WorldWideScience

Sample records for hot qcd matter

  1. Jet evolution in hot and cold QCD matter

    Energy Technology Data Exchange (ETDEWEB)

    Domdey, Svend Oliver

    2010-07-23

    In this thesis, we study the evolution of energetic partons in hot and cold QCD matter. In both cases, interactions with the medium lead to energy loss of the parton and its transverse momentum broadens. The propagation of partons in cold nuclear matter can be investigated experimentally in deep-inelastic scattering (DIS) on nuclei. We use the dipole model to calculate transverse momentum broadening in DIS on nuclei and compare to experimental data from HERMES. In hot matter, the evolution of the parton shower is strongly modified. To calculate this modification, we construct an additional scattering term in the QCD evolution equations which accounts for scattering of partons in the quark-gluon plasma. With this scattering term, we compute the modified gluon distribution in the shower at small momentum fractions. Furthermore, we calculate the modified fragmentation function of gluons into pions. The scattering term causes energy loss of the parton shower which leads to a suppression of hadrons with large transverse momentum. In the third part of this thesis, we study double dijet production in hadron collisions. This process contains information about the transverse parton distribution of hadrons. As main result, we find that double dijet production will allow for a study of the transverse growth of hadronic wave functions at the LHC. (orig.)

  2. Axions as hot and cold dark matter

    International Nuclear Information System (INIS)

    Jeong, Kwang Sik; Kawasaki, Masahiro; Tokyo Univ., Kashiwa; Takahashi, Fuminobu; Tokyo Univ., Kashiwa

    2013-10-01

    The presence of a hot dark matter component has been hinted at 3σ by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu- Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f a 10 ) GeV, if they are produced by the saxion decay and the domain wall annihilation. We also investigate the cases of thermal QCD axions, pseudo Nambu-Goldstone bosons coupled to the standard model sector through the Higgs portal, and axions produced by modulus decay.

  3. Axions as hot and cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kawasaki, Masahiro [Tokyo Univ., Kashiwa (Japan). Inst. for Cosmic Ray Research; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS; Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2013-10-15

    The presence of a hot dark matter component has been hinted at 3{sigma} by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu- Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f{sub a}QCD axions, pseudo Nambu-Goldstone bosons coupled to the standard model sector through the Higgs portal, and axions produced by modulus decay.

  4. Future cosmological sensitivity for hot dark matter axions

    CERN Document Server

    Archidiacono, Maria; Hamann, Jan; Hannestad, Steen; Raffelt, Georg; Wong, Yvonne Y Y

    2015-01-01

    We study the potential of a future, large-volume photometric survey to constrain the axion mass $m_a$ in the hot dark matter limit. Future surveys such as Euclid will have significantly more constraining power than current observations for hot dark matter. Nonetheless, the lowest accessible axion masses are limited by the fact that axions lighter than $\\sim 0.15$ eV decouple before the QCD epoch, assumed here to occur at a temperature $T_{\\rm QCD} \\sim 170$ MeV; this leaves an axion population of such low density that its late-time cosmological impact is negligible. For larger axion masses, $m_a \\gtrsim 0.15$ eV, where axions remain in equilibrium until after the QCD phase transition, we find that a Euclid-like survey combined with Planck CMB data can detect $m_a$ at very high significance. Our conclusions are robust against assumptions about prior knowledge of the neutrino mass. Given that the proposed IAXO solar axion search is sensitive to $m_a\\lesssim 0.2$ eV, the axion mass range probed by cosmology is n...

  5. QCD equation of state of hot deconfined matter at finite baryon density. A quasiparticle perspective

    International Nuclear Information System (INIS)

    Bluhm, Marcus

    2008-01-01

    The quasiparticle model, based on quark and gluon degrees of freedom, has been developed for the description of the thermodynamics of a hot plasma of strongly interacting matter which is of enormous relevance in astrophysics, cosmology and for relativistic heavy-ion collisions as well. In the present work, this phenomenological model is extended into the realm of imaginary chemical potential and towards including, in general, different and independent quark flavour chemical potentials. In this way, nonzero net baryon-density effects in the equation of state are selfconsistently attainable. Furthermore, a chain of approximations based on formal mathematical manipulations is presented which outlines the connection of the quasiparticle model with the underlying gauge field theory of strong interactions, QCD, putting the model on firmer ground. The applicability of the model to extrapolate the equation of state known from lattice QCD at zero baryon density to nonzero baryon densities is shown. In addition, the ability of the model to extrapolate results to the chiral limit and to asymptotically large temperatures is illustrated by confrontation with available first-principle lattice QCD results. Basing on these successful comparisons supporting the idea that the hot deconfined phase can be described in a consistent picture by dressed quark and gluon degrees of freedom, a reliable QCD equation of state is constructed and baryon-density effects are examined, also along isentropic evolutionary paths. Scaling properties of the equation of state with fundamental QCD parameters such as the number of active quark flavour degrees of freedom, the entering quark mass parameters or the numerical value of the deconfinement transition temperature are discussed, and the robustness of the equation of state in the regions of small and large energy densities is shown. Uncertainties arising in the transition region are taken into account by constructing a family of equations of state

  6. Effective Field Theories for Hot and Dense Matter

    Directory of Open Access Journals (Sweden)

    Blaschke D.

    2010-10-01

    Full Text Available The lecture is divided in two parts. The first one deals with an introduction to the physics of hot, dense many-particle systems in quantum field theory [1, 2]. The basics of the path integral approach to the partition function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanfield approximation while QCD bound states in the medium are treated in the rainbow-ladder approximation (Gaussian fluctuations. Special emphasis is devoted to the discussion of the Mott effect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the influence of compression and heating of the system. Three examples are given: (1 the QCD model phase diagram with chiral symmetry ¨ restoration and color superconductivity [3], (2 the Schrodinger equation for heavy-quarkonia [4], and (2 Pions [5] as well as Kaons and D-mesons in the finite-temperature Bethe-Salpeter equation [6]. We discuss recent applications of this quantum field theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu–Jona-Lasinio model [9] for thermodynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann–Oakes–Renner relation are generalized to finite temperatures. The effect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is discussed. An outlook is given to effects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanfield description.

  7. Proceedings of RIKEN BNL Research Center Workshop: P- and CP-odd Effects in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, A.; Fukushima, K.; Kharzeev, D.; Warringa, H.; Voloshin, S.

    2010-04-26

    This volume contains the proceedings of the RBRC/CATHIE workshop on 'P- and CP-odd Effects in Hot and Dense Matter' held at the RIKEN-BNL Research Center on April 26-30, 2010. The workshop was triggered by the experimental observation of charge correlations in heavy ion collisions at RHIC, which were predicted to occur due to local parity violation (P- and CP-odd fluctuations) in hot and dense QCD matter. This experimental result excited a significant interest in the broad physics community, inspired a few alternative interpretations, and emphasized the need for a deeper understanding of the role of topology in QCD vacuum and in hot and dense quark-gluon matter. Topological effects in QCD are also closely related to a number of intriguing problems in condensed matter physics, cosmology and astrophysics. We therefore felt that a broad cross-disciplinary discussion of topological P- and CP-odd effects in various kinds of matter was urgently needed. Such a discussion became the subject of the workshop. Specific topics discussed at the workshop include the following: (1) The current experimental results on charge asymmetries at RHIC and the physical interpretations of the data; (2) Quantitative characterization of topological effects in QCD matter including both analytical (perturbative and non-perturbative using gauge/gravity duality) and numerical (lattice-QCD) calculations; (3) Topological effects in cosmology of the Early Universe (including baryogenesis and dark energy); (4) Topological effects in condensed matter physics (including graphene and superfiuids); and (5) Directions for the future experimental studies of P- and CP-odd effects at RHIC and elsewhere. We feel that the talks and intense discussions during the workshop were extremely useful, and resulted in new ideas in both theory and experiment. We hope that the workshop has contributed to the progress in understanding the role of topology in QCD and related fields. We thank all the speakers and

  8. Proceedings of RIKEN BNL Research Center Workshop: P- and CP-odd Effects in Hot and Dense Matter

    International Nuclear Information System (INIS)

    Deshpande, A.; Fukushima, K.; Kharzeev, D.; Warringa, H.; Voloshin, S.

    2010-01-01

    This volume contains the proceedings of the RBRC/CATHIE workshop on 'P- and CP-odd Effects in Hot and Dense Matter' held at the RIKEN-BNL Research Center on April 26-30, 2010. The workshop was triggered by the experimental observation of charge correlations in heavy ion collisions at RHIC, which were predicted to occur due to local parity violation (P- and CP-odd fluctuations) in hot and dense QCD matter. This experimental result excited a significant interest in the broad physics community, inspired a few alternative interpretations, and emphasized the need for a deeper understanding of the role of topology in QCD vacuum and in hot and dense quark-gluon matter. Topological effects in QCD are also closely related to a number of intriguing problems in condensed matter physics, cosmology and astrophysics. We therefore felt that a broad cross-disciplinary discussion of topological P- and CP-odd effects in various kinds of matter was urgently needed. Such a discussion became the subject of the workshop. Specific topics discussed at the workshop include the following: (1) The current experimental results on charge asymmetries at RHIC and the physical interpretations of the data; (2) Quantitative characterization of topological effects in QCD matter including both analytical (perturbative and non-perturbative using gauge/gravity duality) and numerical (lattice-QCD) calculations; (3) Topological effects in cosmology of the Early Universe (including baryogenesis and dark energy); (4) Topological effects in condensed matter physics (including graphene and superfiuids); and (5) Directions for the future experimental studies of P- and CP-odd effects at RHIC and elsewhere. We feel that the talks and intense discussions during the workshop were extremely useful, and resulted in new ideas in both theory and experiment. We hope that the workshop has contributed to the progress in understanding the role of topology in QCD and related fields. We thank all the speakers and

  9. Equilibration of matter near the QCD critical point

    International Nuclear Information System (INIS)

    Bravina, L V; Arsene, I; Nilsson, M S; Tywoniuk, K; Zabrodin, E E

    2006-01-01

    The relaxation of hot and dense nuclear matter to local equilibrium in the central zone of heavy-ion collisions at energies around 40 A GeV is studied within the microscopic transport model. Dynamical calculations performed for the central cell in the reaction are compared to the predictions of the thermal statistical model. It is found that kinetic, thermal and chemical equilibrations of the expanding hadronic matter are nearly approached for the period of 10-18 fm/c. Within this time, the matter in the cell expands almost isentropically. It is quite interesting that in the T-μ B plane the system crosses the critical point predicted by lattice QCD calculations. Similar to the cells studied at lower (AGS) and higher (SPS, RHIC) energies, the central cell at 40 A GeV possesses negative (though small) net strangeness. Several peculiarities are observed as well. These features can be attributed to the transition from baryon-dominated to meson-dominated matter, discussed recently

  10. The role of hadron resonances in hot hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    Goity, Jose [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hampton Univ., Hampton, VA (United States)

    2017-02-01

    Hadron resonances can play a significant role in hot hadronic matter. Of particular interest for this workshop are the contributions of hyperon resonances. The question about how to quantify the effects of resonances is here addressed. In the framework of the hadron resonance gas, the chemically equilibrated case, relevant in the context of lattice QCD calculations, and the chemically frozen case relevant in heavy ion collisions are discussed.

  11. Critical opalescence in baryonic QCD matter.

    Science.gov (United States)

    Antoniou, N G; Diakonos, F K; Kapoyannis, A S; Kousouris, K S

    2006-07-21

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.

  12. Critical Opalescence in Baryonic QCD Matter

    Science.gov (United States)

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-07-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.

  13. Critical Opalescence in Baryonic QCD Matter

    International Nuclear Information System (INIS)

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-01-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies

  14. Dark-matter QCD-axion searches

    International Nuclear Information System (INIS)

    Rosenberg, Leslie J

    2010-01-01

    The axion is a hypothetical elementary particle appearing in a simple and elegant extension to the Standard Model of particle physics that cancels otherwise huge CP-violating effects in QCD; this extension has a broken U(1) axial symmetry, where the resulting Goldstone Boson is the axion. A light axion of mass 10 -(6-3) eV (the so-called i nvisible axion ) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion would be a compelling dark-matter candidate and is therefore a target of a number of searches. Compared to other dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This restricted search space allows for 'definitive' searches, where non-observation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches employ a wide range of technologies and techniques, from astrophysical observations to laboratory electromagnetic signal detection. For some experiments, sensitivities are have reached likely dark-matter axion couplings and masses. This is a brief and selective overview of axion searches. With only very limited space, I briefly describe just two of the many experiments that are searching for dark-matter axions.

  15. Probing hot dense matter with jet energy loss

    International Nuclear Information System (INIS)

    Levai, P.; Barnafoeldi, G.G.; Gyulassy, M.; Vitev, I.; Fai, G.; Zhang, Y.

    2002-01-01

    We study, in a pQCD calculation augmented by nuclear effects, the jet energy loss needed to reproduce the π 0 spectra in Au+Au collisions at large p T , measured by PHENIX at RHIC. The transverse width of the parton momentum distributions (intrinsic k T ) is used phenomenologically to obtain a reliable baseline pp result. Jet quenching is applied to the nuclear spectra (including shadowing and multiscattering) to fit the data. Latest results on fluctuating gluon radiation are considered to measure the opacity of the produced hot dense matter at RHIC energy. (orig.)

  16. Dark-matter QCD-axion searches.

    Science.gov (United States)

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  17. Vector manifestation and violation of vector dominance in hot matter

    International Nuclear Information System (INIS)

    Harada, Masayasu; Sasaki, Chihiro

    2004-01-01

    We show the details of the calculation of the hadronic thermal corrections to the two-point functions in the effective field theory of QCD for pions and vector mesons based on the hidden local symmetry (HLS) in hot matter using the background field gauge. We study the temperature dependence of the pion velocity in the low-temperature region determined from the hadronic thermal corrections, and show that, due to the presence of the dynamical vector meson, the pion velocity is smaller than the speed of the light already at one-loop level, in contrast to the result obtained in the ordinary chiral perturbation theory including only the pion at one-loop. Including the intrinsic temperature dependences of the parameters of the HLS Lagrangian determined from the underlying QCD through the Wilsonian matching, we show how the vector manifestation (VM), in which the massless vector meson becomes the chiral partner of pion, is realized at the critical temperature. We present a new prediction of the VM on the direct photon-π-π coupling which measures the validity of the vector dominance (VD) of the electromagnetic form factor of the pion: we find that the VD is largely violated at the critical temperature, which indicates that the assumption of the VD made in several analyses on the dilepton spectra in hot matter may need to be weakened for consistently including the effect of the dropping mass of the vector meson

  18. The QCD Phase Diagram: Large Nc, Quarkyonic Matter and the Triple Point

    International Nuclear Information System (INIS)

    McLerran, L.

    2010-01-01

    I discuss the phase diagram of QCD in the large N c limit. Qarkyonic Matter is described. The properties of QCD matter as measured in the abundance of produced particles are shown to be consistent with this phase diagram. A possible triple point of Hadronic Matter, Deconfined Matter and Quarkyonic Matter is shown to explain various behaviors of ratios of particle abundances seen in CERN fixed target experiments. (author)

  19. Quark–hadron phase structure, thermodynamics, and magnetization of QCD matter

    Science.gov (United States)

    Nasser Tawfik, Abdel; Magied Diab, Abdel; Hussein, M. T.

    2018-05-01

    The SU(3) Polyakov linear-sigma model (PLSM) is systematically implemented to characterize the quark-hadron phase structure and to determine various thermodynamic quantities and the magnetization of quantum chromodynamic (QCD) matter. Using mean-field approximation, the dependence of the chiral order parameter on a finite magnetic field is also calculated. Under a wide range of temperatures and magnetic field strengths, various thermodynamic quantities including trace anomaly, speed of sound squared, entropy density, and specific heat are presented, and some magnetic properties are described as well. Where available these results are compared to recent lattice QCD calculations. The temperature dependence of these quantities confirms our previous finding that the transition temperature is reduced with the increase in the magnetic field strength, i.e. QCD matter is characterized by an inverse magnetic catalysis. Furthermore, the temperature dependence of the magnetization showing that QCD matter has paramagnetic properties slightly below and far above the pseudo-critical temperature is confirmed as well. The excellent agreement with recent lattice calculations proves that our QCD-like approach (PLSM) seems to possess the correct degrees of freedom in both the hadronic and partonic phases and describes well the dynamics deriving confined hadrons to deconfined quark-gluon plasma.

  20. On the collinear singularity problem of hot QCD

    International Nuclear Information System (INIS)

    Candelpergher, B.; Grandou, T.

    2002-01-01

    The collinear singularity problem of hot QCD is revisited within a perturbative resummation scheme (PR) of the leading thermal fluctuations. On the basis of actual calculations, new aspects are discovered concerning the origin of the singularity plaguing the soft real photon emission rate out of a quark-gluon plasma at thermal equilibrium, when the latter is calculated by means of the Resummation Program (RP)

  1. Critical Opalescence in Baryonic QCD Matter

    OpenAIRE

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-01-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behaviour is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associ...

  2. Bulk viscosity of hot dense Quark matter in the PNJL model

    International Nuclear Information System (INIS)

    Xiao Shisong; Guo Panpan; Zhang Le; Hou Defu

    2014-01-01

    Starting from the Kubo formula and the QCD low energy theorem, we study the the bulk viscosity of hot dense quark matter in the PNJL model from the equation of state. We show that the bulk viscosity has a sharp peak near the chiral phase transition, and that the ratio of bulk viscosity over entropy rises dramatically in the vicinity of the phase transition. These results agree with those from the lattice and other model calculations. In addition, we show that the increase of chemical potential raises the bulk viscosity. (authors)

  3. Dissociation of 1P states in hot QCD Medium Using Quasi-Particle Model

    Science.gov (United States)

    Nilima, Indrani; Agotiya, Vineet Kumar

    2018-03-01

    We extend the analysis of a very recent work [1] to study the dissociation phenomenon of 1P states of the charmonium and bottomonium spectra (χc and χb) in a hot QCD medium using Quasi-Particle Model. This study employed a medium modified heavy quark potential which has quite different form in the sense that it has a lomg range Coulombic tail in addition to the Yukawa term even above the deconfinement temperature. Then we study the flavor dependence of their binding energies and explore the nature of dissociation temperatures by employing the Quasi-Particle debye mass for pure gluonic and full QCD case. Interestingly, the dissociation temperatures obtained by employing EoS1 and EoS2 with the Γ criterion, is closer to the upper bound of the dissociation temperatures which are obtained by the dissolution of a given quarkonia state by the mean thermal energy of the quasi-partons in the hot QCD/QGP medium.

  4. Phases of Holographic QCD

    International Nuclear Information System (INIS)

    Lippert, Matthew

    2009-01-01

    We investigated the Sakai-Sugimoto model of large N QCD at nonzero temperature and baryon chemical potential and in the presence of background electric and magnetic fields. We studied the holographic representation of baryons and the deconfinement, chiral-symmetry breaking, and nuclear matter phase transitions. In a background electric field, chiral-symmetry breaking corresponds to an insulator-conductor transition. A magnetic field both catalyzes chiral-symmetry breaking and generates, in the confined phase, a pseudo-scalar gradient or, in the deconfined phase, an axial current. The resulting phase diagram is in qualitative agreement with studies of hot, dense QCD.

  5. Hadrons in dense matter. Proceedings

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2000-03-01

    The following topics were dealt with: Elementary hadronic reactions, Delta dynamics in nuclei, in-medium s-wave ππ-correlations, strangeness in hot and dense matter, medium modifications of vector mesons and dilepton production, medium modifications of charmonium, thermal properties of hot and dense hadronic matter, nuclear matter, spectral functions and QCD sum rules

  6. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    International Nuclear Information System (INIS)

    Ablyazimov, T.; Adak, R.P.

    2017-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s_N_N) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  7. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ablyazimov, T. [Joint Institute for Nuclear Research (JINR-LIT), Dubna (Russian Federation). Lab. of Information Technologies; Abuhoza, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt (Germany); Adak, R.P. [Bose Institute, Kolkata (India). Dept. of Physics; and others

    2017-03-15

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s{sub NN}) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ{sub B} > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  8. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Science.gov (United States)

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.

    2017-03-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

  9. QCD and RHIC

    International Nuclear Information System (INIS)

    Kharzeev, D.

    2004-01-01

    In this talk I discuss recent advances in Quantum Chromo-Dynamics, in particular the progress in understanding the collective dynamics of the theory. I emphasise the significance of the RHIC program for establishing the properties of hot and dense QCD matter and for understanding the dynamics of the theory at the high parton density, strong color field frontier. Hopes and expectations for the future are discussed as well

  10. Gauge/String Duality, Hot QCD and Heavy Ion Collisions

    CERN Document Server

    Casalderrey-Solana, Jorge; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim

    2011-01-01

    Over the last decade, both experimental and theoretical advances have brought the need for strong coupling techniques in the analysis of deconfined QCD matter and heavy ion collisions to the forefront. As a consequence, a fruitful interplay has developed between analyses of strongly-coupled non-abelian plasmas via the gauge/string duality (also referred to as the AdS/CFT correspondence) and the phenomenology of heavy ion collisions. We review some of the main insights gained from this interplay to date. To establish a common language, we start with an introduction to heavy ion phenomenology and finite-temperature QCD, and a corresponding introduction to important concepts and techniques in the gauge/string duality. These introductory sections are written for nonspecialists, with the goal of bringing readers ranging from beginning graduate students to experienced practitioners of either QCD or gauge/string duality to the point that they understand enough about both fields that they can then appreciate their in...

  11. Brane-induced Skyrmion on S3: Baryonic matter in holographic QCD

    International Nuclear Information System (INIS)

    Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru

    2009-01-01

    We study baryonic matter in holographic QCD with D4/D8/D8 multi-D brane system in type IIA superstring theory. The baryon is described as the 'brane-induced Skyrmion', which is a topologically nontrivial chiral soliton in the four-dimensional meson effective action induced by holographic QCD. We employ the ''truncated-resonance model'' approach for the baryon analysis, including pion and ρ meson fields below the ultraviolet cutoff scale M KK ∼1 GeV, to keep the holographic duality with QCD. We describe the baryonic matter in large N c as single brane-induced Skyrmion on the three-dimensional closed manifold S 3 with finite radius R. The interactions between baryons are simulated by the curvature of the closed manifold S 3 , and the decrease of the size of S 3 represents the increase of the total baryon-number density in the medium in this modeling. We investigate the energy density, the field configuration, the mass and the root-mean-square radius of single baryon on S 3 as the function of its radius R. We find a new picture of 'pion dominance' near the critical density in the baryonic matter, where all the (axial) vector meson fields disappear and only the pion fields survive. We also find the swelling phenomena of the baryons as the precursor of the deconfinement, and propose the mechanism of the swelling in the general context of QCD. The properties of the deconfinement and the chiral symmetry restoration in the baryonic matter are examined by taking the proper order parameters. We also compare our truncated-resonance model with another instanton description of the baryon in holographic QCD, considering the role of cutoff scale M KK .

  12. QCD Axion Dark Matter with a Small Decay Constant

    Science.gov (United States)

    Co, Raymond T.; Hall, Lawrence J.; Harigaya, Keisuke

    2018-05-01

    The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from misalignment or defect mechanisms, which generically require an axion decay constant fa˜O (1011) GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from oscillations of the Peccei-Quinn symmetry breaking field, that requires fa˜(108- 1011) GeV . The axions may be warm enough to give deviations from cold dark matter in large scale structure.

  13. QCD Axion Dark Matter with a Small Decay Constant.

    Science.gov (United States)

    Co, Raymond T; Hall, Lawrence J; Harigaya, Keisuke

    2018-05-25

    The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from misalignment or defect mechanisms, which generically require an axion decay constant f_{a}∼O(10^{11})  GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from oscillations of the Peccei-Quinn symmetry breaking field, that requires f_{a}∼(10^{8}-10^{11})  GeV. The axions may be warm enough to give deviations from cold dark matter in large scale structure.

  14. Colour deconfinement in hot and dense matter

    CERN Document Server

    Satz, Helmut

    1996-01-01

    We first introduce the conceptual basis of critical behaviour in strongly interacting matter, with colour deconfinement as QCD analog of the insulator-conductor transition and chiral symmetry restoration as special case of the associated shift in the mass of the constituents. Next we summarize quark-gluon plasma formation in finite temperature lattice QCD. We consider the underlying symmetries and their spontaneous breaking/restoration in the transition, as well as the resulting changes in thermodynamic behaviour. Finally, we turn to the experimental study of strongly interacting matter by high energy nuclear collisions, using charmonium production to probe the confinement status of the produced primordial medium. Recent results from Pb-Pb collisions at CERN may provide first evidence for colour deconfinement.

  15. Strangeness in hot and dense nuclear matter

    International Nuclear Information System (INIS)

    Nappi, E.

    2009-01-01

    Ultra-relativistic heavy-ion collisions are believed to provide the extreme conditions of energy densities able to lead to a transition to a short-lived state, called Quark-Gluon Plasma (QGP), where the quarks are no longer bound inside hadrons. The studies performed so far, formerly at SPS (CERN) and later at RHIC (BNL) allowed to achieve a multitude of crucial results consistent with the hypothesis that a new phase of the QCD matter has been indeed created. However, the emerging picture is that of the formation of a strongly interacting medium with negligibly small viscosity, a perfect liquid, rather than the ideal perturbative QCD parton-gas predicted by most theorists. The head-on collision between lead nuclei at the unprecedented energies of the forthcoming Large Hadron Collider (LHC) at CERN, due to start in 2008, will allow to measure the properties of compressed and excited nuclear matter at even higher initial densities and temperatures, far above the predicted QCD phase transition point. The longer duration of the quark-gluon plasma phase and the much more abundant production of hard probes, which depend much less on details of the later hadronic phase, will likely provide a consistent and uncontroversial experimental evidence of the QGP formation. Among the signals what witness the charge in the nature of the state of nuclear matter, the chemical equilibrium value of the strangeness plays a key role since it is directly sensitive to the matter properties and provides information on the link between the partonic and the hadronic phases. The aim of this course is to overview the underlying goals, the current status and the prospect of the physics of the nucleus-nucleus collisions at ultrarelativistic energies. Among the experimental methods adopted to investigate the challenging signatures of the QGP formation, emphasis on those related to the strangeness flavour will be given.

  16. QCD matter in white dwarfs and supernova collapse

    International Nuclear Information System (INIS)

    Mathews, Grant J.; Meixner, M.; Lan, N.Q.; Suh, I.-S.

    2010-01-01

    The search for astrophysical evidence for a transition to QCD matter is an important goal. Although much effort has gone into searching for neutron star candidates, here we describe the exploration of two other possible signatures. One is the search for strange dwarfs. Masses and radii for a large number of white dwarfs have been deduced from a combination of proper motion studies, Hipparcos parallax distances, effective temperatures, and binary or spectroscopic masses. Some stars appear to have radii which are significantly smaller than that expected for a standard electron-degenerate white-dwarf equation of state. We argue that there is marginal evidence for bimodality in the radius distribution. We show that the data exhibit several features consistent with the expected mass-radius relation of strange dwarfs. We identify eight nearby white dwarfs that are possible candidates for strange matter cores and suggest observational tests of this hypothesis. We also review the current status of core-collapse supernova research, and in particular, the effects on the explosion of a QCD phase transition in the proto-neutron-star core. We describe how a first order transition could enhance the explosion and lead to observable effects in the emergent neutrino light curve. (author)

  17. From hot lattice QCD to cold quark stars

    International Nuclear Information System (INIS)

    Schulze, Robert

    2011-01-01

    A thermodynamic model of the quark-gluon plasma using quasiparticle degrees of freedom based on the hard thermal loop self-energies is introduced. It provides a connection between an established phenomenological quasiparticle model - following from the former using a series of approximations - and QCD - from which the former is derived using the Cornwall-Jackiw-Tomboulis formalism and a special parametrization of the running coupling. Both models allow for an extrapolation of first-principle QCD results available at small chemical potentials using Monte-Carlo methods on the lattice to large net baryon densities with remarkably similar results. They are used to construct equations of state for heavy-ion collider experiments at SPS and FAIR as well as quark and neutron star interiors. A mixed-phase construction allows for a connection of the SPS equation of state to the hadron resonance gas. An extension to the weak sector is presented as well as general stability and binding arguments for compact stellar objects are developed. From the extrapolation of the most recent lattice results the existence of bound pure quark stars is not suggested. However, quark matter might exist in a hybrid phase in cores of neutron stars. (orig.)

  18. From hot lattice QCD to cold quark stars

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Robert

    2011-02-22

    A thermodynamic model of the quark-gluon plasma using quasiparticle degrees of freedom based on the hard thermal loop self-energies is introduced. It provides a connection between an established phenomenological quasiparticle model - following from the former using a series of approximations - and QCD - from which the former is derived using the Cornwall-Jackiw-Tomboulis formalism and a special parametrization of the running coupling. Both models allow for an extrapolation of first-principle QCD results available at small chemical potentials using Monte-Carlo methods on the lattice to large net baryon densities with remarkably similar results. They are used to construct equations of state for heavy-ion collider experiments at SPS and FAIR as well as quark and neutron star interiors. A mixed-phase construction allows for a connection of the SPS equation of state to the hadron resonance gas. An extension to the weak sector is presented as well as general stability and binding arguments for compact stellar objects are developed. From the extrapolation of the most recent lattice results the existence of bound pure quark stars is not suggested. However, quark matter might exist in a hybrid phase in cores of neutron stars. (orig.)

  19. QCD sum rule for nucleon in nuclear matter

    International Nuclear Information System (INIS)

    Mallik, S.; Sarkar, Sourav

    2010-01-01

    We consider the two-point function of nucleon current in nuclear matter and write a QCD sum rule to analyse the residue of the nucleon pole as a function of nuclear density. The nucleon self-energy needed for the sum rule is taken as input from calculations using phenomenological N N potential. Our result shows a decrease in the residue with increasing nuclear density, as is known to be the case with similar quantities. (orig.)

  20. Asymmetric dark matter and the hadronic spectra of hidden QCD

    Science.gov (United States)

    Lonsdale, Stephen J.; Schroor, Martine; Volkas, Raymond R.

    2017-09-01

    The idea that dark matter may be a composite state of a hidden non-Abelian gauge sector has received great attention in recent years. Frameworks such as asymmetric dark matter motivate the idea that dark matter may have similar mass to the proton, while mirror matter and G ×G grand unified theories provide rationales for additional gauge sectors which may have minimal interactions with standard model particles. In this work we explore the hadronic spectra that these dark QCD models can allow. The effects of the number of light colored particles and the value of the confinement scale on the lightest stable state, the dark matter candidate, are examined in the hyperspherical constituent quark model for baryonic and mesonic states.

  1. Spectral representation and QCD sum rules in hot nuclear matter

    International Nuclear Information System (INIS)

    Mallik, S.; Sarkar, Sourav

    2009-01-01

    We construct the spectral representation of spinsor two-point functions in medium, that is, at finite temperature and chemical potential. We first deal with the free spinor two-point function. Then we construct the same for interacting fields leading to the Kaellen-Lehmann representation. It is emphasised that although these two point functions have the structure of 2 x 2 matrices in the real time formulation of field theory, any one component actually suffices to describe the dynamics of the system. Our construction is then applied to write the QCD sum rules for two-point function of nucleon currents in medium. We discuss a subtracted version to increase the sensitivity of such a sum rule and point out how it differs from a conventional one. (author)

  2. What do QCD sum rules tell us about dense matter?

    International Nuclear Information System (INIS)

    Cohen, T.D.; Washington Univ., Seattle, WA

    1995-01-01

    The QCD sum rule approach to the properties of hadrons in both the vacuum and in nuclear matter is discussed. The primary limitation for the nuclear matter case is the absence of reliable phenomenological information about the form of the spectral function and about the value of certain four quark condensates. The approach gives moderate evidence in support of the Dirac phenomenology picture of strong attractive Lorentz scalar and repulsive Lorentz vector optical potentials. The approach gives weak evidence for decreasing vector meson masses in medium. (orig.)

  3. Towards 4-loop NSPT result for a 3-dimensional condensate-contribution to hot QCD pressure

    CERN Document Server

    Torrero, C.; Schroder, Y.; Di Renzo, F.; Miccio, V.

    2007-01-01

    Thanks to dimensional reduction, the contributions to the hot QCD pressure coming from so-called soft modes can be studied via an effective three-dimensional theory named Electrostatic QCD (spatial Yang-Mills fields plus an adjoint Higgs scalar). The poor convergence of the perturbative series within EQCD suggests to perform lattice measurements of some of the associated gluon condensates. These turn out, however, to be plagued by large discretization artifacts. We discuss how Numerical Stochastic Perturbation Theory can be exploited to determine the full lattice spacing dependence of one of these condensates up to 4-loop order, and sharpen our tools on a concrete 2-loop example.

  4. Analysis of the doubly heavy baryons in the nuclear matter with the QCD sum rules

    International Nuclear Information System (INIS)

    Wang, Zhi-Gang

    2012-01-01

    In this article, we study the doubly heavy baryon states Ξ cc , Ω cc , Ξ bb and Ω bb in the nuclear matter using the QCD sum rules, and derive three coupled QCD sum rules for the masses, vector self-energies and pole residues. The predictions for the mass-shifts in the nuclear matter ΔM Ξ cc =-1.11simGeV, ΔM Ω cc =-0.33∝GeV, ΔM Ξ bb =-3.37∝GeV and ΔM Ω bb =-1.05∝GeV can be confronted with experimental data in the future. (orig.)

  5. Lattice QCD results on soft and hard probes of strongly interacting matter

    Science.gov (United States)

    Kaczmarek, Olaf

    2017-11-01

    We present recent results from lattice QCD relevant for the study of strongly interacting matter as it is produced in heavy ion collision experiments. The equation of state at non-vanishing density from a Taylor expansion up to 6th order will be discussed for a strangeness neutral system and using the expansion coefficients of the series limits on the critical point are estimated. Chemical freeze-out temperatures from the STAR and ALICE Collaborations will be compared to lines of constant physics calculated from the Taylor expansion of QCD bulk thermodynamic quantities. We show that qualitative features of the √{sNN} dependence of skewness and kurtosis ratios of net proton-number fluctuations measured by the STAR Collaboration can be understood from QCD results for cumulants of conserved baryon-number fluctuations. As an example for recent progress towards the determination of spectral and transport properties of the QGP from lattice QCD, we will present constraints on the thermal photon rate determined from a spectral reconstruction of continuum extrapolated lattice correlation functions in combination with input from most recent perturbative calculations.

  6. Nonperturbative QCD and quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E V [Department of Physics and Astronomy, State University of New York, Stony Brook (United States)

    2002-09-15

    This is a brief written version of 5 lectures made at 2001 ICTP Summer School on High Energy Physics in Trieste. The lectures provide an overview of what we have learned about QCD vacuum, hadrons and hot / dense hadronic matter during the last 2 decades. Last two lectures contain discussion of heavy ion physics. We focus on the first surprising results from new heavy ion collider, RHIC, as well as recent development toward understanding of the old problem of 'soft pomeron' in high energy hadronic collisions and its connection to new heavy ion data. (author)

  7. An example of the interplay of nonextensivity and dynamics in the description of QCD matter

    Energy Technology Data Exchange (ETDEWEB)

    Rozynek, Jacek; Wilk, Grzegorz [National Centre for Nuclear Research, Department of Fundamental Research, Warsaw (Poland)

    2016-09-15

    Using a simple quasiparticle model of QCD matter, presented some time ago in the literature, in which interactions are modelled by some effective fugacities z, we investigate the interplay between the dynamical content of fugacities z and effects induced by nonextensivity in situations when this model is used in a nonextensive environment characterized by some nonextensive parameter q ≠ 1 (for the usual extensive case q = 1). This allows for a better understanding of the role of nonextensivity in the more complicated descriptions of dense hadronic and QCD matter recently presented (in which dynamics is defined by a Lagrangian, the form of which is specific to a given model). (orig.)

  8. NATO Advanced Research Workshiop on Superdense QCD Matter and Compact Stars

    CERN Document Server

    Blaschke, David

    2006-01-01

    This volume covers the main topics in the theory of superdense QCD matter and its application to the astrophysics of compact stars in a comprehensive and yet accessible way. The material is presented as a combination of extensive introductory lectures and more topical contributions. The book is centered around the question whether hypothetical new states of dense matter in the compact star interior could give clues to the explanation of puzzling phenomena such as gamma-ray bursts, pulsar glitches, compact star cooling and gravitational waves.

  9. Seeded hot dark matter models with inflation

    Science.gov (United States)

    Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.

    1993-01-01

    We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.

  10. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators.

    Science.gov (United States)

    Backović, Mihailo; Krämer, Michael; Maltoni, Fabio; Martini, Antony; Mawatari, Kentarou; Pellen, Mathieu

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s -channel mediators. We implement such models in the FeynRules/MadGraph5_aMC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s -channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  11. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    Energy Technology Data Exchange (ETDEWEB)

    Backović, Mihailo [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Krämer, Michael [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056, Aachen (Germany); Maltoni, Fabio; Martini, Antony [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Mawatari, Kentarou, E-mail: kentarou.mawatari@vub.ac.be [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, 1050, Brussels (Belgium); Pellen, Mathieu [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056, Aachen (Germany)

    2015-10-07

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5{sub a}MC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  12. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    Energy Technology Data Exchange (ETDEWEB)

    Backovic, Mihailo; Maltoni, Fabio; Martini, Antony [Universite catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); Kraemer, Michael; Pellen, Mathieu [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany); Mawatari, Kentarou [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Brussels (Belgium)

    2015-10-15

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5{sub a}MC rate at NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties. (orig.)

  13. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    International Nuclear Information System (INIS)

    Backovic, Mihailo; Maltoni, Fabio; Martini, Antony; Kraemer, Michael; Pellen, Mathieu; Mawatari, Kentarou

    2015-01-01

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5 a MC rate at NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties. (orig.)

  14. Neutron matter within QCD sum rules

    Science.gov (United States)

    Cai, Bao-Jun; Chen, Lie-Wen

    2018-05-01

    The equation of state (EOS) of pure neutron matter (PNM) is studied in QCD sum rules (QCDSRs ). It is found that the QCDSR results on the EOS of PNM are in good agreement with predictions by current advanced microscopic many-body theories. Moreover, the higher-order density terms in quark condensates are shown to be important to describe the empirical EOS of PNM in the density region around and above nuclear saturation density although they play a minor role at subsaturation densities. The chiral condensates in PNM are also studied, and our results indicate that the higher-order density terms in quark condensates, which are introduced to reasonably describe the empirical EOS of PNM at suprasaturation densities, tend to hinder the appearance of chiral symmetry restoration in PNM at high densities.

  15. Probing properties of hot and dense QCD matter with heavy flavor in the PHENIX experiment at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2015-01-01

    Full Text Available Hadrons carrying heavy quarks, i.e. charm or bottom, are important probes of the hot and dense medium created in relativistic heavy ion collisions. Heavy quarkantiquark pairs are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. Heavy quark production has been studied by the PHENIX experiment at RHIC via measurements of single leptons from semi-leptonic decays in both the electron channel at mid-rapidity and in the muon channel at forward rapidity. A large suppression and azimuthal anisotropy of single electrons have been observed in Au + Au collisions at 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. The PHENIX experiment has also measured J/ψ production at 200 GeV in p + p, d + Au, Cu + Cu and Au + Au collisions, both at mid- and forward-rapidities, and additionally Cu + Au and U + U at forward-rapidities. In the most energetic collisions, more suppression is observed at forward rapidity than at central rapidity. This can be interpreted either as a sign of quark recombination, or as a hint of additional cold nuclear matter effects. The centrality dependence of nuclear modification factor, RAA(pT, for J/ψ in U + U collisions at √sNN = 193 GeV shows a similar trend to the lighter systems, Au + Au and Cu + Cu, at similar energy 200 GeV.

  16. Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Ricardo L.S. [Universidade Federal de Santa Maria, Departamento de Fisica, Santa Maria, RS (Brazil); Kent State University, Physics Department, Kent, OH (United States); Timoteo, Varese S. [Universidade Estadual de Campinas (UNICAMP), Grupo de Optica e Modelagem Numerica (GOMNI), Faculdade de Tecnologia, Limeira, SP (Brazil); Avancini, Sidney S.; Pinto, Marcus B. [Universidade Federal de Santa Catarina, Departamento de Fisica, Florianopolis, Santa Catarina (Brazil); Krein, Gastao [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)

    2017-05-15

    The phenomenon of inverse magnetic catalysis of chiral symmetry in QCD predicted by lattice simulations can be reproduced within the Nambu-Jona-Lasinio model if the coupling G of the model decreases with the strength B of the magnetic field and temperature T. The thermo-magnetic dependence of G(B, T) is obtained by fitting recent lattice QCD predictions for the chiral transition order parameter. Different thermodynamic quantities of magnetized quark matter evaluated with G(B, T) are compared with the ones obtained at constant coupling, G. The model with G(B, T) predicts a more dramatic chiral transition as the field intensity increases. In addition, the pressure and magnetization always increase with B for a given temperature. Being parametrized by four magnetic-field-dependent coefficients and having a rather simple exponential thermal dependence our accurate ansatz for the coupling constant can be easily implemented to improve typical model applications to magnetized quark matter. (orig.)

  17. Study of dark matter and QCD-charged mediators in the quasidegenerate regime

    Science.gov (United States)

    Davidson, Andrew; Kelso, Chris; Kumar, Jason; Sandick, Pearl; Stengel, Patrick

    2017-12-01

    We study a scenario in which the only light new particles are a Majorana fermion dark matter candidate and one or more QCD-charged scalars, which couple to light quarks. This scenario has several interesting phenomenological features if the new particles are nearly degenerate in mass. In particular, LHC searches for the light scalars have reduced sensitivity, since the visible and invisible products tend to be softer. Moreover, dark matter-scalar coannihilation can allow even relatively heavy dark matter candidates to be consistent thermal relics. Finally, the dark matter nucleon scattering cross section is enhanced in the quasidegenerate limit, allowing direct detection experiments to use both spin-independent and spin-dependent scattering to probe regions of parameter space beyond those probed by the LHC. Although this scenario has a broad application, we phrase this study in terms of the minimal supersymmetric standard model, in the limit where the only light sparticles are a binolike dark matter candidate and light-flavored squarks.

  18. Transport at ''NLO'' in hot QCD

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The study of QCD kinetics is driven by a vast array of the experimental measurements of transport at the LHC, ranging from heavy quark energy loss, jet suppression, and hydrodynamics. I first review the fundamental elements of QCD kinetic theory, i.e. plasma screening, 2to2 scattering, and medium modified collinear bremsstrahlung. Then I will summarize recent progress in calculating these elements and their interplay at "NLO" -- "NLO" refers to an order $\\sqrt{\\alpha_s}$ correction to the plasma processes arising from the statistical fluctuations of soft gluons. These "NLO" calculations suggest a computational strategy where the influence of the Debye sector on the real time dynamics of the hard lightlike modes can be incorporated into a few medium coefficients (such as the drag coefficient and $\\hat{q}$), which can be simulated with a Euclidean 3D dimensionally reduced theory.

  19. Jets with ALICE: from vacuum to high-temperature QCD

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    ALICE measures jets in pp, p-Pb and Pb-Pb collisions to study modifications of the jet fragmentation due to cold nuclear and hot QCD matter. In pp collisions ALICE has measured inclusive jet yields, the ratio of yields with different resolution R, a variety of jet shapes and the semi-inclusive rate of jets recoiling against a high transverse momentum hadron trigger. These measurements are compared to NLO calculations including hadronization corrections and to MC models. Jets in pp are primarily conceived as a vacuum reference for jet observables in p-Pb and Pb-Pb collisions. In p-Pb collisions ALICE explores cold nuclear matter effects on jet yields, jet fragmentation and dijet acoplanarity. The hot and dense medium created in heavy-ion collisions is expected to modify the fragmentation of high energy partonic projectiles leading to changes in the energy and structure of the reconstructed jets with respect to pp jets. The study of modified jets aims at understanding the detailed mechanisms of in-medium energy...

  20. One-loop QCD thermodynamics in a strong homogeneous and static magnetic field

    Science.gov (United States)

    Rath, Shubhalaxmi; Patra, Binoy Krishna

    2017-12-01

    We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.

  1. Modeling the thermodynamics of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hell, Thomas

    2010-07-26

    Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)

  2. Is it possible to tell the difference between fermionic and bosonic hot dark matter?

    Energy Technology Data Exchange (ETDEWEB)

    Hannestad, S.; Tu, H. [Aarhus Univ. (Denmark). Dept. of Physics and Astronomy; Ringwald, A.; Wong, Y.Y.Y. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2005-07-01

    We study the difference between thermally produced fermionic and bosonic hot dark matter in detail. In the linear regime of structure formation, their distinct free-streaming behaviours can lead to pronounced differences in the matter power spectrum. While not detectable with current cosmological data, such differences will be clearly observable with upcoming large scale weak lensing surveys for particles as light as m{sub HDM} {proportional_to} 0.2 eV. In the nonlinear regime, bosonic hot dark matter is not subject to the same phase space constraints that severely limit the amount of fermionic hot dark matter infall into cold dark matter halos. Consequently, the overdensities in fermionic and bosonic hot dark matter of equal particle mass can differ by more than a factor of five in the central part of a halo. However, this unique manifestation of quantum statistics may prove very difficult to detect unless the mass of the hot dark matter particle and its decoupling temperature fall within a very narrow window, 1hot dark matter infall may have some observable consequences for the nonlinear power spectrum and hence the weak lensing convergence power spectrum at l {proportional_to} 10{sup 3} {yields} 10{sup 4} at the percent level. (orig.)

  3. Dual QCD thermodynamics and quark–gluon plasma

    International Nuclear Information System (INIS)

    Chandola, H.C.; Punetha, Garima; Dehnen, H.

    2016-01-01

    Using grand canonical ensemble formulation of a multi-particle statistical system, the thermodynamical description of dual QCD based on magnetic symmetry has been presented and analyzed for the quark–gluon plasma phase of hadronic matter. The dual QCD based bag construction has been shown to lead to the radial pressure on bag surface in terms of the vector glueball masses of magnetically condensed QCD vacuum. Constructing the grand canonical partition function, the energy density and plasma pressure have been derived and used to compute the critical temperatures for QGP–hadron phase transition along with its dynamics. A comparison of the values of critical temperatures for QGP–hadron phase transition with those obtained for the deconfinement-phase transition, has been shown to lead to either the relaxation of the system via a mixed phase of QGP and hot hadron gas or go through a crossover. The associated profiles of the normalized energy density and specific heat have been shown to lead to a large latent heat generation and indicate the onset of a first-order QGP phase transition which turns into a rapid crossover for the case of temperature dependent bag parameter. The squared speed of sound has been shown to act as a physical measure of large thermodynamical fluctuations near transition point. The possible implications of trace anomaly and conformal measure on QGP formation have also been discussed.

  4. QCD and QGP: a summary

    International Nuclear Information System (INIS)

    Satz, Helmut

    1998-01-01

    The aim of high energy nuclear collisions is to study strong interaction thermodynamics in the laboratory; we want to explore colour deconfinement and the resulting new state of matter, the quark-gluon plasma. Phenomenological models have done much to form the concepts of the field, but today QCD provides the theoretical basis for our understanding of hot and dense matter and for the tools to probe it. I will therefore begin by summarizing recent results from finite temperature lattice QCD and then turn to the study of colour deconfinement using hard probes; here the recently reported anomalous J/ψ suppression represents a particularly promising signal. Similarly, the observed low mass dilepton enhancement has focussed our attention on the properties of hadrons near chiral symmetry restoration. The hadrosynthesis at freeze-out is yet another region of much present activity to be addressed in the final part of this summary. All aspects were covered here in a variety of excellent plenary talks and contributions; I hope the speakers will forgive me for concentrating on the progress in physics as I see it, rather than on individual talks. The field of high energy nuclear collisions is very many-faceted, and moreover I had to select what I could coherently summarize in the given time. I therefore also apologize to all those whose contributions to this meeting are covered insufficiently or not at all. In particular, I shall review neither the developments in astrophysics nor the search for disoriented chiral condensates, simply because of my lack of competence in these areas. (author)

  5. Neutron star structure from QCD

    CERN Document Server

    Fraga, Eduardo S; Vuorinen, Aleksi

    2016-01-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  6. Transport properties of hot gluonic matter

    CERN Document Server

    Bluhm, Marcus

    2012-01-01

    We discuss the temperature dependence of the scaled jet quenching parameter of hot gluonic matter within a quasiparticle approach. A pronounced maximum in the vicinity of the transition temperature is observed, where the ratio of the scaled jet quenching parameter and the inverse specific shear viscosity increases above typical values for weakly coupled systems.

  7. QCD as a topologically ordered system

    International Nuclear Information System (INIS)

    Zhitnitsky, Ariel R.

    2013-01-01

    We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on an analysis of the so-called “deformed QCD” which is a weakly coupled gauge theory, but nevertheless preserves all the crucial elements of strongly interacting QCD, including confinement, nontrivial θ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological “BF” action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which cannot be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated U(1) A problem where the would be η ′ Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We then identify the non-propagating auxiliary topological field of the BF formulation in deformed QCD with the Veneziano ghost (which plays the crucial role in resolution of the U(1) A problem). Finally, we elaborate on relation between “string-net” condensation in topologically ordered condensed matter systems and long range coherent configurations, the “skeletons”, studied in QCD lattice simulations. -- Highlights: •QCD may belong to a topologically ordered phase similar to condensed matter (CM) systems. •We identify the non-propagating topological field in deformed QCD with the Veneziano ghost. •Relation between “string-net” condensates in CM systems and the “skeletons” in QCD lattice simulations is studied

  8. Menopausal Hot Flashes and White Matter Hyperintensities

    Science.gov (United States)

    Thurston, Rebecca C.; Aizenstein, Howard J.; Derby, Carol A.; Sejdić, Ervin; Maki, Pauline M.

    2015-01-01

    Objective Hot flashes are the classic menopausal symptom. Emerging data links hot flashes to cardiovascular disease (CVD) risk, yet how hot flashes are related to brain health is poorly understood. We examined the relationship between hot flashes - measured via physiologic monitor and self-report - and white matter hyperintensities (WMH) among midlife women. Methods Twenty midlife women ages 40-60 without clinical CVD, with their uterus and both ovaries, and not taking hormone therapy were recruited. Women underwent 24 hours of ambulatory physiologic and diary hot flash monitoring to quantify hot flashes; magnetic resonance imaging to assess WMH burden; 72 hours of actigraphy and questionnaires to quantify sleep; and a blood draw, questionnaires, and physical measures to quantify demographics and CVD risk factors. Test of a priori hypotheses regarding relations between physiologically-monitored and self-reported wake and sleep hot flashes and WMH were conducted in linear regression models. Results More physiologically-monitored hot flashes during sleep were associated with greater WMH, controlling for age, race, and body mass index [beta(standard error)=.0002 (.0001), p=.03]. Findings persisted controlling for sleep characteristics and additional CVD risk factors. No relations were observed for self-reported hot flashes. Conclusions More physiologically-monitored hot flashes during sleep were associated with greater WMH burden among midlife women free of clinical CVD. Results suggest that relations between hot flashes and CVD risk observed in the periphery may extend to the brain. Future work should consider the unique role of sleep hot flashes in brain health. PMID:26057822

  9. Neutrinos and Nucleosynthesis in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, George [Univ. of California, San Diego, CA (United States)

    2016-01-14

    The Topical Collaboration for Neutrinos and Nucleosynthesis in Hot and Dense matter brought together researchers from a variety of nuclear science specialties and a number of institutions to address nuclear physics and neutrino physics problems associated with dense matter and the origin of the elements. See attached final technical reports for (1) the UCSD award and (2) a copy of the report for the whole TC

  10. Overlap between Lattice QCD and HRG with in-medium effects and parity doubling*

    Directory of Open Access Journals (Sweden)

    Morita Kenji

    2018-01-01

    Full Text Available We investigate the fluctuations and correlations involving baryon number in hot hadronic matter with modified masses of negative-parity baryons, in the context of the hadron resonance gas. Temperature-dependent masses are adopted from the recent lattice QCD results and from a chiral effective model which implements the parity doubling structure with respect to the chiral symmetry. Confronting the baryon number susceptibility, baryon-charge correlation, and baryon-strangeness correlation and their ratios with the lattice QCD data, we show that the strong downward mass shift in hyperons can accidentally reproduce some correlation ratios, however it also tends to overshoot the individual fluctuations and correlations. This indicates, that in order to correctly account for the influence of the chiral symmetry restoration on the fluctuation observables, a consistent framework of in-medium effects beyond hadron mass shifts is required.

  11. Hot interstellar matter in elliptical galaxies

    CERN Document Server

    Kim, Dong-Woo

    2012-01-01

    Based on a number of new discoveries resulting from 10 years of Chandra and XMM-Newton observations and corresponding theoretical works, this is the first book to address significant progress in the research of the Hot Interstellar Matter in Elliptical Galaxies. A fundamental understanding of the physical properties of the hot ISM in elliptical galaxies is critical, because they are directly related to the formation and evolution of elliptical galaxies via star formation episodes, environmental effects such as stripping, infall, and mergers, and the growth of super-massive black holes. Thanks to the outstanding spatial resolution of Chandra and the large collecting area of XMM-Newton, various fine structures of the hot gas have been imaged in detail and key physical quantities have been accurately measured, allowing theoretical interpretations/predictions to be compared and tested against observational results. This book will bring all readers up-to-date on this essential field of research.

  12. Parton Propagation and Fragmentation in QCD Matter

    Energy Technology Data Exchange (ETDEWEB)

    Alberto Accardi, Francois Arleo, William Brooks, David D' Enterria, Valeria Muccifora

    2009-12-01

    We review recent progress in the study of parton propagation, interaction and fragmentation in both cold and hot strongly interacting matter. Experimental highlights on high-energy hadron production in deep inelastic lepton-nucleus scattering, proton-nucleus and heavy-ion collisions, as well as Drell-Yan processes in hadron-nucleus collisions are presented. The existing theoretical frameworks for describing the in-medium interaction of energetic partons and the space-time evolution of their fragmentation into hadrons are discussed and confronted to experimental data. We conclude with a list of theoretical and experimental open issues, and a brief description of future relevant experiments and facilities.

  13. Phase structure of hot and/or dense QCD with the Schwinger-Dyson equation

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Satoshi [Nagoya Univ., Nagoya, Aichi (Japan)

    2002-09-01

    We investigate the phase structure of the hot and/or dense QCD using the Schwinger-Dyson equation (SDE) with the improved ladder approximation in the Landau gauge. We solve the coupled SDE for the Majorana masses of the quark and antiquark (separately from the SDE for the Dirac mass) in the finite temperature and/or chemical potential region. The resultant phase structure is rather different from those by other analyses. In addition to this analysis we investigate the phase structure with the different two types of the SDE, in one of which the Majorana mass gap of the antiquark is neglected, while in the other of which the Majorana mass gap of the quark and that of the antiquark are set to be equal. The effect of the Debye mass of the gluon on the phase structure is also investigated. (author)

  14. Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe

    Directory of Open Access Journals (Sweden)

    Escobedo Miguel A.

    2017-01-01

    Full Text Available There are many interesting problems in heavy-ion collisions and in cosmology that involve the interaction of a heavy particle with a medium. An example is the dissociation of heavy quarkonium seen in heavy-ion collisions. This was believed to be due to the screening of chromoelectric fields that prevents the heavy quarks from binding, however in the last years several perturbative and lattice computations have pointed out to the possibility that dissociation is due to the finite lifetime of a quarkonium state inside the medium. Regarding cosmology, the study of the behavior of heavy Majorana neutrinos in a hot medium is important to understand if this model can explain the origin of dark matter and the baryon asymmetry. A very convenient way of studying these problems is with the use of non-relativistic effective field theories (EFTs, this allows to make the computations in a more systematic way by defining a more suitable power counting and making it more difficult to miss necessary resummations. In this proceedings I will review the most important results obtained by applying the EFT formalism to the study of quarkonium suppression and Majorana neutrinos, I will also discuss how combining an EFT called potential non-relativistic QCD (pNRQCD with concepts coming from the field of open quantum systems it is possible to understand how the population of the different quarkonium states evolve with time inside a thermal medium.

  15. QCD sum rules and applications to nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, T D [Maryland Univ., College Park, MD (United States). Dept. of Physics; [Washington Univ., Seattle, WA (United States). Dept. of Physics and Inst. for Nuclear Theory; Furnstahl, R J [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Griegel, D K [Maryland Univ., College Park, MD (United States). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada); Xuemin, J

    1994-12-01

    Applications of QCD sum-rule methods to the physics of nuclei are reviewed, with an emphasis on calculations of baryon self-energies in infinite nuclear matter. The sum-rule approach relates spectral properties of hadrons propagating in the finite-density medium, such as optical potentials for quasinucleons, to matrix elements of QCD composite operators (condensates). The vacuum formalism for QCD sum rules is generalized to finite density, and the strategy and implementation of the approach is discussed. Predictions for baryon self-energies are compared to those suggested by relativistic nuclear physics phenomenology. Sum rules for vector mesons in dense nuclear matter are also considered. (author). 153 refs., 8 figs.

  16. QCD sum rules and applications to nuclear physics

    International Nuclear Information System (INIS)

    Cohen, T.D.; Xuemin, J.

    1994-12-01

    Applications of QCD sum-rule methods to the physics of nuclei are reviewed, with an emphasis on calculations of baryon self-energies in infinite nuclear matter. The sum-rule approach relates spectral properties of hadrons propagating in the finite-density medium, such as optical potentials for quasinucleons, to matrix elements of QCD composite operators (condensates). The vacuum formalism for QCD sum rules is generalized to finite density, and the strategy and implementation of the approach is discussed. Predictions for baryon self-energies are compared to those suggested by relativistic nuclear physics phenomenology. Sum rules for vector mesons in dense nuclear matter are also considered. (author)

  17. Strangeness as a probe to baryon-rich QCD matter at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kenji [The University of Tokyo, Department of Physics, Bunkyo-ku, Tokyo (Japan)

    2016-08-15

    We elucidate a prospect of strangeness fluctuation measurements in the heavy-ion collision at NICA energies. The strangeness fluctuation is sensitive to quark deconfinement. At the same time strangeness has a strong correlation with the baryon number under the condition of vanishing net strangeness, which leads to an enhancement of Λ{sup 0}, Ξ{sup 0}, Ξ{sup -}, and K{sup +} at high baryon density. The baryon density is maximized around the NICA energies, and strangeness should be an ideal probe to investigate quark deconfinement phenomena of baryon-rich QCD matter created at NICA. We also utilize the hadron resonance gas model to estimate a mixed fluctuation of strangeness and baryon number. (orig.)

  18. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  19. Hot hadronic matter in the early universe

    International Nuclear Information System (INIS)

    Bowers, R.L.; Dykema, P.G.; Gleeson, A.M.

    1977-04-01

    A fully relativistic equation of state for hot baryonic matter was used to investigate the strong interaction contribution to the equation of motion of the Friedmann universe. A pronounced softening of the equation of state is observed near nuclear density. The significance of the results is analyzed in terms of analytic solutions for the Friedmann cosmology

  20. Academic Training Lectures - QCD for Postgraduates

    CERN Multimedia

    Maureen Prola-Tessaur

    2010-01-01

    by Giulia Zanderighi (University of Oxford) Monday 12 to Friday 16 April 2010 From 11:00 to 12:00 - Main Auditorium, Bldg. 500-1-001 Monday 12 - Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities. Tuesday 13 - Modern QCD - Lecture 2 We will start discussing the matter content of the theory and revisit the experimental measurements that led to the discovery of quarks. We will then consider a classic QCD observable, the R-ratio, and use it to illustrate the appearance of UV divergences and the need to renormalize the coupling constant of QCD. We will then discuss asymptotic freedom and confinement. Finally, we will examine a case where soft and collinear infrared divergences appear, will discuss the soft approximation in QCD ...

  1. Introductory Overview of Quark Matter 2012

    International Nuclear Information System (INIS)

    Wiedemann, Urs Achim

    2013-01-01

    The two arguably most generic phenomena seen in ultra-relativistic heavy ion collisions are the flow of essentially all soft hadronic observables and the quenching of essentially all hard hadronic observables. Limiting the discussion to these two classes of phenomena, I review what can be said so far about the properties of hot and dense QCD matter from the heavy ion programs at RHIC and at the LHC, and I discuss the opportunities for further progress in the coming years

  2. Transportation conformity particulate matter hot-spot air quality modeling.

    Science.gov (United States)

    2013-07-01

    In light of the new development in particulate matter (PM) hot-spot regulations and Illinois Department : of Transportation (IDOT)s National Environmental Policy Act (NEPA) documentation requirements, : this project is intended to (1) perform and ...

  3. Lattice QCD for Baryon Rich Matter – Beyond Taylor Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Bornyakov, V. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Boyda, D. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Goy, V. [School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Molochkov, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Nakamura, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka, 567-0047 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Nikolaev, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Zakharov, V.I. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Moscow Inst Phys & Technol, Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2016-12-15

    We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.

  4. Lattice QCD for Baryon Rich Matter – Beyond Taylor Expansions

    International Nuclear Information System (INIS)

    Bornyakov, V.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V.I.

    2016-01-01

    We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.

  5. QCD ghost f(T)-gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K.; Abdolmaleki, A.; Asadzadeh, S. [University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Safari, Z. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2013-09-15

    Within the framework of modified teleparallel gravity, we reconstruct a f(T) model corresponding to the QCD ghost dark energy scenario. For a spatially flat FRW universe containing only the pressureless matter, we obtain the time evolution of the torsion scalar T (or the Hubble parameter). Then, we calculate the effective torsion equation of state parameter of the QCD ghost f(T)-gravity model as well as the deceleration parameter of the universe. Furthermore, we fit the model parameters by using the latest observational data including SNeIa, CMB and BAO data. We also check the viability of our model using a cosmographic analysis approach. Moreover, we investigate the validity of the generalized second law (GSL) of gravitational thermodynamics for our model. Finally, we point out the growth rate of matter density perturbation. We conclude that in QCD ghost f(T)-gravity model, the universe begins a matter dominated phase and approaches a de Sitter regime at late times, as expected. Also this model is consistent with current data, passes the cosmographic test, satisfies the GSL and fits the data of the growth factor well as the {Lambda}CDM model. (orig.)

  6. Holographic study of the QCD matter under external conditions

    Directory of Open Access Journals (Sweden)

    Katanaeva Alisa

    2017-01-01

    We use methods of the bottom-up AdS/QCD approach to bring out the phase structure of several holographic models in which transition to a deconfined phase is related to a (first order Hawking-Page phase transition. The impact of phenomenological model parameters on the critical temperature and chemical potential is studied in detail. Comparison of the model predictions with results of experimental investigations, lattice QCD simulations and other methods is also done.

  7. Phenomenological neutron star equations of state. 3-window modeling of QCD matter

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, Toru [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, Illinois (United States)

    2016-03-15

    We discuss the 3-window modeling of cold, dense QCD matter equations of state at density relevant to neutron star properties. At low baryon density, n{sub B} or similar 5n{sub s}, we use the percolated quark matter equations of state which must be very stiff to pass the two-solar mass constraints. The intermediate domain at 2 matter, and the equations of state are inferred by interpolating hadronic and percolated quark matter equations of state. Possible forms of the interpolation are severely restricted by the condition on the (square of) speed of sound, 0 ≤ c{sub s}{sup 2} ≤ 1. The characteristics of the 3-window equation of state are compared with those of conventional hybrid and self-bound quark matters. Using a schematic quark model for the percolated domain, it is argued that the two-solar mass constraint requires the model parameters to be as large as their vacuum values, indicating that the gluon dynamics remains strongly non-perturbative to n{sub B} ∝ 10n{sub s}. The hyperon puzzle is also briefly discussed in light of quark descriptions. (orig.)

  8. The QCD phase transition. From the microscopic mechanism to signals

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1997-01-01

    This talk consists of two very different parts: the first one deals with non-perturbative QCD and physics of the chiral restoration, the second with rather low-key (and still unfinished) work aiming at obtaining EOS and other properties of hot/dense hadronic matter from data on heavy ion collisions. The microscopic mechanism for chiral restoration phase transition is a transition from randomly placed tunneling events (instantons) at low T to a set of strongly correlated tunneling-anti-tunneling events (known as instanton-anti-instanton molecules) at high T. Many features of the transition can be explained in this simple picture, especially the critical line and its dependence on quark masses. This scenario predicts qualitative change of the basic quark-quark interactions around the phase transition line, with some states (such as pion-sigma ones) probably surviving event at T > T c . In the second half of the talk experimental data on collective flow in heavy ion collision are discussed its hydro-based description and relation to equation of state (EOS). A distinct feature of the QCD phase transition region is high degree of 'softness', (small ratio pressure/energy density). (author)

  9. Cosmological N-body simulations with generic hot dark matter

    DEFF Research Database (Denmark)

    Brandbyge, Jacob; Hannestad, Steen

    2017-01-01

    We have calculated the non-linear effects of generic fermionic and bosonic hot dark matter components in cosmological N-body simulations. For sub-eV masses, the non-linear power spectrum suppression caused by thermal free-streaming resembles the one seen for massive neutrinos, whereas for masses...

  10. Sound modes in hot nuclear matter

    International Nuclear Information System (INIS)

    Kolomietz, V. M.; Shlomo, S.

    2001-01-01

    The propagation of the isoscalar and isovector sound modes in a hot nuclear matter is considered. The approach is based on the collisional kinetic theory and takes into account the temperature and memory effects. It is shown that the sound velocity and the attenuation coefficient are significantly influenced by the Fermi surface distortion (FSD). The corresponding influence is much stronger for the isoscalar mode than for the isovector one. The memory effects cause a nonmonotonous behavior of the attenuation coefficient as a function of the relaxation time leading to a zero-to-first sound transition with increasing temperature. The mixing of both the isoscalar and the isovector sound modes in an asymmetric nuclear matter is evaluated. The condition for the bulk instability and the instability growth rate in the presence of the memory effects is studied. It is shown that both the FSD and the relaxation processes lead to a shift of the maximum of the instability growth rate to the longer-wavelength region

  11. QCD Green's Functions and Phases of Strongly-Interacting Matter

    Directory of Open Access Journals (Sweden)

    Schaefer B.J.

    2011-04-01

    Full Text Available After presenting a brief summary of functional approaches to QCD at vanishing temperatures and densities the application of QCD Green's functions at non-vanishing temperature and vanishing density is discussed. It is pointed out in which way the infrared behavior of the gluon propagator reflects the (de-confinement transition. Numerical results for the quark propagator are given thereby verifying the relation between (de--confinement and dynamical chiral symmetry breaking (restoration. Last but not least some results of Dyson-Schwinger equations for the color-superconducting phase at large densities are shown.

  12. Lattice QCD for cosmology

    International Nuclear Information System (INIS)

    Borsanyi, Sz.; Kampert, K.H.; Fodor, Z.; Forschungszentrum Juelich; Eoetvoes Univ., Budapest

    2016-06-01

    We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to the MeV scale we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (χ) up to the few GeV temperature region. These two results, EoS and χ, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.

  13. Weak interactions in hot nucleon matter

    International Nuclear Information System (INIS)

    Cowell, S.; Pandharipande, V.R.

    2006-01-01

    The reaction rates for electron capture, neutrino absorption, and neutrino scattering in hot asymmetric nuclear matter are calculated with two-body effective interactions and one-body effective weak operators obtained from realistic models of nuclear forces by use of correlated basis theory. The infinite system is modeled in a box with periodic boundary conditions, and the one-quasiparticle quasi-hole response functions are calculated with a large microcanonical sample and the Tamm-Dancoff approximation. Results for matter at a temperature of 10 MeV, proton fraction 0.4, and densities ρ=(1/2),1,(3/2)ρ 0 , where ρ 0 is the equilibrium density of symmetric nuclear matter, are presented to illustrate the method. In general, the strength of the response is shifted to higher-energy transfers when compared with that of a noninteracting Fermi gas. The shift in the response and the weakness of effective operators as compared with the bare operators significantly reduce the cross sections for electron capture and neutrino scattering by factors of ∼2.5-3.5. In contrast, the symmetry energy enhances the neutrino absorption reaction rate relative to the Fermi gas. However, this reaction rate is still quite small because of Pauli blocking

  14. Study of QCD medium by sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Institute of Nuclear Physics, Calcutta (India)

    1998-08-01

    Though it has no analogue in condensed matter physics, the thermal QCD sum rules can, nevertheless, answer questions of condensed matter type about the QCD medium. The ingredients needed to write such sum rules, viz. the operator product expansion and the spectral representation at finite temperature, are reviewed in detail. The sum rules are then actually written for the case of correlation function of two vector currents. Collecting information on the thermal average of the higher dimension operators from other sources, we evaluate these sum rules for the temperature dependent {rho}-meson parameters. Possibility of extracting more information from the combined set of all sum rules from different correlation functions is also discussed. (author) 30 refs., 2 figs.

  15. Physics of hot hadronic matter and quark-gluon plasma

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1990-07-01

    This Introductory talk contains a brief review of the current status of theoretical and experimental activities related to physics of superdense matter. In particular, we discuss latest lattice results on the phase transition, recent progress in chiral symmetry physics based on the theory of interacting instantons, new in the theory of QGP and of hot hadronic matter, mean p t and collective flow, the shape of p t distribution, strangeness production, J/ψ suppression and φ enhancement, two puzzles connected with soft pion and soft photon enhancements, and some other ''ultrasoft'' phenomena. 56 refs., 6 figs

  16. New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae

    International Nuclear Information System (INIS)

    Hempel, Matthias; Heinimann, Oliver; Liebendörfer, Matthias; Friedrich-Karl, Thielemann; Yudin, Andrey; Iosilevskiy, Igor

    2017-01-01

    The QCD phase transition from hadronic to deconfined quark matter is found to be a so-called “entropic” phase transition, characterized, e.g., by a negative slope of the phase transition line in the pressure-temperature phase diagram. In a first part of the present proceedings it is discussed that entropic phase transitions lead to unusual thermal properties of the equation of state (EoS). For example one finds a loss of pressure (a “softening”) of the proto-neutron star EoS with increasing entropy. This can lead to a novel, hot third family of compact stars, which exists only in the early proto-neutron star phase. Such a hot third family can trigger explosions of core-collapse supernovae. However, so far this special explosion mechanism was found to be working only for EoSs which are not compatible with the 2 M ⊙ constraint for the neutron star maximum mass. In a second part of the proceeding it is discussed which quark matter parameters could be favorable for this explosion mechanism, and have sufficiently high maximum masses at the same time. (paper)

  17. Primordial black hole formation during the QCD epoch

    International Nuclear Information System (INIS)

    Jedamzik, K.

    1997-01-01

    We consider the formation of horizon-size primordial black holes (PBH close-quote s) from pre-existing density fluctuations during cosmic phase transitions. It is pointed out that the formation of PBH close-quote s should be particularly efficient during the QCD epoch due to a substantial reduction of pressure forces during adiabatic collapse, or equivalently, a significant decrease in the effective speed of sound during the color-confinement transition. Our considerations imply that for generic initial density perturbation spectra PBH mass functions are expected to exhibit a pronounced peak on the QCD-horizon mass scale ∼1M circle-dot . This mass scale is roughly coincident with the estimated masses for compact objects recently observed in our galactic halo by the MACHO Collaboration. Black holes formed during the QCD epoch may offer an attractive explanation for the origin of halo dark matter evading possibly problematic nucleosynthesis and luminosity bounds on baryonic halo dark matter. copyright 1997 The American Physical Society

  18. Properties of the quark gluon plasma from lattice QCD

    International Nuclear Information System (INIS)

    Mages, Simon Wolfgang

    2015-01-01

    Quantum Chromodynamics (QCD) is the theory of the strong interaction, the theory of the interaction between the constituents of composite elementary particles (hadrons). In the low energy regime of the theory, standard methods of theoretical physics like perturbative approaches break down due to a large value of the coupling constant. However, this is the region of most interest, where the degrees of freedom of QCD, the color charges, form color-neutral composite elementary particles, like protons and neutrons. Also the transition to more energetic states of matter like the quark gluon plasma (QGP), is difficult to investigate with perturbative approaches. A QGP is a state of strongly interacting matter, which existed shortly after the Big Bang and can be created with heavy ion collisions for example at the LHC at CERN. In a QGP the color charges of QCD are deconfined. This thesis explores ways how to use the non-perturbative approach of lattice QCD to determine properties of the QGP. It focuses mostly on observables which are derived from the energy momentum tensor, like two point correlation functions. In principle these contain information on low energy properties of the QGP like the shear and bulk viscosity and other transport coefficients. The thesis describes the lattice QCD simulations which are necessary to measure the correlation functions and proposes new methods to extract these low energy properties. The thesis also tries to make contact to another non-perturbative approach which is Improved Holographic QCD. The aim of this approach is to use the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence to make statements about QCD with calculations of a five dimensional theory of gravity. This thesis contributes to that work by constraining the parameters of the model action by comparing the predictions with those of measurements with lattice QCD.

  19. Multi-meson systems in lattice QCD / Many-body QCD

    Energy Technology Data Exchange (ETDEWEB)

    Detmold, William [College of William and Mary, Williamsburg, VA (United States)

    2013-08-31

    Nuclear physics entails the study of the properties and interactions of hadrons, such as the proton and neutron, and atomic nuclei and it is central to our understanding of our world at the smallest scales. The underlying basis for nuclear physics is provided by the Standard Model of particle physics which describes how matter interacts through the strong, electromagnetic and weak (electroweak) forces. This theory was developed in the 1970s and provides an extremely successful description of our world at the most fundamental level to which it has been probed. The Standard Model has been, and continues to be, subject to stringent tests at particle accelerators around the world, so far passing without blemish. However, at the relatively low energies that are relevant for nuclear physics, calculations involving the strong interaction, governed by the equations of Quantum Chromodynamics (QCD), are enormously challenging, and to date, the only systematic way to perform them is numerically, using a framework known as lattice QCD (LQCD). In this approach, one discretizes space-time and numerically solves the equations of QCD on a space-time lattice; for realistic calculations, this requires highly optimized algorithms and cutting-edge high performance computing (HPC) resources. Progress over the project period is discussed in detail in the following subsections

  20. LATTICE SIMULATIONS OF THE THERMODYNAMICS OF STRONGLY INTERACTING ELEMENTARY PARTICLES AND THE EXPLORATION OF NEW PHASES OF MATTER IN RELATIVISTIC HEAVY ION COLLISIONS

    International Nuclear Information System (INIS)

    KARSCH, F.

    2006-01-01

    At high temperatures or densities matter formed by strongly interacting elementary particles (hadronic matter) is expected to undergo a transition to a new form of matter--the quark gluon plasma--in which elementary particles (quarks and gluons) are no longer confined inside hadrons but are free to propagate in a thermal medium much larger in extent than the typical size of a hadron. The transition to this new form of matter as well as properties of the plasma phase are studied in large scale numerical calculations based on the theory of strong interactions--Quantum Chromo Dynamics (QCD). Experimentally properties of hot and dense elementary particle matter are studied in relativistic heavy ion collisions such as those currently performed at the relativistic heavy ion collider (RHIC) at BNL. We review here recent results from studies of thermodynamic properties of strongly interacting elementary particle matter performed on Teraflops-Computer. We present results on the QCD equation of state and discuss the status of studies of the phase diagram at non-vanishing baryon number density

  1. Confinement-deconfinement phase transition in hot and dense QCD at large N

    International Nuclear Information System (INIS)

    Zhitnitsky, Ariel R.

    2008-01-01

    We conjecture that the confinement-deconfinement phase transition in QCD at large number of colors N and N f c where θ dependence experiences a sudden change in behavior [A. Parnachev, A. Zhitnitsky, (arXiv: 0806.1736 [hep-ph])]. The conjecture is also supported by quantum field theory arguments when the instanton calculations (which trigger the θ dependence) are under complete theoretical control for T>T c , suddenly break down immediately below T c with sharp changes in the θ dependence. Finally, the conjecture is supported by a number of numerical lattice results. We employ this conjecture to study confinement-deconfinement phase transition of dense QCD at large μ in large N limit by analyzing the θ dependence. We find that the confinement-deconfinement phase transition at N f c ∼√(N)Λ QCD . This result agrees with recent findings by McLerran and Pisarski [L. McLerran, R.D. Pisarski, Nucl. Phys. A 796 (2007) 83]. We also speculate on case when N f ∼N

  2. Anomalous leptonic U(1) symmetry: Syndetic origin of the QCD axion, weak-scale dark matter, and radiative neutrino mass

    Science.gov (United States)

    Ma, Ernest; Restrepo, Diego; Zapata, Óscar

    2018-01-01

    The well-known leptonic U(1) symmetry of the Standard Model (SM) of quarks and leptons is extended to include a number of new fermions and scalars. The resulting theory has an invisible QCD axion (thereby solving the strong CP problem), a candidate for weak-scale dark matter (DM), as well as radiative neutrino masses. A possible key connection is a color-triplet scalar, which may be produced and detected at the Large Hadron Collider.

  3. A (1+1)-dimensional example of Quarkyonic matter

    International Nuclear Information System (INIS)

    Kojo, Toru

    2012-01-01

    We analyze the (1+1)-dimensional QCD (QCD 2 ) at finite density to consider a number of qualitative issues: confinement in dense quark matter, the chiral symmetry breaking near the Fermi surface, the relation between chiral spirals and quark number density, and a possibility of the spontaneous flavor symmetry breaking. We argue that while the free energy is dominated by perturbative quarks, confined excitations at zero density can persist up to high density. So quark matter in QCD 2 is an example of Quarkyonic matter. The non-Abelian bosonization and associated charge–flavor–color separation are mainly used in order to clarify basic structures of QCD 2 at finite density.

  4. Final Technical Report for Year 5 Early Career Research Project "Viscosity and equation of state of hot and dense QCD matter"

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Denes [Purdue Univ., West Lafayette, IN (United States)

    2016-05-25

    The Section below summarizes research activities and achievements during the fifth (last) year of the PI’s Early Career Research Project (ECRP). Unlike the first four years of the project, the last year was not funded under the American Recovery and Reinvestment Act (ARRA). The ECRP advanced two main areas: i) radiative 3 ↔ 2 radiative transport, via development of a new computer code MPC/Grid that solves the Boltzmann transport equation in full 6+1D (3X+3V+time); and ii) application of relativistic hydrodynamics, via development of a self-consistent framework to convert viscous fluids to particles. In Year 5 we finalized thermalization studies with radiative gg ↔ ggg transport (Sec. 1.1.1) and used nonlinear covariant transport to assess the accuracy of fluid-to-particle conversion models (Sec. 1.1.2), calculated observables with self-consistent fluid-to-particle conversion from realistic viscous hydrodynamic evolution (Secs. 1.2.1 and 1.2.2), extended the covariant energy loss formulation to heavy quarks (Sec. 1.4.1) and studied energy loss in small systems (Sec. 1.4.2), and also investigated how much of the elliptic flow could have non-hydrodynamic origin (Sec 1.3). Years 1-4 of the ECRP were ARRA-funded and, therefore, they have their own report document ’Final Technical Report for Years 1-4 of the Early Career Research Project “Viscosity and equation of state of hot and dense QCD matter”’ (same award number DE-SC0004035). The PI’s group was also part of the DOE JET Topical Collaboration, a multi-institution project that overlapped in time significantly with the ECRP. Purdue achievements as part of the JET Top- ical Collaboration are in a separate report “Final Technical Report summarizing Purdue research activities as part of the DOE JET Topical Collaboration” (award DE-SC0004077).

  5. A hydrodynamic approach to cosmology - Texture-seeded cold dark matter and hot dark matter cosmogonies

    Science.gov (United States)

    Cen, R. Y.; Ostriker, J. P.; Spergel, D. N.; Turok, N.

    1991-01-01

    Hydrodynamical simulations of galaxy formation in a texture-seeded cosmology are presented, with attention given to Omega = 1 galaxies dominated by both hot dark matter (HDM) and cold dark matter (CDM). The simulations include both gravitational and hydrodynamical physics with a detailed treatment of collisional and radiative thermal processes, and use a cooling criterion to estimate galaxy formation. Background radiation fields and Zel'dovich-Sunyaev fluctuations are explicitly computed. The derived galaxy mass function is well fitted by the observed Schechter luminosity function for a baryonic M/L of 3 and total M/L of 60 in galaxies. In both HDM and CDM texture scenarios, the 'galaxies' and 'clusters' are significantly more strongly correlated than the dark matter due to physical bias processes. The slope of the correlation function in both cases is consistent with observations. In contrast to Gaussian models, peaks in the dark matter density distributrion are less correlated than average.

  6. Strange Baryon Physics in Full Lattice QCD

    International Nuclear Information System (INIS)

    Huey-Wen Lin

    2007-01-01

    Strange baryon spectra and form factors are key probes to study excited nuclear matter. The use of lattice QCD allows us to test the strength of the Standard Model by calculating strange baryon quantities from first principles

  7. Bulk and shear viscosities of hot and dense hadron gas

    International Nuclear Information System (INIS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-01-01

    We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons

  8. Diffusion constant in hot and dense hadronic matter. A hadro-molecular-dynamic calculation

    International Nuclear Information System (INIS)

    Sasaki, N.; Miyamura, O.; Muroya, S.; Nonaka, C.

    2002-01-01

    We evaluate baryon/charge diffusion constant of dense and hot hadronic matter based on the molecular dynamical method by using a hadronic collision generator which describes nuclear collisions at energies 10 1-2 GeV/A and satisfies detailed balance at low temperatures (T ≤ 200 MeV). For the hot and dense hadronic matter of the temperature range, T = 100 - 200 MeV and baryon number density, n B =0.16 fm -3 - 0.32 fm -3 , charge diffusion constant D gradually increases from 0.5 fmc to 2 fmc with temperature and is almost independent of baryon number density. Based on the obtained diffusion constant we make simple discussions on the diffusion of charge fluctuation in ultrarelativistic nuclear collisions. (author)

  9. QCD condensates in ADS/QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant...... in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate....

  10. QCD pairing in primordial nuggets

    Science.gov (United States)

    Lugones, G.; Horvath, J. E.

    2003-08-01

    We analyze the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition. Recently, it has been shown that QCD pairing modifies the stability properties of strange quark matter. More specifically, strange quark matter in a color-flavor locked state was found to be absolutely stable for a much wider range of the parameters than ordinary unpaired strange quark matter (G. Lugones and J. E. Horvath, Phys. Rev. D, 66, 074017 (2002)). Assuming that primordial quark nuggets are actually formed we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived.

  11. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    Energy Technology Data Exchange (ETDEWEB)

    Buchheim, Thomas

    2017-04-11

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  12. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    International Nuclear Information System (INIS)

    Buchheim, Thomas

    2017-01-01

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  13. Nuclear physics from strong coupling QCD

    CERN Document Server

    Fromm, Michael

    2009-01-01

    The strong coupling limit (beta_gauge = 0) of QCD offers a number of remarkable research possibilities, of course at the price of large lattice artifacts. Here, we determine the complete phase diagram as a function of temperature T and baryon chemical potential mu_B, for one flavor of staggered fermions in the chiral limit, with emphasis on the determination of a tricritical point and on the T ~ 0 transition to nuclear matter. The latter is known to happen for mu_B substantially below the baryon mass, indicating strong nuclear interactions in QCD at infinite gauge coupling. This leads us to studying the properties of nuclear matter from first principles. We determine the nucleon-nucleon potential in the strong coupling limit, as well as masses m_A of nuclei as a function of their atomic number A. Finally, we clarify the origin of nuclear interactions at strong coupling, which turns out to be a steric effect.

  14. QCD under extreme conditions. Inhomogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Achim

    2014-10-15

    Almost 40 years after the first publication on the phase diagram of quantum chromodynamics (QCD) big progress has been made but many questions are still open. This work covers several aspects of low-energy QCD and introduces advanced methods to calculate selected parts of the QCD phase diagram. Spontaneous chiral symmetry breaking as well as its restoration is a major aspect of QCD. Two effective models, the Nambu-Jona-Lasinio (NJL) model and the linear σ-model, are widely used to describe the QCD chiral phase transition. We study the large-N{sub c} behavior of the critical temperature T{sub c} for chiral symmetry restoration in the framework of both models. While in the NJL model T{sub c} is independent of N{sub c} (and in agreement with the expected QCD scaling), the scaling behavior in the linear σ-model reads T{sub c} ∝ N{sup 1/2}{sub c}. However, this mismatch can be corrected: phenomenologically motivated temperature-dependent parameters or the extension with the Polyakov-loop renders the scaling in the linear σ-model compatible with the QCD scaling. The requirement that the chiral condensate which is the order parameter of the chiral symmetry is constant in space is too restrictive. Recent studies on inhomogeneous chiral condensation in cold, dense quark matter suggest a rich crystalline structure. These studies feature models with quark degrees of freedom. In this thesis we investigate the formation of the chiral density wave (CDW) in the framework of the so-called extended linear sigma model (eLSM) at high densities and zero temperature. The eLSM is a modern development of the linear σ-model which contains scalar, pseudoscalar, vector, as well as axial-vector mesons, and in addition, a light tetraquark state. The nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The model describes successfully the vacuum phenomenology and nuclear matter ground-state properties. As a result we find that an inhomogeneous phase

  15. QCD inequalities for the nucleon mass and the free energy of baryonic matter.

    Science.gov (United States)

    Cohen, Thomas D

    2003-07-18

    The positivity of the integrand of certain Euclidean space functional integrals for two flavor QCD with degenerate quark masses implies that the free energy per unit volume for QCD with a baryon chemical potential mu(B) (and zero isospin chemical potential) is greater than the free energy with an isospin chemical potential mu(I)=(2 mu(B)/N(c)) (and zero baryon chemical potential). The same result applies to QCD with any number of heavy flavors in addition to the two light flavors so long as the chemical potential is understood as applying to the light quark contributions to the baryon number. This relation implies a bound on the nucleon mass: there exists a particle X in QCD (presumably the pion) such that M(N)> or =(N(c) m(X)/2 I(X)) where m(X) is the mass of the particle and I(X) is its isospin.

  16. Hydrodynamic excitations in hot QCD plasma

    Science.gov (United States)

    Abbasi, Navid; Allahbakhshi, Davood; Davody, Ali; Taghavi, Seyed Farid

    2017-12-01

    We study the long wavelength excitations in rotating QCD fluid in the presence of an external magnetic field at finite vector and axial charge densities. We consider the fluctuations of vector and axial charge currents coupled to energy and momentum fluctuations and compute the S O (3 ) covariant dispersion relations of the six corresponding hydrodynamic modes. Among them, there are always two scalar chiral-magnetic-vortical-heat (CMVH) waves; in the absence of a magnetic field (vorticity) these waves reduce to chiral-vortical-heat (CVH) [chiral-magnetic-heat (CMH)] waves. While CMVH waves are a mixture of CMH and CVH waves, they have generally different velocities compared to the sum of velocities of the latter waves. The other four modes, which are made out of scalar-vector fluctuations, are mixed sound-Alfvén waves. We show that when the magnetic field is parallel with the vorticity, these four modes are the two ordinary sound modes together with two chiral Alfvén waves propagating along the common direction of the magnetic field and vorticity.

  17. Emergent Dynamics of Five-Colour QCD Due to Dimensional Frustration

    OpenAIRE

    Walker

    2010-01-01

    The consequences for five-colour QCD of a novel symmetry-breaking mechanism, published in an earlier paper, are further explored. In addition to the emergence of QED and three-colour QCD, there is also a candidate for the Z0μ. The representation theory of SU (N) is applied to the matter sector and yields the quark and electron charge ratios, and a mechanism for generating fermion particle masses.

  18. QCD Jets and particle correlations in heavy-ion collisions

    CERN Document Server

    Nguyen, Matthew

    2017-01-01

    Measurements of jets and particle correlations in nucleus-nucleus collisions are intended to probe QCD interactions in the high temperature phase, where matter is understood to behave as a quark-gluon plasma. Two probes are reviewed: jets which are used to study the energy loss of hard-scattered partons in this medium and particle correlations which are used to understand collective effects of the bulk matter. Whereas collisions of lighter systems, namely proton-ion and proton-proton, initially served primarily as control experiments, certain (but not all) effects first observed in nucleus-nucleus collisions have proven to be pervasive in these systems. Comparative measurements in these three systems have broadened our understanding of many-body QCD phenomena, and raised new questions. This talk reviewed these recent developments.

  19. Playing with QCD I: effective field theories

    International Nuclear Information System (INIS)

    Fraga, Eduardo S.

    2009-01-01

    The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)

  20. 13. international QCD conference (QCD 06)

    International Nuclear Information System (INIS)

    2006-01-01

    This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations

  1. 13. international QCD conference (QCD 06)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations.

  2. Onset of superfluidity in hot asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Alm, T.; Roepke, G.; Friman, B.L.

    1991-05-01

    The onset of superfluidity in hot asymmetric nuclear matter is studied within a generalized Beth-Uhlenbeck approach. The finite tempeature t-matrix is of the Bethe-Goldstone type and contains hole-hole propagation not considered in the Brueckner G-matrix approach. It is shown that the phase contour for the onset of superfluidity in this approach is identical to that obtained within Gorkov's approach to BCS theory. Results for the realistic Paris potential imply that the critical temperature in the neutron-proton triplet channel is on the order of 6-8 MeV and thus much larger than that for singlet pairing. (orig.)

  3. Search for cold and hot dark matter with the Heidelberg-Moscow experiment, HDMS, GENIUS and GENIUS-TF

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Dietz, A.; Krivosheina, I.V.

    2003-01-01

    The recent result from the Heidelberg-Moscow double beta experiment allows neutrinos still to play an important role as hot dark matter in the Universe. HDMS has started in 2001 its search for cold dark matter (WIMPS), with a HPGe crystal of enriched 73 Ge. Concerning hot dark matter, GENIUS will improve the present accuracy for the (effective) neutrino mass. At the same time GENIUS will extend the range of sensitivity in an unprecedented way to cover a wide range of the parameter space of SUSY parameters for neutralinos as cold dark matter. A GENIUS Test Facility in the Gran Sasso has been approved in 2001 and will come into operation by end of 2002. Finally some comments are given to some criticism of the result presented elsewhere

  4. Cosmological N -body simulations with generic hot dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK–8000 Aarhus C (Denmark)

    2017-10-01

    We have calculated the non-linear effects of generic fermionic and bosonic hot dark matter components in cosmological N -body simulations. For sub-eV masses, the non-linear power spectrum suppression caused by thermal free-streaming resembles the one seen for massive neutrinos, whereas for masses larger than 1 eV, the non-linear relative suppression of power is smaller than in linear theory. We furthermore find that in the non-linear regime, one can map fermionic to bosonic models by performing a simple transformation.

  5. Twin Higgs Asymmetric Dark Matter.

    Science.gov (United States)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  6. Introduction to finite temperature and finite density QCD

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo

    2014-01-01

    It has been pointed out that QCD (Quantum Chromodynamics) in the circumstances of medium at finite temperature and density shows numbers of phenomena similar to the characteristics of solid state physics, e.g. phase transitions. In the past ten years, the very high temperature and density matter came to be observed experimentally at the heavy ion collisions. At the same time, the numerical QCD analysis at finite temperature and density attained quantitative level analysis possible owing to the remarkable progress of computers. In this summer school lecture, it has been set out to give not only the recent results, but also the spontaneous breaking of the chiral symmetry, the fundamental theory of finite temperature and further expositions as in the following four sections. The first section is titled as 'Introduction to Finite Temperature and Density QCD' with subsections of 1.1 standard model and QCD, 1.2 phase transition and phase structure of QCD, 1.3 lattice QCD and thermodynamic quantity, 1.4 heavy ion collision experiments, and 1.5 neutron stars. The second one is 'Equilibrium State' with subsections of 2.1 chiral symmetry, 2.2 vacuum state: BCS theory, 2.3 NJL (Nambu-Jona-Lasinio) model, and 2.4 color superconductivity. The third one is 'Static fluctuations' with subsections of 3.1 fluctuations, 3.2 moment and cumulant, 3.3 increase of fluctuations at critical points, 3.4 analysis of fluctuations by lattice QCD and Taylor expansion, and 3.5 experimental exploration of QCD phase structure. The fourth one is 'Dynamical Structure' with 4.1 linear response theory, 4.2 spectral functions, 4.3 Matsubara function, and 4.4 analyses of dynamical structure by lattice QCD. (S. Funahashi)

  7. Lifetime of electric flux tubes near the QCD phase transition

    International Nuclear Information System (INIS)

    Faroughy, Cyrus; Shuryak, Edward

    2010-01-01

    Electric flux tubes are a well-known attribute of the quantum chromodynamic (QCD) vacuum in which they manifest confinement of electric color charges. Recently, experimental results appeared which suggest that not only do those objects persist at temperatures T≅T c near the QCD phase transitions, but their decay is suppressed and the resulting clusters in Au-Au collisions are larger than in pp collisions (i.e., in vacuum). This correlates well with recent theoretical scenarios that view the QCD matter in the T≅T c region as a dual-magnetic plasma dominated by color-magnetic monopoles. In this view, the flux tubes are stabilized by dual-magnetic currents and are described by dual magnetohydrodynamics (DMHD). In this article, we calculate classically the dissipative effects in the flux tube. Such effects are associated with rescattering and finite conductivity of the matter. We derive the DMHD solution in the presence of dissipation and then estimate the lifetime of the electric flux tubes. The conclusion of this study is that a classical treatment leads to too short of a lifetime for the flux tubes.

  8. Hot QCD equations of state and relativistic heavy ion collisions

    Science.gov (United States)

    Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.

    2007-11-01

    We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.

  9. Vacuum structure and QCD

    International Nuclear Information System (INIS)

    Gross, D.

    1979-01-01

    An overview of QCD is given, and some of the dynamical issues that arise in attempts to solve this theory are discussed. In particular, attention is focused on the problems that appear in attempts to discuss the structure of low-lying hadrons, e.g. nucleons, on the basis of a color gauge theory of quarks. The picture of hadronic structure developed by Callan, Dashen, and Gross is reviewed; this picture maintains that it presents the qualitative features of hadronic structure emerging in a direct way from first principles. Finally, the relevance of the emerging understanding of the structure of hadrons to the question of what hadronic matter (nuclear or quark matter) might look like at high densities is discussed

  10. Lattice investigations of the QCD phase diagram

    International Nuclear Information System (INIS)

    Guenther, Jana

    2016-01-01

    To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.

  11. Lattice investigations of the QCD phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Jana

    2016-12-15

    To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.

  12. A three-dimensional hydrodynamic treatment of the hot dark matter cosmological scenario

    Science.gov (United States)

    Cen, Renyue; Ostriker, Jeremiah P.

    1992-01-01

    The study computes the evolution of the hot dark matter (HDM) model containing both baryonic matter and dark matter for a post recombination Friedmann-Robertson-Walker universe. A locally valid Newtonian approximation is used to model a representative piece of the universe with size much less than the horizon. For the HDM model with the present chosen normalization, the hard X-ray (1-10 keV) radiation intensity is less than that in the observations (Wu et al., 1991) by a factor of 30. In agreement with other work, it is found that baryonic matter is slightly antibiased over dark matter on the cell scale, 0.5/h Mpc = 667 kpc. The HDM model with the present chosen parameters does not overproduce X-ray-luminous clusters, and there is a negative evolution in the late epochs in the sense that the number density of X-ray clusters was higher at 0.5 redshift than at 0 redshift at the brightest end.

  13. Suppressing the QCD axion abundance by hidden monopoles

    International Nuclear Information System (INIS)

    Kawasaki, Masahiro

    2015-11-01

    We study the Witten effect of hidden monopoles on the QCD axion dynamics, and show that its abundance as well as isocurvature perturbations can be significantly suppressed if there is a sufficient amount of hidden monopoles. When the hidden monopoles make up a significant fraction of dark matter, the Witten effect suppresses the abundance of axion with the decay constant smaller than 10 12 GeV. The cosmological domain wall problem of the QCD axion can also be avoided, relaxing the upper bound on the decay constant when the Peccei-Quinn symmetry is spontaneously broken after inflation.

  14. Effects of QCD bound states on dark matter relic abundance

    Energy Technology Data Exchange (ETDEWEB)

    Liew, Seng Pei [Department of Physics, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Luo, Feng [Kavli IPMU (WPI), UTIAS, The University of Tokyo,Kashiwa, Chiba 277-8583 (Japan)

    2017-02-17

    We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by ∼30–100% with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach ∼2.5 TeV, even though the potential between the stop and antistop prior to forming a bound state is repulsive. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the BBN constraints and the abundance of a super-weakly interacting DM. The corrections for the bound-state effect when the exotic massive colored particles also carry electric charges, and the collider bounds are also discussed.

  15. Two-color lattice QCD with staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, David

    2015-07-20

    The study of quantum chromodynamics (QCD) at finite temperature and density provides important contributions to the understanding of strong-interaction matter as it is present e.g. in nuclear matter and in neutron stars or as produced in heavy-ion collision experiments. Lattice QCD is a non-perturbative approach, where equations of motion for quarks and gluons are discretized on a finite space-time lattice. The method successfully describes the behavior of QCD in the vacuum and at finite temperature, however it cannot be applied to finite baryon density due to the fermion sign problem. Various QCD-like theories, that offer to draw conclusions about QCD, allow simulations also at finite densities. In this work we investigate two-color QCD as a popular example of a QCD-like theory free from the sign problem with methods from lattice gauge theory. For the generation of gauge configurations with two dynamical quark flavors in the staggered formalism with the ''rooting trick'' we apply the Rational Hybrid Monte Carlo (RHMC) algorithm. We carry out essential preparatory work for future simulations at finite density. As a start, we concentrate on the calculation of the effective potential for the Polyakov loop, which is an order parameter for the confinement-deconfinement transition, in dependence of the temperature and quark mass. It serves as an important input for effective models of QCD. We obtain the effective potential via the histogram method from local distributions of the Polyakov loop. To study the influence of dynamical quarks on gluonic observables, the simulations are performed with large quark masses and are compared to calculations in the pure gauge theory. In the second part of the thesis we examine aspects of the chiral phase transition along the temperature axis. The symmetry group of chiral symmetry in two-color QCD is enlarged to SU(2N{sub f}). Discretized two-color QCD in the staggered formalism exhibits a chiral symmetry breaking

  16. Bridging a gap between continuum-QCD and ab initio predictions of hadron observables

    Energy Technology Data Exchange (ETDEWEB)

    Binosi, Daniele [European Centre for Theoretical Studies in Nuclear Physics and Related Areas - ECT* and Fondazione Bruno Kessler, Villa Tambosi, Strada delle Tabarelle 286, I-38123 Villazzano (Italy); Chang, Lei [CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005 (Australia); Papavassiliou, Joannis [Department of Theoretical Physics and IFIC, University of Valencia and CSIC, E-46100, Valencia (Spain); Roberts, Craig D., E-mail: cdroberts@anl.gov [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-03-06

    Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson–Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio prediction of bound-state properties.

  17. Proceedings, QCD-TNT-III, From Quarks and Gluons to Hadronic Matter: A Bridge too Far?

    CERN Document Server

    2013-01-01

    In the third edition of the QCD-TNT workshop the traditional focus of the last two editions (that is gaining a firmer grasp on the infrared behavior of the QCD Green's functions) will be slightly shifted towards attempts to implement the transition from the fundamental (quarks and gluons) to the effective (mesons and hadrons) degrees of freedom. So in addition to the traditional QCD-TNT themes (e.g., confinement, gluon mass generation, lattice simulations in different gauges, QCD at finite temperature and density) we plan to have more phenomenologically oriented topics (e.g., experimental reviews, determination of form factors from first principle, construction of Bethe-Salpeter kernels). In addition, a special session will be dedicated to review talks, summarizing the state-of-the-art, as well as highlighting the future perspectives, of simulating non-Abelian gauge fields using ultracold neutral atoms trapped in optical lattices, and other systems.

  18. Uncertainty quantification in lattice QCD calculations for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Beane, Silas R. [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Savage, Martin J. [Institute for Nuclear Theory, Seattle, WA (United States)

    2015-02-05

    The numerical technique of Lattice QCD holds the promise of connecting the nuclear forces, nuclei, the spectrum and structure of hadrons, and the properties of matter under extreme conditions with the underlying theory of the strong interactions, quantum chromodynamics. A distinguishing, and thus far unique, feature of this formulation is that all of the associated uncertainties, both statistical and systematic can, in principle, be systematically reduced to any desired precision with sufficient computational and human resources. As a result, we review the sources of uncertainty inherent in Lattice QCD calculations for nuclear physics, and discuss how each is quantified in current efforts.

  19. Comparing energy loss and pperpendicular -broadening in perturbative QCD with strong coupling N=4 SYM theory

    International Nuclear Information System (INIS)

    Dominguez, Fabio; Marquet, C.; Mueller, A.H.; Wu Bin; Xiao, Bo-Wen

    2008-01-01

    We compare medium induced energy loss and p perpendicular -broadening in perturbative QCD with that of the trailing string picture of SYM theory. We consider finite and infinite extent matter as well as relativistic heavy quarks which correspond to those being produced in the medium or external to it. When expressed in terms of the appropriate saturation momentum, we find identical parametric forms for energy loss in perturbative QCD and SYM theory. We find simple correspondences between p perpendicular -broadening in QCD and in SYM theory although p perpendicular -broadening is radiation dominated in SYM theory and multiple scattering dominated in perturbative QCD

  20. Quest for the QCD phase diagram in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kenji, E-mail: fuku@rk.phys.keio.ac.jp [Keio University, Department of Physics (Japan)

    2013-03-15

    We review the state-of-the-art status of the research on the phase diagram of QCD matter out of quarks and gluons. Our discussions particularly include the extreme environments such as the high temperature, the high baryon density, and the strong magnetic field.

  1. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  2. Axion cosmology, lattice QCD and the dilute instanton gas

    International Nuclear Information System (INIS)

    Borsanyi, S.; Fodor, Z.; Mages, S.W.; Nogradi, D.; Szabo, K.K.

    2015-08-01

    Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.

  3. Quark matter 93

    Energy Technology Data Exchange (ETDEWEB)

    Otterlund, Ingvar; Ruuskanen, Vesa

    1993-12-15

    In his welcome address to the 10th International Conference on Ultra- Relativistic Nucleus-Nucleus Collisions (Quark Matter '93), held in Borlange, Sweden, from 20-24 June, Hans-Ake Gustafsson was puzzled why this year's conference was billed as the tenth in the series. He had tried to count but could only find eight forerunners - Bielefeld (1982), Brookhaven (1983), Helsinki (1984), Asilomar (1986), Nordkirchen (1987), Lenox (1988), Menton (1990), Gatlinburg (1991), making this year's meeting at Borlange the ninth. The answer was given by Helmut Satz in his introductory talk, pointing out that at the time of the Bielefeld meeting, a few conferences dealing with similar topics had already been held. The Bielefeld organizers thus did not consider their conference the first. Whatever its pedigree, the Borlange meeting covered particle production in highly excited and compressed nuclear matter, fluctuations and correlations, quark phenomena (quantum chromodynamics - QCD) in nuclear collisions, probes and signatures of Quark-Gluon Plasma (QGP), future collider experiments and instrumentation. The theoretical talks were split between the fundamental properties of the hot and dense matter at or near equilibrium, and the interface between theory and experiment. The phenomenological modelling of heavy ion collisions seems to reproduce at least all the main features of the data with hadrons, resonances and strings as the degrees of freedom. However secondary interactions among the produced hadrons or strings need to be added. Hydrodynamic calculations lead to results which reproduce the main features of the collisions. With increasing collision energy, the parton degrees of freedom become more important. Klaus Geiger described an ambitious scheme treating the whole nucleus-nucleus collision in terms of a kinetic parton (quark/gluon) cascade. The initial parton distribution at the beginning of the collision is determined from the quark-gluon nuclear structure and the

  4. Quark matter 93

    International Nuclear Information System (INIS)

    Otterlund, Ingvar; Ruuskanen, Vesa

    1993-01-01

    In his welcome address to the 10th International Conference on Ultra- Relativistic Nucleus-Nucleus Collisions (Quark Matter '93), held in Borlange, Sweden, from 20-24 June, Hans-Ake Gustafsson was puzzled why this year's conference was billed as the tenth in the series. He had tried to count but could only find eight forerunners - Bielefeld (1982), Brookhaven (1983), Helsinki (1984), Asilomar (1986), Nordkirchen (1987), Lenox (1988), Menton (1990), Gatlinburg (1991), making this year's meeting at Borlange the ninth. The answer was given by Helmut Satz in his introductory talk, pointing out that at the time of the Bielefeld meeting, a few conferences dealing with similar topics had already been held. The Bielefeld organizers thus did not consider their conference the first. Whatever its pedigree, the Borlange meeting covered particle production in highly excited and compressed nuclear matter, fluctuations and correlations, quark phenomena (quantum chromodynamics - QCD) in nuclear collisions, probes and signatures of Quark-Gluon Plasma (QGP), future collider experiments and instrumentation. The theoretical talks were split between the fundamental properties of the hot and dense matter at or near equilibrium, and the interface between theory and experiment. The phenomenological modelling of heavy ion collisions seems to reproduce at least all the main features of the data with hadrons, resonances and strings as the degrees of freedom. However secondary interactions among the produced hadrons or strings need to be added. Hydrodynamic calculations lead to results which reproduce the main features of the collisions. With increasing collision energy, the parton degrees of freedom become more important. Klaus Geiger described an ambitious scheme treating the whole nucleus-nucleus collision in terms of a kinetic parton (quark/gluon) cascade. The initial parton distribution at the beginning of the collision is determined from the quark-gluon nuclear structure

  5. QCD and asymptotic freedom: Perspectives and prospects

    International Nuclear Information System (INIS)

    Wilczek, F.

    1993-01-01

    QCD is now a mature theory, and it is possible to begin to view its place in the conceptual universe of physics with an appropriate perspective. There is a certain irony in the achievements of QCD. For the problems which initially drove its development - specifically, the desire to understand in detail the force that holds atomic nuclei together, and later the desire to calculate the spectrum of hadrons and their interactions - only limited insight has been achieved. However, the author shall argue that QCD is actually more special and important a theory than one had any right to anticipate. In many ways, the importance of the solution transcends that of the original motivating problems. After elaborating on these quasiphilosophical remarks, he discusses two current frontiers of physics that illustrate the continuing vitality of the ideas. The recent wealth of beautiful precision experiments measuring the parameters of the standard model have made it possible to consider the unification of couplings in unprecedented quantitative detail. One central result emerging from these developments is a tantalizing hint of virtual supersymmetry. The possibility of phase transitions in matter at temperatures of order ∼ 10 2 MeV, governed by QCD dynamics, is of interest from several points of view. Finally, at the end, there is a brief discussion on the relation between scaling violations and running of the coupling

  6. Experimental status QCD

    International Nuclear Information System (INIS)

    Radyushkin, A.V.; Slepchenko, L.A.

    1983-01-01

    Analysis of experimental status of quantum chromodynamics (QCD) has been carried out. A short introduction into QCD is given. QCD sum rules are considered. Jets in e + e - annihilation and inclusive processes of lepton-hadron and hadron-hadron scattering are considered. Effect of QCD corrections to perturbation theory on quark count is analyzed

  7. Thermodynamic instabilities in hot and dense nuclear matter

    Directory of Open Access Journals (Sweden)

    Lavagno A.

    2016-01-01

    Full Text Available We study the presence of thermodynamic instabilities in a hot and dense nuclear medium where a nuclear phase transition can take place. Similarly to the low density nuclear liquid-gas phase transition, we show that such a phase transition is characterized by pure hadronic matter with both mechanical instability (fluctuations on the baryon density that by chemical-diffusive instability (fluctuations on the strangeness concentration. The analysis is performed by requiring the global conservation of baryon number and zero net strangeness in the framework of an effective relativistic mean field theory with the inclusion of the Δ(1232-isobars, hyperons and the lightest pseudoscalar and vector meson degrees of freedom. It turns out that in this situation hadronic phases with different values of strangeness content may coexist, altering significantly meson-antimeson ratios.

  8. Implications of QCD for soft hadronic and nuclear processes

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1981-01-01

    Physical implications of QCD for strong forces in soft processes are discussed. Topics include long-range force, Van der Waals force, nuclear force, hadron and quark structures. In the absence of a reliable calculational scheme, phenomenological models have been built that incorporate QCD ideas as far as possible. In the framework of those models calculations have been made that provide an understanding of the soft processes in terms of quarks and gluons. We review recent work on nuclear potential, form factors at low Q 2 , pion decay constant, inclusive distribution of low p/sub T/, and radiation length of fast quark in nuclear matter

  9. Lattice QCD computations: Recent progress with modern Krylov subspace methods

    Energy Technology Data Exchange (ETDEWEB)

    Frommer, A. [Bergische Universitaet GH Wuppertal (Germany)

    1996-12-31

    Quantum chromodynamics (QCD) is the fundamental theory of the strong interaction of matter. In order to compare the theory with results from experimental physics, the theory has to be reformulated as a discrete problem of lattice gauge theory using stochastic simulations. The computational challenge consists in solving several hundreds of very large linear systems with several right hand sides. A considerable part of the world`s supercomputer time is spent in such QCD calculations. This paper presents results on solving systems for the Wilson fermions. Recent progress is reviewed on algorithms obtained in cooperation with partners from theoretical physics.

  10. Hidden QCD in Chiral Gauge Theories

    DEFF Research Database (Denmark)

    Ryttov, Thomas; Sannino, Francesco

    2005-01-01

    The 't Hooft and Corrigan-Ramond limits of massless one-flavor QCD consider the two Weyl fermions to be respectively in the fundamental representation or the two index antisymmetric representation of the gauge group. We introduce a limit in which one of the two Weyl fermions is in the fundamental...... representation and the other in the two index antisymmetric representation of a generic SU(N) gauge group. This theory is chiral and to avoid gauge anomalies a more complicated chiral theory is needed. This is the generalized Georgi-Glashow model with one vector like fermion. We show that there is an interesting...... phase in which the considered chiral gauge theory, for any N, Higgses via a bilinear condensate: The gauge interactions break spontaneously to ordinary massless one-flavor SU(3) QCD. The additional elementary fermionic matter is uncharged under this SU(3) gauge theory. It is also seen that when...

  11. QCD and strongly coupled gauge theories: challenges and perspectives

    CERN Document Server

    Brambilla, N.; Foka, P.; Gardner, S.; Kronfeld, A.S.; Alford, M.G.; Alkofer, R.; Butenschoen, M.; Cohen, T.D.; Erdmenger, J.; Fabbietti, L.; Faber, M.; Goity, J.L.; Ketzer, B.; Lin, H.W.; Llanes-Estrada, F.J.; Meyer, H.B.; Pakhlov, P.; Pallante, E.; Polikarpov, M.I.; Sazdjian, H.; Schmitt, A.; Snow, W.M.; Vairo, A.; Vogt, R.; Vuorinen, A.; Wittig, H.; Arnold, P.; Christakoglou, P.; Di Nezza, P.; Fodor, Z.; Garcia i Tormo, X.; Hollwieser, R.; Janik, M.A.; Kalweit, A.; Keane, D.; Kiritsis, E.; Mischke, A.; Mizuk, R.; Odyniec, G.; Papadodimas, K.; Pich, A.; Pittau, R.; Qiu, J.W.; Ricciardi, G.; Salgado, C.A.; Schwenzer, K.; Stefanis, N.G.; von Hippel, G.M.; Zakharov, V.I.

    2014-10-21

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

  12. Hirschegg '95: Dynamical properties of hadrons in nuclear matter. Proceedings

    International Nuclear Information System (INIS)

    Feldmeier, H.; Noerenberg, W.

    1995-01-01

    The following topics were dealt with: Chiral symmetry, chiral condensates, in-medium effective chiral Lagrangians, Δ's in nuclei, nonperturbative QCD, electron scattering from nuclear matter, nuclear shadowing, QCD sum rules, deconfinement, ultrarelativistic heavy ion collisions, nuclear dimuon and electron pair production, photoproduction from nuclei, subthreshold K + production, kaon polarization in nuclear matter, charged pion production in relativistic heavy ion collisions, the Nambu-Jona-Lasinio model, the SU(3) L xSU(3) R sigma model, nonequilibrium dense nuclear matter, pion pair production at finite temperature. (HSI)

  13. Nucleon structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon

    2012-11-13

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.

  14. Nucleon structure from lattice QCD

    International Nuclear Information System (INIS)

    Dinter, Simon

    2012-01-01

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.

  15. Second-order Hydrodynamics in QCD at NLO arXiv

    CERN Document Server

    Ghiglieri, Jacopo; Teaney, Derek

    We compute the hydrodynamic relaxation times $\\tau_\\pi$ and $\\tau_j$ for hot QCD at next-to-leading order in the coupling by using kinetic theory. We show that certain dimensionless ratios of second-order to first-order transport coefficients obey bounds which apply whenever a kinetic theory description is possible; the computed values lie somewhat above these bounds. Strongly coupled theories with holographic duals strongly violate these bounds, highlighting their distance from a quasiparticle description.

  16. Power corrections in QCD: A matter of energy resolution

    International Nuclear Information System (INIS)

    Akhoury, R.; Zakharov, V.I.

    1996-01-01

    We consider powerlike corrections in QCD which can be viewed as power suppressed infrared singularities. We argue that the presence of these singularities depends crucially on the energy resolution. In the case of poor energy resolution, i.e., inclusive cross sections, there are constraints on infrared singularities expressed by the Kinoshita-Lee-Nauenberg (KLN) theorem. We rewrite the theorem in covariant notations and argue that the KLN theorem implies the extension of the Bloch-Nordsieck cancellation of logarithmic singularities to the case of linear corrections. copyright 1996 The American Physical Society

  17. Hot and dense matter in compact stars - from nuclei to quarks

    International Nuclear Information System (INIS)

    Hempel, Matthias

    2010-01-01

    This dissertation deals with the equation of state of hot and dense matter in compact stars, with special focus on first order phase transitions. A general classification of first order phase transitions is given and the properties of mixed phases are discussed. Aspects of nucleation and the role of local constraints are investigated. The derived theoretical concepts are applied to matter in neutron stars and supernovae, in the hadron-quark and the liquid-gas phase transition. For the detailed description of the liquid-gas phase transition a new nuclear statistical equilibrium model is developed. It is based on a thermodynamic consistent implementation of relativistic mean-field interactions and excluded volume effects. With this model different equation of state tables are calculated and the composition and thermodynamic properties of supernova matter are analyzed. As a first application numerical simulations of core-collapse supernovae are presented. For the hadron-quark phase transition two possible scenarios are studied in more detail. First the appearance of a new mixed phase in a proto neutron star and the implications on its evolution. In the second scenario the consequences of the hadron-quark transition in corecollapse supernovae are investigated. Simulations show that the appearance of quark matter has clear observable signatures and can even lead to the generation of an explosion. (orig.)

  18. Hot and dense matter in compact stars - from nuclei to quarks

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Matthias

    2010-10-19

    This dissertation deals with the equation of state of hot and dense matter in compact stars, with special focus on first order phase transitions. A general classification of first order phase transitions is given and the properties of mixed phases are discussed. Aspects of nucleation and the role of local constraints are investigated. The derived theoretical concepts are applied to matter in neutron stars and supernovae, in the hadron-quark and the liquid-gas phase transition. For the detailed description of the liquid-gas phase transition a new nuclear statistical equilibrium model is developed. It is based on a thermodynamic consistent implementation of relativistic mean-field interactions and excluded volume effects. With this model different equation of state tables are calculated and the composition and thermodynamic properties of supernova matter are analyzed. As a first application numerical simulations of core-collapse supernovae are presented. For the hadron-quark phase transition two possible scenarios are studied in more detail. First the appearance of a new mixed phase in a proto neutron star and the implications on its evolution. In the second scenario the consequences of the hadron-quark transition in corecollapse supernovae are investigated. Simulations show that the appearance of quark matter has clear observable signatures and can even lead to the generation of an explosion. (orig.)

  19. Hot metastable state of abnormal matter in relativistic nuclear field theory

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1987-01-01

    Because of their non-linearity, the field equations of relativistic nuclear field theory admit of additional solutions besides the normal state of matter. One of these is a finite-temperature abnormal phase. Over a narrow range in temperature, matter can exist in the abnormal phase at zero pressure. This is a hot metastable state, for which there is a barrier against decay, because the field configuration is different than in the normal state, the baryon masses are far removed from their vacuum masses, there is an abundance of pairs also far removed from their vacuum masses, and a correspondingly high entropy. The abundance of baryon-antibaryon pairs is the glue that holds this matter together. The signals associated with this novel state are quite unusual. A fragment of such matter will cool by emitting a spectrum of black-body radiation, consisting principally of photons, lepton pairs and pions, rather than by baryon emission, because the latter are far removed from their vacuum masses. If produced at the upper end of its temperature range, a large fraction of the original energy, more than half in the examples studied here, is radiated in this way. The baryons and light elements produced in the eventual decay, after the abnormal matter has cooled to a domain where its pressure becomes positive, will account for only a fraction of the original energy. The energy domain of this state depends sensitively on the coupling constants, and within a reasonable range as determined by nuclear matter properties, can lie in the range of GeV to tens of GeV per nucleon. (orig.)

  20. Quark matter revisited with non-extensive MIT bag model

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Pedro H.G.; Nunes da Silva, Tiago; Menezes, Debora P. [Universidade Federal de Santa Catarina, Departamento de Fisica, CFM, Florianopolis (Brazil); Deppman, Airton [Instituto de Fisica da Universidade de Sao Paulo, Sao Paulo (Brazil)

    2017-10-15

    In this work we revisit the MIT bag model to describe quark matter within both the usual Fermi-Dirac and the Tsallis statistics. We verify the effects of the non-additivity of the latter by analysing two different pictures: the first order phase transition of the QCD phase diagram and stellar matter properties. While the QCD phase diagram is visually affected by the Tsallis statistics, the resulting effects on quark star macroscopic properties are barely noticed. (orig.)

  1. Study of thermodynamic and transport properties of strongly interacting matter in a color string percolation model at RHIC

    International Nuclear Information System (INIS)

    Sahoo, Pragati; Tiwari, Swatantra Kumar; De, Sudipan; Sahoo, Raghunath

    2017-01-01

    The main perspectives of Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory are to study the properties of the strongly interacting matter and to explore the conjectured Quantum Chromodynamics (QCD) phase diagram. Lattice QCD (lQCD) predicts a smooth crossover at vanishing baryon chemical potential (μ B ) and other QCD based theoretical models predicts first order phase transition at large μB. Searching of the Critical Point in the QCD phase diagram, finding the evidence and nature of phase transition, studying the properties of the matter formed in nuclear collisions as a function of √sNN are the main goals of RHIC. To investigate the nature of the matter produced at heavy-ion collisions, the thermodynamical and transport quantities like: energy density, shear viscosity etc. are studied. It is expected that the ratio of shear viscosity (η) to entropy density (s) would exhibit a minimum value near the QCD critical point

  2. Supersymmetric QCD corrections and phenomenological studies in relation to coannihilation of dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Harz, Julia

    2013-11-15

    In this thesis, we assume a minimal supersymmetric extension of the Standard Model (MSSM) with conserved R-parity such that the lightest neutralino is the cold dark matter candidate. A stringent constraint on the MSSM parameter space can be set by the comparison of the predicted neutralino relic density with the experimentally determined value. In order to match the high experimental precision, uncertainties within the theoretical calculation have to be reduced. One of the main uncertainties arises from the cross section of annihilation and coannihilation processes of the dark matter particle. In a phenomenological study we investigate the interplay of neutralino-neutralino annihilation, neutralino-stop coannihilation and stop-stop annihilation. We demonstrate that neutralino-stop coannihilation contributes significantly to the neutralino relic density and is furthermore very well motivated due to the recent discovery of a 125 GeV Higgs boson. Due to this ample motivation we have calculated the full O({alpha}{sub s}) supersymmetric QCD corrections to neutralino-squark coannihilation. We show in detail our DR/on-shell renormalization scheme for the treatment of ultraviolet divergences, and describe the phase space slicing method which is used to handle soft and collinear infrared divergences. Further, we comment on the treatment of occurring intermediate onshell states. The whole calculation is provided within the numerical tool DM rate at NLO that serves as an extension to existing relic density calculators, which consider only an effective tree-level calculation. Based on three example scenarios we study the impact of the NLO corrections on the total (co)annihilation cross section, and observe corrections of up to 30 %. This leads to a correction of 5 - 9 % on the relic density, which is larger than the current experimental uncertainty and is, thus, important to be taken into account.

  3. Playing with QCD I: effective field theories. Fourth lecture

    International Nuclear Information System (INIS)

    Fraga, Eduardo S.

    2009-01-01

    Lattice QCD is just starting to explore the finite density region, still far away from the high-density low-temperature sector. pQCD at finite density seems to provide sensible results, even for not so large values of μ. Mass and gap effects provide important contributions to the EoS near the critical region. The phase diagram can be very rich in the high-μ sector, with different possibilities for pairing and color superconductivity. Astrophysical measurements are becoming increasingly precise, and will start killing models soon. Some signatures (for strange, quark or hybrid neutron stars) are still very similar, though. The interior of compact stars is a very rich and intricate medium, which may contain all sorts of condensates as well as deconfined quark matter. (author)

  4. Isospin and momentum dependence of liquid-gas phase transition in hot asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Xu, Jun; Ma, Hongru; Chen, Liewen; Li, Baoan

    2008-01-01

    The liquid-gas phase transition in hot neutron-rich nuclear matter is investigated within a self-consistent thermal model using different interactions with or without isospin and/or momentum dependence. The boundary of the phase-coexistence region is shown to be sensitive to the density dependence of the nuclear symmetry energy as well as the isospin and momentum dependence of the nuclear interaction. (author)

  5. Jets and QCD

    International Nuclear Information System (INIS)

    Ali, A.; Kramer, G.

    2010-12-01

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e + e - collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W ± ,Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  6. Jets and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-12-15

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)

  7. High density matter at RHIC

    Indian Academy of Sciences (India)

    QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at ...

  8. Properties of quark matter governed by quantum chromodynamics. Pt. 2

    International Nuclear Information System (INIS)

    Soni, V.

    1983-01-01

    Renormalization schemes are examined (in the Coulomb gauge) for quantum chromodynamics in the presence of quark matter. We demand that the effective coupling constant for all schemes become congruent with the vacuum QCD running coupling constant as the matter chemical potential, μ, goes to zero. Also, to enable us to standardize with the vacuum QCD running coupling constant at some asymptotic momentum transfer, vertical strokep 0 vertical stroke, we keep μ 0 vertical stroke, to ensure that the matter contribution is negligible at this point. This means all schemes merge with vacuum QCD at vertical strokep 0 vertical stroke and beyond. Two renormalization group invariants are shown to emerge: (I) the effective or invariant charge, gsub(inv) 2 , which is, however, scheme dependent and (II) g 2 (M)/S(M), where S(M) - 1 is the Coulomb propagator, which is scheme independent. The only scheme in which gsub(inv) 2 is scheme independent and identical to g 2 (M)/S(M) is the screened charged scheme (previous paper) characterised by the normalization of the entire Green function, S - 1 , to unity. We conclude that this is the scheme to be used if one wants to identify with the experimental effective coupling in perturbation theory. However, if we do not restrict to perturbation theory all schemes should be allowed. Although we discuss matter QCD in the Coulomb gauge, the above considerations are quite general to gauge theories in the presence of matter. (orig.)

  9. Description of hot compressed hadronic matter based on an effective chiral Lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Florkowski, W. [Institute of Nuclear Physics, Cracow (Poland)

    1996-11-01

    In this report we give the review of the recent results obtained in the Nambu-Jona-Lasinio (NJL) model, describing the properties of hot compressed matter. The first large class problems concerns the behaviour of static meson correlation functions. In particular, this includes the investigation of the screening of meson fields at finite temperature or density. Another wide range of problems presented in our report concerns the formulation of the transport theory for the NJL model and its applications to the description of high energy nuclear collision. 86 refs, 35 figs.

  10. Description of hot compressed hadronic matter based on an effective chiral Lagrangian

    International Nuclear Information System (INIS)

    Florkowski, W.

    1996-11-01

    In this report we give the review of the recent results obtained in the Nambu-Jona-Lasinio (NJL) model, describing the properties of hot compressed matter. The first large class problems concerns the behaviour of static meson correlation functions. In particular, this includes the investigation of the screening of meson fields at finite temperature or density. Another wide range of problems presented in our report concerns the formulation of the transport theory for the NJL model and its applications to the description of high energy nuclear collision. 86 refs, 35 figs

  11. A Hot Water Bottle for Aging Neutron Stars

    DEFF Research Database (Denmark)

    Alford, Mark; Jotwani, Pooja; Kouvaris, Christoforos

    2004-01-01

    The gapless color-flavor locked (gCFL) phase is the second-densest phase of matter in the QCD phase diagram, making it a plausible constituent of the core of neutron stars. We show that even a relatively small region of gCFL matter in a star will dominate both the heat capacity C_V and the heat...... loss by neutrino emission L_\

  12. A calculation of baryon diffusion constant in hot and dense hadronic matter based on an event generator URASiMA

    International Nuclear Information System (INIS)

    Sasaki, N.; Miyamura, O.; Nonaka, C.; Muroya, S.

    2000-01-01

    We evaluate thermodynamical quantities and transport coefficient of a dense and hot hadronic matter based on an event generator URASiMA (Ultra-Relativistic AA collision Simulator based on Multiple Scattering Algorithm). The statistical ensembles in equilibrium with fixed temperature and chemical potential are generated by imposing periodic boundary condition to the simulation of URASiMA, where energy density and baryon number density is conserved. Achievement of the thermal equilibrium and the chemical equilibrium are confirmed by the common value of slope parameter in the energy distributions and the saturation of the numbers of contained particles, respectively. By using the generated ensembles, we investigate the temperature dependence and the chemical potential dependence of the baryon diffusion constant of a dense and hot hadronic matter. (author)

  13. Critical point in the phase diagram of primordial quark-gluon matter from black hole physics

    Science.gov (United States)

    Critelli, Renato; Noronha, Jorge; Noronha-Hostler, Jacquelyn; Portillo, Israel; Ratti, Claudia; Rougemont, Romulo

    2017-11-01

    Strongly interacting matter undergoes a crossover phase transition at high temperatures T ˜1012 K and zero net-baryon density. A fundamental question in the theory of strong interactions, QCD, is whether a hot and dense system of quarks and gluons displays critical phenomena when doped with more quarks than antiquarks, where net-baryon number fluctuations diverge. Recent lattice QCD work indicates that such a critical point can only occur in the baryon dense regime of the theory, which defies a description from first principles calculations. Here we use the holographic gauge/gravity correspondence to map the fluctuations of baryon charge in the dense quark-gluon liquid onto a numerically tractable gravitational problem involving the charge fluctuations of holographic black holes. This approach quantitatively reproduces ab initio results for the lowest order moments of the baryon fluctuations and makes predictions for the higher-order baryon susceptibilities and also for the location of the critical point, which is found to be within the reach of heavy-ion collision experiments.

  14. Too hot to handle? Analytic solutions for massive neutrino or warm dark matter cosmologies

    Science.gov (United States)

    Slepian, Zachary; Portillo, Stephen K. N.

    2018-05-01

    We obtain novel closed-form solutions to the Friedmann equation for cosmological models containing a component whose equation of state is that of radiation (w = 1/3) at early times and that of cold pressureless matter (w = 0) at late times. The equation of state smoothly transitions from the early to late-time behavior and exactly describes the evolution of a species with a Dirac Delta function distribution in momentum magnitudes |p_0| (i.e. all particles have the same |p_0|). Such a component, here termed "hot matter", is an approximate model for both neutrinos and warm dark matter. We consider it alone and in combination with cold matter and with radiation, also obtaining closed-form solutions for the growth of super-horizon perturbations in each case. The idealized model recovers t(a) to better than 1.5% accuracy for all a relative to a Fermi-Dirac distribution (as describes neutrinos). We conclude by adding the second moment of the distribution to our exact solution and then generalizing to include all moments of an arbitrary momentum distribution in a closed-form solution.

  15. QCD and string theories

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1990-01-01

    This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality

  16. QCD and hadronic strings

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1989-01-01

    This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)

  17. The compressed baryonic matter experiment at FAIR

    International Nuclear Information System (INIS)

    Senger, Peter

    2015-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At top RHIC and LHC energies, the QCD phase diagram is studied at very high temperatures and very low net-baryon densities. These conditions presumably existed in the early universe about a microsecond after the big bang. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure such as a critical point, a first order phase transition between hadronic and partonic matter, or new phases like quarkyonic matter. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 100 kHz to 10 MHz. This requires very fast and radiation-hard detectors, and a novel data read-out and analysis concept based on free streaming front-end electronics and a high-performance computing cluster for online event selection. The layout, the physics performance, and the status of the proposed CBM experimental facility

  18. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  19. Strange hadrons and antiprotons as probes of hot and dense nuclear matter in relativistic heavy-ion collisions; Seltsame Hadronen und Antiprotonen als Proben heisser und dichter Kernmaterie in relativistischen Schwerionenkollisionen

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Henry

    2010-09-15

    Strange particles play an important role as probes of relativistic heavy-ion collisions where hot and dense matter is studied. The focus of this thesis is on the production of strange particles within a transport model of Boltzmann-Uehling-Uhlenbeck (BUU) type. Current data of the HADES Collaboration concerning K{sup {+-}} and {phi} spectra provide the appropriate experimental framework. Moreover, the double-strange hyperon {xi}{sup -} is analyzed below the free NN production threshold. Hadron multiplicities, transversemomentum and rapidity spectra are compared with recent experimental data. Further important issues are in-medium mass shifts, the nuclear equation of state as well as the mean field of nucleons. Besides the study of AA collisions a comparison with recent ANKE data regarding the {phi} yield in pA collisions is done. Transparency ratios are determined and primarily investigated for absorption of {phi} mesons by means of the BUU transport code. Thereby, secondary {phi} production channels, isospin asymmetry and detector acceptance are important issues. A systematic analysis is presented for different system sizes. The momentum integrated Boltzmann equations describe dense nuclear matter on a hadronic level appearing in the Big Bang as well as in little bangs, in the context of kinetic off-equilibrium dynamics. This theory is applied to antiprotons and numerically calculated under consideration of various expansion models. Here, the evolution of proton- and antiproton densities till freeze-out is analyzed for ultra-relativistic heavy-ion collisions within a hadrochemic resonance gas model acting as a possible ansatz for solving the ''antiproton puzzle''. Furthermore, baryonic matter and antimatter is investigated in the early universe and the adiabatic path of cosmic matter is sketched in the QCD phase diagram. (orig.)

  20. Resumming Long-Distance Contributions to the QCD Pressure

    CERN Document Server

    Kajantie, Keijo; Rummukainen, K; Schröder, Y

    2001-01-01

    The strict coupling constant expansion for the free energy of hot QCD plasma shows bad convergence at all reasonable temperatures, and does not agree well with its 4d lattice determination. This has recently lead to various refined resummations, whereby the agreement with the lattice result should improve, at the cost of a loss of a formal agreement with the coupling constant expansion and particularly with its large infrared sensitive ``long-distance'' contributions. We show here how to resum the dominant long-distance effects by using a 3d effective field theory, and determine their magnitude by simple lattice Monte Carlo simulations.

  1. Theory of ultra dense matter and the dynamics of high energy interactions involving nuclei

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1993-01-01

    Progress in the areas of pQCD radiative processes in dense matter, QCD transport theories to describe the evolution of nonequilibrium phenomena in dense matter, and the development and testing of phenomenological models of high-energy nuclear collisions is summarized. The evolution of the total energy density of quarks and gluons with minijet initial conditions at RHIC energy is shown for Au+Au

  2. Strange matter and Big Bang helium synthesis

    International Nuclear Information System (INIS)

    Madsen, J.; Riisager, K.

    1985-01-01

    Stable strange quark matter produced in the QCD phase transition in the early universe will trap neutrons and repel protons, thus reducing primordial helium production, Ysub(p). For reasonable values of Ysub(p), the radius of strange droplets must exceed 10 -6 cm if strange matter shall solve the dark-matter problem without spoiling Big Bang helium synthesis. (orig.)

  3. The Compressed Baryonic Matter experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Höhne Claudia

    2018-01-01

    Full Text Available The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.

  4. Critical temperature of liquid-gas phase transition for hot nuclear matter and three-body force effect

    International Nuclear Information System (INIS)

    Zuo Wei; Lu Guangcheng; Li Zenghua; Luo Peiyan; Chinese Academy of Sciences, Beijing

    2005-01-01

    The finite temperature Brueckner-Hartree-Fock (FTBHF) approach is extended by introducing a microscopic three-body force. Within the extended approach, the three-body force effects on the equation of state of hot nuclear matter and its temperature dependence have been investigated. The critical properties of the liquid-gas phase transition of hot nuclear matter have been calculated. It is shown that the three-body force provides a repulsive contribution to the equation of state of hot nuclear matter. The repulsive effect of the three-body force becomes more pronounced as the density and temperature increase and consequently inclusion of the three-body force contribution in the calculation reduces the predicted critical temperature from about 16 MeV to about 13 MeV. By separating the contribution originated from the 2σ-exchange process coupled to the virtual excitation of a nucleon-antinucleon pair from the full three-body force, the connection between the three-body force effect and the relativistic correction from the Dirac-Brueckner-Hartree-Fock has been explored. It turns out that the contribution of the 2σ-N(N-bar) part is more repulsive than that of the full three-body force and the calculated critical temperature is about 11 MeV if only the 2σ-N(N-bar) component of the three-body force is included which is lower than the value obtained in the case of including the full three-body force and is close to the value predicted by the Dirac-Brueckner-Hartree-Fock (DBHF) approach. Our result provides a reasonable explanation for the discrepancy between the values of critical temperature predicted from the FTBHF approach including the three-body force and the DBHF approach. (authors)

  5. Phenomena at the QCD phase transition in nonequilibrium chiral fluid dynamics (NχFD)

    Energy Technology Data Exchange (ETDEWEB)

    Nahrgang, Marlene [Duke University, Department of Physics, Durham, NC (United States); Herold, Christoph [Suranaree University of Technology, School of Physics, Nakhon Ratchasima (Thailand)

    2016-08-15

    Heavy-ion collisions performed in the beam energy range accessible by the NICA collider facility are expected to produce systems of extreme net-baryon densities and can thus reach yet unexplored regions of the QCD phase diagram. Here, one expects the phase transition between the plasma of deconfined quarks and gluons and the hadronic matter to be of first order. A discovery of the first-order phase transition would as well prove the existence of the QCD critical point, a landmark in the phase diagram. In order to understand possible signals of the first-order phase transition in heavy-ion collision experiments it is very important to develop dynamical models of the phase transition. Here, we discuss the opportunities of studying dynamical effects at the QCD first-order phase transition within our model of nonequilibrium chiral fluid dynamics. (orig.)

  6. Nuclear matter physics at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Senger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2016-08-15

    The exploration of the QCD phase diagram is one of the most exciting and challenging projects of modern nuclear physics. In particular, the investigation of nuclear matter at high baryon densities offers the opportunity to find characteristic structures such as a first-order phase transition with a region of phase coexistence and a critical endpoint. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. Equally important is the quantitative experimental information on the properties of hadrons in dense matter which may shed light on chiral symmetry restoration and the origin of hadron masses. Worldwide, substantial efforts at the major heavy-ion accelerators are devoted to the clarification of these fundamental questions, and new dedicated experiments are planned at future facilities like CBM at FAIR in Darmstadt and MPD at NICA/JINR in Dubna. In this article the perspectives for MPD at NICA will be discussed. (orig.)

  7. Interacting hot dark matter

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Davidson, S.

    1997-01-01

    We discuss the viability of a light particle (∼30eV neutrino) with strong self-interactions as a dark matter candidate. The interaction prevents the neutrinos from free-streaming during the radiation-dominated regime so galaxy-sized density perturbations can survive. Smaller scale perturbations are damped due to neutrino diffusion. We calculate the power spectrum in the imperfect fluid approximation, and show that it is damped at the length scale one would estimate due to neutrino diffusion. The strength of the neutrino-neutrino coupling is only weakly constrained by observations, and could be chosen by fitting the power spectrum to the observed amplitude of matter density perturbations. The main shortcoming of our model is that interacting neutrinos cannot provide the dark matter in dwarf galaxies. copyright 1997 The American Physical Society

  8. Spontaneous CP breaking in QCD and the axion potential: an effective Lagrangian approach

    Science.gov (United States)

    Di Vecchia, Paolo; Rossi, Giancarlo; Veneziano, Gabriele; Yankielowicz, Shimon

    2017-12-01

    Using the well-known low-energy effective Lagrangian of QCD — valid for small (non-vanishing) quark masses and a large number of colors — we study in detail the regions of parameter space where CP is spontaneously broken/unbroken for a vacuum angle θ = π. In the CP broken region there are first order phase transitions as one crosses θ = π, while on the (hyper)surface separating the two regions, there are second order phase transitions signalled by the vanishing of the mass of a pseudo Nambu-Goldstone boson and by a divergent QCD topological susceptibility. The second order point sits at the end of a first order line associated with the CP spontaneous breaking, in the appropriate complex parameter plane. When the effective Lagrangian is extended by the inclusion of an axion these features of QCD imply that standard calculations of the axion potential have to be revised if the QCD parameters fall in the above mentioned CP broken region, in spite of the fact that the axion solves the strong- CP problem. These last results could be of interest for axionic dark matter calculations if the topological susceptibility of pure Yang-Mills theory falls off sufficiently fast when temperature is increased towards the QCD deconfining transition.

  9. Beyond WIMPs: the Quark (Anti Nugget Dark Matter

    Directory of Open Access Journals (Sweden)

    Zhitnitsky Ariel

    2017-01-01

    Full Text Available We review a testable dark matter (DM model outside of the standard WIMP paradigm. The model is unique in a sense that the observed ratio Ωdark ≃ Ωvisible for visible and dark matter densities finds its natural explanation as a result of their common QCD origin when both types of matter (DM and visible are formed during the QCD phase transition and both are proportional to single dimensional parameter of the system, Λqcd. We argue that the charge separation effect also inevitably occurs during the same QCD phase transition in the presence of the CP odd axion field a(x. It leads to preferential formation of one species of nuggets on the scales of the visible Universe where the axion field a(x is coherent. A natural outcome of this preferential evolution is that only one type of the visible baryons (not anti- baryons remain in the system after the nuggets complete their formation. Unlike conventional WIMP dark matter candidates, the nuggets and anti-nuggets are strongly interacting but macroscopically large objects. The rare events of annihilation of the anti-nuggets with visible matter lead to a number of observable effects. We argue that the relative intensities for a number of measured excesses of emission from the centre of galaxy (covering more than 11 orders of magnitude are determined by standard and well established physics. At the same time the absolute intensity of emission is determined by a single new fundamental parameter of the theory, the axion mass, 10−6eV ≲ ma ≲ 10−3eV. Finally, we comment on implications of these studies for the axion search experiments, including microwave cavity and the Orpheus experiments.

  10. Constraining axion dark matter with Big Bang Nucleosynthesis

    International Nuclear Information System (INIS)

    Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela; Safdi, Benjamin R.

    2014-01-01

    We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of 4 He during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN

  11. Constraining axion dark matter with Big Bang Nucleosynthesis

    Science.gov (United States)

    Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela; Safdi, Benjamin R.

    2014-10-01

    We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron-proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of 4He during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN.

  12. DESY: QCD workshop

    International Nuclear Information System (INIS)

    Ingelman, Gunnar

    1994-01-01

    The traditional annual DESY Theory Workshop highlights a topical theory sector. The most recent was under the motto 'Quantum Chromo-Dynamics' - QCD, the field theory of quarks and gluons. The organizers had arranged a programme covering most aspects of current QCD research. This time the workshop was followed by a topical meeting on 'QCD at HERA' to look at the electron-proton scattering experiments now in operation at DESY's new HERA collider

  13. Phases of QCD

    International Nuclear Information System (INIS)

    Roessner, Simon

    2009-01-01

    Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)

  14. Softly broken N=2 QCD

    CERN Document Server

    Alvarez-Gaumé, Luís; Kounnas, Costas; Marino, M; Alvarez-Gaume, Luis; Distler, Jacques; Kounnas, Costas; Marino, Marcos

    1996-01-01

    We analyze the possible soft breaking of N=2 supersymmetric Yang-Mills theory with and without matter flavour preserving the analyticity properties of the Seiberg-Witten solution. For small supersymmetry breaking parameter with respect to the dynamical scale of the theory we obtain an exact expression for the effective potential. We describe in detail the onset of the confinement transition and some of the patterns of chiral symmetry breaking. If we extrapolate the results to the limit where supersymmetry decouples, we obtain hints indicating that perhaps a description of the QCD vacuum will require the use of Lagrangians containing simultaneously mutually non-local degrees of freedom (monopoles and dyons).

  15. QCD phenomenology

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1979-01-01

    Selected topics in QCD phenomenology are reviewed: the development of an effective jet perturbation series with applications to factorization, energy flow analysis and photon physics; implications of non-perturbative phenomena for hard scattering processes and the pseudoscalar mass spectrum; resonance properties as extracted from the combined technologies of perturbative and non-perturbative QCD. (orig.)

  16. Standard model group, QCD subgroup - dynamics isolating and testing the elementary QCD subprocess

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1982-01-01

    QCD to an experimentalist is the theory of interactions of quarks and gluons. Experimentalists like QCD because QCD is analogous to QED. Thus, following Drell and others who have for many years studied the validity of QED, one has a ready-made menu for tests of QCD. There are the static and long distance tests. These topics are covered by Peter LePage in the static properties group. In this report, dynamic and short distance tests of QCD will be discussed, primarily via reactions with large transverse momenta. This report is an introduction and overview of the subject, to serve as a framework for other reports from the subgroup. In the last two sections, the author has taken the opportunity to discuss his own ideas and opinions

  17. Semihard QCD

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1989-01-01

    Recent results concerning the small x limit of parton distributions in perturbative QCD are reviewed. This includes in particular discussion of the bare Pomeron in perturbative QCD and of shadowing corrections. The minijet production processes and possible manifestation of semihard interactions in high energy pp-bar elastic scattering are also discussed. 46 refs., 8 figs. (author)

  18. Valence QCD: Connecting QCD to the quark model

    International Nuclear Information System (INIS)

    Liu, K.F.; Dong, S.J.; Draper, T.; Sloan, J.; Leinweber, D.; Woloshyn, R.M.

    1999-01-01

    A valence QCD theory is developed to study the valence quark properties of hadrons. To keep only the valence degrees of freedom, the pair creation through the Z graphs is deleted in the connected insertions, whereas the sea quarks are eliminated in the disconnected insertions. This is achieved with a new 'valence QCD' Lagrangian where the action in the time direction is modified so that the particle and antiparticle decouple. It is shown in this valence version of QCD that the ratios of isovector to isoscalar matrix elements (e.g., F A /D A and F S /D S ratios) in the nucleon reproduce the SU(6) quark model predictions in a lattice QCD calculation. We also consider how the hadron masses are affected on the lattice and discover new insights into the origin of dynamical mass generation. It is found that, within statistical errors, the nucleon and the Δ become degenerate for the quark masses we have studied (ranging from 1 to 4 times the strange mass). The π and ρ become nearly degenerate in this range. It is shown that valence QCD has the C, P, T symmetries. The lattice version is reflection positive. It also has the vector and axial symmetries. The latter leads to a modified partially conserved axial Ward identity. As a result, the theory has a U(2N F ) symmetry in the particle-antiparticle space. Through lattice simulation, it appears that this is dynamically broken down to U q (N F )xU bar q (N F ). Furthermore, the lattice simulation reveals spin degeneracy in the hadron masses and various matrix elements. This leads to an approximate U q (2N F )xU bar q (2N F ) symmetry which is the basis for the valence quark model. In addition, we find that the masses of N, Δ,ρ,π,a 1 , and a 0 all drop precipitously compared to their counterparts in the quenched QCD calculation. This is interpreted as due to the disappearance of the 'constituent' quark mass which is dynamically generated through tadpole diagrams. The origin of the hyperfine splitting in the baryon is

  19. QCD evolution equations for high energy partons in nuclear matter

    CERN Document Server

    Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt

    1994-01-01

    We derive a generalized form of Altarelli-Parisi equations to decribe the time evolution of parton distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we obtain a set of coupled integro- differential equations for the parton distribution functions and equations for the virtuality (``age'') distribution of partons. In addition to parton branching processes, we take into account fusion and scattering processes that are specific to QCD in medium. Detailed balance between gain and loss terms in the resulting evolution equations correctly accounts for both real and virtual contributions which yields a natural cancellation of infrared divergences.

  20. Phases of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Roessner, Simon

    2009-04-09

    Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)

  1. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  2. Predictive Lattice QCD

    International Nuclear Information System (INIS)

    Kronfeld, Andreas

    2005-01-01

    Quantum chromodynamics (QCD) is the quantum field theory describing the strong interactions of quarks bound inside hadrons. It is marvelous theory, which works (mathematically) at all distance scales. Indeed, for thirty years, theorists have known how to calculate short-distance properties of QCD, thanks to the (Nobel-worthy) idea of asymptotic freedom. More recently, numerical techniques applied to the strong-coupling regime of QCD have enabled us to compute long-distance bound-state properties. In this colloquium, we review these achievements and show how the new-found methods of calculation will influence high-energy physics.

  3. Excited QCD 2017

    CERN Document Server

    2017-01-01

    This edition is the ninth in a series of workshops that had been previously organised in Poland (2009), Slovakia (2010 and 2015), France (2011), Portugal (2012 and 2016) and Bosnia and Herzegovina (2013 and 2014). In the year 2017 the workshop goes to the beautiful Sintra near Lisbon, Portugal. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, new resonances, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-gluon plasma, holography, colour-glass condensate, compact stars, applications to astrophysics.

  4. QCD axion dark matter from long-lived domain walls during matter domination

    OpenAIRE

    Harigaya, Keisuke; Kawasaki, Masahiro

    2018-01-01

    The domain wall problem of the Peccei–Quinn mechanism can be solved if the Peccei–Quinn symmetry is explicitly broken by a small amount. Domain walls decay into axions, which may account for dark matter of the universe. This scheme is however strongly constrained by overproduction of axions unless the phase of the explicit breaking term is tuned. We investigate the case where the universe is matter-dominated around the temperature of the MeV scale and domain walls decay during this matter dom...

  5. Constraining axion dark matter with Big Bang Nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Kfir; D' Agnolo, Raffaele Tito [Institute for Advanced Study, Princeton, NJ 08540 (United States); Lisanti, Mariangela; Safdi, Benjamin R. [Department of Physics, Princeton University, Princeton, NJ 08544 (United States)

    2014-10-07

    We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of {sup 4}He during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN.

  6. Constraining axion dark matter with Big Bang Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    Kfir Blum

    2014-10-01

    Full Text Available We show that Big Bang Nucleosynthesis (BBN significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of He4 during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN.

  7. The $N_f^3 g^6$ term in the pressure of hot QCD

    CERN Document Server

    Gynther, A; Vuorinen, A

    2009-01-01

    We determine the first independent part of the g^6 coefficient in the weak coupling expansion of the QCD pressure at high temperatures, the one proportional to the maximal power of the number of quark flavors N_f. In addition to introducing and developing computational methods that can be used in evaluating other parts of the expansion, our calculation provides a result that becomes dominant in the limit of large N_f and a fixed effective coupling g_{eff}^2 = g^2 N_f/2.

  8. Chiral thermodynamics of nuclear matter

    International Nuclear Information System (INIS)

    Fiorilla, Salvatore

    2012-01-01

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  9. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  10. The hot and cold interstellar matter of early type galaxies and their radio emission

    International Nuclear Information System (INIS)

    Kim, Dongwoo; Fabbiano, G.

    1990-01-01

    Over the last few years, the knowledge of the interstellar matter (ISM) of early type galaxies has increased dramatically. Many early type galaxies are now known to have ISM in three different phases: cold (neutral hydrogen (HI), dust and molecular material), warm (ionized) and hot (S-ray emitting) gas. Early type galaxies have smaller masses of cold ISM (10 to the 7th power - 10 to the 8th power solar mass; Jura et al. 1987) than later type spiral galaxies, while they have far more hot gas (10 to the 9th power - 10 to the tenth power solar mass; Forman et al. 1985, Canizares et al. 1987). In order to understand the relationship between the different phases of the ISM and the role of the ISM in fueling radio continuum sources and star formation, researchers compared observational data from a wide range of wavelengths

  11. The pressure of hot QCD up to $g^{6}$ ln(1/g)

    CERN Document Server

    Kajantie, Keijou; Rummukainen, K; Schröder, Y

    2003-01-01

    The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant g, known so far up to order g^5. We compute here the last contribution which can be determined perturbatively, g^6 ln(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-dimensional effective field theories. We also demonstrate that the inclusion of the new perturbative g^6 ln(1/g) terms, together with the so far unknown perturbative and non-perturbative g^6 terms, could potentially extend the applicability of the resummed coupling constant series down to surprisingly low temperatures.

  12. Phase transition in dense nuclear matter with quark and gluon condensates

    International Nuclear Information System (INIS)

    Ellis, J.; Kapusta, J.I.; Olive, K.A.

    1991-01-01

    Nuclear matter is expected to modify the expectation values of the quark and gluon condensates. We utilize the chiral and scale symmetries of QCD to describe the interaction between these condensates and hadrons. We solve the resulting equations self-consistently in the relativistic mean field approximation. In order that these QCD condensates be driven towards zero at high density their coupling to sigma and vector mesons must be such that the masses of these mesons do not decrease with density. In this case a physically sensible phase transition to quark matter ensures. (orig.)

  13. Lattice QCD

    International Nuclear Information System (INIS)

    Hasenfratz, P.

    1983-01-01

    The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)

  14. arXiv New relations for graviton-matter amplitudes

    CERN Document Server

    Plefka, Jan

    We present new relations for scattering amplitudes of color ordered gluons, massive quarks and scalars minimally coupled to gravity. Tree-level amplitudes of arbitrary matter and gluon multiplicities involving one graviton are reduced to partial amplitudes in QCD or scalar QCD. The obtained relations are a direct generalization of the recently found Einstein-Yang-Mills relations. The proof of the new relation employs a simple diagrammatic argument trading the graviton-matter couplings to an `upgrade' of a gluon coupling with a color-kinematic replacement rule enforced. The use of the Melia-Johansson-Ochirov color basis is a key element of the reduction. We comment on the generalization to multiple gravitons in the single color trace case.

  15. Axion: Mass -- Dark Matter Abundance Relation

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The axion is a hypothetical particle which would explain why QCD is approximately T-conserving, and is also an excellent Cold Dark Matter candidate. It should be possible to make a clean theoretical prediction relating the dark matter density in axions and the axion mass (under reasonable assumptions about inflation). But the axion's early-Universe dynamics, which establish its density as dark matter, are unexpectedly rich in a way which is only starting to yield to quantitative numerical study.

  16. Solar Extreme UV radiation and quark nugget dark matter model

    Energy Technology Data Exchange (ETDEWEB)

    Zhitnitsky, Ariel, E-mail: arz@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada)

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ω{sub dark} ∼ Ω{sub visible} when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter Λ{sub QCD}. We also present arguments suggesting that the transient brightening-like 'nanoflares' in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  17. Solar Extreme UV radiation and quark nugget dark matter model

    Science.gov (United States)

    Zhitnitsky, Ariel

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ωdark ~ Ωvisible when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter ΛQCD. We also present arguments suggesting that the transient brightening-like "nanoflares" in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  18. Novel QCD Phenomena

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; SLAC

    2007-01-01

    I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable ζ which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions

  19. QCD as a Theory of Hadrons

    Science.gov (United States)

    Narison, Stephan

    2007-07-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD

  20. Towards Dense Nuclear Matter in A Modified Sakai-Sugimoto Model

    Directory of Open Access Journals (Sweden)

    Rho Mannque

    2012-02-01

    Full Text Available As a part of the attempt to address dense baryonic matter, we first review holographic approaches to QCD. The big advantage of the holographic approaches is that they render strongly coupled 4D gauge theories as duals of certain weakly coupled string/supergravity that are well understood. Its relevance to real QCD is one of the central problems in hadron/nuclear physics as well as in the context of applied string theory. None of the models based on these holographic approaches presently available can adequately describe the system we are interested in, namely dense baryonic matter. Nevertheless, some aspects of the holographic approach are found to describe certain processes both in vacuum and in medium. In this talk we only present the structure of a model that appears to be closest to QCD, and has the potential to address the problem.

  1. Renormalization of Extended QCD2

    International Nuclear Information System (INIS)

    Fukaya, Hidenori; Yamamura, Ryo

    2015-01-01

    Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N c , to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region

  2. Experimental application of QCD antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bobrovskyi, Sergei

    2010-02-15

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  3. Experimental application of QCD antennas

    International Nuclear Information System (INIS)

    Bobrovskyi, Sergei

    2010-02-01

    A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)

  4. Hadron structure from lattice QCD

    International Nuclear Information System (INIS)

    Schaefer, Andreas

    2008-01-01

    Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review

  5. Recent QCD results from ATLAS

    CERN Document Server

    Meyer, C; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has performed studies of a wide range of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of underlying event and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for determination of parton density functions. Measurements of isolated inclusive and di-photons cross sections for high transverse momentum photons test theoretical predictions of perturbative QCD and constrain parton density functions. An overview of these results is given.

  6. Topology of large-scale structure in seeded hot dark matter models

    Science.gov (United States)

    Beaky, Matthew M.; Scherrer, Robert J.; Villumsen, Jens V.

    1992-01-01

    The topology of the isodensity surfaces in seeded hot dark matter models, in which static seed masses provide the density perturbations in a universe dominated by massive neutrinos is examined. When smoothed with a Gaussian window, the linear initial conditions in these models show no trace of non-Gaussian behavior for r0 equal to or greater than 5 Mpc (h = 1/2), except for very low seed densities, which show a shift toward isolated peaks. An approximate analytic expression is given for the genus curve expected in linear density fields from randomly distributed seed masses. The evolved models have a Gaussian topology for r0 = 10 Mpc, but show a shift toward a cellular topology with r0 = 5 Mpc; Gaussian models with an identical power spectrum show the same behavior.

  7. Nuclear Symmetry Energy with QCD Sum Rule

    International Nuclear Information System (INIS)

    Jeong, K.S.; Lee, S.H.

    2013-01-01

    We calculate the nucleon self-energies in an isospin asymmetric nuclear matter using QCD sum rule. Taking the difference of these for the neutron and proton enables us to express an important part of the nuclear symmetry energy in terms of local operators. Calculating the operator product expansion up to mass dimension six operators, we find that the main contribution to the difference comes from the iso-vector scalar and vector operators, which is reminiscent to the case of relativistic mean field type theories where mesons with aforementioned quantum numbers produce the difference and provide the dominant mechanism for nuclear symmetry energy. (author)

  8. Strange Quark Matter Status and Prospects

    Science.gov (United States)

    Sandweiss, J.

    2004-01-01

    The existence of quark states with more than three quarks is allowed in QCD. The stability of such quark matter states has been studied with lattice QCD and phenomenological bag models, but is not well constrained by theory. The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty. There is additional stability from reduced Coulomb repulsion. SQM is expected to have a low Z/A. Stable or metastable massive multiquark states contain u, d, and s quarks.

  9. Strong coupling QCD at finite baryon-number density

    International Nuclear Information System (INIS)

    Karsch, F.; Muetter, K.H.

    1989-01-01

    We present a new representation of the partition function for strong-coupling QCD which is suitable also for finite baryon-number-density simulations. This enables us to study the phase structure in the canonical formulation (with fixed baryon number B) as well as the grand canonical one (with fixed chemical potential μ). We find a clear signal for a first-order chiral phase transition at μ c a=0.63. The critical baryon-number density n c a 3 =0.045 is only slightly higher than the density of nuclear matter. (orig.)

  10. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  11. Quasi-particle description of strongly interacting matter: Towards a foundation

    International Nuclear Information System (INIS)

    Bluhm, M.; Kaempfer, B.; Schulze, R.; Seipt, D.

    2007-01-01

    We confront our quasi-particle model for the equation of state of strongly interacting matter with recent first-principle QCD calculations. In particular, we test its applicability at finite baryon densities by comparing with Taylor expansion coefficients of the pressure for two quark flavours. We outline a chain of approximations starting from the Φ-functional approach to QCD which motivates the quasi-particle picture. (orig.)

  12. Statistical Angles on the Lattice QCD Signal-to-Noise Problem

    Science.gov (United States)

    Wagman, Michael L.

    The theory of quantum chromodynamics (QCD) encodes the strong interactions that bind quarks and gluons into nucleons and that bind nucleons into nuclei. Predictive control of QCD would allow nuclear structure and reactions as well as properties of supernovae and neutron stars to be theoretically studied from first principles. Lattice QCD (LQCD) can represent generic QCD predictions in terms of well-defined path integrals, but the sign and signal-to-noise problems have obstructed LQCD calculations of large nuclei and nuclear matter in practice. This thesis presents a statistical study of LQCD correlation functions, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in baryon correlation functions is demonstrated to arise from a sign problem associated with Monte Carlo sampling of complex correlation functions. Properties of circular statistics are used to understand the emergence of a large time noise region where standard energy measurements are unreliable. Power-law tails associated with stable distributions and Levy flights are found to play a central role in the time evolution of baryon correlation functions. Building on these observations, a new statistical analysis technique called phase reweighting is introduced that allow energy levels to be extracted from large-time correlation functions with time-independent signal-to-noise ratios. Phase reweighting effectively includes dynamical refinement of source magnitudes but introduces a bias associated with the phase. This bias can be removed by performing an extrapolation, but at the expense of re-introducing a signal-to-noise problem. Lattice QCD calculations of the ρ+ and nucleon masses and of the ΞΞ(1S0) binding energy show consistency between standard results obtained using smaller-time correlation functions and phase-reweighted results using large-time correlation functions inaccessible to standard statistical analysis

  13. Neutrino reactions in hot and dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lohs, Andreas

    2015-04-13

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  14. Neutrino reactions in hot and dense matter

    International Nuclear Information System (INIS)

    Lohs, Andreas

    2015-01-01

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  15. QCD and nuclei

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1989-01-01

    To apply QCD to nuclear physics one needs methods of long-distance QCD. A new method, method of Confining Background Fields, CBF, which incorporates confinement, is presented with applications to heavy and light quarks, both in mesons and baryons. Spin-dependent forces are calculated for light and heavy quarks. The quark potential model in some limiting case is derived. 25 refs

  16. The Compressed Baryonic Matter experiment

    Directory of Open Access Journals (Sweden)

    Seddiki Sélim

    2014-04-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is a next-generation fixed-target detector which will operate at the future Facility for Antiproton and Ion Research (FAIR in Darmstadt. The goal of this experiment is to explore the QCD phase diagram in the region of high net baryon densities using high-energy nucleus-nucleus collisions. Its research program includes the study of the equation-of-state of nuclear matter at high baryon densities, the search for the deconfinement and chiral phase transitions and the search for the QCD critical point. The CBM detector is designed to measure both bulk observables with a large acceptance and rare diagnostic probes such as charm particles, multi-strange hyperons, and low mass vector mesons in their di-leptonic decay. The physics program of CBM will be summarized, followed by an overview of the detector concept, a selection of the expected physics performance, and the status of preparation of the experiment.

  17. QCD: Renormalization for the practitioner

    International Nuclear Information System (INIS)

    Pascual, P.; Tarrach, R.

    1984-01-01

    These notes correspond to a GIFT (Grupo Interuniversitario de Fisica Teorica) course which was given by us in autumn 1983 at the University of Barcelona. Their main subject is renormalization in perturbative QCD and only the last chapter goes beyond perturbation theory. They are essentially self contained and their aim is to teach the student the techniques of perturbative QCD and the QCD sum rules. (orig./HSI)

  18. Looking for dark matter on the light side

    International Nuclear Information System (INIS)

    Doebrich, Babette

    2015-01-01

    Among the prominent low-mass dark matter candidates is the QCD axion but also other light and weakly interacting particles beyond the Standard Model. We review briefly the case for such dark matter and give an overview on most recent experimental efforts within laboratory searches, where we focus on experiments exploiting a potential electromagnetic coupling of such particles.

  19. Analytic solutions of QCD evolution equations for parton cascades inside nuclear matter at small x

    International Nuclear Information System (INIS)

    Geiger, K.

    1994-01-01

    An analytical method is presented to solve generalized QCD evolution equations for the time development of parton cascades in a nuclear environment. In addition to the usual parton branching processes in vacuum, these evolution equations provide a consistent description of interactions with the nuclear medium by accounting for stimulated branching processes, fusion, and scattering processes that are specific to QCD in a medium. Closed solutions for the spectra of produced partons with respect to the variables time, longitudinal momentum, and virtuality are obtained under some idealizing assumptions about the composition of the nuclear medium. Several characteristic features of the resulting parton distributions are discussed. One of the main conclusions is that the evolution of a parton shower in a medium is dilated as compared to free space and is accompanied by an enhancement of particle production. These effects become stronger with increasing nuclear density

  20. QED, QCD en pratique

    OpenAIRE

    Aurenche , P; Guillet , J.-Ph; Pilon , E

    2016-01-01

    3rd cycle; Ces notes sont une introduction à l'application de l'électrodynamique quantique (QED) et de la chromodynamiques quantique (QCD) aux réactions de diffusion à hautes énergies. Le premier thème abordé est celui des divergences ultraviolettes et de la renormalisation à une boucle, avec comme conséquence pour QCD la liberté asymptotique. Le deuxième thème est celui des divergences infrarouges et colinéaires qui dans QCD sont traitées dans le cadre du modèle des partons avec l'introducti...

  1. Simulations of dimensionally reduced effective theories of high temperature QCD

    CERN Document Server

    Hietanen, Ari

    Quantum chromodynamics (QCD) is the theory describing interaction between quarks and gluons. At low temperatures, quarks are confined forming hadrons, e.g. protons and neutrons. However, at extremely high temperatures the hadrons break apart and the matter transforms into plasma of individual quarks and gluons. In this theses the quark gluon plasma (QGP) phase of QCD is studied using lattice techniques in the framework of dimensionally reduced effective theories EQCD and MQCD. Two quantities are in particular interest: the pressure (or grand potential) and the quark number susceptibility. At high temperatures the pressure admits a generalised coupling constant expansion, where some coefficients are non-perturbative. We determine the first such contribution of order g^6 by performing lattice simulations in MQCD. This requires high precision lattice calculations, which we perform with different number of colors N_c to obtain N_c-dependence on the coefficient. The quark number susceptibility is studied by perf...

  2. QCD in heavy ion collisions

    International Nuclear Information System (INIS)

    Iancu, Edmond

    2014-01-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry

  3. QCD in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, Edmond [IPhT, Saclay (France)

    2014-07-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  4. Towards the chiral limit in QCD

    International Nuclear Information System (INIS)

    Shailesh Chandrasekharan

    2006-01-01

    Computing hadronic observables by solving QCD from first principles with realistic quark masses is an important challenge in fundamental nuclear and particle physics research. Although lattice QCD provides a rigorous framework for such calculations many difficulties arise. Firstly, there are no good algorithms to solve lattice QCD with realistically light quark masses. Secondly, due to critical slowing down, Monte Carlo algorithms are able to access only small lattice sizes on coarse lattices. Finally, due to sign problems it is almost impossible to study the physics of finite baryon density. Lattice QCD contains roughly three mass scales: the cutoff (or inverse lattice spacing) a -1 , the confinement scale Λ QCD , and the pion mass m π . Most conventional Monte Carlo algorithms for QCD become inefficient in two regimes: when Λ QCD becomes small compared to a -1 and when m π becomes small compared to Λ QCD . The former can be largely controlled by perturbation theory thanks to asymptotic freedom. The latter is more difficult since chiral extrapolations are typically non-analytic and can be unreliable if the calculations are not done at sufficiently small quark masses. For this reason it has been difficult to compute quantities close to the chiral limit. The essential goal behind this proposal was to develop a new approach towards understanding QCD and QCD-like theories with sufficiently light quarks. The proposal was based on a novel cluster algorithm discovered in the strong coupling limit with staggered fermions [1]. This algorithm allowed us to explore the physics of exactly massless quarks and as well as light quarks. Thus, the hope was that this discovery would lead to the complete solution of at least a few strongly coupled QCD-like theories. The solution would be far better than those achievable through conventional methods and thus would be able to shed light on the chiral physics from a new direction. By the end of the funding period, the project led

  5. Components of QCD

    International Nuclear Information System (INIS)

    Sivers, D.

    1979-10-01

    Some aspects of a simple strategy for testing the validity of QCD perturbation theory are examined. The importance of explicit evaluation of higher-order contributions is illustrated by considering Z 0 decays. The recent progress toward understanding exclusive processes in QCD is discussed and some simple examples are given of how to isolate and test the separate components of the perturbation expansion in a hypothetical series of jet experiments

  6. Quantum chromodynamics (QCD) and collider physics

    International Nuclear Information System (INIS)

    Ellis, R.K.; Stirling, W.J.

    1990-01-01

    This report discusses: fundamentals of perturbative QCD; QCD in e + e - → hadrons; deep inelastic scattering and parton distributions; the QCD parton model in hadron-hadron collisions; large p T jet production in hadron-hadron collisions; the production of vector bosons in hadronic collisions; and the production of heavy quarks

  7. Nucleon-nucleon interactions via Lattice QCD: Methodology. HAL QCD approach to extract hadronic interactions in lattice QCD

    Science.gov (United States)

    Aoki, Sinya

    2013-07-01

    We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for nucleon-nucleon potentials.

  8. Cosmological axion and a quark nugget dark matter model

    Science.gov (United States)

    Ge, Shuailiang; Liang, Xunyu; Zhitnitsky, Ariel

    2018-02-01

    We study a dark matter (DM) model offering a very natural explanation of two (naively unrelated) problems in cosmology: the observed relation ΩDM˜Ωvisible and the observed asymmetry between matter and antimatter in the Universe, known as the "baryogenesis" problem. In this framework, both types of matter (dark and visible) have the same QCD origin, form at the same QCD epoch, and are proportional to one and the same dimensional parameter of the system, ΛQCD, which explains how these two naively distinct problems could be intimately related, and could be solved simultaneously within the same framework. More specifically, the DM in this model is composed by two different ingredients: the (well-studied) DM axions and the (less-studied) quark nuggets made of matter or antimatter. We focus on the quantitative analysis of the relation between these two distinct components contributing to the dark sector of the theory determined by ΩDM≡[ΩDM(nuggets)+ΩDM(axion)] . We argue that the nuggets' DM component always traces the visible matter density, i.e., ΩDM(nuggets)˜Ωvisible , and this feature is not sensitive to the parameters of the system such as the axion mass ma or the misalignment angle θ0. It should be contrasted with conventional axion production mechanisms due to the misalignment when ΩDM(axion) is highly sensitive to the axion mass ma and the initial misalignment angle θ0. We also discuss the constraints on this model related to the inflationary scale HI, nonobservation of the isocurvature perturbations and the tensor modes. We also comment on some constraints related to various axion search experiments.

  9. Method of analytic continuation by duality in QCD: Beyond QCD sum rules

    International Nuclear Information System (INIS)

    Kremer, M.; Nasrallah, N.F.; Papadopoulos, N.A.; Schilcher, K.

    1986-01-01

    We present the method of analytic continuation by duality which allows the approximate continuation of QCD amplitudes to small values of the momentum variables where direct perturbative calculations are not possible. This allows a substantial extension of the domain of applications of hadronic QCD phenomenology. The method is illustrated by a simple example which shows its essential features

  10. Theoretical summary talk of QCD 2002

    International Nuclear Information System (INIS)

    Basu, Rahul

    2003-01-01

    This is a summary of the talks on QCD, not including QCD at finite temperature or density (which are discussed elsewhere) presented at the QCD 2002 meeting held at IIT, Kanpur. I have attempted to give only an overview of the talks since the details may be found in the individual contributions. (author)

  11. Weak-interacting holographic QCD

    International Nuclear Information System (INIS)

    Gazit, D.; Yee, H.-U.

    2008-06-01

    We propose a simple prescription for including low-energy weak-interactions into the frame- work of holographic QCD, based on the standard AdS/CFT dictionary of double-trace deformations. As our proposal enables us to calculate various electro-weak observables involving strongly coupled QCD, it opens a new perspective on phenomenological applications of holographic QCD. We illustrate efficiency and usefulness of our method by performing a few exemplar calculations; neutron beta decay, charged pion weak decay, and meson-nucleon parity non-conserving (PNC) couplings. The idea is general enough to be implemented in both Sakai-Sugimoto as well as Hard/Soft Wall models. (author)

  12. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lange, Jens Sören, E-mail: Soeren.Lange@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Pennington, Michael, E-mail: michaelp@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bettoni, Diego [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara (Italy); Brambilla, Nora [Physik Department, Technische Universität München, D-85747 Garching (Germany); Crede, Volker [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Eidelman, Simon [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Budker Istitute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gillitzer, Albrecht [Institut für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Gradl, Wolfgang [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany); Lang, Christian B. [Institut für Physik, Universität Graz, A-8010 Graz (Austria); Metag, Volker [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Nakano, Takashi [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); and others

    2016-04-15

    We report on the EMMI Rapid Reaction Task Force meeting ‘Resonances in QCD’, which took place at GSI October 12–14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: • What is needed to understand the physics of resonances in QCD? • Where does QCD lead us to expect resonances with exotic quantum numbers? • What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy–light and heavy–heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  13. Effects of energy conservation on equilibrium properties of hot asymmetric nuclear matter

    Science.gov (United States)

    Zhang, Zhen; Ko, Che Ming

    2018-01-01

    Based on the relativistic Vlasov-Uehling-Uhlenbeck transport model, which includes relativistic scalar and vector potentials on baryons, we consider an N -Δ -π system in a box with periodic boundary conditions to study the effects of energy conservation in particle production and absorption processes on the equilibrium properties of the system. The density and temperature of the matter in the box are taken to be similar to the hot dense matter formed in heavy ion collisions at intermediate energies. We find that to maintain the equilibrium numbers of N ,Δ , and π , which depend on the mean-field potentials of N and Δ , we must include these potentials in the energy conservation condition that determines the momenta of outgoing particles after a scattering or decay process. We further find that the baryon scalar potentials mainly affect the Δ and pion equilibrium numbers, while the baryon vector potentials have considerable effect on the effective charged pion ratio at equilibrium. Our results thus indicate that it is essential to include in the transport model the effect of potentials in the energy conservation of a scattering or decay process, which is ignored in most transport models, for studying pion production in heavy ion collisions.

  14. Electric Conductivity of Hot and Dense Quark Matter in a Magnetic Field with Landau Level Resummation via Kinetic Equations

    Science.gov (United States)

    Fukushima, Kenji; Hidaka, Yoshimasa

    2018-04-01

    We compute the electric conductivity of quark matter at finite temperature T and a quark chemical potential μ under a magnetic field B beyond the lowest Landau level approximation. The electric conductivity transverse to B is dominated by the Hall conductivity σH. For the longitudinal conductivity σ∥, we need to solve kinetic equations. Then, we numerically find that σ∥ has only a mild dependence on μ and the quark mass mq. Moreover, σ∥ first decreases and then linearly increases as a function of B , leading to an intermediate B region that looks consistent with the experimental signature for the chiral magnetic effect. We also point out that σ∥ at a nonzero B remains within the range of the lattice-QCD estimate at B =0 .

  15. D mesons in asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mishra, Amruta; Mazumdar, Arindam

    2009-01-01

    We calculate the in-medium D and D meson masses in isospin-asymmetric nuclear matter in an effective chiral model. The D and D mass modifications arising from their interactions with the nucleons and the scalar mesons in the effective hadronic model are seen to be appreciable at high densities and have a strong isospin dependence. These mass modifications can open the channels of the decay of the charmonium states (Ψ ' ,χ c ,J/Ψ) to DD pairs in dense hadronic matter. The isospin asymmetry in the doublet D=(D 0 ,D + ) is seen to be particularly appreciable at high densities and should show in observables such as their production and flow in asymmetric heavy-ion collisions in the compressed baryonic matter experiments in the future facility of FAIR, GSI. The results of the present work are compared to calculations of the D(D) in-medium masses in the literature using the QCD sum rule approach, quark meson coupling model, and coupled channel approach as well as to those from studies of quarkonium dissociation using heavy-quark potentials from lattice QCD at finite temperatures

  16. Dual QCD and phase transition in early universe

    International Nuclear Information System (INIS)

    Ranjan, Akhilesh; Raina, P.K.; Nandan, Hemwati

    2009-01-01

    The quantum chromodynamics (QCD) vacuum with condensed monopoles/ dyons (i.e., a dual Ginzburg- Landau (DGL) type model of QCD or dual QCD) has been quite successful to describe the large-distance behavior of QCD vacuum. Further, such DGL theory of QCD at finite temperature is also found to be useful in studying the phase transition process as believed to occur in early universe. In the present article, we have used the DGL theory of QCD with dyons to study the hadronisation in early universe. The effective potential at finite temperature is calculated. The notions of the phase transition in the background of the dyonically condensed QCD vacuum has been investigated by calculating the critical temperature in view of the temperature dependent couplings

  17. Hot neutron stars at birth and energy release

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki

    1994-01-01

    For the discussion of hot neutron stars at birth, it is necessary to calculate the equation of state for a so-called 'supernova matter' consisting of a neutron-rich nuclear matter and degenerated leptons. One of the aims of this paper is to obtain the realistic results for the equation of state. In 10-20s after the birth, new born hot neutron stars are cooled down by neutrino diffusion process, and gradually contract to usual cold neutron starts. It is another aim of this paper to determine how much energy is released during this cooling stage. The points to which attention was paid are explained. A three-nucleon interaction was introduced phenomenologically, as a two-nucleon interaction is insufficient to satisfy the empirical saturation property of symmetric nuclear matters. The separation of uncertain part from well-known part has the merit to clarify the dependence of the results on the present theoretical uncertainties. The validity of the simplified calculation as an approximation for the exact calculation is discussed. The results by both calculations were compared for the case of hot symmetric nuclear matters. The comparison of the density profiles for a hot neutron star and a cold neutron star is shown. The binding energy for hot and cold neutron stars was plotted. These results are examined. (K.I.)

  18. Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD

    Science.gov (United States)

    Aoki, S.

    We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.

  19. QCD machines - present and future

    International Nuclear Information System (INIS)

    Christ, N.H.

    1991-01-01

    The present status of the currently working and nearly working dedicated QCD machines is reviewed and proposals for future machines are discussed with particular emphasis on the QCD Teraflop Project in the US. (orig.)

  20. QCD

    CERN Document Server

    Catani, S; Soper, Davison Eugene; Stirling, William James; Tapprogge, Stefan; Alekhin, S I; Aurenche, Patrick; Balázs, C; Ball, R D; Battistoni, G; Berger, E L; Binoth, T; Brock, R L; Casey, D; Corcella, Gennaro; Del Duca, V; Fabbro, A D; de Roeck, A; Ewerz, C; de Florian, D; Fontannaz, M; Frixione, Stefano; Giele, W T; Grazzini, Massimiliano; Guillet, J P; Marlen-Heinrich, G; Huston, J; Kalk, J; Kataev, A L; Kato, K; Keller, S; Klasen, M; Kosower, D A; Kulesza, A; Kunszt, Zoltán; Kupco, A; Ilyin, V A; Magnea, L; Mangano, Michelangelo L; Martin, A D; Mazumdar, K; Miné, P; Moretti, M; van Neerven, W L; Parente, G; Perret-Gallix, D; Pilon, E; Pukhov, A E; Puljak, I; Pumplin, Jon; Richter-Was, Elzbieta; Roberts, R G; Salam, Gavin P; Seymour, Michael H; Skachkov, N B; Sidorov, A V; Stenzel, H; Stump, D R; Thorne, R S; Treleani, D; Tung, W K; Vogt, A; Webber, Bryan R; Werlen, M; Zmouchko, S; Mine, Ph.

    2000-01-01

    We discuss issues of QCD at the LHC including parton distributions, Monte Carlo event generators, the available next-to-leading order calculations, resummation, photon production, small x physics, double parton scattering, and backgrounds to Higgs production.

  1. Meson Spectroscopy from QCD - Project Results

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States)

    2017-04-17

    Highlights of the research include: the determination of the form of the lowest energy gluonic excitation within QCD and the spectrum of hybrid hadrons which follows; the first calculation of the spectrum of hybrid baryons within a first-principles approach to QCD; a detailed mapping out of the phase-shift of elastic ππ scattering featuring the ρ resonance at two values of the light quark mass within lattice QCD; the first (and to date, only) determinations of coupled-channel meson-meson scattering within first-principles QCD; the first (and to date, only) determinations of the radiative coupling of a resonant state, the ρ appearing in πγ→ππ; the first (and to date, only) determination of the properties of the broad σ resonance in elastic ππ scattering within QCD without unjustified approximations.

  2. Ultrarelativistic heavy ion collisions: the first billion seconds

    Energy Technology Data Exchange (ETDEWEB)

    Baym, Gordon

    2016-12-15

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter – the quark-gluon plasma primarily – and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  3. Baryon interactions in lattice QCD: the direct method vs. the HAL QCD potential method

    Science.gov (United States)

    Iritani, T.; HAL QCD Collaboration

    We make a detailed comparison between the direct method and the HAL QCD potential method for the baryon-baryon interactions, taking the $\\Xi\\Xi$ system at $m_\\pi= 0.51$ GeV in 2+1 flavor QCD and using both smeared and wall quark sources. The energy shift $\\Delta E_\\mathrm{eff}(t)$ in the direct method shows the strong dependence on the choice of quark source operators, which means that the results with either (or both) source are false. The time-dependent HAL QCD method, on the other hand, gives the quark source independent $\\Xi\\Xi$ potential, thanks to the derivative expansion of the potential, which absorbs the source dependence to the next leading order correction. The HAL QCD potential predicts the absence of the bound state in the $\\Xi\\Xi$($^1$S$_0$) channel at $m_\\pi= 0.51$ GeV, which is also confirmed by the volume dependence of finite volume energy from the potential. We also demonstrate that the origin of the fake plateau in the effective energy shift $\\Delta E_\\mathrm{eff}(t)$ at $t \\sim 1$ fm can be clarified by a few low-lying eigenfunctions and eigenvalues on the finite volume derived from the HAL QCD potential, which implies that the ground state saturation of $\\Xi\\Xi$($^1$S$_0$) requires $t \\sim 10$ fm in the direct method for the smeared source on $(4.3 \\ \\mathrm{fm})^3$ lattice, while the HAL QCD method does not suffer from such a problem.

  4. Perturbative QCD (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Perturbative QCD is the general theoretical framework for describing hard scattering processes yielding multiparticle production at hadron colliders. In these lectures, we shall introduce fundamental features of perturbative QCD and describe its application to several high energy collider processes, including jet production in electron-positron annihilation, deep inelastic scattering, Higgs boson and gauge boson production at the LHC.

  5. QCD roadshow rolls on

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Is quantum chromodynamics (QCD) the ultimate theory of hadronic phenomena? Or, put more sceptically, can one tell QCD from a hole in the ground? This is the title of a new theory roadshow, which after a successful premiere at CERN went on to attract a large audience at Erice, Sicily, during the recent international school of subnuclear physics

  6. QCD roadshow rolls on

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1979-10-15

    Is quantum chromodynamics (QCD) the ultimate theory of hadronic phenomena? Or, put more sceptically, can one tell QCD from a hole in the ground? This is the title of a new theory roadshow, which after a successful premiere at CERN went on to attract a large audience at Erice, Sicily, during the recent international school of subnuclear physics.

  7. Topology in dynamical lattice QCD simulations

    International Nuclear Information System (INIS)

    Gruber, Florian

    2012-01-01

    Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.

  8. Topology in dynamical lattice QCD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Florian

    2012-08-20

    Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.

  9. Conformal Aspects of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2003-11-19

    Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1 GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.

  10. The peculiar velocities of rich clusters in the hot and cold dark matter scenarios

    Science.gov (United States)

    Rhee, George F.; West, Michael J.; Villumsen, Jens V.

    1993-01-01

    We present the results of a study of the peculiar velocities of rich clusters of galaxies. The peculiar motion of rich clusters in various cosmological scenarios is of interest for a number of reasons. Observationally, one can measure the peculiar motion of clusters to greater distances than galaxies because cluster peculiar motions can be determined to greater accuracy. One can also test the slope of distance indicator relations using clusters to see if galaxy properties vary with environment. We have used N-body simulations to measure the amplitude and rms cluster peculiar velocity as a function of bias parameter in the hot and cold dark matter scenarios. In addition to measuring the mean and rms peculiar velocity of clusters in the two models, we determined whether the peculiar velocity vector of a given cluster is well aligned with the gravity vector due to all the particles in the simulation and the gravity vector due to the particles present only in the clusters. We have investigated the peculiar velocities of rich clusters of galaxies in the cold dark matter and hot dark matter galaxy formation scenarios. We have derived peculiar velocities and associated errors for the scenarios using four values of the bias parameter ranging from b = 1 to b = 2.5. The growth of the mean peculiar velocity with scale factor has been determined and compared to that predicted by linear theory. In addition, we have compared the orientation of force and velocity in these simulations to see if a program such as that proposed by Bertschinger and Dekel (1989) for elliptical galaxy peculiar motions can be applied to clusters. The method they describe enables one to recover the density field from large scale redshift distance samples. The method makes it possible to do this when only radial velocities are known by assuming that the velocity field is curl free. Our analysis suggests that this program if applied to clusters is only realizable for models with a low value of the bias

  11. ADMX Dark-Matter Axion Search

    International Nuclear Information System (INIS)

    Rosenberg, Leslie J.

    2004-01-01

    The axion, a hypothetical elementary particle, emerged from a compelling solution to the Strong-CP Problem in QCD. Subsequently, the axion was recognized to be a good Cold Dark Matter candidate. Although dark-matter axions have only feeble couplings to matter and radiation, these axions may be detected through resonant conversion of axions into microwave photons in a high-Q cavity threaded by a strong static magnetic field. This technique is at present the only means whereby dark-matter axions with plausible couplings may be detected at the required sensitivity. This talk describes recent results from the Axion Dark Matter Experiment (ADMX), now the world's most sensitive search for axions. There will also be a short overview of the ADMX upgrade, which promises sensitivity to even the more feebly coupled dark matter axions even should they make up only a minority fraction of the local dark matter halo

  12. The AdS/CFT Correspondence and Holographic QCD

    International Nuclear Information System (INIS)

    Erlich, J.

    2012-01-01

    Holographic QCD is an extra-dimensional approach to modeling QCD resonances and their interactions. Holographic models encode information about chiral symmetry breaking, Weinberg sum rules, vector meson dominance, and other phenomenological features of QCD. There are two complementary approaches to holographic model building: a top-down approach which begins with string-theory brane configurations, and a bottom-up approach which is more phenomenological. In this talk I will describe the AdS/CFT correspondence, which motivates Holographic QCD, and the techniques used to build holographic models of QCD and to calculate observables in those models. I will also discuss an intriguing light cone approach to Holographic QCD discovered by Brodsky and De Teramond. (author)

  13. Topology in the SU(Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology

    Science.gov (United States)

    Azcoiti, Vicente

    2018-03-01

    The axion is one of the more interesting candidates to make the dark matter of the universe, and the axion potential plays a fundamental role in the determination of the dynamics of the axion field. Moreover, the way in which the U(1)A anomaly manifests itself in the chiral symmetry restored phase of QCD at high temperature could be tested when probing the QCD phase transition in relativistic heavy ion collisions. With these motivations, we investigate the physical consequences of the survival of the effects of the U(1)A anomaly in the chiral symmetric phase of QCD, and show that the free energy density is a singular function of the quark mass m, in the chiral limit, and that the σ and π susceptibilities diverge in this limit at any T ≥ Tc. We also show that the difference between the π and t;δ susceptibilities diverges in the chiral limit at any T ≥ Tc, a result that can be contrasted with the existing lattice calculations; and discuss on the generalization of these results to the Nf ≥ 3 model.

  14. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  15. Impeded Dark Matter

    International Nuclear Information System (INIS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  16. Some new/old approaches to QCD

    International Nuclear Information System (INIS)

    Gross, D.J.

    1992-11-01

    In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD

  17. Some New/Old Approaches to QCD

    Science.gov (United States)

    Gross, D. J.

    1992-11-01

    In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.

  18. Some new/old approaches to QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gross, D.J.

    1992-11-01

    In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.

  19. Nuclear properties from perturbative QCD

    International Nuclear Information System (INIS)

    Close, F.E.; Roberts, R.G.; Ross, G.G.

    1986-01-01

    Two apparently different descriptions of quark distributions in a nucleus may in fact be connected. A ''duality'' between the QCD approach and the conventional model of nucleon binding leads to nuclear properties being simply related to the anomalous dimensions of QCD. (orig.)

  20. Chiral perturbation theory for lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Oliver

    2010-07-21

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  1. Chiral perturbation theory for lattice QCD

    International Nuclear Information System (INIS)

    Baer, Oliver

    2010-01-01

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  2. Dynamical chiral-symmetry breaking in dual QCD

    International Nuclear Information System (INIS)

    Krein, G.; Williams, A.G.

    1991-01-01

    We have extended recent studies by Baker, Ball, and Zachariasen (BBZ) of dynamical chiral-symmetry breaking in dual QCD. Specifically, we have taken dual QCD to specify the nonperturbative infrared nature of the quark-quark interaction and then we have smoothly connected onto this the known leading-log perturbative QCD interaction in the ultraviolet region. In addition, we have solved for a momentum-dependent self-energy and have used the complete lowest-order dual QCD quark-quark interaction. We calculate the quark condensate left-angle bar qq right-angle and the pion decay constant f π within this model. We find that the dual QCD parameters needed to give acceptable results are reasonably consistent with those extracted from independent physical considerations by BBZ

  3. Cold dense baryonic matter and compact stars

    International Nuclear Information System (INIS)

    Hyun Kyu Lee; Sang-Jin Sin; Mannque Rho

    2011-01-01

    Probing dense hadronic matter is thus far an uncharted field of physics. Here we give a brief summary of the highlights of what has been so far accomplished and what will be done in the years ahead by the World Class University III Project at Hanyang University in the endeavor to unravel and elucidate the multi-facet of the cold dense baryonic matter existing in the interior of the densest visible stable object in the universe, i.e. neutron stars, strangeness stars and/or quark stars, from a modest and simplified starting point of an effective field theory modeled on the premise of QCD as well as from a gravity dual approach of hQCD. The core of the matter of our research is the possible origin of the ∼ 99% of the proton mass that is to be accounted for and how the 'vacuum' can be tweaked so that the source of the mass generation can be uncovered by measurements made in terrestrial as well as space laboratories. Some of the issues treated in the program concern what can be done - both theoretically and experimentally - in anticipation of what's to come for basic physics research in Korea. (authors)

  4. Heavy flavor production in QCD

    International Nuclear Information System (INIS)

    Hoyer, P.

    1989-01-01

    In this paper a brief survey is given of the status of heavy quark hadroproduction in QCD. The next-to-leading order calculation allows an estimate of the theoretical uncertainties to be made. They are manageable for top, but considerable for charm. The data on charm continues to show an excess of events at large x F , compared to QCD expectations. This may be linked to the measured anomalous A-dependence of the cross section on nuclear targets, also present at large x F . QCD models for the diffractive production of heavy quarks remain to be tested experimentally

  5. Thermodynamics of lattice QCD with 2 quark flavours : chiral symmetry and topology

    International Nuclear Information System (INIS)

    Lagae, J.-F.

    1998-01-01

    We have studied the restoration of chiral symmetry in lattice QCD at the finite temperature transition from hadronic matter to a quark-gluon plasma. By measuring the screening masses of flavour singlet and non-singlet meson excitations, we have seen evidence that, although flavour chiral symmetry is restored at this transition, flavour singlet (U(1)) axial symmetry is not. We conclude that this indicates that instantons continue to play an important role in the quark-gluon plasma phase

  6. Hadronic and nuclear interactions in QCD

    International Nuclear Information System (INIS)

    1982-01-01

    Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is the analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics

  7. The current matrix elements from HAL QCD method

    Science.gov (United States)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-03-01

    HAL QCD method is a method to construct a potential (HAL QCD potential) that reproduces the NN scattering phase shift faithful to the QCD. The HAL QCD potential is obtained from QCD by eliminating the degrees of freedom of quarks and gluons and leaving only two particular hadrons. Therefor, in the effective quantum mechanics of two nucleons defined by HAL QCD potential, the conserved current consists not only of the nucleon current but also an extra current originating from the potential (two-body current). Though the form of the two-body current is closely related to the potential, it is not straight forward to extract the former from the latter. In this work, we derive the the current matrix element formula in the quantum mechanics defined by the HAL QCD potential. As a first step, we focus on the non-relativistic case. To give an explicit example, we consider a second quantized non-relativistic two-channel coupling model which we refer to as the original model. From the original model, the HAL QCD potential for the open channel is constructed by eliminating the closed channel in the elastic two-particle scattering region. The current matrix element formula is derived by demanding the effective quantum mechanics defined by the HAL QCD potential to respond to the external field in the same way as the original two-channel coupling model.

  8. Nuclear matter descriptions including quark structure of the hadrons

    International Nuclear Information System (INIS)

    Huguet, R.

    2008-07-01

    It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)

  9. QCD sum rule studies at finite density and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Youngshin

    2010-01-21

    In-medium modifications of hadronic properties have a strong connection to the restoration of chiral symmetry in hot and/or dense medium. The in-medium spectral functions for vector and axial-vector mesons are of particular interest in this context, considering the experimental dilepton production data which signal the in-medium meson properties. In this thesis, finite energy sum rules are employed to set constraints for the in-medium spectral functions of vector and axial-vector mesons. Finite energy sum rules for the first two moments of the spectral functions are investigated with emphasis on the role of a scale parameter related to the spontaneous chiral symmetry breaking in QCD. It is demonstrated that these lowest moments of vector current spectral functions do permit an accurate sum rule analysis with controlled inputs, such as the QCD condensates of lowest dimensions. In contrast, the higher moments contain uncertainties from the higher dimensional condensates. It turns out that the factorization approximation for the four-quark condensate is not applicable in any of the cases studied in this work. The accurate sum rules for the lowest two moments of the spectral functions are used to clarify and classify the properties of vector meson spectral functions in a nuclear medium. Possible connections with the Brown-Rho scaling hypothesis are also discussed. (orig.)

  10. International Meeting: Excited QCD 2014

    CERN Document Server

    Giacosa, Francesco; Malek, Magdalena; Marinkovic, Marina; Parganlija, Denis

    2014-01-01

    Excited QCD 2014 will take place on the beautiful Bjelasnica mountain located in the vicinity of the Bosnian capital Sarajevo. Bjelasnica was a venue of the XIV Winter Olympic Games and it is situated only 30 kilometers from Sarajevo International Airport. The workshop program will start on February 2 and finish on February 8, 2014, with scientific lectures taking place from February 3 to 7. Workshop participants will be accomodated in Hotel Marsal, only couple of minutes by foot from the Olympic ski slopes. ABOUT THE WORKSHOP This edition is the sixth in a series of workshops that were previously organised in Poland, Slovakia, France and Portugal. Following the succesful meeting in 2013, the Workshop is returning to Sarajevo Olympic mountains in 2014, exactly thirty years after the Games. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-...

  11. Beyond QCD: Why and How

    International Nuclear Information System (INIS)

    Preparata, G.

    1983-01-01

    In this paper the necessity of going beyond Quantum chromodynamics is argued, and a new theory of Isotropic Chromodynamics (ICD) is introduced. The basic theoretical notions behind QCD--quarks, colors, and gauge theory are retained, but the conclusion that QCD must be the theory of hadrions is questioned. Two points of QCD are reviewed, gluons (including glueballs), and asymptotic freedom. It is suggested that much of this theory is wishful thinking. Beyond QCD, aspects which are puzzling in hadrodynamics are well understood in two-dimensional gauge theories (confinement, freedom at short distances etc). Anisotropic chromodynamics is proposed in the attempt to conjugate the basic pillars of hadrodynamics with the peculiar characteristics of two-dimensional gauge dynamics. In order to construct a gauge dynamics for the color field which is isomorphic to a two-dimensional gauge-theory base space must be enlarged to a seven dimension space-time structure, to be called Anisotropic Space-Time (AST). The ideas and present achievements of ICD are then reviewed

  12. Novel QCD Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-08-12

    I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of

  13. Toward the Limits of Matter: Ultra-relativistic nuclear collisions at CERN

    CERN Document Server

    Schukraft, Jurgen

    2015-01-01

    Strongly interacting matter as described by the thermodynamics of QCD undergoes a phase transition, from a low temperature hadronic medium to a high temperature quark-gluon plasma state. In the early universe this transition occurred during the early microsecond era. It can be investigated in the laboratory, in collisions of nuclei at relativistic energy, which create "fireballs" of sufficient energy density to cross the QCD Phase boundary. We describe 3 decades of work at CERN, devoted to the study of the QCD plasma and the phase transition. From modest beginnings at the SPS, ultra-relativistic heavy ion physics has evolved today into a central pillar of contemporary nuclear physics and forms a significant part of the LHC program.

  14. X-ray investigations of the hot ISM

    Science.gov (United States)

    Sanders, W. T.

    1993-01-01

    At energies less than one keV, the intensity of the galactic x-ray background dominates that of the extragalactic background in almost every direction on the sky. Below 1/4 keV, the galactic x-ray background has a galactic stellar component, but the dominant emitter seems to be hot interstellar matter. The origin of the general 3/4 keV x-ray background remains uncertain, but one component must also be the contribution from hot interstellar matter. An overview is given of recent x-ray investigations of the hot interstellar medium using data from the ROSAT X-ray Telescope/Position-Sensitive Proportional Counter (XRT/PSPC) instrument. Several prominent features in the low energy x-ray background that are interpreted as fossil supernova remnants are discussed.

  15. QCD: Questions, challenges, and dilemmas

    International Nuclear Information System (INIS)

    Bjorken, J.

    1996-11-01

    An introduction to some outstanding issues in QCD is presented, with emphasis on work by Diakonov and co-workers on the influence of the instanton vacuum on low-energy QCD observables. This includes the calculation of input valence-parton distributions for deep-inelastic scattering. 35 refs., 3 figs

  16. Experimental Summary Moriond QCD 2007

    CERN Document Server

    Rolandi, Gigi

    2007-01-01

    More than 90 speakers gave a presentation at this years Moriond QCD conference and more than 60 talks reported the experimental status and perspectives on Standard Model, especially QCD, search for new physics, quark spectroscopy and Heavy Ions physics. I summarize what I consider the highlights of these presentations.

  17. Quarklei: nuclear physics from QCD

    International Nuclear Information System (INIS)

    Goldman, T.

    1985-01-01

    The difficulties posed for nuclear physics by either recognizing or ignoring QCD, are discussed. A QCD model for nuclei is described. A crude approximation is shown to qualitatively reproduce saturation of nuclear binding energies and the EMC effect. The model is applied seriously to small nuclei, and to hypernuclei

  18. Color ordering in QCD

    OpenAIRE

    Schuster, Theodor

    2013-01-01

    We derive color decompositions of arbitrary tree and one-loop QCD amplitudes into color ordered objects called primitive amplitudes. Furthermore, we derive general fermion flip and reversion identities spanning the null space among the primitive amplitudes and use them to prove that all color ordered tree amplitudes of massless QCD can be written as linear combinations of color ordered tree amplitudes of $\\mathcal{N}=4$ super Yang-Mills theory.

  19. QCD and Light-Front Dynamics

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; de Teramond, Guy F.

    2011-01-01

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate ζ which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its β-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  20. QCD and Light-Front Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

    2011-01-10

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

  1. Leptogenesis as an origin of hot dark matter and baryon asymmetry in the E6 inspired SUSY models

    Science.gov (United States)

    Nevzorov, R.

    2018-04-01

    We explore leptogenesis within the E6 inspired U (1) extension of the MSSM in which exact custodial symmetry forbids tree-level flavour-changing transitions and the most dangerous baryon and lepton number violating operators. This supersymmetric (SUSY) model involves extra exotic matter beyond the MSSM. In the simplest phenomenologically viable scenarios the lightest exotic fermions are neutral and stable. These states should be substantially lighter than 1eV forming hot dark matter in the Universe. The low-energy effective Lagrangian of the SUSY model under consideration possesses an approximate global U(1)E symmetry associated with the exotic states. The U(1)E symmetry is explicitly broken because of the interactions between the right-handed neutrino superfields and exotic matter supermultiplets. As a consequence the decays of the lightest right-handed neutrino/sneutrino give rise to both U(1)E and U(1) B - L asymmetries. When all right-handed neutrino/sneutrino are relatively light ∼106-107GeV the appropriate amount of the baryon asymmetry can be induced via these decays if the Yukawa couplings of the lightest right-handed neutrino superfields to the exotic matter supermultiplets vary between ∼10-4-10-3.

  2. Chiral phase transition at finite chemical potential in 2 +1 -flavor soft-wall anti-de Sitter space QCD

    Science.gov (United States)

    Bartz, Sean P.; Jacobson, Theodore

    2018-04-01

    The phase transition from hadronic matter to chirally symmetric quark-gluon plasma is expected to be a rapid crossover at zero quark chemical potential (μ ), becoming first order at some finite value of μ , indicating the presence of a critical point. Using a three-flavor soft-wall model of anti-de Sitter/QCD, we investigate the effect of varying the light and strange quark masses on the order of the chiral phase transition. At zero quark chemical potential, we reproduce the Columbia Plot, which summarizes the results of lattice QCD and other holographic models. We then extend this holographic model to examine the effects of finite quark chemical potential. We find that the the chemical potential does not affect the critical line that separates first-order from rapid crossover transitions. This excludes the possibility of a critical point in this model, suggesting that a different setup is necessary to reproduce all the features of the QCD phase diagram.

  3. QCD and Hadron Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  4. Scattering processes and resonances from lattice QCD

    Science.gov (United States)

    Briceño, Raúl A.; Dudek, Jozef J.; Young, Ross D.

    2018-04-01

    The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This article reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them.

  5. The evolution of X-ray clusters in a cold plus hot dark matter universe

    Science.gov (United States)

    Bryan, Greg L.; Klypin, Anatoly; Loken, Chris; Norman, Michael L.; Burns, Jack O.

    1994-01-01

    We present the first self-consistently computed results on the evolution of X-ray properties of galaxy clusters in a cold + hot dark matter (CHDM) model. We have performed a hydrodynamic plus N-body simulation for the COBE-compatible CHDM model with standard mass components: Omega(sub hot) = 0.3, Omega (sub cold) = 0.6 and Omega(sub baryon) = 0.1 (h = 0.5). In contrast with the CDM model, which fails to reproduce the observed temperature distribution function dN/dT (Bryan et al. 1994b), the CHDM model fits the observational dN/dT quite well. Our results on X-ray luminosity are less firm but even more intriguing. We find that the resulting X-ray luminosity functions at redshifts z = 0.0, 0.2, 0.4, 0.7 are well fit by observations, where they overlap. The fact that both temperatures and luminosities provide a reasonable fit to the available observational data indicates that, unless we are missing some essential physics, there is neither room nor need for a large fraction of gas in rich clusters: 10% (or less) in baryons is sufficient to explain their X-ray properties. We also see a tight correlation between X-ray luminosity and gas temperature.

  6. Birth, life and death of hot nuclei

    International Nuclear Information System (INIS)

    Suraud, E.; Tamain, B.; Gregoire, C.

    1989-01-01

    Intermediate energy heavy-ions (10-100 MeV/u) are the most powerful tool to study hot nuclear matter properties. In this paper we give a review of experimental and theoretical works which support this statement. The first challenge is to achieve hot nuclei formation. The second one is to study their properties. The formation step is governed by the relative influence of nucleon-nucleon collisions and mean field effects. Fundamental quantities such as excited matter decay time, thermalization time, relaxation time for collective modes are of major importance and are compared with typical collision times. It appears that semi-classical theories are able to give a reasonable description of the collision and that they are a good guide for defining further experiments. We show how it has been possible to experimentally establish that very hot equilibrated nuclei are really formed. Their decay properties are not basically different from decay properties at lower bombarding energy. However specific channels are open: in that sense, we take stock of the multifragmentation process. Moreover, compression effects may be an important feature of this energy range. Future studies will involve heavier projectiles around 30-50 MeV/u. They will be the best probe for hot and compressed nuclear matter studies

  7. Aspects of QCD factorization

    International Nuclear Information System (INIS)

    Neubert, Matthias

    2001-01-01

    The QCD factorization approach provides the theoretical basis for a systematic analysis of nonleptonic decay amplitudes of B mesons in the heavy-quark limit. After recalling the basic ideas underlying this formalism, several tests of QCD factorization in the decays B→D (*) L, B→K * γ, and B→πK, ππ are discussed. It is then illustrated how factorization can be used to obtain new constraints on the parameters of the unitarity triangle

  8. Gravitational waves generated from the cosmological QCD phase transition within AdS/QCD

    Directory of Open Access Journals (Sweden)

    M. Ahmadvand

    2017-09-01

    Full Text Available We study the gravitational waves produced by the collision of the bubbles as a probe for the cosmological first order QCD phase transition, considering heavy static quarks. Using AdS/QCD and the correspondence between a first order Hawking–Page phase transition and confinement–deconfinement phase transition, we find the spectrum and the strain amplitude of the gravitational wave within the hard and soft wall models. We postulate the duration of the phase transition corresponds to the evaporation time of the black hole in the five dimensional dual gravity space, and thereby obtain a bound on the string length in the space and correspondingly on the duration of the QCD phase transition. We also show that IPTA and SKA detectors will be able to detect these gravitational waves, which can be an evidence for the first order deconfinement transition.

  9. High Momentum Probes of Nuclear Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.

    2009-07-24

    We discuss how the chemical composition of QCD jets is altered by final state interactions in surrounding nuclear matter. We describe this process through conversions of leading jet particles. We find that conversions lead to an enhancement of kaons at high transverse momentum in Au+Au collisions at RHIC, while their azimuthal asymmetry v{sub 2} is suppressed.

  10. SUSY-QCD corrections to the (co)annihilation of neutralino dark matter within the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Meinecke, Moritz

    2015-06-15

    Based on experimental observations, it is nowadays assumed that a large component of the matter content in the universe is comprised of so-called cold dark matter. Furthermore, latest measurements of the temperature fluctuations of the cosmic microwave background provided an estimation of the dark matter relic density at a measurement error of one percent (concerning the experimental 1σ-error). The lightest neutralino χ 0{sub 1}, a particle which subsumes under the phenomenologically interesting category of weakly interacting massive particles, is a viable dark matter candidate for many supersymmetric (SUSY) models whose relic density Ω{sub χ} {sub 0{sub 1}} happens to lie quite naturally within the experimentally favored ballpark of dark matter. The high experimental precision can be used to constrain the SUSY parameter space to its cosmologically favored regions and to pin down phenomenologically interesting scenarios. However, to actually benefit from this progress on the experimental side it is also mandatory to minimize the theoretical uncertainties. An important quantity within the calculation of the neutralino relic density is the thermally averaged sum over different annihilation and coannihilation cross sections of the neutralino and further supersymmetric particles. It is now assumed and also partly proven that these cross sections can be subject to large loop corrections which can even shift the associated Ω{sub χ} {sub 0{sub 1}} by a factor larger than the current experimental error. However, most of these corrections are yet unknown. In this thesis, we calculate higher-order corrections for some of the most important (co)annihilation channels both within the framework of the R-parity conserving Minimal Supersymmetric Standard Model (MSSM) and investigate their impact on the final neutralino relic density Ω{sub χ} {sub 0{sub 1}}. More precisely, this work provides the full O(α{sub s}) corrections of supersymmetric quantum chromodynamics (SUSY-QCD

  11. Dark matter from unification

    DEFF Research Database (Denmark)

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  12. Hard Probes in Heavy-Ion Physics

    CERN Document Server

    Renk, Thorsten

    2012-01-01

    The aim of ultrarelativistic heavy ion physics is to study collectivity and thermodynamics of Quantum Chromodynamics (QCD) by creating a transient small volume of matter with extreme density and temperature. There is experimental evidence that most of the particles created in such a collision form indeed a thermalized system characterized by collective response to pressure gradients. However, a numerically small subset of high transverse momentum ($P_T$) processes takes place independent of the bulk, with the outgoing partons subsequently propagating through the bulk medium. Understanding the modification of such 'hard probes' by the bulk medium is an important part of the efforts to determine the properties of hot and dense QCD matter. In this paper, current developments are reviewed.

  13. Nonperturbative QCD and elastic processes at CEBAF energies

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, A.V. [Old Dominion Univ., Norfolk, VA (United States)]|[Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)

    1994-04-01

    The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author`s point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood ({open_quotes}known{close_quotes}) short-distance effects and nonperturbative ({open_quotes}unknown{close_quotes}) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q{sup 2} closer to 10 GeV{sup 2} and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes.

  14. Nonperturbative QCD and elastic processes at CEBAF energies

    International Nuclear Information System (INIS)

    Radyushkin, A.V.

    1994-01-01

    The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author's point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood (open-quotes knownclose quotes) short-distance effects and nonperturbative (open-quotes unknownclose quotes) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q 2 closer to 10 GeV 2 and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes

  15. QCD at finite temperature

    International Nuclear Information System (INIS)

    Kikkawa, Keiji

    1983-01-01

    The varidity of the perturbation method in the high temperature QCD is discussed. The skeleton expansion method takes account of plasmon effects and eliminates the electric infrared singularity but not the magnetic one. A possibility of eliminating the latter, which was recently proposed, is examined by a gauge invariant skeleton expansion. The magnetic singularity is unable to be eliminated by the perturbation method. This implies that some non-perturbative approaches must be incorporated in the high temperature QCD. (author)

  16. QCD for Collider Physics

    OpenAIRE

    Skands, Peter

    2011-01-01

    These lectures are directed at a level suitable for graduate students in experimental and theoretical High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD) as it is used in collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into four main areas: 1) fundamentals, 2) perturbative QCD, ...

  17. Dynamical effects of QCD vacuum structure

    International Nuclear Information System (INIS)

    Ferreira, Erasmo

    1994-01-01

    The role of the QCD vacuum structure in the determination of the properties of states and processes occurring in the confinement regime of QCD is reviewed. The finite range of the vacuum correlations is discussed, and an analytical form is suggested for the correlation functions. The role of the vacuum quantum numbers in the phenomenology of high-energy scattering is reviewed. The vacuum correlation model of non-perturbative QCD is mentioned as a bridge between the fundamental theory and the description of the experiments. (author). 13 refs., 1 fig

  18. Knot topology in QCD

    International Nuclear Information System (INIS)

    Zou, L.P.; Zhang, P.M.; Pak, D.G.

    2013-01-01

    We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topologically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy groups for coset of the color group SU(N) (N=2,3) under the action of maximal Abelian stability group. Starting with explicit vacuum knot configurations we study possible exact classical solutions. Exact analytic non-static knot solution in a simple CP 1 model in Euclidean space–time has been obtained. We construct an ansatz based on knot and monopole topological vacuum structure for searching new solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space–time can be naturally obtained from knot solitons in integrable CP 1 models. A family of Skyrme type low energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is proposed

  19. QCD sum rules in a Bayesian approach

    International Nuclear Information System (INIS)

    Gubler, Philipp; Oka, Makoto

    2011-01-01

    A novel technique is developed, in which the Maximum Entropy Method is used to analyze QCD sum rules. The main advantage of this approach lies in its ability of directly generating the spectral function of a given operator. This is done without the need of making an assumption about the specific functional form of the spectral function, such as in the 'pole + continuum' ansatz that is frequently used in QCD sum rule studies. Therefore, with this method it should in principle be possible to distinguish narrow pole structures form continuum states. To check whether meaningful results can be extracted within this approach, we have first investigated the vector meson channel, where QCD sum rules are traditionally known to provide a valid description of the spectral function. Our results exhibit a significant peak in the region of the experimentally observed ρ-meson mass, which agrees with earlier QCD sum rules studies and shows that the Maximum Entropy Method is a useful tool for analyzing QCD sum rules.

  20. The Operator Product Expansion Beyond Perturbation Theory in QCD

    International Nuclear Information System (INIS)

    Dominguez, C. A.

    2011-01-01

    The Operator Product Expansion (OPE) of current correlators at short distances beyond perturbation theory in QCD, together with Cauchy's theorem in the complex energy plane, are the pillars of the method of QCD sum rules. This technique provides an analytic tool to relate QCD with hadronic physics at low and intermediate energies. It has been in use for over thirty years to determine hadronic parameters, form factors, and QCD parameters such as the quark masses, and the running strong coupling at the scale of the τ-lepton. QCD sum rules provide a powerful complement to numerical simulations of QCD on the lattice. In this talk a short review of the method is presented for non experts, followed by three examples of recent applications.

  1. Dark matter search and the scalar quark contents of the nucleon

    International Nuclear Information System (INIS)

    Dinter, Simon; Drach, Vincent; Jansen, Karl

    2011-09-01

    We present lattice QCD simulation results from the European Twisted Mass Collaboration (ETMC) for the light, strange and charm quark contents of the nucleon. These quantities are important ingredients to estimate the cross-section for the detection of WIMPs as Dark Matter candidates. By employing a particular lattice QCD formulation, i.e. twisted mass fermions, accurate results of the light and strange scalar contents of the nucleon can be obtained. In addition, we provide a bound for the charm quark content of the nucleon. (orig.)

  2. Dark matter search and the scalar quark contents of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-09-15

    We present lattice QCD simulation results from the European Twisted Mass Collaboration (ETMC) for the light, strange and charm quark contents of the nucleon. These quantities are important ingredients to estimate the cross-section for the detection of WIMPs as Dark Matter candidates. By employing a particular lattice QCD formulation, i.e. twisted mass fermions, accurate results of the light and strange scalar contents of the nucleon can be obtained. In addition, we provide a bound for the charm quark content of the nucleon. (orig.)

  3. Hadronic laws from QCD

    International Nuclear Information System (INIS)

    Cahill, R.T.

    1992-01-01

    A review is given of progress in deriving the effective action for hadronic physics, S[π, ρ, ω, .., anti N, N, ..], from the fundamental defining action of QCD, S[anti q, q, A μ a ]. This is a problem in quantum field theory and the most success so far has been achieved using functional integral calculus (FIC) techniques. This formulates the problem as an exercise in changing the variables of integration in the functional integrals, from those of the quark and gluon fields to those of the (bare) meson and baryon fields. The appropriate variables are determined by the dynamics of QCD, and the final hadronic variables (essentially the 'normal modes' of QCD) are local fields describing the 'centre-of-mass' motion of extended bound states of quarks. The quarks are extensively dressed by the gluons, and the detailed aspects of the hidden chiral symmetry emerge naturally from the formalism. Particular attention is given to covariant integral equations which determine bare nucleon structure (i.e. in the quenched approximation). These equations, which arise from the closed double-helix diagrams of the FIC analysis, describe the baryons in terms of quark-diquark structure, in the form of Faddeev equations. This hadronisation of QCD also generates the dressing of these baryons by the pions, and the non-local πNN coupling. (orig.)

  4. Lattice QCD for nuclear physics

    CERN Document Server

    Meyer, Harvey

    2015-01-01

    With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities.  The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics.  A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...

  5. Isospin-breaking nuclear forces in QCD sum rules and Nolen-Schiffer anomaly

    International Nuclear Information System (INIS)

    Drukarev, E.G.; Ryskin, M.G.

    1994-01-01

    We use QCD sum rules to investigate isospin-breaking effects in nuclear matter. The isospin-breaking condensate left angle NM vertical stroke uu-dd vertical stroke NM right angle is shown to play an important role. In a reasonable model the neutron becomes (0.9±0.6) MeV more bound than the proton, providing a possible solution for the Nolen-Schiffer anomaly. The various contributions to the value are analysed. The possible consequences for nucleon-nucleon isospin-breaking forces are discussed. ((orig.))

  6. Experimental tests of QCD

    International Nuclear Information System (INIS)

    Hansl-Kozanecka, T.

    1992-01-01

    The phenomenological aspects of Quantum Chromodynamics (QCD) are examined which are relevant for lepton-hadron, electron-positron and hadron-hadron collisions. In deep inelastic scattering the virtual γ or W/Z is used as a probe of the nucleon structure. The strong coupling constant (α s ) measurements via deep inelastic scattering and e + e - annihilation are discussed. Parton-parton collisions (e.g., hard hadron-hadron collisions) are examined as the third regime for QCD tests. (K.A.) 122 refs., 84 figs., 4 tabs

  7. Two-color quark matter: U(1)A restoration, superfluidity, and quarkyonic phase

    International Nuclear Information System (INIS)

    Brauner, Tomas; Fukushima, Kenji; Hidaka, Yoshimasa

    2009-01-01

    We discuss the phase structure of quantum chromodynamics (QCD) with two colors and two flavors of light quarks. This is motivated by the increasing interest in the QCD phase diagram as follows: (1) The QCD critical point search has been under intensive dispute and its location and existence suffer from uncertainty of effective U(1) A symmetry restoration. (2) A new phase called quarkyonic matter is drawing theoretical and experimental attention but it is not clear whether it can coexist with diquark condensation. We point out that two-color QCD is nontrivial enough to contain essential ingredients for (1) and (2) both, and most importantly, is a system without the sign problem in numerical simulations on the lattice. We adopt the two-flavor Nambu-Jona-Lasinio model extended with the two-color Polyakov loop and make quantitative predictions that can be tested by lattice simulations.

  8. Analytic continuation in perturbative QCD

    International Nuclear Information System (INIS)

    Caprini, Irinel

    2002-01-01

    We discuss some attempts to improve standard perturbative expansion in QCD by using the analytic continuation in the momentum and the Borel complex planes. We first analyse the momentum-plane analyticity properties of the Borel-summed Green functions in perturbative QCD and the connection between the Landau singularities and the infrared renormalons. By using the analytic continuation in the Borel complex plane, we propose a new perturbative series replacing the standard expansion in powers of the normalized coupling constant a. The new expansion functions have branch point and essential singularities at the origin of the complex a-plane and divergent Taylor expansions in powers of a. On the other hand the modified expansion of the QCD correlators is convergent under rather conservative conditions. (author)

  9. Temperature-dependence of the QCD topological susceptibility

    Science.gov (United States)

    Kovacs, Tamas G.

    2018-03-01

    We recently obtained an estimate of the axion mass based on the hypothesis that axions make up most of the dark matter in the universe. A key ingredient for this calculation was the temperature-dependence of the topological susceptibility of full QCD. Here we summarize the calculation of the susceptibility in a range of temperatures from well below the finite temperature cross-over to around 2 GeV. The two main difficulties of the calculation are the unexpectedly slow convergence of the susceptibility to its continuum limit and the poor sampling of nonzero topological sectors at high temperature. We discuss how these problems can be solved by two new techniques, the first one with reweighting using the quark zero modes and the second one with the integration method.

  10. Dual QCD: A review

    International Nuclear Information System (INIS)

    Baker, M.; Ball, J.S.; Zachariasen, F.

    1991-01-01

    We review the attempts to use dual (electric) vector potentials rather than the standard magnetic vector potentials to describe QCD, particularly in the infrared regime. The use of dual potentials is motivated by the fact that in classical electrodynamics, in a medium with a dielectric constant vanishing at small momenta (as is believed to be the case in QCD), electric potentials provide a far more convenient language than do magnetic potentials. To begin with, we outline attempts to construct the QCD Lagrangian in terms of dual potentials and describe the various possibilities, their shortcomings and advantages, which so far exist. We then proceed to use the most attractive (albeit consistent as a field theory only at the tree level) of these Lagrangians in a number of applications. We show that it describes a non-Abelian dual superconductor (so that it automatically confines color), derive the static quark-antiquark potential, and various temperature dependent effects, such as deconfinement and chiral symmetry breaking. (orig.)

  11. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  12. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  13. Dark matter and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ''cold'' and ''hot'' non-baryonic candidates is shown to depend on the assumed ''seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed

  14. Color-magnetic permeability of QCD vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1980-03-01

    In the very strong background gauge field the QCD true vacuum has been shown to have lower energy than the ''perturbative vacuum.'' The color-magnetic permeability of the QCD true vacuum is then calculated to be 1/2 within the quark-one-loop approximation.

  15. Understanding of QCD through solvable models

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, G.

    1980-07-01

    Various aspects of strong interaction physics are discussed. It is shown that several nontrivial features arise from non-perturbative 'solutions' of QCD-like models in (1+1) dimensions. An attempt is made to bring these features in (3+1) dimensional semiclassical treatments of QCD.

  16. Quark virtuality and QCD vacuum condensates

    International Nuclear Information System (INIS)

    Zhou Lijuan; Ma Weixing

    2004-01-01

    Based on the Dyson-Schwinger equations (DSEs) in the 'rainbow' approximation, the authors investigate the quark virtuality in the vacuum state and quantum-chromodynamics (QCD) vacuum condensates. In particular, authors calculate the local quark vacuum condensate and quark-gluon mixed condensates, and then the virtuality of quark. The calculated quark virtualities are λ u,d 2 =0.7 GeV 2 for u, d quarks, and λ s 2 =1.6 GeV 2 for s quark. The theoretical predictions are consistent with empirical values used in QCD sum rules, and also fit to lattice QCD predictions

  17. QCD Results from ATLAS and CMS

    CERN Document Server

    Leyton, M; The ATLAS collaboration

    2014-01-01

    The ATLAS and CMS collaborations have performed a wide range of studies of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-­QCD measurements include studies of the underlying event, double parton interactions and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high­-order QCD predictions and provide input for the determination of parton density functions. Measurements of isolated, inclusive and di­-photon cross sections for high-pT photons test various theoretical predictions and further constrain PDFs. An overview of these results is given.


  18. The quark matter

    International Nuclear Information System (INIS)

    Rho, Mannque.

    1980-04-01

    The present status of our understanding of the physics of hadronic (nuclear or neutron) matter under extreme conditions, in particular at high densities is discussed. This is a problem which challenges three disciplines of physics: nuclear physics, astrophysics and particle physics. It is generally believed that we now have a correct and perhaps ultimate theory of the strong interactions, namely quantum chromodynamics (QCD). The constituents of this theory are quarks and gluons, so highly dense matters should be describable in terms of these constituents alone. This is a question that addresses directly to the phenomenon of quark confinement, one of the least understood aspects in particle physics. For nuclear physics, the possibility of a phase change between nuclear matter and quark matter introduces entirely new degrees of freedom in the description of nuclei and will bring perhaps a deeper understanding of nuclear dynamics. In astrophysics, the properties of neutron stars will be properly understood only when the equation of state of 'neutron' matter at densities exceeding that of nuclear matter can be realiably calculated. Most fascinating is the possibility of quark stars existing in nature, not entirely an absurd idea. Finally the quark matter - nuclear matter phase transition must have occured in the early stage of universe when matter expanded from high temperature and density; this could be an essential ingredient in the big-bang cosmology

  19. The deconfinement phase transition, hadronization and the NJL model

    International Nuclear Information System (INIS)

    Raha, Sibaji

    2000-01-01

    One of the confident predictions of QCD is that at sufficiently high temperature and/or density, hadronic matter should undergo a thermodynamic phase transition to a color deconfined state of matter-popularly called the Quark-Gluon Plasma (QGP). In low energy effective theories of Quantum Chromodynamics (QCD), one usually talks of the chiral transition for which a well defined order parameter exists. We investigate the dissociation of pions and kaons in a medium of hot quark matter described by the Nambu-Jona Lasinio (NJL) model. The decay widths of pion and kaon are found to be large but finite at temperature much higher than the critical temperature for the chiral (or deconfinement) transition, the kaon decay width being much larger. Thus pions and even kaons (with a lower density compared to pions) may coexist with quarks and gluons at such high temperatures. On the basis of such premises, we investigate the process of hadronization in quark-gluon plasma with special emphasis on whether such processes shed any light on acceptable low energy effective theories of QCD

  20. Determinations of the QCD strong coupling αsub(s) and the scale Λsub(QCD)

    International Nuclear Information System (INIS)

    Duke, D.W.; Roberts, R.G.

    1984-08-01

    The authors review determinations, via experiment of the strong coupling of QCD, αsub(s). In almost every case, the results are used of perturbative QCD to make the necessary extraction from data. These include scaling violations of deep inelastic scattering, e + e - annihilation experiments (including quarkonium decays) and lepton pair production. Finally estimates for Λ from lattice calculations are listed. (author)

  1. Dark matter, constrained minimal supersymmetric standard model, and lattice QCD.

    Science.gov (United States)

    Giedt, Joel; Thomas, Anthony W; Young, Ross D

    2009-11-13

    Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches.

  2. Neutrino interactions in hot and dense matter

    International Nuclear Information System (INIS)

    Reddy, S.; Prakash, M.; Lattimer, J.M.

    1998-01-01

    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star. copyright 1998 The American Physical Society

  3. Dark Matter

    International Nuclear Information System (INIS)

    Holt, S. S.; Bennett, C. L.

    1995-01-01

    These proceedings represent papers presented at the Astrophysics conference in Maryland, organized by NASA Goddard Space Flight Center and the University of Maryland. The topics covered included low mass stars as dark matter, dark matter in galaxies and clusters, cosmic microwave background anisotropy, cold and hot dark matter, and the large scale distribution and motions of galaxies. There were eighty five papers presented. Out of these, 10 have been abstracted for the Energy Science and Technology database

  4. Twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Shindler, A.

    2007-07-01

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  5. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  6. A Bayesian analysis of QCD sum rules

    International Nuclear Information System (INIS)

    Gubler, Philipp; Oka, Makoto

    2011-01-01

    A new technique has recently been developed, in which the Maximum Entropy Method is used to analyze QCD sum rules. This approach has the virtue of being able to directly generate the spectral function of a given operator, without the need of making an assumption about its specific functional form. To investigate whether useful results can be extracted within this method, we have first studied the vector meson channel, where QCD sum rules are traditionally known to provide a valid description of the spectral function. Our results show a significant peak in the region of the experimentally observed ρ-meson mass, which is in agreement with earlier QCD sum rules studies and suggests that the Maximum Entropy Method is a strong tool for analyzing QCD sum rules.

  7. Challenges for QCD theory: some personal reflections

    International Nuclear Information System (INIS)

    Sjöstrand, T

    2013-01-01

    At the LHC all processes are QCD ones, whether ‘signal’ or ‘background’. In this review the frontiers of current QCD research are addressed, towards increased understanding, improved calculational precision, and role in potential future discoveries. Issues raised include: - the limits of perturbative QCD calculations and parton distribution usage,; - the nature of multiparton interactions,; - the impact of colour reconnection on physical observables,; - the need for progress on hadronization modelling,; - the improvements of parton showers and their combination with the matrix-element description,; - the use of QCD concepts in Beyond-the-Standard-Model scenarios and; - the key position of event generators and other software in the successful exploration of LHC physics. On the way, several questions are posed, where further studies are needed. (paper)

  8. Formation and decay of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1992-09-01

    The mechanisms involved in hot nuclei formation and decay and their eventual connexion with fundamental properties of nuclear matter are discussed, i.e. its equation of state is considered. After a brief review of the reactions in which hot nuclei can be formed, the variables which are used to describe them, the corresponding theoretical descriptions and their limits when extreme states are reached are discussed. Experimental evidences for hot nuclei formation are presented, with the corresponding decay properties used as signatures. (R.P.) 64 refs.; 25 figs.; 2 tabs

  9. Topics in perturbative QCD beyond the leading order

    International Nuclear Information System (INIS)

    Buras, A.J.

    1979-08-01

    The basic structure of QCD formulae for various inclusive and semi-inclusive processes is presented. Next to leading order QCD corrections to inclusive deep-inelastic scattering are discussed in some detail. The methods for calculations of QCD corrections (leading, next to leading) to semi-inclusive processes are outlined. Some results of these calculations are discussed. 58 references

  10. Hot Strange Hadronic Matter in an Effective Model

    Institute of Scientific and Technical Information of China (English)

    QIAN Wei-Liang; SU Ru-Keng; SONG Hong-Qiu

    2003-01-01

    An effective model used to describe the strange hadronic matter with nucleons, Λ-hyperons, and Ξ-hyperonsis extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fractiondependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy andpressure, as well as the equation of state of the matter, are given.

  11. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    Science.gov (United States)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  12. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  13. Hot Strange Hadronic Matter in an Effective Model

    Institute of Scientific and Technical Information of China (English)

    QIANWei-Liang; SURu-Keng; SONGHong-Qiu

    2003-01-01

    An effective model used to describe the strange hadronic matter with nucleons, A-hyperons, and [I]-hyperons is extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fraction dependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy and pressure, as well as the equation of state of the matter, are given.

  14. New Methods in Non-Perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.

  15. Quark model and QCD

    International Nuclear Information System (INIS)

    Anisovich, V.V.

    1989-06-01

    Using the language of the quarks and gluons for description of the soft hadron physics it is necessary to take into account two characteristic phenomena which prevent one from usage of QCD Lagrangian in the straightforward way, chiral symmetry breaking, and confinement of colour particles. The topics discussed in this context are: QCD in the domain of soft processes, phenomenological Lagrangian for soft processes and exotic mesons, spectroscopy of low-lying hadrons (mesons, baryons and mesons with heavy quarks - c,b -), confinement forces, spectral integration over quark masses. (author) 3 refs.; 19 figs.; 3 tabs

  16. Energy- and cost-efficient lattice-QCD computations using graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Matthias

    2014-07-01

    Quarks and gluons are the building blocks of all hadronic matter, like protons and neutrons. Their interaction is described by Quantum Chromodynamics (QCD), a theory under test by large scale experiments like the Large Hadron Collider (LHC) at CERN and in the future at the Facility for Antiproton and Ion Research (FAIR) at GSI. However, perturbative methods can only be applied to QCD for high energies. Studies from first principles are possible via a discretization onto an Euclidean space-time grid. This discretization of QCD is called Lattice QCD (LQCD) and is the only ab-initio option outside of the high-energy regime. LQCD is extremely compute and memory intensive. In particular, it is by definition always bandwidth limited. Thus - despite the complexity of LQCD applications - it led to the development of several specialized compute platforms and influenced the development of others. However, in recent years General-Purpose computation on Graphics Processing Units (GPGPU) came up as a new means for parallel computing. Contrary to machines traditionally used for LQCD, graphics processing units (GPUs) are a massmarket product. This promises advantages in both the pace at which higher-performing hardware becomes available and its price. CL2QCD is an OpenCL based implementation of LQCD using Wilson fermions that was developed within this thesis. It operates on GPUs by all major vendors as well as on central processing units (CPUs). On the AMD Radeon HD 7970 it provides the fastest double-precision D kernel for a single GPU, achieving 120GFLOPS. D - the most compute intensive kernel in LQCD simulations - is commonly used to compare LQCD platforms. This performance is enabled by an in-depth analysis of optimization techniques for bandwidth-limited codes on GPUs. Further, analysis of the communication between GPU and CPU, as well as between multiple GPUs, enables high-performance Krylov space solvers and linear scaling to multiple GPUs within a single system. LQCD

  17. Energy- and cost-efficient lattice-QCD computations using graphics processing units

    International Nuclear Information System (INIS)

    Bach, Matthias

    2014-01-01

    Quarks and gluons are the building blocks of all hadronic matter, like protons and neutrons. Their interaction is described by Quantum Chromodynamics (QCD), a theory under test by large scale experiments like the Large Hadron Collider (LHC) at CERN and in the future at the Facility for Antiproton and Ion Research (FAIR) at GSI. However, perturbative methods can only be applied to QCD for high energies. Studies from first principles are possible via a discretization onto an Euclidean space-time grid. This discretization of QCD is called Lattice QCD (LQCD) and is the only ab-initio option outside of the high-energy regime. LQCD is extremely compute and memory intensive. In particular, it is by definition always bandwidth limited. Thus - despite the complexity of LQCD applications - it led to the development of several specialized compute platforms and influenced the development of others. However, in recent years General-Purpose computation on Graphics Processing Units (GPGPU) came up as a new means for parallel computing. Contrary to machines traditionally used for LQCD, graphics processing units (GPUs) are a massmarket product. This promises advantages in both the pace at which higher-performing hardware becomes available and its price. CL2QCD is an OpenCL based implementation of LQCD using Wilson fermions that was developed within this thesis. It operates on GPUs by all major vendors as well as on central processing units (CPUs). On the AMD Radeon HD 7970 it provides the fastest double-precision D kernel for a single GPU, achieving 120GFLOPS. D - the most compute intensive kernel in LQCD simulations - is commonly used to compare LQCD platforms. This performance is enabled by an in-depth analysis of optimization techniques for bandwidth-limited codes on GPUs. Further, analysis of the communication between GPU and CPU, as well as between multiple GPUs, enables high-performance Krylov space solvers and linear scaling to multiple GPUs within a single system. LQCD

  18. QCD

    CERN Multimedia

    1999-01-01

    Basic Properties of QCD: the Lagrangian, the running coupling, asymptotic freedom and colour confinement. Examples of perturbative calculations in electron- positron physics (total cross sections and event) Parton branching approach will be used to derive the evolution equations for hadron structure functions Comarison with data on deep inelastic scattering and jet production will be for hadron structure functions and jet fragmentation functions

  19. Testing QCD with Hypothetical Tau Leptons

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.

    1998-10-21

    We construct new tests of perturbative QCD by considering a hypothetical {tau} lepton of arbitrary mass, which decays hadronically through the electromagnetic current. We can explicitly compute its hadronic width ratio directly as an integral over the e{sup +}e{sup -} annihilation cross section ratio, R{sub e{sup +}e{sup -}}. Furthermore, we can design a set of commensurate scale relations and perturbative QCD tests by varying the weight function away from the form associated with the V-A decay of the physical {tau}. This method allows the wide range of the R{sub e{sup +}e{sup -}} data to be used as a probe of perturbative QCD.

  20. Quantum properties of QCD string fragmentation

    Directory of Open Access Journals (Sweden)

    Todorova-Nová Šárka

    2016-01-01

    Full Text Available A simple quantization concept for a 3-dim QCD string is used to derive properties of QCD flux tube from the mass spectrum of light mesons and to predict observable quantum effects in correlations between adjacent hadrons. The quantized fragmentation model is presented and compared with experimental observations.

  1. Towards understanding Regge trajectories in holographic QCD

    International Nuclear Information System (INIS)

    Cata, Oscar

    2007-01-01

    We reassess a work done by Migdal on the spectrum of low-energy vector mesons in QCD in the light of the anti-de Sitter (AdS)-QCD correspondence. Recently, a tantalizing parallelism was suggested between Migdal's work and a family of holographic duals of QCD. Despite the intriguing similarities, both approaches face a major drawback: the spectrum is in conflict with well-tested Regge scaling. However, it has recently been shown that holographic duals can be modified to accommodate Regge behavior. Therefore, it is interesting to understand whether Regge behavior can also be achieved in Migdal's approach. In this paper we investigate this issue. We find that Migdal's approach, which is based on a modified Pade approximant, is closely related to the issue of quark-hadron duality breakdown in QCD

  2. Configurational entropy and ρ and ϕ mesons production in QCD

    Science.gov (United States)

    Karapetyan, G.

    2018-06-01

    In the present work the electroproduction for diffractive ρ and ϕ mesons by considering AdS/QCD correspondence and Color Glass Condensate (CGC) approximation are studied with respect to the associated dipole cross section, whose parameters are studied and analysed in the framework of the configurational entropy. Our results suggest different quantum states of the nuclear matter, showing that the extremal points of the nuclear configurational entropy is able to reflect a true description of the ρ and ϕ mesons production, using current data concerning light quark masses. During the computations parameters, obtained in fitting procedure, coincide to the experimental within ∼ 0.1%.

  3. Mass and scattering length inequalities in QCD and QCD-like theories

    International Nuclear Information System (INIS)

    Nussinov, S.; Pennsylvania Univ., Philadelphia; Sathiapalan, B.

    1985-01-01

    Some observations about mass scattering length inequalities in QCD-like theories are presented. It is shown that the Weingarten mass inequality can be used to argue that global vector symmetries are unbroken in such theories. For QCD, in the limit Nsub(c)->infinite, it is shown that Msub(baryon)>=1/2Nsub(c)Msub(meson), provided there are at least Nsub(c) degenerate flavors of quarks. It is argued that when there are not bound states in a scattering channel, the mass inequalities can be used to derive inequalities beteen scattering lengths. Some rigorous inequalities for two and higher point functions for operators bilinear in currents are derived, and used to extract inequalities between quartic coupling constants. (orig.)

  4. QCD are we ready for the LHC?

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology.

  5. A Piezoelectrically Tuned RF-Cavity Search for Dark Matter Axions

    Science.gov (United States)

    Boutan, Christian

    The Axion is a well motivated hypothetical elementary particle that must exist in nature if the strong CP problem of QCD is explained by the spontaneous breaking of a Peccei-Quinn symmetry. Not only would the discovery of the axion solve deep issues in QCD, an axion with a mass of mueV - meV could account for most or all of the missing mass in our galaxy and finally reveal the composition of dark matter. The Axion Dark Matter experiment (ADMX) seeks to resolve these two critical problems in physics by looking for the resonant conversion of dark-matter axions to microwave photons in a strong magnetic field. Utilizing state of the art electronics and dilution refrigerator cryogenics, ADMX is the world's leading haloscope search for axions - able to discover or rule out even the most pessimistically coupled QCD axions. With multi- TM0n0 functionality and with the commissioning of the new high-frequency Sidecar experiment, ADMX is also sensitive to a wide range of plausible axion masses. Here I motivate axions as ideal dark matter candidates, review techniques for detecting them and give a detailed description of the ADMX experiment. I discuss my contributions to the construction of the ADMX dual-channel receiver, which is the most sensitive microwave receiver on earth. I discuss the data acquisition, data taking and real-time analysis software. The primary focus of this work, however, is the ADMX Sidecar experiment which is a miniature axion haloscope that fits inside of the ADMX insert and has the capability of searching for axion masses between 16mueV - 24mueV on the TM0n0 and 26.4 - 30mueV on the TM 020. I discuss analysis of the Sidecar data and exclude axion-to-two-photon coupling gagammagamma matter. Over a narrow subsection of this range, 22.89 - 22.95mueV (˜15 MHz) I set a stricter limit gagammagamma < 10-12 GeV-1.

  6. Cluster computing for lattice QCD simulations

    International Nuclear Information System (INIS)

    Coddington, P.D.; Williams, A.G.

    2000-01-01

    Full text: Simulations of lattice quantum chromodynamics (QCD) require enormous amounts of compute power. In the past, this has usually involved sharing time on large, expensive machines at supercomputing centres. Over the past few years, clusters of networked computers have become very popular as a low-cost alternative to traditional supercomputers. The dramatic improvements in performance (and more importantly, the ratio of price/performance) of commodity PCs, workstations, and networks have made clusters of off-the-shelf computers an attractive option for low-cost, high-performance computing. A major advantage of clusters is that since they can have any number of processors, they can be purchased using any sized budget, allowing research groups to install a cluster for their own dedicated use, and to scale up to more processors if additional funds become available. Clusters are now being built for high-energy physics simulations. Wuppertal has recently installed ALiCE, a cluster of 128 Alpha workstations running Linux, with a peak performance of 158 G flops. The Jefferson Laboratory in the US has a 16 node Alpha cluster and plans to upgrade to a 256 processor machine. In Australia, several large clusters have recently been installed. Swinburne University of Technology has a cluster of 64 Compaq Alpha workstations used for astrophysics simulations. Early this year our DHPC group constructed a cluster of 116 dual Pentium PCs (i.e. 232 processors) connected by a Fast Ethernet network, which is used by chemists at Adelaide University and Flinders University to run computational chemistry codes. The Australian National University has recently installed a similar PC cluster with 192 processors. The Centre for the Subatomic Structure of Matter (CSSM) undertakes large-scale high-energy physics calculations, mainly lattice QCD simulations. The choice of the computer and network hardware for a cluster depends on the particular applications to be run on the machine. Our

  7. Proceedings of RIKEN BNL research center workshop, equilibrium and non-equilibrium aspects of hot, dense QCD, Vol. 28

    International Nuclear Information System (INIS)

    De Vega, H.J.; Boyanovsky, D.

    2000-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation ∼2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision

  8. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    De Vega, H.J.; Boyanovsky, D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  9. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    DE VEGA,H.J.; BOYANOVSKY,D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  10. The generalized scheme-independent Crewther relation in QCD

    Science.gov (United States)

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.

    2017-07-01

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar

  11. Axion dark matter and Planck favor non-minimal couplings to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, Sarah, E-mail: sarah.folkerts@lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 München (Germany); Germani, Cristiano, E-mail: cristiano.germani@lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 München (Germany); Redondo, Javier, E-mail: javier.redondo@lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 München (Germany); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2014-01-20

    Constraints on inflationary scenarios and isocurvature perturbations have excluded the simplest and most generic models of dark matter based on QCD axions. Considering non-minimal kinetic couplings of scalar fields to gravity substantially changes this picture. The axion can account for the observed dark matter density avoiding the overproduction of isocurvature fluctuations. Finally, we show that assuming the same non-minimal kinetic coupling to the axion (dark matter) and to the standard model Higgs boson (inflaton) provides a minimal picture of early time cosmology.

  12. Chromo-Rayleigh interactions of dark matter

    International Nuclear Information System (INIS)

    Bai, Yang; Osborne, James

    2015-01-01

    For a wide range of models, dark matter can interact with QCD gluons via chromo-Rayleigh interactions. We point out that the Large Hadron Collider (LHC), as a gluon machine, provides a superb probe of such interactions. In this paper, we introduce simplified models to UV-complete two effective dark matter chromo-Rayleigh interactions and identify the corresponding collider signatures, including four jets or a pair of di-jet resonances plus missing transverse energy. After performing collider studies for both the 8 TeV and 14 TeV LHC, we find that the LHC can be more sensitive to dark matter chromo-Rayleigh interactions than direct detection experiments and thus provides the best opportunity for future discovery of this class of models.

  13. Fractal structures and intermittency in QCD

    International Nuclear Information System (INIS)

    Gustafson, Goesta.

    1990-04-01

    New results are presented for fractal structures and intermittency in QCD parton showers. A geometrical interpretation of the anomalous dimension in QCD is given. It is shown that model predications for factorial moments in the PEP-PETRA energy range are increased. if the properties of directly produced pions are more carefully taken into account

  14. Dynamical equilibration in strongly-interacting parton-hadron matter

    Directory of Open Access Journals (Sweden)

    Gorenstein M.

    2011-04-01

    Full Text Available We study the kinetic and chemical equilibration in 'infinite' parton-hadron matter within the Parton-Hadron-String Dynamics transport approach, which is based on a dynamical quasiparticle model for partons matched to reproduce lattice-QCD results – including the partonic equation of state – in thermodynamic equilibrium. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different baryon density (or chemical potential and energy density. The transition from initially pure partonic matter to hadronic degrees of freedom (or vice versa occurs dynamically by interactions. Different thermody-namical distributions of the strongly-interacting quark-gluon plasma (sQGP are addressed and discussed.

  15. ADS/CFT and QCD

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; de Teramond, Guy F.

    2007-01-01

    The AdS/CFT correspondence between string theory in AdS space and conformal .eld theories in physical spacetime leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. Although QCD is not conformally invariant, one can nevertheless use the mathematical representation of the conformal group in five-dimensional anti-de Sitter space to construct a first approximation to the theory. The AdS/CFT correspondence also provides insights into the inherently non-perturbative aspects of QCD, such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable ζ which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties and allow the computation of decay constants, form factors, and other exclusive scattering amplitudes. New relativistic lightfront equations in ordinary space-time are found which reproduce the results obtained using the 5-dimensional theory. The effective light-front equations possess remarkable algebraic structures and integrability properties. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can also be used as a basis for the diagonalization of the full light-front QCD Hamiltonian, thus systematically improving the AdS/CFT approximation

  16. Death to perturbative QCD in exclusive processes?

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, R.; Hansper, J.; Gari, M.F. [Institut fuer Theoretische Physik, Bochum (Germany)

    1994-04-01

    The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.

  17. Volume independence in large Nc QCD-like gauge theories

    International Nuclear Information System (INIS)

    Kovtun, Pavel; Uensal, Mithat; Yaffe, Laurence G.

    2007-01-01

    Volume independence in large N c gauge theories may be viewed as a generalized orbifold equivalence. The reduction to zero volume (or Eguchi-Kawai reduction) is a special case of this equivalence. So is temperature independence in confining phases. A natural generalization concerns volume independence in 'theory space' of quiver gauge theories. In pure Yang-Mills theory, the failure of volume independence for sufficiently small volumes (at weak coupling) due to spontaneous breaking of center symmetry, together with its validity above a critical size, nicely illustrate the symmetry realization conditions which are both necessary and sufficient for large N c orbifold equivalence. The existence of a minimal size below which volume independence fails also applies to Yang-Mills theory with antisymmetric representation fermions [QCD(AS)]. However, in Yang-Mills theory with adjoint representation fermions [QCD(Adj)], endowed with periodic boundary conditions, volume independence remains valid down to arbitrarily small size. In sufficiently large volumes, QCD(Adj) and QCD(AS) have a large N c ''orientifold'' equivalence, provided charge conjugation symmetry is unbroken in the latter theory. Therefore, via a combined orbifold-orientifold mapping, a well-defined large N c equivalence exists between QCD(AS) in large, or infinite, volume and QCD(Adj) in arbitrarily small volume. Since asymptotically free gauge theories, such as QCD(Adj), are much easier to study (analytically or numerically) in small volume, this equivalence should allow greater understanding of large N c QCD in infinite volume

  18. Solar Hot Water System Matter in Turkey (Mersin Case

    Directory of Open Access Journals (Sweden)

    Müjgan ŞEREFHANOĞLU SÖZEN

    2010-01-01

    Full Text Available When the effects of sustainability on the construction sector have been taken into consideration, solar active systems on buildings emerge as an important design issue in the context of renewal energy usage. Solar hot water systems such as those widely used in Turkey are inefficient and have a negative effect on a building’s aesthetic and the urban view in general because of the poor quality of installation. Natural circulated open loop systems are commonly used, particularly in the south of Turkey, as they are highly economical and require no regulation to install. Solar hot water systems tend to be clustered together on the roofs, causing visual pollution, and this situation arises largely because are not considered part of the architectural design. It is therefore important to consider the negative effects of such systems in the form of treatment studies. This study aims to determine the positive effects that will be gained by the renovation of solar hot water systems in Mersin, a city in the southern region of Turkey.

  19. Tests of hard and soft QCD with $e^{+}e^{-}$ Annihilation Data

    CERN Document Server

    Kluth, S

    2002-01-01

    Experimental tests of QCD predictions for event shape distributions combining contributions from hard and soft processes are discussed. The hard processes are predicted by perturbative QCD calculations. The soft processes cannot be calculated directly using perturbative QCD, they are treated by a power correction model based on the analysis of infrared renormalons. Furthermore, an analysis of the gauge structure of QCD is presented using fits of the colour factors within the same combined QCD predictions.

  20. Multi-Quarks and Two-Baryon Interaction in Lattice QCD

    International Nuclear Information System (INIS)

    Okiharu, F.; Suganuma, H.; Takahashi, T. T.; Doi, T.

    2006-01-01

    We study multi-quark (3Q,4Q,5Q) systems in lattice QCD. We perform the detailed studies of multi-quark potentials in lattice QCD to clarify the inter-quark interaction in multi-quark systems. We find that all the multi-quark potentials are well described by the OGE Coulomb plus multi-Y-type linear potential, i.e., the multi-Y Ansatz. For multi-quark systems, we observe lattice QCD evidences of 'flip-flop', i.e., flux-tube recombination. These lattice QCD studies give an important bridge between elementary particle physics and nuclear physics

  1. Interplay of mesonic and baryonic degrees of freedom in quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Naseemuddin

    2015-11-03

    In this work we study the influence of mesonic and baryonic fluctuations on the phase diagram of quark matter with two flavors. By examining the hadronization process and related techniques, we derive effective low-energy models, where the gluons are integrated out. To be able to compare our model calculations with lattice results at finite chemical potential, we investigate a QCD-like theory with two colors, where the sign-problem is absent. To this end we introduce a quark-meson-diquark model, where the bosonic diquarks play the role of colorless, baryonic degrees of freedom competing with the mesons. To access the phase diagram and determine the phases of chiral and diquark condensation, we employ a functional renormalization group approach allowing for a systematic non-perturbative truncation scheme. Interesting phenomena arise that are known from condensed matter physics, as the BEC-BSC crossover and a phase of condensation within domains. We explore the impact of running wave function renormalizations and Yukawa couplings for the quarks and the boson fields on top of the scale dependence of the effective potential. In the course of this we discuss the Silver Blaze property and its realization within a functional approach. In parallel, we formulate a quark-meson-diquark-baryon model for physical QCD as a low-energy effective theory for baryonic matter at high density, and discuss the relevance of the diquark and baryon degrees of freedom. In this sense, we compute a phase diagram for QCD from functional methods, including a color superconducting phase.

  2. Bulk viscous corrections to screening and damping in QCD at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Du, Qianqian [Department of Physics, Guangxi Normal University,Guilin, 541004 (China); Dumitru, Adrian [Department of Natural Sciences, Baruch College, CUNY,17 Lexington Avenue, New York, NY 10010 (United States); The Graduate School and University Center, The City University of New York,365 Fifth Avenue, New York, NY 10016 (United States); Guo, Yun [Department of Physics, Guangxi Normal University,Guilin, 541004 (China); Strickland, Michael [Department of Physics, Kent State University,206B Smith Hall, Kent, OH 44240 (United States)

    2017-01-27

    Non-equilibrium corrections to the distribution functions of quarks and gluons in a hot and dense QCD medium modify the “hard thermal loops” (HTL). The HTLs determine the retarded, advanced, and symmetric (time-ordered) propagators for gluons with soft momenta as well as the Debye screening and Landau damping mass scales. We compute such corrections to a thermal as well as to a non-thermal fixed point. The screening and damping mass scales are sensitive to the bulk pressure and hence to (pseudo-) critical dynamical scaling of the bulk viscosity in the vicinity of a second-order critical point. This could be reflected in the properties of quarkonium bound states in the deconfined phase and in the dynamics of soft gluon fields.

  3. Bulk viscous corrections to screening and damping in QCD at high temperatures

    International Nuclear Information System (INIS)

    Du, Qianqian; Dumitru, Adrian; Guo, Yun; Strickland, Michael

    2017-01-01

    Non-equilibrium corrections to the distribution functions of quarks and gluons in a hot and dense QCD medium modify the “hard thermal loops” (HTL). The HTLs determine the retarded, advanced, and symmetric (time-ordered) propagators for gluons with soft momenta as well as the Debye screening and Landau damping mass scales. We compute such corrections to a thermal as well as to a non-thermal fixed point. The screening and damping mass scales are sensitive to the bulk pressure and hence to (pseudo-) critical dynamical scaling of the bulk viscosity in the vicinity of a second-order critical point. This could be reflected in the properties of quarkonium bound states in the deconfined phase and in the dynamics of soft gluon fields.

  4. Weak mixing below the weak scale in dark-matter direct detection

    Science.gov (United States)

    Brod, Joachim; Grinstein, Benjamin; Stamou, Emmanuel; Zupan, Jure

    2018-02-01

    If dark matter couples predominantly to the axial-vector currents with heavy quarks, the leading contribution to dark-matter scattering on nuclei is either due to one-loop weak corrections or due to the heavy-quark axial charges of the nucleons. We calculate the effects of Higgs and weak gauge-boson exchanges for dark matter coupling to heavy-quark axial-vector currents in an effective theory below the weak scale. By explicit computation, we show that the leading-logarithmic QCD corrections are important, and thus resum them to all orders using the renormalization group.

  5. Lattice QCD. A critical status report

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Karl

    2008-10-15

    The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)

  6. Lattice QCD. A critical status report

    International Nuclear Information System (INIS)

    Jansen, Karl

    2008-10-01

    The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)

  7. Solving QCD via multi-Regge theory

    International Nuclear Information System (INIS)

    White, A. R.

    1998-01-01

    A high-energy, transverse momentum cut-off, solution of QCD is outlined. Regge pole and single gluon properties of the pomeron are directly related to the confinement and chiral symmetry breaking properties of the hadron spectrum. This solution, which corresponds to a supercritical phase of Reggeon Field Theory, may only be applicable to QCD with a very special quark content

  8. QCD on the Cell Broadband Engine

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Nils [Department of Physics, University of Regensburg, 93040 Regensburg (Germany)

    2008-07-01

    We evaluate IBM's Enhanced Cell Broadband Engine (BE) as a possible building block of a new generation of lattice QCD machines. The Enhanced Cell BE will provide full support of double precision floating-point arithmetics, including IEEE-compliant rounding. We have developed a performance model and applied it to relevant lattice QCD kernels. The performance estimates are supported by micro- and application-benchmarks that have been obtained on currently available Cell BE-based computers, such as IBM QS20 blades and PlayStation 3. The results are encouraging and show that this processor is an interesting option for lattice QCD applications. For a massively parallel machine on the basis of the Cell BE, an application-optimized network needs to be developed.

  9. QCD on the Cell Broadband Engine

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Nils [Department of Physics, University of Regensburg, 93040 Regensburg (Germany)

    2008-07-01

    We evaluate IBM's Enhanced Cell Broadband Engine (BE) as a possible building block of a new generation of lattice QCD machines. The Enhanced Cell BE will provide full support of double precision floating-point arithmetics, including IEEE-compliant rounding. We have developed a performance model and applied it to relevant lattice QCD kernels. The performance estimates are supported by micro- and application-benchmarks that have been obtained on currently available Cell BE-based computers, such as IBM QS20 blades and PlayStation 3. The results are encouraging and show that this processor is an interesting option for lattice QCD applications. For a massively parallel machine on the basis of the Cell BE, an application-optimized network needs to be developed.

  10. QCD on the BlueGene/L Supercomputer

    International Nuclear Information System (INIS)

    Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.

    2005-01-01

    In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented

  11. QCD on the BlueGene/L Supercomputer

    Science.gov (United States)

    Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.

    2005-03-01

    In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented.

  12. How is the charmonium splitting in QCD

    International Nuclear Information System (INIS)

    Bertlmann, R.A.

    1981-06-01

    Using the SVZ moment procedure to predict resonance masses within QCD the author has calculated exponential moments as a limit of the QCD formulae given by Reinders, Rubinstein and Yazaki. Applied to charmonium their results (besides 3 P 0 ) are reproduced very well. (Auth.)

  13. Novel QCD Phenomena at Electron-Proton Colliders

    International Nuclear Information System (INIS)

    Brodsky, S

    2008-01-01

    I discuss several novel phenomenological features of QCD which are observable in deep inelastic lepton-nucleon and lepton-nucleus scattering. Initial- and final-state interactions from gluon exchange, normally neglected in the parton model, have a profound effect on QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, the diffractive contribution to deep inelastic scattering, and the breakdown of the pQCD Lam-Tung relation in Drell-Yan reactions. Leading-twist diffractive processes in turn lead to nuclear shadowing and non-universal antishadowing--physics not incorporated in the light-front wavefunctions of the nucleus computed in isolation

  14. The QCD Critical Point and Related Observables

    Energy Technology Data Exchange (ETDEWEB)

    Nahrgang, Marlene

    2016-12-15

    The search for the critical point of QCD in heavy-ion collision experiments has sparked enormous interest with the completion of phase I of the RHIC beam energy scan. Here, I review the basics of the thermodynamics of the QCD phase transition and its implications for experimental multiplicity fluctuations in heavy-ion collisions. Several sources of noncritical fluctuations impact the observables and need to be understood in addition to the critical phenomena. Recent progress has been made in dynamical modeling of critical fluctuations, which ultimately is indispensable to understand potential signals of the QCD critical point in heavy-ion collision.

  15. Recent QCD results from CDF

    International Nuclear Information System (INIS)

    Yun, J.C.

    1990-01-01

    In this paper we report recent QCD analysis with the new data taken from CDF detector. CDF recorded an integrated luminosity of 4.4 nb -1 during the 1988--1989 run at center of mass system (CMS) energy of 1.8 TeV. The major topics of this report are inclusive jet, dijet, trijet and direct photon analysis. These measurements are compared of QCD predictions. For the inclusive jet an dijet analysis, tests of quark compositeness are emphasized. 11 refs., 6 figs

  16. Selected challenges in low-energy QCD and hadron physics

    Energy Technology Data Exchange (ETDEWEB)

    Weise, Wolfram [Physik-Department, Technische Universitaet Muenchen, D-85747 Garching (Germany)

    2009-11-15

    This presentation briefly addresses three basic issues of low-energy QCD: first, whether the Nambu-Goldstone scenario of spontaneous chiral symmetry breaking is well established; secondly, whether there is a dynamical entanglement of the chiral and deconfinement crossover transitions in QCD; and thirdly, what is the status of knowledge about the phase diagram of QCD at low temperature and non-zero baryon density. These three topics were injected as key words into a panel discussion at the Schladming school on Challenges in QCD. The following exposition reflects the style and character of the discussions, with no claim of completeness.

  17. Non-perturbative Aspects of QCD and Parameterized Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    HAN Ding-An; ZHOU Li-Juan; ZENG Ya-Guang; GU Yun-Ting; CAO Hui; MA Wei-Xing; MENG Cheng-Ju; PAN Ji-Huan

    2008-01-01

    Based on the Global Color Symmetry Model, the non-perturbative QCD vacuum is investigated in theparameterized fully dressed quark propagator. Our theoretical predictions for various quantities characterized the QCD vacuum are in agreement with those predicted by many other phenomenological QCD inspired models. The successful predictions clearly indicate the extensive validity of our parameterized quark propagator used here. A detailed discussion on the arbitrariness in determining the integration cut-off parameter of# in calculating QCD vacuum condensates and a good method, which avoided the dependence of calculating results on the cut-off parameter is also strongly recommended to readers.

  18. First measurement of jet mass in Pb–Pb and p–Pb collisions at the LHC

    NARCIS (Netherlands)

    Acharya, S.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altsybeev, I.; Alves Garcia Prado, C.; Janssen, M M; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C. D.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.C.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.|info:eu-repo/dai/nl/411263188; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.|info:eu-repo/dai/nl/371577810; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.|info:eu-repo/dai/nl/371578248; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Iga Buitron, S. A.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.|info:eu-repo/dai/nl/411885812; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A R; Ceballos Sanchez, C.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, Sukhee; Chochula, P.; Choi, K.; Chojnacki, M.|info:eu-repo/dai/nl/411888056; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; Dasgupta, S. S.; De Caro, A.; De Cataldo, G.; De Conti, C.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. Derradi; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, O.; Dobrin, A.|info:eu-repo/dai/nl/372618715; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.|info:eu-repo/dai/nl/355502488; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; De Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L. C.; Grelli, A.|info:eu-repo/dai/nl/326052577; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Sorkine-Hornung, Olga; Hosokawa, R.; Hristov, P.; Hughes, C.W.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L.D.|info:eu-repo/dai/nl/370530780; Keil, M.; Ketzer, B.; Khan, P.M.; Khan, Shfaqat A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D.-S.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.|info:eu-repo/dai/nl/371571227; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.L.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.|info:eu-repo/dai/nl/362845670; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.|info:eu-repo/dai/nl/074064975; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, Seema; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.|info:eu-repo/dai/nl/355080192; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.|info:eu-repo/dai/nl/411295721; Strunz-Lehner, Christine; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.|info:eu-repo/dai/nl/355080400; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.|info:eu-repo/dai/nl/412461684; Marín, Alicia; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, Isabel M.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.|info:eu-repo/dai/nl/325781435; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.|info:eu-repo/dai/nl/369405870; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, Rajiv; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal Da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.|info:eu-repo/dai/nl/07051349X; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.|info:eu-repo/dai/nl/323375618; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, J.-W.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.|info:eu-repo/dai/nl/304833959; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.|info:eu-repo/dai/nl/413319628; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H.P.|info:eu-repo/dai/nl/413332993; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q. Y.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J.M.|info:eu-repo/dai/nl/165585781; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, J. S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.|info:eu-repo/dai/nl/412860996; Van Hoorne, J. W.; van Leeuwen, M.|info:eu-repo/dai/nl/250599171; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.|info:eu-repo/dai/nl/413533751; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Verweij, M.|info:eu-repo/dai/nl/330542133; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.|info:eu-repo/dai/nl/369509307; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C S; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I. K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.

    2018-01-01

    This letter presents the first measurement of jet mass in Pb–Pb and p–Pb collisions at √SNN = 2.76 TeV and √SNN =5.02 TeV, respectively. Both the jet energy and the jet mass are expected to be sensitive to jet quenching in the hot Quantum Chromodynamics (QCD) matter created in nuclear collisions at

  19. Nonperturbative QCD corrections to electroweak observables

    Energy Technology Data Exchange (ETDEWEB)

    Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-12-01

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we will examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We will then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we will mention applications to the Adler function, the determination of the strong coupling constant and QCD corrections to muonic-hydrogen.

  20. Low-energy QCD and ultraviolet renormalons

    International Nuclear Information System (INIS)

    Peris, S.

    1997-01-01

    We discuss the contribution of ultraviolet (UV) renormalons in QCD to two-point functions of quark current operators. This explicitly includes effects due to the exchange of one renormalon chain as well as two chains. It is shown that, when the external Euclidean momentum of the two-point functions becomes smaller than the scale Λ L associated with the Landau singularity of the QCD one-loop running coupling constant, the positions of the UV renormalons in the Borel plane become true singularities in the integration range of the Borel transform. This introduces ambiguities in the evaluation of the corresponding two-point functions. The ambiguities associated with the leading UV renormalon singularity are of the same type as the contribution due to the inclusion of dimension d=6 local operators in a low-energy effective Lagrangian valid at scales smaller than Λ L . We then discuss the inclusion of an infinite number of renormalon chains and argue that the previous ambiguity hints at a plausible approximation scheme for low-energy QCD, resulting in an effective Lagrangian similar to the one of the extended Nambu-Jona-Lasinio (ENJL) model of QCD at large N c . (orig.)

  1. Quasi-static electron density fluctuations of atoms in hot compressed matter

    International Nuclear Information System (INIS)

    Grimaldi, F.; Grimaldi-Lecourt, A.

    1982-01-01

    The standard theoretical methods for the calculation of properties of hot compressed matter lead to a description based on the Average Atom model. In this model the degenerate orbitals are populated with the Fermi-Dirac (FD) density, partitioned according to the binomial distribution. Since the one particle picture is inadequate to evaluate reliable optical properties, a method involving correlated population fluctuations, but limited to unrelaxed orbitals and lacking time dependence, has been examined. The probability distribution of fluctuations in a particular level is evaluated through a decoupling procedure. The method is carried out self consistently. For each level this leads to the definition of an effective 1st order ionization energy as a statistical sum of all possible transition energies. As a result the effective number of electrons exchanged with the outside weights the chemical potential. This defines an effective chemical potential μsup(k) for each level. In many cases of interest the statistics leads to FD type average occupation numbers. This allows a treatment of the continuum in a Thomas-Fermi like model using the effective ionization energy and μsup(k). We obtain a simultaneous description of charge rearrangements and net fluctuations in the Wigner-Seitz cell. The discussion is supported by numerical results for iron. (author)

  2. Hard And Soft QCD Physics In ATLAS

    Directory of Open Access Journals (Sweden)

    Adomeit Stefanie

    2014-04-01

    Full Text Available Hard and soft QCD results using proton-proton collisions recorded with the ATLAS detector at the LHC are reported. Charged-particle distributions and forward-backward correlations have been studied in low-luminosity minimum bias data taken at centre-of-mass energies of √s = 0.9, 2.36 and 7 TeV. Recent measurements on underlying event characteristics using charged-particle jets are also presented. The results are tested against various phenomenological soft QCD models implemented in Monte-Carlo generators. A summary of hard QCD measurements involving high transverse momentum jets is also given. Inclusive jet and dijet cross-sections have been measured at a centre-of-mass energy of 7 TeV and are compared to expectations based on NLO pQCD calculations corrected for non-perturbative effects as well as to NLO Monte Carlo predictions. Recent studies exploiting jet substructure techniques to identify hadronic decays of boosted massive particles are reported.

  3. Photon-photon inclusive scattering and perturbative QCD

    International Nuclear Information System (INIS)

    Maor, U.

    1988-01-01

    Perturbative QCD expectations and problems associated with the study of the photon structure function data are reviewed. An assessment is given for the viability and sensitivity of photon-photon scattering as a decisive tool for the determination of the QCD scale. Particular attention is given to the theoretical problems of singularity cancellations at x = 0 and threshold-associated difficulties at x = 1 and their implications on the actual data analysis. It is concluded that the experimental results, while not providing a decisive verification of QCD at small distances, do add to other independent experiments which are all consistent with the theory and suggest a reasonably well defined QCD scale parameter. The importance of the small Q 2 limit to photon-photon analysis is discussed and the data are examined in an attempt to identify and isolate the contributions of the hadronic and point-like sectors of the target photon. 21 refs., 7 figs. (author)

  4. The Top Quark, QCD, And New Physics.

    Science.gov (United States)

    Dawson, S.

    2002-06-01

    The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.

  5. Higgs pair production at NLO QCD for CP-violating Higgs sectors

    Science.gov (United States)

    Gröber, R.; Mühlleitner, M.; Spira, M.

    2017-12-01

    Higgs pair production through gluon fusion is an important process at the LHC to test the dynamics underlying electroweak symmetry breaking. Higgs sectors beyond the Standard Model (SM) can substantially modify this cross section through novel couplings not present in the SM or the on-shell production of new heavy Higgs bosons that subsequently decay into Higgs pairs. CP violation in the Higgs sector is important for the explanation of the observed matter-antimatter asymmetry through electroweak baryogenesis. In this work we compute the next-to-leading order (NLO) QCD corrections in the heavy top quark limit, including the effects of CP violation in the Higgs sector. We choose the effective theory (EFT) approach, which provides a rather model-independent way to explore New Physics (NP) effects by adding dimension-6 operators, both CP-conserving and CP-violating ones, to the SM Lagrangian. Furthermore, we perform the computation within a specific UV-complete model and choose as benchmark model the general 2-Higgs-Doublet Model with CP violation, the C2HDM. Depending on the dimension-6 coefficients, the relative NLO QCD corrections are affected by several per cent through the new CP-violating operators. This is also the case for SM-like Higgs pair production in the C2HDM, while the relative QCD corrections in the production of heavier C2HDM Higgs boson pairs deviate more strongly from the SM case. The absolute cross sections both in the EFT and the C2HDM can be modified by more than an order of magnitude. In particular, in the C2HDM the resonant production of Higgs pairs can by far exceed the SM cross section.

  6. The cosmic QCD phase transition with dense matter and its gravitational waves from holography

    Science.gov (United States)

    Ahmadvand, M.; Bitaghsir Fadafan, K.

    2018-04-01

    Consistent with cosmological constraints, there are scenarios with the large lepton asymmetry which can lead to the finite baryochemical potential at the cosmic QCD phase transition scale. In this paper, we investigate this possibility in the holographic models. Using the holographic renormalization method, we find the first order Hawking-Page phase transition, between the Reissner-Nordström AdS black hole and thermal charged AdS space, corresponding to the de/confinement phase transition. We obtain the gravitational wave spectra generated during the evolution of bubbles for a range of the bubble wall velocity and examine the reliability of the scenarios and consequent calculations by gravitational wave experiments.

  7. Recent QCD Studies at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Group, Robert Craig

    2008-04-01

    Since the beginning of Run II at the Fermilab Tevatron the QCD physics groups of the CDF and D0 experiments have worked to reach unprecedented levels of precision for many QCD observables. Thanks to the large dataset--over 3 fb{sup -1} of integrated luminosity recorded by each experiment--important new measurements have recently been made public and will be summarized in this paper.

  8. The dual description of long-distance QCD (Dual QCD)

    International Nuclear Information System (INIS)

    Baker, M.

    1990-01-01

    We construct and solve a local field theory which describes in terms of dual variables a system having an A μ propagator behaving like M 2 /q 4 in the infrared and discuss how this theory can be used as a starting point for describing long-distance QCD. 3 refs

  9. Threshold resummation and higher order effects in QCD

    International Nuclear Information System (INIS)

    Ringer, Felix Maximilian

    2015-01-01

    Quantum chromodynamics (QCD) is a quantum field theory that describes the strong interactions between quarks and gluons, the building blocks of all hadrons. Thanks to the experimental progress over the past decades, there has been an ever-growing need for QCD precision calculations for scattering processes involving hadrons. For processes at large momentum transfer, perturbative QCD offers a systematic approach for obtaining precise predictions. This approach relies on two key concepts: the asymptotic freedom of QCD and factorization. In a perturbative calculation at higher orders, the infrared cancellation between virtual and real emission diagrams generally leaves behind logarithmic contributions. In many observables relevant for hadronic scattering these logarithms are associated with a kinematic threshold and are hence known as ''threshold logarithms''. They become large when the available phase space for real gluon emission shrinks. In order to obtain a reliable prediction from QCD, the threshold logarithms need to be taken into account to all orders in the strong coupling constant, a procedure known as ''threshold resummation''. The main focus of my PhD thesis is on studies of QCD threshold resummation effects beyond the next-to-leading logarithmic order. Here we primarily consider the production of hadron pairs in hadronic collisions as an example. In addition, we also consider hadronic jet production, which is particularly interesting for the phenomenology at the LHC. For both processes, we fully take into account the non-trivial QCD color structure of the underlying partonic hard- scattering cross sections. We find that threshold resummation leads to sizable numerical effects in the kinematic regimes relevant for comparisons to experimental data.

  10. Hydrogen axion star: metallic hydrogen bound to a QCD axion BEC

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; Barger, Vernon; Berger, Joshua [Department of Physics, University of Wisconsin-Madison,1150 University Ave, Madison, WI 53706 (United States)

    2016-12-23

    As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around 10{sup −11} M{sub ⊙}. In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. We study the properties of the HAS and find that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and the hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around 10{sup 13} W×(m{sub a}/5 meV){sup 4}, to make these objects luminous point sources. High resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.

  11. 2006-2007 Academic training programme: QCD and high energy nuclear collision

    CERN Multimedia

    HR Department

    2007-01-01

    LECTURE SERIES 7, 8, 9 May QCD and high energy nuclear collisions D. Kharzeev, Brookhaven National Laboratory, USA 11:00 to 12:00 - Main Auditorium, Bldg. 500 on 7 and 8 May, Council Chamber on 9 May Six years ago, Relativistic Heavy Ion Collider at Brookhaven started colliding heavy nuclei at record center-of-mass energies of up to 200 GeV/nucleon. Very soon, the Large Hadron Collider at CERN will push the energy of the ions to an astounding 5 TeV/nucleon. What can be learnt from the experiments at these machines? What do we know about the physics of super--dense matter already? I will argue that heavy ion accelerators bring us to the new frontiers of physical knowledge by creating strong color fields and very high densities of partons, at which qualitatively new phenomena emerge. I will also discuss the cross-disciplinary implications for cosmology, astrophysics, and connections to condensed matter physics.

  12. 2006-2007 Academic training programme: QCD and high energy nuclear collisions

    CERN Multimedia

    HR Department

    2007-01-01

    LECTURE SERIES 7, 8, 9 May 2007 11:00 to 12:00 - Main Auditorium, Bldg. 500 on 7 and 8 May, Council Chamber on 9 May QCD and high energy nuclear collisions D. Kharzeev, Brookhaven National Laboratory, USA Six years ago, the Relativistic Heavy Ion Collider at Brookhaven started colliding heavy nuclei at record center-of-mass energies of up to 200 GeV/nucleon. Very soon, the Large Hadron Collider at CERN will push the energy of the ions to an astounding 5 TeV/nucleon. What can be learnt from the experiments at these machines? What do we know about the physics of super--dense matter already? I will argue that heavy ion accelerators bring us to the new frontiers of physical knowledge by creating strong color fields and very high densities of partons, at which qualitatively new phenomena emerge. I will also discuss the cross-disciplinary implications for cosmology, astrophysics, and connections to condensed matter physics.

  13. The supercritical pomeron in QCD

    International Nuclear Information System (INIS)

    White, A. R.

    1998-01-01

    Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD pomeron, suggesting a single gluon inner structure rather than that of a perturbative two-gluon bound state. This talk outlines a derivation of a high-energy, transverse momentum cut-off, confining solution of QCD. The pomeron, in first approximation, is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a super-critical phase of Reggeon Field Theory

  14. Archeology and evolution of QCD

    CERN Document Server

    De Rújula, A.

    2017-01-01

    These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki --an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which --to my judgement-- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.

  15. Hot-electron surface retention in intense short-pulse laser-matter interactions.

    Science.gov (United States)

    Mason, R J; Dodd, E S; Albright, B J

    2005-07-01

    Implicit hybrid plasma simulations predict that a significant fraction of the energy deposited into hot electrons can be retained near the surface of targets with steep density gradients illuminated by intense short-pulse lasers. This retention derives from the lateral transport of heated electrons randomly emitted in the presence of spontaneous magnetic fields arising near the laser spot, from geometric effects associated with a small hot-electron source, and from E fields arising in reaction to the ponderomotive force. Below the laser spot hot electrons are axially focused into a target by the B fields, and can filament in moderate Z targets by resistive Weibel-like instability, if the effective background electron temperature remains sufficiently low. Carefully engineered use of such retention in conjunction with ponderomotive density profile steepening could result in a reduced hot-electron range that aids fast ignition. Alternatively, such retention may disturb a deeper deposition needed for efficient radiography and backside fast ion generation.

  16. Lattice QCD at finite temperature with Wilson fermions

    International Nuclear Information System (INIS)

    Pinke, Christopher

    2014-01-01

    The subatomic world is governed by the strong interactions of quarks and gluons, described by Quantum Chromodynamics (QCD). Quarks experience confinement into colour-less objects, i.e. they can not be observed as free particles. Under extreme conditions such as high temperature or high density, this constraint softens and a transition to a phase where quarks and gluons are quasi-free particles (Quark-Gluon-Plasma) can occur. This environment resembles the conditions prevailing during the early stages of the universe shortly after the Big Bang. The phase diagram of QCD is under investigation in current and future collider experiments, for example at the Large Hadron Collider (LHC) or at the Facility for Antiproton and Ion Research (FAIR). Due to the strength of the strong interactions in the energy regime of interest, analytic methods can not be applied rigorously. The only tool to study QCD from first principles is given by simulations of its discretised version, Lattice QCD (LQCD). These simulations are in the high-performance computing area, hence, the numerical aspects of LQCD are a vital part in this field of research. In recent years, Graphic Processing Units (GPUs) have been incorporated in these simulations as they are a standard tool for general purpose calculations today. In the course of this thesis, the LQCD application CL 2 QCD has been developed, which allows for simulations on GPUs as well as on traditional CPUs, as it is based on OpenCL. CL 2 QCD constitutes the first application for Wilson type fermions in OpenCL. It provides excellent performance and has been applied in physics studies presented in this thesis. The investigation of the QCD phase diagram is hampered by the notorious sign-problem, which restricts current simulation algorithms to small values of the chemical potential. Theoretically, studying unphysical parameter ranges allows for constraints on the phase diagram. Of utmost importance is the clarification of the order of the finite

  17. Perturbative QCD and electromagnetic form factors

    International Nuclear Information System (INIS)

    Carlson, C.E.; Gross, F.

    1987-01-01

    We calculate nucleon magnetic form factors using perturbative QCD for several distribution amplitudes including a general one given in terms of Appell polynomials. We find that the magnitude and sign of both nucleon magnetic form factors can be explained within perturbative QCD. The observed normalization of G/sub Mp/ requires that the distribution amplitude be broader than its superhigh momentum transfer limit, and the G/sub Mn//G/sub Mp/ data may require the distribution amplitude to be asymmetric, in accord with distribution amplitudes derived from QCD sum rules. Some speculation as to how an asymmetric distribution amplitude can come about is offered. Finally, we show that the soft contributions corresponding to the particular distribution amplitudes we use need not be bigger than the data. 16 refs., 6 figs

  18. Calculating hadronic properties in strong QCD

    International Nuclear Information System (INIS)

    Pennington, M.R.

    1996-01-01

    This talk gives a brief review of the progress that has been made in calculating the properties of hadrons in strong QCD. In keeping with this meeting I will concentrate on those properties that can be studied with electromagnetic probes. Though perturbative QCD is highly successful, it only applies in a limited kinematic regime, where hard scattering occur, and the quarks move in the interaction region as if they are free, pointlike objects. However, the bulk of strong interactions are governed by the long distance regime, where the strong interaction is strong. It is this regime of length scales of the order of a Fermi, that determines the spectrum of light hadrons and their properties. The calculation of these properties requires an understanding of non-perturbative QCD, of confinement and chiral symmetry breaking. (author)

  19. Small-x physics in perturbative QCD

    International Nuclear Information System (INIS)

    Lipatov, L.N.

    1996-07-01

    We review the parton model and the Regge approach to the QCD description of the deep-inelastic ep scattering at the small Bjorken variable x and demonstrate their relation with the DGLAP and BFKL evolution equations. It is shown, that in the leading logarithmic approximation the gluon is reggeized and the pomeron is a compound state of two reggeized gluons. The conformal invariance of the BFKL pomeron in the impact parameter space is used to investigate the scattering amplitudes at high energies and fixed momentum transfers. The remarkable properties of the Schroedinger equation for compound states of an arbitrary number of reggeized gluons in the multi-colour QCD are reviewed. The gauge-invariant effective action describing the gluon-Reggeon interactions is constructed. The known next-to-leading corrections to the QCD pomeron are discussed. (orig.)

  20. A Review on ϕ Meson Production in Heavy-Ion Collision

    Directory of Open Access Journals (Sweden)

    Md. Nasim

    2015-01-01

    Full Text Available The main aim of the relativistic heavy-ion experiment is to create extremely hot and dense matter and study the QCD phase structure. With this motivation, experimental program started in the early 1990s at the Brookhaven Alternating Gradient Synchrotron (AGS and the CERN Super Proton Synchrotron (SPS followed by Relativistic Heavy Ion Collider (RHIC at Brookhaven and recently at Large Hadron Collider (LHC at CERN. These experiments allowed us to study the QCD matter from center-of-mass energies (sNN 4.75 GeV to 2.76 TeV. The ϕ meson, due to its unique properties, is considered as a good probe to study the QCD matter created in relativistic collisions. In this paper we present a review on the measurements of ϕ meson production in heavy-ion experiments. Mainly, we discuss the energy dependence of ϕ meson invariant yield and the production mechanism, strangeness enhancement, parton energy loss, and partonic collectivity in nucleus-nucleus collisions. Effect of later stage hadronic rescattering on elliptic flow (v2 of proton is also discussed relative to corresponding effect on ϕ meson v2.

  1. The effective QCD theory at low energy; La theorie effective de QCD a basse energie

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1995-12-31

    Quantum chromodynamics is studied here in the range of low energies. The Chiral perturbation theory is presented, this theory is based on a thorough study of QCD symmetry, of general field theory principles and of S-matrices. Ward identities are defined within the scope of current algebras and by using functional method. Their consequences on Chiral structure of QCD emptiness and on strong interaction at low energies are studied. The pion-pion diffusion at low energies is treated as an example. (A.C.) 70 refs.

  2. Concluding Remarks: Connecting Relativistic Heavy Ion Collisions and Neutron Star Mergers by the Equation of State of Dense Hadron- and Quark Matter as signalled by Gravitational Waves

    Science.gov (United States)

    Hanauske, Matthias; Steinheimer, Jan; Bovard, Luke; Mukherjee, Ayon; Schramm, Stefan; Takami, Kentaro; Papenfort, Jens; Wechselberger, Natascha; Rezzolla, Luciano; Stöcker, Horst

    2017-07-01

    The underlying open questions in the fields of general relativistic astrophysics and elementary particle and nuclear physics are strongly connected and their results are interdependent. Although the physical systems are quite different, the 4D-simulation of a merger of a binary system of two neutron stars and the properties of the hot and dense matter created in high energy heavy ion collisions, strongly depend on the equation of state of fundamental elementary matter. Neutron star mergers represent optimal astrophysical laboratories to investigate the QCD phase structure using a spectrogram of the post-merger phase of the emitted gravitational waves. These studies can be supplemented by observations from heavy ion collisions to possibly reach a conclusive picture on the QCD phase structure at high density and temperature. As gravitational waves (GWs) emitted from merging neutron star binaries are on the verge of their first detection, it is important to understand the main characteristics of the underlying merging system in order to predict the expected GW signal. Based on numerical-relativity simulations of merging neutron star binaries, the emitted GW and the interior structure of the generated hypermassive neutron stars (HMNS) have been analyzed in detail. This article will focus on the internal and rotational HMNS properties and their connection with the emitted GW signal. Especially, the appearance of the hadon-quark phase transition in the interior region of the HMNS and its conjunction with the spectral properties of the emitted GW will be addressed and confronted with the simulation results of high energy heavy ion collisions.

  3. A new perturbative approach to QCD

    International Nuclear Information System (INIS)

    Pervushin, V.N.; Kallies, W.; Sarikov, N.A.

    1988-01-01

    For the description of bound states in QED and QCD the physical perturbation theory on the spatial components of the vector over the exact solution, defined by the time one, is proposed. It is shown this perturbation theory in QCD can be redefined so that it reproduces the main elements of hadron physics: confinement, spectroscopy of light and heavy quarkonia, dual-resonance amplitudes, chiral Lagrangians and the parton model

  4. Lattice and Phase Diagram in QCD

    International Nuclear Information System (INIS)

    Lombardo, Maria Paola

    2008-01-01

    Model calculations have produced a number of very interesting expectations for the QCD Phase Diagram, and the task of a lattice calculations is to put these studies on a quantitative grounds. I will give an overview of the current status of the lattice analysis of the QCD phase diagram, from the quantitative results of mature calculations at zero and small baryochemical potential, to the exploratory studies of the colder, denser phase.

  5. Self-consistent areas law in QCD

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Migdal, A.A.

    1980-01-01

    The problem of obtaining the self-consistent areas law in quantum chromodynamics (QCD) is considered from the point of view of the quark confinement. The exact equation for the loop average in multicolor QCD is reduced to a bootstrap form. Its iterations yield new manifestly gauge invariant perturbation theory in the loop space, reproducing asymptotic freedom. For large loops, the areas law apprears to be a self-consistent solution

  6. Search for the QCD ground state

    International Nuclear Information System (INIS)

    Reuter, M.; Wetterich, C.

    1994-05-01

    Within the Euclidean effective action approach we propose criteria for the ground state of QCD. Despite a nonvanishing field strength the ground state should be invariant with respect to modified Poincare transformations consisting of a combination of translations and rotations with suitable gauge transformations. We have found candidate states for QCD with four or more colours. The formation of gluon condensates shows similarities with the Higgs phenomenon. (orig.)

  7. Chiral symmetry, scalar field and confinement: from nucleon structure to nuclear matter

    International Nuclear Information System (INIS)

    Chanfray, Guy; Ericson, Magda

    2010-01-01

    We discuss the relevance of the scalar modes appearing in chiral theories with spontaneous symmetry breaking such as the NJL model for nuclear matter studies. We show that it depends on the relative role of chiral symmetry breaking and confinement in the nucleon mass origin. It is only in the case of a mixed origin that nuclear matter can be stable and reach saturation. We describe models of nucleon structure where this balance is achieved. We show how chiral constarints and confinement modify the QCD sum rules for the mass evolution in nuclear matter.

  8. Nonperturbation aspects of QCD. Monte Carlo and optimization

    International Nuclear Information System (INIS)

    Brezin, E.; Morel, A.; Marinari, E.; Couchot, F.; Narison, S.; Richard, J.M.; Blaizot, J.P.; Souillard, B.

    1986-01-01

    Phase transitions; lattice QCD; numerical simulation of lattice gauge theories; experimental research on gluonic mesons; QCD-duality sum rules; the bag model, potentials, and hadron spectra; and efficient Lagrangian functions and the Skyrme model are introduced [fr

  9. Quark mass effects in QCD

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1982-01-01

    In this paper recent studies of invariant QCD coupling anti asub(s)(Qsup(2)) in the 2-loop approximation with account of fermionic mass effects are summarized. The main results are: An explicit expression for anti asub(s)(Qsup(2)) in the 2-loop approximation with accurate account of heavy quark masses. A quantitative analysis on the basis of the above-mentioned expression for anti asub(s)(Qsup(2)) of the energy dependence of the scale QCD parameter ν and the conclusion about its inadequacy in the modern energy range

  10. Hadron scattering, resonances, and QCD

    Science.gov (United States)

    Briceño, R. A.

    2016-11-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  11. The QCD Effective String

    International Nuclear Information System (INIS)

    Espriu, D.

    2003-01-01

    QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)

  12. QCD and Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

    2010-10-27

    The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.

  13. Disconnected Diagrams in Lattice QCD

    Science.gov (United States)

    Gambhir, Arjun Singh

    In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called "disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements

  14. Disconnected Diagrams in Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gambhir, Arjun [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements

  15. Nonperturbative QCD corrections to electroweak observables

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus)

    2012-06-15

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements, effective field theory techniques and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we mention applications to the Adler function, which can be used to determine the strong coupling constant, and QCD corrections to muonic-hydrogen.

  16. Recent QCD results from ATLAS at the LHC

    CERN Document Server

    Keoshkerian, H; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has performed studies of a wide range of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of underlying event, vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for determination of parton density functions. Measurements of isolated inclusive and di-photons cross sections for high p_T photons test various theoretical predictions and constrain parton density functions. An overview of these results is given.



  17. Static QCD potential at rQCD-1: Perturbative expansion and operator-product expansion

    International Nuclear Information System (INIS)

    Sumino, Y.

    2007-01-01

    We analyze the static QCD potential V QCD (r) in the distance region 0.1 fm QCD (r) analytically. Higher-order terms are estimated by large-β 0 approximation or by renormalization group, and the renormalization scale is varied around the minimal-sensitivity scale. A 'Coulomb'+linear potential can be identified with the scale-independent and renormalon-free part of the prediction and can be separated from the renormalon-dominating part. (II) In the frame of OPE, we define two types of renormalization schemes for the leading Wilson coefficient. One scheme belongs to the class of conventional factorization schemes. The other scheme belongs to a new class, which is independent of the factorization scale, derived from a generalization of the Coulomb+linear potential of (I). The Wilson coefficient is free from IR renormalons and IR divergences in both schemes. We study properties of the Wilson coefficient and of the corresponding nonperturbative contribution δE US (r) in each scheme. (III) We compare numerically perturbative predictions of the Wilson coefficient and lattice computations of V QCD (r) when n l =0. We confirm either correctness or consistency (within uncertainties) of the theoretical predictions made in (II). Then we perform fits to simultaneously determine δE US (r) and r 0 Λ MS 3-loop (relation between lattice scale and Λ MS ). As for the former quantity, we improve bounds as compared to the previous determination; as for the latter quantity, our analysis provides a new method for its determination. We find that (a) δE US (r)=0 is disfavored, and (b) r 0 Λ MS 3-loop =0.574±0.042. We elucidate the mechanism for the sensitivities and examine sources of errors in detail

  18. Hot nuclear matter in the modified quark-meson coupling model with quark-quark correlations

    International Nuclear Information System (INIS)

    Zakout, I.; Jaqaman, H.R.

    2000-01-01

    Short-range quark-quark correlations in hot nuclear matter are examined within the modified quark-meson coupling (MQMC) model by adding repulsive scalar and vector quark-quark interactions. Without these correlations, the bag radius increases with the baryon density. However, when the correlations are introduced the bag size shrinks as the bags overlap. Also as the strength of the scalar quark-quark correlation is increased, the decrease of the effective nucleon mass M* N with the baryonic density is slowed down and tends to saturate at high densities. Within this model we study the phase transition from the baryon-meson phase to the quark-gluon plasma (QGP) phase with the latter modelled as an ideal gas of quarks and gluons inside a bag. Two models for the QGP bag parameter are considered. In one case, the bag is taken to be medium-independent and the phase transition from the hadron phase to QGP is found to occur at five to eight times ordinary nuclear matter density for temperatures less than 60 MeV. For lower densities, the transition takes place at a higher temperature, reaching up to 130 MeV at zero density. In the second case, the QGP bag parameter is considered to be medium-dependent as in the MQMC model for the hadronic phase. In this case, it is found that the phase transition occurs at much lower densities. (author)

  19. Hadron interactions at high energy in QCD

    International Nuclear Information System (INIS)

    Levin, E.M.; Ryskin, M.G.

    1988-01-01

    Well known the typical hadronic interactions at high energy are soft processes occurring at large distances where the mysterious confinement forces should be essential. Due to this fact, discussing these processes at first sight the authors are to use and really use some models that incorporate their educated guess about the confinement and utilize the QCD degrees of freedom. But really these models use the QCD terminology rather than the explicit form of the QCD interaction. Up to now the multiparticle dynamics had been the dynamics of reggeons with some detailization coming from their hypothesis about confinement. It is the Reggeon Calculus or the reggeon phenomenology that allows them to describe the main properties of exclusive and inclusive reactions at high energy in agreement with experiment. This paper discusses this problem at this Symposium in many details. However, such pure phenomenological understanding cannot satisfy all of us at the moment. The authors would like to understand the multiparticle production and other soft processes at high energy in more microscopic way using directly the form of the QCD Lagrangian

  20. Deuteron transverse densities in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Chakrabarti, Dipankar [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Zhao, Xingbo [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-05-15

    We investigate the transverse charge density in the longitudinally as well as transversely polarized deuteron using the recent empirical description of the deuteron electromagnetic form factors in the framework of holographic QCD. The predictions of the holographic QCD are compared with the results of a standard phenomenological parameterization. In addition, we evaluate GPDs and the gravitational form factors for the deuteron. The longitudinal momentum densities are also investigated in the transverse plane. (orig.)

  1. How do we model continuum QCD

    International Nuclear Information System (INIS)

    Cornwall, J.M.

    1986-01-01

    The nonperturbative aspects of continuum QCD are so complex that one can only hope to approach them through well-motivated models. The author reviews the general properties that any such model must have, based on the understanding of the gluon condensate in the QCD vacuum. A specific, practical model is proposed motivated by a picture of the condensate as made of thick vortex sheets self-consistently constructed from dynamically massive gluons. (author)

  2. Testing the Standard Model and Fundamental Symmetries in Nuclear Physics with Lattice QCD and Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Walker-Loud, Andre [College of William and Mary, Williamsburg, VA (United States)

    2016-10-14

    The research supported by this grant is aimed at probing the limits of the Standard Model through precision low-energy nuclear physics. The work of the PI (AWL) and additional personnel is to provide theory input needed for a number of potentially high-impact experiments, notably, hadronic parity violation, Dark Matter direct detection and searches for permanent electric dipole moments (EDMs) in nucleons and nuclei. In all these examples, a quantitative understanding of low-energy nuclear physics from the fundamental theory of strong interactions, Quantum Chromo-Dynamics (QCD), is necessary to interpret the experimental results. The main theoretical tools used and developed in this work are the numerical solution to QCD known as lattice QCD (LQCD) and Effective Field Theory (EFT). This grant is supporting a new research program for the PI, and as such, needed to be developed from the ground up. Therefore, the first fiscal year of this grant, 08/01/2014-07/31/2015, has been spent predominantly establishing this new research effort. Very good progress has been made, although, at this time, there are not many publications to show for the effort. After one year, the PI accepted a job at Lawrence Berkeley National Laboratory, so this final report covers just a single year of five years of the grant.

  3. Hot Strange Hadronic Matter in an Effective Model

    Science.gov (United States)

    Qian, Wei-Liang; Su, Ru-Keng; Song, Hong-Qiu

    2003-10-01

    An effective model used to describe the strange hadronic matter with nucleons, Λ-hyperons, and Ξ-hyperons is extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fraction dependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy and pressure, as well as the equation of state of the matter, are given. The project supported in part by National Natural Science Foundation of China under Grant Nos. 10075071, 10047005, 19947001, 19975010, and 10235030, and the CAS Knowledge Innovation Project No. KJCX2-N11. Also supported by the State Key Basic Research Development Program under Grant No. G200077400 and the Exploration Project of Knowledge Innovation Program of the Chinese Academy of Sciences

  4. Unusual identities for QCD at tree-level

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N E J; Damgaard, Poul H; Soendergaard, Thomas; Feng Bo

    2011-01-01

    We discuss a set of recently discovered quadratic relations between gauge theory amplitudes. Such relations give additional structural simplifications for amplitudes in QCD. Remarkably, their origin lie in an analogous set of relations that involve also gravitons. When certain gluon helicities are flipped we obtain relations that do not involve gravitons, but which refer only to QCD.

  5. Solvable models and hidden symmetries in QCD

    International Nuclear Information System (INIS)

    Yepez-Martinez, Tochtli; Hess, P. O.; Szczepaniak, A.; Civitarese, O.; Lerma H., S.

    2010-01-01

    We show that QCD Hamiltonians at low energy exhibit an SU(2) structure, when only few orbital levels are considered. In case many orbital levels are taken into account we also find a semi-analytic solution for the energy levels of the dominant part of the QCD Hamiltonian. The findings are important to propose the structure of phenomenological models.

  6. Parton distributions and lattice QCD calculations: A community white paper

    Science.gov (United States)

    Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; Orginos, Kostas; Rojo, Juan; Accardi, Alberto; Alexandrou, Constantia; Bacchetta, Alessandro; Bozzi, Giuseppe; Chen, Jiunn-Wei; Collins, Sara; Cooper-Sarkar, Amanda; Constantinou, Martha; Del Debbio, Luigi; Engelhardt, Michael; Green, Jeremy; Gupta, Rajan; Harland-Lang, Lucian A.; Ishikawa, Tomomi; Kusina, Aleksander; Liu, Keh-Fei; Liuti, Simonetta; Monahan, Christopher; Nadolsky, Pavel; Qiu, Jian-Wei; Schienbein, Ingo; Schierholz, Gerrit; Thorne, Robert S.; Vogelsang, Werner; Wittig, Hartmut; Yuan, C.-P.; Zanotti, James

    2018-05-01

    In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.

  7. The exotic atoms of QCD: glueballs, hybrids and baryonia

    International Nuclear Information System (INIS)

    Barnes, T.

    1984-05-01

    The theoretical basis underlying the expected ''exotic'' states in QCD, the theory of quarks and gluons, is reviewed in three lectures. The first lecture is an historical introduction to QCD. The second lecture is a critical review of the MIT bag model and QCD on a lattice. The status of three candidate ''exotic'' states seen in psi radiative decays, the i(1440), O(1700) and zeta(2220) are discussed in the third lecture. (author)

  8. Exploring the Quark-Gluon Content of Hadrons: From Mesons to Nuclear Matter

    International Nuclear Information System (INIS)

    Hrayr Matevosyan

    2007-01-01

    Even though Quantum Chromodynamics (QCD) was formulated over three decades ago, it poses enormous challenges for describing the properties of hadrons from the underlying quark-gluon degrees of freedom. Moreover, the problem of describing the nuclear force from its quark-gluon origin is still open. While a direct solution of QCD to describe the hadrons and nuclear force is not possible at this time, we explore a variety of developed approaches ranging from phenomenology to first principle calculations at one or other level of approximation in linking the nuclear force to QCD. The Dyson Schwinger formulation (DSE) of coupled integral equations for the QCD Green's functions allows a non-perturbative approach to describe hadronic properties, starting from the level of QCD n-point functions. A significant approximation in this method is the employment of a finite truncation of the system of DSEs, that might distort the physical picture. In this work we explore the effects of including a more complete truncation of the quark-gluon vertex function on the resulting solutions for the quark 2-point functions as well as the pseudoscalar and vector meson masses. The exploration showed strong indications of possibly large contributions from the explicit inclusion of the gluon 3- and 4-point functions that are omitted in this and previous analyses. We then explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime using phenomenological models of nucleon structure. Finally, we further developed the Quark Meson Coupling model for describing atomic nuclei and nuclear matter, where the quark-gluon structure of nucleons is modeled by the MIT bag model and the nucleon many body interaction is mediated by the exchange of scalar and vector mesons. This approach allows us to formulate a fully relativistic theory, which can be expanded in the nonrelativistic limit to reproduce the well known phenomenological Skyrme

  9. Many body effects in nuclear matter QCD sum rules

    Science.gov (United States)

    Drukarev, E. G.; Ryskin, M. G.; Sadovnikova, V. A.

    2017-12-01

    We calculate the single-particle nucleon characteristics in symmetric nuclear matter with inclusion of the 3N and 4N interactions. We calculated the contribution of the 3N interactions earlier, now we add that of the 4N ones. The contribution of the 4N forces to nucleon self energies is expressed in terms of the nonlocal scalar condensate (d = 3) and of the configurations of the vector-scalar and the scalar-scalar quark condensates (d = 6) in which two diquark operators act on two different nucleons of the matter.These four-quark condensates are obtained in the model-independent way. The density dependence of the nucleon effective mass, of the vector self energy and of the single-particle potential energy are obtained. We traced the dependence of the nucleon characteristics on the actual value of the pion-nucleon sigma term. We obtained also the nucleon characteristics in terms of the quasifree nucleons, with the noninteracting nucleons surrounded by their pion clouds as the starting point. This approach leads to strict hierarchy of the many body forces.

  10. Higgs pair production at NLO QCD for CP-violating Higgs sectors

    Directory of Open Access Journals (Sweden)

    R. Gröber

    2017-12-01

    Full Text Available Higgs pair production through gluon fusion is an important process at the LHC to test the dynamics underlying electroweak symmetry breaking. Higgs sectors beyond the Standard Model (SM can substantially modify this cross section through novel couplings not present in the SM or the on-shell production of new heavy Higgs bosons that subsequently decay into Higgs pairs. CP violation in the Higgs sector is important for the explanation of the observed matter-antimatter asymmetry through electroweak baryogenesis. In this work we compute the next-to-leading order (NLO QCD corrections in the heavy top quark limit, including the effects of CP violation in the Higgs sector. We choose the effective theory (EFT approach, which provides a rather model-independent way to explore New Physics (NP effects by adding dimension-6 operators, both CP-conserving and CP-violating ones, to the SM Lagrangian. Furthermore, we perform the computation within a specific UV-complete model and choose as benchmark model the general 2-Higgs-Doublet Model with CP violation, the C2HDM. Depending on the dimension-6 coefficients, the relative NLO QCD corrections are affected by several per cent through the new CP-violating operators. This is also the case for SM-like Higgs pair production in the C2HDM, while the relative QCD corrections in the production of heavier C2HDM Higgs boson pairs deviate more strongly from the SM case. The absolute cross sections both in the EFT and the C2HDM can be modified by more than an order of magnitude. In particular, in the C2HDM the resonant production of Higgs pairs can by far exceed the SM cross section.

  11. Computers for Lattice QCD

    International Nuclear Information System (INIS)

    Christ, Norman H

    2000-01-01

    The architecture and capabilities of the computers currently in use for large-scale lattice QCD calculations are described and compared. Based on this present experience, possible future directions are discussed

  12. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  13. Monopole transitions in hot nuclei

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1994-01-01

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs

  14. Simulating QCD at finite density

    CERN Document Server

    de Forcrand, Philippe

    2009-01-01

    In this review, I recall the nature and the inevitability of the "sign problem" which plagues attempts to simulate lattice QCD at finite baryon density. I present the main approaches used to circumvent the sign problem at small chemical potential. I sketch how one can predict analytically the severity of the sign problem, as well as the numerically accessible range of baryon densities. I review progress towards the determination of the pseudo-critical temperature T_c(mu), and towards the identification of a possible QCD critical point. Some promising advances with non-standard approaches are reviewed.

  15. The first lap in QCD

    International Nuclear Information System (INIS)

    Close, F.E.

    1980-07-01

    The idea that quantum chromodynamics is Nature's choice for the theory of quark interactions and that desirable phenomena, such as quark confinement, are consequences of it are considered. The lecture is presented under the headings: (1) Why do we believe that quarks have colour. (2) A rapid summary of the parton model in deep inelastic scattering. (3) Non Abelian theories: the vertices. (4) Hyperfine splitting of hadrons: more evidence for colour. (5) Renormalisation. (6) Alpha(Q 2 ). (7) The renormalisation group equations. (8) QCD, the renormalisation group equation and deep inelastic data. (9) Higher order corrections in QCD. (U.K.)

  16. Lattice QCD: Status and Prospect

    International Nuclear Information System (INIS)

    Ukawa, Akira

    2006-01-01

    A brief review is given of the current status and near-future prospect of lattice QCD studies of the Standard Model. After summarizing a bit of history, we describe current attempts toward inclusion of dynamical up, down and strange quarks. Recent results on the light hadron mass spectrum as well as those on the heavy quark quantities are described. Recent work on lattice pentaquark search is summarized. We touch upon the PACS-CS Project for building our next machine for lattice QCD, and conclude with a summary of computer situation and the physics possibilities over the next several years

  17. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.

    2016-01-01

    order by order in $\\Delta_f$. We then compute $\\gamma_*$ through $O(\\Delta_f^2)$ for supersymmetric QCD in the $\\overline{\\text{DR}}$ scheme and find that it matches the exact known result. We find that $\\gamma_*$ is astonishingly well described in perturbation theory already at the few loops level...

  18. Quark condensates in nuclear matter in the global color symmetry model of QCD

    International Nuclear Information System (INIS)

    Liu Yuxin; Gao Dongfeng; Guo Hua

    2003-01-01

    With the global color symmetry model being extended to finite chemical potential, we study the density dependence of the local and nonlocal scalar quark condensates in nuclear matter. The calculated results indicate that the quark condensates increase smoothly with the increasing of nuclear matter density before the critical value (about 12ρ 0 ) is reached. It also manifests that the chiral symmetry is restored suddenly as the density of nuclear matter reaches its critical value. Meanwhile, the nonlocal quark condensate in nuclear matter changes nonmonotonously against the space-time distance among the quarks

  19. Light-cone quantization and QCD phenomenology

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Robertson, D.G.

    1995-01-01

    In principle, quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of their elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. A crucial tool in analyzing such phenomena is the use of relativistic light-cone quantum mechanics and Fock state methods to provide tractable and consistent treatments of relativistic many-body systems. In this article we present an overview of this formalism applied to QCD, focusing in particular on applications to the final states in deep inelastic lepton scattering that will be relevant for the proposed European Laboratory for Electrons (ELFE), HERMES, HERA, SLAC, and CEBAF. We begin with a brief introduction to light-cone field theory, stressing how it many allow the derivation of a constituent picture, analogous to the constituent quark model, from QCD. We then discuss several applications of the light-cone Fock state formalism to QCD phenomenology. The Fock state representation includes all quantum fluctuations of the hadron wavefunction, including far off-shell configurations such as intrinsic charm and, in the case of nuclei, hidden color. In some applications, such as exclusive processes at large momentum transfer, one can make first-principle predictions using factorization theorems which separate the hard perturbative dynamics from the nonpertubative physics associated with hadron binding. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer

  20. HERA results on QCD and EW physics

    International Nuclear Information System (INIS)

    Zarnecki, A.F.

    1997-01-01

    Selected HERA results on QCD and EW interactions are presented. They include the measurement of the proton structure function and its analysis in terms of the QCD evolution, as well as results concerning deep inelastic scattering at very low and very high Q 2 . Selected HERA limits on new physics and parameters which extend the standard model are also presented. (author)

  1. Recent developments in QCD for LHC physics

    International Nuclear Information System (INIS)

    Anastasiou, C.

    2006-01-01

    We will review recent theoretical developments in QCD, attempting to assess the phenomenological impact of new theoretical results and to identify potentially useful directions for the future. A part of the talk will be devoted to new imaginative ideas which are rapidly changing the traditional approach to QCD computations, and surprising theoretical discoveries from perturbative calculations on the structure of gauge theories. (author)

  2. Dark matter searches with a mono-Z′ jet

    International Nuclear Information System (INIS)

    Bai, Yang; Bourbeau, James; Lin, Tongyan

    2015-01-01

    We study collider signatures of a class of dark matter models with a GeV-scale dark Z ′ . At hadron colliders, the production of dark matter particles naturally leads to associated production of the Z ′ , which can appear as a narrow jet after it decays hadronically. Contrary to the usual mono-jet signal from initial state radiation, the final state radiation of dark matter can generate the signature of a mono-Z ′ jet plus missing transverse energy. Performing a jet-substructure analysis to tag the Z ′ jet, we show that these Z ′ jets can be distinguished from QCD jets at high significance. Compared to mono-jets, a dedicated search for mono-Z ′ jet events can lead to over an order of magnitude stronger bounds on the interpreted dark matter-nucleon scattering cross sections.

  3. Pion form factor within QCD instanton vacuum model

    International Nuclear Information System (INIS)

    Dorokhov, A.E.

    1997-01-01

    Instanton induced pion wave function is constructed. It provides an intrinsic k 1 dependence which suppress soft virtual one-gluon exchanges and thus legitimate the perturbative QCD (pQCD) calculations of the pion electromagnetic form factor in the region of momentum transfers above the scale. (author)

  4. Lattice simulations of QCD-like theories at finite baryon density

    Energy Technology Data Exchange (ETDEWEB)

    Scior, Philipp Friedrich

    2016-07-13

    The exploration of the phase diagram of quantum chromodynamics (QCD) is of great importance to describe e.g. the properties of neutron stars or heavy-ion collisions. Due to the sign problem of lattice QCD at finite chemical potential we need effective theories to study QCD at finite density. Here, we use a three-dimensional Polyakov-loop theory to study the phase diagrams of QCD-like theories. In particular, we investigate the heavy quark limit of the QCD-like theories where the effective theory can be derived from the full theory by a combined strong coupling and hopping expansion. This expansion can be systematically improved order by order. Since there is no sign problem for the QCD-like theories we consider, we can compare our results to data from lattice calculations of the full theories to make qualitative and quantitative statements of the effective theory's validity. We start by deriving the effective theory up to next-to-next-to leading-order, in particular for two-color and G{sub 2}-QCD where replace the three colors in QCD with only two colors or respectively replace the gauge group SU(3) of QCD with G{sub 2}. We will then apply the effective theory at finite temperature mainly to test the theory and the implementation but also to make some predictions for the deconfinement phase transition in G{sub 2} Yang-Mills theory. Finally, we turn our attention to the cold and dense regime of the phase diagram where we observe a sharp increase of the baryon density with the quark chemical potential μ, when μ reaches half the diquark mass. At vanishing temperature this is expected to happen in a quantum phase transition with Bose-Einstein-condensation of diquarks. In contrast to the liquid-gas transition in QCD, the phase transition to the Bose-Einstein condensate is continuous. We find evidence that the effective theories for heavy quarks are able to describe the qualitative difference between first and second order phase transitions. For even higher μ we

  5. Lattice simulations of QCD-like theories at finite baryon density

    International Nuclear Information System (INIS)

    Scior, Philipp Friedrich

    2016-01-01

    The exploration of the phase diagram of quantum chromodynamics (QCD) is of great importance to describe e.g. the properties of neutron stars or heavy-ion collisions. Due to the sign problem of lattice QCD at finite chemical potential we need effective theories to study QCD at finite density. Here, we use a three-dimensional Polyakov-loop theory to study the phase diagrams of QCD-like theories. In particular, we investigate the heavy quark limit of the QCD-like theories where the effective theory can be derived from the full theory by a combined strong coupling and hopping expansion. This expansion can be systematically improved order by order. Since there is no sign problem for the QCD-like theories we consider, we can compare our results to data from lattice calculations of the full theories to make qualitative and quantitative statements of the effective theory's validity. We start by deriving the effective theory up to next-to-next-to leading-order, in particular for two-color and G_2-QCD where replace the three colors in QCD with only two colors or respectively replace the gauge group SU(3) of QCD with G_2. We will then apply the effective theory at finite temperature mainly to test the theory and the implementation but also to make some predictions for the deconfinement phase transition in G_2 Yang-Mills theory. Finally, we turn our attention to the cold and dense regime of the phase diagram where we observe a sharp increase of the baryon density with the quark chemical potential μ, when μ reaches half the diquark mass. At vanishing temperature this is expected to happen in a quantum phase transition with Bose-Einstein-condensation of diquarks. In contrast to the liquid-gas transition in QCD, the phase transition to the Bose-Einstein condensate is continuous. We find evidence that the effective theories for heavy quarks are able to describe the qualitative difference between first and second order phase transitions. For even higher μ we find the rise of the

  6. Academic Training: QCD: are we ready for the LHC

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 4, 5, 6, 7 December, from 11:00 to 12:00 4, 5, 6 December - Main Auditorium, bldg. 500, 7 December - TH Auditorium, bldg. 4 - 3-006 QCD: are we ready for the LHC S. FRIXIONE / INFN, Genoa, Italy The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology.

  7. The AdS/QCD correspondence: still undelivered

    International Nuclear Information System (INIS)

    Csaki, Csaba; Reece, Matthew; Terning, John

    2009-01-01

    We consider the particle spectrum and event shapes in large N gauge theories in different regimes of the short-distance 't Hooft coupling, λ. The mesons in the small λ limit should have a Regge spectrum in order to agree with perturbation theory, while generically the large λ theories with gravity duals produce spectra reminiscent of KK modes. We argue that these KK-like states are qualitatively different from QCD modes: they are deeply bound states which are sensitive to short distance interactions rather than the flux tube-like states expected in asymptotically free, confining gauge theories. In addition, we also find that the characteristic event shapes for the large λ theories with gravity duals are close to spherical, very different from QCD-like (small λ, small N) and Nambu-Goto-like (small λ, large N) theories which have jets. This observation is in agreement with the conjecture of Strassler on event shapes in large 't Hooft coupling theories, which was recently proved by Hofman and Maldacena for the conformal case. This conclusion does not change even when considering soft-wall backgrounds for the gravity dual. The picture that emerges is the following: theories with small and large λ are qualitatively different, while theories with small and large N are qualitatively similar. Thus it seems that it is the relative smallness of the 't Hooft coupling in QCD that prevents a reliable AdS/QCD correspondence from emerging, and that reproducing characteristic QCD-like behavior will require genuine stringy dynamics to be incorporated into any putative dual theory.

  8. ALEPH Tau Spectral Functions and QCD

    CERN Document Server

    Davier, M; Zhang, Z; Davier, Michel; Hoecker, Andreas; Zhang, Zhiqing

    2007-01-01

    Hadronic $\\tau$ decays provide a clean laboratory for the precise study of quantum chromodynamics (QCD). Observables based on the spectral functions of hadronic $\\tau$ decays can be related to QCD quark-level calculations to determine fundamental quantities like the strong coupling constant, quark and gluon condensates. Using the ALEPH spectral functions and branching ratios, complemented by some other available measurements, and a revisited analysis of the theoretical framework, the value $\\asm = 0.345 \\pm 0.004_{\\rm exp} \\pm 0.009_{\\rm th}$ is obtained. Taken together with the determination of \\asZ from the global electroweak fit, this result leads to the most accurate test of asymptotic freedom: the value of the logarithmic slope of $\\alpha_s^{-1}(s)$ is found to agree with QCD at a precision of 4%. The value of \\asZ obtained from $\\tau$ decays is $\\asZ = 0.1215 \\pm 0.0004_{\\rm exp} \\pm 0.0010_{\\rm th} \\pm 0.0005_{\\rm evol} = 0.1215 \\pm 0.0012$.

  9. Understanding Theoretical Uncertainties in Perturbative QCD Computations

    DEFF Research Database (Denmark)

    Jenniches, Laura Katharina

    effective field theories and perturbative QCD to predict the effect of New Physics on measurements at the LHC and at other future colliders. We use heavy-quark, heavy-scalar and soft-collinear effective theory to calculate a three-body cascade decay at NLO QCD in the expansion-by-regions formalism...... discuss an extension of the Cacciari-Houdeau approach to observables with hadrons in the initial state....

  10. QCD angular correlations for muon pair production

    International Nuclear Information System (INIS)

    Kajantie, K.; Raitio, R.; Lindfors, J.

    1978-01-01

    Angular distributions of muons are discussed in the framework of a QCD treatment of muon pair production in hadron-hadron collisions. The predicted angular effects are independent of the infrared behavior of QCD. Measuring them will permit one to determine whether the origin of the large transverse momentum of the pair is in the quark transverse momenta or in a constituent-constituent subprocess. (author)

  11. On microscopic structure of the QCD vacuum

    Science.gov (United States)

    Pak, D. G.; Lee, Bum-Hoon; Kim, Youngman; Tsukioka, Takuya; Zhang, P. M.

    2018-05-01

    We propose a new class of regular stationary axially symmetric solutions in a pure QCD which correspond to monopole-antimonopole pairs at macroscopic scale. The solutions represent vacuum field configurations which are locally stable against quantum gluon fluctuations in any small space-time vicinity. This implies that the monopole-antimonopole pair can serve as a structural element in microscopic description of QCD vacuum formation.

  12. Construction of the dual Ginzburg-Landau theory from the lattice QCD

    International Nuclear Information System (INIS)

    Suganuma, H.; Amemiya, K.; Ichie, H.; Koma, Y.

    2002-01-01

    We roughly review the QCD physics and then introduce recent topics on the confinement physics. In the maximally abelian (MA) gauge, the low-energy QCD is abelianized owing to the effective off-diagonal gluon mass M off ≅ 1.2 GeV induced by the MA gauge fixing. We demonstrate the construction of the dual Ginzburg-Landau (DGL) theory from the low-energy QCD in the MA gauge in terms of the lattice QCD evidences on infrared abelian dominance and infrared monopole condensation. (author)

  13. Comparative Study of Algorithms for the Numerical Simulation of Lattice QCD

    International Nuclear Information System (INIS)

    Luz, Fernando H. P.; Mendes, Tereza

    2010-01-01

    Large-scale numerical simulations are the prime method for a nonperturbative study of QCD from first principles. Although the lattice simulation of the pure-gauge (or quenched-QCD) case may be performed very efficiently on parallel machines, there are several additional difficulties in the simulation of the full-QCD case, i.e. when dynamical quark effects are taken into account. We discuss the main aspects of full-QCD simulations, describing the most common algorithms. We present a comparative analysis of performance for two versions of the hybrid Monte Carlo method (the so-called R and RHMC algorithms), as provided in the MILC software package. We consider two degenerate flavors of light quarks in the staggered formulation, having in mind the case of finite-temperature QCD.

  14. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    International Nuclear Information System (INIS)

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-01-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  15. Jets with ALICE. From vacuum to QCD at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Leticia, Cunqueiro [University of Muenster (Germany); Collaboration: ALICE-Collaboration

    2016-07-01

    The hot and dense medium created in heavy-ion collisions is expected to modify the yield and radiation pattern of jets relative to proton proton collisions. The study of medium-induced modifications in jets aims at the understanding of the detailed mechanisms of in medium energy loss of partons and of fundamental properties of QCD at high temperatures. ALICE measures jets in pp, p-Pb and Pb-Pb collisions, where pp and p-Pb are conceived primarily as a reference for vacuum and cold nuclear effects respectively. The jet program comprises measurements like yields for different resolution R, intra-jet and inter-jet modifications via jet shapes and hadron-jet correlations, path length dependence of energy loss via jet flow v{sub 2}, hadrochemistry via jet constituent identification, flavour/mass hierarchy of energy loss via heavy flavour tagging etc. Several of the latest ALICE jet physics results are presented and discussed with emphasis on new studies on jet substructure and jet shapes.

  16. QCD at LEP

    CERN Document Server

    Metzger, W.J.

    2003-01-01

    Several preliminary QCD results from e+e- interactions at LEP are reported. These include studies of event shape variables, which are used to determine alpha_s and for studies of the validity of power corrections. Further, a study of color reconnection effects in 3-jet Z decays is reported.

  17. A theory overview on the Compressed Baryonic Matter Experiment at FAIR

    International Nuclear Information System (INIS)

    Nahrgang, Marlene

    2014-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR offers for the first time in heavy-ion physics the opportunity to investigate extremely baryon-dense strongly interacting matter with large data samples as a basis for high precision measurements. This will allow us to put theories at test, answer questions about the structure of the phase diagram of QCD and the transport properties of the medium. In this overview I will highlight some recent advances on several key questions, which will be addressed by the CBM experiment.

  18. The hot Hagedorn Universe. Presented at the ICFNP2015 meeting, August 2015

    Directory of Open Access Journals (Sweden)

    Rafelski Johann

    2016-01-01

    Full Text Available In the context of the half-centenary of Hagedorn temperature and the statistical bootstrap model (SBM we present a short account of how these insights coincided with the establishment of the hot big-bang model (BBM and helped resolve some of the early philosophical difficulties. We then turn attention to the present day context and show the dominance of strong interaction quark and gluon degrees of freedom in the early stage, helping to characterize the properties of the hot Universe. We focus attention on the current experimental insights about cosmic microwave background (CMB temperature fluctuation, and develop a much improved understanding of the neutrino freeze-out, in this way paving the path to the opening of a direct connection of quark-gluon plasma (QGP physics in the early Universe with the QCD-lattice, and the study of the properties of QGP formed in the laboratory.

  19. Light-Front QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.

    2004-11-30

    In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, including light-front statistical physics. Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. Given the LFWFs, one can compute form factors, heavy hadron decay amplitudes, hadron distribution amplitudes, and the generalized parton distributions underlying deeply virtual Compton scattering. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffractive dissociation, and hidden-color components of nuclear wavefunctions. A new test of hidden color in deuteron photodisintegration is proposed. The origin of leading-twist phenomena such as the diffractive component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing and antishadowing is also discussed; these phenomena cannot be described by light-front wavefunctions of the target computed in isolation. Part of the anomalous NuTeV results for the weak mixing angle {theta}{sub W} could be due to the non-universality of nuclear antishadowing for charged and neutral currents.

  20. Continuing progress on a lattice QCD software infrastructure

    International Nuclear Information System (INIS)

    Joo, B

    2008-01-01

    We report on the progress of the software effort in the QCD application area of SciDAC. In particular, we discuss how the software developed under SciDAC enabled the aggressive exploitation of leadership computers, and we report on progress in the area of QCD software for multi-core architectures

  1. Holographic models and the QCD trace anomaly

    International Nuclear Information System (INIS)

    Goity, Jose L.; Trinchero, Roberto C.

    2012-01-01

    Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton potentials corresponding to perturbative and non-perturbative β-functions are studied. It is shown that in the perturbative case, where the β-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace anomaly and on Wilson loops are carried out.

  2. The QCD/SM working group: Summary report

    International Nuclear Information System (INIS)

    Giele, W.

    2004-01-01

    Quantum Chromo-Dynamics (QCD), and more generally the physics of the Standard Model (SM), enter in many ways in high energy processes at TeV Colliders, and especially in hadron colliders (the Tevatron at Fermilab and the forthcoming LHC at CERN), First of all, at hadron colliders, QCD controls the parton luminosity, which rules the production rates of any particle or system with large invariant mass and/or large transverse momentum. Accurate predictions for any signal of possible ''New Physics'' sought at hadron colliders, as well as the corresponding backgrounds, require an improvement in the control of uncertainties on the determination of PDF and of the propagation of these uncertainties in the predictions. Furthermore, to fully exploit these new types of PDF with uncertainties, uniform tools (computer interfaces, standardization of the PDF evolution codes used by the various groups fitting PDF's) need to be proposed and developed. The dynamics of colour also affects, both in normalization and shape, various observables of the signals of any possible ''New Physics'' sought at the TeV scale, such as, e.g. the production rate, or the distributions in transverse momentum of the Higgs boson. Last, but not least, QCD governs many backgrounds to the searches for this ''New Physics''. Large and important QCD corrections may come from extra hard parton emission (and the corresponding virtual corrections), involving multi-leg and/or multi-loop amplitudes. This requires complex higher order calculations, and new methods have to be designed to compute the required multi-legs and/or multi-loop corrections in a tractable form. In the case of semi-inclusive observables, logarithmically enhanced contributions coming from multiple soft and collinear gluon emission require sophisticated QCD resummation techniques. Resummation is a catch-all name for efforts to extend the predictive power of QCD by summing the large logarithmic corrections to all orders in perturbation theory. In

  3. The QCD/SM working group: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    W. Giele et al.

    2004-01-12

    Quantum Chromo-Dynamics (QCD), and more generally the physics of the Standard Model (SM), enter in many ways in high energy processes at TeV Colliders, and especially in hadron colliders (the Tevatron at Fermilab and the forthcoming LHC at CERN), First of all, at hadron colliders, QCD controls the parton luminosity, which rules the production rates of any particle or system with large invariant mass and/or large transverse momentum. Accurate predictions for any signal of possible ''New Physics'' sought at hadron colliders, as well as the corresponding backgrounds, require an improvement in the control of uncertainties on the determination of PDF and of the propagation of these uncertainties in the predictions. Furthermore, to fully exploit these new types of PDF with uncertainties, uniform tools (computer interfaces, standardization of the PDF evolution codes used by the various groups fitting PDF's) need to be proposed and developed. The dynamics of colour also affects, both in normalization and shape, various observables of the signals of any possible ''New Physics'' sought at the TeV scale, such as, e.g. the production rate, or the distributions in transverse momentum of the Higgs boson. Last, but not least, QCD governs many backgrounds to the searches for this ''New Physics''. Large and important QCD corrections may come from extra hard parton emission (and the corresponding virtual corrections), involving multi-leg and/or multi-loop amplitudes. This requires complex higher order calculations, and new methods have to be designed to compute the required multi-legs and/or multi-loop corrections in a tractable form. In the case of semi-inclusive observables, logarithmically enhanced contributions coming from multiple soft and collinear gluon emission require sophisticated QCD resummation techniques. Resummation is a catch-all name for efforts to extend the predictive power of QCD by summing the large

  4. Non-perturbative QCD and hadron physics

    International Nuclear Information System (INIS)

    Cobos-Martínez, J J

    2016-01-01

    A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented. (paper)

  5. The instanton liquid model of QCD

    International Nuclear Information System (INIS)

    Blotz, A.

    1998-01-01

    Within a microscopic model for the non-perturbative vacuum of QCD, hadronic correlation functions are calculated. In the model the vacuum is a statistical, interacting ensemble of instantons and anti-instantons at the scale of Λ QCD . Hadronic two-point as well as three-point correlation functions are evaluated and compared with phenomenological information about the spectra, couplings and form factors. Especially the electro magnetic form factor of the pion is obtained and new predictions for the charm contribution to DIS structure functions are made

  6. Two flavor QCD and confinement - II

    DEFF Research Database (Denmark)

    Cossu, G.; D'Elia, M.; Di Giacomo, A.

    2007-01-01

    This paper is part of a program of investigation of the chiral transition in Nf=2 QCD, started in Phys.Rev.D72:114510,2005. Progress is reported on theunderstanding of some possible systematic errors. A direct test of first orderscaling is presented.......This paper is part of a program of investigation of the chiral transition in Nf=2 QCD, started in Phys.Rev.D72:114510,2005. Progress is reported on theunderstanding of some possible systematic errors. A direct test of first orderscaling is presented....

  7. The η' meson from lattice QCD

    International Nuclear Information System (INIS)

    Jansen, K.; Michael, C.; Urbach, C.

    2008-04-01

    We study the flavour singlet pseudoscalar mesons from first principles using lattice QCD. With N f =2 flavours of light quark, this is the so-called η 2 meson and we discuss the phenomenological status of this. Using maximally twisted-mass lattice QCD, we extract the mass of the η 2 meson at two values of the lattice spacing for lighter quarks than previously discussed in the literature. We are able to estimate the mass value in the limit of light quarks with their physical masses. (orig.)

  8. Perturbative QCD and jets

    International Nuclear Information System (INIS)

    Mueller, A.H.

    1986-03-01

    A brief review of some of the recent progress in perturbative QCD is given (heavy quark production, small-x physics, minijets and related topics, classical simulations in high energy reactions, coherence and the string effect)

  9. Towards a new strategy of searching for QCD phase transition in heavy ion collisions

    International Nuclear Information System (INIS)

    Ploszajczak, M.; Shanenko, A.A.; Toneev, V.D.; Joint Inst. for Nuclear Research, Dubna

    1995-01-01

    The Hung and Shuryak arguments are reconsidered in favour of searching for the deconfinement phase transition in heavy ion collisions downward from the nominal SPS energy, at E lab ∼ 30 GeV/A where the fireball lifetime is the longest one. Using the recent lattice QCD data and the mixed phase model, it is shown that the deconfinement transition might occur at the bombarding energies as low as E lab = 3-5 GeV/A. Attention is drawn to the study of the mixed phase of nuclear matter in the collision energy range E lab = 2-10 GeV/A. (author)

  10. The strong coupling constant of QCD with four flavors

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Fatih

    2010-11-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  11. The strong coupling constant of QCD with four flavors

    International Nuclear Information System (INIS)

    Tekin, Fatih

    2010-01-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c sw with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the Λ parameter is determined in units of a technical scale L max which is an unambiguously defined length in the hadronic regime. The coupling α SF of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  12. QCD leading order study of the J/ψ leptoproduction at HERA within the nonrelativistic QCD framework

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhan [Guizhou Minzu University, School of Science, Guiyang (China); Zhang, Hong-Fei [Third Military Medical University, Department of Physics, School of Biomedical Engineering, Chongqing (China)

    2017-11-15

    As indicated in our previous paper (Zhang and Sun in Phys. Rev. D 96:034002, 2017), the existing literature studying the J/ψ production in deeply inelastic scattering (DIS) in collinear factorisation is on the basis of a formalism that will lead to wrong results when the ranges of the transverse momentum or the rapidity of the J/ψ in the laboratory frame do not cover all values possible for them. In this paper, we present the renewed results for the J/ψ production in DIS at HERA within the nonrelativistic QCD framework at QCD leading order (LO). Three different sets of the long-distance matrix elements are employed for comparison. The predictions via the colour-singlet (CS) model at QCD LO are generally below the experimental data especially in the regions where perturbation theory are expected to work well, while the colour-octet contributions are of the same order of magnitude as the CS ones, however, in general make the agreement between theory and experiment better. (orig.)

  13. Various versions of analytic QCD and skeleton-motivated evaluation of observables

    International Nuclear Information System (INIS)

    Cvetic, Gorazd; Valenzuela, Cristian

    2006-01-01

    We present skeleton-motivated evaluation of QCD observables. The approach can be applied in analytic versions of QCD in certain classes of renormalization schemes. We present two versions of analytic QCD which can be regarded as low-energy modifications of the ''minimal'' analytic QCD and which reproduce the measured value of the semihadronic τ decay ratio r τ . Further, we describe an approach of calculating the higher-order analytic couplings A k (k=2,3,...) on the basis of logarithmic derivatives of the analytic coupling A 1 (Q 2 ). This approach can be applied in any version of analytic QCD. We adjust the free parameters of the aforementioned two analytic models in such a way that the skeleton-motivated evaluation reproduces the correct known values of r τ and of the Bjorken polarized sum rule (BjPSR) d b (Q 2 ) at a given point (e.g., at Q 2 =2 GeV 2 ). We then evaluate the low-energy behavior of the Adler function d v (Q 2 ) and the BjPSR d b (Q 2 ) in the aforementioned evaluation approach, in the three analytic versions of QCD. We compare with the results obtained in the minimal analytic QCD and with the evaluation approach of Milton et al. and Shirkov

  14. Baryons and QCD

    International Nuclear Information System (INIS)

    Nathan Isgur

    1997-01-01

    The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections

  15. Strong coupling QCD and the (π+,π-) reaction

    International Nuclear Information System (INIS)

    Miller, G.A.; Washington Univ., Seattle, WA

    1989-01-01

    Previous six-quark bag model calculations are in disagreement with new (π + , π - ) data, but conventional nucleonic calculations are generally successful. Six-quark bag models are related to perturbative QCD. I argue that the strong coupling limit of QCD (SCQCD) is a more appropriate starting point for nuclear physics. 15 refs., 3 figs

  16. Q.C.D. estimates of hadronic cross sections

    International Nuclear Information System (INIS)

    Navelet, H.; Peschanski, R.

    1983-03-01

    Estimates for hadron-hadron cross-sections are made using the leading log approximation of Q.C.D. The rise of the total inelastic pp cross-sections at high energy is reproduced, thanks to the competition between the small parton-parton interaction and the large multiplicity of gluons predicted by Q.C.D

  17. The structure of gluon radiation in QCD

    International Nuclear Information System (INIS)

    Parke, S.; Mangano, M.

    1990-01-01

    For massless QCD the hard scattering amplitudes are naturally written in terms of the dual color expansion. Here I present this expansion for purely gluonic processes and processes involving quark-antiquark pairs and gluons. The properties of the sub-amplitudes as well as explicit algebraic expressions are given for a number of these processess. Finally, I demonstrate how to recover massless QED amplitudes from the dual expansion of massless QCD

  18. QCD and hard diffraction at the LHC

    International Nuclear Information System (INIS)

    Albrow, Michael G.; Fermilab

    2005-01-01

    As an introduction to QCD at the LHC I given an overview of QCD at the Tevatron, emphasizing the high Q 2 frontier which will be taken over by the LHC. After describing briefly the LHC detectors I discuss high mass diffraction, in particular central exclusive production of Higgs and vector boson pairs. I introduce the FP420 project to measure the scattered protons 420 m downstream of ATLAS and CMS

  19. Unambiguity of renormalization group calculations in QCD

    International Nuclear Information System (INIS)

    Vladimirov, A.A.

    1979-01-01

    A detailed analysis of the reduction of ambiguities determined by an arbitrary renormalization scheme is presented for the renormalization group calculations of physical quantities in quantum chromodynamics (QCD). Some basic formulas concerning the renormalization-scheme dependence of Green's and renormalization group functions are given. A massless asymptotically free theory with one coupling constant g is considered. In conclusion, several rules for renormalization group calculations in QCD are formulated

  20. ATLAS soft QCD results

    CERN Document Server

    Sykora, Tomas; The ATLAS collaboration

    2018-01-01

    Recent results of soft QCD measurements performed by the ATLAS collaboration are reported. The measurements include total, elastic and inelastic cross sections, inclusive spectra, underlying event and particle correlations in p-p and p-Pb collisions.