Full Text Available The mainly factors studied to predict fatigue life of hot mix asphalt-HMA in flexible pavements are the loading effect, type of test, compaction methods, design parameters of HMA (e.g., particle size and size distribution curve, fine content, type of bitumen and the variables associated with the environment (mainly moisture, temperature, aging. This study evaluated through a computer simulation, the influence of the granular layers and subgrade on the fatigue life of asphalt layers in flexible pavement structures. Mechanics parameters of granular layers of subgrade, base and subbase were obtained using the mathematical equations currently used for this purpose in the world. The emphasis of the study was the city of Bogotá, where the average annual temperature is 14°C and soils predominantly clay, generally experience CBR magnitudes between 1% and 4%. General conclusion: stiffness of the granular layers and subgrade significantly affect the fatigue resistance of HMA mixtures. Likewise, the use of different equations reported in reference literature in order to characterize granular layers may vary the fatigue life between 4.6 and 48.5 times, varying the thickness of the pavement layers in the design.

  8. An empirical method for estimating surface area of aggregates in hot mix asphalt

    Directory of Open Access Journals (Sweden)

    R.P. Panda

    2016-04-01

    Full Text Available Bitumen requirement in hot mix asphalt (HMA is directly dependent on the surface area of the aggregates in the mix, which in turn has effect on the asphalt film thickness and the flow characteristics. The surface area of aggregate blend in HMA is calculated using the specific surface area factors assigned to percentage passing through some specific standard sieve sizes and the imaging techniques. The first process is less capital intensive, but purely manual and labour intensive and prone to human errors. Imaging techniques though eliminating the human errors, still have limited use due to capital intensiveness and requirement of well-established laboratories with qualified technicians. Most of the developing countries like India are shortage of well-equipped laboratories and qualified technicians. To overcome these difficulties, the present mathematical model has been developed to estimate the surface area of aggregate blend of HMA from physical properties of aggregates evaluated using simple laboratory equipment. This model has been validated compared with the existing established methods of calculations and can be used as one of the tools in different developing and under developed countries for proper design of HMA.

  9. 75 FR 19369 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products from Brazil: Preliminary Results of...

    Science.gov (United States)

    2010-04-14

    .... Hot-rolled dual phase steel, phase-hardened, primarily with a ferritic-martensitic microstructure.... See Preliminary Results of Antidumping Duty Administrative Review: Stainless Steel Sheet and Strip in... Antidumping Duty Administrative Review: Stainless Steel Sheet and Strip in Coils From France, 68 FR 69379...

  10. Influence of ring growth rate on damage development in hot ring rolling

    NARCIS (Netherlands)

    Wang, C.; Geijselaers, H. J.M.; Omerspahic, E.; Recina, V.; van den Boogaard, A. H.

    2015-01-01

    As an incremental forming process of bulk metal, ring rolling provides a cost effective process route to manufacture seamless rings. In the production of hot rolled rings, defects such as porosity can sometimes be found in high alloyed steel, manufactured from ingots having macro-segregation. For

  11. Hot forging of roll-cast high aluminum content magnesium alloys

    Science.gov (United States)

    Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio

    2017-10-01

    This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.

  12. Flexibl Pavement Analysis Considering Temperature Profile and Anisotropy Behavior in Hot Mix Asphalt Layer

    Directory of Open Access Journals (Sweden)

    Choi Joonho

    2011-12-01

    Full Text Available A three Dimensional finite element model (FEM incorporating the anisotropic properties and temperature profile of hot mix asphalt (HMA pavement was developed to predict the structural responses of HMA pavement subject to heavy loads typically encountered in the field. In this study, ABAQUS was adopted to model the stress and strain relationships within the pavement structure. The results of the model were verified using data collected from the Korean Highway Corporation Test Road (KHCTR. The results demonstrated that both the base course and surface course layers follow the anisotropic behavior and the incorporation of the temperature profile throughout the pavement has a substantial effect on the pavement response predictions that impact pavement design. The results also showed that the anisotropy level of HMA and base material can be reduced to as low as 80% and 15% as a result of repeated loading, respectively.

  13. Effect of Hot Rolling on the Microstructure and Mechanical Properties of Nitrogen Alloyed Austenitic Stainless Steel

    Science.gov (United States)

    Chenna Krishna, S.; Karthick, N. K.; Jha, Abhay K.; Pant, Bhanu; Cherian, Roy M.

    2018-05-01

    In the present investigation, the effect of multi-pass hot rolling in the temperature range of 700-1000 °C on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel was studied with the aid of optical microscopy, tensile testing and x-ray diffraction measurements. The microstructural changes that occurred in the hot rolled specimens were elongation of grains in rolling direction, nucleation of new grains at the grain boundaries of elongated grains and growth of nucleated grains to form fully recrystallized grains. Elongated grains formed at lower rolling temperature (700-800 °C) due to inadequate strain/temperature for the initiation of dynamic recrystallization. At higher rolling temperature (900-1000 °C), fine grains formed due to dynamic recrystallization. Tensile properties showed strong dependency on the rolling temperature. Tensile strength increased with the decrease in the rolling temperature at the cost of ductility. Maximum strength was observed in samples hot rolled at 700 °C with yield strength of 917 MPa and ductility of 25%. This variation in the tensile properties with the rolling temperature is attributed to changes in the dislocation density and grain structure. The estimated yield strength from the dislocation density, solid solution and grain boundary strengthening closely matched with experimentally determined yield strength confirming the role of dislocation density and grain size in the strengthening.

  14. The Influence of Hot-Rolled Temperature on Plasma Nitriding Behavior of Iron-Based Alloys

    Science.gov (United States)

    El-Hossary, F. M.; Khalil, S. M.; Lotfy, Kh.; Kassem, M. A.

    2009-07-01

    Experiments were performed with an aim of studying the effect of hot-rolled temperature (600 and 900°C) on radio frequency (rf) plasma nitriding of Fe93Ni4Zr3 alloy. Nitriding was carried out for 10 min in a nitrogen atmosphere at a base pressure of 10-2 mbarr. Different continuous plasma processing powers of 300-550 W in steps 50 W or less were applied. Nitrided hot-rolled specimens were characterized by optical microscopy (OM), X-ray diffraction (XRD) and microhardness measurements. The results reveal that the surface of hot-rolled rf plasma nitrided specimens at 600°C is characterized with a fine microstructure as a result of the high nitrogen solubility and diffusivity. Moreover, the hot-rolled treated samples at 600°C exhibit higher microhardness value than the associated values of hot-rolled treated samples at 900°C. The enhancement of microhardness is due to precipitation and predominance of new phases ( γ and ɛ phases). Mainly, this conclusion has been attributed to the high defect densities and small grain sizes of the samples hot-rolled at 600°C. Generally, the refinement of grain size plays a dramatic role in improvement of mechanical properties of tested samples.

  15. Closure behavior of spherical void in slab during hot rolling process

    Science.gov (United States)

    Cheng, Rong; Zhang, Jiongming; Wang, Bo

    2018-04-01

    The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..

  16. Evolution of microstructure, macrotexture and microtexture during hot rolling of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Ari-Gur, P.; Semiatin, S.L.

    1998-01-01

    The evolution of microstructure, macrotexture and microtexture during subtransus hot working of Ti-6Al-4V with two different types of transformed β starting microstructures (lamellar colony, acicular martensitic α) was investigated. Globularization of the transformed microstructures required heavy rolling reductions or moderate reductions coupled with near transus post-rolling heat treatment. Despite the sluggish dynamic globularization kinetics, noticeable macrotexture changes were noted after low reductions, an effect ascribed to the rotations associated with kinking and bending of the lamellar acicular plates. Noticeable microtextures, noted in samples with an initial lamellar colony microstructure, persisted through hot rolling suggesting that dynamic globularization does not involve recrystallization. In contrast, hot rolled material with a starting acicular α microstructure exhibited weak microtextures and strong macrotextures. The absence of microtexture in these latter cases was explained on the basis of multiple transformation variants within each colony/prior β grain following the β-annealing-and-water-quenching process used to obtain the microstructure. (orig.)

  17. Application of powder metallurgy and hot rolling processes for manufacturing aluminum/alumina composite strips

    Energy Technology Data Exchange (ETDEWEB)

    Zabihi, Majed, E-mail: m.zabihi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Toroghinejad, Mohammad Reza, E-mail: toroghi@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shafyei, Ali, E-mail: shafyei@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2013-01-10

    In this study, aluminum matrix composites (AMC) with 2, 4, 6 and 10 wt% alumina were produced using powder metallurgy (PM), mechanical milling (MM) and vacuum hot pressing (VHP) techniques; then, this was followed by the hot-rolling process. During hot rolling, AMCs with 6 and 10 wt% Al{sub 2}O{sub 3} were fractured whereas strip composites with 2 and 4 wt% Al{sub 2}O{sub 3} were produced successfully. Microstructure and mechanical properties of the samples were investigated by optical and scanning electron microscopes and tensile and hardness tests, respectively. Microscopic evaluations of the hot-rolled composites showed a uniform distribution of alumina particles in the aluminum matrix. It was found that with increasing alumina content in the matrix, tensile strength (TS) and hardness increased and the percentage of elongation also decreased. Scanning electron microscope (SEM) was used to investigate aluminum/alumina interfaces and fracture surfaces of the hot rolled specimens after tensile test. SEM observations demonstrated that the failure mode in the hot-rolled Al-2 wt% Al{sub 2}O{sub 3} composite strips is a typical ductile fracture, while the failure mode was shear ductile fracture with more flat surfaces in Al-4 wt% Al{sub 2}O{sub 3} strips.

  18. Rolling process simulation of a pair-crossed hot strip mill

    International Nuclear Information System (INIS)

    Chen Shaojie; Xu Jianzhong; Liu Xianghua; Wang Guodong

    2000-01-01

    Process simulation can help optimize the operating parameters aiming to improve the quality of rolled products. In this paper, software in Visual Basic language is developed to simulate the hot rolling process of a pair-crossed mill. The strip temperature is calculated by considering air cooling, water cooling, heat generation and conduction.The production parameters including rolling speeds, resistance to deformation, rolling forces, drive torques and powers are evaluated by mathematical models and their parameter identification support tools. The deformation of roll stack is calculated by influential function method. The roll temperature and expansion are calculated by finite differential method, and the roll wear is described by empirical formula. Based on these calculations as well as the effect of heredity is taken into account, the strip crown and flatness then can be obtained. The results show that the simulation software has friendly user interface, high accuracy and practicability. It can be served as a basis for the mill design and optimization of process parameters to acquire high quality of hot rolled strip. (author)

  19. Hot Roll Bonding of Aluminum to Twin-Roll Cast (TRC) Magnesium and Its Subsequent Deformation Behavior

    Science.gov (United States)

    Saleh, H.; Schmidtchen, M.; Kawalla, R.

    2018-02-01

    In an experiment in which twin-roll cast AZ31 magnesium alloy and commercial purity aluminum (AA 1050) sheets were bonded by hot rolling as Al/Mg/Al laminate composites, it was found that increasing the preheating temperatures up to 400 °C enhances the bonding strength of composites. Further increases in the preheating temperatures accelerate the magnesium oxide growth and thus reduce the bonding strength. The influence of the reduction ratio on the bonding properties was also studied, whereby it was observed that increasing the rolling reduction led to an increase in the bonding strength. The experimental results show that the optimum bonding strength can be obtained at rolling temperatures of 375-400 °C with a 50-60% reduction in thickness. On the other hand, the subsequent deformation behavior of composite was assessed using plane strain compression and deep drawing tests. We demonstrate that the composites produced using the optimum roll bonding conditions exhibited sufficient bonding during subsequent deformation and did not reveal any debonding at the bonding interface.

  20. 76 FR 31938 - Certain Hot-Rolled Carbon Steel Flat Products From India: Notice of Preliminary Results of 2009...

    Science.gov (United States)

    2011-06-02

    ... the File from Christopher Hargett, International Trade Compliance Analyst, through Melissa Skinner... Skinner, Office Director, concerning ``Certain Hot-Rolled Carbon Steel Flat Products from India: Customs...

  1. Impact of the Superpave hot mix asphalt properties on its permanent deformation behavior

    Directory of Open Access Journals (Sweden)

    Qasim Zahra

    2018-01-01

    Full Text Available In Iraq, the severity of rutting has increased in asphalt pavements possibly due to the increase in truck axle loads, tyre pressure, and high pavement temperature in summer. As of late, Superpave has been accounted as an enhanced system for performance based design, analysis of asphalt pavement performance prediction for asphalt concrete mixes. In this research the development of permanent deformation in asphalt concrete under repeated loadings was investigated, Wheel-Tracking apparatus has been used in a factorial testing program during which 44 slab samples were tested to simulate actual pavement. The objectives of the present research include; investigating the main factors affecting rutting in asphalt concrete mixture, quantifying the effect of SBS polymer and steel reinforcement on asphalt concrete mixtures in addition to studying the effect of variables on the asphalt concrete mixes against moisture sensitivity. It has been determined that that increasing of compaction temperature from 110 to 150°C will decrease the permanent deformation by 20.5 and 15.6 percent for coarse and fine gradation control asphalt mixtures, respectively. While the permanent deformation decreases by 21.3 percent when the compaction temperature is increased from 110 to 150°C for coarse gradation SBS modified asphalt mixtures.

  2. Bitumen modified with recycled polyurethane foam for employment in hot mix asphalt

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Salas

    2018-01-01

    Full Text Available A wide variety of modifiers have been applied to bitumen in order to enhance their properties and performance. Among them, polymers have been mainly used. The aim of this paper is to assess the use of polyurethane foam waste as a bitumen modifier for hot mix asphalts. The polyurethane foam is a by-product of the manufacturing of polyurethane for thermal insulation. From a bitumen with a penetration grade of 50/70, various samples with percentages of waste material in weight ranging from 1% to 5% were produced and tested. Samples with 5% of waste material or more became rough and were refused due to their poor workability. A bituminous mixture with modified bitumen with a 4% of polyurethane was manufactured and compared with a sample with the same aggregates and original bitumen. Results in Marshall test showed that a mix with polymer modified bitumen yielded improvements in stability and a lower deformability. This result suggests that the employment of polyurethane foam waste is a promising bitumen modifier, contributing also to recycle waste materials.

  3. Value-added utilisation of recycled concrete in hot-mix asphalt.

    Science.gov (United States)

    Wong, Yiik Diew; Sun, Darren Delai; Lai, Dickson

    2007-01-01

    The feasibility of partial substitution of granite aggregate in hot-mix asphalt (HMA) with waste concrete aggregate was investigated. Three hybrid HMA mixes incorporating substitutions of granite fillers/fines with 6%, 45% untreated, and 45% heat-treated concrete were evaluated by the Marshall mix design method; the optimum binder contents were found to be 5.3%, 6.5% and 7.0% of grade Pen 60/70 bitumen, respectively. All three hybrid mixes satisfied the Marshall criteria of the Singapore Land Transport Authority (LTA) W3B wearing course specification. The hybrid mix with 6% concrete fillers gave comparable resilient modulus and creep resistance as the conventional W3B mix, while hybrid mixes with higher concrete substitutions achieved better performance. X-ray diffraction (XRD) showed the distinct presence of free lime in the heat-treated concrete, while the scanning electron microscope (SEM) provided an in-depth perspective of the concrete grains in the HMA matrix. The results suggest feasible use of waste concrete as partial aggregate substitution in HMA.

  4. Characterization of a hot-rolled Cu--Al--Ni--Ti shape memory alloy

    International Nuclear Information System (INIS)

    Segui, C.; Pons, J.; Cesari, E.

    1999-01-01

    The changes in the martensitic transformation of a Cu-Al-Ni-Ti alloy hot-rolled at different temperatures have been studied in detail, covering different aspects such as ageing in the parent phase at temperatures ranging between 250 and 350 o C, stabilisation of the martensite and betatization of the previously hot-rolled specimens. Besides the evolution of transformation temperatures upon different thermal treatments, special attention has been paid to the changes in mechanical properties of the alloy, such as elastic modulus and internal friction. These results are analysed in relation to the microstructural changes as observed by transmission electron microscopy. (orig.)

  5. Properties of Galvanized and Galvannealed Advanced High Strength Hot Rolled Steels

    Energy Technology Data Exchange (ETDEWEB)

    V.Y. Guertsman; E. Essadiqi; S. Dionne; O. Dremmailova; R. Bouchard; B. Voyzelle; J. McDermid; R. Fourmentin

    2008-04-01

    The objectives of the project were (i) to develop the coating process information to achieve good quality coatings on 3 advanced high strength hot rolled steels while retaining target mechanical properties, (ii) to obtain precise knowledge of the behavior of these steels in the various forming operations and (iii) to establish accurate user property data in the coated conditions. Three steel substrates (HSLA, DP, TRIP) with compositions providing yield strengths in the range of 400-620 MPa were selected. Only HSLA steel was found to be suitable for galnaizing and galvannealing in the hot rolled condition.

  6. Polycyclic aromatic hydrocarbons emitted from a hot-mix drum, asphalt plant: study of the influence from use of recycled bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, A.; Jullien, A.; Moneron, P. [Lab. Central des Ponts et Chaussees, Div. Technologie du Genie Civil et Environnement, Section Developpement Durable, Bouguenais (France)

    2007-11-15

    A study was conducted to determine if the use of recycled asphalt aggregate influences emissions of polycyclic aromatic hydrocarbons (PAH). Hot bitumen contains PAH compounds which have been gaining increasing attention due to their toxicity. In addition, the energy consumed during asphalt mixing can reach 60 per cent of the total energy needed for the construction and maintenance of a road over a 30-year service life. Asphalt hot mixing is one of the most common processes found in the road sector. It requires warming and drying aggregate through combustion. In order to minimize emissions, the major influential parameters must be identified. A joint research program involving several institutions has been launched to conduct an experimental campaign on the Blois Hot Mix Asphalt plant, with quantification of the 16 PAH listed by the United States Environmental Protection Agency. Variations in asphalt recycling rate favour emissions of heavy molecular weight PAH, among those analysed. It was determined that specific markers of combustion and materials may contribute to a better understanding of the entire hot asphalt mixing process. It was suggested that chemical characterization of bitumen may help in predicting PAH emissions. 24 refs., 6 tabs., 5 figs.

  7. Evaluation of recycled hot mix asphalt concrete on Route 220 : final report.

    Science.gov (United States)

    1985-01-01

    This report describes the performance of an approximately 8-mi section of roadway on which the rod two layers of asphalt concrete were milled, recycled through a conventional asphalt batch plant, and relaid. The recycled mix consisted of about 40% re...

  8. Evaluation of the performance of aggregate in hot-mix asphalt

    CSIR Research Space (South Africa)

    Komba, Julius J

    2014-07-01

    Full Text Available The overall performance of an asphalt mix is dependent on, amongst others, the properties of the constituent materials, which include aggregate, binder and filler. The aggregate for production of asphalt mixes is usually sourced from a quarry, which...

  9. Use of waste crushed glass for the production of hot-mix asphalt

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2016-08-01

    Full Text Available presents the development and evaluation of a new asphalt concrete mix that utilizes a sustainable crushed glass as a replacement material of a natural aggregate. The ultimate goal is to produce a cost-effective asphalt wearing course with comparative...

  10. Monitoring hot mix asphalt temperature to improve homogeneity and pavement quality

    NARCIS (Netherlands)

    ter Huerne, Henderikus L.; Miller, Seirgei Rosario; Doree, Andries G.; Santagata, E.

    2009-01-01

    This paper describes how controlled compaction practices lead to better quality asphalt. Therefore, it is important that during compaction operations the mixture is at a suitable temperature in order to achieve the specified degree of compaction. The University of Twente’s Asphalt Paving Research

  11. Effects of hot rolled microstructure after twin-roll casting on microstructure, texture and magnetic properties of low silicon non-oriented electrical steel

    International Nuclear Information System (INIS)

    Liu, Hai-Tao; Wang, Yin-Ping; An, Ling-Zi; Wang, Zhao-Jie; Hou, Dao-Yuan; Chen, Jun-Mou; Wang, Guo-Dong

    2016-01-01

    In this work, a 0.71 wt%Si+0.44 wt%Al as-cast strip was produced by novel twin-roll casting. Some as-cast samples were respectively reheated and hot rolled at different temperatures in order to obtain different microstructure prior to cold rolling and annealing. The effects of the hot rolled microstructure on microstructure, texture evolution and magnetic properties were investigated in detail. A coarse deformed microstructure with λ-fiber texture was formed after hot rolling at 850–1050 °C, finally leading to an inhomogeneous recrystallization microstructure with strong λ-fiber, Goss and extremely weak γ-fiber texture. By contrast, a fine transformed microstructure was formed after hot rolling at 1150–1250 °C, finally leading to a fine and homogeneous recrystallization microstructure with stronger α-fiber, γ-fiber and much weaker λ-fiber texture. It should be noted that both the magnetic induction and core loss non-monotonically decreased or increased according to the hot rolling temperature. The unfavorable α-fiber and γ-fiber textures in the annealed sheets were much weaker than those of the conventional products regardless of the hot rolling temperature, thus contributing to a much higher magnetic induction. However, the average grain size in the annealed sheets was much lower than those of the conventional products regardless of the hot rolling temperature, thus leading to a higher core loss except the case of 1050 °C. Hence, it is underscored that better integrated magnetic properties than those of the conventional products can be obtained by optimizing the hot rolled microstructure to produce final desirable recrystallization microstructure and texture. - Highlights: • Non-oriented silicon steel was fabricated using twin-roll casting route. • Microstructure and texture evolution were clarified. • Effects of the hot rolled microstructure were investigated in detail. • Formation mechanism of the recrystallization texture was explored.

  12. Effects of hot rolled microstructure after twin-roll casting on microstructure, texture and magnetic properties of low silicon non-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; An, Ling-Zi; Wang, Zhao-Jie; Hou, Dao-Yuan; Chen, Jun-Mou; Wang, Guo-Dong

    2016-12-15

    In this work, a 0.71 wt%Si+0.44 wt%Al as-cast strip was produced by novel twin-roll casting. Some as-cast samples were respectively reheated and hot rolled at different temperatures in order to obtain different microstructure prior to cold rolling and annealing. The effects of the hot rolled microstructure on microstructure, texture evolution and magnetic properties were investigated in detail. A coarse deformed microstructure with λ-fiber texture was formed after hot rolling at 850–1050 °C, finally leading to an inhomogeneous recrystallization microstructure with strong λ-fiber, Goss and extremely weak γ-fiber texture. By contrast, a fine transformed microstructure was formed after hot rolling at 1150–1250 °C, finally leading to a fine and homogeneous recrystallization microstructure with stronger α-fiber, γ-fiber and much weaker λ-fiber texture. It should be noted that both the magnetic induction and core loss non-monotonically decreased or increased according to the hot rolling temperature. The unfavorable α-fiber and γ-fiber textures in the annealed sheets were much weaker than those of the conventional products regardless of the hot rolling temperature, thus contributing to a much higher magnetic induction. However, the average grain size in the annealed sheets was much lower than those of the conventional products regardless of the hot rolling temperature, thus leading to a higher core loss except the case of 1050 °C. Hence, it is underscored that better integrated magnetic properties than those of the conventional products can be obtained by optimizing the hot rolled microstructure to produce final desirable recrystallization microstructure and texture. - Highlights: • Non-oriented silicon steel was fabricated using twin-roll casting route. • Microstructure and texture evolution were clarified. • Effects of the hot rolled microstructure were investigated in detail. • Formation mechanism of the recrystallization texture was explored.

  13. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Pauul J. Tikalsky

    2004-10-31

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: (1) a statistically sound evaluation of the characterization of foundry sand, (2) a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and (3) the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at N{sub ini}, N{sub des}, and N{sub max}. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  14. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Tikalsky, Paul J. [Pennsylvania State Univ., University Park, PA (United States); Bahia, Hussain U. [Univ. of Wisconsin, Madison, WI (United States); Deng, An [Pennsylvania State Univ., University Park, PA (United States); Snyder, Thomas [Univ. of Wisconsin, Madison, WI (United States)

    2004-10-15

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: a statistically sound evaluation of the characterization of foundry sand, a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at Nini, Ndes, and Nmax. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  15. Influence of Compaction Temperature on Resistance Under Monotonic Loading of Crumb-Rubber Modified Hot-Mix Asphalts

    Directory of Open Access Journals (Sweden)

    Hugo A. Rondón-Quintana

    2012-12-01

    Full Text Available The influence of compaction temperature on resistance under mono-tonic loading (Marshall of Crumb-Rubber Modified (CRM Hot-Mix As-phalt (HMA was evaluated. The emphasis of this study was the applica-tion in Bogotá D.C. (Colombia. In this city the compaction temperature of HMA mixtures decreases, compared to the optimum, in about 30°C. Two asphalt cements (AC 60-70 and AC 80-100 were modified. Two particle sizes distribution curve were used. The compaction temperatures used were 120, 130, 140 and 150°C. The decrease of the compaction tempera-ture produces a small decrease in resistance under monotonic loading of the modified mixtures tested. Mixtures without CRM undergo a lineal decrease in its resistance of up to 34%.

  16. Influence of Compaction Temperature on Resistance Under Monotonic Loading of Crumb-Rubber Modified Hot-Mix Asphalts

    Directory of Open Access Journals (Sweden)

    Hugo A. Rondón-Quintana

    2012-12-01

    Full Text Available The influence of compaction temperature on resistance under monotonic loading (Marshall of Crumb-Rubber Modified (CRM Hot-Mix Asphalt (HMA was evaluated. The emphasis of this study was the application in Bogotá D.C. (Colombia. In this city the compaction temperature of HMA mixtures decreases, compared to the optimum, in about 30°C. Two asphalt cements (AC 60-70 and AC 80-100 were modified. Two particle sizes distribution curve were used. The compaction temperatures used were 120, 130, 140 and 150°C. The decrease of the compaction temperature produces a small decrease in resistance under monotonic loading of the modified mixtures tested. Mixtures without CRM undergo a lineal decrease in its resistance of up to 34%.

  17. Alabama warm mix asphalt field study : final report.

    Science.gov (United States)

    2010-05-01

    The Alabama Department of Transportation hosted a warm mix asphalt field demonstration in August 2007. The warm mix asphalt technology demonstrated was Evotherm Dispersed Asphalt Technology. The WMA and hot mix asphalt produced for the demonstration ...

  18. Roll-to-roll hot embossing system with shape preserving mechanism for the large-area fabrication of microstructures

    Science.gov (United States)

    Peng, Linfa; Wu, Hao; Shu, Yunyi; Yi, Peiyun; Deng, Yujun; Lai, Xinmin

    2016-10-01

    Roll-to-roll (R2R) hot embossing is a promising approach to fulfilling the demands of high throughput fabrication of large-area polymeric components with micro-structure arrays which have been widely employed in the domains of optics, optoelectronics, biology, chemistry, etc. Nevertheless, the characteristic of continuous and fast forming for the R2R hot embossing process limits material flow during filling stage and results in significant springback during demolding stage. As a result, forming defects usually appear and the process window is very narrow which hinders the industrialization of this technology. This study developed a R2R hot embossing machine and proposed a shape preserving mechanism to extend the material filling time and realized the cooling effect during the demolding process. Comparative experiments were conducted on the R2R hot embossing process for micro-pyramid arrays to understand the effect of shape preserving mechanism. The influence of tension force and encapsulation angle to the forming quality was systematically analyzed. Furthermore, the influence of processing parameters has been investigated by using the one-variable-at-a-time method. Afterwards, a series of experiments based on the central composite design approach have been conducted for the analysis of variance and the establishment of empirical models of the R2R hot embossing process. As a result, the process window was extended by the shape preserving mechanism. More importantly, the feeding speed was improved from 0.5 m min-1 to 2.5 m min-1 for the large-area fabrication of micro-pyramid arrays, which is very attractive to the industrialization of this technology.

  19. Effects of alloying elements on sticking occurring during hot rolling of ferritic stainless steels

    International Nuclear Information System (INIS)

    Ha, Dae Jin; Kim, Yong Jin; Lee, Yong Deuk; Lee, Sung Hak; Lee, Jong Seog

    2008-01-01

    In this study, effects of alloying elements on the sticking occurring during hot rolling of five kinds of ferritic STS430J1L stainless steels were investigated by analyzing high-temperature hardness and oxidation behavior of the rolled steels. Hot-rolling simulation tests were conducted by a high-temperature wear tester which could simulate actual hot rolling. The simulation test results revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation. Since the hardness continuously decreased as the test temperature increased, whereas the formation of Fe-Cr oxides in the rolled steel surface region increased, the sticking of five stainless steels was evaluated by considering both the high-temperature hardness and oxidation effects. The addition of Zr, Cu, or Si had a beneficial effect on the sticking resistance, while the Ni addition did not show any difference in the sticking. Particularly in the case of the Si addition, Si oxides formed first in the initial stage of high-temperature oxidation, worked as initiation sites for Fe-Cr oxides, accelerated the formation of Fe-Cr oxides, and thus raised the sticking resistance by about 10 times in comparison with the steel without Si content

  20. Development of high stability hot mix asphalt concrete with hybrid binder

    Directory of Open Access Journals (Sweden)

    Toshiaki Hirato

    2014-12-01

    Full Text Available Cost reduction of public works projects has been desired due to severe financial circumstances. Therefore, asphalt pavement has been requested to extend its life. Semi-flexible pavement or epoxy asphalt pavement, which has high rutting resistance and oil resistance, may be applied to the place where these performances ae demanded. However, special technique is required in manufacturing and construction. In addition, these materials have also raised a problem that they cannot be recycled. Meanwhile, conventional asphalt pavement has several drawbacks. It is vulnerable to rutting caused by traffic load and damage caused by petroleum oils such as gasoline or motor oil. The materials used in asphalt mixtures were studied for improving the durability of asphalt mixture. A high stability asphalt concrete was developed which has equal or superior performance to semi-flexible pavement and epoxy asphalt pavement. In this paper, the process of selecting the substance and the characteristics evaluation of the developed mixtures ae described. Furthermore, an inspection result as well as follow-up survey of the performance of the developed mixtures obtained from trial and actual construction is shown.

  1. Structure and hot-rolled reinforcement rods properties evolution in the process of long service life

    International Nuclear Information System (INIS)

    Mikryukov, V.R.; Syomin, A.P.; Konovalov, S.V.; Ivanov, Yu.F.; Gromov, V.E.

    2006-01-01

    The physical nature of mechanical properties of hot-rolled reinforcement rods degradation during long-life operation is established by methods of transmission diffraction electron microscopy. It is shown that strength and plasticity properties decrease is due to cementite plates cutting and dissolution, microcracks formation process as a result of interstitial phase inclusions creation in the near-surface layer of material

  2. Structure and hot-rolled reinforcement rods properties evolution in the process of long service life

    Energy Technology Data Exchange (ETDEWEB)

    Mikryukov, V R [Siberian State Industrial University, Kirov str., 42. 654007, Novokuznetsk (Russian Federation); Syomin, A P [Siberian State Industrial University, Kirov str., 42. 654007, Novokuznetsk (Russian Federation); Konovalov, S V [Siberian State Industrial University, Kirov str., 42. 654007, Novokuznetsk (Russian Federation); Ivanov, Yu F [Siberian State Industrial University, Kirov str., 42. 654007, Novokuznetsk (Russian Federation); Gromov, V E [Siberian State Industrial University, Kirov str., 42. 654007, Novokuznetsk (Russian Federation)

    2006-08-25

    The physical nature of mechanical properties of hot-rolled reinforcement rods degradation during long-life operation is established by methods of transmission diffraction electron microscopy. It is shown that strength and plasticity properties decrease is due to cementite plates cutting and dissolution, microcracks formation process as a result of interstitial phase inclusions creation in the near-surface layer of material.

  3. 78 FR 24435 - Hot-Rolled Steel Products From China, India, Indonesia, Taiwan, Thailand, and Ukraine

    Science.gov (United States)

    2013-04-25

    ... Ukraine Scheduling of full five-year reviews concerning the countervailing duty orders on hot-rolled steel... China, India, Indonesia, Taiwan, Thailand, and Ukraine. AGENCY: United States International Trade..., India, Indonesia, Taiwan, Thailand, and Ukraine would be likely to lead to continuation or recurrence of...

  4. PERSPECTIVES OF MODERNIZATION OF WIRE MILL OF HOT ROLLING 150 AT RUP “BMZ”

    Directory of Open Access Journals (Sweden)

    A. V. Gontarj

    2004-01-01

    Full Text Available The offered modernization of the mill presumes the increase of capacity of the small-sort wire mill of hot milling 150 approximately till 40% at reduction of cost of the produced on it rolled wire by 15%, that will allow in future as well to grow the volumes of hardware production.

  5. Texture evolution of experimental silicon steel grades. Part I: Hot rolling

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Robles, J.A., E-mail: jsandoval.uanl@yahoo.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450 (Mexico); Salas Zamarripa, A.; Guerrero Mata, M.P. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450 (Mexico); Cabrera, J. [Universitat Politècnica de Catalunya, Departament de Ciència dels Materials I Enginyeria Metal-lúrgica, Av. Diagonal 647, Barcelona 08028 (Spain)

    2017-05-01

    The metallurgical understanding of the deformation processes during the fabrication of non-oriented electrical steels plays a key role in improving their final properties. Texture control and optimization is critical in these steels for the enhancement of their magnetic properties. The aim of the present work is to study the texture evolution of six non-oriented experimental silicon steel grades during hot rolling. These steels were low carbon steel with a silicon content from 0.5 to 3.0 wt%. The first rolling schedule was performed in the austenitic (γ-Fe) region for the steel with a 0.5 wt% of silicon content, while the 1.0 wt% silicon steel was rolled in the two-phase (α+γ) region. Steels with higher silicon content were rolled in the ferritic (α-Fe) region. The second rolling schedule was performed in the α-Fe region. Samples of each stage were analyzed by means of Electron Backscatter Diffraction (EBSD). Findings showed that the texture was random and heterogeneous in all samples after 60% of rolling reduction, which is due to the low deformation applied during rolling. After the second rolling program, localized deformation and substructured grains near to surface were observed in all samples. The Goss {110}<001>texture-component was found in the 0.5 and 1.0 wt.-%silicon steels. This is due to the thermomechanical conditions and the corresponding hot band microstructure obtained after the first program. Moreover, the α<110>//RD and the γ <111>//ND fiber components of the texture presented a considerable increment as the silicon content increases. Future research to be published soon will be related to the texture evolution during the cold-work rolling process. - Highlights: • We analyze six silicon steel experimental grades alloys trough the rolling process. • Material was subjected to a hot deformation process in the α-γ region. • No recrystalization was observed during-after the rolling schedules. • Rise of the magnetic texture components

  6. Usage of solar aggregate stockpiles in the production of hot mix asphalt

    International Nuclear Information System (INIS)

    Androjić, Ivica; Kaluđer, Gordana

    2016-01-01

    Highlights: • Low energy storage mineral mixtures. • The impact of models thermal insulation on the temperature of aggregate. • Effect of periods with no solar radiation on the aggregate accumulated heat. • Low energy storage saves energy for preheating mineral mixtures. - Abstract: The production process of hot mix asphalt (HMA) requires a considerable demand for thermal energy which is fed into the process of drying and heating of mineral mixture. An overview of solar aggregate stockpiles designed in order to reduce energy consumption is given. Solar stockpiles were designed with the primary goal of achieving as much accumulation of thermal energy obtained from solar radiation as possible during the exposure period. Models of solar stockpiles were made with a constant volume capacity, variable thermal insulation thickness in the range of 2, 5 and 10 cm, and a glass ceiling surface to allow the realisation of high solar transmission into the interior of a stockpile. Temperature measurement of the mineral mixture deposited in the solar models and of those exposed to external environmental conditions was conducted during the period from May to November, 2015. The results achieved indicate to the facts that there comes to the constant growth in warmth of mineral mixtures in insulated stockpiles for the duration of their exposure to solar radiation, that an increase in thermal insulation thickness leads to the quadratic functional dependence between the referred thickness and mixture temperature and, ultimately, that there comes to the exponential loss of an accumulated thermal energy in insulated models in the period with no effect of solar radiation.

  7. Improving Mechanical Properties of Hot Mix Asphalt Using Fibres and Polymers in Developing Countries

    Science.gov (United States)

    Preciado, Jaime; Martínez Arguelles, Gilberto; Dugarte, Margareth; Bonicelli, Alessandra; Cantero, Julio; Vega, Daniela; Barros, Yennis

    2017-10-01

    The enhancement of mechanical properties and long term performance of hot mix asphalt (HMA) should be considered as a goal in order to achieve a transport infrastructure really sustainable. However, this issue becomes a difficult task, if conventional HMA are used. In fact, performance of conventional HMA, usually presents poor long term performance and functional distresses related to high and low temperatures, which in turn implies higher maintenance costs and superior carbon footprints. To overcome this weaken, bitumen industry has been developing new polymer modifiers, additives to improve HMA behaviour. One of the techniques most used in developed countries to enhance HMA behaviour is the use of modified bitumen. Modifying the bitumen, and then producing modified HMA requires specific equipment and facilities that may be time-consuming, expensive and hard to manage. For instance, to warranty a successful modifying process, storage and handling of the modified bitumen are issues very complex to handle. On the other hand, producing a polymer modified HMA by adding polymers and additives directly during the bitumen/aggregate mixing process may offer very interesting advantages since the economical, production and sustainability standpoint. This paper aimed to determine the feasibility of the incorporation of fibres and plastomeric polymers into different types of HMA by means of the “dry process” (to add polymers during the mixing of aggregate and bitumen in the HMA plant) to produce polymer modified mixes. Thus, laboratory tests including Marshall Stability, Indirect Tensile Stiffness Modulus, repeated load test and Indirect Tensile Strength test were performed to assess the effect of the inclusion of fibres and plastomeric polymers on mechanical and volumetric properties of selected mixes. Results showed that the modification of bituminous mixtures following the “dry process” could be used to improve the performance and long term properties of HMA.

  8. Installation report : evaluation of recycled hot mix asphaltic concrete on Route 220.

    Science.gov (United States)

    1982-01-01

    This report describes a project in which the bituminous pavement on an approximately 8-mi. (13-km) section of roadway was removed, recycled through a conventional asphalt batch plant, and relaid. The project was accomplished with little difficulty an...

  9. Laboratory investigation of the performance properties of hot mix asphalt containing waste glass

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2016-07-01

    Full Text Available CSIR is currently undertaking a study on potential utilization of crushed glass as a substitute material to natural aggregate in asphalt mixes. As part of the study, laboratory investigation is needed to determine the performance characteristics...

  10. Evaluation of binder aging and its influence in aging of hot mix asphalt concrete : technical report.

    Science.gov (United States)

    2014-01-01

    TxDOT Project 0-6009 was a comprehensive interdisciplinary research effort that has developed the ability : to predict asphalt oxidative hardening over time and pavement depth, and the impact of this hardening on : mixture durability. The many interr...

  11. Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S., E-mail: Shangping.chen@tatasteel.com [Tata Steel, 1970 CA IJmuiden (Netherlands); Butler, J. [Tata Steel, S60 3AR South Yorkshire (United Kingdom); Melzer, S. [Tata Steel, 1970 CA IJmuiden (Netherlands)

    2014-11-15

    In this study, both asymmetric hot rolling (AHR) and conventional hot rolling (CHR) were carried out to study the effect of the hot rolling conditions on the evolution of the texture and microstructure in a non-grain oriented (NGO) steel. The microstructure and texture in the subsequent processing stages were characterised and related to the final magnetic properties. The results show that AHR, compared with CHR, tends to homogenise texture through thickness of the hot band strips. AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips, which are favourable features in relation to the magnetic properties of the strip. However, the favourable features observed in hot rolled AHR strips are eliminated after cold rolling and annealing. Contrarily, the required θ-fibre is decreased and the unwanted γ-fibre is intensified in the AHR sheet after cold rolling and their strength is maintained in the subsequent process steps. On the other hand, AHR does not produce a discernible change in the grain size in the hot band annealed strip and in the final annealed sheet, except that the magnetic anisotropy in the AHR is improved after skin pass and extra annealing as the result of the redistribution of the texture components within the θ-fibre, no significant improvement of the magnetic properties as a direct consequence of the application of asymmetric hot rolling has been observed under the current AHR experimental conditions. - Highlights: • Asymmetrical hot rolling (AHR) produces more uniform distribution of texture through the thickness of the hot rolled strips and of the hot band annealed strips when compared with conventional hot rolling (CHR). • AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips. The θ-fibre is decreased but the γ-fibre is intensified in the AHR sheet after cold rolling

  12. Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel

    International Nuclear Information System (INIS)

    Chen, S.; Butler, J.; Melzer, S.

    2014-01-01

    In this study, both asymmetric hot rolling (AHR) and conventional hot rolling (CHR) were carried out to study the effect of the hot rolling conditions on the evolution of the texture and microstructure in a non-grain oriented (NGO) steel. The microstructure and texture in the subsequent processing stages were characterised and related to the final magnetic properties. The results show that AHR, compared with CHR, tends to homogenise texture through thickness of the hot band strips. AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips, which are favourable features in relation to the magnetic properties of the strip. However, the favourable features observed in hot rolled AHR strips are eliminated after cold rolling and annealing. Contrarily, the required θ-fibre is decreased and the unwanted γ-fibre is intensified in the AHR sheet after cold rolling and their strength is maintained in the subsequent process steps. On the other hand, AHR does not produce a discernible change in the grain size in the hot band annealed strip and in the final annealed sheet, except that the magnetic anisotropy in the AHR is improved after skin pass and extra annealing as the result of the redistribution of the texture components within the θ-fibre, no significant improvement of the magnetic properties as a direct consequence of the application of asymmetric hot rolling has been observed under the current AHR experimental conditions. - Highlights: • Asymmetrical hot rolling (AHR) produces more uniform distribution of texture through the thickness of the hot rolled strips and of the hot band annealed strips when compared with conventional hot rolling (CHR). • AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips. The θ-fibre is decreased but the γ-fibre is intensified in the AHR sheet after cold rolling

  13. Hot embossing holographic images in BOPP shrink films through large-area roll-to-roll nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Menglin; Lin, Shiwei, E-mail: linsw@hainu.edu.cn; Jiang, Wenkai; Pan, Nengqian

    2014-08-30

    Highlights: • High-quality holographic images were replicated in large-area shrink film. • Surface morphology evolution was analyzed in films embossed at different temperatures. • Optical, mechanical, and thermal characteristics were systematically analyzed. - Abstract: Diffraction grating-based holographic images have been successfully replicated in biaxially oriented polypropylene (BOPP) shrink films through large-area roll-to-roll nanoimprint technique. Such hot embossing of holographic images on BOPP films represents a promising means of creating novel security features in packaging applications. The major limitation of the high-quality replication is the relatively large thermal shrinkage of BOPP shrink film. However, although an appropriate shrinkage is demanded after embossing, over-shrinking not only causes distortion in embossed images, but also reduces the various properties of BOPP shrink films mainly due to the disappearance of orientation. The effects of embossing temperature on the mechanical, thermal and optical properties as well as polymer surface morphologies were systematically analyzed. The results show that the optimal process parameters are listed as follows: the embossing temperature at 104–110 °C, embossing force 6 kg/cm{sup 2} and film speed 32 m/min. The variation in flow behavior of polymer surface during hot embossing process is highly dependent on the temperature. In addition, the adhesion from the direct contact between the rubber press roller and polymer surfaces is suggested to cause the serious optical properties failure.

  14. Studying the Behavior of Asphalt Mix and Their Properties in the Presence of Nano Materials

    OpenAIRE

    Aman Patidar; Dipankar Sarkar; Manish Pal

    2017-01-01

    Due to rapid development, increase in the traffic load, higher traffic volume and seasonal variation in temperature, asphalt pavement shows distresses like rutting, fatigue and thermal cracking etc. because of this pavement fails during service life so that bitumen needs to be modified with some additive. In this study VG30 grade bitumen modify with addition of nanosilica with 1% to 5% (increment of 1%) by weight of bitumen. Hot mix asphalt (HMA) have higher mixing, laying and rolling tempera...

  15. Warm mix asphalt : final report.

    Science.gov (United States)

    2014-11-01

    The performance of pavements constructed using warm mix asphalt (WMA) technology were : compared to the performance of conventional hot mix asphalt (HMA) pavements placed on the : same project. Measurements of friction resistance, rutting/wear, ride ...

  16. Mechanical Properties of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders : Executive Summary Report

    Science.gov (United States)

    2011-03-01

    Hot mix asphalt (HMA) is a mixture containing aggregates and asphalt binders prepared at specified : proportions. The aggregates and asphalt binder proportions are determined through a mix design : procedure such as the Marshall Mix Design or the Sup...

  17. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeda, Seiichiro; Tanaka, Yasumasa; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Ikenaga, Yoshiaki.

    1994-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by the hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  18. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeuchi, Masayuki; Takeda, Seiichiro; Shikakura, Sakae; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Kajimura, Haruhiko.

    1995-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  19. A model for prediction of profile and flatness of hot and cold rolled flat products in four-high mills

    Science.gov (United States)

    Overhagen, Christian; Mauk, Paul Josef

    2018-05-01

    For flat rolled products, the thickness profile in the transversal direction is one of the most important product properties. For further processing, a defined crown of the product is necessary. In the rolling process, several mechanical and thermal influences interact with each other to form the strip shape at the roll gap exit. In the present analysis, a process model for rolling of strip and sheet is presented. The core feature of the process model is a two-dimensional stress distribution model based on von Karman's differential equation. Sub models for the mechanical influences of work roll flattening as well as work and backup roll deflection and the thermal influence of work roll expansion have been developed or extended. The two-dimensional stress distribution serves as an input parameter for the roll deformation models. For work roll flattening, a three-dimensional model based on the Boussinesq problem is adopted, while the work and backup roll deflection, including contact flattening is calculated by means of finite beam elements. The thermal work roll crown is calculated with help of an axisymmetric numerical solution of the heat equation for the work roll, considering azimuthal averaging for the boundary conditions at the work roll surface. Results are presented for hot rolling of a strip in a seven-stand finishing train of a hot strip mill, showing the calculated evolution of the strip profile. A variation of the strip profile from the first to the 20th rolled strip is shown. This variation is addressed to the progressive increase of work roll temperature during the first 20 strips. It is shown that a CVC® system can lead to improvements in strip profile and therefore flatness.

  20. Investigation of Hot Rolling Influence on the Explosive-Welded Clad Plate

    Directory of Open Access Journals (Sweden)

    Guanghui ZHAO

    2016-11-01

    Full Text Available The microstructure, the shear strength and tensile strength of stainless steel explosive-welded clad plate at different rolling reduction were studied. The mechanical properties of the explosive-welded and explosive-rolled clad plates were experimentally measured. Simultaneously, the microstructures of the clad plate were investigated by the Ultra deep microscope and the tensile fracture surface were observed by the scan electron microscope (SEM. It was observed that the tensile strength has been increased considerably, whereas the elongation percentage has been reduced with the increase of hot rolling reduction. In the tensile shear test, the bond strength is higher than the strength of the ferritic stainless steel layer and meets the relevant known standard criterion. Microstructural evaluations showed that the grain of the stainless steel and steel refined with the increase of thickness reduction. Examination of the tensile fracture surfaces reveal that, after hot rolling, the fracture in the low alloy steel and ferritic stainless steel clad plates is of the ductile type.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12409

  1. Study of the structure of intermetalics from Fe - Al system after the hot rolling

    Directory of Open Access Journals (Sweden)

    M. Jabłońska

    2015-10-01

    Full Text Available This paper presents the results of structure analysis of Fe - Al alloys after hot rolling deformation. Microstructure analysis were performed before and after deformation using a scanning transmission electron microscopy (STEM technique. The detailed quantities research of the structures was conducted using scanning electron microscopy (SEM equipped with the gun with cold field emission and the detector of electron back scattering diffraction (EBSD.

  2. Numerical simulation of springback of medium-thick plates in local hot rolling

    Directory of Open Access Journals (Sweden)

    XIE Dong

    2017-10-01

    Full Text Available [Objectives] In order to understand the factors of springback in the local hot rolling of medium-thick steel plates,[Methods] a 3D thermal-elastic-plastic analysis is conducted to investigate the factors affecting the amount of springback. Through a series of numerical analyses,the influence of deformation temperature,temperature field distribution,plate size and local loading are examined. [Results] The results show that when the deformation temperature exceeds a certain level at which material yield stress begins to decrease significantly,the springback will reduce markedly with the increase in temperature. Due to the distribution characteristics of the deformation area,the influence of temperature distribution on springback where the local deformation scale is larger is dominated by the three dimensions of temperature field distribution. Changes in the length and width of the plate have a certain influence on the springback,in which changes to the length of a plate where the local deformation scale is larger have a more obvious influence on springback. The springback of the plate decreases with the increase of local loading. [Conclusions] The results of this study can assist in the optimization of parameters in the automatic hot rolling of thick plates,while also having a basic guiding effect on the further study of springback in the local hot rolling of thick plates.

  3. Evolution of the texture, mechanical properties, and microstructure of Cu-2.7Be alloys during hot cross-rolling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Daibo; Liu, Chuming; Liu, Yadi; Gao, Yonghao; Jiang, Shunong [Central South University, School of Materials Science and Engineering, Changsha (China); Han, Tan [Suzhou Kinkou Copper Industry Limited Liability Company, Taicang (China)

    2015-09-15

    The evolution of the microstructure and texture of Cu-2.7Be alloys during hot rolling was investigated and related to the mechanical properties of the resulting sheets. Hot cross-rolling is shown to be an effective way to refine the hard and brittle secondary-phase particles in Cu-2.7Be alloys. The Cu- and brass-type textures increase and decrease in prevalence, respectively, during the rolling process. The yield strengths along the first and second rolling directions, and 45 to the former, are all enhanced because the corresponding Schmid factors decrease as the sheets are rolled thinner. The ductility anisotropy of the as-rolled sheets is related to the distribution and shape of the secondary-phase particles therein. (orig.)

  4. Recycling of asphalt concrete : Oregon's first hot mix project : interim report.

    Science.gov (United States)

    1977-11-01

    The need to reduce fuel consumption and conserve natural resources have been items of ever-increasing importance during recent years. This report discusses a project in which almost 50,000 tons of asphalt concrete placed to carry detour traffic durin...

  5. 76 FR 48143 - Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Preliminary...

    Science.gov (United States)

    2011-08-08

    ..., 75 FR 81565 (December 28, 2010). \\3\\ Certain Oil Country Tubular Goods from the People's Republic of..., from Steven Hampton, International Trade Analyst, ``Certain Hot-Rolled Carbon Steel Flat Products from...

  6. Effects of interface roughness on the annealing behaviour of laminated Ti-Al composite deformed by hot rolling

    DEFF Research Database (Denmark)

    Du, Y.; Fan, G.H.; Yu, Tianbo

    2015-01-01

    A laminated Ti-Al composite has been fabricated by hot compaction and hot rolling of alternate layers of commercial purity Ti and Al sheets with a thickness of 200 μm. The hot compaction temperature was 500˚C and in a following step the composite has been reduced 50% in thickness by hot rolling....... The fully consolidated composite has been annealed at 300˚C and 500˚C for different length of time. As a result of the differences in crystal structure and mechanical properties between Ti and Al protrusions and retrusions formed at the interface. A heterogeneous interface has thereby been created...

  7. High thermal shock resistance of the hot rolled and swaged bulk W–ZrC alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.M.; Liu, R.; Miao, S.; Yang, X.D. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Zhang, T., E-mail: zhangtao@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, Q.F.; Wang, X.P. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Science Center, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Lian, Y.Y. [Southwestern Institute of Physics, Chengdu (China); Liu, X., E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-02-15

    The thermal shock (single shot) resistance and mechanical properties of the W–0.5wt% ZrC (WZC) alloys manufactured by ordinary sintering followed by swaging or rolling process were investigated. No cracks or surface melting were detected on the surface of the rolled WZC alloy plates after thermal shock at a power density of 0.66 GW/m{sup 2} for 5 ms, while primary intergranular cracks appear on the surface of the swaged WZC samples after thermal shock at a power density of 0.44 GW/m{sup 2} for 5 ms. Three point bending tests indicate that the rolled WZC alloy has a flexural strength of ∼2.4 GPa and a total strain of 1.8% at room temperature, which are 100% and 260% higher than those of the swaged WZC, respectively. The fracture energy density of the rolled WZC alloy is 3.23 × 10{sup 7} J/m{sup 3}, about 10 times higher than that of the swaged WZC (2.9 × 10{sup 6} J/m{sup 3}). The high thermal shock resistance of the rolled WZC alloys can be ascribed to their extraordinary ductility and plasticity. - Graphical abstract: (Left panel) surface morphology observed by optical microscope after a single pulse for 5 ms with various absorbed power densities at RT on the rolled WZC. (Right panel) curves of flexural stress versus strain at RT (a) and the calculated fracture energy (b) for the swaged WZC and rolled WZC alloys. - Highlights: • No cracks or surface melting were detected on the rolled WZC alloy samples after thermal shock at 0.66 GW/m{sup 2} for 5 ms. • Hot rolled WZC alloy plates exhibit a flexural strength of 2.4 GPa and a strain of 1.8% at RT. • The fracture energy of the rolled WZC alloy is 3.23 × 10{sup 7} J/m{sup 3} at RT, about 10 times higher than that of the swaged WZC. • A detailed analysis of the relationships between the mechanical properties and the thermal shock resistance is given.

  8. Effects of Changing Hot Rolling Direction on Microstructure, Texture and Mechanical Properties of Cu-2.7Be Sheets

    Science.gov (United States)

    Zhu, Daibo; Liu, Chuming; Yu, Haijun; Han, Tan

    2018-03-01

    A hot rolling scheme (cross-rolling and unidirectional rolling) was adopted to process Cu-2.7Be sheets used as multiplier dynodes in photomultiplier. The effects of changing rolling direction on microstructure, texture and mechanical properties were studied by a combination of XRD, EBSD and TEM. It was found that higher copper-type texture and lower brass texture intensity were obtained in the ultimately cross-rolling (CR) sheet compared with the unidirectional rolling (UR) sheet.The EBSD results indicated that the grain orientation from mainly for UR sample turns to random for CR sample. Great enhancements in YS and UTS after unidirectional rolling were attributed to the massive and polygonal γ precipitates. The CR sample exhibited lower anisotropy, because of the increase of S and γ precipitates with spherical and tiny shape.

  9. Evolution of Oxide Inclusions in Si-Mn Killed Steels During Hot-Rolling Process

    Science.gov (United States)

    Yang, Wen; Guo, Changbo; Zhang, Lifeng; Ling, Haitao; Li, Chao

    2017-10-01

    The evolution of oxide inclusions in Si-Mn killed steels refined by slags of different basicity during a four-pass industrial hot-rolling process was investigated using an automated microscopy system. High-basicity refining slag induced the formation of CaO- and Al2O3-containing inclusions, while refining slag with 0.8 basicity induced dominant inclusions of SiO2 and MnO-SiO2. CaO-SiO2-Al2O3 inclusions mainly formed endogenously during solidification and cooling of Ca-containing steels, where Ca originated from slag-steel reactions. However, the larger-sized higher-CaO inclusions originated from slag entrainment. Different inclusions presented different hot-rolling behaviors. The inclusion composition changed by deformation and new phase formation. The dominant oxide types were unchanged under refinement by low-basicity slag; however, they changed under refinement with high-basicity slag. The deformation index of inclusions decreased with increasing accumulated reduction (AR) of the steel. The difference in deformation index between different inclusion types was the largest in the first rolling stage and decreased in subsequent stages. SiO2-CaO and SiO2-MnO-CaO inclusions had larger deformation indices during hot rolling but smaller indices in the last two stages. High-basicity slag increased inclusion complexity; from the perspective of cold-drawing performance, low-basicity refining slag is better for the industrial production of tire-cord steels.

  10. Inferring strength and deformation properties of hot mix asphalt layers from the GPR signal: recent advances

    Science.gov (United States)

    Tosti, Fabio; Benedetto, Andrea; Bianchini Ciampoli, Luca; Adabi, Saba; Pajewski, Lara

    2015-04-01

    , of both the different strength provision of each layer composing the hot mix asphalt pavement structure, and of the attenuation occurring to electromagnetic waves during their in-depth propagation. Promising results are achieved by matching modelled and measured elastic modulus data. This continuous statistically-based model enables to consider the whole set of information related to each single depth, in order to provide a more comprehensive prediction of the strength and deformation behavior of such a complex multi-layered medium. Amongst some further developments to be tackled in the near future, a model improvement could be reached through laboratory activities under controlled conditions and by adopting several frequency bandwidths suited for purposes. In addition, the perspective to compare electromagnetic data with mechanical measurements retrieved continuously, i.e., by means of specifically equipped lorries, could pave the way to considerable enhancements in this field of research. Acknowledgements - This work has benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  11. Simulation of accelerated strip cooling on the hot rolling mill run-out roller table

    International Nuclear Information System (INIS)

    Muhin, U.; Belskij, S.; Makarov, E.; Koinov, T.

    2013-01-01

    Full text: A mathematical model of the thermal state of the metal on the run-out roller table of a continuous wide hot-strip mill is presented. The mathematical model takes into account the heat generation during the polymorphic γ → α transformation of super cooled austenite phase and the influence of chemical composition on the physical properties of the steel. The model allows the calculation of modes of accelerated cooling of strips on the run-out roller table of a continuous wide hot strip mill. Winding temperature calculation error does not exceed 20 °C for 98.5 % of the strips from low-carbon and low-alloyed steels. key words: hot rolled, wide-strip, accelerated cooling, run-out roller table, polymorphic transformation, mathematical modeling

  12. Effect of using fly ash as alternative filler in hot mix asphalt

    Directory of Open Access Journals (Sweden)

    Raja Mistry

    2016-09-01

    Full Text Available This study investigates the effect of using fly ash (FA in asphalt mixture as replacement of common filler. In view of the same, samples were prepared for different bitumen content (3.5−6.5% at 0.5% increments by using 2% hydrated lime (HL in control mix as well as varying percentage of FA ranging from 2 to 8% as alternative filler in modified mixes. The optimum bitumen content (OBC was then determined for all the mix by Marshall mix design. Experimental results indicated higher stability value with lower OBC for the mixture having 4% FA as optimum filler content in comparison with conventional mix and standard specification. So this study discuss the feasibility of using FA as alternative filler instead of HL in asphalt concrete mix by satisfying the standard specification.

  13. Steel Slag as an Aggregate Replacement in Malaysian Hot Mix Asphalt

    OpenAIRE

    Hainin, Mohd Rosli; Yusoff, Nur Izzi Md.; Mohammad Sabri, Mohd Fahmi; Abdul Aziz, Mohd Azizi; Sahul Hameed, Mohd Anwar; Farooq Reshi, Wasid

    2012-01-01

    As natural aggregate sources are becoming depleted due to high demand in road construction and the amount of disposed waste material keeps increasing, researchers are exploring the use of alternative materials which could preserve natural sources and save the environment. In this study, steel slag was used as an aggregate replacement in conventional dense graded asphalt mixes (ACW14 and ACB28). Steel slag was selected due to its characteristics, which are almost similar to conventional aggreg...

  14. A Factorial Design Approach to Analyse the Effect of Coarse Recycled Concrete Aggregates on the Properties of Hot Mix Asphalt

    Science.gov (United States)

    Tanty, Kiranbala; Mukharjee, Bibhuti Bhusan; Das, Sudhanshu Shekhar

    2018-06-01

    The present study investigates the effect of replacement of coarse fraction of natural aggregates by recycled concrete aggregates on the properties of hot mix asphalt (HMA) using general factorial design approach. For this two factors i.e. recycled coarse aggregates percentage [RCA (%)] and bitumen content percentage [BC (%)] are considered. Tests have been carried out on the HMA type bituminous concrete, prepared with varying RCA (%) and BC (%). Analysis of variance has been performed on the experimental data to determine the effect of the chosen factors on various parameters such as stability, flow, air void, void mineral aggregate, void filled with bitumen and bulk density. The study depicts that RCA (%) and BC (%) have significant effect on the selected responses as p value is less than the chosen significance level. In addition to above, the outcomes of the statistical analysis indicate that interaction between factors have significant effects on void mineral aggregate and bulk density of bituminous concrete.

  15. A Factorial Design Approach to Analyse the Effect of Coarse Recycled Concrete Aggregates on the Properties of Hot Mix Asphalt

    Science.gov (United States)

    Tanty, Kiranbala; Mukharjee, Bibhuti Bhusan; Das, Sudhanshu Shekhar

    2018-02-01

    The present study investigates the effect of replacement of coarse fraction of natural aggregates by recycled concrete aggregates on the properties of hot mix asphalt (HMA) using general factorial design approach. For this two factors i.e. recycled coarse aggregates percentage [RCA (%)] and bitumen content percentage [BC (%)] are considered. Tests have been carried out on the HMA type bituminous concrete, prepared with varying RCA (%) and BC (%). Analysis of variance has been performed on the experimental data to determine the effect of the chosen factors on various parameters such as stability, flow, air void, void mineral aggregate, void filled with bitumen and bulk density. The study depicts that RCA (%) and BC (%) have significant effect on the selected responses as p value is less than the chosen significance level. In addition to above, the outcomes of the statistical analysis indicate that interaction between factors have significant effects on void mineral aggregate and bulk density of bituminous concrete.

  16. Development and industrial mastering hot rolling procedure for low-ductile steels and alloys

    International Nuclear Information System (INIS)

    Degterenko, V.K.; Sokolov, V.A.

    1980-01-01

    The technique for the development of the sheet hot rolling procedure for low-ductile steels and alloys (0Kh17N14M2, 12Kh21N5T, 20Kh25N20C2,40Kh13, 36NKhTYu etc.) is proposed, using plastometer which permits to obtain the data on the deformation resistance in the wide range of temperatures (800-1300 deg C), of deformation degrees (0.1-0.3) and deformation rates (0.001-300 c -1 ). With the help of the plastometric data processed on the computer the calculation of the rolling regimes for the sheet with improved surface quality is carried out at the more uniform loading on the mill stands

  17. Quality of bitumens in asphalt hot-mixes with emphasis on the durability of constructed premix surfacings.

    CSIR Research Space (South Africa)

    Van Assen, EJ

    1992-08-01

    Full Text Available time. Asphalt technologists' ultimate quest is for performance-related specifications that will ensure the procurement of quality bitumens which could produce asphalts with desirable performance during construction, and which will resist physical...

  18. 75 FR 47541 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil and Japan: Final Results of...

    Science.gov (United States)

    2010-08-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-351-828, A-588-846] Hot-Rolled Flat..., Department of Commerce. SUMMARY: On April 1, 2010, the Department of Commerce (the Department) initiated... Department has conducted expedited (120-day) sunset reviews for both orders pursuant to 19 CFR 351.218(e)(1...

  19. THE METHOD OF ROLL SURFACE QUALITY MEASUREMENT FOR CONTINUOUS HOT DIP ZINC COATED STEEL SHEET PRODUCTION LINE

    Directory of Open Access Journals (Sweden)

    Ki Yong Choi

    2015-01-01

    Full Text Available The present paper describes a developed analyzing system of roll surface during the process of continuous hot dip zinc coated steel sheet production line, in particular, adhering problem by transferred inclusions from roll to steel sheet surface during annealing process so called the pickup. The simulated test machine for coated roll surface in processing line has been designed and performed. The system makes it possible to analyze roll surface condition according to pickup phenomena from various roll coatings concerning operating conditions of hearth rolls in annealing furnace. The algorithm of fast pickup detection on surface is developed on the base of processing of several optical images of surface. The parameters for quality estimation of surface with pickups were developed. The optical system for images registration and image processing electronics may be used in real time and embed in processing line.

  20. Evaluation of factors affecting the edge formability of two hot rolled multiphase steels

    Science.gov (United States)

    Mukherjee, Monideepa; Tiwari, Sumit; Bhattacharya, Basudev

    2018-02-01

    In this study, the effect of various factors on the hole expansion ratio and hence on the edge formability of two hot rolled multiphase steels, one with a ferrite-martensite microstructure and the other with a ferrite-bainite microstructure, was investigated through systematic microstructural and mechanical characterization. The study revealed that the microstructure of the steels, which determines their strain hardening capacity and fracture resistance, is the principal factor controlling edge formability. The influence of other factors such as tensile strength, ductility, anisotropy, and thickness, though present, are secondary. A critical evaluation of the available empirical models for hole expansion ratio prediction is also presented.

  1. Phenomenological Model Describing the Formation of Peeling Defects on Hot-Rolled Duplex Stainless Steel 2205

    Science.gov (United States)

    Yong-jun, Zhang; Hui, Zhang; Jing-tao, Han

    2017-05-01

    The chemical composition, morphology, and microstructure of peeling defects formed on the surface of sheets from steel 2205 under hot rolling are studied. The microstructure of the surface is analyzed using scanning electron and light microscopy. The zones affected are shown to contain nonmetallic inclusions of types Al2O3 and CaO - SiO2 - Al2O3 - MgO in the form of streak precipitates and to have an unfavorable content of austenite, which causes decrease in the ductility of the area. The results obtained are used to derive a five-stage phenomenological model of formation of such defects.

  2. Mechanical properties of hot mix asphalt made with recycled aggregates from reclaimed construction and demolition debris

    Directory of Open Access Journals (Sweden)

    Taibo, J.

    2007-03-01

    Full Text Available The mix design for asphalt mixtures containing recycled aggregates from construction and demolition debris was evaluated. The tests conducted to characterize the mechanical behaviour of these mixtures showed that the mechanical properties of mixtures with recycled and virgin aggregate are similar. The asphalt mixtures containing recycled aggregate proved to have lower resistance to water action. Nonetheless, recycled aggregate was found to be potentially usable in asphalt mixtures if higher quality materials are selected and such low resistance is corrected. This will call for expanding upon the preliminary work described in the present article.En este trabajo se dosificaron mezclas bituminosas fabricadas con áridos reciclados de residuos de construcción y demolición. Se realizaron una serie de ensayos que permitieron caracterizar el comportamiento mecánico de estas mezclas. Los parámetros mecánicos de las mezclas con áridos reciclados son similares a los de las mezclas fabricadas únicamente con áridos naturales de cantera. Sin embargo, las mezclas bituminosas con áridos reciclados tuvieron un mal comportamiento frente a la disminución de la resistencia por pérdida de cohesión por la acción del agua. No obstante, mediante la selección de materiales de mejor calidad y corrección de este mal comportamiento, existen posibilidades de utilizar áridos reciclados en mezclas bituminosas. Para ello será necesario ampliar la primera aproximación realizada en este artículo.

  3. Effect of hot rolling on the microstructure and mechanical properties of Ti3Al based dual phase alloys

    International Nuclear Information System (INIS)

    Wu, J.; Zhang, L.; Hua, W.; Qiu, G.

    1999-01-01

    Development of α 2 -Ti 3 Al based dual phase alloys have shown some promising potentials in property improvement by introducing Ti 5 Si 3 silicide phase into the matrix via Si alloying. However, the presence of coarse network of Ti 5 Si 3 phase formed by eutectic reaction in the as-cast state also embrittles the alloy. Both hot rolling and powder metallurgy are considered to be the possible ways to refine the Ti 5 Si 3 phase in the matrix. Two Ti-Al-Si-Nb alloys whose Si contents are 2 and 5 at.% respectively were arc melted into ingots and then hot rolled to sheets in this investigation. Optical metallographic examination correlates the microstructures of the as-cast and as-rolled alloys with the different rolling amounts, showing that the coarse silicide network is broken into small particles after hot rolling. Mechanical property testing from room temperature to 800 C indicates that the strength and plastic elongation of the hot-rolled alloys are much higher than those of the as-cast ones. The data obtained in this investigation are comparable with those obtained in the P/M processed specimens. Fracture surfaces of the alloys are also examined

  4. Hot rolling of chromium - nickel - manganese stainless steel containing nitrogen and boron

    International Nuclear Information System (INIS)

    Khorosh, V.A.; Bulat, S.I.; Mukhina, M.A.; Sorokina, N.A.; Yushchenko, K.A.; Tsentral'nyj Nauchno-Issledovatel'skij Inst. Chernoj Metallurgii, Moscow; AN Ukrainskoj SSR, Kiev. Inst. Ehlektrosvarki)

    1976-01-01

    The strength of stainless steel of the 03Kh2ON16AG6 type increases perceptibly with an increase in the nitrogen content from 0.11 to 0.37%. At the same time, however, its ductility in the region of hot deformation temperatures (red brittleness range of 800 to 1,000 deg C) decreases. Microalloying with boron (0.002 to 0.005% by calculation) permits enhancing the hot ductility to an acceptable level without adversely affecting the working properties. The mechaniusm of boron effect is analyzed. The temperature at which ingots are heated prior to rolling to achieve the desired effect must be sufficiently low. Optimum condition for two stage heating of 6.2-ton ingots are recommeded

  5. ABOUT RATIONING MAXIMUM ALLOWABLE DEFECT DEPTH ON THE SURFACE OF STEEL BILLETS IN PRODUCTION OF HOT-ROLLED STEEL

    Directory of Open Access Journals (Sweden)

    PARUSOV E. V.

    2017-01-01

    Full Text Available Formulation of the problem. Significant influence on the quality of rolled steel have various defects on its surface, which in its turn inherited from surface defects of billet and possible damage to the surface of rolled steel in the rolling mill line. One of the criteria for assessing the quality indicators of rolled steel is rationing of surface defects [1; 2; 3; 6; 7]. Current status of the issue. Analyzing the different requirements of regulations to the surface quality of the rolled high-carbon steels, we can conclude that the maximum allowable depth of defects on the surface of billet should be in the range of 2.0...5.0 mm (depending on the section of the billet, method of its production and further the destination Purpose. Develop a methodology for calculating the maximum allowable depth of defects on the steel billet surface depending on the requirements placed on the surface quality of hot-rolled steel. Results. A simplified method of calculation, allowing at the rated depth of defects on the surface of the hot-rolled steel to make operatively calculation of the maximum allowable depth of surface defects of steel billets before heating the metal in the heat deformation was developed. The findings shows that the maximum allowable depth of surface defects is reduced with increasing diameter rolled steel, reducing the initial section steel billet and degrees of oxidation of the metal in the heating furnace.

  6. Annealing effects on the microstructure and mechanical properties of hot-rolled 14Cr-ODS steel

    International Nuclear Information System (INIS)

    Gao, R.; Zhang, T.; Ding, H.L.; Jiang, Y.; Wang, X.P.; Fang, Q.F.; Liu, C.S.

    2015-01-01

    The oxide dispersion strengthened ferritic steels with nominal composition (weight percent) of Fe–14Cr–2W-0.5Ti-0.06Si-0.2V-0.1Mn-0.05Ta-0.03C-0.3Y_2O_3 were fabricated by sol–gel method, mechanical alloying, and hot isostatic pressing techniques. The evolution of microstructure and mechanical properties of the hot-rolled specimens with heat treatment was investigated. Tensile strength and hardness of hot-rolled ODS steel are significantly enhanced due to the formation of mechanical twins and high density dislocations. Uniformly dispersed oxide particles (10–40 nm) and fine-grained structure (200–400 nm) are responsible for the superior mechanical properties of the hot-rolled specimen annealed between 650 °C and 850 °C. With further increasing annealing temperature, the grain size of the hot-rolled specimens increases while the size of oxide particles decreases, which leads to lower strength and hardness but better ductility. The tensile strength and total elongation of samples in the rolling direction are higher than those in the transverse direction after the same treatments owing to the grain anisotropy induced by the large mechanical deformation.

  7. Annealing effects on the microstructure and mechanical properties of hot-rolled 14Cr-ODS steel

    Science.gov (United States)

    Gao, R.; Zhang, T.; Ding, H. L.; Jiang, Y.; Wang, X. P.; Fang, Q. F.; Liu, C. S.

    2015-10-01

    The oxide dispersion strengthened ferritic steels with nominal composition (weight percent) of Fe-14Cr-2W-0.5Ti-0.06Si-0.2V-0.1Mn-0.05Ta-0.03C-0.3Y2O3 were fabricated by sol-gel method, mechanical alloying, and hot isostatic pressing techniques. The evolution of microstructure and mechanical properties of the hot-rolled specimens with heat treatment was investigated. Tensile strength and hardness of hot-rolled ODS steel are significantly enhanced due to the formation of mechanical twins and high density dislocations. Uniformly dispersed oxide particles (10-40 nm) and fine-grained structure (200-400 nm) are responsible for the superior mechanical properties of the hot-rolled specimen annealed between 650 °C and 850 °C. With further increasing annealing temperature, the grain size of the hot-rolled specimens increases while the size of oxide particles decreases, which leads to lower strength and hardness but better ductility. The tensile strength and total elongation of samples in the rolling direction are higher than those in the transverse direction after the same treatments owing to the grain anisotropy induced by the large mechanical deformation.

  8. Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides

    Energy Technology Data Exchange (ETDEWEB)

    Phaniraj, M.P. [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shin, Young-Min [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Joonho [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Goo, Nam Hoon [Sheet Product Design Group, Hyundai Steel Co., North Industrial Street 1400, 343-823, DangJin 343-823 (Korea, Republic of); Kim, Dong-Ik; Suh, Jin-Yoo; Jung, Woo-Sang [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shim, Jae-Hyeok, E-mail: jhshim@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, In-Suk, E-mail: insukchoi@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2015-05-01

    A low carbon ferritic steel was alloyed with Ti, Mo and Cu with the intention of achieving greater increment in strength by multiple precipitate strengthening. The steel is hot rolled and subjected to interrupted cooling to enable precipitation of Ti–Mo carbides and copper. Thermodynamic calculations were carried out to determine equilibrium phase fractions at different temperatures. Microstructure characterization using transmission electron microscopy and composition analysis revealed that the steel contains ~5 nm size precipitates of (Ti,Mo)C. Precipitation kinetics calculations using MatCalc software showed that mainly body centered cubic copper precipitates of size < 5nm form under the cooling conditions in the present study. The steel has the high tensile strength of 853 MPa and good ductility. The yield strength increases by 420 MPa, which is more than that achieved in hot rolled low carbon ferritic steels with only copper precipitates or only carbide precipitates. The precipitation and strengthening contribution of copper and (Ti,Mo)C precipitates and their effect on the work hardening behavior is discussed.

  9. Simulation-based prediction of hot-rolled coil forced cooling

    Energy Technology Data Exchange (ETDEWEB)

    Saboonchi, Ahmad [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84154 (Iran); Hassanpour, Saeid [Rayan Tahlil Sepahan Co., Isfahan Science and Technology Town, Isfahan 84155 (Iran)

    2008-09-15

    Hot-rolled coils take a long time to cool under normal storehouse conditions due to their high mass. Hotter seasons will lead to even longer storage times and, thus, to shortage of space. Forced cooling methods such as water-immersion and water-spray can be employed to reduce hot-rolled coil cooling time. In this paper, a mathematical model of the thermal behavior of coils is developed to predict and to evaluate the results expected from employing these methods before any real changes can be made on the ground. The results obtained from the model were compared with those from various experiments to verify the model's accuracy. The cooling time was then computed based on changes effected in the boundary conditions appropriate to each of the forced cooling methods employed. Moreover, the savings in storage times were compared to identify the best cooling method. Predictions showed that water immersion at the beginning of cooling cycle was more effective and that the cycle should not exceed 1 h for cost efficiency considerations. When using nozzles to spray it was found that spraying water on end surfaces of coils would be the optimum option resulting in savings in time, water and energy, and with restricted temperature gradient. (author)

  10. Effect of roll hot press temperature on crystallite size of PVDF film

    Energy Technology Data Exchange (ETDEWEB)

    Hartono, Ambran, E-mail: ambranhartono@yahoo.com; Sanjaya, Edi [Departement of Physics Faculty of Science and Technology, Islamic State University Syarif Hidayatullah , Jl. Juanda 95 Ciputat Jakarta (Indonesia); Djamal, Mitra; Satira, Suparno; Bahar, Herman [Theoretical High Energy Physics and Instrumentation Group Research, Faculty Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung (Indonesia); Ramli [Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Jl.Prof. Hamka, Padang 25131 (Indonesia)

    2014-03-24

    Fabrication PVDF films have been made using Hot Roll Press. Preparation of samples carried out for nine different temperatures. This condition is carried out to see the effect of Roll Hot Press temperature on the size of the crystallite of PVDF films. To obtain the diffraction pattern of sample characterization is performed using X-Ray Diffraction. Furthermore, from the diffraction pattern is obtained, the calculation to determine the crystallite size of the sample by using the Scherrer equation. From the experimental results and the calculation of crystallite sizes obtained for the samples with temperature 130 °C up to 170 °C respectively increased from 7.2 nm up to 20.54 nm. These results show that increasing temperatures will also increase the size of the crystallite of the sample. This happens because with the increasing temperature causes the higher the degree of crystallization of PVDF film sample is formed, so that the crystallite size also increases. This condition indicates that the specific volume or size of the crystals depends on the magnitude of the temperature as it has been studied by Nakagawa.

  11. Study of Microstructure of the Al-Fe Alloys After Hot Rolling Deformation

    Science.gov (United States)

    Jabłońska, Magdalena Barbara; Rodak, Kinga; Bednarczyk, Iwona

    The aim of the paper is a microstructure analysis of alloys from the Al-Fe system after hot rolling tests, conducted by using a scanning transmission electron microscopy STEM and scanning electron microscope equipped with EBSD detector. Hot rolling was carried out at Technical University of Ostrava, Faculty of Metallurgy and Material Engineering, Institute of Modelling and Control of Forming Processes. The samples were heated to a temperature of 1200°C. The EBSD and STEM techniques have been applied in order to determine the influence of chemical composition and deformation parameters on structural changes. The microstructure analysis has included parameters such us: grain/sub-grain size, area fraction of grains/subgrains, misorientation angles, grains/subgrains shape aspect ratio and dislocations structure. The research structure techniques in scanning-transmission electron microscopy revealed numerous FeAl28 alloy phase separations of secondary nucleating sites favoured energetically, which are the boundary of grains/subgrains and dislocations. These changes in the structure of the test results have been confirmed by EBSD, which revealed the presence of grains/subgrains misorientation angle boundaries above 15°.

  12. Precipitation Strengthening by Induction Treatment in High Strength Low Carbon Microalloyed Hot-Rolled Plates

    Science.gov (United States)

    Larzabal, G.; Isasti, N.; Rodriguez-Ibabe, J. M.; Uranga, P.

    2018-03-01

    The use of microalloyed steels in the production of thick plates is expanding due to the possibility of achieving attractive combinations of strength and toughness. As market requirements for high strength plates are increasing and new applications require reduced weight and innovative designs, novel approaches to attaining cost-effective grades are being developed. The mechanism of precipitation strengthening has been widely used in thin strip products, since the optimization of the coiling strategy offers interesting combinations in terms of final properties and microalloying additions. Precipitation strengthening in thick plates, however, is less widespread due to the limitation of interphase precipitation during continuous cooling after hot rolling. With the main objective of exploring the limits of this strengthening mechanism, laboratory thermomechanical simulations that reproduced plate hot rolling mill conditions were performed using low carbon steels microalloyed with Nb, NbMo, and TiMo additions. After continuous cooling to room temperature, a set of heat treatments using fast heating rates were applied simulating the conditions of induction heat treatments. An important increase of both yield and tensile strengths was measured after induction treatment without any important impairment in toughness properties. A significant precipitation hardening is observed in Mo-containing grades under specific heat treatment parameters.

  13. Study of the influence between the strength of antibending of working rolls on the widening during hot rolling of thin sheet metal

    Directory of Open Access Journals (Sweden)

    U. Muhin

    2016-07-01

    Full Text Available Based on the variation principle of Jourdan was developed a mathematical model of the process of widening freely in hot rolling of thin sheet metal. The principle applies to rigid-plastic materials and for the cinematically admissible area of speeds. The developed model allows to study the distribution of the widening on the length of the deformation zone depending on the parameters of the rolling process and sheet metal. Results are obtained, characterizing the size of the widening and effectiveness of the process control on tension at the entrance and exit from the stand. The widening is dependent on the strength of anti bending.

  14. Structure changes of Co-Ni-Al ferromagnetic shape memory alloys after vacuum annealing and hot rolling

    International Nuclear Information System (INIS)

    Maziarz, Wojciech

    2008-01-01

    The structure changes of vacuum annealed and hot rolled Co 35+x -Ni 40-x -Al 25 (x = 0, 2.5, 5.0) ferromagnetic shape memory alloys were examined by optical microscopy and X-ray diffraction measurements. Almost the same content of γ phase was observed in alloys after vacuum annealing. The change of grains morphology from dendrite in to equiaxed ones appeared after vacuum annealing. The hot rolling process was applied after annealing at 900 deg. C with thickness reduction up to about 90%. The structure of hot rolled samples revealed elongated grains of different phases. The hardness changes after heat treatment and plastic deformation processes have reflected the solution hardening and work hardening, respectively

  15. Effects of hot rolling and titanium content on the microstructure and mechanical properties of high boron Fe–B alloys

    International Nuclear Information System (INIS)

    He, Lin; Liu, Ying; Li, Jun; Li, Binghong

    2012-01-01

    Highlights: ► The content of B is 1.8 wt.% in the high boron Fe–B alloys. ► Hot-rolling improves the mechanical properties, especially the elongation. ► The Ti content affects the microstructure and mechanical properties. ► Eutectic boride can be eliminated when the atomic ratio of Ti/B is no less than 0.5. ► Alloy exhibits balanced mechanical properties when the atomic ratio of Ti/B is 0.5. -- Abstract: High boron Fe–B alloys (1.8 wt.% B) with different titanium contents are fabricated by Vacuum Induction Melting (VIM) technique. The integrated mechanical properties of the as-cast alloys are poor, especially the ductility. In this investigation, hot-rolling technology is used to improve the microstructure and mechanical properties. The microstructure analysis shows that hot rolling can reduce the size and improve the distribution of the reinforcements. The mechanical properties testing indicates that the yield strength is unchanged basically, but the tensile strength and elongation are improved greatly by hot rolling, especially the elongation. The content of titanium also has great effects on the microstructures and mechanical properties of the hot-rolled alloys. For the hot-rolled alloys, with the titanium content increasing, the ultimate tensile strength and yield strength first decrease slightly and then increase. The elongation and impact toughness are improved significantly. In particular, when the atomic ratio of Ti to B is 0.5, the reinforcements are almost entirely TiB 2 and uniformly distributed in the Fe-matrix. The ternary Fe–B–Ti alloy exhibits balanced mechanical properties: yield strength, ultimate tensile strength, elongation and impact toughness are 334 MPa, 602 MPa, 16.2% and 213 kJ/m 2 , respectively.

  16. Dismantling of asphalt and recycling road materials in asphalt layers

    OpenAIRE

    Antunes, M. L.; Batista, F. A.

    2009-01-01

    Este registo pertence ao Repositório Científico do LNEC The interest of recycling of asphalt and other road materials for pavement construction and rehabilitation has been generally growing in Portugal, for the last 15 years. After some occasional demonstration projects dealing with hot and cold in situ recycling of asphalt layers, the first significant experiences with cold in situ recycling and hot mix plant recycling of asphalt applied in full scale rehabilitation projects, ...

  17. A Study on Compressive Anisotropy and Nonassociated Flow Plasticity of the AZ31 Magnesium Alloy in Hot Rolling

    Directory of Open Access Journals (Sweden)

    Guoqiang Wang

    2014-01-01

    Full Text Available Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR. The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.

  18. Comparative evaluation of an experimental binder in hot-mix asphalt: correlating the predicted performance of the binder with asphalt testing

    CSIR Research Space (South Africa)

    O'Connell, Johannes S

    2014-07-01

    Full Text Available The binder is an important constituent of an asphalt mix and it affects the overall performance of the mix, especially with regards to permanent deformation and fatigue cracking. The stiffest binder available from the Chevron refinery in the Western...

  19. Investigation of Warm Mix Asphalt (WMA) Technologies and Increased Percentages of Reclaimed Asphalt Pavement (RAP) in Asphalt Mixtures

    Science.gov (United States)

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...

  20. Microstructure and microtexture evolutions of deformed oxide layers on a hot-rolled microalloyed steel

    International Nuclear Information System (INIS)

    Yu, Xianglong; Jiang, Zhengyi; Zhao, Jingwei; Wei, Dongbin; Zhou, Cunlong; Huang, Qingxue

    2015-01-01

    Highlights: • Microtexture development of deformed oxide layers is investigated. • Magnetite shares the {0 0 1} fibre texture with wustite. • Hematite develops the {0 0 0 1} basal fibre parallel to the oxide growth. • Stress relief and ion vacancy diffusion mechanism for magnetite seam. - Abstract: Electron backscatter diffraction (EBSD) analysis has been presented to investigate the microstructure and microtexture evolutions of deformed oxide scale formed on a microalloyed steel during hot rolling and accelerated cooling. Magnetite and wustite in oxide layers share a strong {0 0 1} and a weak {1 1 0} fibres texture parallel to the oxide growth. Trigonal hematite develops the {0 0 0 1} basal fibre parallel to the crystallographic plane {1 1 1} in magnetite. Taylor factor estimates have been conducted to elucidate the microtexture evolution. The fine-grained magnetite seam adjacent to the substrate is governed by stress relief and ions vacancy diffusion mechanism

  1. Petroleum contaminated soil in Oman: evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete.

    Science.gov (United States)

    Jamrah, Ahmad; Al-Futaisi, Ahmed; Hassan, Hossam; Al-Oraimi, Salem

    2007-01-01

    This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals.

  2. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    Science.gov (United States)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  3. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    International Nuclear Information System (INIS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-01-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  4. Microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Rui [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engineering Research Center of Large Size Alloy Structural Steel Bars of Shandong Province, Jinan 250061 (China); School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049 (China); Li, Shengli, E-mail: lishengli@sdu.edu.cn [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engineering Research Center of Large Size Alloy Structural Steel Bars of Shandong Province, Jinan 250061 (China); Zhu, Xinde [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Ao, Qing [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Engineering Research Center of Large Size Alloy Structural Steel Bars of Shandong Province, Jinan 250061 (China)

    2015-10-15

    In order to further reveal the microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel, the microstructure of this type steel was intensively studied with Scanning Auger Microprobe (SAM), etc. The results show that severe C–Mn segregation exists in the abnormal segregation band region at the center of hot rolled ferrite/pearlite steel, which results from the Mn segregation during solidification process of the continuous casting slab. The C–Mn segregation causes relative displacement of pearlite transformation curve and bainite transformation curve of C curve in the corresponding region, leading to bay-like shaped C curve. The bay-like shaped C curve creates conditions for the transformation from supercooling austenite to bainite at relatively lower cooling rate in this region. The Fe–Mn–C Atomic Segregation Zone (FASZ) caused by C–Mn segregation can powerfully retard the atomic motion, and increase the lattice reconstruction resistance of austenite transformation. These two factors provide thermodynamic and kinetic conditions for the bainite transformation, and result in the emergence of granular bainitic abnormal segregation band at the center of steel plate, which leads to lower plasticity and toughness of this region, and induces the layered fracture. - Highlights: • Scanning Auger Microprobe (SAM) is applied in the fracture analysis. • The abnormal segregation band region appears obvious C–Mn segregation. • The C–Mn segregation leads to bay-like shaped C curve. • The C–Mn segregation leads to Fe–Mn–C Atomic Segregation Zone.

  5. 76 FR 42679 - Certain Hot-Rolled Carbon Steel Flat Products From India: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-07-19

    .... Steel''), Nucor Corporation (``Nucor''), and ArcelorMittal USA Inc. DATES: Effective Date: July 19, 2011..., 2011. We received briefs from U.S. Steel and Nucor and a rebuttal brief from Tata.\\5\\ On May 17, the... India, dated April 14, 2011; Letter from Nucor to the Department, regarding Certain Hot-Rolled Carbon...

  6. 78 FR 64008 - Hot-Rolled Steel Products From China, India, Indonesia, Taiwan, Thailand, and Ukraine; Revised...

    Science.gov (United States)

    2013-10-25

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-405, 406, and 408 and 731-TA-899-901 and 906-908 (Second Review)] Hot-Rolled Steel Products From China, India, Indonesia, Taiwan, Thailand, and Ukraine; Revised Schedule for the Subject Five Year Reviews AGENCY: United States International Trade...

  7. 78 FR 16252 - Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, and Thailand: Final Results...

    Science.gov (United States)

    2013-03-14

    ... Indonesia P.T. Krakatau Steel 10.21 All Others 10.21 Thailand Sahaviriya Steel Industries Public Company...] Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, and Thailand: Final Results of... products (``HR steel'') from India, Indonesia, and Thailand pursuant to section 751(c) of the Tariff Act of...

  8. 78 FR 25701 - Certain Hot-Rolled Carbon Steel Flat Products From India: Notice of Second Amended Final Results...

    Science.gov (United States)

    2013-05-02

    ... Essar I, the CIT remanded Commerce's AFA determination that Essar benefited from the CIP.\\10\\ The CIT... DEPARTMENT OF COMMERCE International Trade Administration [C-533-821] Certain Hot-Rolled Carbon... Commerce. SUMMARY: On April 9, 2013, the United States Court of International Trade (CIT) sustained the...

  9. Layer texture of hot-rolled BCC metals and its significance for stress-corrosion cracking of main gas pipelines

    Science.gov (United States)

    Perlovich, Yu. A.; Isaenkova, M. G.; Krymskaya, O. A.; Morozov, N. S.

    2016-10-01

    Based on data of X-ray texture analysis of hot-rolled BCC materials it was shown that the layerwise texture inhomogeneity of products is formed during their manufacturing. The effect can be explained by saturation with interstitial impurities of the surface layer, resulting in dynamical deformation aging (DDA). DDA prevents the dislocation slip under rolling and leads to an increase of lattice parameters in the external layer. The degree of arising inhomogeneity correlates with the tendency of hot-rolled sheets and obtained therefrom tubes to stress-corrosion cracking under exploitation, since internal layers have a compressive effect on external layers, and prevents opening of corrosion cracks at the tube surface.

  10. Evaluation of the mechanical properties after thermal treatment of a structural hot rolled multiphase steel

    Directory of Open Access Journals (Sweden)

    Asensio-Lozano, J.

    2007-12-01

    Full Text Available The present paper corresponds to the experimental study conducted on a hot rolled (HR multiphase (MP steel, in which hardness, tensile and toughness properties were measured after the application of a series of subcritical and intercritical heat treatments (HT to the hot rolled stock. The aforementioned values were compared to the corresponding ones in the as-rolled state and after normalizing. The microstructure in the longitudinal plane of the strip was analyzed by light optical microscopy in the as-rolled state and in the HT samples. Longitudinal (L and transverse (T tensile and toughness specimens were cut to characterize every condition studied. Toughness properties were evaluated by means of Charpy V-notch tests conducted at 20 °C, 0 °C, –20 °C, –40 °C, –60 °C and –80 °C . It was observed that the yield stress increased with the increase in the heat treatment temperature in the subcritical range, while the tensile strength decreased slightly over the same range of temperatures. Uniform and total elongation only showed a slight improvement when the treatment was conducted at 620 °C and 700 °C, while the best toughness response corresponded to the sample treated at 500 °C for operating temperatures comprised between –40 °C and room temperature (RT.

    El presente estudio corresponde al trabajo experimental desarrollado en un acero multifase laminado en caliente, en el que se evaluaron las propiedades de dureza, tracción y tenacidad a impacto, tras realizar tratamientos térmicos subcríticos e intercríticos al material laminado en caliente. Los valores precedentes se comparan con el material de partida laminado en caliente y tras tratamiento de normalizado. Se analiza la microestructura en microscopía óptica de reflexión, en el plano longitudinal tanto en el estado laminado como en las muestras tratadas térmicamente. Se estudiaron los comportamientos longitudinales y transversales en tracción y frente a impacto

  11. The effect of additional elements on the magnetic properties of hot-rolled Nd-Fe-B alloys

    International Nuclear Information System (INIS)

    Chang, W.C.; Nakamura, H.; Paik, C.R.; Sugimoto, S.; Okada, M.; Homma, M.

    1992-01-01

    The magnetic properties of hot-rolled Nd 16 Fe bal. B 6 M 1.5 (M = Cu, Ga and Al) and Nd 16 Fe 76 B 5.5 Ga 1.5 Al 1 alloys were investigated, in order to study the role of additive elements in improving the magnetic properties in the Nd-Fe-B system. It is found that the original grain size of Cu, Ga or Ga-Al added alloys is much finer than that of the ternary and Al added alloys. But the grain size is almost identical for all the alloys after hot-rolling at 1000degC with 90% reduction in thickness. The coercivity of hot-rolled alloys with Cu, Ga or Ga-Al addition is not improved as was expected, because Nd-rich liquid phase in these alloys is very easily squeezed out during high-reduction-ratio rolling. Less quantity and nonuniform distribution of Nd-rich phase between distributed grains are believed to be the main reasons to depress the effect on the grain boundary smoothing. This effect is not the same as those observed in the Pr-Fe-B system. The highest magnetic properties achieved in this study are B r = 10 kG, i H c = 8.2 kOe, (BH) max = 18.5 MGOe for the Nd 16 Fe 76.5 B 6 Al 1.5 alloy. (orig.)

  12. 75 FR 64254 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products From Brazil; Final Results of...

    Science.gov (United States)

    2010-10-19

    ...-Rolled Carbon Quality Steel Products From Brazil; Final Results of Antidumping Duty Administrative Review... for the Final Results, 75 FR 19369 (April 14, 2010) (Preliminary Results). This review covers sales of... Products from Brazil,'' dated June 22, 2010 (USIMINAS Sales Verification Report). Following the release of...

  13. Determination of the heating temperature of potholes surface on road pavement in the process of repairs using hot asphalt concrete mixes

    Directory of Open Access Journals (Sweden)

    Giyasov Botir Iminzhonovich

    2014-12-01

    Full Text Available In the process of roads construction the necessary transport and operational characteristics should be achieved, which depend on the quality of the applied, material and technologies. Under the loads of transport means and the influence of weather conditions on the road pavement deformations and destructions occur, which lead to worsening of transport and operational characteristics, decrease of operational life of the road and they are often the reason of road accidents. According to the data of the Strategic Research Center of "Rosgosstrah" more than 20 % of road accidents in Russia occur due to bad quality of road pavement. One of the main directions in traffic security control and prolongation of operational life for road pavement of non-rigid type is road works, as a result of which defects of pavement are eliminated and in case of timely repairs of high quality the operational life of the road increases for several years. The most widely used material for non-rigid pavement repairs is hot road concrete mixes and in case of adherence to specifications they provide high quality of works. The authors investigate the problems of hot asphalt concrete mixes for repairs of road surfaces of non-rigid type. The results of the study hot asphalt concrete mix’s temperature regimes are offered in case of repair works considering the temperature delivered to the work site and the ambient temperature depending on the type of mix and class of bitumen.

  14. Rietveld and impedance analysis of cold and hot rolled duplex and lean duplex steels for application in paper and pulp industry

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, Luiza; Lins, Vanessa de Freitas Cunha, E-mail: luizaeq@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Quimica; Paiva, Paulo Renato Perdigao [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil); Viana, Adolfo Kalergis do Nascimento [APERAM South America, Timoteo, MG (Brazil)

    2017-01-15

    In this study, X-Ray Diffraction (XRD) and Rietveld Refinement were performed to identify and quantify the ferrite and austenite phase of cold and hot rolled duplex stainless steels (UNS S31803) and lean duplex stainless steels (UNS S32304). Electrochemical impedance spectroscopy (EIS) was applied to evaluate the chemical behavior of duplex and lean duplex stainless steels in white, green, and black liquors of paper and pulp industry. Rietveld analysis results showed a higher austenite content than the standard limit for duplex steels in the hot rolled condition. The hot rolling condition plays a major role in improving corrosion resistance in white liquor mainly for the lean duplex steel. (author)

  15. Rietveld and impedance analysis of cold and hot rolled duplex and lean duplex steels for application in paper and pulp industry

    International Nuclear Information System (INIS)

    Esteves, Luiza; Lins, Vanessa de Freitas Cunha; Viana, Adolfo Kalergis do Nascimento

    2017-01-01

    In this study, X-Ray Diffraction (XRD) and Rietveld Refinement were performed to identify and quantify the ferrite and austenite phase of cold and hot rolled duplex stainless steels (UNS S31803) and lean duplex stainless steels (UNS S32304). Electrochemical impedance spectroscopy (EIS) was applied to evaluate the chemical behavior of duplex and lean duplex stainless steels in white, green, and black liquors of paper and pulp industry. Rietveld analysis results showed a higher austenite content than the standard limit for duplex steels in the hot rolled condition. The hot rolling condition plays a major role in improving corrosion resistance in white liquor mainly for the lean duplex steel. (author)

  16. Interdiffusion studies on hot rolled U-10Mo/AA1050

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, A.M.; Martins, I.C.; Carvalho, E.U.; Durazzo, M.; Riella, H.G. [Instituto de Pesquisas Energeticas e Nucleares (CCN/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Combustivel Nuclear], e-mail: saliba@ipen.br

    2010-07-01

    The U-Mo alloys are investigated with the goal of becoming nuclear material to fabricate high-density fuel elements for high performance research reactors. This enrichment level suggests that the U-Mo alloys should be between 6 to 10wt%, which can give up to 9gU/cm{sup 3} as fuel density. Nevertheless, the U-Mo alloys are very reactive with Al. Interdiffusion reaction products are formed since nuclear fission promotes chemical interaction layer during operation, leading to potential structural failure. Present studies were made with treated hot rolled diffusion couples of U-10Mo inserted in Al (AA1050). The U-10Mo/AA1050 pairs were treated in two temperature (150 degree C and 550 degree C) with three soaking times (5h, 40h and 80h). From microstructure analyses, rapid diffusion of Al happened inside U-10Mo in the first heating at 540 degree C during 15 min, reaching 8 at%Al in a range of 200 {mu}m towards U-10Mo. Longer time (5, 40, 80h) at 550 degree C maintain this level of Al-content up to 1000 {mu}m inside U-10Mo. A minor depth ({approx}1 {mu}m) near the interdiffusion contact had higher Al-content, but not sufficient to form identifiable (U,Mo)Al{sub x} structures. Probably, residual elements reduced drastically the interdiffusion phenomena between U-10Mo and AA1050, maybe due to silicon presence. (author)

  17. Characterization of asphalt treated base course material

    Science.gov (United States)

    2010-06-01

    Asphalt-treated bases are often used in new pavements; the materials are available and low-cost, but there is little data on how these materials perform in cold regions. : This study investigated four ATB types (hot asphalt, emulsion, foamed asphalt,...

  18. Studies of the AA2519 Alloy Hot Rolling Process and Cladding with EN AW-1050A Alloy

    Directory of Open Access Journals (Sweden)

    Płonka B.

    2016-03-01

    Full Text Available The objective of the study was to determine the feasibility of plastic forming by hot rolling of the AA2519 aluminium alloy sheets and cladding these sheets with a layer of the EN AW-1050A alloy. Numerous hot-rolling tests were carried out on the slab ingots to define the parameters of the AA2519 alloy rolling process. It has been established that rolling of the AA2519 alloy should be carried out in the temperature range of 400-440°C. Depending on the required final thickness of the sheet metal, appropriate thickness of the EN AW-1050A alloy sheet, used as a cladding layer, was selected. As a next step, structure and mechanical properties of the resulting AA2519 alloy sheets clad with EN AW-1050A alloy was examined. The thickness of the coating layer was established at 0,3÷0,5mm. Studies covered alloy grain size and the core alloy-cladding material bond strength.

  19. 75 FR 65453 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Flat Products From Brazil: Notice of...

    Science.gov (United States)

    2010-10-25

    ... Nucor Corporation (Nucor) and United States Steel Corporation (U.S. Steel), domestic producers of hot..., the Department received requests from Nucor and U.S. Steel (collectively, domestic producers), that... July 6, 2010 (CBP Memo). On July 22, 2010, and July 23, 2010, respectively, Nucor and U.S. Steel timely...

  20. Influence of feed rate on damage development in hot ring rolling

    NARCIS (Netherlands)

    Wang, Chao; van den Boogaard, Antonius H.; Omerspahic, E.; Recina, V.; Geijselaers, Hubertus J.M.; Ishikawa, T.; Mori, K.-I.

    2014-01-01

    As an incremental forming process of bulk metal, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries. Under some process conditions, defects such as

  1. The Role of Nano-TiO2 Lubricating Fluid on the Hot Rolled Surface and Metallographic Structure of SS41 Steel

    Directory of Open Access Journals (Sweden)

    Yanan Meng

    2018-02-01

    Full Text Available In this paper, nano-TiO2lubricating fluid was chosen as an advanced rolling lubricant to investigate its effect on the hot rolled surface and metallographic structure of SS41 steel strips. The tribological performances of nano-TiO2 lubricating fluid were measured by a four-ball tribotester. The hot rolling experiments under different lubrication conditions were carried out by a four-high rolling mill. The surface morphology, oxide scales and metallographic structure after hot rolling were observed using a confocal laser scanning microscope and scanning electron microscope (SEM, respectively. The composition of surface attachments was analyzed with X-ray photoelectron spectroscopy (XPS. The results indicate that the nano-TiO2 lubricating fluid has a better tribological performance. The surface defects on the hot rolled surface could be decreased. The phase composition of the surface still appears as a mixture of ferrite and pearlite. The surface of steel strips is not micro-alloyed with titanium as predicted. Additionally, the grain size of rolled steel strips which were lubricated with the nano-TiO2lubricating fluid decreased by nearly 50%, compared with traditional lubricating fluid. Furthermore, it was found that the thickness of the oxide layers on the surface reduced, whilst the Rockwell hardness of the oxide layers was enhanced as nano-TiO2 lubricating fluid was applied.

  2. Mechanical properties and hot-rolled microstructures of a low carbon bainitic steel with Cu-P alloying

    International Nuclear Information System (INIS)

    Cui, W.F.; Zhang, S.X.; Jiang, Y.; Dong, J.; Liu, C.M.

    2011-01-01

    Highlights: → Mechanical properties and microstructures of low carbon bainite steel are examined. → Cu-P alloying promotes strengthening and uniform plastic deformation. → Cu-P alloying delays recovery process during rolling interval. → Lowering rolling temperature is favorable to increasing toughness. - Abstract: A low carbon bainitic steel with Cu-P alloying was developed. The new steel aims to meet the demand of high strength, high toughness and resistance to chloride ion corrosion for the components used in the environment of sea water and oceanic atmosphere. Mechanical properties of the steel were tested and strengthening and toughening mechanisms were analyzed by comparing hot-rolled microstructures of the low carbon bainitic steels with and without Cu-P alloying. The results show that Cu-P alloying provided strong solution strengthening with weak effect on ductility. The toughness loss caused by Cu-P alloying could be balanced by increasing the amount of martensite/remained austenite (M/A island) at lower finishing temperature. The static recovery process during rolling interval was delayed by the interaction of phosphorous, copper atoms with dislocations, which was favorable to the formation of bainitic plates. Super-fine Nb(C, N) particles precipitated on dislocations had coherency with bainite ferrite at 830 deg. C finishing temperature. Raising finishing temperature to 880 deg. C, Nb(C, N) particles were prone to coarsening and losing coherency. It was also found that no accurate lattice match relationship among retained austenite, martensite and bainite in granular bainitic microstructure.

  3. Mechanical properties and hot-rolled microstructures of a low carbon bainitic steel with Cu-P alloying

    Energy Technology Data Exchange (ETDEWEB)

    Cui, W.F., E-mail: wenfangcui@yahoo.com.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Zhang, S.X. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Technology Center of Laiwu Iron and Steel (Group) Co. Ltd., Laiwu 271104 (China); Jiang, Y. [School of Chemical Engineering, University of Queensland, Brisbane 4072 (Australia); Dong, J. [Technology Center of Laiwu Iron and Steel (Group) Co. Ltd., Laiwu 271104 (China); Liu, C.M. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China)

    2011-08-15

    Highlights: {yields} Mechanical properties and microstructures of low carbon bainite steel are examined. {yields} Cu-P alloying promotes strengthening and uniform plastic deformation. {yields} Cu-P alloying delays recovery process during rolling interval. {yields} Lowering rolling temperature is favorable to increasing toughness. - Abstract: A low carbon bainitic steel with Cu-P alloying was developed. The new steel aims to meet the demand of high strength, high toughness and resistance to chloride ion corrosion for the components used in the environment of sea water and oceanic atmosphere. Mechanical properties of the steel were tested and strengthening and toughening mechanisms were analyzed by comparing hot-rolled microstructures of the low carbon bainitic steels with and without Cu-P alloying. The results show that Cu-P alloying provided strong solution strengthening with weak effect on ductility. The toughness loss caused by Cu-P alloying could be balanced by increasing the amount of martensite/remained austenite (M/A island) at lower finishing temperature. The static recovery process during rolling interval was delayed by the interaction of phosphorous, copper atoms with dislocations, which was favorable to the formation of bainitic plates. Super-fine Nb(C, N) particles precipitated on dislocations had coherency with bainite ferrite at 830 deg. C finishing temperature. Raising finishing temperature to 880 deg. C, Nb(C, N) particles were prone to coarsening and losing coherency. It was also found that no accurate lattice match relationship among retained austenite, martensite and bainite in granular bainitic microstructure.

  4. AISI/DOE Advanced Process Control Program Vol. 3 of 6: MICROSTRUCTURAL ENGINEERING IN HOT-STRIP MILLS Part 2 of 2: Constitutive Behavior Modeling of Steels Under Hot-Rolling Conditions; FINAL

    International Nuclear Information System (INIS)

    Yi-Wen Cheng; Patrick Purtscher

    1999-01-01

    This report describes the development of models for predicting (1) constitutive behaviors and (2) mechanical properties of hot-rolled steels as functions of chemical composition, microstructural features, and processing variables. The study includes the following eight steels: A36, DQSK, HSLA-V, HSLA-Nb, HSLA-50/Ti-Nb, and two interstitial-free (IF) grades. These developed models have been integrated into the Hot-Strip Mill Model (HSMM), which simulates the hot strip rolling mills and predicts the mechanical properties of hot-rolled products. The HSMM model has been developed by the University of British Columbia-Canada as a part of project on the microstructural engineering in hot-strip mills

  5. Effects of Al content on structure and mechanical properties of hot-rolled ZrTiAlV alloys

    International Nuclear Information System (INIS)

    Liang, S.X.; Yin, L.X.; Che, H.W.; Jing, R.; Zhou, Y.K.; Ma, M.Z.; Liu, R.P.

    2013-01-01

    Highlights: • Phase structure is greatly dependent on the Al content. • Intermetallic compound will precipitates while Al content is over 6.9 wt%. • Equiaxed α-phase grains present in the hot-rolled alloy with 6.9 wt% Al. • Alloys with Al content from 3.3 wt% to 5.6 wt% have good mechanical properties. - Abstract: Zirconium alloys show attractive properties for astronautic applications where the most important factors are anti-irradiation, corrosion resistance, anti-oxidant, very good strength-to-weight ratio. The effects of Al content (2.2–6.9 wt%) on structure and mechanical properties of the hot-rolled ZrTiAlV alloy samples were investigated in this study. Each sample of the hot-rolled ZrTiAlV alloys with Al contents from 2.2 wt% to 5.6 wt% is composed of the α phase and β phase, meanwhile, the relative content of the α phase increased with the Al content. However, the (ZrTi) 3 Al intermetallic compound was observed as the Al content increased to 6.9 wt%. Changes of phase compositions and structure with Al content distinctly affected mechanical properties of ZrTiAlV alloys. Yield strength of the alloy with 2.2 wt% Al is below 200 MPa. As Al content increased to 5.6 wt%, the yield strength, tensile strength and elongation of the examined alloy are 1088 MPa, 1256 MPa and 8%, respectively. As Al content further increased to 6.9 wt%, a rapid decrease in ductility was observed as soon as the (ZrTi) 3 Al intermetallic compound precipitated. Results show that the ZrTiAlV alloys with Al contents between 3.3 wt% and 5.6 wt% have excellent mechanical properties

  6. Service behaviour of high speed steel rolling rolls used in hot strip mills; Comportamiento en servicio de los aceros rapidos utilizados en la fabricacion de los cilindros de trabajo de los trenes de bandas en caliente

    Energy Technology Data Exchange (ETDEWEB)

    Ziadi, A.; Belzunce, F. J.; Rodriguez, C.; Fernandez, I.

    2005-07-01

    Work rolls used in hot strip mills may be able to carry out severe actions: very high thermal stresses and wear, along with mechanical stresses due to normal rolling loads, which develop in the presence of cracks, produced by the former actions. The microstructure and the mechanical behaviour (strength and toughness) of high speed steels, which recently have been introduced in this applications, were studied in this work in comparison with high chromium cast irons. (Author) 7 refs.

  7. Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters

    International Nuclear Information System (INIS)

    Carretero Olalla, V.; Bliznuk, V.; Sanchez, N.; Thibaux, P.; Kestens, L.A.I.; Petrov, R.H.

    2014-01-01

    The yield strength of different pipeline steel grades, rolled under four different conditions, was correlated with calculated strengthening contributions. Slabs with the same composition were rolled under identical roughing conditions but varied finish rolling temperature (FRT). Two cooling routes, consisting of accelerated water cooling condition (ACC) followed by slow cooling in an oven to simulate coiling and air cooling were applied after the last rolling pass. The microstructures obtained after each thermo mechanical controlled process (TMCP) schedule, were characterized using Transmission Electron Microscopy (TEM), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Electron backscatter diffraction (EBSD). The mechanical properties of the plates were determined by means of tensile tests and Charpy V-notch impact test. It was confirmed that a combination of fast cooling rate and low finish rolling temperature produces higher strength than the slow cooling rate and high finish rolling temperature. Contributions to the strengthening arising from the various microstructural features like solid solution strengthening, grain size, dislocation density and precipitation hardening, were analyzed using Taylor, Hall–Petch and Ashby–Orowan approaches. The root of the sum of the squares method was applied to link the experimental with the model-predicted strength. It is believed that this approach provides a better understanding of the effect of TMCP parameters on the microstructure and strengthening mechanisms in pipeline steels

  8. Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Britton, T. Ben; Birosca, Soran; Preuss, Michael; Wilkinson, Angus J.

    2010-01-01

    We compare the dislocation substructure within macrozone and non-macrozone regions of hot-rolled Ti-6Al-4 V. Hough-based and cross-correlation-based analysis of electron backscatter diffraction (EBSD) patterns are used to establish the grain orientations and intra-granular misorientations, respectively. The set of geometrically necessary dislocations (GNDs) that support measured lattice curvatures and minimize the total GND line energy are calculated. The GND content in the macrozone is approximately twice that in the non-macrozone region, and GNDs are present at densities ∼10 times higher than GNDs.

  9. Investigation of the structure dependence of diffusivity, solubility and permeability of hydrogen in hot-rolled low-carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Forcey, K S; Ross, D K [Birmingham Univ. (UK). Dept. of Physics; Iordanova, I A [Sofia Univ. (Bulgaria). Dept. of Solid State Physics

    1989-01-01

    A time-lag method for estimating the diffusivity, permeability and solubility of hydrogen in low-carbon hot-rolled steels has been applied. Oriani's model has been used to investigate and explain the effects of microstructure on the trapping of hydrogen. The results show that the initial microstructure of steel significantly affects the behaviour of hydrogen atoms. Of the three sites, namely: Dislocations, interstitial atoms and particles, the most effective traps seem to be interfaces between coarse particles and the matrix. (orig.).

  10. Investigation of the structure dependence of diffusivity, solubility and permeability of hydrogen in hot-rolled low-carbon steels

    International Nuclear Information System (INIS)

    Forcey, K.S.; Ross, D.K.; Iordanova, I.A.

    1989-01-01

    A time-lag method for estimating the diffusivity, permeability and solubility of hydrogen in low-carbon hot-rolled steels has been applied. Oriani's model has been used to investigate and explain the effects of microstructure on the trapping of hydrogen. The results show that the initial microstructure of steel significantly affects the behaviour of hydrogen atoms. Of the three sites, namely: Dislocations, interstitial atoms and particles, the most effective traps seem to be interfaces between coarse particles and the matrix. (orig.)

  11. Design of Experiment as a powerful tool when applying Finite Element Method: a case study on prediction of hot rolling process parameters

    Directory of Open Access Journals (Sweden)

    Giancarlo G. Bordonaro

    2018-04-01

    Full Text Available The ultimate goal in hot roll pass design is to manufacture a rolled product with the required dimensional accuracy, defect free surface, and mechanical properties. The proper selection of process parameters is crucial to meet increasing requirements for desired quality and geometrical properties of rolled products. Due to the complex behavior of the metal flow at high temperatures and the severe plastic deformations in shape rolling, most efforts that have been made so far only rely upon the practical experience gained by operators. The large number of variables involved and the difficulty in investigating the process characteristics, make the use of finite element (FE tools an effective and attractive opportunity towards a thorough understanding of the rolling process. In this work, Design of Experiment (DOE is proposed as a powerful and viable method for the prediction of rolling process parameters while reducing the computational effort. Nonlinear 3D FE models of the hot rolling process are developed for a large set of complex cross-section shapes and validated against experimental evidences provided by real plant products at each stage of the deformation sequence. Based on the accuracy of the validated FE models, DOE is applied to investigate the flat rolling process under a series of many parameters and scenarios. Effects of main roll forming variables are analyzed on material flow behavior and geometrical features of a rolled product. The selected DOE factors are the workpiece temperature, diameter size, diameter reduction (draught, and rolls angular velocity. The selected DOE responses are workpiece spread, effective stresses, contact stresses, and rolls reaction loads. Eventually, the application of Pareto optimality (a Multi-Criteria Decision Making method allows to detect an optimal combination of design factors which respect desired target requirements for the responses.

  12. Determination of usable residual asphalt binder in RAP.

    Science.gov (United States)

    2009-01-01

    For current recycled mix designs, the Illinois Department of Transportation (IDOT) assumes 100% contribution of : working binder from Recycled Asphalt Pavement (RAP) materials when added to Hot Mix Asphalt (HMA). However, it is : unclear if this assu...

  13. Investigation of warm-mix asphalt using Iowa aggregates.

    Science.gov (United States)

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...

  14. A Feeding Strategy in Inner L-Shape Ring Hot Rolling Process

    Directory of Open Access Journals (Sweden)

    Wen Meng

    2017-01-01

    Full Text Available In order to make the inner L-shape ring polling process with a closed die structure (ILRRCDS on the top and bottom of the driven roll stable, at first, this paper established the mathematical model for ILRRCDS. Then, the plastic penetration and biting-in conditions for ILRRCDS were deduced based on plain ring rolling theory. Moreover, a feeding strategy that can realize a constant growth of the ring’s outer radius was proposed and the reasonable value ranges of the feed rate of the mandrel were determined. The numerical simulation model for ILRRCDS is established based on ABAQUS software. Finally, the equivalent plastic strain (PEEQ and temperature distributions of rolled ring were obtained. The results indicated that the proposed feeding strategy can realize a stable ILRRCDS. At the end of ILRRCDS, the PEEQ at the inner radius surface of the ring is maximum, the PEEQ at the outer radius surface of the ring takes the second place, and the PEEQ at the middle part of ring is minimum. With the increase of rolling time, the higher temperature zone of the rolled ring gradually moves from the center part of the ring to the “inner corner zone” of the ring.

  15. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Li, Shuhui [Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Yang, Bing; Gao, Yongsheng [Automotive Steel Research Institute, R and D Center, BaoShan Iron and Steel Co.,Ltd, Shanghai 201900 (China)

    2013-12-16

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  16. Use of Hot Rolling for Generating Low Deviation Twins and a Disconnected Random Boundary Network in Inconel 600 Alloy

    Science.gov (United States)

    Sahu, Sandeep; Yadav, Prabhat Chand; Shekhar, Shashank

    2018-02-01

    In this investigation, Inconel 600 alloy was thermomechanically processed to different strains via hot rolling followed by a short-time annealing treatment to determine an appropriate thermomechanical process to achieve a high fraction of low-Σ CSL boundaries. Experimental results demonstrate that a certain level of deformation is necessary to obtain effective "grain boundary engineering"; i.e., the deformation must be sufficiently high to provide the required driving force for postdeformation static recrystallization, yet it should be low enough to retain a large fraction of original twin boundaries. Samples processed in such a fashion exhibited 77 pct length fraction of low-Σ CSL boundaries, a dominant fraction of which was from Σ3 ( 64 pct), the latter with very low deviation from its theoretical misorientation. The application of hot rolling also resulted in a very low fraction of Σ1 ( 1 pct) boundaries, as desired. The process also leads to so-called "triple junction engineering" with the generation of special triple junctions, which are very effective in disrupting the connectivity of the random grain boundary network.

  17. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    International Nuclear Information System (INIS)

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-01-01

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully

  18. Microstructure and Mechanical Properties of Fe-18Mn-18Cr-0.5N Austenitic Nonmagnetic Stainless Steel in Asymmetric Hot Rolling

    Science.gov (United States)

    Song, Y. L.; Li, C. S.; Ma, B.; Han, Y. H.

    2017-05-01

    Asymmetric hot rolling (ASHR) with a mismatch speed ratio of 1.15 in a single pass was applied to Fe-18Mn-18Cr-0.5N steel and was compared with symmetric hot rolling (SHR). The results indicated that a through-thickness microstructure gradient was formed in the plate due to the shear strain (0.36) introduced by ASHR. A fine-grained layer with the average size of 3 μm was achieved at the top surface of ASHR plate, while numerous elongated grains with a few recrystallized grains were presented at the center layer. The texture was distributed randomly at the top surface of ASHR plate, and a weaker intensity of typical hot-rolled texture in austenitic steel was obtained at the center layer of ASHR plate compared to SHR plate. An excellent combination of microhardness, strength and ductility was obtained in the ASHR plate, which was attributed to gradient microstructure induced by ASHR.

  19. On the Effects of Hot Forging and Hot Rolling on the Microstructural Development and Mechanical Response of a Biocompatible Ti Alloy

    Science.gov (United States)

    Okazaki, Yoshimitsu

    2012-01-01

    Zr, Nb, and Ta as alloying elements for Ti alloys are important for attaining superior corrosion resistance and biocompatibility in the long term. However, note that the addition of excess Nb and Ta to Ti alloys leads to higher manufacturing cost. To develop low-cost manufacturing processes, the effects of hot-forging and continuous-hot-rolling conditions on the microstructure, mechanical properties, hot forgeability, and fatigue strength of Ti-15Zr-4Nb-4Ta alloy were investigated. The temperature dependences with a temperature difference (ΔT) from β-transus temperature (Tβ) for the volume fraction of the α- and β-phases were almost the same for both Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys. In the α-β-forged Ti-15Zr-4Nb-4Ta alloy, a fine granular α-phase structure containing a fine granular β-phase at grain boundaries of an equiaxed α-phase was observed. The Ti-15Zr-4Nb-4Ta alloy billet forged at Tβ-(30 to 50) °C exhibited high strength and excellent ductility. The effects of forging ratio on mechanical strength and ductility were small at a forging ratio of more than 3. The maximum strength (σmax) markedly increased with decreasing testing temperature below Tβ. The reduction in area (R.A.) value slowly decreased with decreasing testing temperature below Tβ. The temperature dependences of σmax for the Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys show the same tendency and might be caused by the temperature difference (ΔT) from Tβ. It was clarified that Ti-15Zr-4Nb-4Ta alloy could be manufactured using the same manufacturing process as for previously approved Ti-6Al-4V alloy, taking into account the difference (ΔT) between Tβ and heat treatment temperature. Also, the manufacturing equivalency of Ti-15Zr-4Nb-4Ta alloy to obtain marketing approval of implants was established. Thus, it was concluded that continuous hot rolling is useful for manufacturing α-β-type Ti alloy.

  20. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  1. Influence of hot rolling and high speed hydrostatic extrusion on the microstructure and mechanical properties of RAF ODS steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Kurzydlowski, K.J.; Baluc, N.

    2009-01-01

    Argon gas atomized, pre-alloyed Fe-14Cr-2W-0.3Ti oxide dispersion strengthened (ODS) ferritic steel powder was mechanically alloyed with 0.3Y2O3 (wt.%) nano-particles in attritor ball mill and consolidated by hot isostatic pressing (HIP) at 1150 deg. C under pressure of 200 MPa for 3 hrs. To improve mechanical properties of as HIPped ODS ingots the material was undergone further thermo-mechanical treatment (TMT), namely: hot rolling (HR) at 850 deg. C or high speed hot extrusion (HSHE) at 850 deg. C. After TMT both materials were annealed at 1050 deg. C for 1 h in vacuum. Transmission electron microscopy (TEM) observations of the ODS alloys after TMT and heat treatment exhibited elongated in a longitudinal direction grains with an average size of 75 μm. However, an equiaxed, smaller than 500 nm grains were also found in the microstructure of both materials. Different size and morphology of oxides particles were also observed. Bigger, about 150 nm Ti-Al-O particles were usually located at grain boundaries whereas Y-Ti-O nanoclusters of about 5 nm were uniformly distributed in ODS steel matrix. The Charpy impact tests revealed significantly better about 90% (5.8 J) upper shelf energy (USE) of material after HSHE but ductile to brittle transition temperature (DBTT) of both alloys was unsatisfactory. As-HR ODS steel has shown DBTT of about 55 deg. C whereas HSHE ODS steel has about 75 deg. C. This relatively high values of transition temperature were probably caused by oxides particles present at grain boundaries of the ODS alloys which decreased fracture properties of the ODS steels. High temperature tensile properties of both ODS alloys are found to be satisfactory in full range of the testing temperature from 23 up to 750 deg. C. However, about 15% better UTS and YS0.2 (1350 MPa and 1285 MPa, respectively) as well as ductility were measured in the case of the as-HSHE ODS steel. These results indicates that HSHE process of the ODS steel can be considered as more

  2. Examining the microtexture evolution in a hole-edge punched into 780 MPa grade hot-rolled steel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, J.H.; Kim, M.S. [Department of Printed Electronics Engineering, Sunchon National University, 315 Maegok, Sunchon, Jeonnam 540-950 (Korea, Republic of); Kim, S.I.; Seo, S.J. [POSCO Technical Research Laboratories, Gwangyang 545-090 (Korea, Republic of); Choi, S.-H., E-mail: shihoon@sunchon.ac.kr [Department of Printed Electronics Engineering, Sunchon National University, 315 Maegok, Sunchon, Jeonnam 540-950 (Korea, Republic of)

    2016-08-15

    The deformation behavior in the hole-edge of 780 MPa grade hot-rolled steel during the punching process was investigated via microstructure characterization and computational simulation. Microstructure characterization was conducted to observe the edges of punched holes through the thickness direction, and electron back-scattered diffraction (EBSD) was used to analyze the heterogeneity of the deformation. Finite element analysis (FEA) that could account for a ductile fracture criterion was conducted to simulate the deformation and fracture behaviors of 780 MPa grade hot-rolled steel during the punching process. Calculation of rotation rate fields at the edges of the punched holes during the punching process revealed that metastable orientations in Euler space were confined to specific orientation groups. Rotation-rate fields effectively explained the stability of the initial texture components in the hole-edge region during the punching process. A visco-plastic self-consistent (VPSC) polycrystal model was used to calculate the microtexture evolution in the hole-edge region during the punching process. FEA revealed that the heterogeneous effective strain was closely related to the heterogeneity of the Kernel average misorientation (KAM) distribution in the hole-edge region. A simulation of the deformation microtexture evolution in the hole-edge region using a VPSC model was in good agreement with the experimental results. - Highlights: •We analyzed the microstructure in a hole-edge punched in HR 780HB steel. •Rotation rate fields revealed the stability of the initial texture components. •Heterogeneous effective stain was closely related to the KAM distribution. •VPSC model successfully simulated the deformation microtexture evolution.

  3. Simulation of accelerated strip cooling on the hot rolling mill run-out roller table

    Directory of Open Access Journals (Sweden)

    E.Makarov

    2016-07-01

    Full Text Available A mathematical model of the thermal state of the metal in the run-out roller table continuous wide hot strip mill. The mathematical model takes into account heat generation due to the polymorphic γ → α transformation of supercooled austenite phase state and the influence of the chemical composition of the steel on the physical properties of the metal. The model allows calculation of modes of accelerated cooling strips on run-out roller table continuous wide hot strip mill. Winding temperature calculation error does not exceed 20°C for 98.5 % of strips of low-carbon and low-alloy steels

  4. FATIGUE BEHAVIOR OF HOT-ROLLED STEEL INTENDED FOR COLD FORMING

    Directory of Open Access Journals (Sweden)

    Gejza Rosenberg

    2011-07-01

    Full Text Available In the work, there are presented measured tension and fatigue properties of eight low-carbon steels moulded in form of 20 kg ingots that were processed by controlled regime of rolling /cooling and then exposed to simulated effect of two coiling temperatures. The experimental results presented in the work show, that steels with ferrite-martensite or ferrite-bainitic microstructure have in comparison to ferrite-pearlitic or ferrite-carbidic microstructure better strength-plastic properties, but worse resistance to cyclic loading.

  5. Hot rolling effect on the characters of Zr-0.6Nb-0.5Fe-0.5Cr alloy

    International Nuclear Information System (INIS)

    Sungkono; Siti Aidah

    2015-01-01

    Characters of Zr-0.6Nb-0.5Fe-0.5Cr alloy after hot rolling have been studied. The objective of this research was to obtain of hot rolling effect on the characteristics of microstructures, hardness and phases formed in Zr-0.6Nb-0.5Fe-0.5Cr alloy. The hot rolling process of alloy carried out at temperature of 800 °C with retention time of 1.5 and 2 hours and a thickness reduction between 5 to 25 %. The results of this experiment showed that the Zr-0.6Nb-0.5Fe-0.5Cr alloy has Widmanstaetten structure with microstructure evolving into deformed columnar grains and deformed elongated grains with increasing thickness reduction. Besides, the longer the retention time at temperature of 800 °C is the larger are the grain structures and formation of α-Zr and Zr_3Fe phase. The hardness of Zr-0.6Nb-0.5Fe-0.5Cr alloy has same trends i.e the larger thickness reduction gives higher hardness. The Zr-0.6Nb-0.5Fe-0.5Cr alloy can under go hot rolling deformation at a thickness reduction of 25 % and the formation of α-Zr and Zr_3Fe can increased of hardness and strength of Zr-0.6 Nb-0.5 Fe-0.5 Cr alloy. (author)

  6. Refinement of ferrite grain size during hot direct rolling of hsla steel

    International Nuclear Information System (INIS)

    Ajmal, M.

    2001-01-01

    Steel ingots containing 0.04 wt % Nb and varying contents of carbon were made in laboratory, that simulated thin slab casting. Mn and Si content were kept constant at 1.35 % and 0.25 % respectively. After each casting the mould assembly was transferred to the rolling mill and the temperature of the ingot was monitored. Each ingot was rolled to 4mm thickness in three passes. The first pass of 43% reduction for all the ingots were given at 1140 degree C. The second pass (reduction, 35 %) for all the ingots were given at 1040 degree C. However the temperature for third pass (reduction, 30 %) was varied to retain more strain in the austenite prior to transformation. It was shown that third pass at lower temperature i.e. 810 degree C in the austenite range yields a ferrite grains size of 2-3 micrometer. A yield strength of 465 Mpa and tensile strength of 530 Mpa can also be achieved in these plates. (author)

  7. Interfacial layers evolution during annealing in Ti-Al multi-laminated composite processed using hot press and roll bonding

    Science.gov (United States)

    Assari, A. H.; Eghbali, B.

    2016-09-01

    Ti-Al multi-laminated composites have great potential in high strength and low weight structures. In the present study, tri-layer Ti-Al composite was synthesized by hot press bonding under 40 MPa at 570 °C for 1 h and subsequent hot roll bonding at about 450 °C. This process was conducted in two accumulative passes to 30% and to 67% thickness reduction in initial and final passes, respectively. Then, the final annealing treatments were done at 550, 600, 650, 700 and 750 °C for 2, 4 and 6 h. Investigations on microstructural evolution and thickening of interfacial layers were performed by scanning electron microscopes, energy dispersive spectrometer, X-ray diffraction and micro-hardness tests. The results showed that the thickening of diffusion layers corresponds to amount of deformation. In addition to thickening of the diffusion layers, the thickness of aluminum layers decreased and after annealing treatment at 750 °C for 6 h the aluminum layers were consumed entirely, which occurred because of the enhanced interdiffusion of Ti and Al elements. Scanning electron microscope equipped with energy dispersive spectrometer showed that the sequence of interfacial layers as Ti3Al-TiAl-TiAl2-TiAl3 which are believed to be the result of thermodynamic and kinetic of phase formation. Micro-hardness results presented the variation profile in accordance with the sequence of intermetallic phases and their different structures.

  8. Laboratory evaluation of warm mix asphalt.

    Science.gov (United States)

    2011-09-14

    "Hot Mix Asphalt (HMA) has been traditionally produced at a discharge temperature of between : 280F (138C) and 320 F (160C), resulting in high energy (fuel) costs and generation of greenhouse : gases. The goal for Warm Mix Asphalt (WMA) is to...

  9. The feasibility of bonding aluminum alloy 6061 via hot isostatic pressing (HIP)/rolling

    International Nuclear Information System (INIS)

    Fenolietto, R.A.

    1991-01-01

    The advantage of developing a HIP bonding process for dispersion fuel plates is that applying a thin cladding in a more uniform manner could allow the upper limit for LEU U 3 Si-Al dispersion fuel plate densities to be overcome. Since much less mechanical deformation would be required, the existing process limitations on the density could be removed, theoretically allowing more fuel to be added. These increases are, of course, subject to irradiation behavior of the higher loadings which is not addressed in this paper. Initial results indicate that aluminum Alloy 6061 can be successfully bonded by seal welding via electron beam (EB), HIPping, and finishing with a limited amount of rolling. (orig.)

  10. Effects by the microstructure after hot and cold rolling on the texture and grain size after final annealing of ferritic non-oriented FeSi electrical steel

    Science.gov (United States)

    Schneider, J.; Stöcker, A.; Franke, A.; Kawalla, R.

    2018-04-01

    The magnetic properties of fully processed non-oriented FeSi electrical steel are characterized by their magnetization behavior and specific magnetic losses. The magnetic properties are determined by the texture and microstructure. Less gamma fiber intensity and a high intensity of preferable texture components, especially cube fiber texture, are desirable to obtain an excellent magnetizing behavior. Furthermore, large grain sizes are necessary to reach low values of the specific magnetic losses. The fabrication route of the fully processed non-oriented electrical steels comprises a heavy cold rolling of the hot rolled material before final annealing. To fulfill the requirements on large grain size for low loss materials, grain growth, which appears after complete recrystallization, plays an important role. In this paper we will analyze the influence of different microstructures of the hot strip and the resulting microstructure after cold rolling on the appearance of recrystallization and grain growth after final annealing. The evolution of texture reflects the present ongoing softening processes: recovery, recrystallization and finally grain growth at the given annealing conditions. It will be shown that the image of texture at recrystallization is remarkable different from the texture at grain growth. Substantially grain growth is obtained at lower annealing temperatures for an optimum microstructure of the hot rolled material.

  11. Effects by the microstructure after hot and cold rolling on the texture and grain size after final annealing of ferritic non-oriented FeSi electrical steel

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2018-04-01

    Full Text Available The magnetic properties of fully processed non-oriented FeSi electrical steel are characterized by their magnetization behavior and specific magnetic losses. The magnetic properties are determined by the texture and microstructure. Less gamma fiber intensity and a high intensity of preferable texture components, especially cube fiber texture, are desirable to obtain an excellent magnetizing behavior. Furthermore, large grain sizes are necessary to reach low values of the specific magnetic losses. The fabrication route of the fully processed non-oriented electrical steels comprises a heavy cold rolling of the hot rolled material before final annealing. To fulfill the requirements on large grain size for low loss materials, grain growth, which appears after complete recrystallization, plays an important role. In this paper we will analyze the influence of different microstructures of the hot strip and the resulting microstructure after cold rolling on the appearance of recrystallization and grain growth after final annealing. The evolution of texture reflects the present ongoing softening processes: recovery, recrystallization and finally grain growth at the given annealing conditions. It will be shown that the image of texture at recrystallization is remarkable different from the texture at grain growth. Substantially grain growth is obtained at lower annealing temperatures for an optimum microstructure of the hot rolled material.

  12. Influence of hot rolling and high speed hydrostatic extrusion on the microstructure and mechanical properties of an ODS RAF steel

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Z., E-mail: oksiuta@pb.edu.pl [Bialystok Technical University, Faculty of Mechanical Engineering, Wiejska 45c, 15-352 Bialystok (Poland); Lewandowska, M.; Kurzydlowski, K.J. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-504 Warsaw (Poland); Baluc, N. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, 5232 Villigen PSI (Switzerland)

    2011-02-15

    An argon gas atomized, pre-alloyed Fe-14Cr-2W-0.3Ti (wt.%) reduced activation ferritic (RAF) steel powder was mechanically alloyed with 0.3wt.% Y{sub 2}O{sub 3} nano-particles in an attritor ball mill and consolidated by hot isostatic pressing at 1150 {sup o}C under a pressure of 200 MPa for 3 h. In the aim to improve its mechanical properties the ODS steel was then submitted to a thermo-mechanical treatment (TMT): hot rolling (HR) at 850 deg. C or high speed hydrostatic extrusion (HSHE) at 900 deg. C, followed by heat treatment (HT). Transmission electron microscopy (TEM) observations of the ODS alloys after TMT and heat treatment revealed the presence of elongated grains in the longitudinal direction, with an average width of 8 {mu}m and an average length of 75 {mu}m, and equiaxed grains, a few microns in diameter, in the transverse direction. Two populations of oxide particles were observed by TEM: large Ti-Al-O particles, up to 250 nm in diameter, usually located at the grain boundaries and small Y-Ti-O nanoclusters, about 2.5 nm in diameter, uniformly distributed in the matrix. Charpy impact tests revealed that the HSHE material exhibits a larger upper shelf energy (5.8 J) than the HR material (2.9 J). The ductile-to-brittle transition temperature of both alloys is relatively high, in the range of 55-72 deg. C. Tensile mechanical properties of both ODS alloys were found satisfactory over the full range of investigated temperatures (23-750 deg. C). The HSHE material exhibits better tensile strength and ductility than the HR material. These results indicate that HSHE can be considered as a promising TMT method for improving the mechanical properties of ODS RAF steels.

  13. Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder

    Science.gov (United States)

    Sanchez Ramos, Jorge Luis

    Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.

  14. Introductory asphalt technology; Nyumon asphalt gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Muroga, G. [Mitsubishi Oil Co. Ltd., Tokyo (Japan)

    1994-12-28

    The type and applications, manufacturing method, characteristics, road pavement etc. of asphalt were introduced. Among the petroleum asphalts, straight asphalt is used for road pavement,industry, and combustion, while blown asphalt is mainly used for the waterproofness of a building. Also, the demand for modified asphalt where rubber or thermoplastic elastomer was mixed is increasing. Straight asphalt is obtained by allowing atmospheric distillation tower bottom oil to be subjected to reduced pressure distillation and drawing reduced pressure gas oil and lubrication oil cut. Blown asphalt is produced by the oxidation dehydrogeneration and condensation polymerization reaction of soft straight asphalt. Rheology characteristics of asphalt are expressed by stiffness, relaxation elastic modulus, complex elastic modulus, etc. Also, asphalt has high electrical dielectric properties. Asphalt pavement has functions for dispersing traffic load and then transferring it to a lower layer, for resisting wear and cracking, and for preventing penetration of rainwater. 30 refs., 5 figs., 4 tabs.

  15. A Study on the Low Temperature Brittleness by Cyclic Cooling-Heating of Low Carbon Hot Rolled Steel Plate

    International Nuclear Information System (INIS)

    Lee, Hyo Bok

    1979-01-01

    The ductile-brittle transition phenomenon of low carbon steel has been investigated using the standard Charpy V-notch specimen. Dry ice and acetone were used as refrigerants. Notched specimens were cut from the hot rolled plate produced at POSCO for the Olsen impact test. The effect of cyclic cooling and heating of 0.14% carbon steel on the embrittlement was extensively examined. The ductile-brittle transition temperature was found to be approximately-30 .deg. C. The transition temperature was gradually increased as the number of cooling-heating cycles increased. On a typical V-notch fracture surface it was found that the ductile fracture surface showed a thick and fibrous structure, while the brittle fracture surface a small and light grain with irregular disposition. As expected, the transition temperature was also increased as the carbon content of steel increased. Compared with the case of 0.14% carbon steel, the transition temperature of 0.17% carbon steel was found to be increased about 12 .deg. C

  16. Effect of decreased hot-rolling reduction treatment on fracture toughness of low-alloy structural steels

    Science.gov (United States)

    Tomita, Yoshiyuki

    1990-09-01

    Commercial low-alloy structural steels, 0.45 pct C (AISI 1045 grade), 0.40 pct C-Cr-Mo (AISI 4140 grade), and 0.40 pct C-Ni-Cr-Mo (AISI 4340 grade), have been studied to determine the effect of the decreased hot-rolling reduction treatment (DHRRT) from 98 to 80 pct on fracture toughness of quenched and highly tempered low-alloy structural steels. The significant conclusions are as follows: (1) the sulfide inclusions were modified through the DHRRT from a stringer (mean aspect ratio: 16.5 to 17.6) to an ellipse (mean aspect ratio: 3.8 to 4.5), independent of the steels studied; (2) the DHRRT significantly improved J Ic in the long-transverse and shorttransverse orientations, independent of the steels studied; and (3) the shelf energy in the Charpy V-notch impact test is also greatly improved by the DHRRT, independent of testing orientation and steels studied; however, (4) the ductile-to-brittle transition temperature was only slightly affected by the DHRRT. The beneficial effect on the J Ic is briefly discussed in terms of a crack extension model involving the formation of voids at the inclusion sites and their growth and eventual linking up through the rupture of the intervening ligaments by local shear.

  17. Effect of microstructural anisotropy on fracture toughness of hot rolled 13Cr ODS steel - The role of primary and secondary cracking

    Science.gov (United States)

    Das, A.; Viehrig, H. W.; Bergner, F.; Heintze, C.; Altstadt, E.; Hoffmann, J.

    2017-08-01

    ODS steels have been known to exhibit anisotropic fracture behaviour and form secondary cracks. In this work, the factors responsible for the anisotropic fracture behaviour have been investigated using scanning electron microscopy and electron backscatter microscopy. Fracture toughness of hot rolled 13Cr ODS steel was determined using unloading compliance method for L-T and T-L orientations at various temperatures. L-T orientation had higher fracture toughness than T-L orientation and also contained more pronounced secondary cracking. Secondary cracks appeared at lower loads than primary cracks in both orientations. Primary crack propagation was found to be preferentially through fine grains in a bimodal microstructure. Grains were aligned and elongated the most towards rolling direction followed by T and S directions resulting in fracture anisotropy. Crystallographic texture and preferential alignment of Ti enriched particles parallel to rolling direction also contributed towards fracture anisotropy.

  18. Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting

    Science.gov (United States)

    Gao, Rui; Ge, Wen-jun; Miao, Shu; Zhang, Tao; Wang, Xian-ping; Fang, Qian-feng

    2016-03-01

    The grain morphology, nano-oxide particles and mechanical properties of oxide dispersion strengthened (ODS)-316L austenitic steel synthesized by electron beam selective melting (EBSM) technique with different post-working processes, were explored in this study. The ODS-316L austenitic steel with superfine nano-sized oxide particles of 30-40 nm exhibits good tensile strength (412 MPa) and large total elongation (about 51%) due to the pinning effect of uniform distributed oxide particles on dislocations. After hot rolling, the specimen exhibits a higher tensile strength of 482 MPa, but the elongation decreases to 31.8% owing to the introduction of high-density dislocations. The subsequent heat treatment eliminates the grain defects induced by hot rolling and increases the randomly orientated grains, which further improves the strength and ductility of EBSM ODS-316L steel.

  19. The influence of the hardening coolant agent on the properties of hot rolled bars of the steel 42CrMo4

    Directory of Open Access Journals (Sweden)

    M. Stańczyk

    2014-10-01

    Full Text Available In the work the influence results of two different hardening coolant agents on the basic mechanical proprieties and microstructure of the round hot rolled bars were presented. The bars of 42CrMo4 steel were exposed to analysis, and for those bars in the hardening process, water and modern pro-ecological polymer cooling agents Aqua Quench MK were used.

  20. Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr-Ni stainless steel

    International Nuclear Information System (INIS)

    Zheng, H.; Ye, X.N.; Li, J.D.; Jiang, L.Z.; Liu, Z.Y.; Wang, G.D.; Wang, B.S.

    2010-01-01

    Research highlights: → Hot-rolled ultra low carbon martensite is characterized by dislocation cells substructure. → The formation of dislocation cells is attributed to high Ms and low interstitial atoms content. → Hot-rolled ultra low carbon 12Cr-Ni stainless steel has excellent impact toughness. → Delta ferrite deteriorates the impact toughness of hot-rolled 12Cr-Ni stainless steel. - Abstract: 12Cr-Ni stainless steels containing different carbon contents from 0.004 wt.% to 0.034 wt.% were hot-rolled and air-cooled. Their corresponding microstructures were observed with optical microscope and transmission electron microscope, and the Vickers hardness, tensile and impact tests were also carried out. It was found that the martensitic morphology was significantly influenced by carbon content. The as-received ultra low carbon martensite in the steel containing 0.004 wt.% C is characterized by dislocation cells substructure. The formation of dislocation cells is attributed to high martensite finishing point (above 400 deg. C) and low interstitial atoms content. On the other hand, the martensite in the steel containing 0.034 wt.% C consists mainly of typical martensite laths because of low martensite finishing point and high interstitial atoms content which hinder dislocation motion. Furthermore, carbon content has an evident effect on the mechanical properties of 12Cr-Ni steels. The hardness and strength of the as-received steels increase with an increase in carbon content, but their elongation and impact toughness decrease with the carbon content. The steel containing 0.004 wt.% C has excellent impact toughness due to the ultra low carbon content in the martensite composed of dislocation cells.

  1. The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe–Cr–Al–REM ferritic stainless steel sheets

    International Nuclear Information System (INIS)

    Qu, H.P.; Lang, Y.P.; Yao, C.F.; Chen, H.T.; Yang, C.Q.

    2013-01-01

    This study presents research works about the effects of heat treatment on recrystallized equiaxed grain size, precipitation, room temperature (RT) toughness and ductile to brittle transition temperature (DBTT) of Fe–Cr–Al–REM ferritic stainless steel (FSS) hot-rolled sheet. Results showed that the recrystallization of hot-rolled Fe–Cr–Al–REM FSS sheet could be completed after annealing treatment at 750 °C for 15 min with the equiaxed grain diameter of approximately 50 μm. Inappropriate annealing treatment would inevitably leads to the unexpected grain coarsening. On the other hand, a great deal of needle-like or spot-like fine aluminum–lanthanum compound Al 11 La 3 precipitates were observed in the ferrite matrix after 1 h aging treatment at 750 °C. The microstructure observation results associated with the impact test definitely illustrated that the Al 11 La 3 precipitates was the reason for the brittle crack in the as-casted ingot and as-forged slab. The real DBTT of the annealed Fe–Cr–Al–REM FSS sheet with average grain size of about 50 μm was −4 °C. Meanwhile, the DBTT of the hot-rolled Fe–Cr–Al–REM stainless steel sheet was evidently increased as the recrystallized grain size increased.

  2. The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe-Cr-Al-REM ferritic stainless steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Qu, H.P., E-mail: quhuapeng0926@163.com [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China); Lang, Y.P. [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China); Yao, C.F. [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China); Zhuozhou Works, Central Iron and Steel Research Institute (CISRI), 2 HuoJuNan Road, Zhuozhou 072750, Hebei (China); Chen, H.T.; Yang, C.Q. [Institute for Special Steels (Formerly Institute for Structural Materials), Central Iron and Steel Research Institute (CISRI), 76 HaiDianNan Road, Beijing 100081 (China)

    2013-02-01

    This study presents research works about the effects of heat treatment on recrystallized equiaxed grain size, precipitation, room temperature (RT) toughness and ductile to brittle transition temperature (DBTT) of Fe-Cr-Al-REM ferritic stainless steel (FSS) hot-rolled sheet. Results showed that the recrystallization of hot-rolled Fe-Cr-Al-REM FSS sheet could be completed after annealing treatment at 750 Degree-Sign C for 15 min with the equiaxed grain diameter of approximately 50 {mu}m. Inappropriate annealing treatment would inevitably leads to the unexpected grain coarsening. On the other hand, a great deal of needle-like or spot-like fine aluminum-lanthanum compound Al{sub 11}La{sub 3} precipitates were observed in the ferrite matrix after 1 h aging treatment at 750 Degree-Sign C. The microstructure observation results associated with the impact test definitely illustrated that the Al{sub 11}La{sub 3} precipitates was the reason for the brittle crack in the as-casted ingot and as-forged slab. The real DBTT of the annealed Fe-Cr-Al-REM FSS sheet with average grain size of about 50 {mu}m was -4 Degree-Sign C. Meanwhile, the DBTT of the hot-rolled Fe-Cr-Al-REM stainless steel sheet was evidently increased as the recrystallized grain size increased.

  3. Validity of multiple stress creep recovery (MSCR) test for DOTD asphalt binder specification : technical summary.

    Science.gov (United States)

    2017-09-01

    Higher traffic coupled with heavier loads led the asphalt industry to introduce polymer-modified binders to enhance the durability and strength of hot mix asphalt (HMA) pavements. When the Superpave Performance Graded (PG) binder specification (AASHT...

  4. Evaluation of cement and fly ash treated recycled asphalt pavement and aggregates for base construction.

    Science.gov (United States)

    2011-12-01

    Many entities currently use recycled asphalt pavement (RAP) and other aggregates as base material, temporary haul roads, : and, in the case of RAP, hot mix asphalt construction. Several states currently allow the use of RAP combined with cement : for...

  5. Investigation of the influence of the chemical composition of HSLA steel grades on the microstructure homogeneity during hot rolling in continuous rolling mills using a fast layer model

    International Nuclear Information System (INIS)

    Schmidtchen, M; Kawalla, R; Rimnac, A; Bragin, S; Linzer, B; Warczok, P; Kozeschnik, E; Bernhard, C

    2016-01-01

    The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness. (paper)

  6. Evaluación de las propiedades mecánicas de una mezcla densa en caliente modificada con asfaltita/Mechanical Properties Evaluation of a hot Asphalt Mixture Modified with Asphaltite

    Directory of Open Access Journals (Sweden)

    Hugo Alexander Rondón Quintana

    2012-12-01

    Full Text Available El trabajo evaluó en laboratorio la resistencia mecánica bajo carga monotónica, el módulo resiliente y la resistencia a la deformación permanente que experimenta una mezcla asfáltica cuando se modifica con una asfaltita. Adicionalmente, fue evaluada durante dos años, la influencia del medio ambiente de la ciudad de Bogotá D.C., sobre las propiedades mecánicas de la mezcla modificada. Se concluye que la resistencia mecánica de la mezcla asfáltica modificada incrementa en comparación con la convencional. La tendencia general de las mezclas con el tiempo de exposición al medio ambiente de Bogotá D.C., es experimentar un aumento en los valores de rigidez debido principalmente a procesos de endurecimiento por envejecimiento del ligante asfáltico. Sin embargo, para el caso de las mezclas modificadas y fabricadas con CA 60-70 en los primeros cinco meses de exposición, la rigidez disminuye.The strength under monotonic load, resilient modulus and rutting were evaluated on a hot-mix asphalt (HMAmodified with a natural sphaltite. Additionally, the influence of the environmental conditions of BogotáD.C., was evaluated during two years on the mechanical properties of a modified asphalt mixture. The results show that the mechanical properties evaluated were better for the HMA mixes modified in compared with those with neat asphalts. The asphaltite produces higher mechanical resistance in HMA. The general tendency of the mixtures is increase the modulus with time due to aging of the asphalt cement. However, modified mixtures with AC 60- 70, decrease in stiffness during the first months.

  7. Microstructure and partitioning behavior characteristics in low carbon steels treated by hot-rolling direct quenching and dynamical partitioning processes

    International Nuclear Information System (INIS)

    Li, Yun-jie; Li, Xiao-lei; Yuan, Guo; Kang, Jian; Chen, Dong; Wang, Guo-dong

    2016-01-01

    In this work, a new process and composition design are proposed for “quenching and partitioning” or Q&P treatment. Three low carbon steels were treated by hot-rolling direct quenching and dynamical partitioning processes (DQ&P). The effects of proeutectoid ferrite and carbon concentration on microstructure evolution and mechanical properties were investigated. The present work obtained DQ&P prototype steels with good mechanical properties and established a new notion on compositions for Q&P processing. Microstructures were characterized by means of electro probe microanalyzer (EPMA), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray diffraction (XRD), especially the morphology and size of retained austenite. Mechanical properties were measured by uniaxial tensile tests. The results indicated that introducing proeutectoid ferrite can increase the volume fraction of retained austenite and thus improve mechanical properties. TEM observation showed that retained austenite included the film-like inter-lath austenite and blocky austenite located in martensite/ferrite interfaces or surrounded by ferrites. It was interesting that when the carbon concentration is as low as ~ 0.078%, the film-like inter-lath untransformed austenite cannot be stabilized to room temperature and almost all of them transformed into twin martensite. The blocky retained austenite strengthened the interfaces and transformed into twin martensite during the tensile deformation process. The PSEs of specimens all exceeded 20 GPa.%. - Highlights: •This study focused on a new process: Q&P process applying dynamical partitioning. •Ferrite can increase the volume fraction of retained austenite. •The film-like austenite and the blocky austenite were observed. •The low carbon steels treated by new process reached PSEs higher than 20 GPa.%.

  8. Incorporating the transverse profile of the wearing course into the control of the hot in-place recycling of asphalt concrete

    Science.gov (United States)

    Makowska, Michalina; Huuskonen-Snicker, Eeva; Alanaatu, Pauli; Aromaa, Kalle; Savarnya, Abhishek; Pellinen, Terhi; Das, Animesh

    2018-05-01

    The hot in-place recycling (HIR) of asphalt concrete (AC) is one of the least CO2 emissive reuse techniques. It allows for 100% reuse of material in-situ in the same application, at a reduced need for the material transport to and back from the construction site, as well as the reduced price in comparison with the fresh wearing course overlay. Finland uses the technique predominantly to fill wheel path ruts caused by the studded tire abrasion, to retain structural capacity and prevent hydroplaning. During the HIR process, the aged AC material is heated up in-situ, milled to the approximate depth of 40 mm, blended with fresh AC admixture and rejuvenator. However, the amount of the aged material and the amount of the aged bitumen that undergoes rejuvenation depends on the pavement transverse profile. The rut depth, width and shape determine the minimum volume of admixture necessary for refill during the process in order to retain the structural capacity, as well as the amount of the aged binder requiring rejuvenation. In favor of achieving homogenous rheological properties in the final product, the proportion between the aged binder and the fresh binder should be controlled, as it influences the required amount of rejuvenator. Therefore, the rut cross-sectional area and furthermore, the rut volume is one of the previously unrecognized or ignored major variables of the hot in-place recycling process in Finland that should be incorporated to the HIR process control. This article demonstrates the methodology of incorporating the transverse road profile measurements by 17 vehicle-mounted laser sensors into the calculation of required rejuvenator amounts. This can be done during the procurement preparation phase or during the paving work as a continuous in-situ process control. In the rheological optimization the apparent Newtonian viscosity concept and the rotational viscosity are utilized in the viscosity based blending equation, which then allows the use of oily

  9. Effect of intercritical deformation on microstructure and mechanical properties of a low-silicon aluminum-added hot-rolled directly quenched and partitioned steel

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiao-Dong, E-mail: tan.x@mpie.de [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Xu, Yun-Bo, E-mail: yunbo_xu@126.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Ponge, Dirk [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Yang, Xiao-Long; Hu, Zhi-Ping; Peng, Fei [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Ju, Xiao-Wei [CERI LONG PRODUCT CO., LTD., Beijing 100176 (China); Wu, Di [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Raabe, Dierk [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany)

    2016-02-22

    Here, we applied hot-rolling in conjunction with direct quenching and partitioning (HDQ&P) processes with different rolling schedules to a low-C low-Si Al-added steel. Ferrite was introduced into the steel by intercritical rolling and air cooling after hot-rolling. The effect of intercritcal deformation on the microstructure evolution and mechanical properties was investigated. The promotion of austenite stabilization and the optimization of the TRIP effect due to a moderate degree of intercritical deformation were systematically explored. The results show that the addition of 1.46 wt% of Al can effectively promote ferrite formation. An intercritical deformation above 800 °C can result in a pronounced bimodal grain size distribution of ferrite and some elongated ferrite grains containing sub-grains. The residual strain states of both austenite and ferrite and the occurrence of bainite transformation jointly increase the retained austenite fraction due to its mechanical stabilization and the enhanced carbon partitioning into austenite from its surrounding phases. An intercritical deformation below 800 °C can profoundly increase the ferrite fraction and promote the recrystallization of deformed ferrite. The formation of this large fraction of ferrite enhances the carbon enrichment in the untransformed austenite and retards the bainite transformation during the partitioning process and finally enhances martensite transformation and decreases the retained austenite fraction. The efficient TRIP effect of retained austenite and the possible strain partitioning of bainite jointly improve the work hardening and formability of the steel and lead to the excellent mechanical properties with relatively high tensile strength (905 MPa), low yield ratio (0.60) and high total elongation (25.2%).

  10. Application of the Finite Element Method to Reveal the Causes of Loss of Planeness of Hot-Rolled Steel Sheets during Laser Cutting

    Science.gov (United States)

    Garber, E. A.; Bolobanova, N. L.; Trusov, K. A.

    2018-01-01

    A finite element technique is developed to simulate the stresses and the strains during strip flattening to reveal the causes of the cutting-assisted loss of planeness of hot-rolled steel sheets processed in roller levelers. The loss of planeness is found to be caused by a nonuniform distribution of the flattening-induced longitudinal tensile stresses over the strip thickness and width. The application of tensile forces to a strip in a roller leveler decreases this nonuniformity and prevents loss of planeness in cutting.

  11. Quantify the energy and environmental effects of using recycled asphalt and recycled concrete for pavement construction phase I : final report.

    Science.gov (United States)

    2009-08-01

    The objective of this study is to quantify the energy and environment impacts from using recycled materials : for highway construction. Specifically, when recycled asphalt pavement is re-used for producing hot mix : asphalt or when recycled concrete ...

  12. Effect of Strength Coefficient of Bainite on Micromechanical Deformation and Failure Behaviors of Hot-Rolled 590FB Steel during Uniaxial Tension

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Young; Choi, Shi-Hoon [Sunchon National University, Suncheon (Korea, Republic of); Kim, Sung Il [POSCO Technical Research Laboratories, Gwangyang (Korea, Republic of)

    2016-11-15

    The effect of the strength coefficient (K{sub B}) of bainite on micromechanical deformation and failure behaviors of a hot-rolled 590MPa steel (590FB) during uniaxial tension was simulated using the elasto-plastic finite element method (FEM). The spatial distribution of the constituent phases was obtained using a phase identification technique based on optical microstructure. Empirical equations which depend on chemical composition were used to determine the stress-strain relationship of the constituent phases of the 590FB steel. The stress-strain partitioning and failure behavior were analyzed by increasing the K{sub B} of bainite. The elasto-plastic FEM results revealed that effective strain in the ferrite-bainite boundaries, and maximum principal stress in fibrous bainite, were enhanced as the K{sub B} increased. The elasto-plastic FEM results also demonstrated that the K{sub B} significantly affects the micromechanical deformation and failure behaviors of the hot-rolled 590FB steel during uniaxial tension.

  13. 77 FR 70142 - Initialed Draft Revision to the Agreement Suspending the Antidumping Investigation on Certain Hot...

    Science.gov (United States)

    2012-11-23

    ... the Agreement Suspending the Antidumping Investigation on Certain Hot-Rolled Flat-Rolled Carbon... revision to the Agreement Suspending the Antidumping Investigation on Certain Hot-Rolled Flat-Rolled Carbon...'') investigation on hot-rolled flat-rolled carbon-quality steel products (``hot-rolled steel'') from the Russian...

  14. Occupational Renal Dysfunction Among Asphalt Workers In Sharkia ...

    African Journals Online (AJOL)

    : An Epidemiological Study. ... Zagazig Journal of Occupational Health and Safety ... Abstract. Background: Occupational exposure to bitumen fumes emitted during hot application of asphalt carries the risk of exposure to significant amount of ...

  15. Quality control of recycled asphaltic concrete : final report.

    Science.gov (United States)

    1982-07-01

    This study examined the variations found in recycled asphaltic concrete mix based upon plant quality control data and verification testing. The data was collected from four recycled hot-mix projects constructed in 1981. All plant control and acceptan...

  16. Assessment of Quality of Asphalt Concrete used in Road ...

    African Journals Online (AJOL)

    OLUWASOGO

    subjected to bitumen extraction and sieve analysis, hot mix Marshall Stability and flow tests, penetration and ... asphalt concrete as well as other structures of the flexible pavement. ... High-quality road networks are very important to the.

  17. Rutting Performance of Cold-Applied Asphalt Repair Materials for Airfield Pavements

    Science.gov (United States)

    2017-06-23

    this study. Cold mix asphalt materials, further denoted cold mixes , were selected to reasonably represent available products on the market and were...pavement repair, primarily because of the small quantities involved and/or the unavailability of hot- mixed asphalt. These cold-applied mixtures have...poorer rutting resistance than hot mix asphalt because additives, often solvent, are required to provide adequate workability for them to be placed

  18. Effect of Cooling Rate on the Microstructure and Mechanical Properties of C-Mn-Al-Si-Nb Hot-Rolled TRIP Steels

    Science.gov (United States)

    Fu, B.; Y Lu, M.; Y Yang, W.; Li, L. F.; Y Zhao, Z.

    2017-12-01

    A novel thermomechanical process to manufacture hot-rolled TRIP steels has been proposed based on dynamic transformation of undercooled austenite (DTUA). The cooling rate between DTUA and isothermal bainitic treatment in the novel process is important. In the present study, effect of this cooling rate on the final microstructures and mechanical properties of a C-Mn-Al-Si-Nb TRIP steel was investigated. The results showed that the volume fractions of acicular ferrite and retained austenite were increased with the increment of cooling rate. As a consequence, higher yield strength and larger total elongation were obtained for the investigated steel with higher cooling rate. In addition, a value of 30.24 GPa% for the product of tensile strength and total elongation was acquired when the cooling rate was 25 K/s. This value has met the standard of the “Third Generation” of advanced high strength sheet steels.

  19. Research on the Microstructures and Mechanical Properties of Ti Micro-Alloyed Cold Rolled Hot-Dip Galvanizing DP980 Steel

    Science.gov (United States)

    Han, Yun; Kuang, Shuang; Qi, Xiumei; Xie, Chunqian; Liu, Guanghui

    Effects of galvanizing simulation parameters on microstructures and mechanical properties of Ti-microalloyed cold rolled hot-dip galvanizing DP980 steel were investigated in this study by optical microscopy (OM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and tensile test. Moreover, the precipitation behavior of Ti in the experimental steel was also studied. The results show that, as the heating temperature increases, the tensile strength of experimental galvanizing DP980 steel decreases while the yield ratio and elongation of the steel are enhanced. The microstructures of experimental steels exhibit typical dual phase steel character and the volume fractions of MA islands are almost 30%. In addition, lots of nano-sized TiC precipitates can be found in the ferrite grains.

  20. Influence of Al content on the corrosion resistance of micro-alloyed hot rolled steel as a function of grain size

    Science.gov (United States)

    Qaban, Abdullah; Naher, Sumsun

    2018-05-01

    High-strength low-alloy steel (HSLA) has been widely used in many applications involving automobiles, aerospace, construction, and oil and gas pipelines due to their enhanced mechanical and chemical properties. One of the most critical elements used to improve these properties is Aluminium. This work will explore the effect of Al content on the corrosion behaviour of hot rolled high-strength low-alloy steel as a function of grain size. The method of investigation employed was weight loss technique. It was obvious that the increase in Al content enhanced corrosion resistance through refinement of grain size obtained through AlN precipitation by pinning grain boundaries and hindering their growth during solidification which was found to be beneficial in reducing corrosion rate.

  1. RESISTENCIA MECÁNICA EVALUADA EN EL ENSAYO MARSHALL DE MEZCLAS DENSAS EN CALIENTE ELABORADAS CON ASFALTOS MODIFICADOS CON DESECHOS DE POLICLORURO DE VINILO (PVC, POLIETILENO DE ALTA DENSIDAD (PEAD Y POLIESTIRENO (PS MECHANICAL RESISTANCE OF HOT THICK MIXTURES MADE WITH ASPHALT MODIFIED WITH POLYVINYL CHLORIDE, POLYCLORURE (PVC WASTES, HIGH DENSITY POLYETHYLENE (PEAD, AND POLYSTYRENE (PS EVALUATED IN MARSHALL ASSAY

    Directory of Open Access Journals (Sweden)

    Hugo Alexánder Rondón Quintana

    2007-07-01

    Full Text Available El presente trabajo buscó evaluar en laboratorio el cambio en la resistencia mecánica que experimentan mezclas asfálticas densas en caliente cuando se adicionan, por vía húmeda, al cemento asfáltico aditivos poliméricos producto de desechos industriales del tipo plastómero (policloruro de vinilo, polietileno de alta densidad y poliestireno. Para tal fin se empleó el ensayo Marshall. De los resultados obtenidos se concluye que la resistencia mecánica de mezclas asfálticas modificadas con desechos del tipo plastómero es mayor en comparación con las convencionales (mezclas que emplean asfaltos sin ningún aditivo.The main objective of this research Project was to evaluate in a laboratory the change in mechanical strength that dense hot asphalt mixtures go through when waste polymeric additives of plastomeric type (polyvinyl chloride, high density polyethylene and polystyrene are added to asphalt cement, by 'wet way'. This change was evaluated using Marshall Test. The general conclusion of the experimental results was that modified hot asphalt mixtures present better mechanical behavior than conventional mixtures (mixtures which use asphalt without additives.

  2. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    International Nuclear Information System (INIS)

    Xu, Yun-bo; Hu, Zhi-ping; Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing; Ma, De-gang; Misra, R.D.K.

    2017-01-01

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  3. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yun-bo [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Hu, Zhi-ping, E-mail: huzhiping900401@126.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Ma, De-gang [Tangshan Iron and Steel Company, Tangshan 063000, People' s Republic China (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States)

    2017-03-14

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  4. Roll force prediction of high strength steel using foil rolling theory in cold skin pass rolling

    International Nuclear Information System (INIS)

    Song, Gil Ho; Jung, Jae Chook

    2013-01-01

    Skin pass rolling is a very important process for applying a certain elongation to a strip in the cold rolling and annealing processes, which play an important role in preventing the stretching of the yield point when the material is processed. The exact prediction of the rolling force is essential for obtaining a given elongation with the steel grade and strip size. Unlike hot rolling and cold rolling, skin pass rolling is used to apply an elongation of within 2% to the strip. Under a small reduction, it is difficult to predict the rolling force because the elastic deformation behavior of the rolls is complicated and a model for predicting the rolling force has not yet been established. Nevertheless, the exact prediction of the rolling force in skin pass rolling has gained increasing importance in recent times with the rapid development of high strength steels for use in automobiles. In this study, the possibility of predicting the rolling force in skin pass rolling for producing various steel grades was examined using foil rolling theory, which is known to have similar elastic deformation behavior of rolls in the roll bite. It was found that a noncircular arc model is more accurate than a circular model in predicting the roll force of high strength steel below TS 980 MPa in skin pass rolling

  5. 76 FR 7546 - Certain Hot-Rolled Carbon Steel Flat Products From Brazil: Rescission of Countervailing Duty...

    Science.gov (United States)

    2011-02-10

    ..., through December 31, 2009. Since Nucor Corporation (Nucor) was the only party that requested a review of... administrative review. This rescission is based on Nucor's timely withdrawal of its request for review. DATES... 19 CFR 351.213(b), the Department received a timely request from Nucor, a domestic producer of hot...

  6. Understanding asphalt compaction: An action research strategy

    NARCIS (Netherlands)

    Miller, Seirgei Rosario; ter Huerne, Henderikus L.; Doree, Andries G.; Amaratunga, Dilanthi

    2007-01-01

    In Hot Mix Asphalt (HMA) construction, rollers provide the compaction energy required to produce a specified density. However, little is known about the heuristics used by the roller operators. This study forms part of a larger action research project focussing on the improvement of the HMA paving

  7. Assessment of The Asphalt Produced in Some Factories of Asphalt in Al-Hilla City

    Directory of Open Access Journals (Sweden)

    Mohammed Karem Abd

    2018-02-01

    Full Text Available The purpose of this study is to present an evaluation of  the properties and characteristics of asphalt concrete of several hot mix asphalt (HMA from five factories in Al-Hilla city. The research is divided into two parts. The first part included the laboratory analysis of samples. The second part is evaluation of results according to standard specifications.      The test results included (Asphalt content percent, stability, creep compliance, voids ratio, density, flow, crushed aggregate percent, Loss Angless abrasion and SO3 percent.The results of laboratorial tests indicated that all properties of asphalt mixes were susceptible and possible to be used in the asphaltic roads. The mixes types prepared and tested according to Marshall method. The values of Marshall stability, creep and density are (9.4, 5.4, 9.8, 9, 8.6, (2.5, 2.7, 2.7, 2.6, 2.3 and (2.334, 2.336, 2.337, 2.333, 2.338 with asphalt content between (4.2 to 4.6 % for all asphalt mixes of different factories.

  8. NUMERICAL EVALUATION OF TEMPERATURE DISTRIBUTION IN THE ROLLING MILL ROLLS

    Directory of Open Access Journals (Sweden)

    José Claudino de Lira Júnior

    2013-06-01

    Full Text Available In hot rolling processes occur changes in the profile of the rolling mill rolls (expansion and contraction and constant wear due to mechanical stress and continuous thermal cycles of heating/cooling caused by contact rolled material- working roll and the cooling system by water jets in their surface, decreasing their lifetime. This paper presents a computational model to simulate the thermal performance of rolling mill rolls. The model was developed using the finite volume method for a transient two-dimensional system and allows calculating the temperature distribution of the rolling mill rolls under various conditions of service. Here it is investigated the influence of flow rate and temperature of the cooling water on the temperature distribution. The results show that the water temperature has greater influence than the water flow to control the surface temperature of the cylinders.

  9. Modified asphalt; Kairyo asphalt ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Takarabe, A. [Mitsubishi Oil Co. Ltd., Tokyo (Japan)

    1994-12-28

    Modified asphalt in the area of road pavement in the relation of measures against flow on a road surface was introduced. The condition of road damage includes the print of a wheel, crack, and wear and semi-blown asphalt whose deformation is difficult even if temperature is increased to approximately 60 {degree}C and asphalt with rubber and resin are used to prevent these. The semi-blown asphalt is obtained by adding cut-back material to the normal asphalt, heating it, blowing air into it, and then oxidizing and polymerizing it, is harder and is more elastic than the normal asphalt, and has smaller viscosity change due to temperature change. The viscosity at 60 {degree}C was determined to be 10000{plus_minus}2000 poise according to the relationship between viscosity and crack using a large-scale execution experiment. The asphalt with rubber and resin is formed by adding modified material of styrene - butadiene copolymer and by adding thermoplastic elastomer and the former is used for preventing slide and the latter is used for preventing flow and wear. 10 refs., 6 figs., 2 tabs.

  10. Asphalt emulsion; Asphalt nyuzai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. [Toa Doro Kogyo Co. Ltd., Tokyo (Japan)

    1994-12-28

    The emulsification, manufacture, type, applications, etc. of asphalt emulsion were introduced. The emulsification of asphalt is obtained by mixing heated asphalt into an emulsification liquid where emulsifier is added to water and then agitating it. The emulsifier has both hydrophilic and lipophilic parts in the same molecule, prevents collision between asphalt particles after being arranged properly on the surface of asphalt particles, and prevent separation into water and asphalt. The emulsion is available for penetration and for mixing depending on applications and can be classified into cation emulsion, anion emulsion, and nonionic emulsion according to the property. The emulsion is mainly applied to road pavement, reaching approximately 90 % of the total manufactured emulsion. It is also used for other areas such as the filler of a slab race of each bullet train of Sanyo, Tohoku, and Jyoetsu and is also applied to the formation of a water-proof layer by spraying a high-concentration emulsion with rubber, agricultural water channels using asphalt emulsion and nonwoven cloth, etc. in civil engineering and agricultural fields. 2 refs., 13 figs., 8 tabs.

  11. The effect of microstructure on the sheared edge quality and hole expansion ratio of hot-rolled 700 MPa steel

    Science.gov (United States)

    Kaijalainen, A.; Kesti, V.; Vierelä, R.; Ylitolva, M.; Porter, D.; Kömi, J.

    2017-09-01

    The effects of microstructure on the cutting and hole expansion properties of three thermomechanically rolled steels have been investigated. The yield strength of the studied 3 mm thick strip steels was approximately 700 MPa. Detailed microstructural studies using laser scanning confocal microscopy (LCSM), FESEM and FESEM-EBSD revealed that the three investigated materials consist of 1) single-phase polygonal ferrite, 2) polygonal ferrite with precipitates and 3) granular bainite. The quality of mechanically sheared edges were evaluated using visual inspection and LSCM, while hole expansion properties were characterised according to the methods described in ISO 16630. Roughness values (Ra and Rz) of the sheet edge with different cutting clearances varied between 12 µm to 21 µm and 133 µm to 225 µm, respectively. Mean hole expansion ratios varied from 28.4% to 40.5%. It was shown that granular bainite produced the finest cutting edge, but the hole expansion ratio remained at the same level as in the steel comprising single-phase ferrite. This indicates that a single-phase ferritic matrix enhances hole expansion properties even with low quality edges. A brief discussion of the microstructural features controlling the cutting quality and hole expansion properties is given.

  12. Hot-rolled and cold-finished zirconium and zirconium alloy bars, rod, and wire for nuclear application

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The specification covers hot- and cold-finished zirconium alloy bars, rod, and wire, other than those required for reforging, including rounds, squares, and shapes. One unalloyed grade and three alloy grades for use in nuclear applications are described. The products covered include the following sections and sizes: bars, rounds in coils for subsequent reworking (6.4 to 19 mm) and flats (6.4 to 250 mm); rods, rounds in coils for subsequent reworking (6.4 to 19 mm); wire (9.5 mm). The specification covers ordering information, manufacture, condition, chemical requirements, mechanical properties, corrosion properties, permissible variations in dimensions, significance of numerical limits, lot size, special tests, workmanship, finish, inspection, certification, packaging and marking

  13. Impact of Modificated Asphalt Mixtures on Paving Functioning and Environment

    Directory of Open Access Journals (Sweden)

    Gediminas Gribulis

    2016-10-01

    Full Text Available Atmospheric pollution began to increase in the beginning of 19th century, when the global economy and industrial development started the signal grow. The current problem of global warming is partly related with emission of carbon dioxide (CO2 to environment, which one of the sources are industrial production companies. Warm asphalt mix is usually used in the practice of Lithuania and the world for equipment of road paving. These mixes are produced in specialized asphalt mixers where stone dosing, drying and its mixing with bituminous binders are performed. The temperature of produced hot asphalt mix in mixer reach 150–180 °C and 120–160 °C of mixture laying on the road. Various pollutants, carbon dioxide, formaldehydes, and other are spread to the environment. The carried out researches in Lithuania and the world have showed that while using special additives it is possible to reduce the temperatures of warm asphalt production and laying on the road. Such reduction of temperature helps not to worsen the quality of asphalt layer, to lower the emission of pollutants to environment, to improve the conditions of road workers and to economically use the gas for production of asphalt mixes. Production technologies of different asphalt mixes, their advantages and disadvantages, and results of laboratory tests are analyzed in this article. Equipment samples of experimental road sections, using the warm mixing asphalt mixtures are given.

  14. Dominant root locus in state estimator design for material flow processes: A case study of hot strip rolling.

    Science.gov (United States)

    Fišer, Jaromír; Zítek, Pavel; Skopec, Pavel; Knobloch, Jan; Vyhlídal, Tomáš

    2017-05-01

    The purpose of the paper is to achieve a constrained estimation of process state variables using the anisochronic state observer tuned by the dominant root locus technique. The anisochronic state observer is based on the state-space time delay model of the process. Moreover the process model is identified not only as delayed but also as non-linear. This model is developed to describe a material flow process. The root locus technique combined with the magnitude optimum method is utilized to investigate the estimation process. Resulting dominant roots location serves as a measure of estimation process performance. The higher the dominant (natural) frequency in the leftmost position of the complex plane the more enhanced performance with good robustness is achieved. Also the model based observer control methodology for material flow processes is provided by means of the separation principle. For demonstration purposes, the computer-based anisochronic state observer is applied to the strip temperatures estimation in the hot strip finishing mill composed of seven stands. This application was the original motivation to the presented research. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Structural and spectroscopic characterisations of the surface oxide scales and inclusions present on edge-burst hot-rolled steel coils

    International Nuclear Information System (INIS)

    Chowdhury, Anirban; Iyyappan, Ramasamy; Majumdar, Dipanwita; Singha, Achintya

    2014-01-01

    Detailed structural and spectroscopic characterisations have been carried out on the inclusions and the surface oxides present on edge-burst hot-rolled steel coils. Surface scales were characterised through X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. Evidence of different types of regular and non-stoichiometric Fe-oxides was found on the cracked surface of the steel wire. Along with the surface scales inclusions with calcium aluminate and spinel was characterized using Raman spectroscopy. The usefulness of Raman spectroscopy has been explored in detail for the characterisation of these inclusions; especially when XRD information ceases to be a limiting tool. The samples collected from the clogged nozzle area were found to be of grossite (CaO·2Al 2 O 3 ) phase and this was also observed in the inclusions in the finished coils. It was found that this particular calcium aluminate phase has a detrimental effect on casting and final finished steel products. - Highlights: • First investigation and surface study report on edge-bursting issue of steel coils. • Detailed characterisations of the inclusions and surface oxide scales in steel. • Influence of a particular type of calcium aluminate phase on process chemistry

  16. Fatigue crack growth behaviors in hot-rolled low carbon steels: A comparison between ferrite–pearlite and ferrite–bainite microstructures

    International Nuclear Information System (INIS)

    Guan, Mingfei; Yu, Hao

    2013-01-01

    The roles of microstructure types in fatigue crack growth behaviors in ferrite–pearlite steel and ferrite–bainite steel were investigated. The ferrite–bainite dual-phase microstructure was obtained by intermediate heat treatment, conducted on ferrite–pearlite hot-rolled low carbon steel. This paper presents the results from investigation using constant stress-controlled fatigue tests with in-situ scanning electron microscopy (SEM), fatigue crack growth (FCG) rate tests, and fatigue fractography analysis. Microscopy images arrested by in-situ SEM showed that the fatigue crack propagation in F–P steel could become unstable more ealier compared with that in F–B steel. The fatigue cracks in ferrite–pearlite were more tortuous and could propagate more freely than that in ferrite–bainite microstructures. However, frequent crack branching were observed in ferrite–bainite steel and it indicated that the second hard bainite phase effectively retarded the crack propagation. The variation of FCG rate (da/dN) with stress intensity factor range (ΔK) for F–P and F–B steels was discussed within the Paris region. It was shown that FCG rate of F–P steel was higher than that of F–B steel. Moreover, the fatigue fracture surface analysis proved that grain boundaries could also play a role in the resistance of crack propagation.

  17. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  18. Texture evolution in Nd:YAG-laser welds of AZ31 magnesium alloy hot rolled sheets and its influence on mechanical properties

    International Nuclear Information System (INIS)

    Commin, Lorelei; Dumont, Myriam; Rotinat, Rene; Pierron, Fabrice; Masse, Jean-Eric; Barrallier, Laurent

    2011-01-01

    Research highlights: → AZ31 LBW fusion zone results in Mg 17 (Al-Zn) 12 precipitation, twins formation and {0 0 2} texture modification. → The mechanical properties were reduced after LBW but the fracture occurred in the base metal. → The mechanical properties were reduced after LBW but the fracture occurred in the base metal. → A recovery of elongation and UTS can be achieved by a 300 deg. C/1 h heat treatment. The texture evolution is mainly responsible for the yield strength reduction in the fusion zone. - Abstract: AZ31 hot rolled magnesium alloy presents a strong basal texture. Using laser beam welding (LBW) as a joining process induces high temperature gradients leading to major texture changes. Electron back scattered diffraction (EBSD) was used to study the texture evolution, and tensile tests coupled with speckle interferometry were performed to understand its influence on mechanical properties. The random texture obtained in the LBW fusion zone is mainly responsible for the yield strength reduction.

  19. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

    Science.gov (United States)

    Chin, Kwang-Geun; Kang, Chung-Yun; Park, Jaeyeong; Lee, Sunghak

    2018-05-01

    An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress-strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

  20. Effect of moisture and freeze-thaw on mechanical properties of CRM asphalt mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Seok; Cho, Kee-Ju [Kyonggi University, Suwon(Korea)

    2000-06-30

    This paper presents the experimental test results on moisture and freeze-thaw resistance of hot mix crumb rubber modified (CRM) asphalt concrete mixture. To compare the differences in mechanical properties of conventional and CRM asphalt concretes, various tests were conducted under different moisture conditions and freeze-thaw cycles. Marshall mix design was also performed to determine the optimum asphalt contents for the both asphalt concrete mixtures. Test results revealed that the moisture and freeze-thaw resistance of CRM asphalt mixture was superior to the conventional asphalt concrete. As a result, it is considered that the utilization of waste tires in asphalt pavements has the potential of minimizing the damage due to the moisture and freeze-thaw. (author). 9 refs., 4 tabs., 8 figs.

  1. Deformation mechanism study of a hot rolled Zr-2.5Nb alloy by transmission electron microscopy. I. Dislocation microstructures in as-received state and at different plastic strains

    Energy Technology Data Exchange (ETDEWEB)

    Long, Fei; Daymond, Mark R., E-mail: mark.daymond@queensu.ca; Yao, Zhongwen [Department of Mechanical and Materials Engineering, Queen' s University Kingston, Ontario K7L 3N6 (Canada)

    2015-03-07

    Thin foil dog bone samples prepared from a hot rolled Zr-2.5Nb alloy have been deformed by tensile deformation to different plastic strains. The development of slip traces during loading was observed in situ through SEM, revealing that deformation starts preferentially in certain sets of grains during the elastic-plastic transition region. TEM characterization showed that sub-grain boundaries formed during hot rolling consisted of screw 〈a〉 dislocations or screw 〈c〉 and 〈a〉 dislocations. Prismatic 〈a〉 dislocations with large screw or edge components have been identified from the sample with 0.5% plastic strain. Basal 〈a〉 and pyramidal 〈c + a〉 dislocations were found in the sample that had been deformed with 1.5% plastic strain, implying that these dislocations require larger stresses to be activated.

  2. Some Properties of Emulsified Asphalt Paving Mixture at Iraqi Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Shakir.A.Al-Mishhadani* Hasan.H.Al-Baid

    2014-04-01

    Full Text Available Cold emulsified asphalt mixture is generally a mix made of emulsified asphalt withaggregate. Emulsified asphalt is manufactured from base asphalt, emulsifier agent and waterwith approximate percentage of 40% to 75% asphalt, 0.1% to 2.5% emulsifier and 25% to60% water plus some minor components. This study aims to use the cold emulsified asphaltmixtures for road construction and maintenance in Iraq as an alternative to the hot asphaltmixtures, due to its economical, practical and environmental advantages. This studyfocusedto test and evaluates the emulsified asphalt material properties to be used as paving mixture.The tested properties of emulsified asphalt mixture were bulk density, air voids, dry Marshallstability, wet Marshall stability, retained Marshall stability, flow tests and compared with thecommon used specification.The results indicate that the emulsified asphalt type cationic slowsetting low viscosity (CSS-1 is very suitable with quartz type of aggregate from Al-Nibaayquarry. From many trial mixes it is found that the best percentages of initial residual bitumencontent to produced adequateresults for coating test ,mixing ,compaction ,curing and Marshallstability were ranged from (2.5%, 3%,3.5%,4% and 4.5%, andthe optimum percentage is(3.5%.Finally it can be conducted that the emulsified asphalt mixture is a suitable alternativemixture to the hot asphalt mixture for road construction and maintenance in Iraq.  

  3. Some Properties of Emulsified Asphalt Paving Mixture at Iraqi Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Shakir.A.Al-Mishhadani

    2014-02-01

    Full Text Available Cold emulsified asphalt mixture is generally a mix made of emulsified asphalt withaggregate. Emulsified asphalt is manufactured from base asphalt, emulsifier agent and waterwith approximate percentage of 40% to 75% asphalt, 0.1% to 2.5% emulsifier and 25% to60% water plus some minor components. This study aims to use the cold emulsified asphaltmixtures for road construction and maintenance in Iraq as an alternative to the hot asphaltmixtures, due to its economical, practical and environmental advantages. This studyfocusedto test and evaluates the emulsified asphalt material properties to be used as paving mixture.The tested properties of emulsified asphalt mixture were bulk density, air voids, dry Marshallstability, wet Marshall stability, retained Marshall stability, flow tests and compared with thecommon used specification.The results indicate that the emulsified asphalt type cationic slowsetting low viscosity (CSS-1 is very suitable with quartz type of aggregate from Al-Nibaayquarry. From many trial mixes it is found that the best percentages of initial residual bitumencontent to produced adequateresults for coating test ,mixing ,compaction ,curing and Marshallstability were ranged from (2.5%, 3%,3.5%,4% and 4.5%, andthe optimum percentage is(3.5%.Finally it can be conducted that the emulsified asphalt mixture is a suitable alternativemixture to the hot asphalt mixture for road construction and maintenance in Iraq.

  4. Asphalt in Pavement Maintenance.

    Science.gov (United States)

    Asphalt Inst., College Park, MD.

    Maintenance methods that can be used equally well in all regions of the country have been developed for the use of asphalt in pavement maintenance. Specific information covering methods, equipment and terminology that applies to the use of asphalt in the maintenance of all types of pavement structures, including shoulders, is provided. In many…

  5. Promoting Ti{sub 4}C{sub 2}S{sub 2} strain induced precipitation during asymmetrical hot rolling to improve r value and advantaged texture in Ti stabilized IF steel

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Futao, E-mail: dongft@sina.com [College of Metallurgy and Energy, Hebei United University, Tangshan 063000 (China); Xue, Fei [College of Electrical Engineering, Hebei United University, Tangshan 063000 (China); Du, Linxiu; Liu, Xianghua [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China)

    2015-01-25

    Highlights: • We study Ti{sub 4}C{sub 2}S{sub 2} strain induced precipitation in Ti stabilized IF steel. • The PTT diagram is obtained by plotting 1/A{sub r}–time curves. • Hot rolling at the nose of P{sub s} line effectively promotes Ti{sub 4}C{sub 2}S{sub 2} precipitation. • Annealed sheet with promoted Ti{sub 4}C{sub 2}S{sub 2} exhibits higher r value and stronger γ fiber texture. • Adverse impact of tiny TiC has been significantly mitigated. - Abstract: The kinetic of Ti{sub 4}C{sub 2}S{sub 2} strain induced precipitation in a Ti stabilized IF steel was investigated using two stage interrupted compression test with high true strain (0.5). The PTT (precipitation–time–temperature) diagram was obtained by plotting 1/A{sub r}–time curves. TEM (transmission electron microscopy) observation confirmed that the evolution of Ti{sub 4}C{sub 2}S{sub 2} precipitate in the quenched samples of thermal simulation is in good agreement with the PTT diagram. Hot strips were produced at three different rolling temperatures with high strain and slight shear deformation. It was found that hot rolling at the nose temperature of the P{sub s} line of the PTT diagram can effectively promote the precipitation of Ti{sub 4}C{sub 2}S{sub 2} and retard the precipitation of TiC. Cold rolled and annealed sheets from hot strip containing higher volume fraction of Ti{sub 4}C{sub 2}S{sub 2} exhibited higher r value and stronger γ fiber texture with equal {1 1 1}〈1 1 2〉 and {1 1 1}〈1 1 0〉 components. By contrast, cold rolled and annealed sheets from hot strips containing lower volume fraction of Ti{sub 4}C{sub 2}S{sub 2} represented lower r values and weaker γ fiber texture with significant drops from {1 1 1}〈1 1 2〉 to {1 1 1}〈1 1 0〉 component.

  6. Influence of precipitation behavior on mechanical properties and hydrogen induced cracking during tempering of hot-rolled API steel for tubing

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondae-ro, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Choi, Jongmin; Han, Seong-Kyung; Huh, Sungyul; Kim, Seong-Ju [Sheet Products Design Team, Technical Research Center, Hyundai Steel Company, 1480 Bukbusaneop-ro, Dangjin, Chungnam 343-823 (Korea, Republic of); Lee, Chang-Hoon; Lee, Tae-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondae-ro, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of)

    2016-01-15

    Precipitation behavior and its effect on hydrogen embrittlement during tempering process of hot-rolled API steel designed with 0.4 wt% Cr and 0.25 wt% Mo were investigated. The base steel was normalized and then tempered at 650 °C for up to 60 min. The precipitation behavior of the examined steel was explored using transmission electron microscopy (TEM) analysis, and it was found that the precipitation sequence during tempering at 650 °C were as follows: MX+M{sub 3}C→MX→MX+M{sub 7}C{sub 3}+M{sub 23}C{sub 6}. The change of particle fraction was measured by electrolytic extraction technique. At the early stage of tempering, the particle fraction greatly decreased due to dissolution of M{sub 3}C particle, and increased after 10 min by the precipitation of M{sub 7}C{sub 3} and M{sub 23}C{sub 6} particles. The particle fraction showed a peak at 30 min tempering and decreased again due to the dissolution of M{sub 7}C{sub 3} particle. Vickers hardness tests of base steel and tempered samples were carried out, and then the hardness was changed by accompanying with the change of particle fraction. The sensitivity of hydrogen embrittlement was evaluated through hydrogen induced cracking (HIC) tests, and the results clearly proved that HIC resistance of tempered samples was better than that of base steel due to the formation of tempered martensite, and then the HIC resistance changed depending on the precipitation behavior during tempering, i.e., the precipitation of coarse M{sub 23}C{sub 6} and M{sub 7}C{sub 3} particles deteriorated the HIC resistance.

  7. Influence of precipitation behavior on mechanical properties and hydrogen induced cracking during tempering of hot-rolled API steel for tubing

    International Nuclear Information System (INIS)

    Moon, Joonoh; Choi, Jongmin; Han, Seong-Kyung; Huh, Sungyul; Kim, Seong-Ju; Lee, Chang-Hoon; Lee, Tae-Ho

    2016-01-01

    Precipitation behavior and its effect on hydrogen embrittlement during tempering process of hot-rolled API steel designed with 0.4 wt% Cr and 0.25 wt% Mo were investigated. The base steel was normalized and then tempered at 650 °C for up to 60 min. The precipitation behavior of the examined steel was explored using transmission electron microscopy (TEM) analysis, and it was found that the precipitation sequence during tempering at 650 °C were as follows: MX+M_3C→MX→MX+M_7C_3+M_2_3C_6. The change of particle fraction was measured by electrolytic extraction technique. At the early stage of tempering, the particle fraction greatly decreased due to dissolution of M_3C particle, and increased after 10 min by the precipitation of M_7C_3 and M_2_3C_6 particles. The particle fraction showed a peak at 30 min tempering and decreased again due to the dissolution of M_7C_3 particle. Vickers hardness tests of base steel and tempered samples were carried out, and then the hardness was changed by accompanying with the change of particle fraction. The sensitivity of hydrogen embrittlement was evaluated through hydrogen induced cracking (HIC) tests, and the results clearly proved that HIC resistance of tempered samples was better than that of base steel due to the formation of tempered martensite, and then the HIC resistance changed depending on the precipitation behavior during tempering, i.e., the precipitation of coarse M_2_3C_6 and M_7C_3 particles deteriorated the HIC resistance.

  8. Investigation of the Asphalt Pavement Analyzer (APA) testing program in Nebraska.

    Science.gov (United States)

    2008-03-01

    The asphalt pavement analyzer (APA) has been widely used to evaluate hot-mix asphalt (HMA) rutting potential in mix : design and quality control-quality assurance (QC-QA) applications, because the APA testing and its data analyses are : relatively si...

  9. The use of atomic force microscopy to evaluate warm mix asphalt.

    Science.gov (United States)

    2013-01-01

    The main objective of this study was to use the Atomic Force Microscopy (AFM) to examine the moisture susceptibility : and healing characteristics of Warm Mix Asphalt (WMA) and compare it with those of conventional Hot Mix Asphalt (HMA). To : this en...

  10. Use of warm mix asphalt pavement on Route 9, in Durham.

    Science.gov (United States)

    2012-06-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  11. Use of warm mix asphalt pavement on Interstate 95, Carmel to Hampden, northbound.

    Science.gov (United States)

    2012-06-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  12. Thermodynamics between RAP/RAS and virgin aggregates during asphalt concrete production : a literature review.

    Science.gov (United States)

    2015-09-01

    In hot-mix asphalt (HMA) plants, virgin aggregates are heated and dried separately before being mixed with : RAP/RAS and virgin asphalt binder. RAP/RAS materials are not heated or dried directly by a burner to avoid : burning of aged binder coating o...

  13. Experimental Study on Color Durability of Color Asphalt Pavement

    Science.gov (United States)

    Ning, Shi; Huan, Su

    2017-06-01

    Aiming at the poor Color durability and the lack of research on Color asphalt pavement, spraying an anti-tire trace seal resin emulsion on the surface, a Color durable asphalt pavement was proposed. After long-term rolling and long-term aging test, the Color durability was evaluated by RGB function in Photoshop and trace residue rate formula. Test results proved that the Evaluation method was simple and effective. After long-term rolling, the Color of the road surface tends to a constant value. Spraying the emulsion on the road surface can resist tire traces. After long-term aging test, the resistance to tire traces was increased by 26.6% compared with the conventional type, while the former was 44.1% higher than the latter without long-term aging. The Color durable asphalt pavement can effectively improve the ability of Color asphalt pavement to resist tire traces, and significantly improve the Color durability of Color asphalt pavement.

  14. Ageing evolution of foamed warm mix asphalt combined with reclaimed asphalt pavement

    International Nuclear Information System (INIS)

    Perez-Martinez, M.; Marsac, P.; Gabet, T.; Pouget, S.; Hammoum, F.

    2017-01-01

    The combination of high rates of reclaimed asphalt pavement (RAP) and warm mix asphalt (WMA) technologies is still ambiguous in terms of durability. With the aim of clarifying this issue, a study comparing a hot mix asphalt with a WMA prepared using the foaming process technology. Both mixes contain 50% of RAP and are submitted to a laboratory ageing procedure. The long term related performance of the mixtures is compared by means of complex modulus and fatigue testing. Penetration and ring and ball tests are undertaken on the recovered bitumens, as well as the ageing evolution, characterised by the Fourier Transform Infrared analysis. Finally, the Apparent Molecular Weight Distribution (AMWD) of the binders is calculated from rheological measurements using the δ-method. Results show a relation between ageing evolution and mechanical performance. After ageing, the overall tendencies are similar for both processes. [es

  15. Hanford protective barriers program: Status of asphalt barrier studies - FY 1989

    International Nuclear Information System (INIS)

    Freeman, H.D.; Gee, G.W.

    1989-11-01

    The Hanford Protective Barrier Program is evaluating alternate barriers to provide a means of meeting stringent water infiltration requirements. One type of alternate barrier being considered is an asphalt-based layer, 1.3 to 15 cm thick. Evaluations of these barriers were initiated in FY 1988, and, based on laboratory studies, two asphalt formulations were selected for further testing in small-tube lysimeters: a hot rubberized asphalt and an admixture of cationic asphalt emulsion and concrete sand containing 24 wt% residual asphalt. Eight lysimeters containing asphalt seals were installed as part of the Small Tube Lysimeter Test Facility on the Hanford Site. Two control lysimeters containing Hanford sand with a surface gravel treatment were also installed for comparison. 5 refs., 13 figs., 1 tab

  16. Asphalt chemical fractionation

    International Nuclear Information System (INIS)

    Obando P, Klever N.

    1998-01-01

    Asphalt fractionation were carried out in the Esmeraldas Oil Refinery using n-pentane, SiO 2 and different mixture of benzene- methane. The fractions obtained were analyzed by Fourier's Transformed Infrared Spectrophotometry (FTIR)

  17. Effect of hot rolling on the structure and the mechanical properties of nitrogen-bearing austenitic-martensitic 14Kh15AN4M steel

    Science.gov (United States)

    Bannykh, O. A.; Betsofen, S. Ya.; Lukin, E. I.; Blinov, V. M.; Voznesenskaya, N. M.; Tonysheva, O. A.; Blinov, E. V.

    2016-04-01

    The effect of the rolling temperature and strain on the structure and the properties of corrosionresistant austenitic-martensitic 14Kh15AN4M steel is studied. The steel is shown to exhibit high ductility: upon rolling in the temperature range 700-1100°C at a reduction per pass up to 80%, wedge steel specimens are uniformly deformed along and across the rolling direction without cracking and other surface defects. Subsequent cold treatment and low-temperature tempering ensure a high hardness of the steel (50-56 HRC). Austenite mainly contributes to the hardening upon rolling in the temperature range 700-800°C at a reduction of 50-70%, and martensite makes the main contribution at higher temperatures and lower strains. Texture does not form under the chosen deformation conditions, which indicates dynamic recrystallization with the nucleation and growth of grains having no preferential orientation.

  18. Aggregate packing characteristics of good and poor performing asphalt mixes

    CSIR Research Space (South Africa)

    Denneman, E

    2007-07-01

    Full Text Available The aggregate structure of the compacted mix is a determining factor for the performance of Hot-Mix Asphalt (HMA). In this paper, the grading characteristics of good and poor performing HMA mixes are explored using the concepts of the Bailey method...

  19. Nondestructive evaluation of warm mix asphalt through resonant column testing.

    Science.gov (United States)

    2014-02-01

    Non-destructive testing has been used for decades to characterize engineering properties of hot-mix asphalt. Among such tests is the resonant column (RC) test, which is commonly used to characterize soil materials. The resonant column device at Penn ...

  20. Reinforcement of Recycled Foamed Asphalt Using Short Polypropylene Fibers

    Directory of Open Access Journals (Sweden)

    Yongjoo Kim

    2013-01-01

    Full Text Available This paper presents the reinforcing effects of the inclusion of short polypropylene fibers on recycled foamed asphalt (RFA mixture. Short polypropylene fibers of 10 mm length with a 0.15% by weight mixing ratio of the fiber to the asphalt binder were used. The Marshall stability test, the indirect tensile strength test, the resilient modulus test, and wheel tracking test of the RFA mixtures were conducted. The test results were compared to find out the reinforcing effects of the inclusion of the fiber and the other mixtures, which included the conventional recycled foamed asphalt (RFA mixtures; the cement reinforced recycled foamed asphalt (CRFA mixtures; the semihot recycled foamed asphalt (SRFA mixtures; and recycled hot-mix asphalt (RHMA mixtures. It is found that the FRFA mixture shows higher Marshall stability than the RFA and SRFA mixtures, higher indirect tensile strength than the RFA mixture, and higher rut resistance than the RFA, SRFA, and RHMA mixtures as seen from the wheel tracking test.

  1. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  2. Partial substitution of asphalt pavement with modified sulfur

    Directory of Open Access Journals (Sweden)

    E.R. Souaya

    2015-12-01

    Full Text Available The use of sulfur in pavement laying was developed in 1980 but it was restricted in the late 19th century due to its environmental problems and its high reactivity toward oxidation processes which give sulfuric acid products that are capable of destroying the asphalt mixture. The study involved the conversion of elemental sulfur to a more stable modified one using a combination of byproducts of olefin hydrocarbons that were obtained from petroleum fractional distillates and cyclic hydrocarbon bituminous residue at 145 °C. The changes in the structural characteristics and morphology of prepared modified sulfur were studied using XRD and SEM respectively. Also DSC curves help us to elucidate the changes in sulfur phases from α-orthorhombic to β-mono clinic structure. The technique of nanoindentation helps us to compare the mechanical properties of modified and pure sulfur including modulus of elasticity and hardness. The hot mixture asphalt designs were prepared according to the Marshall Method in which the asphalt binder content was partially substituted with 20%, 30%, 40%, and 50% modified sulfur. The mechanical properties were measured including Marshall Stability, flow, air voids, and Marshall Stiffness. From the overall study, the results indicated that asphalt could partially be substituted with modified sulfur with no significant deleterious effect on performance and durability of hot mixed asphalt.

  3. Asphalt Roofing Shingles Into Energy Project Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, Rex, PE

    2008-04-28

    Based on a widely cited September, 1999 report by the Vermont Agency of Natural Resources, nearly 11 million tons of asphalt roofing shingle wastes are produced in the United States each year. Recent data suggests that the total is made up of about 9.4 million tons from roofing tear-offs and about 1.6 million tons from manufacturing scrap. Developing beneficial uses for these materials would conserve natural resources, promote protection of the environment and strengthen the economy. This project explored the feasibility of using chipped asphalt shingle materials in cement manufacturing kilns and circulating fluidized bed (CFB) boilers. A method of enhancing the value of chipped shingle materials for use as fuel by removing certain fractions for use as substitute raw materials for the manufacture of new shingles was also explored. Procedures were developed to prevent asbestos containing materials from being processed at the chipping facilities, and the frequency of the occurrence of asbestos in residential roofing tear-off materials was evaluated. The economic feasibility of each potential use was evaluated based on experience gained during the project and on a review of the well established use of shingle materials in hot mix asphalt. This project demonstrated that chipped asphalt shingle materials can be suitable for use as fuel in circulating fluidized boilers and cement kilns. More experience would be necessary to determine the full benefits that could be derived and to discover long term effects, but no technical barriers to full scale commercial use of chipped asphalt shingle materials in these applications were discovered. While the technical feasibility of various options was demonstrated, only the use of asphalt shingle materials in hot mix asphalt applications is currently viable economically.

  4. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Buhari Rosnawati

    2018-01-01

    Full Text Available This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2 powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  5. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Azhar Tajudin, Saiful; Khatijah Abu Bakar, Siti

    2018-03-01

    This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2) powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  6. Use of warm mix asphalt pavement along Rt. 27 in the towns of Farmington and New Portland.

    Science.gov (United States)

    2012-05-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  7. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    Directory of Open Access Journals (Sweden)

    Julide Oner

    Full Text Available The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures.

  8. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    Science.gov (United States)

    Oner, Julide; Sengoz, Burak

    2015-01-01

    The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP) is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA) technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing) at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures.

  9. Evaluation of factors that affect rutting resistance of asphalt mixes by orthogonal experiment design

    Directory of Open Access Journals (Sweden)

    Guilian Zou

    2017-05-01

    Full Text Available Rutting has been one of the major distresses observed on asphalt pavement in China, due to increasing traffic volume, heavy axle load, continuous hot weather, etc., especially in long-steep-slope section, bus stops, etc. Many factors would affect rutting resistance of asphalt pavement, including material properties, climatic condition, traffic volumes, speed, and axle types, and construction quality.The orthogonal experimental design method was used in this study to reduce the number of tests required, without comprising the validity of the test results. The testing variables and their levels were selected according to investigations and field test results. Effects of various factors on asphalt pavement rutting performance were evaluated, including the asphalt binders, mixture type (aggregate gradation, axle load, vehicle speed and temperature.In this study, the wheel tracking test was used to evaluate rutting performance, as represented by the parameter Dynamic Stability (DS, of the various asphalt mixes. Test results were analyzed using range analysis and analysis of variance (ANOVA. All four factors evaluated in this study had significant effects on pavement rutting performance. The ranking of the significance was asphalt mixture type, temperature, loading frequency, and tire-pavement contact pressure. Asphalt mixture type was the most important factor that affects rutting resistance. Within the asphalt mixtures, asphalt binder had significant effects on rutting performance of mixes more than aggregate gradation. Rutting resistance of SBS modified asphalt mixes was significantly better than neat asphalt mixes, and skeleton dense structure mixes were better than suspended dense structure mixes. Keywords: Asphalt mixes, Rutting resistance, Effect factor, Orthogonal experiment design

  10. Fabrication of cold-rolled bands of the alloy-ehi 702 in rolls

    International Nuclear Information System (INIS)

    Zhuchin, V.N.; Gindin, A.Sh.; Shaburov, V.E.; Vladimirov, S.M.; Sokolov, V.A.; Shavkun, V.V.; Perepelitsa, I.V.; Markov, V.V.; Naymov, E.P.; Evstaf'ev, P.P.

    1977-01-01

    The questions are discussed, connected with the manufacture of cold-rolled strip of alloy EI702 in reels from strip blanks. It has been established that in the manufacture of hot-rolled stock from EI702 slabs it is necessary to use powerful rolling equipment because of high resistance to deformation. The reel method for manufacturing EI702 alloy improves the rolled stock and increases percentage of serviceable stock, as well as the output

  11. Evaluación de las propiedades mecánicas de una mezcla densa en caliente modificada con un desecho de polietileno de baja densidad (PEBD Mechanical properties evaluation of a dense hot asphalt mixture modified with a residue of low density polyethylene (LDPE

    Directory of Open Access Journals (Sweden)

    Hugo Rondón Quintana

    2010-04-01

    Full Text Available El artículo presenta los resultados experimentales de ensayar una mezcla asfáltica densa en caliente tipo MDC-2 (acorde con las especificaciones del Instituto Nacional de Vías - INVIAS, 2007 modificada con un desecho de polietileno de baja densidad (PEBD. Para la evaluación del comportamiento de las mezclas asfálticas convencionales (sin aditivo y modificadas se realizaron ensayos Marshall, módulo dinámico, deformación permanente y resistencia a fatiga. Las mezclas fueron elaboradas con un cemento asfáltico (CA producido en Colombia tipo CA 80-100. Al CA con y sin aditivo se realizaron ensayos de caracterización de asfaltos como penetración y punto de ablandamiento. La modificación de las mezclas se realizó por vía húmeda. Las mezclas modificadas con desecho de PEBD experimentan mayor rigidez (bajo carga monotónica y cíclica y resistencia a la deformación permanente en comparación con las convencionales. Sin embargo la resistencia a fatiga de las mezclas convencionales disminuye cuando se adiciona PEBD al CA. Adicionalmente el CA modificado presenta mayor resistencia a la penetración, mayor punto de ablandamiento y menor susceptibilidad térmica a fluir que el convencional.Laboratory tests were used to evaluate the effect on the mechanical properties of a hot asphalt mix (MDC-2 as per INVIAS, 2007 specifications due to the addition by wet way of a residue of low density polyethylene (LDPE. The strength under monotonic load, resilient modulus, rutting and fatigue strength were evaluated. Asphalt cement (AC AC 80-100 was used from Colombia. The results show that the monotonic and cyclic mechanical strength evaluated were higher for the mixes modified with LDPE compared with mixtures with asphalts without additives. However, the mixes modified with LDPE undergo less fatigue strength. Additionally, characterization tests were conducted on asphalt cement with and without additive. The LDPE produces higher penetration resistance

  12. Quality control/quality assurance testing for joint density and segregation of asphalt mixtures : tech transfer summary.

    Science.gov (United States)

    2013-04-01

    A longitudinal joint is the interface between two adjacent and parallel hot-mix asphalt (HMA) mats. Inadequate joint construction can lead to a location where water can penetrate the pavement layers and reduce the structural support of the underlying...

  13. Asphalt emulsion sealing of uranium mill tailings. 1980 annual report

    International Nuclear Information System (INIS)

    Hartley, J.N.; Koehmstedt, P.L; Esterl, D.J.; Freeman, H.D.; Buelt, J.L.; Nelson, D.A.; Elmore, M.R.

    1981-05-01

    Studies of asphalt emulsion sealants conducted by the Pacific Northwest Laboratory have demonstrated that the sealants are effective in containing radon and other potentially hazardous material within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to near background levels. Field tests at the tailings pile in Grand Junction, Colorado, confirmed that an 8-cm admix seal containing 22 wt% asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and compacted, overburden was applied over the seal to protect the seal from ultraviolet degradation

  14. A review of asphalt and asphalt mixture aging

    Directory of Open Access Journals (Sweden)

    Wilmar Darío Fernández-Gómez

    2013-01-01

    Full Text Available This paper presents an extensive review of the pertinent literature regarding asphalt and asphalt mixture Aging. Aging affects flexible pavement performance and is produced by intrinsic and extrinsic variables as well as exposure time. Intrinsic variables include asphalt and aggregate properties, a mixture’s asphalt content, binder film thickness and air void content; extrinsic variables are associated with production (short-term aging and exposure to environmental field conditions (long-term aging. Taken together, both variables demonstrate that aging results from three distinct mechanisms: volatilisation, oxidation and steric hardening. Temperature, pressure and photo degradation treatments are used to simulate aging in the laboratory and empirical and semi-empirical models are created to represent and study aging. Aging increases asphalt complex modulus and decreases the phase angle. Mixtures become stiffer while fatigue life becomes reduced. Carbonyl and sulfoxide group formation in asphalt are often studied as such chemical changes show oxidation in aged asphalts. The prevailing models used to predict asphalt aging are discussed, though more comprehensive research into asphalt aging is still needed.

  15. New surface layers with low rolling resistance tested in Denmark

    DEFF Research Database (Denmark)

    Pettinari, Matteo; Schmidt, Bjarne; Jensen, Bjarne Bo

    2014-01-01

    Rolling Resistance coefficient that could improve energy efficiency of the roads. In particular, two new types of Split Mastic Asphalt (SMA) were developed and compared to a reference one; both mixtures have a relatively small maximum grain-size, 6 mm and 8 mm, respectively. Surface measurements...

  16. Mechanistic Evaluation of the Effect of Calcium Carbide Waste on Properties of Asphalt Mixes

    Directory of Open Access Journals (Sweden)

    N. Isa

    2018-03-01

    Full Text Available Calcium Carbide Waste (CCW was used as an alternative to traditional Portland cement mineral filler in hot mix asphalt concrete to rid its disposal problem. Its effect on mechanical properties of hot mix asphalt was assessed using the Marshall method of mix design. Using the optimum bitumen content determined from Marshall Test, Portland cement used as mineral filler was partially replaced with 0, 10, 20, 30, 40 and 50% CCW by dry weight. Results of tests indicated an increase in stability, voids in mineral aggregates, Marshall Stiffness and reduction in flow, unit weight, voids filled with binder when the percentage of CCW increases. Based on results of tests, partial replacement of Portland cement with 40% CCW could be used in asphalt production. This will ensure economy in asphalt production and promote disposal of CCW which constitute environmental hazards.

  17. Acoustic Properties of Absorbent Asphalts

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  18. Caltrans use of scrap tires in asphalt rubber products: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Haiping Zhou

    2014-02-01

    Full Text Available The California Department of Transportation (Caltrans has been using scrap tire rubber in asphalt pavements since the 1970s in chip seals and the 1980s in rubberized hot mix asphalt(RHMA. Both the wet (field blend and dry processes were used in early trials. Caltrans has also used rubber modified binders containing both crumb rubber modifier and polymer modifier that could be manufactured at a refinery facility, a terminal blend wet process. Since the beginning of this century, Caltrans increased the use of scrap tire rubber in paving projects and invested considerable resources in developing technically sound, cost effective, and environmentally friendly strategies for using scrap tire rubber in roadway applications. By the end of year 2010, approximately 31%of all hot mix asphalt (HMA placed by Caltrans was rubberized HMA, roughly 1.2 million tons. Caltrans efforts in using asphalt rubber products were also demonstrated in its research and technology development. These included the construction of two full-scale field experiments, five warranty projects, and an accelerated pavement study using a heavy vehicle simulator. Additionally, terminal blend asphalt rubber and rubberized warm mix asphalts began to be experimented on trial basis. This paper provides a comprehensive review of Caltrans experience over four decades with asphalt rubber products. Current practices and future outlook are also discussed.

  19. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia

    Science.gov (United States)

    Beddu, Salmia; Talib, Siti Hidayah Abdul; Itam, Zarina

    2016-03-01

    The implementation of asphalt solar collectors as a means of an energy source is being widely studied in recent years. Asphalt pavements are exposed to daily solar radiation, and are capable of reaching up to 70°C in temperature. The potential of harvesting energy from solar pavements as an alternative energy source in replace of non-renewable energy sources prone to depletion such as fuel is promising. In Malaysia, the sun intensity is quite high and for this reason, absorbing the heat from sun radiation, and then utilizing it in many other applications such as generating electricity could definitely be impressive. Previous researches on the different methods of studying the effect of heat absorption caused by solar radiation prove to be quite old and inaffective. More recent findings, on the otherhand, prove to be more informative. This paper focuses on determining the potential of heat collection from solar radiation in asphalt solar collectors using steel piping. The asphalt solar collector model constructed for this research was prepared in the civil engineering laboratory. The hot mixed asphalt (HMA) contains 10% bitumen mixed with 90% aggregates of the total size of asphalt. Three stainless steel pipes were embedded into the interior region of the model according to the design criteria, and then put to test. Results show that harvesting energy from asphalt solar collectors proves highly potential in Malaysia due its the hot climate.

  20. PROTECCIÓN CONTRA LA CORROSIÓN EN SALES FUNDIDAS DE UN ACERO HOT ROLLED, EN EL RANGO DE TEMPERATURAS DE 400 ºC-600 ºC, RECUBIERTO POR ROCIADO TÉRMICO CON ACERO INOXIDABLE 312

    Directory of Open Access Journals (Sweden)

    JOSE LUDDEY MARULANDA

    2009-01-01

    Full Text Available Se evaluó la corrosión por sales fundidas mediante la técnica gravimétrica en un acero de bajo carbono tipo hot rolled, rociado térmicamente con una aleación de acero inoxidable tipo 312, con el equipo Rototec, en una mezcla de sal 20% Na2SO4 - 80% V2O5, entre 400ºC - 600ºC, durante tiempos de 1-7-22 horas. Los resultados mostraron una moderada protección de la capa rociada térmicamente y se presentó alta degradación en el recubrimiento a 600ºC. Se concluyó que la velocidad de corrosión aumenta con la temperatura y disminuye con el tiempo de exposición.

  1. The mechanical behavior of two warm-mix asphalts

    Directory of Open Access Journals (Sweden)

    H. A. Rondón-Quintana

    2016-09-01

    Full Text Available This paper presents results stemming from a comparative experimental analysis of two warm-mix asphalts (WMA and a dense-graded hot-mix asphalt (HMA. In order to evaluate asphalt mixture behavior, physical and rheological tests were conducted, including tests on resilient modulus, resistance to moisture-induced damage, resistance to fatigue and resistance to permanent deformation. Samples studied were subjected to short (STOA and long-term (LTOA aging. As far as asphalt mixture composition is concerned, the same particle size distribution and coarse aggregate were employed for both mixture types. The control HMA mixture was produced with AC 60-70, and the WMAs used the same asphalt cement modified with two chemical additives (Rediset WMX® and Cecabase RT®. The modified mixtures exhibited better resistance to permanent deformation, aging and moisture-induced damage (versus the control mixture. Likewise, WMAs generally saw increased fatigue resistance under controlled-stress loading, which rheological characterization showed is mainly attributable to binder additives and their concomitant modifications.

  2. Experimental Investigation on Asphalt Binders Ageing Behavior and Rejuvenating Feasibility in Multicycle Repeated Ageing and Recycling

    Directory of Open Access Journals (Sweden)

    Yihua Nie

    2018-01-01

    Full Text Available Multicycle repeated utilization of reclaimed asphalt pavement (RAP is a quite recent development of sustainable pavement materials technology. To investigate ageing rules and recycling possibility of asphalt binders in repeatedly used asphalt mixture, virgin asphalt AH-70 samples were heated by the rolling thin film oven test (RTFOT at 163°C, respectively, for 40, 85, 180, 240, and 300 minutes to simulate different ageing degrees, and then the aged ones were rejuvenated by adding a self-made rejuvenator. This ageing and recycling process was repeated altogether for 5 cycles to simulate repeated use of RAP binders. In repeated recycling, rejuvenator contents for different cycle numbers or ageing durations were not the same, and the optimum ones were initially estimated by an empirical formula and finally obtained by comparative tests. Empirical rheological tests and the infrared spectral (IR analysis were done before and after each cycle of recycling. Results indicate that for impact on deterioration of asphalt binders, ageing time is more important than cycle number. Meanwhile, the asphalt after multicycle repeated ageing and recycling can be restored to the empirical rheological indices level of the virgin asphalt and meet specifications requirements.

  3. Basic Performance of Fibre Reinforced Asphalt Concrete with Reclaimed Asphalt Pavement Produced In Low Temperatures with Foamed Bitumen

    Science.gov (United States)

    Chomicz-Kowalska, Anna; Iwański, Mateusz M.; Mrugała, Justyna

    2017-10-01

    During the reconstruction of road pavements, the reclaimed asphalt pavement (RAP), which is obtained through milling of the worn out existing asphalt, is commonly used for producing new base courses in cold recycling processes. Two of these techniques are most popular: one using mineral-cement-emulsion mixes and one utilizing mineral cement mixes with foamed bitumen. Additionally, some amounts of RAP can be incorporated into traditional hot mix asphalt. The demand for energy efficient and environmentally friendly solutions however, results in a need for development of new techniques that would result in cheaper and more reliable solutions with smaller carbon footprint. The reduction of processing temperatures with simultaneous incorporation of reclaimed material is the most efficient way of obtaining these objectives, but it often results in the overall decrease of bituminous mix quality. The paper presents the possibility of using RAP for producing asphalt concrete in warm mix asphalt (WMA) production process by the use of foamed bitumen modified with Fischer-Tropsch synthetic wax and polymer-basalt fibers. Additionally, a series of reference mixtures were produced to investigate the effects of the additives and of the warm process. The carried out analyses and tests shown that the experimental warm mix asphalt produced with RAP and foamed bitumen returned satisfactory performance. The introduction of synthetic F-T wax in the warm foam bitumen mixes resulted in a significantly improved compaction levels and moisture and frost resistance and the addition of polymer-basalt fibers has further improved the permanent deformation resistance of the mixes. All of the designed and tested mixes have fulfilled the requirements for binding course asphalt concrete with medium traffic loads.

  4. INFLUENCE OF POLYMERIC-DISPERSED REINFORCEMENT ADDITIVES ON THE PERFORMANCE CHARACTERISTICS OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    Chernov Sergey Anatolevych

    2017-07-01

    Full Text Available The technique and results of the studies of the influence of a polymeric-dispersed reinforcement additive on the performance characteristics of road hot asphalt concrete, namely, its resistance to fatigue failures, rutting and development of residual deformation are described. It is shown that the proposed method of modification of asphalt-concrete mixtures ensures an increase in the durability of layers of pavement road surface.

  5. Thermal segregation of asphalt material in road repair

    Directory of Open Access Journals (Sweden)

    Juliana Byzyka

    2017-08-01

    Full Text Available This paper presents results from a field study of asphaltic pavement patching operations performed by three different contractors working in a total of ten sites. It forms part of an ongoing research programme towards improving the performance of pothole repairs. Thermal imaging technology was used to record temperatures of the patching material throughout the entire exercise, from the stage of material collection, through transportation to repair site, patch forming, and compaction. Practical complications occurring during patch repairs were also identified. It was found that depending on the weather conditions, duration of the travel and poor insulation of the transported hot asphalt mix, its temperature can drop as high as 116.6 °C over the period that the reinstatement team travel to the site and prepare the patch. This impacting is on the durability and performance of the executed repairs. Cold spots on the asphalt mat and temperature differentials between the new hot-fill asphalt mix and existing pavement were also identified as poorly compacted areas that were prone to premature failure. For example, over the five-minute period, the temperature at one point reduced by 33% whereas the temperatures of nearby areas decreased by 65% and 71%. A return visit to the repair sites, three months later, revealed that locations where thermal segregation was noted, during the patching operation, had failed prematurely.

  6. Surface conditioning of a cold-rolled dual-phase steel by annealing in nitriding atmospheres prior to hot-dip galvanizing

    Energy Technology Data Exchange (ETDEWEB)

    Luther, F.; Beste, D.; Bleck, W. [Institute for Ferrous Metallurgy (IEHK), RWTH Aachen (Germany); Dimyati, A.; Mayer, J. [Central Facility for Electron Microscopy (GFE), RWTH Aachen (Germany)

    2007-04-15

    The development of steel grades for automotive applications in the recent years has been driven on by two trends: lightweight and improved crash safety. By using steels like DP (dual phase) the goals of passenger safety, fuel efficiency and environmental friendliness can be met at reasonable price. The favorite corrosion protection method for sheet steels in the car industry is the hot-dip galvanizing process. Here, an approach was made to reduce the surface enrichment of critical alloying elements of a dual phase steel grade by reactive annealing in ammonia containing atmospheres. The effects of this treatment on mechanical properties and hot-dip coating behavior are reported. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  7. Recovery of asphalt from bituminous minerals

    Energy Technology Data Exchange (ETDEWEB)

    Jossinet, J

    1881-12-31

    A process is disclosed for the recovery of asphalt from bituminous minerals, consisting in that the mineral is extracted with mineral oil, which is recovered by distilling the raw asphalt and distilling the solution to obtain on the one hand the liquid oil contained in the raw asphalt for use in the extraction and on the other hand distilled asphalt.

  8. Use of emulsion for warm mix asphalt

    Directory of Open Access Journals (Sweden)

    Mahabir Panda

    2017-06-01

    Full Text Available Due to increase in energy costs and emission problems in hot mix asphalt usually used, it brought a great interest to the researchers to develop the warm mix technology for pavement constructions. Commonly known as warm mix asphalt (WMA, it is a typical method in the bituminous paving technology, which allows production and placement of bituminous mixes at lower temperatures than that used for hot mix asphalt (HMA. The WMA involves an environmental friendly production process that utilises organic additives, chemical additives and water based technologies. The organic and chemical additives are normally very costly and still involve certain amount of environmental issues. These factors motivated the authors to take up this technology using simple, environment friendly and somewhat cost effective procedure. In this study, an attempt has been made to prepare warm mixes by first pre-coating the aggregates with medium setting bitumen emulsion (MS and then mixing the semi-coated aggregates with VG 30 bitumen at a lower temperature than normally required. After a number of trials it was observed that mostly three mixing temperatures, namely temperatures 110 °C, 120 °C and 130 °C were appropriate to form the bituminous mixes with satisfactory homogeneity and consistency and as such were maintained throughout this study. Marshall samples for paving mixes were prepared using this procedure for dense bituminous macadam (DBM gradings as per the specifications of Ministry of Road Transport and Highways (MORTH and subsequently Marshall properties of the resultant mixes were studied with the main objective of deciding the different parameters that were considered for development of appropriate warm mix asphalt. In this study it has been observed that out of three mixing temperatures tried, the mixes prepared at 120 °C with bitumen-emulsion composition of 80B:20E for DBM warm mix, offer highest Marshall stability and highest indirect tensile strength

  9. Kulturens rolle

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2007-01-01

    Kulturens rolle. Herunder kulturens betydning for psykologisk teori og forskning set i lyset af den stigende globalisering og væksten i kulturmøder. Der gives eksempler fra hverdagssituationer, den pædagogiske praksis, fra indvandrerforskning, turister men også fra avisernes referater af kulturmø......Kulturens rolle. Herunder kulturens betydning for psykologisk teori og forskning set i lyset af den stigende globalisering og væksten i kulturmøder. Der gives eksempler fra hverdagssituationer, den pædagogiske praksis, fra indvandrerforskning, turister men også fra avisernes referater af...

  10. A critical assessment of asphalt batching as a viable remedial option for hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Elliott, E.J.; Brashears, D.F.

    1991-01-01

    Hot mix asphalt production equipment has been successfully utilized in the remediation of soils contaminated with petroleum hydrocarbons. This paper reports that there are two major ways in which this equipment can be used to remediate the petroleum contaminated soils; by incorporating the contaminated soil in the hot mix asphalt product or by using the equipment to clean the soil thermally of the contaminant, leaving a clean soil material. Both of these processes have limitations encompassing technical, political, and certainly liability problems. The remediation of contaminated soil in hot mix asphalt facilities is primarily a physical phenomenon relying on laws of heat and mass transfer. Although chemical changes do occur, the primary function of the process is to cause a physical separation of the contaminant from the soils

  11. The Influence of Moisture on the Performance of Polymer Fibre-Reinforced Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Kamaruddin Ibrahim

    2016-01-01

    Full Text Available A number of researches have been done worldwide to evaluate the damage caused by water in bituminous pavements. The use of the retained strength ratios obtained from laboratory moisture damage tests is a useful tool in making quantitative predictions of the related damage caused by water. This study involved laboratory work on the effect of water on the performance of bituminous mixtures. Comparisons are made between the performances of Hot-rolled Asphalt (HRA bituminous mixtures containing base bitumen of 50 pen grade to that of a polymer-fibre reinforced HRA mixture. Two types of polymer fibre were studied, namely polypropylene and polyester and these fibre were added in different concentrations in the bituminous mixtures. Changes in both the cohesive properties of the bitumen and the adhesion of the bitumen to the aggregate surface were observed as a result of exposing the bituminous mixtures to moisture. The effect of polymer fibre reinforcement in bituminous mixtures helps reduce the level of moisture damage. This was evident in the lower moisture susceptibility achieved in the polymer fibre reinforced bituminous mixtures as compared to the control mixture. The additional bitumen in the fibre reinforced mixtures also afforded an increased film thickness on the aggregate particles, thus affording additional protection of the mixtures from moisture. The reinforcement of polymer fibres in bituminous mixtures also acts to decrease the moisture sensitivity of the bitumen to aggregate bonding. This may be due to the strengthening of the wetted binder matrix that helps promote both adhesion and cohesion retention.

  12. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions of the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).

  13. Effects of Ultra-Fast Cooling After Hot Rolling and Intercritical Treatment on Microstructure and Cryogenic Toughness of 3.5%Ni Steel

    Science.gov (United States)

    Wang, Meng; Liu, Zhenyu

    2017-07-01

    A novel process comprised of ultra-fast cooling after control rolling, intercritical quenching and tempering (UFC-LT) was applied to 3.5%Ni steel. In addition, quenching and tempering (QT) treatment was conducted in comparison. The present study focuses on the relationship between the microstructure and cryogenic toughness of 3.5%Ni steel. Results show that the microstructure of steel treated by UFC-LT consisted of tempered martensite, intercritical ferrite and two types of reversed austenite (RA) (needle shape and blocky). Compared to the QT sample, the UFC-LT sample's ultimate tensile strength decreased slightly, while its elongation increased from 32.3 to 35.7%, and its Charpy absorption energy at -135 °C increased from 112 to 237 J. The ductile-brittle transition temperature of UFC-LT sample was lower than that of the QT sample by 18 °C. The superior cryogenic toughness after UFC-LT compared to QT treatment can be attributed to the dissolution of cementite, approximately 3.0% increase in RA and the decrease in effective grain size.

  14. Performance of asphalt mixture incorporating recycled waste

    Science.gov (United States)

    Hamid, Nor Baizura; Abdullah, Mohd Ezree; Sanik, Mohd Erwan; Mokhtar, Mardiha; Kaamin, Masiri; Raduan, Rasyidah; Ramli, Mohd Zakwan

    2017-12-01

    Nowadays, the amount of premix waste was increased every year, especially at the batching plants. Normally, the waste materials will be discarded without doing any innovative and effective research about those materials. This situation has become one of the global concerns due to the increasing number of premix waste produced every year. Therefore, the aim of this study is to evaluate the performance of hot mix asphalt (HMA) using premix waste on improving asphalt mixture fatigue behaviour. The method used in this study was Superpave mix design method. The sample conducted in this study were 0%, 10%, 20%, 30%, and 100% of premix waste respectively. For a binder test, the laboratory test conducted were penetration test, softening test and thin film oven test while for the performance test were resilient modulus test and indirect tensile fatigue test. From the laboratory test, the resilient modulus test was conducted with two different temperature which was 25°C and 40°C. The result from that test was 20% of premix waste had higher resilient modulus at that two different temperatures compared to another samples. From that test also shown that the sample at the lower temperature which was 25°C has higher resilient modulus compared to the temperature of 40°C. Indirect tensile fatigue test showed that the 30% of premix waste sample was suitable for the modified asphalt mixture with referring to the maximum deformation and strain for comparison control, 10%,20%, and 100% of premix waste samples. So, it can be concluded that premix waste inhibits great potential as road construction material and suitable for repeated traffic loading.

  15. A Review on Using Crumb Rubber in Reinforcement of Asphalt Pavement

    Science.gov (United States)

    Mashaan, Nuha Salim; Ali, Asim Hassan; Karim, Mohamed Rehan; Abdelaziz, Mahrez

    2014-01-01

    An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM) obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM) could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction. PMID:24688369

  16. A Review on Using Crumb Rubber in Reinforcement of Asphalt Pavement

    Directory of Open Access Journals (Sweden)

    Nuha Salim Mashaan

    2014-01-01

    Full Text Available An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction.

  17. Phase transformation kinetics in rolled U-10 wt. % Mo foil: Effect of post-rolling heat treatment and prior γ-UMo grain size

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Saumyadeep; Overman, Nicole; Varga, Tamas; Lavender, Curt; Joshi, Vineet V.

    2017-12-01

    The effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.percent Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 degrees C for 48 hours and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot- + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot- + cold-rolled to 0.2 mm + annealed at 700 deg. C for 1 hour, and (iii) hot- + cold-rolled to 0.2 mm + annealed at 1000 deg. C for 60 hours. U10Mo rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries.

  18. The Spontaneous Combustion of Railway Ties and Asphalt Shingles

    Science.gov (United States)

    Leslie, Geoffrey

    Many Low Carbon Fuels (LCFs) present unknown spontaneous combustion risks, which must be quantified before their use as fossil fuel replacements. Wood and coal spontaneous combustion is well understood; however, LCFs weather, and subsequent chemical changes could affect their spontaneous combustion properties. LCF spontaneous combustion could lead to accidental fires with possible loss of life, limb and property. The spontaneous combustion risks of two LCFs, discarded creosote-treated wooden railway ties and roofing asphalt shingles, were investigated with calorimetry and heat transfer experiments. Chemical changes due to weathering were studied with pyrolysis-Gas Chromatography/Mass Spectrometry (py-GC/MS). Creosote-treated wooden railway tie dust, roofing asphalt shingle particles, poplar wood pellets, and petroleum coke self-heating were studied with isothermal calorimetry. Railway tie dust and asphalt shingle heat transfer were characterized with a guarded hot plate. Petroleum coke self-heating was consistent with coal, while both poplar pellets and railway tie dust were found to be more reactive compared to oven test results of similar materials. The observed increase in reactivity was probably a result of significant moisture contenint in the pellet and railway tie dust. Critical conditions for spontaneous combustion were evaluated with the Frank-Kamenetskii parameter, assuming an ambient temperature of 40°C and constant moisture content. Kamenetskii calculations indicate that a 1.6 m cube of railway tie dust, or a 58 m cube of asphalt particles, would be unstable and combust. LCF chemistry may have been affected by weathering, which would cause chemical changes that affect their spontaneous combustion properties. Therefore, railway tie wood and roofing asphalt shingle chemistry were investigated by identifying products of 250° and 550°C pyrolysis with py-GC/MS. Railway tie wood pyrolyzates did not show signs of weathering; in contrast, asphalt pyrolysis

  19. LABORATORY EVALUATION OF COMPACTABILITY AND PERFORMANCE OF WARM MIX ASPHALT

    Directory of Open Access Journals (Sweden)

    Allex Eduardo Álvarez Lugo

    Full Text Available Warm mix asphalt (WMA is the term used to describe the set of technologies that allow fabrication of asphalt mixtures at lower temperatures than those specified for conventional hot mix asphalt (HMA. This temperature reduction leads to advantages, compared to construction of HMA, that include energy savings, reduced emissions, and safer working conditions. However, WMA is a relatively new technology and several aspects are still under evaluation. This paper assesses some of these aspects including laboratory compactability and its relation to mixture design, and performance of WMA (i.e., permanent deformation and cracking resistance fabricated with three WMA additives, namely Advera®, Sasobit®, and Evotherm®. Corresponding results showed better or equivalent laboratory compactability for the WMA, as compared to that of the HMA used as reference (or control-HMA, leading to smaller optimum asphalt contents selected based on a specific target density (i.e., 96%. In terms of performance, inclusion of the WMA additives led to decrease the mixture resistance to permanent deformation, although the mixture resistance to cracking can remain similar or even improve as compared to that of the control-HMA.

  20. Influence of Temperature Upon Permanent Deformation Parameters of Asphalt Concrete Mixes

    Directory of Open Access Journals (Sweden)

    Amjad Hamad Albayati

    2017-07-01

    Full Text Available The performance of asphalt concrete pavement has affected by many factors, the temperature is the most important environmental one which has a large effect on the structural behavior of flexible pavement materials. The main cause of premature failure of pavement is the rutting, Due to the viscoelastic nature of the asphalt cement, rutting is more pronounced in hot climate areas because the viscosity of the asphalt binder which is inversely related to rutting is significantly reduced with the increase in temperature resulting in a more rut susceptible paving mixtures. The objective of this study is to determine the effect of temperatures variations on the permanent deformation parameters (permanent strain (p, intercept (a, slope (b, Alpha and Mu as well as resilient strain (r and resilient modulus (Mr. To achieve this objective, one aggregate gradation with 12.5mm nominal maximum size, two grades of asphalt cements (40-50 and 60-70 brought form Al- Daurah refinery, limestone dust filler has been used to prepare the asphalt concrete mixtures. 30 Marshall specimens were prepared to determine the optimum asphalt cement content. Thereafter, 30 cylindrical asphalt concrete specimens (102mm in diameter and 203 mm in height are prepared in optimum asphalt cement and optimum ±0.5 percent. The prepared specimens were used in uniaxial repeated load test to evaluate the permanent deformation parameters of asphalt concrete mixes under the following testing temperature (5, 15, 25, 40 and 60c. The test result analyses appeared that Mr is decrease 51 percent when temperature increased from 5 c to 25 c and then decrease 22 percent with further increase in temperature from 25 c to 60 c. Also, the Alpha value decreases by a factor of 1.25 and 1.13 when temperature increases from 5 c to 25 c and 25 c to 60 c, espectively. Finally, statistical models were developed to predict the Alpha and Mu parameters of permanent deformation.

  1. Hydrogenizing oils, asphalts, etc

    Energy Technology Data Exchange (ETDEWEB)

    1925-03-14

    The hydrogenation of carbonaceous solids in presence of combined sulfur, e.g., sulfides as described in the parent specification is applied to the treatment of rock oils, shale oils, resins, ozokerite, asphalt, and the like, or fractions, residues, or acid sludge or other conversion products thereof, alone or mixed. Preferably the hydrogen or other reducing gas is in excess and under pressure, and is either circuited or led through a series of treatment vessels, hydrogen being added for that used. In an example, residues from American crude oil are passed continuously with hydrogen at 200 atmospheres and 450 to 500/sup 0/C over pressed precipitated cobalt sulfide, the issuing gases being cooled to condense the light oil produced.

  2. Arrangement for the measurement of the quantity of asphalt in an asphaltic compound

    International Nuclear Information System (INIS)

    Noma, I.; Taniguchi, K.

    1978-01-01

    The arrangement for the measurement of the quantity of asphalt in an asphaltic compound in an apparatus for the mixture of asphalt components and an aggregate for the formation of an asphaltic compound characterized by the inclusion of a member for the transmission of a neutron beam which reacts with the hydrogen atoms in the asphaltic compound in such a way that the energy of a neutron beam is adsorbed; a continuous transport device feeds a continuous supply of the asphalt compound past the neutron beam; a member responds to an automatic detector for the quantity of asphaltic components in the asphaltic compound and provides an adjustment so that the quantity [of asphaltic components in asphaltic compound] may be held at a constant value. (G.C.)

  3. A review of warm mix asphalt.

    Science.gov (United States)

    2008-12-01

    Warm Mix Asphalt (WMA) technology, recently developed in Europe, is gaining strong interest in the US. By : lowering the viscosity of asphalt binder and/or increasing the workability of mixture using minimal heat, WMA : technology allows the mixing, ...

  4. Controlling conductivity of asphalt concrete with graphite.

    Science.gov (United States)

    2014-08-01

    Electrically conductive asphalt concrete has a huge potential for various multifunctional applications such as : self-healing, self-sensing, and deicing. In order to utilize the full spectrum of applications of electrically conductive : asphalt compo...

  5. Constructing better roads with asphalt rubber

    Directory of Open Access Journals (Sweden)

    Pais Jorge C.

    2015-12-01

    Full Text Available Brazilians mixtures containing asphalt rubber were evaluated by mechanical laboratory tests. A conventional mixture with asphalt CAP-50/70 was produced as a mixture control. With the aim of compare the Brazilians mixtures performance, a Portuguese asphalt rubber mixture was tested as well. The testing set involved the determination of the mechanical properties, fatigue and permanent deformation, of asphalt rubber produced by wet process through two different systems: continuous blend and terminal blend. The asphalt rubber morphology was evaluated in order to determine the compatibility of the systems. The asphalt rubber mixtures exhibit good resistance to permanent deformation and prolonged fatigue life in relation to mixture control. Therefore it is concluded that the application of asphalt rubber alters the characteristics of asphalt mixture in a very beneficial way.

  6. VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2016-06-01

    Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.

  7. The crack growth mechanism in asphaltic mixes

    NARCIS (Netherlands)

    Jacobs, M.M.J.; Hopman, P.C.; Molenaar, A.A.A.

    1995-01-01

    The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive

  8. Induction Healing of Porous Asphalt Concrete

    NARCIS (Netherlands)

    Liu, Q.

    2012-01-01

    Porous asphalt shows excellent performance in both noise reduction and water drainage. Although porous asphalt has these great qualities, its service life is much shorter (sometimes only half) compared to dense graded asphalt roads. Ravelling, which is the loss of aggregate particles from the

  9. Evaluation of recycled asphaltic concrete : final report.

    Science.gov (United States)

    1977-01-01

    This report describes a project in which approximately 6,200 tons (5,630 Mg) of asphaltic concrete were recycled through a conventional asphalt batch plant. During the construction of the project, a buildup of asphalt-coated fines occurred in the dry...

  10. Quality control analysis : part IV : field simulation of asphaltic concrete specifications.

    Science.gov (United States)

    1969-02-01

    The report present some of the major findings, from a simulated study of statistical specifications, on three asphaltic concrete projects representing a total of approximately 30, 000 tons of hot mix. The major emphasis of the study has been on the a...

  11. Process of extraction in liquid way, of the bitumen from asphaltic and bituminous rocks, shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    Freda, L

    1936-06-04

    A process is described for liquid extraction of the bitumen in asphaltic and bituminous rocks, shales, and the like. The substances impregnated with bitumen are suitably treated for the extraction of pitch with any given solvent derived from ethylene, in a series of apparatuses fixed and rotary at atmospheric pressure or in vacuum with vapor and hot air.

  12. Towards understanding asphalt compaction: An action research strategy (in special issue for the IPRC)

    NARCIS (Netherlands)

    Miller, Seirgei Rosario; ter Huerne, Henderikus L.; Doree, Andries G.

    2008-01-01

    During Hot Mix Asphalt (HMA) construction, compaction rollers provide the energy required to produce a specified density. However, little is known about the heuristics used by the roller operators. This study forms part of a larger action research project focussing on the improvement of the HMA

  13. Recycling of rubber tires in asphalt paving materials

    Energy Technology Data Exchange (ETDEWEB)

    Piggott, M.R.; Woodhams, R.T.

    1979-01-01

    It has been known that the addition of rubber to asphalt used in paving will produced markedly superior road surfaces. Partly because of cost and because of the nonconventional paving techniques necessary, rubber has been largely ignored as a practical paving additive except in special cases. However, the large accumulation of old tires existing today provides a ready source for suitable rubber. If ground into a fine powder, this rubber can be mixed in a conventional pug mill along with sand, stone and asphalt to produce a hot mix which can be aplied in the normal manner without any special techniques. The extra cost of such modification is only 1% of a typical paving contract, whereas the advantages include lower maintenance cost, more durable road surface, and elimination of unwanted waste tires. This report has been prepared to assist civic and other authorities in the development of improved road surfacing formulations through the reuse of old tires. It includes the results of paving trials in Toronto and laboratory evaluations. These tests show that the addition of powdered rubber to asphalt paving materials markedly improves the durability and crack resistance, particularly at low temperatures. Additives in the rubber impart good strength retention in the presence of moisture. The toughness increases with age due to a slow interaction of the rubber with the asphalt which is accompanied by an increase in viscosity. As a result, performance is also enhanced at high temperatures and helps to minimize pavement distortions due to hot weather and traffic. 16 refs., 18 figs., 2 tabs.

  14. Experimental investigation of the fatigue behaviour of asphalt concrete mixtures containing waste iron powder

    International Nuclear Information System (INIS)

    Arabani, M.; Mirabdolazimi, S.M.

    2011-01-01

    Research highlights: → This paper presents the first model of the fatigue behaviour of iron-asphalt mixtures in the world. → This model is able to describe the fatigue behaviour of iron-asphalt under dynamic loading. → Coarse surface, high stiffness and angularity of iron powder lead to enhanced fatigue performance. → The model illustrates that the use of iron powder has a considerable effect on tensile strain of HMA. → The use of this type of waste material could be a helpful solution for less polluted environment. - Abstract: The use of additives and admixtures in the construction of asphalt concrete pavements to strengthen them against dynamic loads has increased considerably in recent years. Recent research has shown that employing desirable waste materials in hot mix asphalts (HMAs) improves their dynamic properties noticeably. The study of some special cases, such as the addition of blast furnace slag and metallic materials of waste electronic instruments to HMA, has led to a considerable increase in the ability of HMAs to tolerate fatigue phenomena and repeated loading. Based on experimental studies, a model is proposed to describe the fatigue behaviour of asphalt mixtures containing waste iron powder. The results of this research show an important increase in the strength of asphalt mixtures containing waste iron powder against fatigue phenomena in comparison to conventional HMAs.

  15. Initiative assessment of asphalt works

    International Nuclear Information System (INIS)

    Rikheim, Bente; Kjerschow, Einar

    2003-01-01

    Several asphalt works are utilizing heat from combustion of used oil for drying and heating of rock material in the production of asphalt. According to new regulations on combustion of waste, used oil is to be regarded as waste and subject to emission requirements according to the combustion regulations. Measurements show that emissions of CO, dust, dioxins, TOC and SO 2 exceed the limits set by the regulations. To conform to the regulations these asphalt works must improve their combustion technique. However, such measures may lead to increased formation of NOx. It is recommended that a combustion chamber for drying of rock material should be used in order to reduce the emissions of CO and TOC concentrations. The concentration of SO 2 may be reduced by dry cleaning by means of injection of lime. In the same way, active carbon is injected to remove dioxins. The asphalt works must be outfitted with measuring equipment that monitors and records certain operation and control parameters and some emission to air parameters. Periodic measurements are to be done of heavy metals and dioxins. It is estimated that the measures necessary to make the asphalt works comply with the regulations will cost about NOK 4 530 000 in investment per plant and that the operation expenses will increase by NOK 700 000 per year per plant. This includes maintenance, control etc

  16. 77 FR 49477 - WTO Dispute Settlement Proceeding Regarding United States-Countervailing Measures on Certain Hot...

    Science.gov (United States)

    2012-08-16

    ... Proceeding Regarding United States-- Countervailing Measures on Certain Hot-Rolled Carbon Steel Flat Products... certain hot-rolled carbon steel flat products from India. That request may be found at www.wto.org... countervailing measures regarding certain hot-rolled carbon steel flat products from India (Investigation C-533...

  17. 77 FR 26600 - WTO Dispute Settlement Proceeding Regarding United States-Countervailing Measures on Certain Hot...

    Science.gov (United States)

    2012-05-04

    ... Proceeding Regarding United States-- Countervailing Measures on Certain Hot-Rolled Carbon Steel Flat Products... certain hot-rolled carbon steel flat products from India. That request may be found at www.wto.org... requested consultations concerning countervailing measures regarding certain hot-rolled carbon steel flat...

  18. Manufacture and qualification of hot roll-clad composites with nickel base cladding material for use in flue gas desulphurization plants. Final report; Herstellung und Qualifizierung warmwalzplattierter Verbundwerkstoffe mit Nickelbasisauflagen fuer den Einsatz in Rauchgasentschwefelungsanlagen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kirchheiner, R.; Stenner, F.

    1992-03-16

    Flue gas desulphurization plants (FGD), which have been required by law since 1983, mainly apply wet scrubbing techniques. The chemical reactions taking place in those plants lead to extremely corrosive situations. Unprotected carbon steel surfaces or organic based anticorrosive systems are extremely affected after being in operation for only a few years. NiCrM alloys applied by the chemical industry in comparable situations have proved their efficiency for decades. When such massive components are newly built in FDGs, economic aspects require the use of those NiCrMo alloys in clad form. Within the frame of this project tests included the manufacture of hot roll-clad composites comprising cladding materials of the type NiMo16Cr15W (2.4819) and NiCr21Mo14W (2.4602) on the base steel RST 37-2. Large-sized sheets (10000 x 2000 x 10+2 mm) were made by means of an optimized cladding technique. The behaviour of the cladding material in case of uniform and local corrosion exposure was examined in standard laboratory tests. An increased susceptibility to intercrystalline corrosion was not detected, according to the excellent microstructure. Further laboratory tests under simulated FGD conditions and exposure tests in FGDs in operation permitted the transfer of those positive test results to practical work. The same applies without limitation to the joint-welded state with similar filler material of clad a comparable chemical composition. With respect to their technological behaviour the new hot roll-clad composites correspond to that of solid sheets of NiCrMo alloys; therefore they are qualified for use in flue gas desulphurization plants. (orig./BBR) With 32 refs., 13 tabs., 29 figs. [Deutsch] In den seit 1983 gesetzlich vorgeschriebenen Anlagen zur Rauchgasentschwefelung (REA) werden ueberwiegend nasse Waschverfahren eingesetzt. Die in diesen Anlagen ablaufenden chemischen Reaktionen fuehren zu extrem korrosiven Bedingungen. Ungeschuetzte C-Stahl-Oberflaechen bzw

  19. Waterproofing improvement of radioactive waste asphalt solid

    International Nuclear Information System (INIS)

    Adachi, Katsuhiko; Yamaguchi, Takashi; Ikeoka, Akira.

    1981-01-01

    Purpose: To improve the waterproofing of asphalt solid by adding an alkaline earth metal salt and, further, paraffin, into radioactive liquid waste when processing asphalt solidification of the radioactive liquid waste. Method: Before processing molten asphalt solidification of radioactive liquid waste, soluble salts of alkaline earth metal such as calcium chloride, magnesium chloride, or the like is added to the radioactive liquid waste. Paraffin having a melting point of higher than 60 0 C, for example, is added to the asphalt, and waterproofing can be remarkably improved. The waste asphalt solid thus fabricated can prevent the swelling thereof, and can improve its waterproofing. (Yoshihara, H.)

  20. Thermal behavior of asphalt cements

    International Nuclear Information System (INIS)

    Claudy, P.M.; Letoffe, J.M.; Martin, D.; Planche, J.P.

    1998-01-01

    Asphalt cements are highly complex mixtures of hydrocarbon molecules whose thermal behavior is of prime importance for petroleum and road industry. From DSC, the determination of several thermal properties of asphalts is given, e.g. glass-transition temperature and crystallized fraction content.The dissolution of a pure n-paraffin C n H 2n+2 in an asphalt, as seen by DSC, should be a single peak. For 20 g of these glasses change with time and temperature. The formation of the crystallized phases is superposed to the enthalpic relaxation of the glasses, making a kinetic study very difficult. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Numerical Study of Tire Hydroplaning Based on Power Spectrum of Asphalt Pavement and Kinetic Friction Coefficient

    OpenAIRE

    Shengze Zhu; Xiuyu Liu; Qingqing Cao; Xiaoming Huang

    2017-01-01

    Hydroplaning is a driving phenomenon threating vehicle’s control stability and safety. It happens when tire rolls on wet pavement with high speed that hydrodynamic force uplifts the tire. Accurate numerical simulation to reveal the mechanism of hydroplaning and evaluate the function of relevant factors in this process is significant. In order to describe the friction behaviors of tire-pavement interaction, kinetic friction coefficient curve of tire rubber and asphalt pavement was obtained by ...

  2. Asphalt Mixture for the First Asphalt Concrete Directly Fastened Track in Korea

    Directory of Open Access Journals (Sweden)

    Seong-Hyeok Lee

    2015-01-01

    Full Text Available The research has been initiated to develop the asphalt mixtures which are suitable for the surface of asphalt concrete directly fastened track (ADFT system and evaluate the performance of the asphalt mixture. Three aggregate gradations which are upper (finer, medium, and below (coarser. The nominal maximum aggregate size of asphalt mixture was 10 mm. Asphalt mixture design was conducted at 3 percent air voids using Marshall mix design method. To make impermeable asphalt mixture surface, the laboratory permeability test was conducted for asphalt mixtures of three different aggregate gradations using asphalt mixture permeability tester. Moisture susceptibility test was conducted based on AASHTO T 283. The stripping percentage of asphalt mixtures was measured using a digital camera and analyzed based on image analysis techniques. Based on the limited research results, the finer aggregate gradation is the most suitable for asphalt mixture for ADFT system with the high TSR value and the low stripping percentage and permeable coefficient. Flow number and beam fatigue tests for finer aggregate asphalt mixture were conducted to characterize the performance of asphalt mixtures containing two modified asphalt binders: STE-10 which is styrene-butadiene-styrene (SBS polymer and ARMA which is Crum rubber modified asphalt. The performance tests indicate that the STE-10 shows the higher rutting life and fatigue life.

  3. Effect of using of reclaimed asphalt and/or lower temperature asphalt on the availability of the road network

    NARCIS (Netherlands)

    Nicholls, C.; Wayman, M.; Mollenhauer, K.; McNally, C.; Tabakovic, A.; Varveri, A.; Cassidy, S.; Shahmohammadi, R.; Taylor, R.

    2015-01-01

    The use of reclaimed asphalt, secondary component materials and/or additives and lower temperature asphalt are being increasingly used in order to improve the sustainability of asphalt production. The use of reclaimed asphalt reduces the need for virgin materials whilst lower temperature asphalts

  4. Prediction of Asphalt Creep Compliance Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Zofka A.

    2012-06-01

    Full Text Available Creep compliance of the hot-mix asphalt (HMA is a primary input of the pavement thermal cracking prediction model in the recently developed Mechanistic-Empirical Pavement Design Guide (M-EPDG in the US. The HMA creep compliance is typically determined from the Indirect Tension (IDT tests and requires complex experimental setup. On the other hand, creep compliance of asphalt binders is determined from a relatively simple three- point bending test performed in the Bending Beam Rheometer (BBR device. This paper discusses a process of training an Artificial Neural Network (ANN to correlate the creep compliance values obtained from the IDT with those from an innovative approach of testing HMA beams in the BBR. In addition, ANNs are also trained to predict HMA creep compliance from the creep compliance of asphalt binder and vice versa using the BBR setup. All trained ANNs exhibited a very high correlation of 97 to 99 percent between predicted and measured values. The binder creep compliance curves built on the ANN-predicted values also exhibited good correlation with those obtained from laboratory experiments. However, the simulation of trained ANNs on the independent dataset produced a significant deviation from the expected values which was most likely caused by the differences in material composition, such as aggregate type and gradation, presence of recycled additives, and binder type.

  5. Development of asphaltic mix with waste products use

    Directory of Open Access Journals (Sweden)

    Pugin Konstantin Georgievich

    2014-07-01

    Full Text Available The trend of high growth of the vehicle fleet in Russia along with the positive impact on the socio-economic development of the country has a number of adverse consequences, one of which is the high accident rate on the roads. The paper considers modern way to provide the safe vehicles flow with the use of colored asphalt, which is a kind of hot asphalt and can have a variety of colors, which consists of coloring pigments. The conventional method of coloring the asphalt mix is produced by adding color rubble or pigmenting additives. The task, which was put forward, was the establishment of such road concrete mix, from which, without the use of primary materials and without increasing the consumption of bitumen, asphalt concrete road surfaces of acceptable strength could be obtained. As a pigment the dust of gas purification system of electrical furnace DSP - 60 of «Kamastal» plant, Perm, was used. The composition of the dust waste from the furnace consists of metal oxides and silicates. Dust-gas-cleaning is a fine powder with a high specific surface (1.2…2.5 thousand cm /g and bulk density of 3.7…4.2 g/cm . The powder color is dark brown. The density of the ready colored asphalt samples is 2.47...2.49 g/cm , and water saturation is 3.50…3.55 %. As a result of the research the diagrams of the dependence of road concrete mix’s water saturation from dust percentage and a diagram of dependence of concrete mixes’ durability from dust percentage at t = 20° and 50° C were built. After analyzing the obtained curves it can be concluded that the increase of the percentage of dust leads to increase of water saturation of road concrete mix and reduced strength. Thus, the developed asphalt concrete mix allows visually separating the lanes on the road, it has the relevant regulatory requirements durability and water resistance. This mixture corresponds to the type B mark III and can be used in regions I, II, and partly III of road-climatic zones

  6. Design and evaluation of foamed asphalt base materials.

    Science.gov (United States)

    2013-05-01

    Foamed asphalt stabilized base (FASB) combines reclaimed asphalt pavement (RAP), recycled : concrete (RC), and/or graded aggregate base (GAB) with a foamed asphalt binder to produce a : partially stabilized base material. The objectives of this study...

  7. Evaluation of Different Mineral Filler Aggregates for Asphalt Mixtures

    Science.gov (United States)

    Wasilewska, Marta; Małaszkiewicz, Dorota; Ignatiuk, Natalia

    2017-10-01

    Mineral filler aggregates play an important role in asphalt mixtures because they fill voids in paving mix and improve the cohesion of asphalt binder. Limestone powder containing over 90% of CaCO3 is the most frequently used type of filler. Waste material from the production of coarse aggregate can be successfully used as a mineral filler aggregate for hot asphalt concrete mixtures as the limestone powder replacement. This paper presents the experimental results of selected properties of filler aggregates which were obtained from rocks with different mineral composition and origin. Five types of rocks were used as a source of the mineral filler aggregate: granite, gabbro, trachybasalt, quartz sandstone and rocks from postglacial deposits. Limestone filler was used in this study as the reference material. The following tests were performed: grading (air jet sieving), quality of fines according to methylene blue test, water content by drying in a ventilated oven, particle density using pyknometer method, Delta ring and ball test, Bitumen Number, fineness determined as Blaine specific surface area. Mineral filler aggregates showed significant differences when they were mixed with bitumen and stiffening effect in Delta ring and ball test was evaluated. The highest values were achieved when gabbro and granite fillers were used. Additionally, Scanning Electron Microscopy (SEM) analysis of grain shape and size was carried out. Significant differences in grain size and shape were observed. The highest non-homogeneity in size was determined for quartz sandstone, gabbro and granite filler. Their Blaine specific surface area was lower than 2800 cm2/g, while for limestone and postglacial fillers with regular and round grains it exceeded 3000 cm2/g. All examined mineral filler aggregates met requirements of Polish National Specification WT-1: 2014 and could be used in asphalt mixtures.

  8. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    Science.gov (United States)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).

  9. Modified composite material developed on the basis of no-fines asphalt concrete

    Directory of Open Access Journals (Sweden)

    Mikhasek Andrey

    2017-01-01

    Full Text Available Being a composite material, asphalt concrete is widely used in hydraulic engineering and road construction. The paper proves one of asphalt concrete modification, which includes first creating a skeleton of no-fines concrete and then its washing-down with bituminous materials by a hot procedure, can be successfully used in hydraulic structures Modified composite material based on no-fines asphalt concrete has a harder skeleton because of links from cement stone and has a technological advantage, as through the proposed technology it allows to reduce the cost of filling porous spaces. This technology allows to conclude that concrete aggregate with size fractions of 120 mm or less and frost resistance of 50 cycles and less can be recommended for fastening of slopes.

  10. Mechanical Properties of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders

    Science.gov (United States)

    2011-03-01

    Warm mix asphalt (WMA) is a name given to a group of technologies that have the common purpose of reducing the viscosity : of the asphalt binders. This reduction in viscosity offers the advantage of producing asphalt-aggregate mixtures at lower mixin...

  11. Process of preparing asphalt bodies, etc

    Energy Technology Data Exchange (ETDEWEB)

    Klever, H W

    1924-05-03

    A process for the preparation of asphaltic bodies is characterized in that bituminous minerals such as oil-shale, coal, etc. are submitted to a heating process, with or without pressure, which is so mild that asphaltic bodies result and petroleum and tar oils are formed only in small amounts, and that the asphaltic bodies are used either together with the mineral constituents or after filtration from the latter.

  12. Operational properties of nanomodified stone mastic asphalt

    OpenAIRE

    Inozemtsev Sergey Sergeevich; Korolev Evgeniy Valer’evich

    2015-01-01

    In order to prolong the lifetime and to improve the quality of pavements made of asphalt concrete it is necessary to apply innovative solutions in the process of design of such building materials. In order to solve the problem of low durability of asphalt concrete a modifier was proposed, which consists of diatomite, iron hydroxide sol (III) and silica sol. Application of the diatomite with nanoscale layer of nanomodifier allows getting a stone mastic asphalt, which has high values of physica...

  13. Design and verification of bituminous mixtures with the increased content of reclaimed asphalt pavement

    Science.gov (United States)

    Bańkowski, Wojciech; Król, Jan; Gałązka, Karol; Liphardt, Adam; Horodecka, Renata

    2018-05-01

    Recycling of bituminous pavements is an issue increasingly being discussed in Poland. The analysis of domestic and foreign experience indicates a need to develop this technology in our country, in particular the hot feeding and production technologies. Various steps are being taken in this direction, including research projects. One of them is the InnGA project entitled: “Reclaimed asphalt pavement: Innovative technology of bituminous mixtures using material from reclaimed asphalt pavement”. The paper presents the results of research involving the design of bituminous mixtures in accordance with the required properties and in excess of the content of reclaimed asphalt permitted by the technical guidelines. It presents selected bituminous mixtures with the content of RAP of up to 50% and the results of tests from verification of industrial production of those mixtures. The article discusses the details of the design process of mixtures with a high content of reclaimed asphalt, the carried out production tests and discusses the results of tests under the verification of industrial production. Testing included basic tests according to the Polish technical requirements of WT- 2 and the extended functional testing. The conducted tests and analyses helped to determine the usefulness of the developed bituminous mixtures for use in experimental sections and confirmed the possibility of using an increased amount of reclaimed asphalt up to 50% in mixtures intended for construction of national roads.

  14. Final Rule to Reduce Toxic Air Emissions from Asphalt Processing and Asphalt Roofing Manufacturing Facilities Fact Sheet

    Science.gov (United States)

    This page contains a February 2003 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Asphalt Processing and Asphalt Roofing Manufacturing.

  15. Modified asphalt for pavements; Hosoyo kaishitsu asufuaruto ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tsukagoshi, T. [Nippon Oil Co. Ltd., Yokohama (Japan)

    1997-10-01

    Modified asphalt has been used widely in such applications as countermeasure against rutting, countermeasure against wear caused by tire chains in snowy and cold areas, or bridge deck pavement. Features of various kinds of modified asphalt, standards, and standard properties are introduced. Modified asphalt containing natural asphalt is used for steel plate deck pavement. Semi-blown asphalt is used when emphasis must be given to the countermeasure for flowing resistance of asphalt pavement. Features and standards of asphalt containing rubber, thermoplastic elastomer, and thermoplastic resin are described. Asphalt containing heat-setting resin shows excellent characteristics, which other types of modified asphalt do not possess, in the laboratory resistance test for fatigue, flowing, and wear. Change in the history of modified asphalt in Japan from the initial stage to the present are explained and shown in a table together with time and phenomena, and the change in the production of modified asphalt is shown. 15 refs., 5 figs., 5 tabs.

  16. Process of coagulating asphalts, etc

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, J A; Pfersch, G

    1931-03-28

    The present invention has for its object a process of deasphaltizing and deparaffining applicable to mixtures of hydrocarbons such as crude mineral oils and tars obtained under the influence of heat from shales, lignites, peats, and similar products, to natural bitumens and those obtained by extraction with organic solvents and also all those derived from the substances, the process in question having the following characteristics: the coagulation or the precipitation of the asphaltic material, the resinous material, and the asphaltic and resinous material, which is found in the colloidal state or any other state in the substances given above, is obtained by the addition of a small amount of solvent and of acids or mixtures of acids.

  17. Aging of Rejuvenated Asphalt Binders

    Directory of Open Access Journals (Sweden)

    Mojtaba Mohammadafzali

    2017-01-01

    Full Text Available An important concern that limits the RAP content in asphalt mixtures is the fact that the aged binder that is present in the RAP can cause premature cracking. Rejuvenators are frequently added to high RAP mixtures to enhance the properties of the binder. There is no existing method to predict the longevity of a rejuvenated asphalt. This study investigated the aging of rejuvenated binders and compared their durability with that of virgin asphalt. Various samples with different types and proportions of RAP, virgin binder, and rejuvenator were aged by RTFO and three cycles of PAV. DSR and BBR tests were conducted to examine the high-temperature and low-temperature rheological properties of binders. Results indicated that the type and dosage of the rejuvenator have a great influence on the aging rate and durability of the binder. Some rejuvenators make the binder age slower, while others accelerate aging. These observations confirm the importance of evaluating the long-term aging of recycled binders. For this purpose, critical PAV time was proposed as a measure of binder’s longevity.

  18. Viscoelastic behaviour of cold recycled asphalt mixes

    Science.gov (United States)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  19. Rolling induced size effects in elastic–viscoplastic sheet metals

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2015-01-01

    sheet rolling, where a non-homogeneous material deformation takes place between the rollers. Large strain gradients develop where the rollers first come in contact with the sheet, and a higher order plasticity model is employed to illustrate their influence at small scales. The study reveals...... presented revolves around the rolling induced effect of visco-plasticity (ranging hot and cold rolling) in combination with strain gradient hardening – including both dissipative and energetic contributions. To bring out first order effects on rolling at small scale, the modeling efforts are limited to flat...

  20. Characterization of effects of thermal property of aggregate on the carbon footprint of asphalt industries in China

    Directory of Open Access Journals (Sweden)

    Ali Jamshidi

    2017-04-01

    Full Text Available In this study, the effects of the thermal properties of asphalt binders and aggregate materials were characterized in terms of the specific heat capacity (C for energy consumption and environmental footprints of hot mix asphalt (HMA and warm mix asphalt (WMA. Asphalt mixes produced using low-C aggregate are found to be more energy-efficient and environmental friendly, irrespective of the binder type and construction technology. Therefore, different fractions of aggregate blends were replaced with the aggregate provided from a low-C source or sustainable source. Analysis of energy consumption clearly indicated that the specific energy and environmental footprints decrease linearly as the low-C aggregate content increases. The amount of energy saving realized in the asphalt industries by the use of low-C aggregate is significant on a national scale in China. In this regard, China was chosen as a case study. Analysis of fuel requirement clearly indicated that the production of WMA using high thermal sensitivity aggregate can yield significant energy saving sufficient to fuel 44,007 to 664,880 Chinese households per year. Therefore, use of low C aggregate in asphalt mix production can be adopted as a strategy to produce WMA and HMA.

  1. Regional implementation of warm mix asphalt.

    Science.gov (United States)

    2014-09-01

    Asphalt is used in over 94 percent of all paved roadways in the United States. The ability to reduce its cost and emissions : while improving its performance has benefits that could potentially change the direction the asphalt industry moves toward i...

  2. Mix Proportion Design of Asphalt Concrete

    Science.gov (United States)

    Wu, Xianhu; Gao, Lingling; Du, Shoujun

    2017-12-01

    Based on the gradation of AC and SMA, this paper designs a new type of anti slide mixture with two types of advantages. Chapter introduces the material selection, ratio of ore mixture ratio design calculation, and determine the optimal asphalt content test and proportioning design of asphalt concrete mix. This paper introduces the new technology of mix proportion.

  3. Advanced evaluation of asphalt mortar for induction healing purposes

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Scarpas, Athanasios; Kasbergen, C.; van de Ven, M.F.C.

    2016-01-01

    Induction heating technique is an innovative asphalt pavement maintenance method that is applied to inductive asphalt concrete mixes in order to prevent the formation of macro-cracks by increasing locally the temperature of asphalt. The development of asphalt mixes with improved electrical and

  4. Latex improvement of recycled asphalt pavement

    Science.gov (United States)

    Drennon, C.

    1982-08-01

    The performance of a single unmodified milled recycled asphalt concrete was compared to milled asphalt concrete modified by addition of three types of rubber latex. Latex was added at 2, 3, 5, and 8 percent latex by weight of asphalt in the asphalt concrete. Lattices used were a styrene butadiene (SBR), a natural rubber (NR), an acrylonitrile butadiene (NBR), and four varieties of out of specification SBR lattices. Marshall tests, while indecisive, showed a modest improvement in properties of SBR and NR added material at 3 and 5 percent latex. Addition of NBR latex caused deterioration in Marshall stability and flow over that of control. Repeated load tests were run using the indirect tensile test, analyzed by the VESYS program, which computes life of pavements. Repeated load tests showed improvement in asphalt concrete life when 3 and 5 percent SBR was added. Improvement was also shown by the out of specification SBR.

  5. Rubber modification of asphalt binders and mixes

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, G.; Hesp, S.A.M. [Queen`s Univ., Kingston, ON (Canada). Dept. of Chemistry

    1995-12-31

    The physical properties of asphalt binders and concrete, modified with waste rubber tire, were examined. In an experiment designed to address the concern of waste disposal of scrap rubber, a control asphalt, devulcanized rubber modified asphalt and a crumb rubber modified asphalt were used to make asphalt concrete mixes. The three mixes were subjected to a thermal stress test to determine their low temperature fracture temperatures and strengths. Results were discussed in terms of the binder material used. At high service temperatures, the addition of 10% devulcanized rubber was found to have no beneficial effect, whereas the addition of 10% 80 mesh crumb rubber produced a modest improvement in performance. At low temperatures, the addition of devulcanized rubber produced increased resistance to cracking up to 90%. The addition of 10% 80 mesh crumb rubber increased fracture toughness by a factor of 3.3 times. 12 refs., 3 tabs.

  6. Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean

    2017-10-01

    This study used a finite element code, LSDYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated:  hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling.

  7. Industrialization of hot wire chemical vapor deposition for thin film applications

    NARCIS (Netherlands)

    Schropp, Ruud

    2015-01-01

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical

  8. About Coloured Cold Asphaltic Mixtures

    Directory of Open Access Journals (Sweden)

    Loredana Judele

    2008-01-01

    Full Text Available The first coloured bitumen was obtained by using bitumen from Peru and then bitumen from the Middle East, with a low content of asphaltenes, also called "colourable" bitumens. The colours obtained by adding iron oxides led nevertheless to dark colours, due to the presence of asphaltenes. Nowadays the coloured asphalt is obtained from synthesis binders with translucent aspect. The colours are obtained by adding inorganic pigments, mainly iron oxide for red, chromic oxide for green, titanic dioxide for white. The properties and behaviour of the coloured bitumen during its lifetime are comparable with the ones of classic bitumen, sometimes even better.

  9. Properties of Direct Coal Liquefaction Residue Modified Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-01-01

    Full Text Available The objectives of this paper are to use Direct Coal Liquefaction Residue (DLCR to modify the asphalt binders and mixtures and to evaluate the performance of modified asphalt mixtures. The dynamic modulus and phase angle of DCLR and DCLR-composite modified asphalt mixture were analyzed, and the viscoelastic properties of these modified asphalt mixtures were compared to the base asphalt binder SK-90 and Styrene-Butadiene-Styrene (SBS modified asphalt mixtures. The master curves of the asphalt mixtures were shown, and dynamic and viscoelastic behaviors of asphalt mixtures were described using the Christensen-Anderson-Marasteanu (CAM model. The test results show that the dynamic moduli of DCLR and DCLR-composite asphalt mixtures are higher than those of the SK-90 and SBS modified asphalt mixtures. Based on the viscoelastic parameters of CAM models of the asphalt mixtures, the high- and low-temperature performance of DLCR and DCLR-composite modified asphalt mixtures are obviously better than the SK-90 and SBS modified asphalt mixtures. In addition, the DCLR and DCLR-composite modified asphalt mixtures are more insensitive to the frequency compared to SK-90 and SBS modified asphalt mixtures.

  10. Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers

    NARCIS (Netherlands)

    Wang, H.; Yang, Jun; Liao, Hui; Chen, Xianhua

    2016-01-01

    Electrically conductive asphalt concrete has the potential to satisfy multifunctional applications. Designing such asphalt concrete needs to balance the electrical and mechanical performance of asphalt concrete. The objective of this study is to design electrically conductive asphalt concrete

  11. Forensic investigation into the performance of hot-mix asphalt

    CSIR Research Space (South Africa)

    Denneman, E

    2008-05-01

    Full Text Available the rutting and fatigue behaviour of HMA wearing courses in South Africa. The findings of the forensic investigation were used, in conjunction with the outcomes of a state of the art survey, to define the scope of a multi-year HMA research programme currently...

  12. RELATIONSHIP BETWEEN FOAMING BEHAVIOR AND SURFACE ENERGY OF ASPHALT BINDER

    Directory of Open Access Journals (Sweden)

    Jian-ping Xu

    2017-12-01

    Full Text Available To solve the problem of insufficiency in microscopic performance of foamed asphalt binder, surface energy theory was utilized to analyze the foaming behavior and wettability of asphalt binder. Based on the surface energy theory, the Wilhelmy plate method and universal sorption device method were employed to measure the surface energy components of asphalt binders and aggregates, respectively. Combined with the traditional evaluation indictor for foamed asphalt, the relationship between the foaming property and surface energy of asphalt binder was analyzed. According to the surface energy components, the wettability of asphalt binder to aggregate was calculated to verify the performance of foamed asphalt mixture. Results indicate that the foaming behavior of asphalt will be influenced by surface energy, which will increase with the decline of surface energy. In addition, the surface energy of asphalt binder significantly influences the wettability of asphalt binder to aggregates. Meanwhile, there is an inversely proportional relationship between surface energy of asphalt binder and wettability. Therefore, it can be demonstrated that surface energy is a good indictor which can be used to evaluate the foaming behavior of the asphalt binder. And it is suggested to choose the asphalt binder with lower surface energy in the process of design of foamed asphalt mixture.

  13. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  14. Ring rolling process simulation for geometry optimization

    Science.gov (United States)

    Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio

    2017-10-01

    Ring Rolling is a complex hot forming process where different rolls are involved in the production of seamless rings. Since each roll must be independently controlled, different speed laws must be set; usually, in the industrial environment, a milling curve is introduced to monitor the shape of the workpiece during the deformation in order to ensure the correct ring production. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular speed of main roll) on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR (Hot Ring Rolling) has been implemented in SFTC DEFORM V11. The FEM model has been used to formulate a proper optimization problem. The optimization procedure has been implemented in the commercial software DS ISight in order to find the combination of process parameters which allows to minimize the percentage error of each obtained dimension with respect to its nominal value. The software allows to find the relationship between input and output parameters applying Response Surface Methodology (RSM), by using the exact values of output parameters in the control points of the design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. After the calculation of the response surfaces for the selected output parameters, an optimization procedure based on Genetic Algorithms has been applied. At the end, the error between each obtained dimension and its nominal value has been minimized. The constraints imposed were the maximum values of standard deviations of the dimensions obtained for the final ring.

  15. Evaluation of the rheological behavior of asphaltic binder modified with zeolite material

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, E.M. da; Sant' ana, Hosiberto B.; Soares, Sandra A.; Soares, Jorge B. [Federal University of Ceara, Fortaleza, CE (Brazil)

    2008-07-01

    Several new processes have been developed to reduce mixing and compaction temperatures of hot mix asphalt without sacrificing the quality of the resulting pavement. One of these processes utilizes the zeolite, a crystalline hydrated aluminum silicate. A laboratory study was conducted to determine the applicability of zeolite to improve the rheological and chemical behavior of an asphaltic binder. The synthetic asphaltic binder was produced with different zeolite contents (0,1; 0.3; and 0.5% w/w) by wet process. The rheological and chemical behavior was verified by Dynamic Shear Rheometer and Infrared Spectroscopy, respectively. The zeolite's chemical composition and morphology was studied by Dispersive X-ray Spectroscopy (EDX). Additionally, the scanning electron microscope (SEM) was utilized to establish the zeolite elemental composition. The results showed that investigated zeolite was classified as a sodium aluminum silicate and it was able to modify the rheological properties of the neat asphalt binder. The G*/sin{delta} parameter was affected by the zeolite presence, indicating better performance for the binders with zeolite. The results show that synthetic binders can partly replicate the rheological properties of conventional AB. Comparable complex modulus values was obtained. No significant difference was found in viscoelastic response, given by the phase angles as a function of both temperature and frequency. (author)

  16. Mechanical performance assessment of half warm recycled asphalt mixes containing up to 100 % RAP

    International Nuclear Information System (INIS)

    Lizárraga, J. M.; Jiménez del Barco-Carrión, A.; Ramírez, A.; Díaz, P.; Moreno-Navarro, F.; Rubio, M.C.

    2017-01-01

    The use of Half Warm Mixes with high Reclaimed Asphalt content (HWMRA) has the potential to generate significant environmental advantages such as the reduction in consumption of natural resources and the emission of gases into the atmosphere. This paper therefore focuses on demonstrating the viability of using these types of mixes in wearing courses. For this purpose, an HWMRA with 70 % and 100 % Reclaimed Asphalt Pavement (RAP) and emulsion were designed in the laboratory. The performance of the mixes was then assessed and compared with that of conventional Hot Mix Asphalt. In a second stage, the mixes were manufactured in-plant, and laid and compacted in an Accelerated Pavement Test track. The cores were then extracted and tested for stiffness modulus and resistance to fatigue. The results from the tests conducted with both the laboratory specimens and the cores showed that the performance of HWMRA is comparable to that of HMA. These findings encourage greater confidence in promoting the use of these types of sustainable asphalt mixes. [es

  17. Mechanical performance assessment of half warm recycled asphalt mixes containing up to 100 % RAP

    Directory of Open Access Journals (Sweden)

    J. M. Lizárraga

    2017-07-01

    Full Text Available The use of Half Warm Mixes with high Reclaimed Asphalt content (HWMRA has the potential to generate significant environmental advantages such as the reduction in consumption of natural resources and the emission of gases into the atmosphere. This paper therefore focuses on demonstrating the viability of using these types of mixes in wearing courses. For this purpose, an HWMRA with 70 % and 100 % Reclaimed Asphalt Pavement (RAP and emulsion were designed in the laboratory. The performance of the mixes was then assessed and compared with that of conventional Hot Mix Asphalt. In a second stage, the mixes were manufactured in-plant, and laid and compacted in an Accelerated Pavement Test track. The cores were then extracted and tested for stiffness modulus and resistance to fatigue. The results from the tests conducted with both the laboratory specimens and the cores showed that the performance of HWMRA is comparable to that of HMA. These findings encourage greater confidence in promoting the use of these types of sustainable asphalt mixes.

  18. Method of reprocessing radioactive asphalt solidification products

    International Nuclear Information System (INIS)

    Nakaya, Iwao; Murakami, Tadashi; Miyake, Takafumi; Inagaki, Yuzo.

    1986-01-01

    Purpose: To obtain heat-stable solidification products and decrease the total volume thereof by modifying the solidified form by the reprocessing of existent radioactive asphalt solidification products. Method: Radioactive asphalt solidification products are heated into a fluidized state. Then, incombustible solvents such as perchloroethylene or trichloroethylene are added to a dissolving tank to gradually dissolve the radioactive asphalt solidification products. Thus, organic materials such as asphalts are transferred into the solvent layer, while inorganic materials containing radioactive materials remain as they are in the separation tank. Then, the inorganic materials containing the radioactive materials are taken out and then solidified, for example, by converting them into a rock or glass form. (Kawakami, Y.)

  19. Evaluation of asphalt treated permeable base.

    Science.gov (United States)

    2013-12-01

    III : Tec : hnical : Report Documentation Page : 1. Report No. : 2. Government Accession : No. : 3. Recipient's Catalog No : . : 201 : 3 : - : 09 : - : - : - : - : - : - : 4. Title and Subtitle : 5. Report Date : Evaluation of Asphalt Treated Permeab...

  20. Properties of sulfur-extended asphalt concrete

    Directory of Open Access Journals (Sweden)

    Gladkikh Vitaliy

    2016-01-01

    Full Text Available Currently, increased functional reliability of asphalt concrete coatings associated with various modifying additives that improve the durability of pavements. Promising builder is a technical sulfur. Asphalt concrete, made using a complex binder consisting of petroleum bitumen and technical sulfur, were calledsSulfur-Extended Asphalt Concrete. Such asphalt concrete, due to changes in the chemical composition of particulate and bitumen, changes the intensity of the interaction at the interface have increased rates of physical and mechanical properties. There was a lack of essential knowledge concerning mechanical properties of the sulfur-bituminous concrete with such an admixture; therefore, we had carried out the necessary examination. It is revealed that a new material satisfies local regulations in terms of compressive and tensile strength, shear resistance, and internal friction.

  1. Low temperature rheological properties of asphalt mixtures containing different recycled asphalt materials

    Directory of Open Access Journals (Sweden)

    Ki Hoon Moon

    2017-01-01

    Full Text Available Reclaimed Asphalt Pavement (RAP and Recycled Asphalt Shingles (RAS are valuable materials commonly reused in asphalt mixtures due to their economic and environmental benefits. However, the aged binder contained in these materials may negatively affect the low temperature performance of asphalt mixtures. In this paper, the effect of RAP and RAS on low temperature properties of asphalt mixtures is investigated through Bending Beam Rheometer (BBR tests and rheological modeling. First, a set of fourteen asphalt mixtures containing RAP and RAS is prepared and creep stiffness and m-value are experimentally measured. Then, thermal stress is calculated and graphically and statistically compared. The Huet model and the Shift-Homothety-Shift in time-Shift (SHStS transformation, developed at the École Nationale des Travaux Publics de l'État (ENTPE, are used to back calculate the asphalt binder creep stiffness from mixture experimental data. Finally, the model predictions are compared to the creep stiffness of the asphalt binders extracted from each mixture, and the results are analyzed and discussed. It is found that an addition of RAP and RAS beyond 15% and 3%, respectively, significantly change the low temperature properties of asphalt mixture. Differences between back-calculated results and experimental data suggest that blending between new and old binder occurs only partially. Based on the recent finding on diffusion studies, this effect may be associated to mixing and blending processes, to the effective contact between virgin and recycled materials and to the variation of the total virgin-recycled thickness of the binder film which may significantly influence the diffusion process. Keywords: Reclaimed Asphalt Pavement (RAP, Recycled Asphalt Shingles (RAS, Thermal stress, Statistical comparison, Back-calculation, Binder blending

  2. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    Science.gov (United States)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  3. Fatigue Behavior of Modified Asphalt Concrete Pavement

    Directory of Open Access Journals (Sweden)

    saad I. Sarsam

    2016-02-01

    Full Text Available Fatigue cracking is the most common distress in road pavement. It is mainly due to the increase in the number of load repetition of vehicles, particularly those with high axle loads, and to the environmental conditions. In this study, four-point bending beam fatigue testing has been used for control and modified mixture under various micro strain levels of (250 μƐ, 400 μƐ, and 750 μƐ and 5HZ. The main objective of the study is to provide a comparative evaluation of pavement resistance to the phenomenon of fatigue cracking between modified asphalt concrete and conventional asphalt concrete mixes (under the influence of three percentage of Silica fumes 1%, 2%, 3% by the weight of asphalt content, and (changing in the percentage of asphalt content by (0.5% ± from the optimum. The results show that when Silica fumes content was 1%, the fatigue life increases by 17%, and it increases by 46% when Silica fumes content increases to 2%, and that fatigue life increases to 34 % when Silica fumes content increases to 3% as compared with control mixture at (250 μƐ, 20°C and optimum asphalt content. From the results above, we can conclude the optimum Silica fumes content was 2%. When the asphalt content was 4.4%, the fatigue life has increased with the use of silica fumes by (50%, when asphalt content was 5.4%, the additives had led to increasing the fatigue life by (69%, as compared with the conventional asphalt concrete pavement.

  4. Observation of asphalt binder microstructure with ESEM.

    Science.gov (United States)

    Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S

    2017-09-01

    The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  5. Operational properties of nanomodified stone mastic asphalt

    Directory of Open Access Journals (Sweden)

    Inozemtsev Sergey Sergeevich

    2015-03-01

    Full Text Available In order to prolong the lifetime and to improve the quality of pavements made of asphalt concrete it is necessary to apply innovative solutions in the process of design of such building materials. In order to solve the problem of low durability of asphalt concrete a modifier was proposed, which consists of diatomite, iron hydroxide sol (III and silica sol. Application of the diatomite with nanoscale layer of nanomodifier allows getting a stone mastic asphalt, which has high values of physical and mechanical properties and allows refusing from expensive stabilizing additive. Mineral filler was replaced by diatomite, which has been modified by iron hydroxide sol (III and silica sol. Modified diatomite allows sorption of bitumen and increase the cohesive strength and resistance to shear at positive temperatures. The modified asphalt has higher resistance to rutting at high temperature, abrasion resistance at low temperature and impact of climatic factors: alternate freezing and thawing, wetting-drying, UV and IR radiations. It is achieved by formation of solid and dense bitumen film at the phase interface and controlling the content of light fractions of the bitumen. The modifier consists of sol of iron hydroxide, which blocks the oxidation and polymerization of bitumen during operation. The proposed material allows controlling the initial structure formation of stone mastic asphalt. It was shown that modern test methods allow assessing the durability of asphalt in the design phase compositions.

  6. Use of Adhesion Promoters in Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Cihlářová Denisa

    2018-03-01

    Full Text Available The purpose of asphalt binder as a significant binder in road constructions is to permanently bind aggregates of different compositions and grain sizes. The asphalt binder itself does not have suitable adhesiveness, so after a period of time, bare grains can appear. This results in a gradual separation of the grains from an asphalt layer and the presence of potholes in a pavement. Adhesion promoters or adhesive agents are important and proven promoters in practice. They are substances mainly based on the fatty acids of polyamides which should increase the reliability of the asphalt’s binder adhesion to the aggregates, thus increasing the lifetime period of the asphalt mixture as well as its resistance to mechanical strain. The amount of a promoter or agent added to the asphalt mixture is negligible and constitutes about 0.3% of the asphalt’s binder weight. Nevertheless, even this quantity significantly increases the adhesive qualities of an asphalt binder. The article was created in cooperatation with the Slovak University of Technology, in Bratislava, Slovakia, and focuses on proving the new AD2 adhesive additive and comparing it with the Addibit and Wetfix BE promoters used on aggregates from the Skuteč - Litická and Bystřec quarries.

  7. Development of Rolling Schedules for AZ31 Magnesium Alloy Sheets

    Science.gov (United States)

    2015-06-01

    Materials 2 2.2 Hot Rolling 3 2.2 Sample Characterization: Microstructure and Tensile Properties 3 3. Rolling Experiments 5 3.1 High-Temperature...material systems for protective and structural applications, especially in ground vehicles. Magnesium (Mg), due to its low density (~25% that of steel ...applications, wrought Mg is difficult to produce in thin sheets because of its inherently low ductility . As a result, Mg sheet is often produced at

  8. An advanced dissymmetric rolling model for online regulation

    Science.gov (United States)

    Cao, Trong-Son

    2017-10-01

    Roll-bite model is employed to predict the rolling force, torque as well as to estimate the forward slip for preset or online regulation at industrial rolling mills. The rolling process is often dissymmetric in terms of work-rolls rotation speeds and diameters as well as the friction conditions at upper and lower contact surfaces between work-rolls and the strip. The roll-bite model thus must be able to account for these dissymmetries and in the same time has to be accurate and fast enough for online applications. In the present study, a new method, namely Adapted Discretization Slab Method (ADSM) is proposed to obtain a robust roll-bite model, which can take into account the aforementioned dissymmetries and has a very short response time, lower than one millisecond. This model is based on the slab method, with an adaptive discretization and a global Newton-Raphson procedure to improve the convergence speed. The model was validated by comparing with other dissymmetric models proposed in the literature, as well as Finite Element simulations and industrial pilot trials. Furthermore, back-calculation tool was also constructed for friction management for both offline and online applications. With very short CPU time, the ADSM-based model is thus attractive for all online applications, both for cold and hot rolling.

  9. Ship Roll Damping Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2012-01-01

    limitations and large variations of the spectral characteristics of wave-induced roll motion. This tutorial paper presents an account of the development of various ship roll motion control systems together with the challenges associated with their design. It discusses the assessment of performance...

  10. Cosmology with rolling tachyon

    Indian Academy of Sciences (India)

    Email: sami@iucaa.ernet.in. Abstract. We examine the possibility of rolling tachyon to play the dual role of inflaton at early epochs and dark matter at late times. We argue that enough inflation can be generated with the rolling tachyon either by invoking the large number of branes or brane world assisted inflation. However ...

  11. Origins of Rolling Friction

    Science.gov (United States)

    Cross, Rod

    2017-01-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…

  12. Effects of reclaimed asphalt pavement on indirect tensile strength test of conditioned foamed asphalt mix

    International Nuclear Information System (INIS)

    Katman, Herda Yati; Norhisham, Shuhairy; Ismail, Norlela; Ibrahim, Mohd Rasdan; Matori, Mohd Yazip

    2013-01-01

    This paper presents the results of Indirect Tensile Strength (ITS) Test for samples prepared with reclaimed asphalt pavement (RAP). Samples were conditioned in water at 25°C for 24 hours prior to testing. Results show that recycled aggregate from reclaimed asphalt pavement performs as well as virgin aggregate.

  13. Durability of European Asphalt Mixtures Containing Reclaimed Asphalt and Warm-Mix Additives

    NARCIS (Netherlands)

    Varveri, A.; Avgerinopoulos, S.; Scarpas, Athanasios

    2016-01-01

    This paper investigates the moisture susceptibility of European asphalt mixtures (SMA) containing reclaimed asphalt (RA) and warm mix (WMA) additives. Test sections of a typical SMA mixture have been laid, from which cylindrical samples were cored and utilized for laboratory testing. Four variants

  14. Evolution of microstructure at hot band annealing of ferritic FeSi steels

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Jürgen, E-mail: juergen.schneider@t-online.de [Institute of Metal Forming, Technische Universität Bergakademie Freiberg, Bernhard-von Cotta-Str. 4, D-09596 Freiberg (Germany); Stahlzentrum Freiberg e.V., Leipziger Straße 34, D-09599 Freiberg (Germany); Li, Guangqiang [State Key Lab. of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Avenue, Qingshan District, Wuhan 430081 (China); Franke, Armin [Stahlzentrum Freiberg e.V., Leipziger Straße 34, D-09599 Freiberg (Germany); Zhou, Bowen [State Key Lab. of Refractories and Metallurgy, Wuhan University of Science and Technology, No. 947 Heping Avenue, Qingshan District, Wuhan 430081 (China)

    2017-02-15

    The magnetic properties of the finally fabricated nonoriented FeSi steels critically depend on the microstructure and on the occurring crystallographic texture. The fabrication route comprises hot rolling, coiling and cooling, hot band annealing before cold rolling (optional), cold rolling and the final thermal treatment. As well known there is an interplay between the microstructure and texture during the various processing steps. For that reason, it is of interest to know more on the evolution of the microstructure at hot band annealing of hot band prepared in different ways. In this paper we will summarize our recent results on the evolution of microstructure during thermal annealing of hot band: thermal treatment following immediately the last pass of hot rolling or a hot band annealing as a separate processing step before cold rolling.

  15. Deformation mechanisms of pure Mg materials fabricated by using pre-rolled powders

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J., E-mail: shen-j@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University (Japan); Imai, H. [Joining and Welding Research Institute, Osaka University (Japan); Chen, B. [Graduate School of Engineering, Osaka University (Japan); Ye, X.; Umeda, J.; Kondoh, K. [Joining and Welding Research Institute, Osaka University (Japan)

    2016-03-21

    In the present work, a powder rolling process was utilized in the fabrication of fine grained pure Mg via powder metallurgy. Mg flakes were obtained after each rolling process, and broken into pieces for further rolling or sintering. Mg samples of experiencing 0, 5 and 10 rolling passes were obtained following spark plasma sintering (SPS) and hot extrusion. Microstructural results from electron backscatter diffraction (EBSD) revealed that, without experiencing powder rolling, the specimen contained a great number of residual tensile twins; in contrast, after powder rolling the specimen showed uniform and equiaxed grain structures. In addition, the average grain size was measured to be around 9.2, 2.9 and 2.1 µm for the samples subjected to 0, 5 and 10 rolling passes. The powder rolled specimens were found superior in mechanical properties. Post-loading microstructure examinations were also performed for the samples and a discussion regarding the relationship between their mechanical behavior and microstructures was provided.

  16. Deformation mechanisms of pure Mg materials fabricated by using pre-rolled powders

    International Nuclear Information System (INIS)

    Shen, J.; Imai, H.; Chen, B.; Ye, X.; Umeda, J.; Kondoh, K.

    2016-01-01

    In the present work, a powder rolling process was utilized in the fabrication of fine grained pure Mg via powder metallurgy. Mg flakes were obtained after each rolling process, and broken into pieces for further rolling or sintering. Mg samples of experiencing 0, 5 and 10 rolling passes were obtained following spark plasma sintering (SPS) and hot extrusion. Microstructural results from electron backscatter diffraction (EBSD) revealed that, without experiencing powder rolling, the specimen contained a great number of residual tensile twins; in contrast, after powder rolling the specimen showed uniform and equiaxed grain structures. In addition, the average grain size was measured to be around 9.2, 2.9 and 2.1 µm for the samples subjected to 0, 5 and 10 rolling passes. The powder rolled specimens were found superior in mechanical properties. Post-loading microstructure examinations were also performed for the samples and a discussion regarding the relationship between their mechanical behavior and microstructures was provided.

  17. Numerical Study of Tire Hydroplaning Based on Power Spectrum of Asphalt Pavement and Kinetic Friction Coefficient

    Directory of Open Access Journals (Sweden)

    Shengze Zhu

    2017-01-01

    Full Text Available Hydroplaning is a driving phenomenon threating vehicle’s control stability and safety. It happens when tire rolls on wet pavement with high speed that hydrodynamic force uplifts the tire. Accurate numerical simulation to reveal the mechanism of hydroplaning and evaluate the function of relevant factors in this process is significant. In order to describe the friction behaviors of tire-pavement interaction, kinetic friction coefficient curve of tire rubber and asphalt pavement was obtained by combining pavement surface power spectrum and complex modulus of tread rubber through Persson’s friction theory. Finite element model of tire-fluid-pavement was established in ABAQUS, which was composed of a 225-40-R18 radial tire and three types of asphalt pavement covered with water film. Mechanical responses and physical behaviors of tire-pavement interaction were observed and compared with NASA equation to validate the applicability and accuracy of this model. Then contact force at tire-pavement interface and critical hydroplaning speed influenced by tire inflation pressure, water film thickness, and pavement types were investigated. The results show higher tire inflation pressure, thinner water film, and more abundant macrotexture enhancing hydroplaning speed. The results could be applied to predict hydroplaning speed on different asphalt pavement and improve pavement skid resistance design.

  18. Experimental studies of biodegradation of asphalt by microorganisms

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao; Lin, Kong-hua; Kawakami, Yasushi

    2000-04-01

    On the geological disposal system of the radioactive wastes, the activities of the microorganisms that could degrade the asphalt might be significant for the assessment of the system performance. As the main effects of the biodegradation of the asphalt, the fluctuation of leaching behavior of the nuclides included in asphalt waste has been indicated. In this study, the asphalt biodegradation test was carried out. The microorganism of which asphalt degradation ability was comparatively higher under aerobic condition and anaerobic condition was used. The asphalt biodegradation rate was calculated and it was evaluated whether the asphalt biodegradation in this system could occur. The results show that the asphalt biodegradation rate under anaerobic and high alkali condition will be 300 times lower than under aerobic and neutral pH. (author)

  19. Preparation and rheological behavior of polymer-modified asphalts

    Science.gov (United States)

    Yousefi, Ali Akbar

    1999-09-01

    Different materials and methods were used to prepare and stabilize polymer-modified asphalts. Addition of thermoplastic elastomers improved some technically important properties of asphalt. Due to inherent factors like large density difference between asphalt and polyethylene, many physical methods in which the structure of asphalt is unchanged, failed to stabilize this system. The effect of addition of copolymers and a pyrolytic oil residue derived from used tire rubber were also studied and found to be ineffective on the storage stability of the polymer-asphalt emulsions while high and moderate temperature properties of the asphalt were found to be improved. Finally, the technique of catalytic grafting of polymer on the surface of high-density particles (e.g. carbon black) was used to balance the large density difference between asphalt and polymer. The resulting polymer-asphalts were stable at high temperatures and showed enhanced properties at low and high temperatures.

  20. Investigating the creep properties of asphaltic concrete containing ...

    Indian Academy of Sciences (India)

    Hasan Taherkhani

    2018-03-10

    Mar 10, 2018 ... A three-stage model, developed was fitted to the dynamic ... This indicates that the rutting resistance of such asphalt ... drug delivery [23]. .... Different mathematical ... viour of asphaltic materials and prediction of flow number. A.

  1. Comparison of winter temperature profiles in asphalt and concrete pavements.

    Science.gov (United States)

    2014-06-01

    The objectives of this research were to 1) determine which pavement type, asphalt or concrete, has : higher surface temperatures in winter and 2) compare the subsurface temperatures under asphalt and : concrete pavements to determine the pavement typ...

  2. Terrestrial radiation level in selected asphalt plants in Port Harcourt ...

    African Journals Online (AJOL)

    Terrestrial radiation level in selected asphalt plants in Port Harcourt, Nigeria. ... An environmental radiation survey in asphalt processing plants in Rivers State was been carried out ... Therefore the results show significant radiological risk.

  3. Appropriate models for estimating stresses and strains in asphalt layers

    CSIR Research Space (South Africa)

    Jooste, FJ

    1998-09-01

    Full Text Available The broad objective is to make recommendations for appropriate modelling procedures to be used in the structural design of asphalt layers. Findings of this investigation are intended to be used in refining and validating existing asphalt pavement...

  4. Asphalt mix characterization using dynamic modulus and APA testing.

    Science.gov (United States)

    2005-11-01

    final report summarizes two research efforts related to asphalt mix characterization: dynamic modulus and Asphalt Pavement Analyzer testing. One phase of the research consisted of a laboratory-based evaluation of dynamic modulus of Oregon dense-grade...

  5. Performance assessment of warm mix asphalt (WMA) pavements.

    Science.gov (United States)

    2009-09-01

    Warm Mix Asphalt (WMA) is a new technology that was introduced in Europe in 1995. WMA offers several advantages over : conventional asphalt concrete mixtures, including: reduced energy consumption, reduced emissions, improved or more uniform : binder...

  6. Utilizing Lab Tests to Predict Asphalt Concrete Overlay Performance

    Science.gov (United States)

    2017-12-01

    A series of five experimental projects and three demonstration projects were constructed to better understand the performance of pavement overlays using various levels of asphalt binder replacement (ABR) from reclaimed asphalt pavement (RAP), recycle...

  7. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  8. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  9. Effects of preparation process on performance of rubber modified asphalt

    Science.gov (United States)

    Liu, Hanbing; Luo, Guobao; Wang, Xianqiang; Jiao, Yubo

    2015-06-01

    The rational utilization of waste rubber tire is essential for the environmental protection. Utilizing rubber particles to modify asphalt can not only improve asphalt performance, but also help the recycling of waste materials. Considering the effect of different preparation process parameters on the performance of rubber modified asphalt, this paper analyzes the effects of the shear temperature, shear time and shear rate on the performance of rubber modified asphalt, and provided a reference for its preparation.

  10. Field Control and Performance of Asphalt Mixtures Containing Greater than 25 Percent Reclaimed Asphalt Pavement : Draft Final Report

    Science.gov (United States)

    2018-02-02

    The Alabama Department of Transportation (ALDOT) and other highway agencies are interested in utilization of higher percentages of reclaimed asphalt pavement (RAP) in asphalt mixtures. There are a number of research studies at both state and national...

  11. State of the art: Asphalt for airport pavement surfacing

    Directory of Open Access Journals (Sweden)

    Greg White

    2018-01-01

    Full Text Available Airport runways and taxiways are commonly comprised of a flexible pavement with an asphalt surface. Marshall-designed asphalt with sawn grooves is the most frequent airport asphalt surface material. However, some airports have adopted alternate asphalt mixtures for improved resistance to shear stress and for increased surface texture, allowing grooving to be avoided. Of the alternate asphalt mixtures, stone mastic asphalt is the most commonly reported. Resistance to shear stress is a critical performance requirement for airport surface asphalt. Shear stress resistance minimises the risk of rutting, shoving and groove closure. However, fracture resistance must not be ignored when developing even more shear resistance asphalt mixtures. Significant distress in airport asphalt surfaces, compliant with the traditional prescriptive specification, has increased interest in a performance-based airport asphalt specification. Commonly reported distresses include groove closure in slow moving aircraft areas and shearing in heavy aircraft braking zones. Development of reliable performance-indicative test methods is expected in the future and will enable warranted performance-based asphalt mixture design for airport surfaces. Keywords: Airport, Pavement, Asphalt, Surface

  12. Precision ring rolling technique and application in high-performance bearing manufacturing

    Directory of Open Access Journals (Sweden)

    Hua Lin

    2015-01-01

    Full Text Available High-performance bearing has significant application in many important industry fields, like automobile, precision machine tool, wind power, etc. Precision ring rolling is an advanced rotary forming technique to manufacture high-performance seamless bearing ring thus can improve the working life of bearing. In this paper, three kinds of precision ring rolling techniques adapt to different dimensional ranges of bearings are introduced, which are cold ring rolling for small-scale bearing, hot radial ring rolling for medium-scale bearing and hot radial-axial ring rolling for large-scale bearing. The forming principles, technological features and forming equipments for three kinds of precision ring rolling techniques are summarized, the technological development and industrial application in China are introduced, and the main technological development trend is described.

  13. Evaluating The Performance of Asphalt Concrete Mixes by Utilizing Carbon Black as Asphalt Modifier

    Directory of Open Access Journals (Sweden)

    Aliaa Faleh Al.ani

    2018-02-01

    Full Text Available Carbon black produced from several factories in Iraq is expected to provide a reinforcing agent for asphalt paving materials. Carbon black has many characteristics that distinguish  it from conventional mineral fillers, as well as their different function in pavement mixtures. Theory and exercise advanced  in the inclusive utilize of carbon black as a reinforcing agent for rubber has led to concept of asphalt reinforcement. The very fine particles of micro filler added in different contents will be dispersed in asphalt cement improving the mechanical properties of asphalt concrete mixes. In this Four percentages rates were utilized; 0, 3, 6, and 9 percent adding to asphalt grade (60-70. Mixes of asphalt concrete were destined at their optimum asphalt content (OAC then experienced to assess their engineering characteristics that contain moisture of damage, permanent deformation, modulus of resilient and characteristics of fatigue. These characteristics have been assessed utilizing indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixtures improved with carbon black were existed to have amended permanent deformation and fatigue characteristics, else exhibited high resilient modulus and lower moisture susceptibility. Result showed that a rate changed from 3 to 9 percent has shown an increase in resilient modulus for increment of carbon black and modulus of resilient for mixes with 9 percent carbon black was 1.4 times that for mixes with 0 percent carbon black. The altering of carbon black from a range (3-9 percent has modified the fatigue property of the asphalt concrete mixes as determined by flexural test, Significantly, to modify the asphalt concrete manner taken the  percent of carbon black 6, and to produce the mixes more durable , higher resistance to distresses by adding the local knowledge.

  14. Influence of reclaimed asphalt with polymer modified bitumen on properties of different asphalts for a wearing course

    NARCIS (Netherlands)

    Komačka, J.; Remišová, E.; Liu, G.; Leegwater, G.; Nielsen, E.

    2014-01-01

    A laboratory investigation was performed to study the effect of reclaimed asphalt with polymer modified bitumen on the properties describing asphalt performance. Three types of asphalts used for wearing courses in Europe (SMA 11, AC 11 and PA 8) were investigated. Five combinations of reclaimed

  15. Natural asphalt modified binders used for high stiffness modulus asphalt concrete

    Science.gov (United States)

    Bilski, Marcin; Słowik, Mieczysław

    2018-05-01

    This paper presents a set of test results supporting the possibility of replacing, in Polish climate conditions, hard road 20/30 penetration grade bitumen used in the binder course and/or base course made of high stiffness modulus asphalt concrete with binders comprising of 35/50 or 50/70 penetration grade bitumens and additives in the form of natural Gilsonite or Trinidad Epuré asphalts. For the purpose of comparing the properties of the discussed asphalt binders, values of the Performance Grade have been determined according to the American Superpave system criteria.

  16. Crystal plasticity modeling of through-thickness texture heterogeneity in heavily rolled aluminum

    DEFF Research Database (Denmark)

    Delannay, Laurent; Mishin, Oleg V.

    2013-01-01

    from hot rolling producing shear near the surface and conditions approaching plane strain compression in the center layer. Model predictions confirm experimental observations that such a gradient strengthens significantly during further heavy cold rolling. Copyright © 2013 Trans Tech Publications Ltd....

  17. Evaluation of rubber modified asphalt demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    As part of the Ontario Government's medium-term scrap tire management strategy, 11 rubber modified asphalt demonstration projects were funded or completed, with 13 additional projects from small to large (1,500-65,000 passenger tire equivalents) approved for the 1993 paving season. This report presents the results of an August to November 1993 study of the 11 demonstration projects. The evaluation included a description of the technology; technical review of the projects; economic analysis; review of the environmental literature; environmental review of the projects; comparison of the projects with similar ones in other jurisdictions; and recommendations. Detailed information on asphalt technology is included in an appendix.

  18. Practical experiences with new types of highly modified asphalt binders

    Science.gov (United States)

    Špaček, Petr; Hegr, Zdeněk; Beneš, Jan

    2017-09-01

    As a result of steadily increasing traffic load on the roads in the Czech Republic, we should be focused on the innovative technical solutions, which will lead to extending the life time of asphalt pavements. One of these ways could be the future use of bitumen with a higher degree of polymer modification. This paper discusses experience with comparison of new highly polymer modified asphalt binder type with conventional polymer modified asphalt binder and unmodified binder with penetration grade 50/70. There are compared the results of various types laboratory tests of asphalt binders, as well as the results of asphalt mixtures laboratory tests. The paper also mentions the experience with workability and compactability of asphalt mixture with highly polymer modified asphalt binder during the realization of the experimental reference road section by the Skanska company in the Czech Republic.

  19. Influence of Hydrated Lime on the Properties and Permanent Deformation of the Asphalt Concrete Layers in Pavement

    Directory of Open Access Journals (Sweden)

    Al-Tameemi Ahmed F.

    2015-07-01

    Full Text Available Flexible or asphalt concrete pavement is the paving system most widely adopted all over the world. It has been recognized that there are many different types of the factors affecting the performance and durability of asphalt concrete pavement, including the service conditions, such as: the variation of temperature from mild to extremes and the repeated excessive axle loading as well as the inadequate quality of the raw materials. All of these when combined together are going to accelerate the occurrence of distresses in flexible pavement such as permanent deformation and fatigue cracking. As the result, there has an urgent need to enhance the ability of asphalt concrete mixture to resist distresses happened in pavement. Use of additives is one of the techniques adopted to improve pavement properties. It has been found that hydrated lime might be one of the effective additives because it is widely available and relatively cheap compared to other modifiers like polymers. This paper presents an experimental study of the hydrated-lime modified asphalt concrete mixtures. Five different percentages of the hydrated lime additive were investigated, namely (1, 1.5, 2, 2.5 and 3 percent. The hydrated lime additive was used as partial replacement of limestone filler by total weight of the aggregate. The designed Hot Mix Asphalt (HMA concretes are for the application of three pavement courses, i.e. Surface, Leveling and Base. These mixtures are designed and tested following Marshall procedure and uniaxial repeated loading to evaluate permanent deformation at different temperatures of 20°C, 40°C and 60°C. The experimental results show that the addition of hydrated lime as a partial replacement of ordinary limestone mineral filler results a significant improvement on mechanical properties and the resistant to permanent deformation of the designed asphalt concrete mixtures.

  20. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives

    Directory of Open Access Journals (Sweden)

    A. M. Rodríguez-Alloza

    2017-04-01

    Full Text Available Warm Mix Asphalt (WMA refers to technologies that reduce manufacturing and compaction temperatures of asphalt mixtures allowing lower energy consumption and reducing greenhouse gas emissions from asphalt plants. These benefits, combined with the effective reuse of a solid waste product, make asphalt rubber (AR mixtures with WMA additives an excellent environmentally-friendly material for road construction. The effect of WMA additives on rubberized mixtures has not yet been established in detail and the lower mixing/compaction temperatures of these mixtures may result in insufficient compaction. In this sense, the present study uses a series of laboratory tests to evaluate the volumetric characteristics and compactability of AR mixtures with organic additives when production/compaction temperatures are decreased. The results of this study indicate that the additives selected can decrease the mixing/compaction temperatures without compromising the volumetric characteristics and compactability.

  1. Investigation of the use of recycled polymer-modified asphalt in asphaltic concrete pavements.

    Science.gov (United States)

    2004-06-30

    This report presents issues associated with recycling polymer modified asphalt cements (PMACs), particularly blending aged PMAC with new PMAC. A styrene-butadiene-styrene (SBS) PMAC was selected and graded using the Superpave Performance Grading (PG)...

  2. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives

    International Nuclear Information System (INIS)

    Rodríguez-Alloza, A.M.; Gallego, J.

    2017-01-01

    Warm Mix Asphalt (WMA) refers to technologies that reduce manufacturing and compaction temperatures of asphalt mixtures allowing lower energy consumption and reducing greenhouse gas emissions from asphalt plants. These benefits, combined with the effective reuse of a solid waste product, make asphalt rubber (AR) mixtures with WMA additives an excellent environmentally-friendly material for road construction. The effect of WMA additives on rubberized mixtures has not yet been established in detail and the lower mixing/compaction temperatures of these mixtures may result in insufficient compaction. In this sense, the present study uses a series of laboratory tests to evaluate the volumetric characteristics and compactability of AR mixtures with organic additives when production/compaction temperatures are decreased. The results of this study indicate that the additives selected can decrease the mixing/compaction temperatures without compromising the volumetric characteristics and compactability. [es

  3. Effect of rolling deformation and solution treatment on microstructure ...

    Indian Academy of Sciences (India)

    Department of Metallurgy and Materials Engineering, Bengal Engineering and Science ... lume percent of elongated band of δ-ferrite (∼40%) and austenite phase which ... Duplex stainless steel; hot rolling; cold deformation; microstructure; tensile properties. 1. ... ssure vessels, storage tanks, rotors, impellers and shafts,.

  4. Rheological characterization of asphalt binders used in strain relief asphalt mixtures (SRAM)

    OpenAIRE

    Vasconcelos, Kamilla L.; Bariani Bernucci, Liedi Legi; Midori Takahashi, Marcia; Castelo-Branco, Verônica T. F.

    2017-01-01

    Abstract The use of ´interlayers´ that tolerate high tensile and shear strain that exists above cracks in deteriorated pavements is becoming an interesting solution to prevent reflective cracking. Recent advances in polymer technology have led to binders that can be used to produce interlayer mixtures with good mechanical properties. In this study, two polymer-modified asphalt binders were evaluated, both from the production of strain relief asphalt mixtures used as interlayers in the field. ...

  5. Calculation of the temperature of asphalt concrete at making the joints of multilane road pavement of non-rigid type

    Directory of Open Access Journals (Sweden)

    Giyasov Botir Iminzhonovich

    2015-03-01

    Full Text Available The construction quality of road surface of non-rigid type essentially depend on providing the temperature regimes in the process of laying and packing of hot asphalt concrete mixtures. In order to provide the required characteristics of asphalt concrete due to the surface width it is necessary to provide the temperature regimes of hot asphalt concrete mixture in the zones of lane connection. The hot mixture is promptly cooling right after laying within several minutes, which results, according to the construction technology and the specific conditions of work production, in temperature abuse of the mixture at joints of the lanes at packing. The authors present the analysis of the technology of arranging multilane road surface by one paver with the possibility of heating the surface lane edge with the temperature of the adjacent lane. The results of the studies of the production conditions effect on the temperature of edge heating of the previously laid lanes, and the time required to achieve the maximum heating temperature depending on the relative thickness of coating layers.

  6. Carbon fiber reinforced asphalt concrete

    International Nuclear Information System (INIS)

    Jahromi, Saeed G.

    2008-01-01

    Fibers are often used in the manufacture of other materials. For many years, they have been utilized extensively in numerous applications in civil engineering. Fiber-reinforcement refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers is not a new phenomenon, as the technique of fiber-reinforced bitumen began early as 1950. In all industrialized countries today, nearly all concretes used in construction are reinforced. A multitude of fibers and fiber materials are being introduced in the market regularly. The present paper presents characteristics and properties of carbon fiber-reinforced asphalt mixtures, which improve the performance of pavements. To evaluate the effect of fiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without fibers. During the course of this study, various tests were undertaken, applying Marshall Test indirect tensile test, creep test and resistance to fatigue cracking by using repeated load indirect tensile test. Carbon fiber exhibited consistency in results and as such it was observed that the addition of fiber does affect the properties of bituminous mixtures, i.e. an increase in its stability and decrease in the flow value as well as an increase in voids in the mix. Results indicate that fibers have the potential to resist structural distress in pavement, in the wake of growing traffic loads and thus improve fatigue by increasing resistance to cracks or permanent deformation. On the whole, the results show that the addition of carbon fiber will improve some of the mechanical properties like fatigue and deformation in the flexible pavement. (author)

  7. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Harald; Mattissen, Dorothea; Schaumann, Thomas Wilhelm [ThyssenKrupp Steel AG, Center of Materials Excellence, Dortmund (Germany)

    2009-01-15

    Advanced high-strength steels offer a great potential for the further development of automobile bodies-in-white due to their combined mechanical properties of high formability and strength. They represent the first choice in material selection for strength and crash-relevant parts with challenging geometries. The intensive development of multiphase steels by ThyssenKrupp Steel has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex-phase steels are currently produced in addition to cold rolled dual phase (DP) and retained austenite (RA) or transformation induced plasticity (TRIP) steels. New continuously annealed grades of steel are being developed with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for the high demands of structural automobile components. These steels make use of the classic advantages of microalloying as well as the principles of DP steels and RA / TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (orig.)

  8. Interfacial debonding of ice-asphalt concrete

    Energy Technology Data Exchange (ETDEWEB)

    Tazawa, E.; Mizoue, Y. (Hiroshima Univ., Hiroshima (Japan)); Kojima, T. (Hitachi Chemical Co. Ltd., Tokyo (Japan))

    1992-09-20

    Series of experimental investigations were carried out to clarify the bonding mechanism between ice and asphalt and to develop a new technique to reduce bonding resistance. The surface bonding resistance was measured by three methods and the main variables taken into consideration have been surface energy, surface roughness and stiffness of asphalt. Surface energy was varied by using various water repellents and the stiffness of the concrete was varied by mixing rubber particles. Correlations of the three variables were studied and the following results have been obtained. Decreasing of surface energy and increasing of deformability of asphalt concrete has been the effective method to decrease the bonding between ice and asphalt. For the case of water repellent coated surface, shear debonding strength has been linearly related to the energy required for debonding by dynamic tension and the shear debonding strength has decreased with the decrease in roughness of pavement. In the case of surface without using repellent, shear debonding strength has not been influenced by surface energy and roughness of pavement. 6 refs., 16 figs., 7 tabs.

  9. Extending the Lifespan of Porous Asphalt Concrete

    NARCIS (Netherlands)

    Zhang, Y.

    2015-01-01

    Porous Asphalt (PA) concrete is widely used as a surfacing layer on highways in the Netherlands. The service life of PA wearing courses is limited because of the fact that it is vulnerable to raveling. The possibilities of applying preventive maintenance to PA wearing courses by means of spraying

  10. Application of Conductive Materials to Asphalt Pavement

    Directory of Open Access Journals (Sweden)

    Hai Viet Vo

    2017-01-01

    Full Text Available Snow-melting pavement technique is an advanced preservation method, which can prevent the forming of snow or ice on the pavement surface by increasing the temperature using an embedded heating system. The main scope of this study is to evaluate the impact of conductive additives on the heating efficiency. The electrical resistivity and thermal conductivity were considered to investigate effects of conductive additives, graphite, and carbon fibers on the snow-melting ability of asphalt mixtures. Also, the distribution of the conductive additives within the asphalt concrete body was investigated by microstructural imaging. An actual test was applied to simulate realistic heating for an asphalt concrete mixture. Thermal testing indicated that graphite and carbon fibers improve the snow-melting ability of asphalt mixes and their combination is more effective than when used alone. As observed in the microstructural image, carbon fibers show a long-range connecting effect among graphite conductive clusters and gather in bundles when added excessively. According to the actual test, adding the conductive additives helps improve snow-melting efficiency by shortening processing time and raising the surface temperature.

  11. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev

    2017-02-01

    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  12. Effects of Asphalt Mix Design Properties on Pavement Performance: A Mechanistic Approach

    Directory of Open Access Journals (Sweden)

    Ahmad M. Abu Abdo

    2016-01-01

    Full Text Available The main objective of this study was to investigate the effects of hot mix asphalt material properties on the performance of flexible pavements via mechanistic approach. 3D Move Analysis software was utilized to determine rutting and cracking distresses in an asphalt concrete (AC layer. Fourteen different Superpave mixes were evaluated by utilizing results of the Dynamic Modulus (|E⁎| Test and the Dynamic Shear Modulus (|G⁎| Test. Results showed that with the increase of binder content, the tendency of rutting in AC layer increased. However, with the increase of binder content, the cracking of AC layer lessened. Furthermore, when different binder grades were evaluated, results showed that with the increase of the upper binder grade number, rutting decreased, and with the increase of the lower binder grade number, rutting increased. Furthermore, analysis showed that with the increase of the lower binder grade number, higher percent of bottom up cracks would result. As a result of the analysis, binder grade should not be solely considered for cracking in AC layer; binder content and aggregate structure play a big role. Finally, results illustrated that the mechanistic approach is a better tool to determine the performance of asphalt pavement than commonly used methods.

  13. Experience with The Use of Warm Mix Asphalt Additives in Bitumen Binders

    Directory of Open Access Journals (Sweden)

    Cápayová Silvia

    2018-03-01

    Full Text Available In most European countries, Hot Mix Asphalt (HMA technology is still being used as the standard for the production and processing of bituminous mixtures. However, from the perspective of environmental acceptability, global warming and greenhouse gas production, Slovakia is making an effort to put into practice modern technology, which is characterized by lower energy consumption and reducing negative impacts on the environment. Warm mix asphalt technologies (WMA, which have been verified at the Department of Transportation Engineering laboratory, Faculty of Civil Engineering, Slovak University of Technology (FCE, SUT can provide the required mixture properties and can be used not only for the construction of new roads, but also for their renovation and reconstruction. The paper was created in cooperation with the Technical University of Ostrava, Czech Republic, which also deals with the addition of additives to asphalt mixtures and binders. It describes a comparison of the impact of some organic and chemical additives on the properties of commonly used bitumen binders in accordance with valid standards and technical regulations.

  14. Experience with The Use of Warm Mix Asphalt Additives in Bitumen Binders

    Science.gov (United States)

    Cápayová, Silvia; Unčík, Stanislav; Cihlářová, Denisa

    2018-03-01

    In most European countries, Hot Mix Asphalt (HMA) technology is still being used as the standard for the production and processing of bituminous mixtures. However, from the perspective of environmental acceptability, global warming and greenhouse gas production, Slovakia is making an effort to put into practice modern technology, which is characterized by lower energy consumption and reducing negative impacts on the environment. Warm mix asphalt technologies (WMA), which have been verified at the Department of Transportation Engineering laboratory, Faculty of Civil Engineering, Slovak University of Technology (FCE, SUT) can provide the required mixture properties and can be used not only for the construction of new roads, but also for their renovation and reconstruction. The paper was created in cooperation with the Technical University of Ostrava, Czech Republic, which also deals with the addition of additives to asphalt mixtures and binders. It describes a comparison of the impact of some organic and chemical additives on the properties of commonly used bitumen binders in accordance with valid standards and technical regulations.

  15. Rheological Characterization of Warm-Modified Asphalt Mastics Containing Electric Arc Furnace Steel Slags

    Directory of Open Access Journals (Sweden)

    M. Pasetto

    2016-01-01

    Full Text Available The environmental sustainability of road materials and technologies plays a key role in pavement engineering. In this sense, the use of Warm Mix Asphalt (WMA, that is, a modified asphalt concrete that can be produced and applied at lower temperature, is considered an effective solution leading to environmental and operational benefits. The environmental sustainability of WMA can be further enhanced with the inclusion of steel slag in partial substitution of natural aggregates. Nevertheless, such innovative material applied at lower temperatures containing warm additives and steel slag should be able to guarantee at least the same performance of traditional hot mix asphalts, thus assuring acceptable mechanical properties and durability. Therefore, the purpose of this study is to investigate the rheological behaviour of bituminous mastics obtained combining a warm-modified binder and a filler (material passing to 0.063 mm coming from electric arc furnace steel slag. To evaluate the influence of both warm additive and steel slag, a plain binder and limestone filler were also used for comparison purposes. Complex modulus and permanent deformation resistance of bitumens and mastics were assessed using a dynamic shear rheometer. Experimental results showed that steel slag warm mastics assure enhanced performance demonstrating promising applicability.

  16. Refinement of the microstructure of steel by cross rolling

    International Nuclear Information System (INIS)

    Tsay, Kira; Arbuz, Alexandr; Gusseynov, Nazim; Nemkaeva, Renata; Ospanov, Nurlan; Krupen'kin, Ivan

    2016-01-01

    One of the most effective ways for refinement of metal microstructure is a severe plastic deformation. The cross rolling is the one of most perspective methods of severe plastic deformation, because it allows to get the long billets, unlike equal angular pressing and other popular methods. This fact provides some industrial expectation for this method. However, deformation and motion path of the metal is very heterogeneous across the section of the rolled piece. This paper presents the finite element modeling of hot cross rolling of steel in the software package DEFORM-3D features implemented and studied the stress-strain state. An experimental study of the effect of the cross rolling on a three-roll mill on the microstructure of structural alloy steel and stainless steel AISI321 in different zones of the bar. Analysis of microsections made after rolling with high total stretch and the final pass temperature 700°C, shows the formation of equiaxial ultrafinegrain structure on the periphery of an elongated rod and “rolling” texture in the central zone. The resulting microstructure corresponds to that obtained in models of stress-strain state. Keywords: cross rolling, ultra-fine grain structure, steel.

  17. Rolling at small scales

    DEFF Research Database (Denmark)

    Nielsen, Kim L.; Niordson, Christian F.; Hutchinson, John W.

    2016-01-01

    The rolling process is widely used in the metal forming industry and has been so for many years. However, the process has attracted renewed interest as it recently has been adapted to very small scales where conventional plasticity theory cannot accurately predict the material response. It is well....... Metals are known to be stronger when large strain gradients appear over a few microns; hence, the forces involved in the rolling process are expected to increase relatively at these smaller scales. In the present numerical analysis, a steady-state modeling technique that enables convergence without...

  18. METHOD OF ROLLING URANIUM

    Science.gov (United States)

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  19. Plastic Bottles Waste Utilization as Modifier for Asphalt Mixture Production

    Directory of Open Access Journals (Sweden)

    Jan Hakeem

    2017-01-01

    Full Text Available Plastic Bottles was used as the polymeric waste to investigate performance of asphalt mixture Aggregates obtained from Margalla, Burhan and Karak quarries. 12 samples were prepared for conventional asphalt mixtures and 48 samples were prepared for PB modified asphalt mixture of each quarries at various proportions of PB waste. The PB used for modification according to wet process are 15%, 20%, 25% and 30% by weight of Optimum Bitumen Content (OBC. OBC of 4.2 % was concluded for conventional asphalt mixtures. The stability and flow values of the conventional and modified Asphalt Mixture were compared. The average Stability of the modified Margalla asphalt mixtures when 15% PB was used was much higher as compared to conventional asphalt mixtures. But when PB was used beyond 15%, the Marshall stability showed a decreasing trend for Margalla aggregates, increasing trend for Karak aggregates and decreasing trend for Burhan aggregates. This decline in stability is attributed to a decline in interlocking of aggregates due to lubricating effect. The corresponding flow for the Modified asphalt mixtures first showed a decreasing trend for Margalla aggregates at 15% PB modification but beyond 15%, an increasing trend in flow as compared to conventional asphalt mixtures The decrease in flow or increase in Marshall Stability is attributed to improvement in interlocking and decline in flow or stability is attributed to a decline in interlocking offered by binder and PB coated aggregate particles in modified asphalt.

  20. Study of Antiultraviolet Asphalt Modifiers and Their Antiageing Effects

    Directory of Open Access Journals (Sweden)

    Jinxuan Hu

    2017-01-01

    Full Text Available Ultraviolet (UV radiation causes serious ageing problems on pavement surface. In recent years, different UV blocking materials have been used as modifiers to prevent asphalt ageing during the service life of the pavement. In this study, three different materials have been used as modifiers in base asphalt to test their UV blocking effects: layered double hydroxides (LDHs, organomontmorillonite (OMMT, and carbon black (CB. UV ageing was applied to simulate the ageing process and softening point, penetration, ductility, DSR (Dynamic Shear Rheometer test, and Fourier Transform Infrared Spectroscopy (FTIR test were conducted to evaluate the anti-UV ageing effects of the three UV blocking modifiers. Physical property tests show that base asphalt was influenced more seriously by UV radiation compared to the modified asphalt. DSR test results indicate that the complex modulus of asphalt before UV ageing is increased because of modifiers, while the complex modulus of base asphalt after UV ageing is higher than that of the modified asphalt, which shows that the UV blocking modifiers promote the antiageing effects of asphalt. FTIR test reveals that the increment of carbonyl groups and sulfoxide groups of modified asphalt is less than that in base asphalt. Tests indicate the best UV blocking effect results for samples with LDHs and the worst UV blocking effect results for samples with CB.

  1. Fundamental evaluation of the interaction between RAS/RAP and virgin asphalt binders.

    Science.gov (United States)

    2017-08-01

    A comprehensive laboratory testing program was conducted in this research project to examine the blending between reclaimed asphalt pavement (RAP)/recycled asphalt shingles (RAS) and virgin asphalt binders and to evaluate the factors that may affect ...

  2. Effect of skin pass rolling reduction rate on the texture evolution of a non-oriented electrical steel after inclined cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, Mehdi [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5 (Canada); Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON N9B 3P4 (Canada); He, Youliang, E-mail: youliang.he@canada.ca [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5 (Canada); Hilinski, Erik J. [Tempel Steel Co., Chicago, IL 60640-1020 (United States); Edrisy, Afsaneh [Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON N9B 3P4 (Canada)

    2017-05-01

    In order to promote the magnetically favourable <001>//ND texture (θ-fibre) and minimize the unfavourable <111>//ND fibre (γ-fibre) in non-oriented electrical steel, an unconventional cold rolling scheme was employed in this study, in which the cold rolling was carried out at an angle (i.e. 30°, 45°, 60°, and 90°) to the hot rolling direction (HRD). After annealing, two steel sheets (i.e. those after cold rolling at 60° and 45° to the HRD) were found to have considerably different textures from other sheets, i.e. showing the strongest and the weakest θ-fibre textures, respectively. These two sheets were then subjected to skin pass rolling to various reduction rates from 5–20% to investigate the effect of rolling reduction on the evolution of texture. It was found that during skin pass rolling, the cube texture ({001}<100>) was gradually weakened and the rotated cube orientation ({001}<110>) was strengthened. With the increase of the reduction rate, the {112}<110> orientation on the α-fibre became a major component. Upon final annealing, the cube texture was slightly restored, but the volume fraction was considerably lower than that before skin pass rolling. - Highlights: • Inclined cold rolling optimizes the textures of non-oriented electrical steels. • A 60° angle to the hot rolling direction results in the largest improvement of the favorable texture. • Skin pass rolling weakens the cube texture and promotes the {112}<110> texture. • Final annealing restores some of the cube texture and strengthens the rotated cube texture. • Low Taylor factor of the cube orientation leads to its easy deformation in skin pass rolling.

  3. Influence of structure and properties of tubular billets of the 12 Kh 18N10T steel on deformability of tubes at cold-rolling mills

    International Nuclear Information System (INIS)

    Vil'yams, O.S.; Bol'shova, N.M.; Olejnik, O.V.; Velikotnaya, E.S.

    1979-01-01

    Metallographic analysis of the defects of the ''oblique cracks'' type on the surface of hot-rolled tubes of the 12Kh18N10T steel has been carried out. Recommended is the complex of mechanical properties and the structure factors (grain size) of conversion hot-rolled tubes, providing the combination of ductility and high rapture strength during rolling at pilger mills. At a grain size not coarser than number 5, a billet must have σsub(T) 5 >=40 %. Hot-rolled coarse-grained billet is not recommended for warm rolng because of high strain hardening

  4. To study the mechanical properties of unidirectionally and cross rolled Ni-Cu alloy produced in VIM

    International Nuclear Information System (INIS)

    Afzal, M.; Ajmal, M.; Butt, Z.T.

    2009-01-01

    Ni-Cu alloy was developed by melting in a vacuum induction furnace using pure elements i.e., Ni, Cu, Fe, Si, Mn and Cr. Four heats of approximately 4 kg each were prepared. All the heats have been casted in an ingot of 10 cm long and 5 cm in diameter in vacuum. These ingots were hot forged at a temperature of 900 deg. C to break down the cast dendritic structure. All forged plates were cut into two halve. One half was rolled in unidirectional while other was rolled in multiple directions (cross rolling). During rolling after every 25 % reduction, the cold rolled samples were annealed at a temperature of 900 deg. C for one hour. Each plate was cold rolled to a final thickness of 0.345 mm. Half of these rolled plate produced either by cross rolling or unidirectional rolling were annealed at 900 deg. C for 20 minutes. The mechanical properties of each rolled plate in cold reduction and in annealed were also measured. Unidirectional rolling and cross rolling has almost similar mechanical properties. The annealing of cross rolled and unidirectional rolling drastically reduced the yield strength. It was observed that the Ni-Cu alloy produced has slightly lower yield and ultimate tensile strength compared to the values reported in standards of Monel-400. However, it is within the acceptable range to be used for the various applications. (author)

  5. Person og Rolle

    DEFF Research Database (Denmark)

    Szatkowski, Janek

    2011-01-01

    Distinktionen mellem person og rolle forslås som grundlag for et præcist og anlytisk anvendeligt begreb om performativitet. Begrebet tager sigte på at beskrive enkeltindividers og gruppers kommunikation med henblik på hvordan kommunikation etableres. Performativitet gør det muligt at iagttage den...

  6. Ship Roll Motion Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2010-01-01

    . This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....

  7. Rolling Cylinder Phase 1

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Taraborrelli, Valeria Taraborrelli

    Margheritini and Valeria Taraborrelli(valeria.taraborrelli@hotmail.it) with a total of 3 day visit from the developers. Laboratory tests in irregular waves will be performed by Lucia Margheritini. The report is aimed at the first stage testing of the Rolling Cylinder wave energy device. This phase includes...

  8. IMPROVEMENT PROCESS FOR ROLLING MILL THROUGH THE DMAIC SIX SIGMA APPROACH

    Directory of Open Access Journals (Sweden)

    Kunal Ganguly

    2012-09-01

    Full Text Available This project aims to address the problems that are facing a large aluminum company in a Developing Hot Rolling Mill Capabilities for Wider Widths Hard Alloys Rolling and b Eliminate down time due to strip /coil slippage during hard alloys 5xxx rolling at Hot Mill. The challenge for the company was to cater the fast changing export demand for Flat Rolled products with its existing resources. By applying Six Sigma principles, the team identified the current situation that the rolling mills operations were in. Si x Sigma DMAIC methodologies were use d in the project to determine the project's CTQ characteristics, defining the possible causes, Identifying the variation sources, establishing variable relationships and Implementing Control Plans. The project can be useful for any company that needs to fi nd the most cost efficient way to improve and utilize its resources.

  9. Characteristics of dynamic triaxial testing of asphalt mixtures

    Science.gov (United States)

    Ulloa Calderon, Alvaro

    Due to the increasing traffic loads and tire pressures, a serious detrimental impact has occurred on flexible pavements in the form of excessive permanent deformation once the critical combination of loading and environmental conditions are reached. This distress, also known as rutting, leads to an increase in road roughness and ultimately jeopardizes the road users' safety. The flow number (FN) simple performance test for asphalt mixtures was one of the final three tests selected for further evaluation from the twenty-four test/material properties initially examined under the NCHRP 9-19 project. Currently, no standard triaxial testing conditions in terms of the magnitude of the deviator and confining stresses have been specified. In addition, a repeated haversine axial compressive load pulse of 0.1 second and a rest period of 0.9 second are commonly used as part of the triaxial testing conditions. The overall objective of this research was to define the loading conditions that created by a moving truck load in the hot mixed asphalt (HMA) layer. The loading conditions were defined in terms of the triaxial stress levels and the corresponding loading time. Dynamic mechanistic analysis with circular stress distribution was used to closely simulate field loading conditions. Extensive mechanistic analyses of three different asphalt pavement structures subjected to moving traffic loads at various speeds and under braking and non-braking conditions were conducted using the 3D-Move model. Prediction equations for estimating the anticipated deviator and confining stresses along with the equivalent deviator stress pulse duration as a function of pavement temperature, vehicle speed, and asphalt mixture's stiffness have been developed. The magnitude of deviator stress, sigmad and confining stress, sigmac, were determined by converting the stress tensor computed in the HMA layer at 2" below pavement surface under a moving 18-wheel truck using the octahedral normal and shear

  10. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  11. Rheo-mechanical model for self-healing asphalt pavement

    International Nuclear Information System (INIS)

    Gömze, A L; Gömze, L N

    2017-01-01

    Examining the rheological properties of different asphalt mixtures at different temperatures, pressures and deformation conditions on the combined rheo-tribometers the authors have found that the generally used Burgers-model doesn’t explain the deformation properties of asphalt mixtures and pavements under loading forces and loading pressures. To understand better the rheological and deformation properties of such complex materials like asphalt mixtures and pavements the authors used Malvern Mastersizer X laser granulometer, Bruker D8 Advance X-ray diffractometer, Hitachi TM 1000 Scanning Elektronmicroscope, Tristar 3000 specific surface tester and the combined rheo-tribometer developed and patented by the authors. After the complex investigation of different asphalt mixtures the authors have found a new, more complex rheological model for the asphalts including self-healing asphalt pavements. (paper)

  12. Effect of Reduction in Thickness and Rolling Conditions on Mechanical Properties and Microstructure of Rolled Mg-8Al-1Zn-1Ca Alloy

    Directory of Open Access Journals (Sweden)

    Yuta Fukuda

    2017-01-01

    Full Text Available A cast Mg-8Al-1Zn-1Ca magnesium alloy was multipass hot rolled at different sample and roll temperatures. The effect of the rolling conditions and reduction in thickness on the microstructure and mechanical properties was investigated. The optimal combination of the ultimate tensile strength, 351 MPa, yield strength, 304 MPa, and ductility, 12.2%, was obtained with the 3 mm thick Mg-8Al-1Zn-1Ca rolled sheet, which was produced with a roll temperature of 80°C and sample temperature of 430°C. This rolling process resulted in the formation of a bimodal structure in the α-Mg matrix, which consequently led to good ductility and high strength, exclusively by the hot rolling process. The 3 mm thick rolled sheet exhibited fine (mean grain size of 2.7 μm and coarse grain regions (mean grain size of 13.6 μm with area fractions of 29% and 71%, respectively. In summary, the balance between the strength and ductility was enhanced by the grain refinement of the α-Mg matrix and by controlling the frequency and orientation of the grains.

  13. Experimental determination of heat transfer coefficients in roll bite and air cooling for computer simulations of 1100 MPa carbon steel rolling

    Science.gov (United States)

    Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari

    2018-05-01

    In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.

  14. Hot ductility of continuously cast structural steels

    International Nuclear Information System (INIS)

    Pytel, S.M.

    1995-01-01

    The objective of this investigation was to explain the hot ductility of the structural steels characterized by different amount of carbon and morphology of sulfides. Two different rolling processes were simulated under computer controlled, high temperature deformation MTS system. Results of this study show that morphology of sulfides as well as temperature and amount of deformation are responsible for level of hot ductility of the steel tested. (author)

  15. Field testing of asphalt-emulsion radon-barrier system

    International Nuclear Information System (INIS)

    Hartley, J.N.; Freeman, H.D.; Baker, E.G.; Elmore, M.R.; Nelson, D.A.; Voss, C.F.; Koehmstedt, P.L.

    1981-09-01

    Three years of laboratory and field testing have demonstrated that asphalt emulsion seals are effective radon diffusion barriers. Both laboratory and field tests in 1979, 1980 and 1981 have shown that an asphalt emulsion seal can reduce radon fluxes by greater than 99.9%. The effective diffusion coefficient for the various asphalt emulsion admix seals averages about 10 -6 cm 2 /s. The 1981 joint field test is a culmination of all the technology developed to date for asphalt emulsion radon barrier systems. Preliminary results of this field test and the results of the 1980 field test are presented. 18 figures, 6 tables

  16. Physical and rheological properties of Titanium Dioxide modified asphalt

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Chong, Ai Ling; Haini, Rosli; Khatijah Abu Bakar, Siti

    2018-03-01

    Titanium Dioxide (TiO2) has been known as a useful photocatalytic material that is attributed to the several characteristics includes high photocatalytic activity compared with other metal oxide photocatalysts, compatible with traditional construction materials without changing any original performance. This study investigates the physical and rheological properties of modified asphalt with TiO2. Five samples of asphalt with different concentration of TiO2 were studied, namely asphalt 2%, 4%, 6% 8% and 10% TiO2. The tests includes are penetration, softening point, ductility, rotational viscosity and dynamic shear rheometer (DSR) test. From the results of this study, it is noted that addition of TiO2 has significant effect on the physical properties of asphalt. The viscosity tests revealed that asphalt 10% TiO2 has good workability among with reducing approximately 15°C compared to base asphalt. Based on the results from DSR measurements, asphalt 10% TiO2 has reduced temperature susceptibility and increase stiffness and elastic behaviour in comparison to base asphalt. As a result, TiO2 can be considered to be an additive to modify the properties of asphalt.

  17. Effects of reclaimed asphalt pavement on indirect tensile strength test of foamed asphalt mix tested in dry condition

    International Nuclear Information System (INIS)

    Katman, Herda Yati; Norhisham, Shuhairy; Ismail, Norlela; Ibrahim, Mohd Rasdan; Matori, Mohd Yazip

    2013-01-01

    Indirect tensile strength (ITS) test was conducted to analyse strength of the foamed asphalt mixes incorporating reclaimed asphalt pavement. Samples were tested for ITS after cured in the oven at 40°C for 72 hours. This testing condition known as dry condition or unconditioned. Laboratory results show that reclaimed asphalt pavement (RAP) contents insignificantly affect the ITS results. ITS results significantly affected by foamed bitumen contents.

  18. Characteristics Buton Natural Asphalt-Rubber (BNA-R on the Performance Improvement of Warm Mix Asphalt Using Natural Zeolite

    Directory of Open Access Journals (Sweden)

    Wahjuningsih Nurul

    2018-01-01

    Full Text Available The decrease in the ability of service of pavement can be caused by the durability factor in the pavement layer in receiving heavy traffic load and the temperature of the pavement. Permanent deformation is one of the criteria of failure of asphalt mixture. Performance assessment of the asphalt mixture can be observed from the rheological properties of asphalt binder. The use of BNA-R in this study is intended to modify the characteristics of bitumen penetration grade 60 / 70 used in warm mix asphalt. Warm mix asphalt with lower temperatures of mixing and compaction than conventional asphalt mixtures was chosen because it is more environmentally friendly. To reduce the temperature in this warm asphalt technology is achieved by using natural zeolite. Both of these materials are local materials that are widely available in Indonesia. The rheology of asphalt 60/70 modified with BNA-R indicates that the addition of BNA-R in the base asphalt increase the complex modulus value and decrease the phase angle value. These values were related to the performance of mixture in the permanent deformation criteria. Reducing the temperature of mixing and compaction should be balanced with modifying the asphalt binder used. Rutting due to permanent deformation can resulted in inconvenience to the passengers and can lead to high costs of road maintenance. To determine the permanent deformation of asphalt mix with material combinations was performed through the wheel tracking test machine with 3,780 cycles for 3 hours. The results shows that after test track over 7 thousand passes have seen permanent deformation characteristics of asphalt concrete mixture with a variation of the characteristics of bitumen.

  19. Characteristics Buton Natural Asphalt-Rubber (BNA-R) on the Performance Improvement of Warm Mix Asphalt Using Natural Zeolite

    Science.gov (United States)

    Wahjuningsih, Nurul; Pranowo Hadiwardoyo, Sigit; Jachrizal Sumabrata, R.

    2018-03-01

    The decrease in the ability of service of pavement can be caused by the durability factor in the pavement layer in receiving heavy traffic load and the temperature of the pavement. Permanent deformation is one of the criteria of failure of asphalt mixture. Performance assessment of the asphalt mixture can be observed from the rheological properties of asphalt binder. The use of BNA-R in this study is intended to modify the characteristics of bitumen penetration grade 60 / 70 used in warm mix asphalt. Warm mix asphalt with lower temperatures of mixing and compaction than conventional asphalt mixtures was chosen because it is more environmentally friendly. To reduce the temperature in this warm asphalt technology is achieved by using natural zeolite. Both of these materials are local materials that are widely available in Indonesia. The rheology of asphalt 60/70 modified with BNA-R indicates that the addition of BNA-R in the base asphalt increase the complex modulus value and decrease the phase angle value. These values were related to the performance of mixture in the permanent deformation criteria. Reducing the temperature of mixing and compaction should be balanced with modifying the asphalt binder used. Rutting due to permanent deformation can resulted in inconvenience to the passengers and can lead to high costs of road maintenance. To determine the permanent deformation of asphalt mix with material combinations was performed through the wheel tracking test machine with 3,780 cycles for 3 hours. The results shows that after test track over 7 thousand passes have seen permanent deformation characteristics of asphalt concrete mixture with a variation of the characteristics of bitumen.

  20. Optical microtopographic inspection of asphalt pavement surfaces

    Science.gov (United States)

    Costa, Manuel F. M.; Freitas, E. F.; Torres, H.; Cerezo, V.

    2017-08-01

    Microtopographic and rugometric characterization of surfaces is routinely and effectively performed non-invasively by a number of different optical methods. Rough surfaces are also inspected using optical profilometers and microtopographer. The characterization of road asphalt pavement surfaces produced in different ways and compositions is fundamental for economical and safety reasons. Having complex structures, including topographically with different ranges of form error and roughness, the inspection of asphalt pavement surfaces is difficult to perform non-invasively. In this communication we will report on the optical non-contact rugometric characterization of the surface of different types of road pavements performed at the Microtopography Laboratory of the Physics Department of the University of Minho.

  1. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders

    1997-01-01

    The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...

  2. Effect of initial longitudinal stresses on the linearity of the shape rolled products after accelerated cooling

    International Nuclear Information System (INIS)

    Shetulov, D.I.

    1991-01-01

    Consideration is given to results of investigation into effect of initial longitudinal stresses on the linearity of the shaped rolled products after accelerated cooling. Particular attention is placed on the influence of an initial stresses state of material on qualiti of heat-treated rolled products. Effect of stresses state of worked material residual bending is studed by the use of computerized simulation.Theoretical analysis of stress-strain state of shape hot-rolled products during accelerated cooling after finishing stand of rolls is developed. A residual stress-strain state of material does not affected by rolling stresses when using a rautine cooling device with rigid centering of the product under rolling. It is expected that the effect of initial stresses could be significant in the absence of a limitator for bending deformation of shaped product longitudinal axis

  3. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  4. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  5. Present status and future of various rubber materials. ; Asphalt. Kakushu gomu zairyo no genjo to kongo. ; Asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Wakisaka, S. (Toa Doro Kogyo Co. Ltd., Tokyo (Japan))

    1991-12-15

    Asphalt is obtained at a rate of about 25 Kg per 1 Kl of oil and is produced at about 5 million tons per annum in Japan, 80 % of which is now used for the pavement of road. The purpose of this study is to examine the possibilities of developing new applications of asphalt to the anti-vibration, vibration-control and anti-noise materials, though its uses have already been diversified in fields other than for road paving, due to excellent performance regardless of cheap cost. In the paper, firstly, under a title of what is asphalt, the history, the composition and internal structure of asphalt were considered. Secondly, the dynamic characteristics of asphalt were considered. And lastly, under a title of the application of asphalt, examples of the application of asphalt to anti-noise materials were examined in the field of architecture, automobile and civil engineering respectively. Especially, in the field of civil engineering, improvements of flexibility and vibration-control by using the cement asphalt mortar (CAM) in the anti-vibration A-type slab track for railway, and also anti-noise and anti-vibration technologies applied to the road pavement body by using the ferrite asphalt were reviewed. 11 refs., 10 figs., 8 tabs.

  6. Rolling bearing analysis

    CERN Document Server

    Harris, Tedric A

    2001-01-01

    One of the most well-known experts in the field brings cutting-edge research to practitioners in the new edition of this important reference. Covers the improved mathematical calculations for rolling bearing endurance developed by the American Society of Mechanical Engineers and the Society of Lubrication and Tribology Engineers. Updated with new material on Condition-Based Maintenance, new testing methods, and new bearing materials.

  7. Roll of honour

    Energy Technology Data Exchange (ETDEWEB)

    Moxon, Suzanne

    1999-07-01

    This article gives details of the design and construction of dams selected by members of the dam construction industry for praise as feats of construction. The dams covered in the roll of honour include the dam at the Guri hydroelectric power station in Venezuela on the Caroni river, the Contra dam on the Verzrasca river in Switzerland, and the double curvature arc Ertan dam on the Yalong river in China. (UK)

  8. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system, the loss in weight feeder system, the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...feed hopper and conveyor supplying the loss in weight feeder were turned on, and it was verified that these items functioned as designed . The

  9. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  10. Dynamic modulus of nanosilica modified porous asphalt

    Science.gov (United States)

    Arshad, A. K.; Masri, K. A.; Ahmad, J.; Samsudin, M. S.

    2017-11-01

    Porous asphalt (PA) is a flexible pavement layer with high interconnected air void contents and constructed using open-graded aggregates. Due to high temperature environment and increased traffic volume in Malaysia, PA may have deficiencies particularly in rutting and stiffness of the mix. A possible way to improve these deficiencies is to improve the asphalt binder used. Binder is normally modified using polymer materials to improve its properties. However, nanotechnology presently is being gradually used for asphalt modification. Nanosilica (NS), a byproduct of rice husk and palm oil fuel ash is used as additive in this study. The aim of this study is to enhance the rutting resistance and stiffness performance of PA using NS. This study focused on the performance of PA in terms of dynamic modulus with the addition of NS modified binder to produce better and more durable PA. From the result of Dynamic SPT Test, it shows that the addition of NS was capable in enhancing the stiffness and rutting resistance of PA. The addition of NS also increase the dynamic modulus value of PA by 50%.

  11. Active carbon production from modified asphalt

    International Nuclear Information System (INIS)

    Fadhi, A.B.

    2006-01-01

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  12. Rapid Radiochemical Methods for Asphalt Paving Material ...

    Science.gov (United States)

    Technical Brief Validated rapid radiochemical methods for alpha and beta emitters in solid matrices that are commonly encountered in urban environments were previously unavailable for public use by responding laboratories. A lack of tested rapid methods would delay the quick determination of contamination levels and the assessment of acceptable site-specific exposure levels. Of special concern are matrices with rough and porous surfaces, which allow the movement of radioactive material deep into the building material making it difficult to detect. This research focuses on methods that address preparation, radiochemical separation, and analysis of asphalt paving materials and asphalt roofing shingles. These matrices, common to outdoor environments, challenge the capability and capacity of very experienced radiochemistry laboratories. Generally, routine sample preparation and dissolution techniques produce liquid samples (representative of the original sample material) that can be processed using available radiochemical methods. The asphalt materials are especially difficult because they do not readily lend themselves to these routine sample preparation and dissolution techniques. The HSRP and ORIA coordinate radiological reference laboratory priorities and activities in conjunction with HSRP’s Partner Process. As part of the collaboration, the HSRP worked with ORIA to publish rapid radioanalytical methods for selected radionuclides in building material matrice

  13. Transformation kinetics of microalloyed steels after hot controlled ...

    African Journals Online (AJOL)

    Transformation kinetics of austenite into ferrite after controlled hot rolling has been investigated in three microalloyed steels (Nb, Nb-Ti and C-Mn-V) using hot interrupted compression tests on the Gleeble 1500 within the testing temperature range of 875°C-1100°C. Holding times were varied between 0.5 and 30s, strain ...

  14. Roll-to-Roll production of carbon nanotubes based supercapacitors

    Science.gov (United States)

    Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.

  15. Microstructure evolution during spray rolling and heat treatment of 2124 Al

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M. [Industrial Technology Department, Idaho National Laboratory, Idaho Falls, ID 83415-2050 (United States)], E-mail: kevin.mchugh@inl.gov; Lin, Y.; Zhou, Y.; Johnson, S.B.; Delplanque, J.-P.; Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2008-03-25

    Spray rolling is a strip-casting technology that combines elements of spray forming and twin-roll casting. It consists of atomizing molten metal with a high velocity inert gas, quenching the resultant droplets in flight, and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets and conduction heat transfer at the rolls rapidly remove the metal's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly-solidified strip. Spray rolling operates at a higher solidification rate than conventional twin-roll casting and is able to process a broader range of alloys at high production rates. A laboratory-scale strip caster was constructed and used to evaluate the interplay of processing parameters and strip quality for strips up to 200 mm wide and 1.6-6.4 mm thick. This paper examines microstructure evolution during spray rolling and explores how gas-to-metal mass flow ratio influences the microstructure and mechanical properties of spray-rolled 2124 Al. The influences of solution heat treatment and cold rolling on grain structure and constituent particle spheroidization are also examined.

  16. Development of indirect ring tension test for fracture characterization of asphalt mixtures

    Science.gov (United States)

    Zeinali Siavashani, Alireza

    Low temperature cracking is a major distress in asphalt pavements. Several test configurations have been introduced to characterize the fracture properties of hot mix (HMA); however, most are considered to be research tools due to the complexity of the test methods or equipment. This dissertation describes the development of the indirect ring tension (IRT) fracture test for HMA, which was designed to be an effective and user-friendly test that could be deployed at the Department of Transportation level. The primary advantages of this innovative and yet practical test include: relatively large fracture surface test zone, simplicity of the specimen geometry, widespread availability of the required test equipment, and ability to test laboratory compacted specimens as well as field cores. Numerical modeling was utilized to calibrate the stress intensity factor formula of the IRT fracture test for various specimen dimensions. The results of this extensive analysis were encapsulated in a single equation. To develop the test procedure, a laboratory study was conducted to determine the optimal test parameters for HMA material. An experimental plan was then developed to evaluate the capability of the test in capturing the variations in the mix properties, asphalt pavement density, asphalt material aging, and test temperature. Five plant-produced HMA mixtures were used in this extensive study, and the results revealed that the IRT fracture test is highly repeatable, and capable of capturing the variations in the fracture properties of HMA. Furthermore, an analytical model was developed based on the viscoelastic properties of HMA to estimate the maximum allowable crack size for the pavements in the experimental study. This analysis indicated that the low-temperature cracking potential of the asphalt mixtures is highly sensitive to the fracture toughness and brittleness of the HMA material. Additionally, the IRT fracture test data seemed to correlate well with the data from

  17. Effects of conductive fillers on temperature distribution of asphalt pavements

    International Nuclear Information System (INIS)

    Chen Mingyu; Wu Shaopeng; Zhang Yuan; Wang Hong

    2010-01-01

    The sun provides a cheap and abundant source of clean and renewable energy. Solar cells have been used to capture this energy and generate electricity. A more useful form of the solar cell would be asphalt pavements, which get heated up by solar radiation. Graphite powders are utilized as thermal conductive fillers to make an asphalt collector conductive so as to improve the efficiency of the asphalt collector. Accounting for the important application conditions and evaluating the effects of the heat conductive materials and the solar energy absorbability of the conductive asphalt collector, a finite element model has been developed to predict temperature distributions in the conductive asphalt solar collector. In this study, an experimental validation exercise was conducted using the measured data taken from full-depth asphalt slabs. Validation results showed that the model can satisfactorily predict the temperature distributions in asphalt concrete slabs. The optimal depth is 25-50 mm for placing pipes that serve as the heat exchanger. Meanwhile, the effect of the surroundings on the solar energy potential of the asphalt collector was noticeable.

  18. Characterization of Failure and Permanent Deformation Behaviour of Asphalt Concrete

    NARCIS (Netherlands)

    Wang, J.G.

    2015-01-01

    Asphalt concrete is a viscoelastic material consisting of aggregates, filler and bitumen. The response of asphalt concrete is highly dependent on temperature, loading rate and confining pressure. Permanent deformation is one of the most important distresses developing during the flexible pavement

  19. Crack repair of asphalt concrete with induction energy

    NARCIS (Netherlands)

    García, A.; Schlangen, E.; Ven, M. van de; Vliet, D. van

    2011-01-01

    It is well known that the healing rates of asphalt courses increase with the temperature. A new method, induction heating, is used in this paper to increase the lifetime of asphalt concrete pavements. Mastic will be first made electrically conductive by the addition of conductive fibers. Then it

  20. Estimation of fatigue characteristics of asphaltic mixes using simple tests

    NARCIS (Netherlands)

    Medani, T.O.; Molenaar, A.A.A.

    2000-01-01

    A simplified procedure for estimation of fatigue characteristics of asphaltic mixes is presented. The procedure requires the determination of the so-called master curve (Le. the relationship between the mix stiffness, the loading time and the temperature), the asphalt properties and the mix

  1. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete or...

  2. Application of waste tires to asphalt pavement. Improvement of adhesion of asphalt with rubber particles; Haitaiya no asphalt hoso eno tekiyo. Asphalt to gomu ryushi no fuchakusei no kairyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nakaoka, I. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1994-10-10

    With an objective to apply waste tires to asphalt pavement, an experiment was carried out to improve adhesion of asphalt with rubber particles by using polymers. The state of interface on rubber particle and asphalt mixture was observed by a scanning electron microscope. As a result, it was found that the surface of untreated rubber particles is not bonded with the asphalt, but polymer treated mixture was found to have the affinity of rubber particles with asphalt improved. Tensile bonding strength was tested on rubber plates and asphalt. The result revealed that the polymer-reformed mixture has two times as large tensile bonding strength as that of the untreated mixture. With regard to the characters of asphalt mixture mixed with rubber particles, the stability shows a decreasing trend as compared with the standard asphalt concrete, but presents an excellent performance in wear. The fluidity resistance value is inferior to the standard, but not as great as presenting a problem under normal using environment, where its applicability as a road paving material was verified. 4 figs., 2 tabs.

  3. Hanford Permanent Isolation Barrier Program: Asphalt technology development

    International Nuclear Information System (INIS)

    Freeman, H.D.; Romine, R.A.

    1994-11-01

    An important component of the Hanford Permanent Isolation Barrier is the use of a two-layer composite asphalt system, which provides backup water diversion capabilities if the primary capillary barrier fails to meet infiltration goals. Because of asphalt's potential to perform to specification over the 1000-year design life criterion, a composite asphalt barrier (HMAC/fluid-applied polymer-modified asphalt) is being considered as an alternative to the bentonite clay/high density poly(ethylene) barriers for the low-permeability component of the Hanford Permanent Isolation Barrier. The feasibility of using asphalt as a long-term barrier is currently being studied. Information that must be known is the ability of asphalt to retain desirable physical properties over a period of 1000 years. This paper presents the approach for performing accelerated aging tests and evaluating the performance of samples under accelerated conditions. The results of these tests will be compared with asphalt artifact analogs and the results of modeling the degradation of the selected asphalt composite to make life-cycle predictions

  4. Regional implementation of warm mix asphalt : [tech summary].

    Science.gov (United States)

    2014-09-01

    Asphalt is used in over 94 percent of all paved roadways in the United States. The ability to reduce its cost and : emissions while improving its performance has bene ts that could potentially change the direction the asphalt : industry moves in t...

  5. Induction healing of asphalt mixes with steel slag

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Wang, H.; van de Ven, M.F.C.; Scarpas, Athanasios

    2018-01-01

    Asphaltic mixes are self-healing materials since they have the capacity to close internal microcracks at higher temperatures or under external force. To trigger their self-healing, asphalt mixes modified with inductive agents can be heated and in that way healed through applying alternating magnetic

  6. Advanced Experimental Evaluation of Asphalt Mortar for Induction Healing Purposes

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Scarpas, Athanasios; van Bochove, G; van de Ven, M.F.C.

    2016-01-01

    This paper studied the induction heating and healing capacity of asphalt mortar by adding electrically conductive additives (e.g. iron powder and steel fibers), and examined the influence of different combinations of them on the mechanical response of asphalt mortars. Induction heating technique is

  7. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, H. [ThyssenKrupp Steel AG, Eberhardstrasse 12, 44145 Dortmund (Germany); Mattissen, D.; Schaumann, T.W. [ThyssenKrupp Steel AG, Duisburg (Germany)

    2006-09-15

    Advanced multiphase steels offer a great potential for bodies-in-white through their combination of formability and achievable component strength levels. They are first choice for strength and crash-relevant parts of challenging geometry. The intensive development of high-strength multiphase steels by ThyssenKrupp has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex phase steels are currently produced in addition to cold rolled DP and RA steels. New continuously annealed grades with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for applications mainly in the field of structural automobile elements make use of the classic advantages of microalloying as well as the principles of DP and TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (Abstract Copyright [2006], Wiley Periodicals, Inc.) [German] Fortschrittliche Multiphasen-Staehle eroeffnen wegen der inzwischen erreichbaren Kombination aus Umformbarkeit und Bauteilfestigkeit ein enormes Potenzial fuer Rohkarosserien. Sie stellen eine erste Wahl dar, wenn es um Festigkeit und um Crashsicherheit geht und besondere Anforderungen an die Bauteilgeometrien gestellt werden. Bei ThyssenKrupp hat die Entwicklung hochfester Multiphasen-Staehle in Verbindung mit dem Feuerverzinken zur Realisierung von Blechhalbzeugen gefuehrt, die hervorragend formbar sind. Es werden heute feuerverzinkte Komplexphasenstaehle neben den bewaehrten kaltgewalzten Dualphasen(DP) - und Retained Austenit(RA)-Staehlen produziert. Die neuen kontinuierlich gegluehten Stahlvarianten mit Festigkeiten bis zu 1000 MPa in Kombination mit der bei Strukturbauteilen im Automobilbau geforderten Duktilitaet nutzen sowohl die klassischen Vorteile des Mikrolegierens aus und dazu die Prinzipien, die man bei DP- und TRIP-Staehlen anwendet. Eine weitere Verbesserung des Eigenschaftsprofils wird mit dem

  8. Recycling of Reclaimed Asphalt Pavement in Portland Cement Concrete

    Directory of Open Access Journals (Sweden)

    Salim Al-Oraimi

    2009-06-01

    Full Text Available Reclaimed Asphalt Pavement (RAP is the result of removing old asphalt pavement material. RAP consists of high quality well-graded aggregate coated with asphalt cement. The removal of asphalt concrete is done for reconstruction purposes, resurfacing, or to obtain access to buried utilities. The disposal of RAP represents a large loss of valuable source of high quality aggregate. This research investigates the properties of concrete utilizing recycled reclaimed asphalt pavement (RAP. Two control mixes with normal aggregate were designed with water cement ratios of 0.45 and 0.5. The control mixes resulted in compressive strengths of 50 and 33 MPa after 28 days of curing. The coarse fraction of RAP was used to replace the coarse aggregate with 25, 50, 75, and 100% for both mixtures. In addition to the control mix (0%, the mixes containing RAP were evaluated for slump, compressive strength, flexural strength, and modulus of elasticity. Durability was evaluated using surface absorption test.

  9. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  10. Quality control analysis : part I : asphaltic concrete.

    Science.gov (United States)

    1964-11-01

    This report deals with the statistical evaluation of results from several hot mix plants to determine the pattern of variability with respect to bituminous hot mix characteristics. : Individual tests results when subjected to frequency distribution i...

  11. Rolls-Royce digital Rod Control System

    International Nuclear Information System (INIS)

    Pouillot, M.

    2010-01-01

    Full text of publication follows: Rolls-Royce has developed a new generation of Rod Control System, based on 40 years of experience. The fifth-generation Rod Control System (RCS) from Rolls-Royce offers a reliable, modular design with adaptability to your preferred platform, for modernization projects or new reactors. Flexible implementation provides the option for you to keep existing cabinets, which permits you to optimize installation approach. Main features for the power part: - Control Rod Drive Mechanism (CRDM) type: 3-coil. - Independent control of each sub-bank. - Each sub-bank is controlled by a cycler unit and 3 identical power racks, each including 4 identical power modules and a common power-supply module. - Coil-per-coil digital control: each power module embeds power-conversion, current-control, and current-monitoring functions for one coil. Control and monitoring are carried out by separate electronics in the module. Current is digitized and fully monitored by means of min-max templates. - A double-hold function is included: a power module assigned to a gripper will activate its coil if a fault risking to cause a reactor trip occurs. - Power modules are standardized, hot-pluggable and self-configured: a power module includes a set of parameters for each type of coil SG, MG, LC. The module recognizes the rack it is plugged in, and chooses automatically parameters to be used. Main benefits: - Reduced operational, maintenance, training, and inventory costs: standardization of power modules and integration of control and monitoring on the same PC-card lead to a drastic reduction of spare part types, and simplification of the system. - Easy maintenance: - Replacement of a power module solves nearly all failures due to current control or monitoring for a coil. It is done instantly thanks to hot-plug capability. - On the front plate of power-modules, LEDs provide useful information for diagnostic: current setpoint from cycler, output current bar

  12. THE FATIGUE DURABILITY OF THE MODIFIED ASPHALT CONCRETE UNDER THE EFFECT OF INTENSIVE TRAFFIC LOADS

    Directory of Open Access Journals (Sweden)

    Yuri KALGIN

    2016-06-01

    Full Text Available The problem of prediction of the service life of asphalt concrete surface constructed with modified asphalt concrete application onto a traffic lane is examined. Asphalt concrete behaviour in road surface under the traffic loads was analysed. There were shown The results of experiments and their mathematical analysis of the assessment of standard and modified cold asphalt concrete fatigue life on road surface were shown. The service life of an asphalt concrete surface covered with standard and modified cold asphalt concrete is examined. The prediction has been received with an account of stress relaxation processes in asphalt concrete pavement and unevenness of traffic load application.

  13. The Effect of Rolling As-Cast and Homogenized U-10Mo Samples on the Microstructure Development and Recovery Curves

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-30

    Over the past several years Pacific Northwest National Laboratory (PNNL) has been actively involved in supporting the U.S. Department of Energy National Nuclear Security Administration Office of Material Management and Minimization (formerly Global Threat Reduction Initiative). The U.S. High- Power Research Reactor (USHPRR) project is developing alternatives to existing highly enriched uranium alloy fuel to reduce the proliferation threat. One option for a high-density metal fuel is uranium alloyed with 10 wt% molybdenum (U-10Mo). Forming the U-10Mo fuel plates/foils via rolling is an effective technique and is actively being pursued as part of the baseline manufacturing process. The processing of these fuel plates requires systematic investigation/understanding of the pre- and post-rolling microstructure, end-state mechanical properties, residual stresses, and defects, their effect on the mill during processing, and eventually, their in-reactor performance. In the work documented herein, studies were conducted to determine the effect of cold and hot rolling the as-cast and homogenized U-10Mo on its microstructure and hardness. The samples were homogenized at 900°C for 48 h, then later annealed for several durations and temperatures to investigate the effect on the material’s microstructure and hardness. The rolling of the as-cast plate, both hot and cold, was observed to form a molybdenum-rich and -lean banded structure. The cold rolling was ineffective, and in some cases exacerbated the as-cast defects. The grains elongated along the rolling direction and formed a pancake shape, while the carbides fractured perpendicularly to the rolling direction and left porosity between fractured particles of UC. The subsequent annealing of these samples at sub-eutectoid temperatures led to rapid precipitation of the ' lamellar phase, mainly in the molybdenum-lean regions. Annealing the samples above the eutectoid temperature did not refine the grain size or the banded

  14. Implementing energy efficient pavements: A socio-economic analysis of the development and implementation of energy efficient pavements with low rolling resistance

    DEFF Research Database (Denmark)

    Axelsen, Christian; Pettinari, Matteo; Schmidt, Bjarne

    2017-01-01

    for the transportation sector is to make road networks more energy efficient by implementing pavements with low rolling resistance, leading to lower fuel consumption. Through a series of projects focusing on reducing rolling resistance conducted since 2010, the Danish Road Directorate (DRD) has developed a durable......, energy-efficient asphalt pavement. Socio-economic analyses conducted to quantify the benefit to society associated with implementing these asphalt pavements have demonstrated very high benefits. The demonstrated results in terms of durability, energy efficiency and socio-economics have resulted...... in substantial government funding being provided for demonstration trials on 50 kilometers of energy-efficient pavement in 2018. The implementation of energy-efficient pavements will enable Denmark to contribute to the out-of-quota 2030-emission cuts in line with EU regulations....

  15. Performance evaluation of stone matrix asphalt using indonesian natural rock asphalt as stabilizer

    Directory of Open Access Journals (Sweden)

    Nyoman Suaryana

    2016-09-01

    Full Text Available One type of road pavement material which is developed to be more resistant to permanent deformation is the SMA (Stone Matrix Asphalt. Utilization of the SMA mix in Indonesia has constraints in gain stabilizer and also difficulty to comply the gradations, mainly because it needs a relatively large amount of filler. Alternative of local materials that can be used is asbuton (natural rock asphalt from Buton Island. Asbuton is expected to act as a stabilizer and simultaneously provides an additional filler. The objective of this research is to evaluate the performance of the SMA that uses the asbuton. The methodology used in this research is the experimental method, its starts from material testing, design mix and performance testing that includes dynamic modulus, permanent deformation and fatigue resistance. The results obtained showed asbuton can prevent asphalt draindown as well as increase the proportion of filler. Draindown asphalt can be prevented by using binder absorbers with fiber cellulose and viscosity boosters with asbuton. Asbuton (LGA 50/25 can behave as a stabilizer as well as cellulose fiber. Addition of asbuton also improves the performance of the SMA mix, as shown with increase in the value of dynamic stability. In terms of resistance to fatigue, SMA with cellulosa as stabilizer and SMA with asbuton as stabilizer, relatively have the same performance. Master curve of dynamic modulus indicates SMA with asbuton as stabilizer is relatively stiffer at high temperatures (more than 4.4 °C, but relatively less stiff (less brittle at low temperatures. Keywords: Stone matrix asphalt, Asbuton, Draindown, Dynamic modulus, Permanent deformation

  16. Roll back malaria update.

    Science.gov (United States)

    1999-10-01

    This article presents the activities under WHO's Roll Back Malaria (RBM) program in Asia, particularly in Nepal, Indonesia, India, Bangladesh, Sri Lanka and the Philippines. In India, the RBM program will start in 5 districts with a major malaria problem. A national committee has been formed by researchers, which will be able to provide operational and strategic support and research expertise in relation to malaria. In Bangladesh, the RBM program was initiated in the sparsely populated hill tract areas of Banderban and Chittagong where access to health care is very poor. At the district level, effective partnerships with private practitioners, politicians, community leaders, school teachers, the press and district Ministry of Health officials are operating to plan for rolling back malaria. In Myanmar, Cambodia, Lao People's Democratic Republic, Yunnan province of China, Vietnam, and Thailand, the focus of the RBM program was to move health care closer to the malaria-infected communities. WHO¿s Global Health Leadership Fellowship Programme, supported by the UN Foundation and Rockefeller Foundation, enables potential leaders to experience the work of UN agencies and contribute to the work of the organization for 2 years. Three out of four persons appointed to the RBM program received prestigious awards: Dr. Paola Marchesini of Brazil; Dr. Tieman Diarra of Mali; and Dr. Bob Taylor of the UK.

  17. Thickness profile measuring device for rolling metal bands or sheets

    International Nuclear Information System (INIS)

    Campas, J.J.; Terreaux, S.

    1995-01-01

    Previous radiometric thickness gages were affected by insufficient water proofing and limited cooling performances for the detection subsystem (in general specially designed photodiodes). This resulted in poor reliability and life expectancy, in particular when heavy humidity and constant radiative heat are present as for hot rolling in the metal industry. This new gage design brings enhanced performances for these two factors. (D.L.). 4 refs., 3 figs

  18. Roll-to-roll UV imprint lithography for flexible electronics

    NARCIS (Netherlands)

    Maury, P.; Turkenburg, D.H.; Stroeks, N.; Giesen, P.; Barbu, I.; Meinders, E.R.; Bremen, A. van; Iosad, N.; Werf, R. van der; Onvlee, H.

    2011-01-01

    We propose a roll-to-roll UV imprint lithography tool as a way to pattern flexible PET foil with µm-resolution. As a way to overcome dimensional instability of the foil and its effect on overlay, a self-align approach was investigated, that permits to make several layers in a single lithography

  19. RELATIONSHIP BETWEEN ROLLING AND SLIP RESISTANCE IN ROLLING BEARINGS

    Directory of Open Access Journals (Sweden)

    L. M. Bondarenko

    2016-06-01

    Full Text Available Purpose. About one of the causes of slip rolling is known from the second half of the 19th century, it was believed that the slip resistance appears at the place of contact due to different speeds on the arc of contact. Only in the mid-20th century it was proved that this resistance is negligible in rolling resistance. However (for some unknown reason it is ignored the fact that in practice in rolling bearings may rotate both the inner ring with a stationary outer one, and vice versa almost in equal relations. It is not taken into account the fact that the ball or roller in the rolling bearings runs the different distance along the roller path of the outer and inner bearing cages in one revolution. This fact is not taken into account in determining the calculated values for the friction coefficient of a rolling bearing reduced to the shaft. Therefore, the aim of this work is to determine the influence of path length on the track riding the outer and inner race of the bearing on the determination of the calculated value of the coefficient of friction of rolling bearings is given to the shaft. Methodology. The solution technique is based on the theory of plane motion of a rigid body, the theory of Hertzian contact deformation and the analytical dependencies for determination of coefficient of rolling friction. Findings. The obtained dependences on determination of rolling resistance of the balls or rollers along the bearing tracks of inner and outer bearing cages as well as path difference metering of the rolling on them allows to analytically obtain the rolling resistance and slipping for any size of bearings and different devices of bearing units. It is also possible at the design stage of rolling nodes to handle not only the design but also the content of the node. Originality. Using the analytical dependences for determination of the rolling resistance of bodies at point and line contacts, and also account for the difference in the path of the

  20. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....