WorldWideScience

Sample records for hot plasma

  1. X-ray hot plasma diagnostics

    International Nuclear Information System (INIS)

    Cojocaru, E.

    1984-11-01

    X-ray plasma emission study is powerful diagnostic tool of hot plasmas. In this review article the main techniques of X-ray plasma emission measurement are shortly presented: X-ray spectrometry using absorbent filters, crystal and grating spectrometers, imaging techniques using pinhole cameras, X-ray microscopes and Fresnel zone plate cameras, X-ray plasma emission calorimetry. Advances in these techniques with examples for different hot plasma devices are also presentes. (author)

  2. Physical processes in hot cosmic plasmas

    International Nuclear Information System (INIS)

    Fabian, A.G.; Giovannelli, F.

    1990-01-01

    The interpretation of many high energy astrophysical phenomena relies on a detailed knowledge of radiation and transport processes in hot plasmas. The understanding of these plasma properties is one of the aims of terrestrial plasma physics. While the microscopic properties of astrophysical plasmas can hardly be determined experimentally, laboratory plasmas are more easily accessible to experimental techniques, but transient phenomena and the interaction of the plasma with boundaries often make the interpretation of measurements cumbersome. This book contains the talks given at the NATO Advanced Research Workshop on astro- and plasma-physics in Vulcano, Sicily, May 29-June 2, 1989. The book focuses on three main areas: radiation transport processes in hot (astrophysical and laboratory) plasmas; magnetic fields; their generation, reconnection and their effects on plasma transport properties; relativistic and ultra-high density plasmas

  3. White noise excitation in a hot plasma

    International Nuclear Information System (INIS)

    Ito, Masataka

    1977-01-01

    In a low frequency range, a property of white noise in a hot plasma is studied experimentally. A frequency component of white noise is observed to propagate with a phase velocity which is equal to the ion accoustic wave velocity. The white noise, which is launched in a plasma, is considered as the sum of ion acoustic waves. (auth.)

  4. Cyclotron radiation from hot plasmas

    International Nuclear Information System (INIS)

    Pohl, F.; Henning, J.; Duechs, D.

    1975-11-01

    In calculating the energy transport and losses due to cyclotron radiation there are two major requirements: the absorption coefficient has to be known and the proper geometry of the plasma has to be taken into account. In this report Trubnikov's integral formulae for the absorption coefficient have been evaluated numerically and compared with the approximative formulas of previous authors. Deviations by a factor of 2 - 10 in various frequency regimes are not unusual. With these coefficients the rate of change of the energy density due to cyclotron radiation in a plasma as well as the radiation density at a plasma surface are computed for plasma slab and plasma cylinder. Sometimes considerable differences to the results of previons papers can found. Many simple formulae interpolating the numerical results are given in the text, and the FORTRAN computer programs have been reproduced in the appendices. (orig.) [de

  5. 16. Hot dense plasma atomic processes

    International Nuclear Information System (INIS)

    Werner, Dappen; Totsuji, H.; Nishii, Y.

    2002-01-01

    This document gathers 13 articles whose common feature is to deal with atomic processes in hot plasmas. Density functional molecular dynamics method is applied to the hydrogen plasma in the domain of liquid metallic hydrogen. The effects of the density gradient are taken into account in both the electronic kinetic energy and the exchange energy and it is shown that they almost cancel with each other, extending the applicability of the Thomas-Fermi-Dirac approximation to the cases where the density gradient is not negligible. Another article reports about space and time resolved M-shell X-ray measurements of a laser-produced gas jet xenon plasma. Plasma parameters have been measured by ion acoustic and electron plasma waves Thomson scattering. Photo-ionization becomes a dominant atomic process when the density and the temperature of plasmas are relatively low and when the plasma is submitted to intense external radiation. It is shown that 2 plasmas which have a very different density but have the same ionization parameters, are found in a similar ionization state. Most radiation hydrodynamics codes use radiative opacity data from available libraries of atomic data. Several articles are focused on the determination of one group Rosseland and Planck mean analytical formulas for several single elements used in inertial fusion targets. In another paper the plasma density effect on population densities, effective ionization, recombination rate coefficients and on emission lines from carbon and Al ions in hot dense plasma, is studied. The last article is devoted to a new atomic model in plasmas that considers the occupation probability of the bound state and free state density in the presence of the plasma micro-field. (A.C.)

  6. Nonlocal transport in hot plasma. Part I

    International Nuclear Information System (INIS)

    Brantov, A. V.; Bychenkov, V. Yu.

    2013-01-01

    The problem of describing charged particle transport in hot plasma under the conditions in which the ratio of the electron mean free path to the gradient length is not too small is one of the key problems of plasma physics. However, up to now, there was a deficit of the systematic interpretation of the current state of this problem, which, in most studies, is formulated as the problem of nonlocal transport. In this review, we fill this gap by presenting a self-consistent linear theory of nonlocal transport for small plasma perturbations and an arbitrary collisionality from the classical highly collisional hydrodynamic regime to the collisionless regime. We describe a number of nonlinear transport models and demonstrate the application of the nonclassical transport theory to the solution of some problems of plasma physics, first of all for plasmas produced by nanosecond laser pulses with intensities of 10 13 –10 16 W/cm 2

  7. Anomalous properties of hot dense nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Ferrante, G; Zarcone, M; Uryupin, S A

    2005-01-01

    A concise overview of a number of anomalous properties of hot dense nonequilibrium plasmas is given. The possibility of quasistationary megagauss magnetic field generation due to Weibel instability is discussed for plasmas created in atom tunnel ionization. The collisionless absorption and reflection of a test electromagnetic wave normally impinging on the plasma with two-temperature bi-maxwellian electron velocity distribution function are studied. Due to the wave magnetic field influence on the electron kinetics in the skin layer the wave absorption and reflection significantly depend on the degree of the electron temperature anisotropy. The linearly polarized impinging wave during reflection transforms into an elliptically polarized one. The problem of transmission of an ultrashort laser pulse through a layer of dense plasma, formed as a result of ionization of a thin foil, is considered. It is shown that the strong photoelectron distribution anisotropy yields an anomalous penetration of the wave field through the foil

  8. X-ray emission from hot plasma

    International Nuclear Information System (INIS)

    Hayakawa, Satio; Kato, Takako.

    1979-01-01

    X-ray emission from hot plasmas is discussed with a critical review of different theories. The results given in the present paper are complementary to those given by Kato in the sense that the present paper is introductory to the paper by Kato. The contents of the present paper are; 1. Introduction 2. Ionization and Recombination Rate Coefficients 3. Relative Abundances of Ions 4. Intensity and Spectra of Radiation 5. Comparison with Earlier Results 6. Emission and Absorption Lines (author)

  9. Flute-interchange stability in a hot electron plasma

    International Nuclear Information System (INIS)

    Dominguez, R.R.

    1980-01-01

    Several topics in the kinetic stability theory of flute-interchange modes in a hot electron plasma are discussed. The stability analysis of the hot-electron, curvature-driven flute-interchange mode, previously performed in a slab geometry, is extended to a cylindrical plasma. The cold electron concentration necessary for stability differs substantially from previous criteria. The inclusion of a finite temperature background plasma in the stability analysis results in an ion curvature-driven flute-interchange mode which may be stabilized by either hot-electron diamagnetic effects, hot-electron plasma density, or finite (ion) Larmor radius effects

  10. Faraday rotation applied to the hot plasmas diagnosis

    International Nuclear Information System (INIS)

    Cojocaru, E.

    1980-01-01

    In many circumstances it is of theoretical or practical interest to know the electric and magnetic fields in the hot plasmas. A method for the determination of the magnetic field in the hot plasmas is the Faraday rotation measurement. The aim of this paper is to point out the principle and application of this rarely used optical method. (author)

  11. Characterization of hot dense plasma with plasma parameters

    Science.gov (United States)

    Singh, Narendra; Goyal, Arun; Chaurasia, S.

    2018-05-01

    Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.

  12. Hot plasma parameters in Neptune's magnetosphere

    International Nuclear Information System (INIS)

    Krimigis, S.M.; Mauk, B.H.; Cheng, A.F.; Keath, E.P.; Kane, M.; Armstrong, T.P.; Gloeckler, G.; Lanzerotti, L.J.

    1990-01-01

    Energy spectra of energetic protons and electrons (E p approx-gt 28 keV, E e approx-gt 22 keV, respectively) obtained with the Low Energy Charged Particle (LECP) instrument during the Voyager 2 encounter with Neptune on August 24-25, 1989 are presented. The proton spectral form was a power law (dj/dE = KE -γ ), outside the orbit of Triton (∼14.3 R N ); inside that distance, it was found to be a hot (kT ≅ 60 keV) Maxwellian distribution. Such distributions, observed in other planets as well, have yet to be explained theoretically. Similarly, the electron spectral form changed from a simple power law outside Triton to a two-slope power law with a high energy tail inside. Intensity and spectral features in both proton and electron fluxes were identified in association with the crossings of the Triton and 1989 N1 L-shells, but these features do not occur simultaneously in both species. Such signatures were manifested by relative peaks in both kT and γ spectral indices. Peak proton pressures of ∼2x10 -9 dynes cm -2 , and β ∼ 0.2 were measured at successive magnetic equatorial crossings, both inbound and outbound. These parameters show Neptune's magnetosphere to be relatively undistorted by hot plasma loading, similar to that of Uranus and unlike those of Saturn and Jupiter. Trapped electron fluxes at Neptune, as at Uranus, exceed the whistler mode stably trapped flux limit. Whistler-induced pitch angle scattering of energetic electrons in the radiation belts can yield a precipitating energy flux sufficient to drive Neptune's aurora

  13. (RN) pair production by photons in a hot Maxwellian plasma

    International Nuclear Information System (INIS)

    Haug, E.

    2004-01-01

    The production of electron-positron pairs by photons in the Coulomb Field of electrons and positrons (triplet production) in hot thermal plasmas is investigated. The pair production rate for this process is calculated as a function of the photon energy and compared with the rate of photon-nucleus pair production for semi-relativistic and relativistic plasma temperatures. (author)

  14. Hot spots and dark current in advanced plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. G. Manahan

    2016-01-01

    Full Text Available Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.

  15. FOREWORD: Workshop on "Very Hot Astrophysical Plasmas"

    Science.gov (United States)

    Koch-Miramond, Lydie; Montemerie, Thierry

    1984-01-01

    A Workshop on "Very Hot Astrophysical Plasmas" was held in Nice, France, on 8-10 November 1982. Dedicated mostly to theoretical, observational, and experimental aspects of X-ray astronomy and related atomic physics, it was the first of its kind to be held in France. The Workshop was "European" in the sense that one of its goals (apart from pure science) was to gather the European astronomical community in view of the forthcoming presentation of the "X-80" project for final selection to be the next scientific satellite of the European Space Agency. We now know that the Infrared Space Observatory has been chosen instead, but the recent successful launch of EXOSAT still keeps X-ray astronomy alive, and should be able to transfer, at least for a time, the leadership in this field from the U.S. to Europe, keeping in mind the competitive level of our Japanese colleagues. (With respect to the selection of ISO, one should also keep in mind that observations in the infrared often bring material relevant to the study of X-ray sources!) On a longer time scale, the Workshop also put emphasis on several interesting projects for the late eighties-early nineties, showing the vitality of the field in Europe. Some proposals have already taken a good start, like XMM, the X-ray Multi-Mirror project, selected by ESA last December for an assessment study in 1983. The present proceedings contain most of the papers that were presented at the Workshop. Only the invited papers were presented orally, contributed papers being presented in the form of posters but summarized orally by rapporteurs. To make up this volume, the written versions of these papers were either cross-reviewed by the Invited Speakers, or refereed by the Rapporteurs (for contributed papers) and edited by us, when necessary. Note, however, that the conclusions of the Workshop, which were kindly presented by Richard McCray, have already appeared in the "News and Views" section of Nature (301, 372, 1983). Altogether, the

  16. Simulation studies on stability of hot electron plasma

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu

    1985-01-01

    Stability of a hot electron plasma in an NBT(EBT)-like geometry is studied by using a 2-1/2 dimensional relativistic, electromagnetic particle code. For the low-frequency hot electron interchange mode, comparison of the simulation results with the analytical predictions of linear stability theory show fairly good agreement with the magnitude of the growth rates calculated without hot electron finite Larmor radius effects. Strong stabilizing effects by finite Larmor radius of the hot electrons are observed for short wavelength modes. As for the high-frequency hot electron interchange mode, there is a discrepancy between the simulation results and the theory. The high-frequency instability is not observed though a parameter regime is chosen in which the high-frequency hot electron interchange mode is theoretically predicted to grow. Strong cross-field diffusion in a poloidal direction of the hot electrons might explain the stability. Each particle has a magnetic drift velocity, and the speed of the magnetic drift is proportional to the kinetic energy of each particle. Hence, if the particles have high temperature, the spread of the magnetic drift velocity is large. This causes a strong cross-field diffusion of the hot electrons. In the simulation for this interchange mode, an enhanced temperature relaxation is observed between the hot and cold electrons although the theoretically predicted high frequency modes are stable. (Nogami, K.)

  17. Delayed hot spots in a low energy plasma focus

    International Nuclear Information System (INIS)

    Rout, R.K.; Shyam, A.

    1991-01-01

    In a low energy Mather-type plasma focus device, hot spots having temperature in the range of few keV have been observed even 1 μs after the pinch disintegration and in regions away from the pinch area. These hot spots are perhaps created by the thermal runaway due to temperature fluctuations in the background gas. (author). 12 refs., 6 figs

  18. Hot-plasma decoupling condition for long-wavelength modes

    International Nuclear Information System (INIS)

    Berk, H.L.; Van Dam, J.W.; Spong, D.

    1982-10-01

    The stability of layer modes is analyzed for z-pinch and bumpy cylinder models. These modes are long wavelength across the layer and flute-like along the field line. The stability condition can be expressed in terms of the ratio of hot to core plasma density. It is shown that to achieve conditions close to the Nelson, Lee-Van Dam core beta limit, one needs a considerably smaller hot to core plasma density than is required to achieve stability at zero core beta

  19. Stark broadening in hot, dense laser-produced plasmas

    International Nuclear Information System (INIS)

    Tighe, R.J.; Hooper, C.F. Jr.

    1976-01-01

    Broadened Lyman-α x-ray lines from neon X and argon XVIII radiators, which are immersed in a hot, dense deuterium or deuterium-tritium plasma, are discussed. In particular, these lines are analyzed for several temperature-density cases, characteristic of laser-produced plasmas; special attention paid to the relative importance of ion, electron, and Doppler effects. Static ion microfield distribution functions are tabulated

  20. The hot plasma environment at jupiter: ulysses results.

    Science.gov (United States)

    Lanzerotti, L J; Armstrong, T P; Gold, R E; Anderson, K A; Krimigis, S M; Lin, R P; Pick, M; Roelof, E C; Sarris, E T; Simnett, G M; Maclennan, C G; Choo, H T; Tappin, S J

    1992-09-11

    Measurements of the hot plasma environment during the Ulysses flyby of Jupiter have revealed several new discoveries related to this large rotating astrophysical system. The Jovian magnetosphere was found by Ulysses to be very extended, with the day-side magnetopause located at approximately 105 Jupiter radii. The heavy ion (sulfur, oxygen, and sodium) population in the day-side magnetosphere increased sharply at approximately 86 Jupiter radii. This is somewhat more extended than the "inner" magnetosphere boundary region identified by the Voyager hot plasma measurements. In the day-side magnetosphere, the ion fluxes have the anisotropy direction expected for corotation with the planet, with the magnitude of the anisotropy increasing when the spacecraft becomes more immersed in the hot plasma sheet. The relative abundances of sulfur, oxygen, and sodium to helium decreased somewhat with decreasing radial distance from the planet on the day-side, which suggests that the abundances of the Jupiter-derived species are dependent on latitude. In the dusk-side, high-latitude region, intense fluxes of counter-streaming ions and electrons were discovered from the edge of the plasma sheet to the dusk-side magnetopause. These beams of electrons and ions were found to be very tightly aligned with the magnetic field and to be superimposed on a time- and space-variable isotropic hot plasma background. The currents carried by the measured hot plasma particles are typically approximately 1.6 x 10(-4) microamperes per square meter or approximately 8 x 10(5) amperes per squared Jupiter radius throughout the high-latitude magnetosphere volume. It is likely that the intense particle beams discovered at high Jovian latitudes produce auroras in the polar caps of the planet.

  1. Plasma relaxation of cold electrons and hot ions

    International Nuclear Information System (INIS)

    Potapenko, I.F.; Sakanaka, P.H.

    1996-01-01

    The relaxation process of a space uniform plasma composed of cold electrons and one species of hot ions studied numerically. Special attention has been paid to the deviation of relaxation from the classical picture which is characterized by a weakly non-isothermic situation. (author). 6 refs., 2 figs

  2. A guide to Internet atomic databases for hot plasmas

    International Nuclear Information System (INIS)

    Ralchenko, Yuri

    2006-01-01

    Internet atomic databases are nowadays considered to be the primary tool for dissemination of atomic data. We present here a review of numerical and bibliographic databases of importance for diagnostics of hot plasmas. Special attention is given to new and emerging trends, such as online calculation of various atomic parameters. The recently updated NIST databases are presented in detail

  3. A guide to Internet atomic databases for hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ralchenko, Yuri [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)]. E-mail: yuri.ralchenko@nist.gov

    2006-05-15

    Internet atomic databases are nowadays considered to be the primary tool for dissemination of atomic data. We present here a review of numerical and bibliographic databases of importance for diagnostics of hot plasmas. Special attention is given to new and emerging trends, such as online calculation of various atomic parameters. The recently updated NIST databases are presented in detail.

  4. Intense EM filamentation in relativistic hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang-Lin [Department of Physics, Jinggangshan University, Ji' an, Jiangxi 343009 (China); Chen, Zhong-Ping [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314 (India)

    2017-03-03

    Highlights: • Breaking up of an intense EM pulse into filaments is a spectacular demonstration of the nonlinear wave-plasma interaction. • Filaments are spectacularly sharper, highly extended and longer lived at relativistic temperatures. • EM energy concentration can trigger new nonlinear phenomena with absolute consequences for high energy density matter. - Abstract: Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The “relativistic” filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  5. Microwave interaction with hot electron plasmas

    International Nuclear Information System (INIS)

    Tanaka, M.; Fujiwara, M.; Ikegami, H.

    1980-01-01

    A numerical calculation is presented of ray trajectories and cyclotron damping for toroidal plasmas using geometrical optics. In the absorption region, group velocity does not always coincide with the velocity of energy flow, therefore it should be careful to apply the geometrical optics to finite temperature plasmas. In these calculations, attention is paid mainly to the finite temperature effect on ray tracing. Some numerical results for ordinary waves are presented. Second, new cutoff and resonance appear in the plasmas with anisotropic electron temperature. This resonance frequency is shifted from the usual cyclotron resonance by an amount proportional to T 11 /mc 2 , so that one can determine T 11 when this resonance frequency is measured. A simple discussion is given. The results are presented of recent density measurement on Nagoya Bumpy Torus obtained by interferometer system with different frequencies, 35 GHz and 55 GHz. The results are different than each other in T-mode. The possible reasons for these differences are enumerated in this section

  6. Fluctuations from dissipation in a hot non-Abelian plasma

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Manuel, Cristina

    2000-01-01

    We consider a transport equation of the Boltzmann-Langevin type for non-Abelian plasmas close to equilibrium to derive the spectral functions of the underlying microscopic fluctuations from the entropy. The correlator of the stochastic source is obtained from the dissipative processes in the plasma. This approach, based on classical transport theory, exploits the well-known link between a linearized collision integral, the entropy and the spectral functions. Applied to the ultra-soft modes of a hot non-Abelian (classical or quantum) plasma, the resulting spectral functions agree with earlier findings obtained from the microscopic theory. As a by-product, it follows that theorem.

  7. Interaction of graphite with a hot, dense deuterium plasma

    International Nuclear Information System (INIS)

    Desko, J.C. Jr.

    1980-01-01

    The erosion of ATJ-S graphite caused by a hot, dense deuterium plasma has been investigated experimentally. The plasma was produced in an electromagnetic shock tube. Plasma characteristics were typically: ion temperature approx. = 800 eV (approx. 1 x 10 7 0 K), number density approx. = 10 16 /cm 3 , and transverse magnetic field approx. = 1 tesla. The energetic ion flux, phi, to the sample surfaces was approx. 10 23 ions/cm 2 -sec for a single pulse duration of approx. 0.1 usec. Sample surfaces were metallographically prepared and examined with a scanning electron microscope before and after exposure

  8. Ponderomotive Acceleration of Hot Electrons in Tenuous Plasmas

    International Nuclear Information System (INIS)

    Geyko, V.I.; Fraiman, G.M.; Dodin, I.Y.; Fisch, N.J.

    2009-01-01

    The oscillation-center Hamiltonian is derived for a relativistic electron injected with an arbitrary momentum in a linearly polarized laser pulse propagating in tenuous plasma, assuming that the pulse length is smaller than the plasma wavelength. For hot electrons generated at collisions with ions under intense laser drive, multiple regimes of ponderomotive acceleration are identified and the laser dispersion is shown to affect the process at plasma densities down to 10 17 cm -3 . Assuming a/γ g 0 ∼ g , where a is the normalized laser field, and γ g is the group velocity Lorentz factor. Yet γ ∼ Γ is attained within a wide range of initial conditions; hence a cutoff in the hot electron distribution is predicted

  9. Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma

    OpenAIRE

    Liu, Wei; Hsu, Scott C.

    2010-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a uniform hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER and NSTX (National Spherical Torus Experiment). Unmagnetized dense plasma jet injection is similar to compact toroid injection but with much higher plasma density and total mass, and consequently lower required injection velocit...

  10. Plasma hot machining for difficult-to-cut materials, 1

    International Nuclear Information System (INIS)

    Kitagawa, Takeaki; Maekawa, Katsuhiro; Kubo, Akihiko

    1987-01-01

    Machinability of difficult-to-cut materials has been a great concern to manufacturing engineers since demands for new materials in the aerospace and nuclear industries are more and more increasing. The purpose of this study is to develop a hot machining to improve machinability of high hardness materials. A plasma arc is used for heating materials cut. The surface just after being heated is removed as a chip by tungsten carbide tools. The turning experiments of high hardness steels with aid of plasma arc heating show not only the decrease in cutting forces but also the following effectiveness: (1) The application of the plasma hot machining to the condition, under which a built-up edge (BUE) appears in turning 0.46%C steel, makes the BUE disappeared, bringing less flank wear. (2) In the case of 18%Mn steel cutting, deep groove wear on the end-cutting edge diminishes, and roughness of the machined surface is improved by the prevention from chatter. (3) Although the chilled cast iron has high hardness of above HB = 350, the plasma hot machining makes it possible to cut it with tungsten carbide tools having less chipping and flank wear. (author)

  11. High-frequency microinstabilities in hot-electron plasmas

    International Nuclear Information System (INIS)

    Chen, Y.J.; Nevins, W.M.; Smith, G.R.

    1981-01-01

    Instabilities with frequencies in the neighborhood of the electron cyclotron frequency are of interest in determining stable operating regimes of hot-electron plasmas in EBT devices and in tandem mirrors. Previous work used model distributions significantly different than those suggested by recent Fokker-Planck studies. We use much more realistic model distributions in a computer code that solves the full electromagnetic dispersion relation governing longitudinal and transverse waves in a uniform plasma. We allow for an arbitrary direction of wave propagation. Results for the whistler and upper-hybrid loss-cone instabilities are presented

  12. A collisional-radiative average atom model for hot plasmas

    International Nuclear Information System (INIS)

    Rozsnyai, B.F.

    1996-01-01

    A collisional-radiative 'average atom' (AA) model is presented for the calculation of opacities of hot plasmas not in the condition of local thermodynamic equilibrium (LTE). The electron impact and radiative rate constants are calculated using the dipole oscillator strengths of the average atom. A key element of the model is the photon escape probability which at present is calculated for a semi infinite slab. The Fermi statistics renders the rate equation for the AA level occupancies nonlinear, which requires iterations until the steady state. AA level occupancies are found. Detailed electronic configurations are built into the model after the self-consistent non-LTE AA state is found. The model shows a continuous transition from the non-LTE to the LTE state depending on the optical thickness of the plasma. 22 refs., 13 figs., 1 tab

  13. Active control of magneto-hydrodynamic instabilities in hot plasmas

    CERN Document Server

    2015-01-01

    During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity.  However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for "old hands" and newcomers alike.

  14. Stabilizing effects of hot electrons on low frequency plasma drift waves

    International Nuclear Information System (INIS)

    Huang Chaosong; Qiu Lijian; Ren Zhaoxing

    1988-01-01

    The MHD equation is used to study the stabilization of low frequency drift waves driven by density gradient of plasma in a hot electron plasma. The dispersion relation is derived, and the stabilizing effects of hot electrons are discussed. The physical mechanism for hot electron stabilization of the low frequency plasma perturbations is charge uncovering due to the hot electron component, which depends only on α, the ratio of N h /N i , but not on the value of β h . The hot electrons can reduce the growth rate of the interchange mode and drift wave driven by the plasma, and suppress the enomalous plasma transport caused by the drift wave. Without including the effectof β h , the stabilization of the interchange mode requires α≅2%, and the stabilization of the drift wave requires α≅40%. The theoretical analyses predict that the drift wave is the most dangerous low frequency instability in the hot electron plasma

  15. Some recent results from European sounding rocket and satellite observations of the hot magnetospheric plasma

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1979-03-01

    A brief summary of some recent results from European studies of the hot magnetospheric plasma is presented. The material is organized in four main sections: 1) Observations of keV auroral electrons. 2) Observation of the hot ion component of the magnetospheric plasma. 3) Sudden changes of the distribution of the hot plasma in the dayside magnetosphere. 4) Banded electron cyclotron harmonic instability in the magnetosphere - a first comparison of theory and experiment. (E.R.)

  16. Importance of field-reversing ion ring formation in hot electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, K.

    1975-11-01

    Formation of the field reversing ion ring in the mirror confined hot electron plasma may offer a device to confine the fusion plasma even under the restriction of the present technology. (Author) (GRA)

  17. Plasma heating and hot ion sustaining in mirror based hybrids

    International Nuclear Information System (INIS)

    Moiseenko, V. E.; Ågren, O.

    2012-01-01

    Possibilities of plasma heating and sloshing ion sustaining in mirror based hybrids are briefly reviewed. Sloshing ions, i.e. energetic ions with a velocity distribution concentrated to a certain pitch-angle, play an important role in plasma confinement and generation of fusion neutrons in mirror machines. Neutral beam injection (NBI) is first discussed as a method to generate sloshing ions. Numerical results of NBI modeling for a stellarator-mirror hybrid are analyzed. The sloshing ions could alternatively be sustained by RF heating. Fast wave heating schemes, i.e. magnetic beach, minority and second harmonic heating, are addressed and their similarities and differences are described. Characteristic features of wave propagation in mirror hybrid devices including both fundamental harmonic minority and second harmonic heating are examined. Minority heating is efficient for a wide range of minority concentration and plasma densities; it allows one to place the antenna aside from the hot ion location. A simple-design strap antenna suitable for this has good performance. However, this scenario is appropriate only for light minority ions. The second harmonic heating can be applied for the heavy ion component. Arrangements are similar for minority and second harmonic heating. The efficiency of second harmonic heating is influenced by a weaker wave damping than for minority heating. Numerical calculations show that in a hybrid reactor scaled mirror machine the deuterium sloshing ions could be heated within the minority heating scheme, while the tritium ions could be sustained by second harmonic heating.

  18. The thermo magnetic instability in hot viscose plasmas

    Science.gov (United States)

    Haghani, A.; Khosravi, A.; Khesali, A.

    2017-10-01

    Magnetic Rotational Instability (MRI) can not performed well in accretion disks with strong magnetic field. Studies have indicated a new type of instability called thermomagnetic instability (TMI) in systems where Nernst coefficient and gradient temperature were considered. Nernst coefficient would appear if Boltzman equation could be expanded through ω_{Be} (cyclotron frequency). However, the growth rate of this instability was two magnitude orders below MRI growth (Ωk), which could not act the same as MRI. Therefor, a higher growth rate of unstable modes was needed. In this paper, rotating viscid hot plasma with strong magnetic filed was studied. Firstly, a constant alpha viscosity was studied and then a temperature sensitive viscosity. The results showed that the temperature sensitive viscosity would be able to increase the growth rate of TMI modes significantly, hence capable of acting similar to MRI.

  19. Atomic properties in hot plasmas from levels to superconfigurations

    CERN Document Server

    Bauche, Jacques; Peyrusse, Olivier

    2015-01-01

    This book is devoted to the calculation of hot-plasma properties which generally requires a huge number of atomic data. It is the first book that combines information on the details of the basic atomic physics and its application to atomic spectroscopy with the use of the relevant statistical approaches. Information like energy levels, radiative rates, collisional and radiative cross-sections, etc., must be included in equilibrium or non-equilibrium models in order to describe both the atomic-population kinetics and the radiative properties. From the very large number of levels and transitions involved in complex ions, some statistical (global) properties emerge. The book presents a coherent set of concepts and compact formulas suitable for tractable and accurate calculations. The topics addressed are: radiative emission and absorption, and a dozen of other collisional and radiative processes; transition arrays between level ensembles (configurations, superconfigurations); effective temperatures of configurat...

  20. Plasma effects in aligned carbon nanoflake growth by plasma-enhanced hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Cheng, Q.J., E-mail: qijin.cheng@xmu.edu.cn [School of Energy Research, Xiamen University, Xiamen 361005 (China); Ostrikov, K. [Plasma Nanoscience Center Australia (PNCA), Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organization, PO Box 218, Lindfield 2070, NSW (Australia); Institute for Future Environments and School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, QLD (Australia); Plasma Nanoscience, School of Physics, The University of Sydney, Sydney 2006, NSW (Australia)

    2015-01-15

    Highlights: • Plasma-specific effects in the growth of carbon nanoflakes (CNFs) are studied. • Electic field in the plasma sheath promotes separation of CNFs from the substrate. • The orentention of GNFs is related to the combined electic force and growth effects. • The high growth grates of aligned GNFs are plasma-related. - Abstract: Carbon nanofilms are directly grown on silicon substrates by plasma-enhanced hot filament chemical vapor deposition in methane environment. It is shown that the nanofilms are composed of aligned carbon nanoflakes by extensive investigation of experimental results of field emission scanning electron microscopy, micro-Raman spectroscopy and transmission electron microscopy. In comparison with the graphene-like films grown without plasmas, the carbon nanoflakes grow in an alignment mode and the growth rate of the films is increased. The effects of the plasma on the growth of the carbon nanofilms are studied. The plasma plays three main effects of (1) promoting the separation of the carbon nanoflakes from the silicon substrate, (2) accelerating the motion of hydrocarbon radicals, and (3) enhancing the deposition of hydrocarbon ions onto the substrate surface. Due to these plasma-specific effects, the carbon nanofilms can be formed from the aligned carbon nanoflakes with a high rate. These results advance our knowledge on the synthesis, properties and applications of graphene-based materials.

  1. Anomalous energy transport in hot plasmas: solar corona and Tokamak

    International Nuclear Information System (INIS)

    Beaufume, P.

    1992-04-01

    Anomalous energy transport is studied in two hot plasmas and appears to be associated with a heating of the solar corona and with a plasma deconfining process in tokamaks. The magnetic structure is shown to play a fundamental role in this phenomenon through small scale instabilities which are modelized by means of a nonlinear dynamical system: the Beasts' Model. Four behavior classes are found for this system, which are automatically classified in the parameter space thanks to a neural network. We use a compilation of experimental results relative to the solar corona to discuss current-based heating processes. We find that a simple Joule effect cannot provide the required heating rates, and therefore propose a dimensional model involving a resistive reconnective instability which leads to an efficient and discontinuous heating mechanism. Results are in good agreement with the observations. We give an analytical expression for a diffusion coefficient in tokamaks when magnetic turbulence is perturbing the topology, which we validate thanks to the standard mapping. A realistic version of the Beasts' Model allows to test a candidate to anomalous transport: the thermal filamentation instability

  2. Studies of instabilities and waves in a mirror confined hot electron plasma

    International Nuclear Information System (INIS)

    Huang Chaosong; Qiu Lijian; Ren Zhaoxing

    1989-01-01

    The stability of hot electron plasmas is studied. The hot electron component can stabilize the low frequency drift wave and the interchange mode driven by the plasma, which depends only on α=N h /N i , the density ratio of the hot electrons to the plasma ions, but not on the beta value and the annular structure of the hot electrons. Stabilization of the drift wave occurs for α > 40%, and that of the interchange mode for α > 5%, which allows the prediction that the interchange mode can be suppressed in hot electron plasma experiments. The experiments have been conducted in a simple mirror machine. It is observed that the plasma drives a drift wave at 40 kHz and an interchange mode at about 100 kHz. The fluctuation amplitude of the drift wave is much higher than that of the interchange mode. The hot electrons reduce the density gradient, the fluctuation amplitude and the radial loss of the plasma. On the other hand, the hot electrons drive the interchange mode and drift wave in the ion cyclotron frequency region. The effects of a cold plasma on hot electron perturbations are discussed. (author). 10 refs, 6 figs

  3. Eigenmodes of a microwave cavity partially filled with an anisotropic hot plasma

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1978-01-01

    The eigenmodes of a microwave cavity, which contains a uniform hot plasma with anisotropic temperature, are determined using the linearized fluid equations together with Maxwell's equations. Conditions are discussed under which hot plasma mode and the cold plasma mode are decoupled. The frequency shift of the microwave cavity is calculated and the theoretical results are shown to be in very good qualitative agreement with published experimental results obtained for the TM 010 mode. (author)

  4. Holographic screening length in a hot plasma of two sphere

    International Nuclear Information System (INIS)

    Atmaja, A.N.; Kassim, H. Abu; Yusof, N.

    2015-01-01

    We study the screening length L max of a moving quark-antiquark pair in a hot plasma, which lives in a two sphere, S 2 , using the AdS/CFT correspondence in which the corresponding background metric is the four-dimensional Schwarzschild-AdS black hole. The geodesic of both ends of the string at the boundary, interpreted as the quark-antiquark pair, is given by a stationary motion in the equatorial plane by which the separation length L of both ends of the string is parallel to the angular velocity ω. The screening length and total energy H of the quark-antiquark pair are computed numerically and show that the plots are bounded from below by some functions related to the momentum transfer P c of the drag force configuration. We compare the result by computing the screening length in the reference frame of the moving quark-antiquark pair, in which the background metrics are ''Boost-AdS'' and Kerr-AdS black holes. Comparing both black holes, we argue that the mass parameters M Schx of the Schwarzschild-AdS black hole and M Kerr of the Kerr-AdS black hole are related at high temperature by M Kerr = M Sch (1-a 2 l 2 ) 3/2 , where a is the angular momentum parameter and l is the AdS curvature. (orig.)

  5. Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshova, M., E-mail: maryna.chernyshova@ipplm.pl [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gribkov, V.A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Kowalska-Strzeciwilk, E.; Kubkowska, M.; Miklaszewski, R.; Paduch, M.; Pisarczyk, T.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Demina, E.V.; Pimenov, V.N.; Maslyaev, S.A. [Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Bondarenko, G.G. [National Research University Higher School of Economics (HSE), Moscow (Russian Federation); Vilemova, M.; Matejicek, J. [Institute of Plasma Physics of the CAS, Prague (Czech Republic)

    2016-12-15

    Highlights: • Materials perspective for use in mainstream nuclear fusion facilities were studied. • Powerful streams of hot plasma and fast ions were used to induce irradiation. • High temporal, spatial, angular and spectral resolution available in experiments. • Results of irradiation were investigated by number of analysis techniques. - Abstract: A process of irradiating and ablating solid-state targets with hot plasma and fast ion streams in two Dense Plasma Focus (DPF) devices – PF-6 and PF-1000 was examined by applying a number of diagnostics of nanosecond time resolution. Materials perspective for use in chambers of the mainstream nuclear fusion facilities (mainly with inertial plasma confinement like NIF and Z-machine), intended both for the first wall and for constructions, have been irradiated in these simulators. Optical microscopy, SEM, Atomic Emission Spectroscopy, images in secondary electrons and in characteristic X-ray luminescence of different elements, and X-ray elemental analysis, gave results on damageability for a number of materials including low-activated ferritic and austenitic stainless steels, β-alloy of Ti, as well as two types of W and a composite on its base. With an increase of the number of shots irradiating the surface, its morphology changes from weakly pronounced wave-like structures or ridges to strongly developed ones. At later stages, due to the action of the secondary plasma produced near the target materials they melted, yielding both blisters and a fracturing pattern: first along the grain and then “in-between” the grains creating an intergranular net of microcracks. At the highest values of power flux densities multiple bubbles appeared. Furthermore, in this last case the cracks were developed because of microstresses at the solidification of melt. Presence of deuterium within the irradiated ferritic steel surface nanolayers is explained by capture of deuterons in lattice defects of the types of impurity atoms

  6. Holographic screening length in a hot plasma of two sphere

    Energy Technology Data Exchange (ETDEWEB)

    Atmaja, A.N. [University of Malaya, Department of Physics, Faculty of Science, Quantum Science Centre, Kuala Lumpur (Malaysia); Kompleks PUSPITEK Serpong, Research Center for Physics, Indonesian Institute of Sciences (LIPI), Tangerang (Indonesia); Kassim, H. Abu; Yusof, N. [University of Malaya, Department of Physics, Faculty of Science, Quantum Science Centre, Kuala Lumpur (Malaysia)

    2015-11-15

    We study the screening length L{sub max} of a moving quark-antiquark pair in a hot plasma, which lives in a two sphere, S{sup 2}, using the AdS/CFT correspondence in which the corresponding background metric is the four-dimensional Schwarzschild-AdS black hole. The geodesic of both ends of the string at the boundary, interpreted as the quark-antiquark pair, is given by a stationary motion in the equatorial plane by which the separation length L of both ends of the string is parallel to the angular velocity ω. The screening length and total energy H of the quark-antiquark pair are computed numerically and show that the plots are bounded from below by some functions related to the momentum transfer P{sub c} of the drag force configuration. We compare the result by computing the screening length in the reference frame of the moving quark-antiquark pair, in which the background metrics are ''Boost-AdS'' and Kerr-AdS black holes. Comparing both black holes, we argue that the mass parameters M{sub Schx} of the Schwarzschild-AdS black hole and M{sub Kerr} of the Kerr-AdS black hole are related at high temperature by M{sub Kerr} = M{sub Sch}(1-a{sup 2}l{sup 2}){sup 3/2}, where a is the angular momentum parameter and l is the AdS curvature. (orig.)

  7. Electronic oscillations in a hot plasma due the non-Maxwellian velocity distributions

    International Nuclear Information System (INIS)

    Dias, L.A.V.; Nakamura, Y.

    1977-01-01

    In a completely ionized hot plasma, with a non-Maxwellian electron velocity distribution, it is shown that, depending on the electron temperature, oscillations may occur at the elctron plasma and gyro frequencies. For three different electron velocity distributions, it is shown the oscillations dependency on the temperature. This situation occurs in the ionospheric plasma when artificially heated by HF radio waves. If the distribution is Maxwellian, the oscillation only occur near the electron plasma frequency [pt

  8. Radial structure of curvature-driven instabilities in a hot-electron plasma

    International Nuclear Information System (INIS)

    Spong, D.A.; Berk, H.L.; Van Dam, J.W.

    1984-01-01

    A nonlocal analysis of curvature-driven instabilities for a hot-electron ring interacting with a warm background plasma has been made. Four different instability modes characteristic of hot-electron plasmas have been examined: the high-frequency hot-electron interchange (at frequencies larger than the ion-cyclotron frequency), the compressional Alfven instability, the interacting background pressure-driven interchange, and the conventional hot-electron interchange (at frequencies below the ion-cyclotron frequency). The decoupling condition between core and hot-electron plasmas has also been examined, and its influence on the background and hot-electron interchange stability boundaries has been studied. The assumed equilibrium plasma profiles and resulting radial mode structure differ somewhat from those used in previous local analytic estimates; however, when the analysis is calibrated to the appropriate effective radial wavelength of the nonlocal calculation, reasonable agreement is obtained. Comparison with recent experimental measurements indicates that certain of these modes may play a role in establishing operating boundaries for the ELMO Bumpy Torus-Scale (EBT-S) experiment. The calculations given here indicate the necessity of having core plasma outside the ring to prevent the destabilizing wave resonance of the precessional mode with a cold plasma

  9. High-speed photography application to pulsed hot plasma investigation

    International Nuclear Information System (INIS)

    Borov'etskij, M.; Koz'yarkevich, V.; Skrzhechanovskij, V.; Socha, R.

    1986-01-01

    Plasma focus is investigated using an electron-optical chamber for high-speed photography (KSK-1). Experimental devices for studying dynamics and structure of a plasma layer in the chosen interval, recording plasma spectra with time resolution as well as for studying the dynamics and structure of a plasma layer by Schlieren- and shadow methods are briefly described. Experimental results are presented

  10. Obliquely Propagating Non-Monotonic Double Layer in a Hot Magnetized Plasma

    International Nuclear Information System (INIS)

    Kim, T.H.; Kim, S.S.; Hwang, J.H.; Kim, H.Y.

    2005-01-01

    Obliquely propagating non-monotonic double layer is investigated in a hot magnetized plasma, which consists of a positively charged hot ion fluid and trapped, as well as free electrons. A model equation (modified Korteweg-de Vries equation) is derived by the usual reductive perturbation method from a set of basic hydrodynamic equations. A time stationary obliquely propagating non-monotonic double layer solution is obtained in a hot magnetized-plasma. This solution is an analytic extension of the monotonic double layer and the solitary hole. The effects of obliqueness, external magnetic field and ion temperature on the properties of the non-monotonic double layer are discussed

  11. Self-organization of hot plasmas the canonical profile transport model

    CERN Document Server

    Dnestrovskij, Yu N

    2015-01-01

    In this monograph the author presents the Canonical Profile Transport Model or CPTM as a rather general mathematical framework to simulate plasma discharges.The description of hot plasmas in a magnetic fusion device is a very challenging task and many plasma properties still lack a physical explanation. One important property is plasma self-organization.It is very well known from experiments that the radial profile of the plasma pressure and temperature remains rather unaffected by changes of the deposited power or plasma density. The attractiveness of the CPTM is that it includes the effect o

  12. Laser thermonuclear fusion with force confinement of hot plasma

    International Nuclear Information System (INIS)

    Korobkin, V.V.; Romanovsky, M.Y.

    1994-01-01

    The possibility of the utilization of laser radiation for plasma heating up to thermonuclear temperatures with its simultaneous confinement by ponderomotive force is investigated. The plasma is located inside a powerful laser beam with a tubelike section or inside a cavity of duct section, formed by several intersecting beams focused by cylindrical lenses. The impact of various physical processes upon plasma confinement is studied and the criteria of plasma confinement and maintaining of plasma temperature are derived. Plasma and laser beam stability is considered. Estimates of laser radiation energy necessary for thermonuclear fusion are presented

  13. Localized structures of electromagnetic waves in hot electron-positron plasma

    International Nuclear Information System (INIS)

    Kartal, S.; Tsintsadze, L.N.; Berezhiani, V.I.

    1995-08-01

    The dynamics of relatively strong electromagnetic (EM) wave propagation in hot electron-positron plasma is investigated. The possibility of finding localized stationary structures of EM waves is explored. It it shown that under certain conditions the EM wave forms a stable localized soliton-like structures where plasma is completely expelled from the region of EM field location. (author). 9 refs, 2 figs

  14. X-ray polarization studies of plasma focus experiments with a single hot spots

    International Nuclear Information System (INIS)

    Jakubowski, L.; Sadowski, M.J.; Baronova, E.O.

    2004-01-01

    In high current pulse discharges of the plasma focus (PF) type, inside the collapsing pinch column, there are formed local micro-regions of high-density and high-temperature plasma, so-called hot spots. Individual hot spots are separated in space and time. Each hot spot is characterized by its specific electron concentration and temperature, as well as by the emission of x-ray lines with different polarization. When numerous hot spots are produced it is impossible to determine local plasma parameters and to interpret the polarization effects. To eliminate this problem this study was devoted to the realization of PF-type discharges with single hot spot only. It has been achieved by a choice of the electrode configuration, which facilitated the formation of a single hot spot emitting intense x-ray lines. At the chosen experimental conditions it was possible to determine local plasma parameters and to demonstrate evident differences in the polarization of the observed x-ray lines. (author)

  15. A theoretical study of hot plasma spheroids in the presence of low-frequency electromagnetic waves

    Science.gov (United States)

    Ahmadizadeh, Y.; Jazi, B.; Barjesteh, S.

    2016-07-01

    While taking into account thermal motion of electrons, scattering of electromagnetic waves with low frequency from hot plasma spheroids is investigated. In this theoretical research, ions are heavy to respond to electromagnetic fluctuations. The solution of scalar wave equation in spheroidal coordinates for electric potential inside the plasma spheroids are obtained. The variations of resonance frequencies vs. Debye length are studied and consistency between the obtained results in this paper and the results for the well-known plasma objects such as plasma column and spherical plasma have been proved.

  16. Hot-electron-plasma accumulation in the CIRCE mirror experiment

    International Nuclear Information System (INIS)

    Bardet, R.; Briand, P.; Dupas, L.; Gormezano, C.; Melin, G.

    1975-01-01

    In the CIRCE experiment, the plasma is obtained by the trapping of a plasma injected into a magnetic bottle by electron heating at cyclotron resonance. The plasma density lies between 5x10 11 cm -3 and 10 12 cm -3 , the electron temperature is about 100 keV and the ion temperature is in the range of few hundred electronvolts. Gross instabilities are not observed. The ratio of the plasma density to the neutral-gas density inside the plasma is higher than 100. A few kilowatts of r.f. power at 8 GHz are sufficient to obtain these results, a fact which looks encouraging as far as the creation of a more effective fast-neutral-target plasma using the CIRCE-experiment concept is concerned. (author)

  17. Hot electron plasma equilibrium and stability in the Constance B mirror experiment

    International Nuclear Information System (INIS)

    Chen, Xing.

    1988-04-01

    An experimental study of the equilibrium and macroscopic stability property of an electron cyclotron resonance heating (ECRH) generated plasma in a minimum-B mirror is presented. The Constance B mirror is a single cell quadrupole magnetic mirror in which high beta (β ≤ 0.3) hot electron plasmas (T/sub e/≅400 keV) are created with up to 4 kW of ECRH power. The plasma equilibrium profile is hollow and resembles the baseball seam geometry of the magnet which provides the confining magnetic field. This configuration coincides with the drift orbit of deeply trapped particles. The on-axis hollowness of the hot electron density profile is 50 /+-/ 10%, and the pressure profile is at least as hollow as, if not more than, the hot electron density profile. The hollow plasma equilibrium is macroscopically stable and generated in all the experimental conditions in which the machine has been operated. Small macroscopic plasma fluctuations in the range of the hot electron curvature drift frequency sometimes occur but their growth rate is small (ω/sub i//ω/sub r/ ≤ 10 -2 ) and saturate at very low level (δB//bar B/ ≤ 10 -3 ). Particle drift reversal is predicted to occur for the model pressure profile which best fits the experimental data under the typical operating conditions. No strong instability is observed when the plasma is near the drift reversal parameter regime, despite a theoretical prediction of instability under such conditions. The experiment shows that the cold electron population has no stabilizing effect to the hot electrons, which disagrees with current hot electron stability theories and results of previous maximum-B experiments. A theoretical analysis using MHD theory shows that the compressibility can stabilize a plasma with a hollowness of 20--30% in the Constance B mirror well. 57 refs

  18. Ion distribution in the hot spot of an inertial confinement fusion plasma

    Science.gov (United States)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  19. Finite orbit analysis for long wavelength modes in a plasma with a hot component

    International Nuclear Information System (INIS)

    Hammer, J.H.; Berk, H.L.

    1985-01-01

    The z-pinch model is used to calculate finite Larmor radius effects of a plasma with a hot component plasma annulus. The equations are analyzed for layer modes and the finite Larmor radius stabilization condition is calculated. Stability requires k 2 rho/sub h/ 2 Rβ/sub h//Δ greater than or equal to 1, where k is the wavenumber in the z-direction, rho/sub h/ the hot species Larmor radius, β/sub h/ the hot particle beta and Δ the thickness of the pressure profile. In addition a new instability is found due to the interaction of the precessional modes associated with inner and outer edges of the hot particle pressure profile

  20. Sheath formation of a plasma containing multiply charged ions, cold and hot electrons, and emitted electrons

    International Nuclear Information System (INIS)

    You, H.J.

    2012-01-01

    It is quite well known that ion confinement is an important factor in an electron cyclotron resonance ion source (ECRIS) as it is closely related to the plasma potential. A model of sheath formation was extended to a plasma containing multiply charged ions (MCIs), cold and hot electrons, and secondary electrons emitted either by MCIs or hot electrons. In the model, a modification of the 'Bohm criterion' was given, the sheath potential drop and the critical emission condition were also analyzed. It appears that the presence of hot electrons and emitted electrons strongly affects the sheath formation so that smaller hot electrons and larger emission current result in reduced sheath potential (or floating potential). However the sheath potential was found to become independent of the emission current J when J > J c , (where J c is the critical emission current. The paper is followed by the associated poster

  1. Hot-electron plasma formation and confinement in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Ress, D.B.

    1988-01-01

    Electron-cyclotron range-of-frequency heating (ECRH) at 28 GHz is used to create a population of mirror-confined hot electrons in the Tandem Mirror Experiment-Upgrade (TMX-U). Generation of a large fraction of such electrons within each end-cell of TMX-U is essential to the formation of the desired electrostatic potential profile of the thermal-barrier tandem mirror. The formation and confinement of the ECRH-generated hot-electron plasma was investigated with a variety of diagnostic instruments, including a novel instrumented limiter probe. The author characterized the spatial structure of the hot-electron plasma. Details of the heating process cause the plasma to separate into two regions: a halo, consisting entirely of energetic electrons, and a core, which is dominated by cooler electrons. The plasma structure forms rapidly under the action of second-harmonic ECRH. Fundamental ECRH, which is typically applied simultaneously, is only weakly absorbed and generally does not create energetic electrons. The ECRH-generated plasma displays several loss mechanisms. Hot electrons in the halo region, with T e ∼ 30 keV, are formed by localized ECRH near the plasma boundary, and are lost through a radial process involving open magnetic-curvature-drift surfaces

  2. Experimental investigation of the hot point generation in the Z pinch plasma

    International Nuclear Information System (INIS)

    Afonin, V.I.; Podgornov, V.A.; Litvin, D.N.; Senik, A.V.

    1999-01-01

    Experiments to explode thin composite (W-Al-W, W-SiO 2 -W) wires in SIGNAL fast high-current generator diode under about 200 kA load current amplitude and about 50 ns rise duration were carried out to study the possibility to control generation of hot point in Z pinch plasma. The parameters of generated hot points were studied using X-ray techniques. Analysis of the experiment results shows the possibility to control this process [ru

  3. Plasma self-oscillations in the temperature-limited current regime of a hot cathode discharge

    International Nuclear Information System (INIS)

    Arnas Capeau, C.; Bachet, G.; Doveil, F.

    1995-01-01

    Experimental observations of self-oscillations occurring in the so-called ''temperature-limited current regime'' of a hot cathode discharge are presented. Their frequency and amplitude are strongly dependent on the discharge parameters. The scaling laws of their variation and an example of a period-doubling route to chaos are reported. A two probe experiment showing that the plasma behavior is closely related to the hot cathode sheath stability is also reported. copyright 1995 American Institute of Physics

  4. The Influence of Hot-Rolled Temperature on Plasma Nitriding Behavior of Iron-Based Alloys

    Science.gov (United States)

    El-Hossary, F. M.; Khalil, S. M.; Lotfy, Kh.; Kassem, M. A.

    2009-07-01

    Experiments were performed with an aim of studying the effect of hot-rolled temperature (600 and 900°C) on radio frequency (rf) plasma nitriding of Fe93Ni4Zr3 alloy. Nitriding was carried out for 10 min in a nitrogen atmosphere at a base pressure of 10-2 mbarr. Different continuous plasma processing powers of 300-550 W in steps 50 W or less were applied. Nitrided hot-rolled specimens were characterized by optical microscopy (OM), X-ray diffraction (XRD) and microhardness measurements. The results reveal that the surface of hot-rolled rf plasma nitrided specimens at 600°C is characterized with a fine microstructure as a result of the high nitrogen solubility and diffusivity. Moreover, the hot-rolled treated samples at 600°C exhibit higher microhardness value than the associated values of hot-rolled treated samples at 900°C. The enhancement of microhardness is due to precipitation and predominance of new phases ( γ and ɛ phases). Mainly, this conclusion has been attributed to the high defect densities and small grain sizes of the samples hot-rolled at 600°C. Generally, the refinement of grain size plays a dramatic role in improvement of mechanical properties of tested samples.

  5. Anisotropy effects on curvature-driven flute instabilities in a hot-electron plasma

    International Nuclear Information System (INIS)

    Spong, D.A.; Berk, H.L.; Van Dam, J.W.; Rosenbluth, M.N.

    1982-08-01

    The effects of finite parallel temperature are investigated for a hot electron plasma with sufficiently large beta that the magnetic field scale length (Δ/sub B/) is small compared with the vacuum field radius of curvature (R). Numerical and analytical estimates of stability boundaries are obtained for the four possible modes that can be treated in this limit: the conventional hot electron interchange, the high frequency hot electron interchange (ω > ω/sub ci/), the compressional Alfven mode, and the interacting pressure-driven interchange

  6. Curvature-driven instabilities in a hot-electron plasma: radial analysis

    International Nuclear Information System (INIS)

    Berk, H.L.; Van Dam, J.W.; Rosenbluth, M.N.; Spong, D.A.

    1981-12-01

    The theory of unfavorable curvature-driven instabilities is developed for a plasma interacting with a hot electron ring whose drift frequencies are larger than the growth rates predicted from conventional magnetohydrodynamic theory. A z-pinch model is used to emphasize the radial structure of the problem. Stability criteria are obtained for the five possible modes of instability: the conventional hot electron interchange, a high-frequency hot electron interchange (at frequencies larger than the ion cyclotron frequency), a compressional instability, a background pressure-driven interchange, and an interacting pressure-driven interchange

  7. Soft photons from off-shell particles in a hot plasma

    International Nuclear Information System (INIS)

    Henning, P.A.; Quack, E.

    1995-05-01

    Considering the propagation of off-shell particles in the framework of thermal field theory, we present the general formalism for the calculation of the production rate of soft photons and dileptons from a hot plasma. This approach is illustrated with an electrodynamic plasma. The photon production rate from strongly interacting quarks in the quark-gluon plasma, which might be formed in ultrarelativistic heavy ion collisions, is calculated in the previously unaccessible regime of photon energies of the order of the plasma temperature within an effective field theory incorporating dynamical chiral symmetry breaking. (orig.)

  8. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility (open-quotes OHBISclose quotes, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility

  9. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Shimakawa, S.; Akiba, M.; Kawamura, H.

    1996-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop plasma facing components which can resist these. We have established electron beam heat facility ('OHBIS', Oarai hot-cell electron beam irradiating system) at a hot cell in JMTR (Japan materials testing reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50 kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30 kV (constant) and 1.7 A, respectively. The loading time of the electron beam is more than 0.1 ms. The shape of vacuum vessel is cylindrical, and the main dimensions are 500 mm in inside diameter, 1000 mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for the thermal shock test has been established in a hot cell. The performance of the electron beam is being evaluated at this time. In the future, the equipment for conducting static heat loadings will be incorporated into the facility. (orig.)

  10. Electrostatic solitons in unmagnetized hot electron-positron-ion plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Ur-Rehman, H.

    2009-01-01

    Linear and nonlinear electrostatic waves in unmagnetized electron-positron-ion (e-p-i) plasmas are studied. The electrons and positrons are assumed to be isothermal and dynamic while ions are considered to be stationary to neutralize the plasma background only. It is found that both upper (fast) and lower (slow) Langmuir waves can propagates in such a type of pair (e-p) plasma in the presence of ions. The small amplitude electrostatic Korteweg-de Vries (KdV) solitons are also obtained using reductive perturbation method. The electrostatic potential hump structures are found to exist when the temperature of the electrons is larger than the positrons, while the electrostatic potential dips are obtained in the reverse temperature conditions for electrons and positrons in e-p-i plasmas. The numerical results are also shown for illustration. The effects of different ion concentration and temperature ratios of electrons and positrons, on the formation of nonlinear electrostatic potential structures in e-p-i plasmas are also discussed.

  11. On hot tenuous plasmas, fireballs, and boundary layers in the earth's magnetotail

    International Nuclear Information System (INIS)

    Frank, L.A.; Ackerson, K.L.; Lepping, R.P.

    1976-01-01

    Intensive correlative studies of magnetic fields and plasmas within the earth's magnetotail at geocentric radial distances of approx. 23--46 R/sub E/ during March--October 1974 revealed striking new features. The hot tenuous plasmas within the plasma sheet were found to be in a state of almost continual flow and were threaded with northward, or closed, geomagnetic field lines. Proton bulk speeds were in the range 50--500 km s -1 . The magnetic fields are directed northward. These observations demand a strong persistent source of magnetic flux and hot plasmas for the plasma sheet. No characteristic proton bulk flows were evident during crossings of the neutral sheet. Occasionally, the satellite encountered the region of acceleration in the magnetotail, the 'fireball.' This spectacular phenomenon exhibits strong jetting of plasmas in exces of 1000 km s -1 , proton temperatures of approx. 10 7 degreeK (kT approx. 1 keV), disordered magnetic fields, southward magnetic fields during tailward jetting of the plasmas. Earthward plasma flows within the fireball are threaded with closed geomagnetic field lines, and open magnetic field lines are embedded in the tailward jetting plasmas. The magnetosheathlike plasmas within the boundary layers which are positioned contiguous to the plasma sheet display striking evidences of plasma heating, great changes in bulk flow velocities and acceleration of energetic electrons with E > 45 keV. Persistent zones of southward magnetic fields are detected, which are often positioned adjacent to the plasma sheet and within the boundary layer plasmas. Rotations of the magnetic fields from southward to northward, or vice versa, in these boundary layers are accompanied by large enhancements of energetic electron intensities, substantial heating of the low-energy electron distributions, and strong perturbations of the proton velocity distribution functions

  12. Physics of hot hadronic matter and quark-gluon plasma

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1990-07-01

    This Introductory talk contains a brief review of the current status of theoretical and experimental activities related to physics of superdense matter. In particular, we discuss latest lattice results on the phase transition, recent progress in chiral symmetry physics based on the theory of interacting instantons, new in the theory of QGP and of hot hadronic matter, mean p t and collective flow, the shape of p t distribution, strangeness production, J/ψ suppression and φ enhancement, two puzzles connected with soft pion and soft photon enhancements, and some other ''ultrasoft'' phenomena. 56 refs., 6 figs

  13. Linear wave propagation in a hot axisymmetric toroidal plasma

    International Nuclear Information System (INIS)

    Jaun, A.

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell's equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models' resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs

  14. Linear wave propagation in a hot axisymmetric toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jaun, A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell`s equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models` resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs.

  15. Enhanced nuclear level decay in hot dense plasmas

    International Nuclear Information System (INIS)

    Gosselin, G.; Morel, P.

    2004-01-01

    A model of nuclear level decay in a plasma environment is described. Nuclear excitation and decay by photon processes, nuclear excitation by electron capture, and decay by internal conversion are taken into account. The electrons in the plasma are described by a relativistic average atom model for the bound electrons and by a relativistic Thomas-Fermi-Dirac model for the free electrons. Nuclear decay of isomeric level may be enhanced through an intermediate level lying above the isomer. An enhanced nuclear decay rate may occur for temperatures far below the excitation energy of the transition to the intermediate level. In most cases, the enhancement factor may reach several decades

  16. Controlled Fusion with Hot-ion Mode in a Degenerate Plasma

    International Nuclear Information System (INIS)

    S. Son and N.J. Fisch

    2005-01-01

    In a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from the classical prediction, possibly enabling new regimes for controlled nuclear fusion, including the hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Previous calculations of these processes in dense plasmas are now corrected for partial degeneracy and relativistic effects, leading to an expanded regime of self-sustained fusion

  17. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    Science.gov (United States)

    2016-08-19

    Science, University ofMichigan, AnnArbor,MI 48109-2099, USA E-mail: czulick@umich.edu Keywords: laser- plasma ,mass-limited, fast electrons , sheath...New J. Phys. 18 (2016) 063020 doi:10.1088/1367-2630/18/6/063020 PAPER Target surface area effects on hot electron dynamics from high intensity laser... plasma interactions CZulick, ARaymond,AMcKelvey, VChvykov, AMaksimchuk, AGRThomas, LWillingale, VYanovsky andKKrushelnick Center forUltrafast Optical

  18. X-ray Spectroscopy of Hot Dense Plasmas: Experimental Limits, Line Shifts and Field Effects

    International Nuclear Information System (INIS)

    Renner, Oldrich; Sauvan, Patrick; Dalimier, Elisabeth; Riconda, Caterina; Rosmej, Frank B.; Weber, Stefan; Nicolai, Philippe; Peyrusse, Olivier; Uschmann, Ingo; Hoefer, Sebastian; Kaempfer, Tino; Loetzsch, Robert; Zastrau, Ulf; Foerster, Eckhart; Oks, Eugene

    2008-01-01

    High-resolution x-ray spectroscopy is capable of providing complex information on environmental conditions in hot dense plasmas. Benefiting from application of modern spectroscopic methods, we report experiments aiming at identification of different phenomena occurring in laser-produced plasma. Fine features observed in broadened profiles of the emitted x-ray lines and their satellites are interpreted using theoretical models predicting spectra modification under diverse experimental situations.

  19. The optimization of production and control of hot-electron plasmas

    International Nuclear Information System (INIS)

    1989-01-01

    The present project was initially undertaken to develop a number of innovative concepts for using electron cyclotron heating (ECH) to enhance tokamak performance. A common feature of the various applications under consideration is efficient, spatially-localized generation of hot-electron plasmas; and the first phase of the work addressed the basic aspects of an approach to achieving this Upper Off-Resonant Heating (UORH) and open-resonator couplers to confine the weakly damped microwave power to the particular region where the hot electrons are to be generated. The results of the first year's work provided strong evidence that hot-electron plasmas with electron energies of hundreds of keV could be generated using multiple-frequency ECH and fully-toroidal open-resonator couplers. The evidence was sufficiently compelling to suggest that the project be focused on a suitable near-term application to the TEXT device

  20. A comparison of two atomic models for the radiative properties of dense hot low Z plasmas

    International Nuclear Information System (INIS)

    Minguez, E.; Sauvan, P.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Florido, R.; Martel, P.; Angelo, P.; Schott, R.; Philippe, F.; Leboucher-Dalimier, E.; Mancini, R.

    2003-01-01

    In this work, two different atomic models (ANALOP based on parametric potentials and IDEFIX based on the dicenter model) are used to calculate the opacities for bound-bound transitions in hot dense, low Z plasmas, and the results are compared to each other. In addition, the ANALOP code has been used to compute free-bound cross sections for hydrogen-like ions

  1. Finite geometry effect on the interaction of a hot beam with a plasma

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1977-01-01

    The effect of finite geometry on the interaction of a hot low-density beam with a uniform plasma filling a circular waveguide is studied. An expression is derived for the growth rate of the instabilities developing at the harmonic of the beam gyrofrequency, taking the finite beam gyroradius into account. The calculations are done in the quasistatic approximation. (author)

  2. Electron cyclotron waves, transport and instabilities in hot plasmas

    International Nuclear Information System (INIS)

    Westerhof, E.

    1987-01-01

    A number of topics relevant to the magnetic confinement approach to the thermonuclear fusion is addressed. The absorption and emission of electron cyclotron waves in a thermal plasma with a small population of supra-thermal, streaming electrons is examined and the properties of electron cyclotron waves in a plasma with a pure loss-cone distribution are studied. A report is given on the 1-D transport code simulations that were performed to assist the interpretation of the electron cyclotron heating experiments on the TFR tokamak. Transport code simulations of sawteeth discharges in the T-10 tokamak are discussed in order to compare the predictions of different models for the sawtooth oscillations with the experimental findings. 149 refs.; 69 figs.; 7 tabs

  3. Radiative redistribution modeling for hot and dense plasmas

    International Nuclear Information System (INIS)

    Mosse, C.; Calisti, A.; Talin, B.; Stamm, R.; Lee, R. W.; Klein, L.

    1999-01-01

    A model based on an extension of the Frequency Fluctuation Model (FFM) is developed to investigate the two-photon processes and particularly the radiative redistribution functions for complex emitters in a wide range of plasmas conditions. The FFM, originally, designed as a fast and reliable numerical procedure for the calculation of the spectral shape of the Stark broadened lines emitted by multi-electron ions, relies on the hypothesis that the emitter-plasma system can be well represented by a set of 'Stark Dressed Transitions', SDT. These transitions connected to each others through a stochastic mixing process accounting for the local microfield random fluctuations, form the basis for the extension of the FFM to computation of non-linear response functions. The formalism of the second order radiative redistribution function is presented and examples are shown

  4. Hot electron effects on the satellite spectrum of laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM (United States); Faenov, A.Y.; Pikuz, T.A. [MISDC, NPO ' VNIIFTRI' , Mendeleevo, Moscow Region, 141570 (Russian Federation); Wilke, M.D.; Kyrala, G.A.; Clark, R.E.H. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM (United States)

    1999-05-01

    In laser-produced plasmas, the interaction of the intense laser light with plasma electrons can produce high-energy superthermal electrons with energies in the keV range. These hot electrons can influence the level populations which determine spectral line structure. In the present paper, the effect of hot electrons on the X-ray satellite spectrum of laser-produced plasmas is studied. Calculated spectra are compared with experimental observations. Magnesium targets irradiated by three different types of laser pulses are considered. These include, a high-intensity 600 fs Nd-glass laser, a 1 ns Nd-glass laser, and a 2ns CO{sub 2} laser. The Nd-glass laser experiments were conducted recently at the Los Alamos Trident Facility and the CO{sub 2} data were recorded by MISDC. High-resolution spectra were measured near the He-like resonance line of magnesium. The calculations employ an electron energy distribution which includes a thermal and a hot electron component, as part of a detailed collisional-radiative model. Plasma parameters including electron temperature, density, and hot electron fraction are estimated by choosing best fits to the experimental measurements. The calculations show that hot electrons can cause several anomalous effects. The Li-like jkl, abcd, and qr satellites can show intensities which are generally attributed to electron densities in excess of 10{sup 23} cm{sup -3}. In addition, the relative amplitude of the intercombination line can be unusually large even at high electron densities due to enhanced collisional excitation of the 1s2p{sup 3}P state by hot electrons. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Ion-Bernstein wave mode conversion in hot tokamak plasmas

    International Nuclear Information System (INIS)

    Jaun, A.; Hellsten, T.; Chiu, S.C.

    1997-08-01

    Mode conversion at the second harmonic cyclotron resonance is studied in a toroidal plasma, showing how the ion-Bernstein wave can dramatically affect the power profile and partition among the species. The results obtained with the gyrokinetic toroidal PENN code in particular suggest that off-axis electron and second harmonic core ion heating should become important when the temperatures in JET reach 10 keV. (author) 1 fig., 11 refs

  6. Buneman instability in hot electron plasma (Te>>Ti)

    International Nuclear Information System (INIS)

    Khalil, S.M.; Sayed, Y.A.; Sayed, R.A.

    1986-07-01

    We shall investigate the linear excitation of electrostatic current Buneman instability in both unmagnetized and magnetized homogeneous plasma. The frequency, growth rate and conditions of excitation of such instability are obtained analytically. We consider that the current velocity u (due to relative streaming of ions and electrons) slightly exceeds the instability threshold velocity u cr and that the electron temperature is much higher than the ion temperature (T e >>T i ). (author)

  7. Pellet injection in a tokamak hot plasma. Theory and experiment

    International Nuclear Information System (INIS)

    Picchiottino, J.M.

    1994-01-01

    The ultimate aim of pellet ablation studies is to predict what the plasma temperature and density profiles are just after a pellet injection. This requires description of the pellet ablation process, the parallel expansion of the ablatant and the fast outward motion of the deposited material since these three phenomena successively occur from the time of pellet injection to the moment when new axisymmetric profiles are reached. Only the two first points have been quantitatively modelled. If the most important processes of ablation physics are identified and although current models reproduce both measured penetrations and averaged characteristics of ablation clouds, some debatable points remain, mainly bearing on the drifts associated with the pellet motion and, consequently, on the effective shielding efficiency of the ionized part of the ablation cloud. During its parallel expansion, the ablated material experiences a strong poloidal rotation which depends on the ratio of the pellet and plasma masses and is due to the total kinetic momentum conservation on each magnetic surface. The fact that this rotation occurs on the same timescale as the outward motion suggests that both phenomena can be linked and that a comprehensive model of the whole fuelling process may emerge from considering the pellet and the plasma as a unique system. (author). 94 refs., 142 figs., 4 annexes

  8. Consolidation of W–Ta composites: Hot isostatic pressing and spark and pulse plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M., E-mail: marta.dias@itn.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Guerreiro, F. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); Galatanu, A. [National Institute of Materials Physics, Atomistilor 105 bis Bucharest-Magurele, 077125 Ilfov (Romania); Rosiński, M. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Monge, M.A.; Munoz, A. [Departamento de Física, Univerdidad Carlos III de Madrid, Avd. de la Universidad 30, 28911 Madrid (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carvalho, P.A. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Consolidation of W–Ta composites using three techniques: HIP, SPS and PPS. • Comparison of consolidation methods in terms of W–Ta interdiffusion and densification. • Microstructure analysis in terms of oxides formation. - Abstract: Composites consisting of tantalum fiber/powder dispersed in a nanostructured W matrix have been consolidated by spark and pulse plasma sintering as well as by hot isostatic pressing. The microstructural observations revealed that the tungsten–tantalum fiber composites consolidated by hot isostatic pressing and pulse plasma sintering presented a continuous layer of Ta{sub 2}O{sub 5} phase at the W/Ta interfaces, while the samples consolidated by spark plasma sintering evidenced a Ta + Ta{sub 2}O{sub 5} eutectic mixture due to the higher temperature of this consolidation process. Similar results have been obtained for the tungsten–tantalum powder composites. A (W, Ta) solid solution was detected around the prior nanostructured W particles in tungsten–tantalum powder composites consolidated by spark and pulse plasma sintering. Higher densifications were obtained for composites consolidated by hot isostatic pressing and pulse plasma sintering.

  9. The kappa Distribution as Tool in Investigating Hot Plasmas in the Magnetospheres of Outer Planets

    Science.gov (United States)

    Krimigis, S. M.; Carbary, J. F.

    2014-12-01

    The first use of a Maxwellian distribution with a high-energy tail (a κ-function) was made by Olbert (1968) and applied by Vasyliunas (1968) in analyzing electron data. The k-function combines aspects of both Maxwellian and power law forms to provide a reasonably complete description of particle density, temperature, pressure and convection velocity, all of which are key parameters of magnetospheric physics. Krimigis et al (1979) used it to describe flowing plasma ions in Jupiter's magnetosphere measured by Voyager 1, and obtained temperatures in the range of 20 to 35 keV. Sarris et al (1981) used the κ-function to describe plasmas in Earth's distant plasma sheet. The κ-function, in various formulations and names (e. g., γ-thermal distribution, Krimigis and Roelof, 1983) has been used routinely to parametrize hot, flowing plasmas in the magnetospheres of the outer planets, with typical kT ~ 10 to 50 keV. Using angular measurements, it has been possible to obtain pitch angle distributions and convective flow directions in sufficient detail for computations of temperatures and densities of hot particle pressures. These 'hot' pressures typically dominate the cold plasma pressures in the high beta (β > 1) magnetospheres of Jupiter and Saturn, but are of less importance in the relatively empty (β Cambridge University Press, New York, 1983

  10. Interelectrode plasma evolution in a hot refractory anode vacuum arc: Theory and comparison with experiment

    International Nuclear Information System (INIS)

    Beilis, I.I.; Goldsmith, S.; Boxman, R.L.

    2002-01-01

    In this paper a theoretical study of a hot refractory anode vacuum arc, which was previously investigated experimentally [Phys. Plasmas 7, 3068 (2000)], is presented. The arc was sustained between a thermally isolated refractory anode and a water-cooled copper cathode. The arc started as a multicathode-spot (MCS) vacuum arc and then switched to the hot refractory anode vacuum arc (HRAVA) mode. In the MCS mode, the cathodic plasma jet deposits a film of the cathode material on the anode. Simultaneously, the temperature of the thermally isolated anode begins to rise, reaching eventually a sufficiently high temperature to re-evaporate the deposited material, which is subsequently ionized in the interelectrode gap. The transition to the HRAVA mode is completed when the density of the interelectrode plasma consists mostly of ionized re-evaporated atoms--the anode plasma. The evolution of the HRAVA mode is characterized by the propagation of a luminous plasma plume from the anode to the cathode. The time dependent model of the various physical processes taking place during the transition to the HRAVA mode is represented by a system of equations describing atom re-evaporation, atom ionization through the interaction of the cathode jet and the interelectrode plasma with the anode vapor, plasma plume propagation, plasma radial expansion, plasma energy, and heavy particle density balance. The time dependence of the anode heat flux and the effective anode voltage were obtained by solving these equations. In addition, the time dependent plasma electron temperature, plasma density, anode potential drop, arc voltage, and anode temperature distribution were calculated and compared with previous measurements. It was shown that the observed decrease of the effective anode voltage with time during the mode transition is due to decrease of the heat flux incident on the anode surface from the cathode spot jets

  11. Hot electron spatial distribution under presence of laser light self-focusing in over-dense plasmas

    International Nuclear Information System (INIS)

    Tanimoto, T; Yabuuchi, T; Habara, H; Kondo, K; Kodama, R; Mima, K; Tanaka, K A; Lei, A L

    2008-01-01

    In fast ignition for laser thermonuclear fusion, an ultra intense laser (UIL) pulse irradiates an imploded plasma in order to fast-heat a high-density core with hot electrons generated in laser-plasma interactions. An UIL pulse needs to make plasma channel via laser self-focusing and to propagate through the corona plasma to reach close enough to the core. Hot electrons are used for heating the core. Therefore the propagation of laser light in the high-density plasma region and spatial distribution of hot electron are important in issues in order to study the feasibility of this scheme. We measure the spatial distribution of hot electron when the laser light propagates into the high-density plasma region by self-focusing

  12. Experiments on hot and dense laser-produced plasmas

    International Nuclear Information System (INIS)

    Back, C.A.; Woolsey, N.C.; Asfaw, A.; Glenzer, S.H.; Hammel, B.A.; Keane, C.J.; Lee, R.W.; Liedahl, D.; Moreno, J.C.; Nash, J.K.; Osterheld, A.L.; Calisti, A.; Stamm, R.; Talin, B.; Godbert, L.; Mosse, C.; Ferri, S.; Klein, L.

    1996-01-01

    Plasmas generated by irradiating targets with ∼20 kJ of laser energy are routinely created in inertial confinement fusion research. X-ray spectroscopy provides one of the few methods for diagnosing the electron temperature and electron density. For example, electron densities approaching 10 24 cm -3 have been diagnosed by spectral linewidths. However, the accuracy of the spectroscopic diagnostics depends on the population kinetics, the radiative transfer, and the line shape calculations. Analysis for the complex line transitions has recently been improved and accelerated by the use of a database where detailed calculations can be accessed rapidly and interactively. Examples of data from Xe and Ar doped targets demonstrate the current analytic methods. First we will illustrate complications that arise from the presence of a multitude of underlying spectral lines. Then, we will consider the Ar He-like 1s 2 ( 1 S 0 ) - 1s3p( 1 P 0 ) transition where ion dynamic effects may affect the profile. Here, the plasma conditions are such that the static ion microfield approximation is no longer valid; therefore in addition to the width, the details of the line shape can be used to provide additional information. We will compare the data to simulations and discuss the possible pitfalls involved in demonstrating the effect of ion dynamics on lineshapes

  13. Numerical simulation of neutral injection in a hot-electron mirror target plasma

    International Nuclear Information System (INIS)

    Werkoff, F.; Bardet, R.; Briand, P.; Dupas, L.; Gormezano, C.; Melin, G.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Grenoble, 38

    1976-01-01

    In the case of neutral injection into a hot-electron target plasma, the use of the existing Fokker-Planck codes is greatly complicated by the fact that the scale of the energies and times of the confined ions and electrons is very large. To avoid this difficulty, a simplified multi-species model is set up, in which each species is described by time-dependent density and energy equations with analytical approximations for the interactions between the species. During the neutral injection, instantaneous high values of the ambipolar potential (higher than the half value of hot-ion energy) may appear, but do not prevent hot-ion density build-up. However, the hot-electron target plasma must not be maintained for a too long time. Numerical runs are performed with typical target parameters: density 2x10 13 cm -3 , electron energy 30 keV, ion energy 400 eV, time duration during which the target density is maintained 1 ms. Hot-ion density, a few 10 14 cm -3 , can be achieved with a neutral beam of 100 A, 20 keV. (author)

  14. Effects of magnetic configuration on hot electrons in highly charged ECR plasma

    International Nuclear Information System (INIS)

    Zhao, H Y; Zhao, H W; Sun, L T; Wang, H; Ma, B H; Zhang, X Zh; Li, X X; Ma, X W; Zhu, Y H; Lu, W; Shang, Y; Xie, D Z

    2009-01-01

    To investigate the hot electrons in highly charged electron cyclotron resonance (ECR) plasma, Bremsstrahlung radiations were measured on two ECR ion sources at the Institute of Modern Physics. Used as a comparative index of the mean energy of the hot electrons, a spectral temperature, T spe , is derived through a linear fitting of the spectra in a semi-logarithmic representation. The influences of the external source parameters, especially the magnetic configuration, on the hot electrons are studied systematically. This study has experimentally demonstrated the importance of high microwave frequency and high magnetic field in the electron resonance heating to produce a high density of hot electrons, which is consistent with the empirical ECR scaling laws. The experimental results have again shown that a good compromise is needed between the ion extraction and the plasma confinement for an efficient production of highly charged ion beams. In addition, this investigation has shown that the correlation between the mean energy of the hot electrons and the magnetic field gradient at the ECR is well in agreement with the theoretical models.

  15. Hot spots and filaments in the pinch of a plasma focus: a unified approach

    International Nuclear Information System (INIS)

    Di Vita, A.

    2009-01-01

    To date, no MHD-based complete description of the tiny, relatively stable, well-ordered structures (hot spots, filaments) observed in the pinch of a plasma focus seems to be feasible. Indeed, the large value of electron density suggests that a classification of such structures which is based on the approximation of local thermodynamical equilibrium (LTE) is possible. Starting from an often overlooked, far-reaching result of LTE, we derive a purely analytical description of both hot spots and filaments. In spite of their quite different topology, both configurations are extrema of the same variational principle. Well-known results of conventional MHD are retrieved as benchmark cases. It turns out that hot spots satisfy Taylor's principle of constrained minimum of magnetic energy, the constraint being given by fixed magnetic helicity. Filaments are similar to the filaments of a superconductor and form a plasma with β equals 0.11 and energy diffusion coefficient equals 0.88*D(Bohm). Any process - like e.g. radiative collapse - which raises particle density while reducing radial size may transform filaments into hot spots. A well-known scaling law is retrieved - the collisional Vlasov high beta scaling. A link between dissipation and topology is highlighted. Accordingly, a large-current pinch may give birth to tiny hot spots with large electron density and magnetic field. (author)

  16. Plasma waves in hot relativistic beam-plasma systems: Pt. 1

    International Nuclear Information System (INIS)

    Magneville, A.

    1990-01-01

    Dispersion relations of plasma waves in a beam-plasma system are computed in the general case where the plasma and beam temperatures, and the velocity of the beam, may be relativistic. The two asymptotic temperature cases, and different contributions of plasma or beam particles to wave dispersion are considered. (author)

  17. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    Science.gov (United States)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.

  18. Pion radiation by hot quark-gluon plasma

    International Nuclear Information System (INIS)

    Rafelski, J.; Danos, M.; Universitaet Frankfurt, Germany; National Bureau of Standards, Washington, DC)

    1983-01-01

    We consider here an approximately spherical region of the perturbative QCD vacuum, filled with quarks, antiquarks and gluons. For an impenetrable surface between the perturbative and true vacuum states, the inside thermal and degeneracy pressure would lead to an expansion until either pressure equilibrium or a phase transition into individual hadrons is reached. However, if the surface is penetrable, i.e., if it allows transmission of momentum and energy (but not colour) from the inside, then this can lead to a substantial internal energy and pressure loss by radiation - the pressure acting on the surface is reduced, as not all the momentum impinging on the surface has to be reflected. On first thought, the microscopic mechanism for this transmission arises in the following manner: when a fast quark or antiquark hits the boundary, a jet-like structure filled with colour field flux, i.e., a fluxtube might be formed. For sufficiently high quark momentum, this tube, instead of retracting, splits by q anti q pair creation. The leading particle associates with the antiparticle of the pair to form a meson, while the remaining pair particle may retract into the plasma. Difficulties with this model are discussed

  19. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  20. Time and space resolved observation of hot spots in a plasma focus

    International Nuclear Information System (INIS)

    Choi, P.; Aliaga, R.; Herold, H.

    1990-01-01

    The authors report some recent results on the time and space evolution of hot spots on the DPF-78 plasma focus at the University of Stuttgart. The experiments were carried out in mixtures of deuterium and krypton at a bank voltage of 60 kV and a stored energy of 28 kJ. A modification of the ADRRM streak technique carried out in the soft x-ray region allowed us to directly examine some characteristics of the hot spots. Simultaneous measurements were carried out on the hard x-ray radiation (80 keV), the spatially resolved optical emissions, the neutron yield rate with TOF information and the plasma and bank currents

  1. Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.P.; Xu, J.W.; Ren, Z.F.; Wang, J.H. [Materials Synthesis Laboratory, Departments of Physics and Chemistry, and Center for Advanced Photonic and Electronic Materials (CAPEM), State University of New York at Buffalo, Buffalo, New York 14260 (United States); Siegal, M.P.; Provencio, P.N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States)

    1998-12-01

    Highly oriented, multiwalled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666 {degree}C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 {mu}m in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio, and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. {copyright} {ital 1998 American Institute of Physics.}

  2. Interaction of heavy ions beams with hot and dense plasmas. Application to inertial fusion

    International Nuclear Information System (INIS)

    Maynard, Gilles

    1987-01-01

    The subject of this work is the variation with time, on one of the energy and charge state of an heavy ion beam which through a plasma, and on another side, of a target used in ion inertial confinement fusion. We take in account projectile excitation, and higher order corrections to the Born stopping power formula are calculated. Comparison with experimental results in gas and solid are good. In hot plasma case, non-equilibrium charge states are described. We present an hydrodynamic simulation code of one dimension and three temperatures. We show that the shortening of the heavy ions beams with temperature reinforces the radiative transfer importance. (author) [fr

  3. Numerical method for the dispersion relation of a hot and inhomogeneous plasma with an electron beam

    International Nuclear Information System (INIS)

    Devia, A.; Orrego, C.E.; Buitrago, G.

    1990-01-01

    A numerical method that is based in kinetic theory (Vlasov-Poison equations) was developed in order to calculate the dispersion relation for the interaction between a hot cylindrical and electron beam in any temperature and density. The plasma-beam system is located in a strong magnetic field. Many examples showing the effect of the temperatures and densities on the dispersion relation are given. (Author)

  4. Study of emission process in hot, optically thin plasma: application to solar active regions

    International Nuclear Information System (INIS)

    Steenman-Clark, Lois.

    1983-06-01

    Analysis of soft X-ray got in hot and weak density plasmas, such as those in TOKAMAKS and in solar flares, needs a detailed knowledge of emission processes. In this work are presented spectroscopic diagnostics which can be deduced from such spectra analysis and results are applied to magnesium solar spectrum analysis. An important improvement is brought to collisional calculation corresponding to forbidden line populating. For this line, The relative importance of autoionizing states effect, called also resonance effect is studied [fr

  5. Hot pressing of nanocrystalline tantalum using high frequency induction heating and pulse plasma sintering

    Science.gov (United States)

    Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.

    2017-12-01

    The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.

  6. Prediction of hot electron production by ultraintense KrF laser-plasma interactions on solid-density targets

    International Nuclear Information System (INIS)

    Kato, Susumu; Takahashi, Eiichi; Miura, Eisuke; Owadano, Yoshiro; Nakamura, Tatsufumi; Kato, Tomokazu

    2002-01-01

    The scaling of hot electron temperature and the spectrum of electron energy by intense laser plasma interactions are reexamined from a viewpoint of the difference in laser wavelength. Laser plasma interaction such as parametric instabilities is usually determined by the Iλ2 scaling, where I and λ is the laser intensity and wavelength, respectively. However, the hot electron temperature is proportional to (ncr/ne0)1/2 [(1 + a 0 2 ) 1/2 - 1] rather than [(1 + a 0 2 ) 1/2 - 1] at the interaction with overdense plasmas, where ne0 is a electron density of overdense plasmas and a0 is a normalized laser intensity

  7. Interpretation of the electron cyclotron emission of hot ASDEX upgrade plasmas at optically thin frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Denk, Severin Sebastian; Stroth, Ulrich [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, 85748 Garching (Germany); Fischer, Rainer; Poli, Emanuele; Willensdorfer, Matthias; Maj, Omar; Stober, Joerg; Suttrop, Wolfgang [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Collaboration: The ASDEX Upgrade Team

    2016-07-01

    The electron cyclotron emission diagnostic (ECE) provides routinely electron temperature (T{sub e}) measurements. ''Kinetic effects'' (relativistic mass shift and Doppler shift) can cause the measured radiation temperatures (T{sub rad}) to differ from T{sub e} at cold resonance position complicating the determination of T{sub e} from the measured radiation temperature profile (T{sub rad}). For the interpretation of such ECE measurements an electron cyclotron forward model solving the radiation transport equation for given T{sub e} and electron density profiles is in use in the framework of Integrated Data Analysis at ASDEX Upgrade. While the original model lead to improved T{sub e} profiles near the plasma edge in moderately hot H-mode discharges, vacuum approximations in the model lead to inaccuracies given large T{sub e}. In hot plasmas ''wave-plasma interaction'', i.e. the dielectric effect of the background plasma onto the electron cyclotron emission, becomes important at optical thin measured frequencies. Additionally, given moderate electron densities and large T{sub e}, the refraction of the line of sight has to be considered for the interpretation of ECE measurements with low optical depth.

  8. HOT PLASMA FROM SOLAR ACTIVE-REGION CORES: CONSTRAINTS FROM THE HINODE X-RAY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schmelz, J. T. [USRA, 7178 Columbia Gateway Drive, Columbia, MD 21046 (United States); Christian, G. M.; Matheny, P. O., E-mail: jschmelz@usra.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2016-12-20

    Mechanisms invoked to heat the solar corona to millions of degrees kelvin involve either magnetic waves or magnetic reconnections. Turbulence in the convection zone produces MHD waves, which travel upward and dissipate. Photospheric motions continuously build up magnetic energy, which is released through magnetic reconnection. In this paper, we concentrate on hot non-flaring plasma with temperatures of 5 MK <  T  < 10 MK because it is one of the few observables for which wave and reconnection models make different predictions. Wave models predict no (or little) hot plasma, whereas reconnection models predict it, although in amounts that are challenging to detect with current instrumentation. We used data from the X-ray Telescope (XRT) and the Atmospheric Imaging Assembly (AIA). We requested a special XRT observing sequence, which cycled through the thickest XRT filter several times per hour so we could average these images and improve the signal-to-noise. We did differential emission measure (DEM) analysis using the time-averaged thick-filter data as well as all available channels from both the XRT and AIA for regions observed on 2014 December 11. Whereas our earlier work was only able to determine that plasma with a temperature greater than 5 MK was present , we are now able to find a well-constrained DEM distribution. We have therefore added a strong observational constraint that must be explained by any viable coronal heating model. Comparing state-of-the-art wave and reconnection model predictions, we can conclude that reconnection is heating the hot plasma in these active regions.

  9. Hot tungsten plate based ionizer for cesium plasma in a multi-cusp field experiment

    International Nuclear Information System (INIS)

    Patel, Amitkumar D.; Sharma, Meenakshee; Ramasubramanian, Narayanan; Chattopadhyay, Prabal K.

    2015-01-01

    In a newly proposed basic experiment, contact-ionized cesium ions will be confined by a multi cups magnetic field configuration. The cesium ion will be produced by impinging collimated neutral atoms on an ionizer consisting of the hot tungsten plate. The temperature of the tungsten plate will also be made high enough (∼2700 K) such that it will contribute electrons also to the plasma. It is expected that at this configuration the cesium plasma would be really quiescent and would be free from even the normal drift waves observed in the classical Q-machines. For the ionizer a design based on F. F. Chen's design was made. This ionizer is very fine machining and exotic material like Tungsten plate, Molybdenum screws, rings, and Boron Nitride ceramics etc. The fine and careful machining of these materials was very hard. In this paper, the experience about to join the tungsten wire to molybdenum plate and alloy of tantalum and molybdenum ring is described. In addition experimental investigations have been made to measure 2D temperature distribution profile of the Tungsten hot plate using infrared camera and the uniformity of temperature distribution over the hot plate surface is discussed. (author)

  10. Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices

    Czech Academy of Sciences Publication Activity Database

    Chernyshova, M.; Gribkov, V. A.; Kowalska-Strzeciwilk, E.; Kubkowska, M.; Miklaszewski, R.; Paduch, M.; Pisarczyk, T.; Zielinska, E.; Demina, E.V.; Pimenov, V. N.; Maslyaev, S. A.; Bondarenko, G.G.; Vilémová, Monika; Matějíček, Jiří

    2016-01-01

    Roč. 113, December (2016), s. 109-118 ISSN 0920-3796 R&D Projects: GA ČR(CZ) GA14-12837S Institutional support: RVO:61389021 Keywords : Radiation damageability * Materials tests * Plasma focus * Plasma streams * Ion beams * Laser interferometrya Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379616306858

  11. 2D simulations of hohlraum targets for laser-plasma experiments and ion stopping measurement in hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Basko, M.M. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany). ExtreMe Matter Institute EMMI; Maruhn, J.; Tauschwitz, Anna [Frankfurt Univ. (Germany); Novikov, V.G.; Grushin, A.S. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)

    2011-12-15

    An attractive way to create uniform plasma states at high temperatures and densities is by using hohlraums - cavities with heavy-metal walls that are either directly or indirectly heated by intense laser pulses to x-ray temperatures of tens and hundreds electron volts. A sample material, whose plasma state is to be studied, can be placed inside such a hohlraum (usually in the form of a low-density foam) and uniformly heated to a high temperature. In this case a high-Z hohlraum enclosure serves a double purpose: it prevents the hot plasma from rapid disassembly due to hydrodynamic expansion and, at the same time, suppresses its rapid radiative cooling by providing high diffusive resistivity for X-rays. Of course, both the inertial and the thermal confinement of high-temperature plasmas can be achieved only for a limited period of time - on the order of nanoseconds for millimeter-scale hohlraums. Some time ago such hohlraum targets were proposed for measurements of the stopping power of hot dense plasmas for fast ions at GSI (Darmstadt). Theoretical modeling of hohlraum targets has always been a challenging task for computational physics because it should combine multidimensional hydrodynamic simulations with the solution of the spectral transfer equation for thermal radiation. In this work we report on our latest progress in this direction, namely, we present the results of 2D (two-dimensional) simulations with a newly developed radiation-hydrodynamics code RALEF-2D of two types of the hohlraum targets proposed for experiments on the PHELIX laser at GSI. The first configuration is a simple spherical hohlraum with gold walls and empty interior, which has two holes - one for laser beam entrance, and the other for diagnostics. The hohlraums of this type have already been used in several experimental sessions with the NHELIX and PHELIX lasers at GSI. The second type is a two-chamber cylindrical hohlraum with a characteristic {omega}-shaped cross-section of the enclosure

  12. Holographic quark–antiquark potential in hot, anisotropic Yang–Mills plasma

    International Nuclear Information System (INIS)

    Chakraborty, Somdeb; Haque, Najmul

    2013-01-01

    Using the gauge/gravity duality we calculate the heavy quark–antiquark potential in a hot, anisotropic and strongly coupled Yang–Mills plasma in (3+1)-dimensions. As the anisotropic medium we take a deformed version of N=4 super Yang–Mills theory at finite temperature following a recent work where the dual type IIB supergravity solution is also proposed. We turn on a small value of the anisotropy parameter, for which the gravity dual is known analytically (perturbatively), and compute the velocity-dependent quark–antiquark interaction potential when the pair is moving through the plasma with a velocity v. By setting v=0 we recover the static quark–antiquark potential. We numerically study how the potential is modified in the presence of anisotropy. We further show numerically how the quark–antiquark separation (both in the static and the velocity-dependent case) and hence, the screening length gets modified by anisotropy. We discuss various cases depending upon the direction of the dipole and the direction of its propagation and make a comparative study of these cases. We are also able to obtain an analytical expression for the screening length of the dipole moving in a hot, anisotropic plasma in a special case

  13. Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei [Los Alamos National Laboratory; Hsu, Scott [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory

    2009-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.

  14. Electron-positron pair production in a hot accretion plasma around a massive black hole

    International Nuclear Information System (INIS)

    Takahara, Fumio; Kusunose, Masaaki.

    1985-01-01

    We investigate the electron-positron pair production in a hot accretion plasma around a supermassive black hole in connection with active galactic nuclei. Assuming that an optically thin two-temperature plasma is produced in the vicinity of the central black hole, we examine the condition for the significant pair production by comparing relevant time scales. Since the pair production is dominated by collisions between hard photons, the conditions for significant pair production depend on the production rate of hard photons. We examine the case where the unsaturated Comptonization of soft photons produces hard photons as well as that of bremsstrahlung. We show that significant pair production occurs for a moderately high accretion rate with relatively slow accretion flow as compared to the free fall velocity in both cases. Possible consequences of pair production are briefly discussed. (author)

  15. Concerning the electromagnetic radiation spectrum of a hot plasma with Langmuir turbulence in a magnetic field

    International Nuclear Information System (INIS)

    Tirsky, V.V.; Ledenev, V.G.; Tomozov, V.M.

    2001-01-01

    We consider the process of generation of electromagnetic waves as a consequence of the merging of two Langmuir plasmons. The case of a hot plasma in a magnetic field is investigated. It is shown that under such conditions the frequency of Langmuir plasmons can vary over the range from 0.8 to 1.1 of the Langmuir frequency of electrons. The spectrum and polarization of electromagnetic radiation are analyzed. It is shown that allowance for the thermal motion of plasma particles under the conditions involved permits electromagnetic waves in the range from 1.6 to 2.2 of the Langmuir frequency of electrons to be generated. The degree of circular polarization of the radiation can reach 50% even in the case of an isotropic spectrum of Langmuir turbulence. (orig.)

  16. Hot plasma and energetic particles in the earth's outer magnetosphere: new understandings during the IMS

    International Nuclear Information System (INIS)

    Baker, D.N.; Fritz, T.A.

    1984-01-01

    In this paper we review the major accomplishments made during the IMS period in clarifying magnetospheric particle variations in the region from roughly geostationary orbit altitudes into the deep magnetotail. We divide our review into three topic areas: (1) acceleration processes; (2) transport processes; and (3) loss processes. Many of the changes in hot plasmas and energetic particle populations are often found to be related intimately to geomagnetic storm and magnetospheric substorm effects and, therefore, substantial emphasis is given to these aspects of particle variations in this review. The IMS data, taken as a body, allow a reasonably unified view as one traces magnetospheric particles from their acceleration source through the plasma sheet and outer trapping regions and, finally, to their loss via ionospheric precipitation and ring current formation processes. It is this underlying, unifying theme which is pursued here. 52 references, 19 figures

  17. Transport of plasma impurities and the role of the plasma edge layers for the hot plasma production

    International Nuclear Information System (INIS)

    Drawin, H.W.

    1987-01-01

    The first problem of impurity transport is removal of alpha particles from the interior outward. The second problem is the control of impurities produced in the plasma-wall interaction. Finally there is the problem of using injected impurities for assessment of transport coefficients. The influence of impurity radiation on the power balance of a DT plasma is considered. Limiters and divertors as impurity sources are mentioned and transport equations for impurities are given. As an example iron impurities transport in a hydrogen plasma is considered. The role of the edge layer is emphasized. Finally requirements for plasma diagnostics are stated. 50 refs., 10 figs. (qui)

  18. A Detection of the Same Hot Plasma in the Corona: During a CME and Later at Ulysses

    Science.gov (United States)

    Suess, S. T.; Poletto, G.

    2004-01-01

    We show direct evidence for the same very hot plasma being detected remotely from SOHO in the corona and subsequently, at Ulysses in the solar wind. This is, to our knowledge, the first time that such an unambiguous identification has been made in the case of hot plasma. This detection complements studies correlating other plasma and field properties observed to the properties measured at the source in the corona. This observation takes advantage of a SOHO-Sun-Ulysses quadrature, during which the Sun-Ulysses included angle is $90^\\circ$ and it is possible to observe with Ulysses instruments the same plasma that has previously been remotely observed with SOHO instruments in the corona on the limb of the Sun. The identification builds on an existing base of separate SOHO and interplanetary detections of hot plasma. SOHO/UVCS has found evidence for very hot coronal plasma in current sheets in the aftermath of CMEs in the [Fe XVIII] $\\lambda$ \\AA\\ line, implying a temperature on the order of $6\\times 10(exp 6)$ K. This temperature is unusually high even for active regions, but is compatible with the high temperature predicted in current sheets. In the solar wind, ACE data from early 1998 to middle 2000 revealed high frozen-in Fe charge state in many cases to be present in interplanetary plasma.

  19. Generation of poloidal magnetic field in a hot collisional plasma by inverse Faraday effect

    International Nuclear Information System (INIS)

    Srivastava, M.K.; Lawande, S.V.; Dutta, D.; Sarkar, S.; Khan, M.; Chakraborty, B.

    1996-01-01

    Generation of poloidal magnetic field in a hot and collisional plasma by an inverse Faraday effect is discussed. This field can either be induced by a circularly polarized laser beam (CPLB) or a plane-polarized laser beam (PPLB). For the CPLB, an average field left-angle Re x right-angle ∼I 0 λ∼11.6 MG could be produced in a DT plasma for a high intensity (I 0 =10 22 W/m 2 ) and shorter wavelength (λ=0.35 μm) laser. This field is essentially induced by the field inhomogeneity effect and dominates over that induced by the plasma inhomogeneity effect (left-angle Re x right-angle ∼I 2/3 0 λ 7/3 ∼2.42 MG). The collisional and thermal contribution to left-angle Re x right-angle is just negligible for the CPLB. However, in the case of PPLB the poloidal field is generated only for a hot and collisional plasma and can be quite large for a longer wavelength laser (e.g., CO 2 laser, λ=10.6 μm). The collisional effect induces a field left-angle Re x right-angle ∼0.08 kG, which dominates near the turning point and is independent of the laser parameters. However, in the outer cronal region the thermal pressure effect dominates (e.g., left-angle Re x right-angle ∼I 5/3 0 λ 4/3 ∼3.0 MG). Further, left-angle Re x right-angle for the p-polarized beam is, in general, relatively smaller than that for the s-polarized beam. Practical implications of these results and their limitations are discussed. copyright 1996 American Institute of Physics

  20. Increase of hot initial plasma energy content in the end system of AMBAL-M during hydrogen puffing

    International Nuclear Information System (INIS)

    Akhmetov, Timour; Bekher, Sergei; Davydenko, Vladimir; Krivenko, Aleksander; Muraviev, Maksim; Reva, Vladimir; Sokolov, Vladimir

    2001-01-01

    At the end system of the completely axisymmetric mirror trap AMBAL-M the experiments on creation and study of a hot initial plasma have been performed. In the experiments a gas-box was used for hydrogen supply into the hot startup plasma in the mirror trap to increase the plasma density. The hot initial plasma in the trap was produced by the trapping of a plasma stream with developed electrostatic turbulence generated by a gas-discharge source located outside the entrance throat. It was found that in addition to the increase in the plasma density by a factor of 2-3, hydrogen puffing resulted in an unexpected nearly twofold diamagnetism increase. The gas puffing did not reduce the electron temperature in the trap. Essential for explanation of the observed effect is the fact that with the gas puffing the measured plasma potential in the trap increased. The increase in the plasma potential enhanced the trapping of the ion flow entering the trap and increased the average energy of the electron flow entering the trap. It was found that with the increasing hydrogen puffing rate plasma parameters in the trap were saturated. (author)

  1. Cladding nuclear steels - the application of plasma-arc hot wire surfacing

    International Nuclear Information System (INIS)

    Trarbach, K.O.

    1981-01-01

    The effect of one and two layer plasma-arc hot wire cladding on the HAZ microstructure of the fine grained structural steel 22 NiMoCr 3 7, which is similar to ASTM A 508, class 2, and steel 20 MnMoNi 5 5, similar to ASTM A 533, grade B, class 1 is determined. Attention is directed particularly to the behaviour of the susceptible region, and the consumables considered are cladding materials X 2 CrNiNb 19 9, similar to ER 347 Elc, and S-NiCr 20 Nb, similar to ER NiCr-3 (Inconel 82). Results of corrosion resistance tests show that this cladding technique can be recommended for manufacture of equipment for the chemical industry to avoid corrosion failure. Plasma-arc hot wire surfacing is also shown to be capable of depositing single or double clad layers to meet the highest safety requirements and could be applied to nuclear power plants for the special manufacture of wear resistant parts and for protection of equipment subject to a variety of corrosive environments. (U.K.)

  2. Variance-reduction technique for Coulomb-nuclear thermalization of energetic fusion products in hot plasmas

    International Nuclear Information System (INIS)

    DeVeaux, J.C.; Miley, G.H.

    1982-01-01

    A variance-reduction technique involving use of exponential transform and angular-biasing methods has been developed. Its purpose is to minimize the variance and computer time involved in estimating the mean fusion product (fp) energy deposited in a hot, multi-region plasma under the influence of small-energy transfer Coulomb collisions and large-energy transfer nuclear elastic scattering (NES) events. This technique is applicable to high-temperature D- 3 He, Cat. D and D-T plasmas which have highly energetic fps capable of undergoing NES. A first application of this technique is made to a D- 3 He Field Reversed Mirror (FRM) where the Larmor radius of the 14.7 MeV protons are typically comparable to the plasma radius (plasma radius approx. 2 fp gyroradii) and the optimistic fp confinement (approx. 45% of 14.7 MeV protons) previously predicted is vulnerable to large orbit perturbations induced by NES. In the FRM problem, this variance reduction technique is used to estimate the fractional difference in the average fp energy deposited in the closed-field region, E/sub cf/, with and without NES collisions

  3. EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas

    Science.gov (United States)

    Nakamura, Nobuyuki

    2013-05-01

    An electron beam ion trap (EBIT) is a versatile device for studying highly charged ions. We have been using two types of EBITs for the spectroscopic studies of highly charged ions. One is a high-energy device called the Tokyo-EBIT, and another is a compact low-energy device called CoBIT. Complementary use of them enables us to obtain spectroscopic data for ions over a wide charge-state range interacting with electrons over a wide energy range. In this talk, we present EBIT spectra of highly charged ions for tungsten, iron, bismuth, etc., which are relevant to hot plasmas. Tungsten is considered to be the main impurity in the ITER (the next generation nuclear fusion reactor) plasma, and thus its emission lines are important for diagnosing and controlling the ITER plasma. We have observed many previously unreported lines to supply the lack of spectroscopic data of tungsten ions. Iron is one of the main components of the solar corona, and its spectra are used to diagnose temperature, density, etc. The diagnostics is usually done by comparing observed spectra with model calculations. An EBIT can provide spectra under a well-defined condition; they are thus useful to test the model calculations. Laser-produced bismuth plasma is one of the candidates for a soft x-ray source in the water window region. An EBIT has a narrow charge state distribution; it is thus useful to disentangle the spectra of laser-produced plasma containing ions with a wide charge-state range. Performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS09KOAJ003) and JSPS KAKENHI Number 23246165, and partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics.

  4. Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Ress, D.B.

    1988-06-01

    The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs

  5. Ionization processes in the Fe 27 region of hot iron plasma in the field of hard gamma radiation

    International Nuclear Information System (INIS)

    Illarionov, A.F.

    1989-01-01

    A highly ionized hot plasma of an iron 26 56 Fe-type heavy element in the field of hard ionizing gamma-ray radiation is considered. The processes of ionization and recombination are discussed for a plasma consisting of the fully ionized Fe 27 and the hydrogen-like Fe 26 ions of iron in the case of large optical depth of the plasma with respect to the photoionization by gamma-ray quanta. The self-ionization process of a hot plasma with the temperature kT ≅ I (I being the ionization potential), due to the production of the own ionizing gamma-ray quanta, by the free-free (ff) and recombination (fb) radiation mechanisms, is investigated. It is noted that in the stationary situation the process of self-ionization of a hot plasma imposes the restriction upon the plasma temperature, kT<1.5 I. It is shown that the ionization of heavy-ion plasma by the impact of thermal electrons is dominating over the processes of ff- and fb-selfionization of plasma only by the large concentration of hydrogen-like iron at the periphery of the region of fully ionized iron Fe 27

  6. X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

    Science.gov (United States)

    Miceli, M.; Reale, F.; Gburek, S.; Terzo, S.; Barbera, M.; Collura, A.; Sylwester, J.; Kowalinski, M.; Podgorski, P.; Gryciuk, M.

    2012-08-01

    Aims: The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods: We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. Results: The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistical significance of the count rates and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 × 1044 cm-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present in both the high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss the possibility of a non-thermal origin (which would be compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Conclusions: Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.

  7. Radiation from a hot, thin plasma from 1 to 250 A

    International Nuclear Information System (INIS)

    Kato, T.

    1976-01-01

    A calculation of emission spectrum of a hot, low-density plasma in the region 1--250 A is presented. The mechanisms considered are electron collision-induced line emission, bremsstrahlung, and radiative recombination; and the temperature range studied is 10 5 --10 7 K. 795 lines are included. The elemental abundances of the ions of He, C, N, O, Ne, Mg, Si, S, Ca, Fe, and Ni were taken to be as in the solar corona. The line emission of Fe ions produces a maximum in the curve of an emission power between 1 and 250 A versus temperature around 10 6 K. The emission rate around 10 6 K is larger than the results calculated by Cox and Tucker and Tucker and Koren

  8. Hot corrosion behavior of plasma-sprayed partially stabilized zirconia coatings in a lithium molten salt

    International Nuclear Information System (INIS)

    Cho, Soo Haeng; Hong, Sun Seok; Kang, Dae Seong; Park, Byung Heong; Hur, Jin Mok; Lee, Han Soo

    2008-01-01

    The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, Yttria-Stabilized Zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at 675 .deg. C for 216 hours in the molten salt LiCl-Li 2 O under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of LiCl-Li 2 O molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts

  9. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  10. Fast ions and hot electrons in the laser--plasma interaction

    International Nuclear Information System (INIS)

    Gitomer, S.J.; Jones, R.D.; Begay, F.; Ehler, A.W.; Kephart, J.F.; Kristal, R.

    1986-01-01

    Data on the emission of energetic ions produced in laser--matter interactions have been analyzed for a wide variety of laser wavelengths, energies, and pulse lengths. Strong correlation has been found between the bulk energy per AMU for fast ions measured by charge cups and the x-ray-determined hot electron temperature. Five theoretical models have been used to explain this correlation. The models include (1) a steady-state spherically symmetric fluid model with classical electron heat conduction, (2) a steady-state spherically symmetric fluid model with flux limited electron heat conduction, (3) a simple analytic model of an isothermal rarefaction followed by a free expansion, (4) the lasneX hydrodynamics code [Comments Plasma Phys. Controlled Fusion 2, 85 (1975)], calculations employing a spherical expansion and simple initial conditions, and (5) the lasneX code with its full array of absorption, transport, and emission physics. The results obtained with these models are in good agreement with the experiments and indicate that the detailed shape of the correlation curve between mean fast ion energy and hot electron temperature is due to target surface impurities at the higher temperatures (higher laser intensities) and to the expansion of bulk target material at the lower temperatures (lower laser intensities)

  11. Accelerated procedure to solve kinetic equation for neutral atoms in a hot plasma

    Science.gov (United States)

    Tokar, Mikhail Z.

    2017-12-01

    The recombination of plasma charged components, electrons and ions of hydrogen isotopes, on the wall of a fusion reactor is a source of neutral molecules and atoms, recycling back into the plasma volume. Here neutral species participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically directed velocities are generated. Some fraction of these hot atoms hit the wall. Statistical Monte Carlo methods normally used to model c-x atoms are too time consuming for reasonably small level of accident errors and extensive parameter studies are problematic. By applying pass method to evaluate integrals from functions, including the ion velocity distribution, an iteration approach to solve one-dimensional kinetic equation [1], being alternative to Monte Carlo procedure, has been tremendously accelerated, at least by a factor of 30-50 [2]. Here this approach is developed further to solve the 2-D kinetic equation, applied to model the transport of c-x atoms in the vicinity of an opening in the wall, e.g., the entrance of the duct guiding to a diagnostic installation. This is necessary to determine firmly the energy spectrum of c-x atoms penetrating into the duct and to assess the erosion of the installation there. The results of kinetic modeling are compared with those obtained with the diffusion description for c-x atoms, being strictly relevant under plasma conditions of low temperature and high density, where the mean free path length between c-x collisions is much smaller than that till the atom ionization by electrons. It is demonstrated that the previous calculations [3], done with the diffusion approximation for c-x atoms, overestimate the erosion rate of Mo mirrors in a reactor by a factor of 3 compared to the result of the present kinetic study.

  12. Effect of multi-ions on electromagnetic ion-cyclotron waves with a hot plasma around the polar cusp

    International Nuclear Information System (INIS)

    Patel, Soniya; Varma, P; Tiwari, M S

    2011-01-01

    Electromagnetic ion cyclotron (EMIC) instabilities with an isotropic ion beam and general loss-cone distribution of hot core plasmas are discussed. The growth rate of the wave, perpendicular heating of ions, parallel resonant energy and marginal instability of the EMIC waves in homogeneous plasmas are obtained using the dispersion relation for hot plasmas consisting of H + , He + ,O + ions and electrons. The wave is assumed to propagate parallel to the static magnetic field. The whole plasma is considered to consist of resonant and non-resonant particles permeated by the isotropic ion beam. It is assumed that the resonant particles and the ion beam participate in energy exchange with the wave, whereas the non-resonant particles support the oscillatory motion of the wave. We determined the variation in energies and growth rate in hot plasmas by the energy conservation method with a general loss-cone distribution function. We also discuss the effect of positive and negative ion beam velocity on the growth rate of the wave. The thermal anisotropy of the ions of the core plasma acts as a source of free energy for EMIC waves and enhances the growth rate. Heating of ions perpendicular to the magnetic field is discussed along with EMIC wave emission in the polar cusp region.

  13. Microstructure and thermoelectric properties of β-FeSi2 ceramics fabricated by hot-pressing and spark plasma sintering

    International Nuclear Information System (INIS)

    Qu Xiurong; Lue Shuchen; Hu Jianmin; Meng Qingyu

    2011-01-01

    Highlights: → With increasing hot-pressing (HP) temperature, the thermoelectric figure of merit of β-FeSi 2 ceramics is improved slightly. → The grain size of the sample sintered by the spark plasma sintering (SPS) process is smaller than that by the HP process. → The SPS sample shows excellent thermoelectric performance attributed to low thermal conductivity. - Abstract: The microstructure and thermoelectric properties of β-FeSi 2 ceramics by hot pressing (HP) and spark plasma sintering (SPS) are investigated. With increasing hot-pressing temperature, the density, electronic conductivity and thermal conductivity of the samples increase significantly, the thermoelectric figure of merit is improved slightly. The microstructure study indicates that the sizes of the β-FeSi 2 and ε-FeSi phases in the sample sintered by the SPS process are smaller than that by the HP process. The SPS sample shows excellent thermoelectric performance due to the low thermal conductivity.

  14. Coercivity of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering method

    Directory of Open Access Journals (Sweden)

    Tetsuji Saito

    2017-05-01

    Full Text Available The effects of Nd-Cu alloy powder addition on the microstructures and magnetic properties of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering (SPS method were investigated. The addition of a small amount of Nd-Cu alloy powder, up to 2%, significantly increased the coercivity of the Nd-Fe-B hot-deformed magnets without deteriorating the crystallographic alignment of the Nd2Fe14B phase. The Nd-Fe-B hot-deformed magnet with 2% Nd-Cu alloy powder had the same remanence value as the Nd-Fe-B hot-deformed magnet without Nd-Cu alloy powder addition, but the magnet with 2% Nd-Cu alloy powder exhibited higher coercivity and a higher maximum energy product than the magnet without Nd-Cu alloy powder addition.

  15. Time-resolved Thomson scattering on high-intensity laser-produced hot dense helium plasmas

    International Nuclear Information System (INIS)

    Sperling, P; Liseykina, T; Bauer, D; Redmer, R

    2013-01-01

    The introduction of brilliant free-electron lasers enables new pump–probe experiments to characterize warm and hot dense matter states, i.e. systems at solid-like densities and temperatures of one to several hundred eV. Such extreme conditions are relevant for high-energy density studies such as, e.g., in planetary physics and inertial confinement fusion. We consider here a liquid helium jet pumped with a high-intensity optical short-pulse laser that is subsequently probed with brilliant soft x-ray radiation. The optical short-pulse laser generates a strongly inhomogeneous helium plasma which is characterized with particle-in-cell simulations. We derive the respective Thomson scattering spectrum based on the Born–Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We observe plasmon modes that are generated in the interior of the target and study their temporal evolution. Such pump–probe experiments are promising tools to measure the important plasma parameters density and temperature. The method described here can be applied to various pump–probe scenarios by combining optical lasers, soft x-rays and hard x-ray sources. (paper)

  16. A path integral for heavy-quarks in a hot plasma

    CERN Document Server

    Beraudo, A.; Faccioli, P.; Garberoglio, G.; 10.1016/j.nuclphysa.2010.06.007

    2010-01-01

    We propose a model for the propagation of a heavy-quark in a hot plasma, to be viewed as a first step towards a full description of the dynamics of heavy quark systems in a quark-gluon plasma, including bound state formation. The heavy quark is treated as a non relativistic particle interacting with a fluctuating field, whose correlator is determined by a hard thermal loop approximation. This approximation, which concerns only the medium in which the heavy quark propagates, is the only one that is made, and it can be improved. The dynamics of the heavy quark is given exactly by a quantum mechanical path integral that is calculated in this paper in the Euclidean space-time using numerical Monte Carlo techniques. The spectral function of the heavy quark in the medium is then reconstructed using a Maximum Entropy Method. The path integral is also evaluated exactly in the case where the mass of the heavy quark is infinite; one then recovers known results concerning the complex optical potential that controls the ...

  17. Nonlinear evolution of a three dimensional longitudinal plasma wavepacket in a hot plasma including the effect of its interaction with an ion-acoustic wave

    International Nuclear Information System (INIS)

    Das, K.P.; Sihi, S.

    1979-01-01

    Assuming amplitudes as slowly varying functions of space and time and using perturbation method three coupled nonlinear partial differential equations are obtained for the nonlinear evolution of a three dimensional longitudinal plasma wave packet in a hot plasma including the effect of its interaction with a long wavelength ion-acoustic wave. These three equations are used to derive the instability conditions of a uniform longitudinal plasma wave train including the effect of its interaction both at resonance and nonresonance, with a long wavelength ion-acoustic wave. (author)

  18. Initial development of ponderomotive filaments in plasma from intense hot spots produced by a random phase plate

    International Nuclear Information System (INIS)

    Rose, H.A.; DuBois, D.F.

    1993-01-01

    Local intensity peaks, hot spots, in laser beams may initiate self-focusing, in lieu of linear instabilities. If the hot spot power, P, contains several times the critical power, P c , and if the plasma density, n, is small compared to the critical density, n c , then on a time scale less than an acoustic transit time across the hot spot radius, τ ia , the hot spot collapses, capturing order unity of the initial hot spot power. The collapse time is determined as a universal function of P/P c and τ ia . The focal region moves towards the laser with an initially supersonic speed, and decelerates as it propagates. The power of this back propagating focus decreases monotonically until the critical power is reached. This limiting, shallowest, focus develops on a time scale long compared to τ ia and corresponds to the focus obtained in a model with adiabatically responding ions. For low-density plasma nonlinear ion effects terminate collapse and a bound on the transient intensity amplification is obtained as a universal function of the optics f/number, F, and n/n c . The boundary between thermal and ponderomotive regimes depends upon F and not the laser intensity

  19. Impact of plasma-sprayed metal particles on hot and cold glass surfaces

    International Nuclear Information System (INIS)

    McDonald, A.; Lamontagne, M.; Moreau, C.; Chandra, S.

    2006-01-01

    Plasma-sprayed molten molybdenum and amorphous steel particles (38-55 μm diameter) were photographed during impact (velocity 120-200 m/s) and spreading on a smooth glass surface that was maintained at either room temperature or 400 deg. C. Droplets approaching the surface were identified by a photodetector and after a known delay, a 5-ns laser pulse was triggered to illuminate the spreading splat and photograph it with a charge-coupled device (CCD) camera. A rapid two-color pyrometer was used to collect thermal radiation from particles during flight and impact to follow the evolution of their temperature and size. Particles that impacted the surface at room temperature ruptured and splashed, leaving a small central solidified core on the substrate. On a surface held at 400 deg. C, there was no splashing and a circular, disk-like splat remained on the surface. Splats on a glass surface held at room temperature had a maximum spread diameter almost three times that on a hot surface. A simple analysis was done to estimate the area of the splat in contact with the non-heated glass surface during spreading. The analysis supports the hypothesis that only a portion of the splat is in good contact with the surface at room temperature, while the rest of the fluid is separated from the substrate by a gas barrier

  20. New approximation for calculating free-free absorption in hot dense plasmas

    International Nuclear Information System (INIS)

    Perrot, F.

    1996-01-01

    We propose a model for calculating free-free absorption (inverse bremmstrahlung) in hot dense plasmas. This model writes the total Gaunt factor as the product of a static factor and a dynamic factor. The treatment of the static part is based on a relation between the absorption cross section and the elastic scattering cross section, which is exact for very low frequencies and becomes asymptotically correct when the Born approximation is valid. Generalizing this relation provides an expression of the absorption cross section Q(k,k'), which depends on the initial and final wave vectors k and k', as an integral of a unique function S * (k). The calculation of nondiagonal matrix elements (k ''not='' k') is thus avoided. The analytical summation of the high angular momenta in the partial wave expansion of the cross section makes possible to apply the model in the limit of weak electron screening. The collective effects are accounted for in a dynamic Gaunt factor and in an index of refraction different from unity. Numerical results for the Gaunt factor in cesium are presented and discussed. An application to the mean opacities of carbon is also shown. (Author)

  1. Temperature anisotropy instabilities in a plasma containing cold and hot species in the magnetosphere

    International Nuclear Information System (INIS)

    Renuka, G.; Viswanathan, K.S.

    1980-01-01

    The nature of convective instability has been investigated for an electromagnetic wave, either right circularly polarised or left circularly polarised, propagating along a magnetic line of force in a plasma whose distribution function exhibits a temperature anisotropy in the hot species, a loss cone structure and a beam of cold electrons or ions travelling along the line of force with velocity V 1 . Detailed numerical calculations have been made using a computer for the growth and decay of the wave for different values of the anisotropy ratio Tsub(perpendicular to)/Tsub(parallel to) delta of the perpendicular and parallel temperatures, the McIlwain parameter L, the loss cone index j, velocity V 1 of the streaming particle and the particle density ratio epsilon. The ranges of the values of epsilon and delta for which the waves becomes unstable have been studied in detail. It is found that wave propagation shows no dependence on the loss cone index but shows very strong dependence on the temperature anisotropy delta. (author)

  2. Ionic structures and transport properties of hot dense W and U plasmas

    Science.gov (United States)

    Hou, Yong; Yuan, Jianmin

    2016-10-01

    We have combined the average-atom model with the hyper-netted chain approximation (AAHNC) to describe the electronic and ionic structure of uranium and tungsten in the hot dense matter regime. When the electronic structure is described within the average-atom model, the effects of others ions on the electronic structure are considered by the correlation functions. And the ionic structure is calculated though using the hyper-netted chain (HNC) approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution in the temperature-depended density functional theory. And electronic and ionic structures are determined self-consistently. On the basis of the ion-ion pair potential, we perform the classical (CMD) and Langevin (LMD) molecular dynamics to simulate the ionic transport properties, such as ionic self-diffusion and shear viscosity coefficients, through the ionic velocity correlation functions. Due that the free electrons become more and more with increasing the plasma temperature, the influence of the electron-ion collisions on the transport properties become more and more important.

  3. Two dimensional PMMA nanofluidic device fabricated by hot embossing and oxygen plasma assisted thermal bonding methods

    Science.gov (United States)

    Yin, Zhifu; Sun, Lei; Zou, Helin; Cheng, E.

    2015-05-01

    A method for obtaining a low-cost and high-replication precision two-dimensional (2D) nanofluidic device with a polymethyl methacrylate (PMMA) sheet is proposed. To improve the replication precision of the 2D PMMA nanochannels during the hot embossing process, the deformation of the PMMA sheet was analyzed by a numerical simulation method. The constants of the generalized Maxwell model used in the numerical simulation were calculated by experimental compressive creep curves based on previously established fitting formula. With optimized process parameters, 176 nm-wide and 180 nm-deep nanochannels were successfully replicated into the PMMA sheet with a replication precision of 98.2%. To thermal bond the 2D PMMA nanochannels with high bonding strength and low dimensional loss, the parameters of the oxygen plasma treatment and thermal bonding process were optimized. In order to measure the dimensional loss of 2D nanochannels after thermal bonding, a dimension loss evaluating method based on the nanoindentation experiments was proposed. According to the dimension loss evaluating method, the total dimensional loss of 2D nanochannels was 6 nm and 21 nm in width and depth, respectively. The tensile bonding strength of the 2D PMMA nanofluidic device was 0.57 MPa. The fluorescence images demonstrate that there was no blocking or leakage over the entire microchannels and nanochannels.

  4. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rrufai@csir.co.za [Council for Scientific and Industrial Research, Pretoria (South Africa); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Bellville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi, Mumbai-410218 (India)

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  5. Nonlinear electron-acoustic rogue waves in electron-beam plasma system with non-thermal hot electrons

    Science.gov (United States)

    Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.

    2014-11-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  6. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rajirufai@gmail.com; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India)

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  7. Quasilinear dynamics of a cloud of hot electrons propagating through a plasma with decreasing density and temperature

    International Nuclear Information System (INIS)

    Foroutan, G.; Khalilpour, H.; Moslehi-Fard, M.; Li, B.; Robinson, P. A.

    2008-01-01

    The effects of plasma inhomogeneities on the propagation of a cloud of hot electrons through a cold background plasma and generation of Langmuir waves are investigated using numerical simulations of the quasilinear equations. It is found that in a plasma with decreasing density the quasilinear relaxation of the electron distribution in velocity space is accelerated and the levels of the generated Langmuir waves are enhanced. The magnitude of the induced emission rate is increased and its maximum value moves to lower velocities. Due to density gradient the height of plateau shows an increase at small distances and a corresponding decrease at large distances. It is also found that in a plasma with decreasing temperature, the relaxation of the beam is retarded, the spectral density of Langmuir waves is broadened, and the height of the plateau decreases below its value in a uniform plasma. In the presence of both density and temperature gradients, at given position, the height and upper boundary of the plateau and the level of Langmuir waves are all increased at small velocities. The spatial expansion of the beam is increased by the plasma inhomogeneities, but its average velocity of propagation decreases. Initially, at a given position, the velocity at the upper boundary of the plateau is smaller in the presence of the density gradient than in the uniform plasma but the reverse is true at longer times. Due to temperature gradient, at large times and small distances, the upper boundary of the plateau is increased above its value in the uniform plasma. Because of fast relaxation, the value of the lower boundary of the plateau in the plasma with decreasing density is always less than its value in the uniform plasma. It is found that the local velocity of the beam decreases when the density gradient is present. The local velocity spread of the beam remains unchanged during the propagation of the beam in the uniform plasma, but increases in the presence of inhomogeneities.

  8. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Celona, L.; Castro, G.; Torrisi, G.; Neri, L.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); Maimone, F.; Maeder, J.; Tinschert, K.; Spaedtke, K. P.; Rossbach, J.; Lang, R. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Romano, F. P. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Musumarra, A.; Altana, C.; Caliri, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, via S. Sofia 64, 95123 Catania (Italy)

    2014-02-15

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source – operating at GSI, Darmstadt – has been carried out. Two different detectors (a SDD – Silicon Drift Detector and a HpGe – hyper-pure Germanium detector) have been used to characterize the warm (2–30 keV) and hot (30–500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  9. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI.

    Science.gov (United States)

    Mascali, D; Celona, L; Maimone, F; Maeder, J; Castro, G; Romano, F P; Musumarra, A; Altana, C; Caliri, C; Torrisi, G; Neri, L; Gammino, S; Tinschert, K; Spaedtke, K P; Rossbach, J; Lang, R; Ciavola, G

    2014-02-01

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source - operating at GSI, Darmstadt - has been carried out. Two different detectors (a SDD - Silicon Drift Detector and a HpGe - hyper-pure Germanium detector) have been used to characterize the warm (2-30 keV) and hot (30-500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  10. Study of nonlinear electron-acoustic solitary and shock waves in a dissipative, nonplanar space plasma with superthermal hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jiu-Ning, E-mail: hanjiuning@126.com; He, Yong-Lin; Luo, Jun-Hua; Nan, Ya-Gong; Han, Zhen-Hai; Dong, Guang-Xing [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China); Duan, Wen-Shan [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Li, Jun-Xiu [College of Civil Engineering, Hexi University, Zhangye 734000 (China)

    2014-01-15

    With the consideration of the superthermal electron distribution, we present a theoretical investigation about the nonlinear propagation of electron-acoustic solitary and shock waves in a dissipative, nonplanar non-Maxwellian plasma comprised of cold electrons, superthermal hot electrons, and stationary ions. The reductive perturbation technique is used to obtain a modified Korteweg-de Vries Burgers equation for nonlinear waves in this plasma. We discuss the effects of various plasma parameters on the time evolution of nonplanar solitary waves, the profile of shock waves, and the nonlinear structure induced by the collision between planar solitary waves. It is found that these parameters have significant effects on the properties of nonlinear waves and collision-induced nonlinear structure.

  11. Eddy intrusion of hot plasma into the polar cap and formation of polar-cap arcs

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Gorney, D.J.

    1983-01-01

    We present plasma and electric field data obtained by the S3-3 satellite over the polar caps. We demonstrate that: (1) plasma signatures in the polar cap arc formation region near 5000 km altitude show clear intrusions of plasma sheet (approx.keV) and magneto sheath (approx.100 eV) plasma into a background of low-energy polar cap plasma; (2) the combined plasma and electric field signatures (electron inverted-V, ion beam and delxE<0) are exactly the same as in the evening discrete arc. We interpret this equivalence of polar cap and evening discrete arc signatures as indication that their formation processes are identical. The spatial structures of polar cap electric fields and the associated plasma signatures are consistent with the hypothesis that plasma intrusion into the polar cap takes the form of multiple cellular eddies. This hypothesis provides a unifying view of arc formation and arc configurations

  12. A new derivation of the plasma susceptibility tensor for a hot magnetized plasma without infinite sums of products of Bessel functions

    International Nuclear Information System (INIS)

    Qin Hong; Phillips, Cynthia K.; Davidson, Ronald C.

    2007-01-01

    The susceptibility tensor of a hot, magnetized plasma is conventionally expressed in terms of infinite sums of products of Bessel functions. For applications where the particle's gyroradius is larger than the wavelength, such as alpha particle dynamics interacting with lower-hybrid waves, and the focusing of charged particle beams using a solenoidal field, the infinite sums converge slowly. In this paper, a new derivation of the plasma susceptibility tensor is presented which exploits a symmetry in the particle's orbit to simplify the integration along the unperturbed trajectories. As a consequence, the infinite sums appearing in the conventional expression are replaced by definite double integrals over one gyroperiod, and the cyclotron resonances of all orders are captured by a single term. Furthermore, the double integrals can be carried out and expressed in terms of Bessel functions of complex order, in agreement with expressions deduced previously using the Newburger sum rule. From this new formulation, it is straightforward to derive the asymptotic form of the full hot plasma susceptibility tensor for a gyrotropic but otherwise arbitrary plasma distribution in the large gyroradius limit. These results are of more general importance in the numerical evaluation of the plasma susceptibility tensor. Instead of using the infinite sums occurring in the conventional expression, it is only necessary to evaluate the Bessel functions once according to the new expression, which has significant advantages, especially when the particle's gyroradius is large and the conventional infinite sums converge slowly. Depending on the size of the gyroradius, the computational saving enabled by this representation can be several orders-of-magnitude

  13. Production of a hot ion plasma at the lower hybrid resonance and measurement of its parameters

    International Nuclear Information System (INIS)

    Glagolev, V.M.; Dyubajlov, A.G.; Krivov, N.A.; Martynenko, V.V.; Skosyrev, Yu.V.

    1975-01-01

    Electromagnetic fields delayed along a magnetic field have been created within a plasma with the aid of a coil encircling the plasma column. When these waves were propagated transversely in relation to the magnetic field in a plasma with density rising along its radius, they were delayed in the direction of propagation. The amplitude and phase distributions of the electromagentic fields along the radius of the plasma column were measured at different moments in time. The existence of an absorption band of these waves within the plasma was detected. The absorption band was shifted towards the outer boundary from the plasma when plasma density was increased. By four independent methods it was established that the gas-kinetic pressure of the plasma, measured according to its diamagnetism, is determined by the ion component. It was found that the energy of electrons at right angles to the magnetic field is considerably less than that of the ions. The cause of limited heating was an increase in density and energy losses in the charge-exchange process. In order to improve vacuum conditions, the coil around the plasma was placed in a metallic chamber, and the UHF plasma source used in the original experiments was replaced by a hydride-film source. This made it possible to increase the internal energy of the plasma to 3x10 15 eV cm -3 at a density of (1-3)x10 12 cm -3 . The mean energy of atoms leaving the plasma at right angles to the magnetic field as a result of charge exchange reached 1 keV. The region of change in plasma parameters (density and magnetic field) for which heating was observed corresponded to the linear transformation theory. Non-linear effects could occur only in the first stage of heating, when the electric fields were strong, but plasma temperature was low. Heating efficiency was measured by a reflectometer installed in the coaxial line connecting the generator and the HF input coil to the plasma. The measurements showed that about 20% of the power

  14. Slowing-down of non-relativistic ions in a hot dense plasma

    International Nuclear Information System (INIS)

    Maynard, G.

    1982-01-01

    The parameter γ (action of the free-electrons of the plasma) was investigated: calculation of the mean value of γ for a great number of monokinetic incident ions and of the dispersion about this mean value, using the random phase approximation; and calculation of the dielectric function. The contribution of the plasma ions to the stopping power was studied and the description of the ion-plasma interaction improved. The slowing-down of an ion at large distance by the bound electrons of an atom was calculated. This study is applied to the ion-plasma interaction in the ion-beam inertial confinement [fr

  15. X-ray spectroscopic characterization of laser produced hot dense plasmas

    International Nuclear Information System (INIS)

    Kontogiannopoulos, N.

    2007-12-01

    In this work we performed experiments of emission and absorption spectroscopy of laser produced plasmas, to provide well characterized spectral data which permit to benchmark atomic physics codes. More precisely, we produced xenon and krypton plasmas in NLTE (non local thermodynamic equilibrium) conditions and studied their emission spectra. In a second experiment, we characterized the absorption spectra of zinc sulfide and aluminium plasmas in LTE (local thermodynamic equilibrium) conditions.The first two chapters give an outline of the theory involved in the study of the emission and absorption plasma spectroscopy. Chapter 1 describes the different atomic processes occurring in a plasma. The LTE and the NLTE statistics ruling the equilibrium of the atomic processes are presented. Then, we give a brief description of the different codes of plasma atomic physics used in the analysis of our experimental data, namely HULLAC, SCO and TRANSPEC/AVERROES. In Chapter 2 the macroscopic theory of the radiation transport through a plasma is given. We describe also the self-similar model of Basko and the view factor approach, which permits us to calculate the heating conditions of the absorption foils achieved in the interior of the spherical gold cavity. Chapter 3 gives a description of the instruments used for realizing the two experiments, as well as the technical characteristics of the LULI2000 laser facility used to perform the experiments. Chapter 4 presents the experiment realized to characterize the emission spectra of the xenon and krypton plasmas in NLTE, as well the analysis of the experimental data with TRANSPEC/AVERROES. Finally, the experiment for measuring the absorption spectrum of the ZnS plasma mixture and the analysis of the experimental data with the code SCO are given in Chapter 5

  16. Energy level broadening effect on the equation of state of hot dense Al and Au plasma

    International Nuclear Information System (INIS)

    Hou Yong; Jin Fengtao; Yuan Jianmin

    2007-01-01

    In the hot dense matter regime, the isothermal equation of state (EOS) of Al and Au is calculated using an average-atom (AA) model in which the broadening of energy levels of atoms and ions are accounted for by using with a Gaussian distribution of the density of states. The distribution of bound electrons in the energy bands is determined by the continuum Fermi-Dirac distribution. With a self-consistent field average atoms scheme, it is shown that the energy-level broadening has a significant effect on the isothermal equation of state (EOS) of Al and Au in the hot dense matter regime. The jumps in the equation of state (EOS) induced by pressure ionization of the one-electron orbital with the increase in density, which often occur in the normal average-atom model and have been avoided by generally introducing the pseudo-shape resonance states, disappear naturally

  17. Hot and dense plasma probing by soft X-ray lasers

    Czech Academy of Sciences Publication Activity Database

    Krůs, Miroslav; Kozlová, Michaela; Nejdl, Jaroslav; Rus, B.

    2018-01-01

    Roč. 13, č. 1 (2018), č. článku C01004. ISSN 1748-0221. [International Symposium on Laser-Aided Plasma Diagnostics/18./. Prague, 24.09.2017-28.09.2017] R&D Projects: GA MŠk LM2010014; GA MŠk(CZ) LM2015083 Institutional support: RVO:61389021 Keywords : Plasma diagnostics - interferometry * spectroscopy and imaging * Plasma diagnostics - probes * Plasma generation (laser-produced, RF, x ray-produced) Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/13/01/C01004

  18. Longitudinal and radial MHD linear induction accelerator with hot conducting plasma core

    International Nuclear Information System (INIS)

    Denno, K.

    1985-01-01

    Conceptual design of linear induction accelerator is presented using for the core continuum a highly conductive plasma with sustained pumping velocity. Karlovitz criterion of boundary theory is employed in the process of design

  19. Investigation of the interaction of high intensity laser light with solids and hot plasma using X-ray spectroscopic technique

    International Nuclear Information System (INIS)

    Zigler, A.

    1978-06-01

    This work investigates the properties of high power laser-produced plasmas by developing and applying x-ray spectroscopic methods which utilize spatial resolution. The shadow techniques which were developed in this work yield a high spatial resolution of 5-15μm together with an adequate X-ray spectral resolution for single shots of laser power flux of 2.10 13 W/cm -2 . The intensity distribution in the source is calculated from the partial shadow by numerical differentiation. The main advantage of the present method is the ability to obtain spatial information simultaneously for strong and weak spectral lines for a single shot of medium power laser. Plasma parameters were derived from H-like and He-like lines and their inner-shell satellites, which were obtained from Mg, Al and Si targets. Using shadow techniques, the sizes of the emitting regions of the various spectral lines were measured; the spatial variation of the ionization stage, the electron temperature and density were investigated. A constant electron temperature of (250+-50)eV and electron density scale-length of about 50μm were derived for an expanding plasma. An experimental investigation of the possible origin and the mechanisms responsible for the Ksub(α) radiation in laser-produced plasma was carried out. It is shown that the Ksub(α) radiation was generated by fast suprathermal electrons and originated inside the target behind the interaction zone of the shock and heat waves. Energy penetration depth and hot plasma expansion were tested by using multilayer targets, thin foils and achieving a two-dimensional spatially resolved X-ray Al spectrum. (B.G.)

  20. The study of tribological and corrosion behavior of plasma nitrided 34CrNiMo6 steel under hot and cold wall conditions

    International Nuclear Information System (INIS)

    Maniee, A.; Mahboubi, F.; Soleimani, R.

    2014-01-01

    Highlights: • 34CrNiMo6 steel was plasma nitrided under hot and cold wall conditions. • The amount of ε phase in hot wall condition was more than that of cold wall condition. • Wear resistance of hot wall nitrided samples was more than cold wall treated ones. • Hot wall nitriding provides better corrosion behavior than cold wall nitriding. - Abstract: This paper reports on a comparative study of tribological and corrosion behavior of plasma nitrided 34CrNiMo6 low alloy steel under modern hot wall condition and conventional cold wall condition. Plasma nitriding was carried out at 500 °C and 550 °C with a 25% N 2 + 75% H 2 gas mixture for 8 h. The wall temperature of the chamber in hot wall condition was set to 400 °C. The treated specimens were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), microhardness and surface roughness techniques. The wear test was performed by pin-on-disc method. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were also used to evaluate the corrosion resistance of the samples. The results demonstrated that in both nitriding conditions, wear and corrosion resistance of the treated samples decrease with increasing temperature from 500 °C to 550 °C. Moreover, nitriding under hot wall condition at the same temperature provided slightly better tribological and corrosion behavior in comparison with cold wall condition. In consequence, the lowest friction coefficient, and highest wear and corrosion resistance were found on the sample treated under hot wall condition at 500 °C, which had the maximum surface hardness and ε-Fe 2–3 N phase

  1. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    Science.gov (United States)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  2. Dynamics of hot spots in the DPF-78 plasma focus from x-ray spectra and REB emission

    International Nuclear Information System (INIS)

    Schmidt, H.; Wang, X.X.

    1995-01-01

    The X-ray emission from hot spots in the plasma focus DPF-78 was investigated with the help of two X-ray quartz crystal spectrometers of the Johann type and a 4 fold magnifying X-ray pinhole camera. In the experiments the working gas was chosen to be 300 Pa deuterium with 20 Pa argon admixture. X-ray spectra in the wavelength range from 3.55 angstrom to 4.0 angstrom, including H-like and He-like Argon lines, were recorded on Kodak DEF-2 film. From the spatially resolved spectra recorded side-on, a relative spectral shift between different hot spots of the same shot was often observed. The shift could be attributed to the Doppler shift. From spectral characteristics such as intensities and FWHM of Ar resonant and intercombination lines electron densities of up to 3 x 10 27 m -3 were determined. Radial dimensions of the hot spots ranging from about 140 microm to 300 microm were found from pinhole pictures applying the penumbra method. Usually two pulses of relativistic electron beams were observed using Cherenkov detectors in a magnetic spectrometer. The energy of the first pulse, which was emitted at the time of maximum compression, was higher than that of the second pulse. The measured FWHM of the REB pulses ranges from 3 ns to about 10 ns. The characteristics of the time-integrated X-ray spectra and the time resolved REB spectra and their dependence on the composition of the filling gas are discussed

  3. Isotropic and anisotropic nanocrystalline NdFeB-based magnets prepared by spark plasma sintering and hot deformation

    International Nuclear Information System (INIS)

    Liu, Z.W.; Huang, Y.L.; Huang, H.Y.; Zhong, X.C.; Yu, Y.H.; Zeng, D.C.

    2011-01-01

    Isotropic and anisotropic NdFeB permanent magnets were prepared by Spark Plasma Sintering (SPS) and SPS followed hot deformation (HD), respectively, using melt spun NdFeB ribbons with various compositions as starting materials. It is found that, based on RE-rich composition, SPSed magnets sintered at low temperatures (<700 C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, a distinct two-zone (coarse grain and fine grain zones) structure was formed in the SPSed magnets. The SPS temperature and pressure have important effects on the grain structure, which led to the variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. For single phase NdFeB alloy, because of the deficiency of Nd-rich phases, it is relatively difficult to consolidate micro-sized melt spun powders into high density bulk magnet, but generally a larger particle size is beneficial to achieve better magnetic properties. Anisotropic magnets with a maximum energy product of approx. equal to 38 MGOe were produced by the SPS+HD process. HD did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes. (author)

  4. Heliosheath ENA images by Cassini/INCA and in-situ hot plasma ion measurements by Voyagers

    Science.gov (United States)

    Krimigis, Stamatios; Roelof, Edmond; Mitchell, Donald; Decker, Robert; Dialynas, Konstantinos

    2016-07-01

    The advent of Energetic Neutral Atom (ENA) imaging, (the result of charge-exchange with energetic ions), has revealed the global nature of the heliosheath (HS) at both high ( > 5 keV, Cassini from 10 AU) and low (INCA (Ion and Neutral CAmera) since 2003 with a full image available since 2009, when IBEX global imaging observations also became available. The presence of the two Voyagers measuring ions locally in the HS contemporaneously with INCA global imaging through ENA in overlapping energy bands provides a powerful tool for examining the spatial, temporal, and spectral evolution of the source hot plasma ions and the global variability of the neutral component. Some of the key findings from the Voyagers and INCA measurements are as follows: (a) The HS contains a hot plasma population that carries a substantial part (30-50%) of the total pressure at E > 5 keV, the rest residing below that range, resulting in a beta (particle/magnetic pressure) always > 1, typically > 10. (b) The width of the HS in the direction of V1 is ˜~ 30 AU, but is thought to be larger (40-70 AU) in the southern ecliptic where V2 currently travels. (c) The ENA intensities at E > 5 keV exhibit a correlation with the solar cycle (SC) over the period 2003 to 2014, with minimum intensities in the anti-nose direction observed ˜~ 1.5 yrs after solar minimum followed by a recovery thereafter, and (d) The in situ ion measurements at V2 within the HS also show a similar SC dependence. The totality of the observations, together with the near-contemporaneous variability in intensities of ions in situ in the HS and ENA in the inner heliosphere suggests that the source of such emissions at E > 5 keV must reside in the HS. These observations constrain the shape of the HS and suggest configurations that are at some variance with current models.

  5. Structural and photoluminescence investigation on the hot-wire assisted plasma enhanced chemical vapor deposition growth silicon nanowires

    International Nuclear Information System (INIS)

    Chong, Su Kong; Goh, Boon Tong; Wong, Yuen-Yee; Nguyen, Hong-Quan; Do, Hien; Ahmad, Ishaq; Aspanut, Zarina; Muhamad, Muhamad Rasat; Dee, Chang Fu; Rahman, Saadah Abdul

    2012-01-01

    High density of silicon nanowires (SiNWs) were synthesized by a hot-wire assisted plasma enhanced chemical vapor deposition technique. The structural and optical properties of the as-grown SiNWs prepared at different rf power of 40 and 80 W were analyzed in this study. The SiNWs prepared at rf power of 40 W exhibited highly crystalline structure with a high crystal volume fraction, X C of ∼82% and are surrounded by a thin layer of SiO x . The NWs show high absorption in the high energy region (E>1.8 eV) and strong photoluminescence at 1.73 to 2.05 eV (red–orange region) with a weak shoulder at 1.65 to 1.73 eV (near IR region). An increase in rf power to 80 W reduced the X C to ∼65% and led to the formation of nanocrystalline Si structures with a crystallite size of <4 nm within the SiNWs. These NWs are covered by a mixture of uncatalyzed amorphous Si layer. The SiNWs prepared at 80 W exhibited a high optical absorption ability above 99% in the broadband range between 220 and ∼1500 nm and red emission between 1.65 and 1.95 eV. The interesting light absorption and photoluminescence properties from both SiNWs are discussed in the text. - Highlights: ► Growth of random oriented silicon nanowires using hot-wire assisted plasma enhanced chemical vapor deposition. ► Increase in rf power reduces the crystallinity of silicon nanowires. ► High density and nanocrystalline structure in silicon nanowires significant enhance the near IR light absorption. ► Oxide defects and silicon nanocrystallites in silicon nanowires reveal photoluminescence in red–orange and red regions.

  6. Study of the magnetic compressional mode in a hot particle plasma

    International Nuclear Information System (INIS)

    Stotler, D.P.; Berk, H.L.; Engquist, M.G.

    1985-09-01

    The integral equation for the magnetic compressional mode, accounting for geometrical effects along the field line and using the eikonal approximation across the field line, is solved numerically for the eigenvalues and eigenfunctions. These results reproduce the analytic estimates when there is strong drift reversal. For typical EBT-S parameters, instability is observed for all pressure scale lengths just below those needed for drift reversal, i.e., vertical bar Rpar. delta(P/sub c/ + P/sub perpendicular h/)/2B 2 par. deltar vertical bar > 1 (where P is the particle pressure, c and h refer to cold and hot components, B is the midplane magnetic field, and R is the midplane radius of curvature). If larger core densities are present, a wave-particle resonance arises when the particle drifts are not reversed, causing instability up to much larger pressure scale lengths. Stability for all values of the ratio of hot electron density to core density is obtained with vertical bar Rpar. deltaP/sub c//B 2 par. deltar vertical bar > 1 + P/sub parallel h//P/sub perpendicular h/

  7. Electromagnetic waves in a layer of hot plasma with negligible collisions

    International Nuclear Information System (INIS)

    Vacca, J.

    1975-01-01

    The propagation of electromagnetic waves in a plane plasma layer in a uniform magnetic field has been studied, following the hypothesis of immoble ions and negligible ion-electron interactions. Waves dependent on one spatial coordinate are considered and all the parameters of the problems are considered. The cases of perpendicular and parallel magnetic field are treated

  8. On the equivalence of convergent kinetic equations for hot dilute plasmas: Generating functions for collision brackets

    NARCIS (Netherlands)

    Cohen, J.S.; Suttorp, L.G.

    1982-01-01

    The generating functions for the collision brackets associated with two alternative convergent kinetic equations are derived for small values of the plasma parameter. It is shown that the first few terms in the asymptotic expansions of these generating functions are identical. Consequently, both

  9. Generation and confinement of hot ions and electrons in a reversed-field pinch plasma

    International Nuclear Information System (INIS)

    Chapman, B E; Almagri, A F; Anderson, J K; Caspary, K J; Clayton, D J; Den Hartog, D J; Ennis, D A; Fiksel, G; Gangadhara, S; Kumar, S; Magee, R M; O'Connell, R; Parke, E; Prager, S C; Reusch, J A; Sarff, J S; Stephens, H D; Brower, D L; Ding, W X; Craig, D

    2010-01-01

    By manipulating magnetic reconnection in Madison Symmetric Torus (MST) discharges, we have generated and confined for the first time a reversed-field pinch (RFP) plasma with an ion temperature >1 keV and an electron temperature of 2 keV. This is achieved at a toroidal plasma current of about 0.5 MA, approaching MST's present maximum. The manipulation begins with intensification of discrete magnetic reconnection events, causing the ion temperature to increase to several kiloelectronvolts. The reconnection is then quickly suppressed with inductive current profile control, leading to capture of a portion of the added ion heat with improved ion energy confinement. Electron energy confinement is simultaneously improved, leading to a rapid ohmically driven increase in the electron temperature. A steep electron temperature gradient emerges in the outer region of the plasma, with a local thermal diffusivity of about 2 m 2 s -1 . The global energy confinement time reaches 12 ms, the largest value yet achieved in the RFP and which is roughly comparable to the H-mode scaling prediction for a tokamak with the same plasma current, density, heating power, size and shape.

  10. Hot spots effect on infrared spectral luminance emitted by carbon under plasma particles impact

    International Nuclear Information System (INIS)

    Delchambre, E.; Reichle, R.; Mitteau, R.; Missirlian, M.; Gobin, R.

    2004-01-01

    During the last Tore Supra campaigns, an anomalous deformation in the near infrared spectrum of radiation has been observed on neutralizer underneath the Toroidal Pumped Limiter (TPL) on which we observed the growth of carbon layer. The consequence is the difficulty to asses the surface temperature of the components and the power loaded. Laboratory experiment has been performed, using an Electron Cyclotron Resonance (ECR) ions source, to reproduce, characterize and explain this phenomenon. The luminance emitted by Carbon Fibre Composite (CFC) and pyrolytic graphite, have been observed under 95 keV of H+ bombardments. The amplitude of the deformation was found to depend on the type of material used and the power density of the incident power loaded. This paper presents the possible hot spots explanation. The experimental luminance deformation is reproduced and these results are validated using a thermal model of dust in radiate equilibrium. (authors)

  11. Numerical fluid solutions for nonlocal electron transport in hot plasmas: Equivalent diffusion versus nonlocal source

    International Nuclear Information System (INIS)

    Colombant, Denis; Manheimer, Wallace

    2010-01-01

    Flux limitation and preheat are important processes in electron transport occurring in laser produced plasmas. The proper calculation of both of these has been a subject receiving much attention over the entire lifetime of the laser fusion project. Where nonlocal transport (instead of simple single flux limit) has been modeled, it has always been with what we denote the equivalent diffusion solution, namely treating the transport as only a diffusion process. We introduce here a new approach called the nonlocal source solution and show it is numerically viable for laser produced plasmas. It turns out that the equivalent diffusion solution generally underestimates preheat. Furthermore, the advance of the temperature front, and especially the preheat, can be held up by artificial 'thermal barriers'. The nonlocal source method of solution, on the other hand more accurately describes preheat and can stably calculate the solution for the temperature even if the heat flux is up the gradient.

  12. Contribution to the modelling and multi-scale numerical simulation of kinetic electron transport in hot plasma

    International Nuclear Information System (INIS)

    Mallet, J.

    2012-01-01

    This research thesis stands at the crossroad of plasma physics, numerical analysis and applied mathematics. After an introduction presenting the problematic and previous works, the author recalls some basis of classical kinetic models for plasma physics (collisionless kinetic theory and Vlasov equation, collisional kinetic theory with the non-relativistic Maxwell-Fokker-Plansk system) and describes the fundamental properties of the collision operators such as conservation laws, entropy dissipation, and so on. He reports the improvement of a deterministic numerical method to solve the non-relativistic Vlasov-Maxwell system coupled with Fokker-Planck-Landau type operators. The efficiency of each high order scheme is compared. The evolution of the hot spot is studied in the case of thermonuclear reactions in the centre of the pellet in a weakly collisional regime. The author focuses on the simulation of the kinetic electron collisional transport in inertial confinement fusion (ICF) between the laser absorption zone and the ablation front. A new approach is then introduced to reduce the huge computation time obtained with kinetic models. In a last chapter, the kinetic continuous equation in spherical domain is described and a new model is chosen for collisions in order to preserve collision properties

  13. First results from the hot plasma instrument PROMICS-3 on Interball-2

    Directory of Open Access Journals (Sweden)

    I. Sandahl

    1999-05-01

    Full Text Available The PROMICS-3 instrument on Interball-2 is nominally identical to the PROMICS-3 instrument on Interball-1. It performs three-dimensional measurements of ions in the energy range 4 eV-70 keV with mass separation and of electrons in the energy range 300 eV-35 keV. Interball-2 was launched on August 29, 1996, into an orbit with the same inclination as that of Interball-1, 63°, but with apogee at 20 000 km. In this study the PROMICS-3 instrument on Interball-2 is briefly described and examples of the first results are presented. Firstly, we report observations of upward moving molecular ions with energies of up to 700 eV at the poleward edge of the auroral oval. Previous observations of outflowing molecular ions have been at lower altitudes and lower energies. Secondly, we show observations of dawnside magnetosheath plasma injections. Using conjugate data from both PROMICS-3 instruments we have found dispersion structures above the morningside auroral oval, which occurred simultaneously with isolated "pockets" of magnetosheath plasma at a distance of XGSM=-14 to -12 RE, which had been injected into the inner part of the low-latitude boundary layer. These isolated plasma structures were sites of strong field-aligned currents and are proposed to be the magnetospheric counterparts of the dispersion structures.Key words. Magnetospheric physics (auroral phenomena; magnetotail boundary layers; instruments and techniques.

  14. Density and field effect on electron-ion collision cross-sections in hot dense plasma

    International Nuclear Information System (INIS)

    Gaufridy de Dortan, F. de

    2003-03-01

    Collisional excitation cross-sections are essential for the modeling of the properties of non equilibrium plasmas. There has been a lot of work on electron impact excitation of isolated ions, but in dense plasmas, neighboring particles are expected to widely disturb these electron transitions in atoms. Plasma modeling through a radially perturbed potential has already been done but is not satisfactory as it does not account for levels degeneracy breaking and its consequences. Introduction of a quasistatic electric micro-field of neighboring ions allows us to break spherical symmetry. Our original theoretical study has given birth to a numerical code that accurately computes collisional strengths and rates (in the Distorted Waves approach) in atoms submitted to a realistic micro-field. Hydrogen- and helium-like aluminium is studied. Stark mixing widely increases rates of transitions from high l levels and forbidden transitions are field-enhanced by many orders of magnitude until they reach allowed ones. Eventually, we conduct an elementary stationary collisional radiative study to investigate field-enhancement effects on corresponding line shapes. In cases we study (aluminium, hydrogen- and helium-like) we find a relatively weak increase of K-shell line broadening

  15. Super-transition-arrays: A model for the spectral analysis of hot, dense plasma

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.; Shvarts, D.; Zigler, A.

    1989-01-01

    A method is presented for calculating the bound-bound emission from a local thermodynamic equilibrium plasma. The total transition array of a specific single-electron transition, including all possible contributing configurations, is described by only a small number of super-transition-arrays (STA's). Exact analytic expressions are given for the first few moments of an STA. The method is shown to interpolate smoothly between the average-atom (AA) results and the detailed configuration accounting that underlies the unresolved transition array (UTA) method. Each STA is calculated in its own, optimized potential, and the model achieves rapid convergence in the number of STA's included. Comparisons of predicted STA spectra with the results of the AA and UTA methods are presented. It is shown that under certain plasma conditions the contributions of low-probability transitions can accumulate into an important component of the emission. In these cases, detailed configuration accounting is impractical. On the other hand, the detailed structure of the spectrum under such conditions is not described by the AA method. The application of the STA method to laser-produced plasma experiments is discussed

  16. Acoustic solitary waves in dusty and/or multi-ion plasmas with cold, adiabatic, and hot constituents

    International Nuclear Information System (INIS)

    Verheest, Frank; Hellberg, Manfred A.; Kourakis, Ioannis

    2008-01-01

    Large nonlinear acoustic waves are discussed in a four-component plasma, made up of two superhot isothermal species, and two species with lower thermal velocities, being, respectively, adiabatic and cold. First a model is considered in which the isothermal species are electrons and ions, while the cooler species are positive and/or negative dust. Using a Sagdeev pseudopotential formalism, large dust-acoustic structures have been studied in a systematic way, to delimit the compositional parameter space in which they can be found, without restrictions on the charges and masses of the dust species and their charge signs. Solitary waves can only occur for nonlinear structure velocities smaller than the adiabatic dust thermal velocity, leading to a novel dust-acoustic-like mode based on the interplay between the two dust species. If the cold and adiabatic dust are oppositely charged, only solitary waves exist, having the polarity of the cold dust, their parameter range being limited by infinite compression of the cold dust. However, when the charges of the cold and adiabatic species have the same sign, solitary structures are limited for increasing Mach numbers successively by infinite cold dust compression, by encountering the adiabatic dust sonic point, and by the occurrence of double layers. The latter have, for smaller Mach numbers, the same polarity as the charged dust, but switch at the high Mach number end to the opposite polarity. Typical Sagdeev pseudopotentials and solitary wave profiles have been presented. Finally, the analysis has nowhere used the assumption that the dust would be much more massive than the ions and hence, one or both dust species can easily be replaced by positive and/or negative ions and the conclusions will apply to that plasma model equally well. This would cover a number of different scenarios, such as, for example, very hot electrons and ions, together with a mix of adiabatic ions and dust (of either polarity) or a very hot electron

  17. Neutral atom analyzers for diagnosing hot plasmas: A review of research at the ioffe physicotechnical institute

    International Nuclear Information System (INIS)

    Kislyakov, A. I.; Petrov, M. P.

    2009-01-01

    Research on neutral particle diagnostics of thermonuclear plasmas that has been carried out in recent years at the Ioffe Physicotechnical Institute of the Russian Academy of Sciences (St. Petersburg, Russia) is reviewed. Work on the creation and improvement of neutral atom analyzers was done in two directions: for potential applications (in particular, on the International Thermonuclear Experimental Reactor, which is now under construction at Cadarache in France) and for investigation of the ion plasma component in various devices (in particular, in the largest tokamaks, such as JET, TFTR, and JT-60). Neutral atom analyzers are the main tool for studying the behavior of hydrogen ions and isotopes in magnetic confinement systems. They make it possible to determine energy spectra, to perform the isotope analysis of atom fluxes from the plasma, to measure the absolute intensity of the fluxes, and to record how these parameters vary with time. A comparative description of the analyzers developed in recent years at the Ioffe Institute is given. These are ACORD-12/24 analyzers for recording 0.2-100-keV hydrogen and deuterium atoms with a tunable range of simultaneously measured energies, CNPA compact analyzers for a fixed energy gain in the ranges 80-1000 eV and 0.8-100 keV, an ISEP analyzer for simultaneously recording the atoms of all the three hydrogen isotopes (H, D, and T) in the energy range 5-700 keV, and GEMMA analyzers for recording atom fluxes of hydrogen and helium isotopes in the range 0.1-4 MeV. The scintillating detectors of the ISEP and GEMMA analyzers have a lowered sensitivity to neutrons and thus can operate without additional shielding in neutron fields of up to 10 9 n/(cm 2 s). These two types of analyzers, intended to operate under deuterium-tritium plasma conditions, are prototypes of atom analyzers created at the Ioffe Institute for use in the International Thermonuclear Experimental Reactor. With these analyzers, a number of new results have been

  18. Hot radial pressing: An alternative technique for the manufacturing of plasma-facing components

    International Nuclear Information System (INIS)

    Visca, E.; Libera, S.; Mancini, A.; Mazzone, G.; Pizzuto, A.; Testani, C.

    2005-01-01

    The Hot radial pressing (HRP) manufacturing technique is based on the radial diffusion bonding principle performed between the cooling tube and the armour tile. The bonding is achieved by pressurizing the cooling tube while the joining interface is kept at the vacuum and temperature conditions. This technique has been used for the manufacturing of relevant mock-ups of the ITER divertor vertical target. Tungsten monoblock mock-ups were successfully tested to high heat flux thermal fatigue (20 MW/m 2 of absorbed heat flux for 1000 cycles). After these good results the activity is now focused on the developing of a manufacturing process suitable also for the CFC monoblock mock-ups. A FE calculation was performed to investigate the stress involved in the CFC tiles during the process and to avoid the CFC fracture. The results obtained by the FE calculation and by the test performed in air simulating a HRP manufacturing process for a CFC monoblock mock-ups is reported in the paper

  19. Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe

    Directory of Open Access Journals (Sweden)

    Escobedo Miguel A.

    2017-01-01

    Full Text Available There are many interesting problems in heavy-ion collisions and in cosmology that involve the interaction of a heavy particle with a medium. An example is the dissociation of heavy quarkonium seen in heavy-ion collisions. This was believed to be due to the screening of chromoelectric fields that prevents the heavy quarks from binding, however in the last years several perturbative and lattice computations have pointed out to the possibility that dissociation is due to the finite lifetime of a quarkonium state inside the medium. Regarding cosmology, the study of the behavior of heavy Majorana neutrinos in a hot medium is important to understand if this model can explain the origin of dark matter and the baryon asymmetry. A very convenient way of studying these problems is with the use of non-relativistic effective field theories (EFTs, this allows to make the computations in a more systematic way by defining a more suitable power counting and making it more difficult to miss necessary resummations. In this proceedings I will review the most important results obtained by applying the EFT formalism to the study of quarkonium suppression and Majorana neutrinos, I will also discuss how combining an EFT called potential non-relativistic QCD (pNRQCD with concepts coming from the field of open quantum systems it is possible to understand how the population of the different quarkonium states evolve with time inside a thermal medium.

  20. Evolution of particle clouds around ablating pellets in magnetically confined hot plasmas

    International Nuclear Information System (INIS)

    Lengyel, L.L.

    1991-08-01

    Cryogenic hydrogen isotope pellets are being currently used for introducing fuel particles into the palsma interior in magnetic confinement fusion experiments. The spatial and time evolution of the initially low-temperature high-density particle clouds forming around such pellets are considered here, with particular attention being given to such physical processes as heating of the cloud by the energy fluxes carried by incident plasma particles, gasdynamic expansion with j vectorxB vector - produced deceleration in the transverse direction, finite-rate ionization and recombination processes, and magnetic field convection and diffusion. While the dynamic processes associated with the ionization and radial confinement processes are characterized by the relatively short Alfven time scale (μs range), the subsequent phase of axial expansion is associated with a notably larger hadrodynamic time scale defined by the heat input and gasdynamic expansion rates (ms range). Data stemming from experimental measurements in toroidal confinement machines are compared with results of model calculations. Some similarities with space plasmas are briefly discussed. (orig.)

  1. Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas

    International Nuclear Information System (INIS)

    Schaefer, Thomas; Teaney, Derek

    2009-01-01

    Shear viscosity is a measure of the amount of dissipation in a simple fluid. In kinetic theory shear viscosity is related to the rate of momentum transport by quasi-particles, and the uncertainty relation suggests that the ratio of shear viscosity η to entropy density s in units of ℎ/k B is bounded by a constant. Here, ℎ is Planck's constant and k B is Boltzmann's constant. A specific bound has been proposed on the basis of string theory where, for a large class of theories, one can show that η/s ≥ ℎ/(4πk B ). We will refer to a fluid that saturates the string theory bound as a perfect fluid. In this review we summarize theoretical and experimental information on the properties of the three main classes of quantum fluids that are known to have values of η/s that are smaller than ℎ/k B . These fluids are strongly coupled Bose fluids, in particular liquid helium, strongly correlated ultracold Fermi gases and the quark gluon plasma. We discuss the main theoretical approaches to transport properties of these fluids: kinetic theory, numerical simulations based on linear response theory and holographic dualities. We also summarize the experimental situation, in particular with regard to the observation of hydrodynamic behavior in ultracold Fermi gases and the quark gluon plasma.

  2. Nonequilibrium phenomena and determination of plasma parameters in the hot core of the cathode region in free-burning arc discharges

    International Nuclear Information System (INIS)

    Kuehn, Gerrit; Kock, Manfred

    2007-01-01

    We present spectroscopic measurements of plasma parameters (electron density n e , electron temperature T e , gas temperature T g , underpopulation factor b) in the hot-core region in front of the cathode of a low-current, free-burning arc discharge in argon under atmospheric pressure. The discharge is operated in the hot-core mode, creating a hot cathode region with plasma parameters similar to high-current arcs in spite of the fact that we use comparatively low currents (less than 20 A). We use continuum emission and (optically thin) line emission to determine n e and T e . We apply relaxation measurements based on a power-interruption technique to investigate deviations from local thermodynamic equilibrium (LTE). These measurements let us determine the gas temperature T g . All measurements are performed side-on with charge-coupled-device cameras as detectors, so that all measured plasma parameters are spatially resolved after an Abel inversion. This yields the first ever spatially resolved observation of the non-LTE phenomena of the hot core in the near-cathode region of free-burning arcs. The results only partly coincide with previously published predictions and measurements in the literature

  3. Nonlocal analyses of electrostatic and electromagnetic waves in hot, magnetized, nonuniform, bounded plasmas

    International Nuclear Information System (INIS)

    Sauter, O.

    1992-05-01

    Heating of tokamak plasmas up to temperatures of the order of 10 keV (∼10 8 o K) is one of the main subjects in plasma physics research. Much experimental and theoretical effort has been devoted to the improvement of the heating efficiency and to the understanding of the beam-particle or wave-particle interactions. We have studied the latter subject. In present day experiments, the temperature of the particles is very high. Increasing numbers of experiments use heating scenarii at high harmonic frequencies. Because these cases can no longer be studied using a local model, we have developed a 'nonlocal' model which is not limited by the size of the Larmor radii nor by the harmonic considered. This model is based on the global wave approach and therefore can treat a variety of problems. Nevertheless, we have limited our work to uni-dimensional geometry, Maxwellian equilibrium distribution functions and slowly-varying equilibrium magnetic field. We have also neglected k y in the conductivity tensor, where y is the direction normal to the direction of the inhomogeneity and to the magnetostatic field. Starting from the linearized Vlasov-Maxwell equations, we have derived the equations in the Fourier and the configuration spaces. We have also derived a formulation of the local power absorption allowing us to determine the profile of absorption of the wave by the particles. The equations are solved numerically using the finite element method. We have developed two codes, SEAL and SEMAL, which calculate the wave field in the electrostatic and electromagnetic cases, respectively. These codes have been tested. We have shown that the local model was inadequate and have studied in more detail the effect of temperature and the strong influence of the alpha particle concentration. (author) figs., tabs., 91 refs

  4. Applied string theory, hot and cold. A holographic view on quark-gluon plasma and superfluids

    Energy Technology Data Exchange (ETDEWEB)

    Samberg, Andreas Wilhelm

    2015-12-21

    This thesis deals with applications of gauge/gravity duality to strong-coupling phenomena in the quark-gluon plasma and far-from-equilibrium superfluids. In a first part we search for model-independent (universal) behavior in various non-Abelian gauge-theory plasmas at finite temperature and chemical potential. We employ the holographic duals of strongly coupled N=4 supersymmetric Yang-Mills theory and three one-parameter families of non-conformal deformations thereof, two of which solve the equations of motion of a five-dimensional Einstein-Maxwell-scalar action. We study the free energy and associated thermodynamic quantities of heavy quarks and bound quark-anti-quark (Q anti Q) pairs as well as the Q anti Q binding energy and the running coupling. We find qualitative agreement with available lattice QCD data. Moreover, we show that several observables exhibit universal behavior for all values of the chemical potential. In a second part we investigate the real-time dynamics of a bosonic superfluid in two spatial dimensions after initial quenches that take the system to far-from-equilibrium states characterized by many topological vortex defects in association with quantum turbulence. To this end we numerically solve the full equations of motion of the holographically dual Abelian Higgs model on four-dimensional anti-de Sitter space. We observe a universal non-equilibrium late-time regime characterized by power-law behavior in a two-point correlation function and in characteristic length scales, which we interpret as a non-thermal fixed point.

  5. Applied string theory, hot and cold. A holographic view on quark-gluon plasma and superfluids

    International Nuclear Information System (INIS)

    Samberg, Andreas Wilhelm

    2015-01-01

    This thesis deals with applications of gauge/gravity duality to strong-coupling phenomena in the quark-gluon plasma and far-from-equilibrium superfluids. In a first part we search for model-independent (universal) behavior in various non-Abelian gauge-theory plasmas at finite temperature and chemical potential. We employ the holographic duals of strongly coupled N=4 supersymmetric Yang-Mills theory and three one-parameter families of non-conformal deformations thereof, two of which solve the equations of motion of a five-dimensional Einstein-Maxwell-scalar action. We study the free energy and associated thermodynamic quantities of heavy quarks and bound quark-anti-quark (Q anti Q) pairs as well as the Q anti Q binding energy and the running coupling. We find qualitative agreement with available lattice QCD data. Moreover, we show that several observables exhibit universal behavior for all values of the chemical potential. In a second part we investigate the real-time dynamics of a bosonic superfluid in two spatial dimensions after initial quenches that take the system to far-from-equilibrium states characterized by many topological vortex defects in association with quantum turbulence. To this end we numerically solve the full equations of motion of the holographically dual Abelian Higgs model on four-dimensional anti-de Sitter space. We observe a universal non-equilibrium late-time regime characterized by power-law behavior in a two-point correlation function and in characteristic length scales, which we interpret as a non-thermal fixed point.

  6. Plasma upflows and microwave emission in hot supra-arcade structure associated with AN M1.6 limb flare

    International Nuclear Information System (INIS)

    Kim, S.; Shibasaki, K.; Bain, H.-M.; Cho, K.-S.

    2014-01-01

    We have investigated a supra-arcade structure associated with an M1.6 flare, which occurred on the south-east limb on 2010 November 4. It is observed in EUV with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, microwaves at 17 and 34 GHz with the Nobeyama Radioheliograph (NoRH), and soft X-rays of 8-20 keV with RHESSI. Interestingly, we found exceptional properties of the supra-arcade thermal plasma from the AIA 131 Å and the NoRH: (1) plasma upflows along large coronal loops and (2) enhancing microwave emission. RHESSI detected two soft X-ray sources, a broad one in the middle of the supra-arcade structure and a bright one just above the flare-arcade. We estimated the number density and thermal energy for these two source regions during the decay phase of the flare. In the supra-arcade source, we found that there were increases of the thermal energy and the density at the early and last stages, respectively. On the contrary, the density and thermal energy of the source on the top of the flare-arcade decreases throughout. The observed upflows imply that there is continuous energy supply into the supra-arcade structure from below during the decay phase of the flare. It is hard to explain by the standard flare model in which the energy release site is located high in the corona. Thus, we suggest that a potential candidate of the energy source for the hot supra-arcade structure is the flare-arcade, which has exhibited a predominant emission throughout.

  7. Particle and power balances of hot-filament discharge plasmas in a multi-dipole device in the presence of a positively biased electrode

    International Nuclear Information System (INIS)

    Cho, M.H.; Hershkowitz, N.; Intrator, T.

    1989-01-01

    The plasma potential is typically assumed to float above an anode potential by a few times of an electron temperature (T /e). The difference between the plasma potential and the anode potential can be estimated by considering the particle production and loss. However, it has been reported experimentally that the plasma potential of a steady state plasma can be more negative than the anode potential with a potential dip (-- T /e) in front of the anode. This paper describes particle and power balances to estimate the bulk plasma potential of a hot-filament discharge plasma produced in a multi-dipole plasma device. The bulk plasma potential dependence on positive DC bias applied to an anode is analyzed, and the predicted characteristics of the plasma potential dependence are compared to the experiment. A steady state potential dip in front of an anode is experimentally observed using emissive probes with the zero emission inflection point method, and the conditions for the potential dip formation are derived

  8. Hot Corrosion of Yttrium Stabilized Zirconia Coatings Deposited by Air Plasma Spray on a Nickel-Based Superalloy

    Science.gov (United States)

    Vallejo, N. Diaz; Sanchez, O.; Caicedo, J. C.; Aperador, W.; Zambrano, G.

    In this research, the electrochemical impedance spectroscopy (EIS) and Tafel analysis were utilized to study the hot corrosion performance at 700∘C of air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) coatings with a NiCrAlY bond coat grown by high velocity oxygen fuel spraying (HVOF), deposited on an INCONEL 625 substrate, in contact with corrosive solids salts as vanadium pentoxide V2O5 and sodium sulfate Na2SO4. The EIS data were interpreted based on proposed equivalent electrical circuits using a suitable fitting procedure performed with Echem AnalystTM Software. Phase transformations and microstructural development were examined using X-ray diffraction (XRD), with Rietveld refinement for quantitative phase analysis, scanning electron microscopy (SEM) was used to determinate the coating morphology and corrosion products. The XRD analysis indicated that the reaction between sodium vanadate (NaVO3) and yttrium oxide (Y2O3) produces yttrium vanadate (YVO4) and leads to the transformation from tetragonal to monoclinic zirconia phase.

  9. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture

    International Nuclear Information System (INIS)

    Yuan Jianmin

    2002-01-01

    An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H 2 O), and CO 2 at a few temperatures and densities are presented

  10. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.

    Science.gov (United States)

    Yuan, Jianmin

    2002-10-01

    An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.

  11. Effect of low-melting point phases on the microstructure and properties of spark plasma sintered and hot deformed Nd-Fe-B alloys

    Science.gov (United States)

    Zhang, Li; Wang, Meiyu; Yan, Xueliang; Lin, Ye; Shield, Jeffrey

    2018-04-01

    The effect of adding a low melting point Pr-Cu-Al alloy during spark plasma sintering of melt-spun Nd-Fe-B ribbons is investigated. Regions of coarse grains were reduced and overall grain refinement was observed after the addition of Pr68Cu25Al7, leading to an enhancement of coercivity from 12.7 kOe to 20.4 kOe. Hot deformation of the samples in the spark plasma sintering system resulted in the formation of platelet-like grains, producing crystallographic alignment and magnetic anisotropy. The hot deformation process improved the remanence and energy product but reduced the coercivity. The decrease of coercivity resulted from grain growth and aggregation of Pr and Nd elements at triple-junction phases.

  12. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    International Nuclear Information System (INIS)

    Zhang, Shen; Kang, Wei; Wang, Hongwei; Zhang, Ping; He, X. T.

    2016-01-01

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  13. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shen; Kang, Wei, E-mail: weikang@pku.edu.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Wang, Hongwei [College of Engineering, Peking University, Beijing 100871 (China); Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); He, X. T., E-mail: xthe@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2016-04-15

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  14. Two-dimensional simulations of laser–plasma interaction and hot electron generation in the context of shock-ignition research

    Czech Academy of Sciences Publication Activity Database

    Klimo, O.; Psikal, J.; Tikhonchuk, V.T.; Weber, Stefan A.

    2014-01-01

    Roč. 56, č. 5 (2014), 055010 ISSN 0741-3335 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : laser plasma interaction * stimulated Raman scattering * hot electrons * particle-in-cell simulation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.186, year: 2014

  15. Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering

    International Nuclear Information System (INIS)

    Mussi, A.; Granger, G. Bernard; Addad, A.; Benameur, N.; Beclin, F.; Bataille, A.

    2009-01-01

    The distribution of inversion defects of Al was investigated in dense magnesium-aluminate spinel elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering. This study was conducted by energy electron loss spectroscopy analyses and more particularly by energy loss near edge structure investigations of the Al-L 2,3 edge. Several aspects are discussed with the purpose of understanding why charged defects dispersal reveals a special configuration.

  16. Hot deformed anisotropic nanocrystalline NdFeB based magnets prepared from spark plasma sintered melt spun powders

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y.H.; Huang, Y.L. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2013-09-01

    Highlights: • Microstructure evolution and its influence on the magnetic properties were investigated. • The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. • The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. • Magnetic properties and temperature coefficient of coercivity are indeed very promising without heavy rare earth elements. -- Abstract: Anisotropic magnets were prepared by spark plasma sintering (SPS) followed by hot deformation (HD) using melt-spun powders as the starting material. Good magnetic properties with the remanence J{sub r} > 1.32 T and maximum of energy product (BH){sub max} > 303 kJ/m{sup 3} have been obtained. The microstructure evolution during HD and its influence on the magnetic properties were investigated. The fine grain zone and coarse grain zone formed in the SPS showed different deformation behaviors. The microstructure also had an important effect on the temperature coefficients of coercivity. A strong domain-wall pinning model was valid to interpret the coercivity mechanism of the HDed magnets. The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. The polarization characteristics of HDed magnets were demonstrated. It was found out that the HDed magnets had better corrosion resistance than the counterpart sintered magnet.

  17. Microstructure and property evolution of isotropic and anisotropic NdFeB magnets fabricated from nanocrystalline ribbons by spark plasma sintering and hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z W; Huang, H Y; Yu, H Y; Zhong, X C; Zeng, D C [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X X; Zhu, J, E-mail: zwliu@scut.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2011-01-19

    Isotropic and anisotropic NdFeB magnets were synthesized by spark plasma sintering (SPS) and SPS+HD (hot deformation), respectively, using melt-spun ribbons as the starting materials. Spark plasma sintered magnets sintered at low temperatures (<700 {sup 0}C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, due to the local high-temperature field caused by the spark plasma discharge, the grain growth occurred at the initial particle surfaces and the coarse grain zones formed in the vicinity of the particle boundaries. Since the interior of the particles maintained the fine grain structure, a distinct two-zone structure was formed in the spark plasma sintered magnets. The SPS temperature and pressure have important effects on the widths of coarse and fine grain zones, as well as the grain sizes in two zones. The changes in grain structure led to variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. An anisotropic magnet with a maximum energy product of {approx}30 MG Oe was produced by the SPS+HD process. HD at 750 {sup 0}C did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. Intergranular exchange coupling was demonstrated in the spark plasma sintered magnets and was enhanced by the HD process, which reduced the coercivity. Good temperature stability was manifested by low temperature coefficients of remanence and coercivity. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes.

  18. Composition of hot ions /0.1-16 keV/e/ as observed by the GEOS and ISEE mass spectrometers and inferences for the origin and circulation of magnetospheric plasmas

    Science.gov (United States)

    Balsiger, H.

    1981-01-01

    The composition of hot magnetospheric plasma through different regions of the magnetosphere is described on the basis of mass spectrometer measurements by the GEOS 1, GEOS 2, and ISEE-1 spacecraft. Coordinated composition measurements on the different spacecraft also provide information on the spatial and temporal characteristics of the plasma during storms. Data on ion origins are also provided.

  19. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    International Nuclear Information System (INIS)

    Lockrem, L.L.; Owens, J.W.; Seidel, C.M.

    2009-01-01

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method

  20. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    International Nuclear Information System (INIS)

    Seidel, C.M.; Jain, J.; Owens, J.W.

    2009-01-01

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method

  1. The effects of low levels of dietary trace minerals on the plasma levels, faecal excretion health and performance of pigs in a hot African climate

    Directory of Open Access Journals (Sweden)

    M.H. Boma

    2009-09-01

    Full Text Available The present study was performed in order to evaluate the effects of lower than usual industry levels of dietary trace minerals on plasma levels, faecal excretion, performance, mortality and morbidity in growing-finishing pigs in a hot African climate. Group 1 (n =100 pigs received a diet with common industry levels of trace minerals. Group 2 (n =100 pigs received reduced dietary trace mineral levels but were fed the same basic diet as Group 1. Mortality, morbidity, pig performance and carcass measurements were evaluated. Two pigs in Group 1 and three pigs in Group 2 died. Thirteen pigs in Group 1 and 27 pigs in Group 2 were medically treated (P 0.05 by the dietary levels of these trace minerals. Plasma trace mineral concentrations were not affected by the dietary treatment.

  2. Experimental investigation of the interaction of an intense laser beam with a long and hot plasma in the context of shock ignition

    International Nuclear Information System (INIS)

    Goyon, Clement

    2014-01-01

    Shock ignition is an alternative direct-drive scheme for inertial fusion that consists in two steps. The first one is a several nanoseconds long compression with low intensity beams. The second one is a several hundred of picoseconds stage using high intensity beams to create a converging shock leading to ignition. During the second phase, the laser beam goes through a long and hot under-critical plasma. However, the coupling of this intense pulse with the coronal plasma has not been much studied experimentally or numerically. Then, the energy absorbed as well as the role of parametric instabilities regarding reflected or transmitted intensity cannot be predicted. In this PhD dissertation, we describe an experimental study of an intense laser pulse between 2.10 15 W/cm 2 and 2.10 16 W/cm 2 interacting with millimetric plasma heated close to one keV. We begin with a theoretical description of the interaction conditions in the coronal plasma. Brillouin scattering is in strongly coupled regime, Raman instability is kinetic regime and laser intensity is above ponderomotive filamentation threshold. We recreate these interaction conditions experimentally by means of pre-heated targets which are foams or thin plastic foils. Then, we present the first measurements of time resolved backscattered spectra from the smoothed picosecond beam as well as transmitted intensity distribution through the plasma. We find that Brillouin instability can be responsible for up to 60% reflectivity in plasmas with electronic density close to critical while Raman reflectivity stays at low levels. Transmitted intensity distribution is smoothed by the propagation and its diameter increases compared to the laser focal spot in vacuum. Finally, we discuss interaction measurements in nanosecond regime to highlight the fact that parametric instabilities reduction is essential for shock ignition to be a successful scheme. (author) [fr

  3. X-ray spectroscopic characterization of laser produced hot dense plasmas; Caracterisation par spectroscopie X de plasmas chauds et denses crees par lasers de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Kontogiannopoulos, N

    2007-12-15

    In this work we performed experiments of emission and absorption spectroscopy of laser produced plasmas, to provide well characterized spectral data which permit to benchmark atomic physics codes. More precisely, we produced xenon and krypton plasmas in NLTE (non local thermodynamic equilibrium) conditions and studied their emission spectra. In a second experiment, we characterized the absorption spectra of zinc sulfide and aluminium plasmas in LTE (local thermodynamic equilibrium) conditions.The first two chapters give an outline of the theory involved in the study of the emission and absorption plasma spectroscopy. Chapter 1 describes the different atomic processes occurring in a plasma. The LTE and the NLTE statistics ruling the equilibrium of the atomic processes are presented. Then, we give a brief description of the different codes of plasma atomic physics used in the analysis of our experimental data, namely HULLAC, SCO and TRANSPEC/AVERROES. In Chapter 2 the macroscopic theory of the radiation transport through a plasma is given. We describe also the self-similar model of Basko and the view factor approach, which permits us to calculate the heating conditions of the absorption foils achieved in the interior of the spherical gold cavity. Chapter 3 gives a description of the instruments used for realizing the two experiments, as well as the technical characteristics of the LULI2000 laser facility used to perform the experiments. Chapter 4 presents the experiment realized to characterize the emission spectra of the xenon and krypton plasmas in NLTE, as well the analysis of the experimental data with TRANSPEC/AVERROES. Finally, the experiment for measuring the absorption spectrum of the ZnS plasma mixture and the analysis of the experimental data with the code SCO are given in Chapter 5.

  4. The effective charge of heavy ions in hot, dense plasma, special attention being given to dielectronic recombination

    International Nuclear Information System (INIS)

    Peter, T.

    1985-11-01

    This work investigates the effective charge Zsub(eff) of heavy ion beams when passing through hot, dense matter. Major new results concern the temperature and high density effects on Zsub(eff), the importance of dielectronic recombination in the process where free electrons are captured by the projectile, and the corresponding shell oscillations in Zsub(eff), as well as the derivation of approximate scaling relations for Zsub(eff). (orig./GG) [de

  5. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  6. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  7. The answer to the comment of Prof. S.M. Grach to the paper by V.V. Tirskii, V.G. Ledenev, and V.M. Tomozov, Spectra of Electromagnetic Radiation from a Hot Plasma with Langmuir Turbulence in a Magnetic Field, Fiz. Plazmy 27, 423 (2001) [Plasma Physics Report 27, 398 (2001)

    International Nuclear Information System (INIS)

    Tirskij, V.V.; Ledenev, V.G.; Tomozov, V.M.

    2002-01-01

    One gives answer to comment on the article entitled On Spectrum of Electromagnetic Radiation from a Hot plasma with the Langmuir Turbulence in a Magnetic Field. The authors of the article state that this comment is true for a cold plasma only. The results of calculations conducted by the mentioned authors support this reason [ru

  8. Exchange and polarization effects in the elementary excitation spectrum of a hydrogen atom immersed in a hot plasma

    International Nuclear Information System (INIS)

    Dharma-wardana, M.W.C.; Grimaldi, F.; Lecourt, A.; Pellissier, J.

    1980-01-01

    The one-particle hydrogenic Green's function has been calculated for a partially ionized plasma consisting of hydrogen atoms, electrons, and protons at high temperatures. The theoretical method extends a previous publication and involves an evaluation of the mass operator in the Dyson equation to include proper self-energy parts to ''all orders'' in the screened interaction. This mass operator characterizes the effective micropotential felt by the atom in the plasma and determines all of the one-particle properties and some two-particle properties associated with the atomic subsystem. The first-order mass operator is nonzero only for exchange scattering, which leads to a frequency-independent exchange shift. This temperature- and density-dependent theory of the exchange shift replaces the usual semiphenomenological schemes based on the Slater-Kohn-Sham type of theory. The exchange-shifted Green's functions are used in evaluating the higher-order contributions. Computer calculations and the resolution of the poles of the Green's function lead to level shifts, widths, and spectral functions. These are calculated within both the second-order and the all-order theory. The second-order theory, which may be valid at sufficiently high densities and in turbulent plasmas, overemphasises the atom-plasmon coupling and shows new structures. The inclusion of contributions beyond second order removes these structures and produces a more ''conventional'' spectral-intensity function. The effects of center-of-mass motion on the level shifts and level profiles are investigated and the onset of plasma instabilities touched upon. These calculations make contact with the work on ''plasma-polarization shifts'' and provide an approach to q,ω-dependent plasma microfields

  9. GORGON - a computer code for the calculation of energy deposition and the slowing down of ions in cold materials and hot dense plasmas

    International Nuclear Information System (INIS)

    Long, K.A.; Moritz, N.; Tahir, N.A.

    1983-11-01

    The computer code GORGON, which calculates the energy deposition and slowing down of ions in cold materials and hot plasmas is described, and analyzed in this report. This code is in a state of continuous development but an intermediate stage has been reached where it is considered useful to document the 'state of the art' at the present time. The GORGON code is an improved version of a code developed by Zinamon et al. as part of a more complex program system for studying the hydrodynamic motion of plane metal targets irradiated by intense beams of protons. The improvements made in the code were necessary to improve its usefulness for problems related to the design and burn of heavy ion beam driven inertial confinement fusion targets. (orig./GG) [de

  10. Comparative evaluation of electrical conductivity of hydroxyapatite ceramics densified through ramp and hold, spark plasma and post sinter Hot Isostatic Pressing routes

    Energy Technology Data Exchange (ETDEWEB)

    Buchi Suresh, M., E-mail: suresh@arci.res.in; Biswas, P.; Mahender, V.; Johnson, Roy, E-mail: royjohnson@arci.res.in

    2017-01-01

    Hydroxyapatite ceramics synthesized through sonochemical route were processed and densified through ramp & hold (R&H) and Spark Plasma Sintering (SPS) routes. The effect of processing route on the relative density and electrical conductivity were studied. Further, the samples were Hot Isostatically Pressed (HIP) under argon pressure at elevated temperature to further densify the sample. All these samples processed under different conditions were characterized by X-ray diffraction, Scanning Electron Microscopy and AC Conductivity. The samples have exhibited hydroxyapatite phase; however, microstructures exhibited distinctly different grain morphologies and grain sizes. AC impedance spectroscopic measurement was carried out on hydroxyapatite samples processed through different routes and the corresponding spectra were analyzed by the analogy to equivalent circuit involving resistors and capacitors. SPS sintered sample after HIPing has exhibited the highest conductivity. This can be attributed to the higher density in combination with finer grain sizes. Activation energy based on Arrhenius equation is calculated and the prominent conduction mechanism is proposed. - Highlights: • Hot Isostatic Pressing (HIP) of SPS and R&H processed samples has resulted into densities near to theoretical densities • No change in the crystal structure is observed in SPS and R&H samples before and after HIP treatment • SPS processed and HIP treated samples resulted into higher conductivities with smaller grain sizes and grain boundary area.

  11. Using penumbral imaging to measure micrometer size plasma hot spots in Gbar equation of state experiments on the National Ignition Facility.

    Science.gov (United States)

    Bachmann, B; Kritcher, A L; Benedetti, L R; Falcone, R W; Glenn, S; Hawreliak, J; Izumi, N; Kraus, D; Landen, O L; Le Pape, S; Ma, T; Pérez, F; Swift, D; Döppner, T

    2014-11-01

    We have developed an experimental platform for absolute equation of state measurements up to Gbar pressures on the National Ignition Facility (NIF) within the Fundamental Science Program. We use a symmetry-tuned hohlraum drive to launch a spherical shock wave into a solid CH sphere. Streaked radiography is the primary diagnostic to measure the density change at the shock front as the pressure increases towards smaller radii. At shock stagnation in the center of the capsule, we observe a short and bright x-ray self emission from high density (∼50 g/cm(3)) plasma at ∼1 keV. Here, we present results obtained with penumbral imaging which has been carried out to characterize the size of the hot spot emission. This allows extending existing NIF diagnostic capabilities for spatial resolution (currently ∼10 μm) at higher sensitivity. At peak emission we find the hot spot radius to be as small as 5.8 +/- 1 μm, corresponding to a convergence ratio of 200.

  12. Using penumbral imaging to measure micrometer size plasma hot spots in Gbar equation of state experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, B., E-mail: bachmann2@llnl.gov; Kritcher, A. L.; Benedetti, L. R.; Glenn, S.; Hawreliak, J.; Izumi, N.; Landen, O. L.; Le Pape, S.; Ma, T.; Pérez, F.; Swift, D.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kraus, D. [Department of Physics, University of California, Berkeley, California 94720 (United States)

    2014-11-15

    We have developed an experimental platform for absolute equation of state measurements up to Gbar pressures on the National Ignition Facility (NIF) within the Fundamental Science Program. We use a symmetry-tuned hohlraum drive to launch a spherical shock wave into a solid CH sphere. Streaked radiography is the primary diagnostic to measure the density change at the shock front as the pressure increases towards smaller radii. At shock stagnation in the center of the capsule, we observe a short and bright x-ray self emission from high density (∼50 g/cm{sup 3}) plasma at ∼1 keV. Here, we present results obtained with penumbral imaging which has been carried out to characterize the size of the hot spot emission. This allows extending existing NIF diagnostic capabilities for spatial resolution (currently ∼10 μm) at higher sensitivity. At peak emission we find the hot spot radius to be as small as 5.8 +/− 1 μm, corresponding to a convergence ratio of 200.

  13. Using penumbral imaging to measure micrometer size plasma hot spots in Gbar equation of state experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Bachmann, B.; Kritcher, A. L.; Benedetti, L. R.; Glenn, S.; Hawreliak, J.; Izumi, N.; Landen, O. L.; Le Pape, S.; Ma, T.; Pérez, F.; Swift, D.; Döppner, T.; Falcone, R. W.; Kraus, D.

    2014-01-01

    We have developed an experimental platform for absolute equation of state measurements up to Gbar pressures on the National Ignition Facility (NIF) within the Fundamental Science Program. We use a symmetry-tuned hohlraum drive to launch a spherical shock wave into a solid CH sphere. Streaked radiography is the primary diagnostic to measure the density change at the shock front as the pressure increases towards smaller radii. At shock stagnation in the center of the capsule, we observe a short and bright x-ray self emission from high density (∼50 g/cm 3 ) plasma at ∼1 keV. Here, we present results obtained with penumbral imaging which has been carried out to characterize the size of the hot spot emission. This allows extending existing NIF diagnostic capabilities for spatial resolution (currently ∼10 μm) at higher sensitivity. At peak emission we find the hot spot radius to be as small as 5.8 +/− 1 μm, corresponding to a convergence ratio of 200

  14. Determination of uranium isotopic composition and 236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Boulyga, S F; Becker, J S

    2001-07-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10(-4) and 10(-3) counts per atom were achieved for 238U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH+/U+ was 1.2 x 10(-4) and 1.4 x 10(-4), respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 microg L(-1) NBS U-020 standard solution was 0.11% (238U/235U) and 1.4% (236U/238U) using a MicroMist nebulizer and 0.25% (235U/238U) and 1.9% (236U/P38U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236U/238U ratio ranged from 10(-5) to 10(-3). Results obtained with ICP-MS, alpha- and gamma-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples.

  15. Determination of uranium isotopic composition and 236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Becker, J.S.

    2001-01-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236 U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10 -4 and 10 -3 counts per atom were achieved for 238 U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH + /U + was 1.2 x 10 -4 and 1.4 x 10 -4 , respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 μg L -1 NBS U-020 standard solution was 0.11% ( 238 U/ 235 U) and 1.4% ( 236 U/ 238 U) using a MicroMist nebulizer and 0.25% ( 235 U/ 238 U) and 1.9% ( 236 U/ 238 U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236 U/ 238 U ratio ranged from 10 -5 to 10 -3 . Results obtained with ICP-MS, α- and γ-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples. (orig.)

  16. Fermi-degeneracy and discrete-ion effects in the spherical-cell model and electron-electron correlation effects in hot dense plasmas

    International Nuclear Information System (INIS)

    Furukawa, H.; Nishihara, K.

    1992-01-01

    The spherical-cell model [F. Perrot, Phys. Rev. A 25, 489 (1982); M. W. C. Dharma-wardana and F. Perrot, ibid. 26, 2096 (1982)] is improved to investigate laser-produced hot, dense plasmas. The free-electron distribution function around a test free electron is calculated by using the Fermi integral in order that the free-electron--free-electron correlation function includes Fermi-degeneracy effects, and also that the calculation includes the discrete-ion effect. The free-electron--free-electron, free-electron--ion, and ion-ion correlation effects are coupled, within the framework of the hypernetted-chain approximation, through the Ornstein-Zernike relation. The effective ion-ion potential includes the effect of a spatial distribution of bound electrons. The interparticle correlation functions and the effective potential acting on either an electron or an ion in hot, dense plasmas are calculated numerically. The Fermi-degeneracy effect on the correlation functions between free electrons becomes clear for the degeneracy parameter θ approx-lt 1. The discrete-ion effect in the calculation of the correlation functions between free electrons affects the electron-ion pair distribution functions for r s approx-gt 3. As an application of the proposed model, the strong-coupling effect on the stopping power of charged particles [Xin-Zhong Yan, S. Tanaka, S. Mitake, and S. Ichimaru, Phys. Rev. A 32, 1785 (1985)] is estimated. While the free-electron--ion strong-coupling effect and the Fermi-degeneracy effect incorporated in the calculation of the free-electron distribution function around a test free electron enhance the stopping number, the quantum-diffraction effect incorporated in the quantal hypernetted-chain equations [J. Chihara, Prog. Theor. Phys. 72, 940 (1984); Phys. Rev. A 44, 1247 (1991); J. Phys. Condens. Matter 3, 8715 (1991)] reduces the stopping number substantially

  17. Study of the properties of plasma deposited layers of nickel-chrome-aluminium-yttrium coatings resistant to oxidation and hot corrosion

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2012-04-01

    Full Text Available The aim of this study was to examine the properties of Ni22Cr10Al1Y layers in order to obtain optimal structural - mechanical properties with the optimization of depositing parameters. Powder was deposited by the atmospheric plasma spray (APS process with the current intensity of 600, 700 and 800A, with a corresponding plasma gun power supply of 22KW, 34KW and 28KW. The evaluation of the Ni22Cr10Al1Y coating layers was made on the basis of their microhardness, tensile strength and microstructure performance. The best performance was obtained in the layers deposited with 800A and the 34KW plasma gun power supply. The coating with the best characteristics was tested to oxidation in the furnace for heat treatment without a protective atmosphere at 1100°C for one hour. The examination of the morphology of Ni22Cr10Al1Y powder particles was carried out on the SEM (Scanning Electron Microscope as well as the EDS analysis of the best layers. The microstructure of the deposited coating layers was examined with a light microscope. The microstructure analysis was performed according to the TURBOMECA standard. The mechanical properties of layers were evaluated by the method HV0.3 for microhardness and by tensile testing for bond strength. The research has shown that plasma gun power supply significantly affects the mechanical properties and microstructure of coatings that are of crucial importance for the protection of components exposed to high temperature oxidation and hot corrosion.

  18. Electron cyclotron waves transmission: new approach for the characterization of electron distribution functions in Tokamak hot plasmas

    International Nuclear Information System (INIS)

    Michelot, Y.

    1995-10-01

    Fast electrons are one of the basic ingredients of plasma operations in many existing thermonuclear fusion research devices. However, the understanding of fast electrons dynamics during creation and sustainment of the superthermal electrons tail is far for being satisfactory. For this reason, the Electron Cyclotron Transmission (ECT) diagnostic was implemented on Tore Supra tokamak. It consists on a microwave transmission system installed on a vertical chord crossing the plasma center and working in the frequency range 77-109 GHz. Variations of the wave amplitude during the propagation across the plasma may be due to refraction and resonant absorption. For the ECT, the most common manifestation of refraction is a reduction of the received power density with respect to the signal detected in vacuum, due to the spreading and deflection of the wave beam. Wave absorption is observed in the vicinity of the electron cyclotron harmonics and may be due both to thermal plasma and to superthermal electron tails. It has a characteristic frequency dependence due to the relativistic mass variation in the wave-electron resonance condition. This thesis presents the first measurements of: the extraordinary mode optical depth at the third harmonics, the electron temperature from the width of a cyclotron absorption line and the relaxation times of the electron distribution during lower hybrid current drive from the ordinary mode spectral superthermal absorption line at the first harmonic. (J.S.). 175 refs., 110 figs., 9 tabs., 3 annexes

  19. Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source

    NARCIS (Netherlands)

    Dolgov, A.; Lopaev, D.; Lee, Christopher James; Zoethout, E.; Medvedev, Viacheslav; Yakushev, O.; Bijkerk, Frederik

    2015-01-01

    Molecular contamination of a grazing incidence collector for extreme ultraviolet (EUV) lithography was experimentally studied. A carbon film was found to have grown under irradiation from a pulsed tin plasma discharge. Our studies show that the film is chemically inert and has characteristics that

  20. Plasma Growth Hormone and Prolactin Levels in Healthy Sedentary Young Men after Short-Term Endurance Training under Hot Environment

    Directory of Open Access Journals (Sweden)

    İbrahim Cicioglu

    2013-09-01

    Full Text Available Pituitary hormones play an important role energy expenditure and body temperature regulation during exercise. The aim of the stu¬dy was to investigate the effect of two different endurance training in ambient temperature (30.76 ± 1.71oC and 57.92 ± 5.80% r.h. on plasma growth hormone (GH and prolactin (PRL levels in non-trained healthy subjects. Twenty-four untrained healthy men participated in an 8-wk progressive two different endurance-training program. Subjects were divided into two groups: an in¬ter¬val running group (IR, and continuous running group (CR. Both groups were performed 3 days/wk. Growth hormone, PRL and VO2max levels were assessed at the beginning and the end of the training period. Body temperature (TB was also measured at the be¬ginning and immediately after each training. The exercise type affected plasma PRL (8.52 vs. 6.50 ng/ml IR and CT groups, P 0.38. Plasma GH level at the end of training pro¬gram increased from 0.42 to 1.48 ng/ml and 0.58 to 0.67 ng/ml for IR and CR groups. Expectedly, both training types increased TB, at a greater rate for IR group than CR group. In conclusion, an 8-wk regular exercise result in an increase in plasma PRL level, with¬out altering plasma GH level, which accompanied by elevated body temperature, regardless of the individual’s sporting rou¬ti¬ne. These suggest that untrained individuals could benefit from a regular exercise program as much as those doing the routine sport.

  1. Near Earth Inner-Source and Interstellar Pickup Ions Observed with the Hot Plasma Composition Analyzer of the Magnetospheric Multiscale Mission Mms-Hpca

    Science.gov (United States)

    Gomez, R. G.; Fuselier, S. A.; Mukherjee, J.; Gonzalez, C. A.

    2017-12-01

    Pickup ions found near the earth are generally picked up in the rest frame of the solar wind, and propagate radially outward from their point of origin. While propagating, they simultaneously gyrate about the magnetic field. Pickup ions come in two general populations; interstellar and inner source ions. Interstellar ions originate in the interstellar medium, enter the solar system in a neutral charge state, are gravitationally focused on the side of the sun opposite their arrival direction and, are ionized when they travel near the sun. Inner-source ions originate at a location within the solar system and between the sun and the observation point. Both pickup ion populations share similarities in composition and charge states, so measuring of their dynamics, using their velocity distribution functions, f(v)'s, is absolutely essential to distinguishing them, and to determining their spatial and temporal origins. Presented here will be the results of studies conducted with the four Hot Plasma Composition Analyzers of the Magnetospheric Multiscale Mission (MMS-HPCA). These instruments measure the full sky (4π steradians) distribution functions of near earth plasmas at a 10 second cadence in an energy-to-charge range 0.001-40 keV/e. The instruments are also capable of parsing this combined energy-solid angle phase space with 22.5° resolution polar angle, and 11.25° in azimuthal angle, allowing for clear measurement of the pitch angle scattering of the ions.

  2. Dynamics of the outer radiation belts and their links with the polar substorms and the injection of hot plasma at the geostationary orbit

    International Nuclear Information System (INIS)

    Sauvaud, J.A.; Winckler, J.R.

    1981-01-01

    The aim of this paper is to analyse the results obtained aboard geostationary satellites and on the ground, in the auroral zone, on the dynamic changes in the outer radiation belts and their link with the time development of auroral forms during magnetospheric substorms. The measurements of high-energy particles, plasma, and magnetic induction at 6.6 Rsub(E) in the local midnight sector indicate the existence of a pre-expansion phase in substorms during which the outer belts move toward the Earth under the effect of the modification in the topology of the local magnetic induction. The pre-expansion phase coincides with an increase in the AE index, suggesting a direct link between the electrojet and the currents flowing across the tail of the magnetosphere. It also coincides in the auroral zone with the intensification and movement of the quiet arc system toward the equator. The phase is invariably terminated at the beginning of the expansion of the substorm by the break-up of the auroral arcs and the injection of hot plasma at the geostationary orbit near local midnight under the action of the induced electric field associated with the collapse of the geomagnetic field force lines. The study of the data, event by event, shows the complexity of phenomena which may be involved during the pre-expansion phase particularly with the possible presence of pseudo-substorms or aborted (minor) substorms which do not modify the general evolution described above [fr

  3. Yeast culture increased plasma niacin concentration, evaporative heat loss, and feed efficiency of dairy cows in a hot environment.

    Science.gov (United States)

    Dias, Julia D L; Silva, Rayana B; Fernandes, Tatiane; Barbosa, Eugenio F; Graças, Larissa E C; Araujo, Rafael C; Pereira, Renata A N; Pereira, Marcos N

    2018-04-04

    The supplementation of dairy cows with yeast culture may increase diet digestibility, plasma niacin concentration, heat dissipation, and lactation performance. Our objective was to evaluate the response of Holstein cows in late lactation (234 ± 131 d in milk) to dead yeast culture (YC, 15 g/d, Factor SC, GRASP, Saccharomyces cerevisiae) during Brazilian summer (temperature-humidity index >68 for 92.2% of the time). Thirty-two cows were individually fed a standard total mixed ration for 14 d and control (CTL) or YC treatments for 35 d, in a covariate adjusted complete randomized block design. Response was evaluated in wk 5 or as repeated measures over time. Cows were milked 3 times per day and treatments (YC or placebo) were orally dosed to each cow before each milking. Plasma niacin was 1.50 for CTL and 1.66 µg/mL for YC. The YC reduced rectal temperature, respiration rate, and skin temperature, whereas it tended to increase sweating rate. The proportion of cows with rectal temperature ≥39.2°C on CTL and YC was, respectively, 8 and 0% at 0730 h, 52 and 25% at 1500 h, and 35 and 26% at 2200 h. Plasma glucose was increased by YC. The total-tract apparent digestibility of nutrients, plasma urea N concentration, molar proportion of ruminal VFA, and urinary allantoin excretion were not affected by YC. Cows fed YC were less selective against feed particles >19 mm in the morning, in the afternoon were more selective against long feed particles and in favor of particles loss, and feed efficiency of late lactation dairy cows by reducing intake at similar milk yield. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. RBS analysis of ions implanted in light substrates exposed to hot plasmas laser-generated at PALS

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Gammino, S.; Picciotto, A.; Wolowski, J.; Krása, Josef; Láska, Leoš; Calcagnile, L.; Quarta, G.

    2005-01-01

    Roč. 160, 10-12 (2005), s. 685-695 ISSN 1042-0150. [Workshop PIBHI 2005 /2./. Giardini Naxos, 08.06.06-11.06.06] R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : RBS analysis * ion implantation * plasma-generated by lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.353, year: 2005

  5. Sintering of ZrC by hot isostatic pressing (HIP) and spark plasma sintering (SPS). Effect of impurities

    International Nuclear Information System (INIS)

    Allemand, Alexandre; Le Flem - Dormeval, Marion; Guillard, Francois

    2005-01-01

    Carbides are generally used as structural materials for high temperature applications. Particularly, ZrC because of low activation, neutronic transparency, cubic structure (isotropic behaviour) and good thermal conductivity, is one of the candidates under consideration for structural materials in the core of new high temperature nuclear reactors (Generation IV). Just a few studies about densification of monolithic ZrC exist. They mainly involve natural sintering or hot pressing at high temperature (until 2700 deg. C). Unfortunately those processes induce grain growth and do not lead to fully densified ZrC. The aim of this study is to compare the characteristics and the properties of ZrC sintered by HIP and by SPS. Fully dense ZrC can be reached either by HIP or by SPS, grain size being more or less controlled. Microstructural observations and mechanical testing of several ZrC grades shows that powder impurities play an important role in the quality of the grain boundaries and consequently in the mechanical properties. In particular, the porosity falls from 17% to 3 % just by reducing the free carbon content in starting ZrC powder. The densification process of dense monolithic ZrC was improved by combining a HIP at 1600 deg. C (titanium canning) followed by a post-HIP at 1900 deg. C (no canning required). Four-point bending tests are in progress to confirm the improvement of fracture strength. (authors)

  6. Observation and interpretation of topological structures in impurity ion radiation profiles from the hot plasma of a torsatron

    International Nuclear Information System (INIS)

    Zurro, B.; McCarthy, K.J.; Ascasibar, E.; Aragon, F.; Burgos, C.; Lopez, A.; Salas, A.

    1997-01-01

    Significant features have been observed in impurity ion ultraviolet line emission profiles measured on the TJ-I U torsatron using a fast-scanning detector system with good spatial resolution. These features, which consist of flats and humps, provide evidence for the existence of topological structure in the plasma interior. It is postulated that these structures arise as a result of perturbations in the electron temperature and ion density profiles caused by magnetic islands. We develop a model to show how these structures can give rise to such features in ultraviolet radiation profiles and we use theoretical iota profiles to correlate the positions of the more prominent features with rational iota values. (orig.)

  7. Determination of uranium isotopic composition and {sup 236}U content of soil samples and hot particles using inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F. [Radiation Physics and Chemistry Problems Inst., Minsk (Belarus); Becker, J.S. [Central Department for Analytical Chemistry, Research Centre Juelich (Germany)

    2001-07-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The {sup 236}U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10{sup -4} and 10{sup -3} counts per atom were achieved for {sup 238}U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH{sup +}/U{sup +} was 1.2 x 10{sup -4} and 1.4 x 10{sup -4}, respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 {mu}g L{sup -1} NBS U-020 standard solution was 0.11% ({sup 238}U/{sup 235}U) and 1.4% ({sup 236}U/{sup 238}U) using a MicroMist nebulizer and 0.25% ({sup 235}U/{sup 238}U) and 1.9% ({sup 236}U/{sup 238}U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the {sup 236}U/{sup 238}U ratio ranged from 10{sup -5} to 10{sup -3}. Results obtained with ICP-MS, {alpha}- and {gamma}-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples. (orig.)

  8. Production of a Powder Metallurgical Hot Work Tool Steel with Harmonic Structure by Mechanical Milling and Spark Plasma Sintering

    Science.gov (United States)

    Deirmina, Faraz; Pellizzari, Massimo; Federici, Matteo

    2017-04-01

    Commercial AISI-H13 gas atomized powders (AT) were mechanically milled (MM) to refine both the particle size and the microstructure. Different volume fractions of coarser grained (CG) AT powders were mixed with the ultra-fine grained (UFG) MM and consolidated by spark plasma sintering to obtain bulks showing a harmonic structure ( i.e. a 3D interconnected network of UFG areas surrounding the CG atomized particles). The low sintering temperature, 1373.15 K (1100 °C) and the short sintering time (30 minutes) made it possible to obtain near full density samples while preserving the refined microstructure induced by MM. A combination of high hardness and significantly improved fracture toughness is achieved by the samples containing 50 to 80 vol pct MM, essentially showing harmonic structure. The design allows to easily achieve specific application oriented properties by varying the MM volume fraction in the initial mixture. Hardness is governed by the fine-grained MM matrix and improved toughening is due to (1) deviatory effect of AT particles and (2) energy dissipation as a result of the decohesion in MM regions or AT and MM interface.

  9. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  10. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  11. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  12. Arsenic species determination in human scalp hair by pressurized hot water extraction and high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Morado Piñeiro, Andrés; Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2013-02-15

    Analytical methods for the determination of total arsenic and arsenic species (mainly As(III) and As(V)) in human scalp hair have been developed. Inductively coupled plasma-mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) coupled to ICP-MS have been used for total arsenic and arsenic species determination, respectively. The proposed methods include a "green", fast, high efficient and automated species leaching procedure by pressurized hot water extraction (PHWE). The operating parameters for PHWE including modifier concentration, extraction temperature, static time, extraction steps, pressure, mean particle size, diatomaceous earth (DE) mass/sample mass ratio and flush volume were studied using design of experiments (Plackett-Burman design PBD). Optimum condition implies a modifier concentration (acetic acid) of 150 mM and powdered hair samples fully mixed with diatomaceous earth (DE) as a dispersing agent at a DE mass/sample mass ratio of 5. The extraction has been carried out at 100°C and at an extraction pressure of 1500 psi for 5 min in four extraction step. Under optimised conditions, limits of quantification of 7.0, 6.3 and 50.3 ng g(-1) for total As, As(III) and As(V), respectively were achieved. Repeatability of the overall procedure (4.4, 7.2 and 2.1% for total As, As(III) and As(V), respectively) was achieved. The analysis of GBW-07601 (human hair) certified reference material was used for validation. The optimised method has been finally applied to several human scalp hair samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Hot corrosion of the ceramic composite coating Ni{sub 3}Al-Al{sub 2}O{sub 3}-Al{sub 2}O{sub 3}/MgO plasma sprayed on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, Amir Khodaparast; Kiahosseini, Seyed Rahim [Islamic Azad Univ., Damghan (Iran, Islamic Republic of). Dept. of Engineering

    2017-08-15

    Ni{sub 3}Al-Al{sub 2}O{sub 3}-Al{sub 2}O{sub 3}/MgO three-layered coatings with thicknesses of 50, 100, and 150 μm for Al{sub 2}O{sub 3}/MgO and 100 μm for the other layers were deposited on 316L stainless steel using plasma spraying. X-ray diffraction, atomic force microscopy, furnace hot corrosion testing in the presence of a mixture of Na{sub 2}SO{sub 4} and V{sub 2}O{sub 5} corrosive salts and scanning electron microscopy were used to determine the structural, morphological and hot corrosion resistance of samples. Results revealed that the crystalline grains of MgO and Al{sub 2}O{sub 3} coating were very small. Weight loss due to hot corrosion decreased from approximately 4.267 g for 316L stainless steel without coating to 2.058 g. The samples with 150 μm outer coating showed improved resistance with the increase in outer layer thickness. Scanning electron microscopy of the coated surface revealed that the coating's resistance to hot corrosion is related to the thickness and the grain size of Al{sub 2}O{sub 3}/MgO coatings.

  14. Hot ion buildup and lifetime in LITE. Final report

    International Nuclear Information System (INIS)

    1978-09-01

    An experimental investigation of hot ion buildup and lifetime in a small scale mirror device (LITE) is described. Hot ions were produced by 27 kV neutral beam injection into laser produced LiH plasmas and H plasmas produced by a washer gun. Hot H ion (12 kV) densities of approx. = 10 12 cm -3 were produced with the LiH target plasmas and densities an order of magnitude lower were produced with the washer gun target plasmas. Hot ion dominant plasmas were not achieved in LITE. The experimental measurements and subsequent analysis using numerical models of the plasma buildup indicate that in small, unshielded mirror plasmas, careful control must be maintained over the transient background gas density in the vicinity of the plasma surface. The hot ion lifetime in LITE was set by the transient cold neutral background resulting from the washer gun of reflux from the target plasma striking the adjacent surfaces

  15. TEM analysis and wear resistance of the ceramic coatings on Q235 steel prepared by hybrid method of hot-dipping aluminum and plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Science and Research Department, Chinese People' s Armed Police Academy, Langfang 065000 (China); Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen Dejiu, E-mail: sdj217@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wu Lailei; Jiang Guirong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Li Liang [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer Transmission electron microscopy (TEM) was firstly used to analyze the phase composition of the ceramic coatings. Black-Right-Pointing-Pointer The phase composition of the ceramic coatings is mainly amorphous phase and crystal Al{sub 2}O{sub 3} oxides. Black-Right-Pointing-Pointer The cross-section micro-hardness of the treated samples was investigated, the hardness of the ceramic coatings is about HV1300. Black-Right-Pointing-Pointer The wear resistance of the PEO samples is about 3 times higher than that of the heat treated 45 steel. - Abstract: The hybrid method of PEO and hot-dipping aluminum (HDA) was employed to deposit composite ceramic coatings on the surface of Q235 steel. The composition of the composite coatings was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The cross-section microstructure and micro-hardness of the treated specimens were investigated and analyzed with scanning electron microscopy (SEM) and microscopic hardness meter (MHM), respectively. The wear resistance of the ceramic coatings was investigated by a self-made rubbing wear testing machine. The results indicate that metallurgical bonding can be observed between the ceramic coatings and the steel substrate. There are many micro-pores and micro-cracks, which act as the discharge channels and result of quick and non-uniform cooling of melted sections in the plasma electrolytic oxidation ceramic coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. The grain size of the {kappa}-Al{sub 2}O{sub 3} crystal is quite non-uniform. The hardness of the ceramic coatings is about HV1300 and 10 times higher than that of the Q235 substrate, which was favorable to the better wear resistance of the ceramic

  16. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  17. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  18. Oscillatory processes in plasma

    International Nuclear Information System (INIS)

    Gallin, E.

    1980-01-01

    The oscillatory process play an important part in plasma evolution, In hot plasma in particular, the interactions between the oscillation modes are preponderant in relation to the binary collisions between particles. The nonlineary interactions between collective plasma oscillations can generate, in this case, a non-balanced steady state of plasma (steady turbulence). The paper elucidates some aspects of the oscillatory phenomena which contribute to the plasma state evolution, especially of hot plasma. A major part of the paper is devoted to the study of parametric instabilities in plasma and their role in increasing the temperature of plasma components (electrons, ions). Both parametric instabilities in plasma in the vicinity of thermodynamic balance and parametric processes is steady turbulent plasma are analysed - in relation to additional heating of hot plasma. An important result of the thesis refers to the drowing-up of a non-lineary interaction model between the oscillation modes in turbulent plasma, being responsible for the electromagnetic radiation in hot plasma. On the basis of the model suggested in the paper the existence of a low frequency radiative mode in hot plasma in a turbulent state, can be demonstrated. Its frequency could be even lower than plasma frequency in the field of long waves be even lower than plasma frequency in the field of long waves. Such a radiative mode was detected experimentally in focussed plasma installations. (author)

  19. Reply to the ''Comment on 'The significance of the distribution of hot spots on the interpretation of laser-produced plasma experiments' ''

    International Nuclear Information System (INIS)

    Arad, B.; Eliezer, S.

    1979-01-01

    We disagree with the conclusion reached by Goel, Gupta, and Bhatnagar that the effect of hot spots is not significant in analyzing scaling laws using transformed variables. We believe they have overlooked the main points of our analysis

  20. Theory of hot particle stability

    International Nuclear Information System (INIS)

    Berk, H.L.; Wong, H.V.; Tsang, K.T.

    1986-10-01

    The investigation of stabilization of hot particle drift reversed systems to low frequency modes has been extended to arbitrary hot beta, β/sub H/ for systems that have unfavorable field line curvature. We consider steep profile equilibria where the thickness of the pressure drop, Δ, is less than plasma radius, r/sub p/. The analysis describes layer modes which have mΔ/r/sub p/ 2/3. When robust stability conditions are fulfilled, the hot particles will have their axial bounce frequency less than their grad-B drift frequency. This allows for a low bounce frequency expansion to describe the axial dependence of the magnetic compressional response

  1. Development of a high resolution, high sensitivity cylindrical crystal spectrometer for line shape diagnostics of x-rays emitted from hot plasmas. Progress report, August 1, 1977--July 31, 1978

    International Nuclear Information System (INIS)

    Taylor, P.O.; Schnopper, H.

    1978-05-01

    This report oulines progress towards development of a high resolution, high throughput, curved crystal spectrometer suitable for line shape diagnostics of x-rays emitted from hot plasmas. The instrument is designed to interface with the MIT Tokamak (Alcator) with the initial aim of studying the prominent MoL lines which occur in the x-ray spectrum. However, it will have the versatility to function over an energy range of at least 1.5 keV to 7 keV allowing determination of temperature, charge state and density distributions for important impurity ions. The spectrometer employs a large, cylindrically bent crystal which focuses the dispersed x-rays along the cylinder axis where they are recorded by a position sensitive proportional counter. Thus, a wide energy range of the spectrum can be recorded simultaneously and sensitively from a short duration plasma. Computer control of data acquisition and analysis will allow real-time diagnostics

  2. Introduction to Plasma Physics

    Science.gov (United States)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  3. Reply in response to comment by E. W. Hones. [concerning the paper, on hot tenuous plasmas, fireballs, and boundary layers in the earth's magnetotail by Frank, et al.

    Science.gov (United States)

    Frank, L. A.; Decoster, R. J.; Ackerson, K. L.

    1977-01-01

    Hones 1977 points out the marked disagreement between the plasma flow measurements reported by Frank et al. 1976 and those obtained with the LASL plasma analyzer. He suggests (1) that solar ultraviolet background rates may have been incorrectly accounted for in the computation of proton bulk flows in the magnetotail as reported by Frank et al. 1976 and (2) that bulk flows with substantial speeds, i.e., those speeds greater than 50 km per sec, are seldom encountered in the plasma sheet at geocentric radial distances approx. equal to 35 R sub E. It is demonstrated that such ultraviolet responses were carefully considered by Frank et al. 1976 and thus the conclusion is maintained that bulk flows greater than 50 km per sec frequently occur in the plasma sheet at these radial distances. Further, a direct comparison of the capabilities of the LASL plasma analyzer employed by Hones and of the LEPEDEA Frank et al., 1976 indicates that there are rather severe restrictions on which plasmas in the plasma sheet can be properly measured to gain proton temperatures, number densities and flow velocities with the LASL plasma analyzer.

  4. HOT 2017

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis.......HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis....

  5. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.

    1989-01-01

    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  6. A global solution of the ICRH problem based on the combined use of a planar coupling model and hot-plasma ray-tracing in tokamak geometry

    International Nuclear Information System (INIS)

    Koch, R.; Bhatnagar, V.P.; Messiaen, A.M.; Eester, D. van

    1986-01-01

    The global solution of the theoretical problem of Ion Cyclotron Resonance Heating in tokamak plasmas is obtained by a subdivision of the problem into two simpler ones by virtue of the ''single pass absorption'' hypothesis. The coupling problem is solved in planar geometry, allowing computation of both the antenna electrical properties and the Radio-Frequency (RF) field distribution in the plasma facing the antenna. Starting from this field distribution, the initial conditions for ray-tracing are derived and the propagation and absorption of waves in the plasma bulk is solved in the geometric optics limit taking into account the full tokamak geometry and the kinetic wave description. In the minority heating, redistribution of the minority absorbed power to the other species is carred out using standard quasilinear theory. (orig.)

  7. Coulomb explosion of “hot spot”

    Energy Technology Data Exchange (ETDEWEB)

    Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation); Oreshkin, E. V. [P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Chaikovsky, S. A. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Institute of Electrophysics, UD, RAS, Ekaterinburg (Russian Federation); Artyomov, A. P. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation)

    2016-09-15

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  8. Coulomb explosion of “hot spot”

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Oreshkin, E. V.; Chaikovsky, S. A.; Artyomov, A. P.

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  9. Effect of excitation-autoionization processes on the line emission of Zn I-- and GaI--like rare-earth ions in hot coronal plasmas

    International Nuclear Information System (INIS)

    Mandelbaum, P.; Finkenthal, M.; Meroz, E.; Schwob, J.L.; Oreg, J.; Goldstein, W.H.; Klapisch, M.; Osterheld, L.; Bar Shalom, A.; Lippman, S.; Huang, L.K.; Moos, H.W.

    1990-01-01

    A systematic variation in the line-intensity ratios of GaI-- and ZnI--like Pr (Z=59) to Dy (Z=66) ions has been observed in spectra emitted by atoms injected in a low-density high-temperature tokamak plasma. This variation is shown to be correlated with the progressive closing of the autoionizing channels through the excited 3d 9 4s 2 4p4f configuration in the GaI--like ionization state as Z increases

  10. Electron waves and resonances in bounded plasmas

    CERN Document Server

    Vandenplas, Paul E

    1968-01-01

    General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.

  11. Electron cyclotron waves transmission: new approach for the characterization of electron distribution functions in Tokamak hot plasmas; La transmission d`ondes cyclotroniques electroniques: une approche nouvelle pour caracteriser les fonctions de distribution electronique des plasmas chauds de Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Michelot, Y

    1995-10-01

    Fast electrons are one of the basic ingredients of plasma operations in many existing thermonuclear fusion research devices. However, the understanding of fast electrons dynamics during creation and sustainment of the superthermal electrons tail is far for being satisfactory. For this reason, the Electron Cyclotron Transmission (ECT) diagnostic was implemented on Tore Supra tokamak. It consists on a microwave transmission system installed on a vertical chord crossing the plasma center and working in the frequency range 77-109 GHz. Variations of the wave amplitude during the propagation across the plasma may be due to refraction and resonant absorption. For the ECT, the most common manifestation of refraction is a reduction of the received power density with respect to the signal detected in vacuum, due to the spreading and deflection of the wave beam. Wave absorption is observed in the vicinity of the electron cyclotron harmonics and may be due both to thermal plasma and to superthermal electron tails. It has a characteristic frequency dependence due to the relativistic mass variation in the wave-electron resonance condition. This thesis presents the first measurements of: the extraordinary mode optical depth at the third harmonics, the electron temperature from the width of a cyclotron absorption line and the relaxation times of the electron distribution during lower hybrid current drive from the ordinary mode spectral superthermal absorption line at the first harmonic. (J.S.). 175 refs., 110 figs., 9 tabs., 3 annexes.

  12. Sensitivity of transient synchrotron radiation to tokamak plasma parameters

    International Nuclear Information System (INIS)

    Fisch, N.J.; Kritz, A.H.

    1988-12-01

    Synchrotron radiation from a hot plasma can inform on certain plasma parameters. The dependence on plasma parameters is particularly sensitive for the transient radiation response to a brief, deliberate, perturbation of hot plasma electrons. We investigate how such a radiation response can be used to diagnose a variety of plasma parameters in a tokamak. 18 refs., 13 figs

  13. Theoretical study of atomic structure of Zhot plasma and population inversions

    International Nuclear Information System (INIS)

    Guennou, Helene.

    1983-05-01

    This thesis presents a theoretical method for atomic-structure calculations (energy levels, wave functions, oscillator strengths): it is a modified Hartree-Fock method including the spin-orbit interaction in the variationnal process. Two applications are first described: one concerning the resonance lines of the Krypton isoelectronic sequence, the other having for purpose the interpretation of Lsub(α) and Lsub(β) satellites in Copper. A description is made of an original collisional-radiative model, which makes use of the preceding method, and allows to calculate the populations of a great number of ionic excited levels in a plasma. This model is used in a detailed study of the Al 10+ Lithium -like ion spectrum. It is able to explain the apparition of inversion populations for some special electronic densities and temperatures, for example between the levels corresponding to the transitions observed at 103.8, 105.7 and 154.7 A [fr

  14. Generation of a single hot spot by use of a deformable mirror and study of its propagation in an underdense plasma

    International Nuclear Information System (INIS)

    Wattellier, Benoit; Fuchs, Julien; Zou Jiping; Chanteloup, Jean-Christophe; Bandulet, Heidi; Michel, Pierre; Labaune, Christine; Depierreux, Sylvie; Kudryashov, Alexis; Aleksandrov, Alexander

    2003-01-01

    Adaptive optics systems offer the prospect of significantly increasing the capabilities of high-power laser focusability, which is currently limited by thermal distortions. Using novel wave-front measurement techniques that improve the stability of such systems and a downstream large-aperture deformable mirror that does not bear the usual limitations associated with precompensation, we have improved the focusability of a high-power (6x100-J, 1-ns) Nd:glass laser facility by a factor of 6. Measuring the wave front and the on-target focal spot at full power, we obtained after correction focal spots with a best Strehl ratio of 0.6. The pulse peak intensity could thus be increased to ∼2x10 16 W/cm 2 , a level beyond reach of the usual focal spot shaping techniques. We then used the near-diffraction-limited focal spots produced by this system to measure the laser-plasma coupling for a single, controlled filament of light and to underline the importance of the coupling among the numerous speckles within conventional multispeckled beams

  15. Plasma-wall interaction

    International Nuclear Information System (INIS)

    Reichle, R.

    2004-01-01

    This document gathers the 43 slides presented in the framework of the week long lecture 'hot plasmas 2004' and dedicated to plasma-wall interaction in a tokamak. This document is divided into 4 parts: 1) thermal load on the wall, power extraction and particle recovery, 2) basic edge plasma physics, 3) processes that drive the plasma-solid interaction, and 4) material conditioning (surface treatment...) for ITER

  16. RANDOMNESS of Numbers DEFINITION(QUERY:WHAT? V HOW?) ONLY Via MAXWELL-BOLTZMANN CLASSICAL-Statistics(MBCS) Hot-Plasma VS. Digits-Clumping Log-Law NON-Randomness Inversion ONLY BOSE-EINSTEIN QUANTUM-Statistics(BEQS) .

    Science.gov (United States)

    Siegel, Z.; Siegel, Edward Carl-Ludwig

    2011-03-01

    RANDOMNESS of Numbers cognitive-semantics DEFINITION VIA Cognition QUERY: WHAT???, NOT HOW?) VS. computer-``science" mindLESS number-crunching (Harrel-Sipser-...) algorithmics Goldreich "PSEUDO-randomness"[Not.AMS(02)] mea-culpa is ONLY via MAXWELL-BOLTZMANN CLASSICAL-STATISTICS(NOT FDQS!!!) "hot-plasma" REPULSION VERSUS Newcomb(1881)-Weyl(1914;1916)-Benford(1938) "NeWBe" logarithmic-law digit-CLUMPING/ CLUSTERING NON-Randomness simple Siegel[AMS Joint.Mtg.(02)-Abs. # 973-60-124] algebraic-inversion to THE QUANTUM and ONLY BEQS preferentially SEQUENTIALLY lower-DIGITS CLUMPING/CLUSTERING with d = 0 BEC, is ONLY VIA Siegel-Baez FUZZYICS=CATEGORYICS (SON OF TRIZ)/"Category-Semantics"(C-S), latter intersection/union of Lawvere(1964)-Siegel(1964)] category-theory (matrix: MORPHISMS V FUNCTORS) "+" cognitive-semantics'' (matrix: ANTONYMS V SYNONYMS) yields Siegel-Baez FUZZYICS=CATEGORYICS/C-S tabular list-format matrix truth-table analytics: MBCS RANDOMNESS TRUTH/EMET!!!

  17. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  18. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  19. Waves in plasmas (part 1 - wave-plasma interaction general background)

    International Nuclear Information System (INIS)

    Dumont, R.

    2004-01-01

    This document gathers a series of transparencies presented in the framework of the week-long lectures 'hot plasmas 2004' and dedicated to the physics of wave-plasma interaction. The structure of this document is as follows: 1) wave and diverse plasmas, 2) basic equations (Maxwell equations), 3) waves in a fluid plasma, and 4) waves in a kinetic plasma (collisionless plasma)

  20. Accumulation of a Hot Ion Plasma in PR-5; Accumulation d'un Plasma a Ions Chauds dans l'Installation PR-5; Nakoplenie plazmy s goryachimi ionami na ustanovke PR-5; Acumulacion de un Plasma con Iones Calientes en la Instalacion PR-5

    Energy Technology Data Exchange (ETDEWEB)

    Gott, Ju. V.; Ioffe, M. S.; Jushmanov, E. E. [Institut Atomnoj Ehnergii Im. I.V. Kurchatova, Moskva, SSSR (Russian Federation)

    1966-04-15

    In earlier experiments on PR-5 it was shown that in a trap with magnetic mirrors the flute instability is completely suppressed when a radially increasing hybrid magnetic field (minimum-H trap) is set up. In those experiments a hydrogen plasma with hot ions (T{sub i} Asymptotically-Equal-To 5 keV) and density n up to 10{sup 10} cm{sup -3} was produced by the magnetron injection method; the confinement time T was equal to several tens of milliseconds, and was determined only by charge-exchange losses. The effect of the suppression of the flute instability was also observed by several others, although it is not possible on the basis of present results to draw conclusions about the stability of the plasma for densities considerably in excess of 10{sup 10} cm{sup -3}. Biguet et al. for n = 10{sup 13} to 10{sup 14} cm{sup -3} report {tau} = 60 {mu}sec; in the authors' view, this small {tau} is attributable to the charge-exchange of fast ions on the neutral gas desorbing from the walls during the injection. We explored the possibility of achieving prolonged containment of the plasma at densities n {>=} 10{sup 11} cm{sup -3} and T{sub i} {>=} 5 keV. The experimental study of the behaviour of such a plasma presents considerable interest in view of the theory of Mikhailovsky and Timofeev predicting at these n and T{sub i} values the drift-cyclotron instability. This instability, which is due to a radial inhomogeneity of the plasma density, must occur on the condition that ({rho}/a){sup 2} > 4[(H{sup 2}/4{pi}m{sub i}c{sup 2}) + (m{sub e}/m{sub i})] where {rho}i is the ion Larmor radius and a is a characteristic length of the inhomogeneity. For typical conditions in PR-5 (H = 4000 Oe, {rho}{sub i}/a Asymptotically-Equal-To 0.25), this criterion is fulfilled starting from n Asymptotically-Equal-To 5 x 10{sup 10} cm{sup -3}. To obtain a plasma with such parameters a modified magnetron injection method is used in which the ions are accelerated from the cold plasma column by a

  1. Lateral deflection of the SOL plasma during a giant ELM

    International Nuclear Information System (INIS)

    Landman, I.S.; Wuerz, H.

    2001-01-01

    In recent H-mode experiments at JET with giant ELMs a lateral deflection of hot tokamak plasma striking the divertor plate has been observed. This deflection can effect the divertor erosion caused by the hot plasma irradiation. Based on the MHD model for the vapor shield plasma and the hot plasma, the Seebeck effect is analyzed for explanation of the deflection. At t=-∞ both plasmas are at rest and separated by a boundary parallel to the target. The interaction between plasmas develops gradually ('adiabatically') as exp(t/t 0 ) with t 0 ∼10 2 μs the ELM duration time. At inclined impact of the magnetized hot plasma a toroidal current develops in the interaction zone of the plasmas. The JxB force accelerates the interacting plasmas in the lateral direction. The cold plasma motion essentially compensates the current. The magnitude of the hot plasma deflection is comparable to the observed one

  2. Hot tub folliculitis

    Science.gov (United States)

    ... survives in hot tubs, especially tubs made of wood. Symptoms The first symptom of hot tub folliculitis ... may help prevent the problem. Images Hair follicle anatomy References D'Agata E. Pseudomonas aeruginosa and other ...

  3. Physics of dust grains in hot gas

    International Nuclear Information System (INIS)

    Draine, B.T.; Salpeter, E.E.

    1979-01-01

    Charging of dust grains in hot (10 4 --10 9 K) plasma is studied, including photoelectron and secondary electron emission, field emission, and transmission of electrons and ions through the grain; resulting grain potentials are (for T > or approx. = 10 5 K) considerably smaller in magnitude than found by Burke and Silk. Even so, large electrostatic stresses can cause ion field emission and rapid destruction of small grains in very hot gas. Rapid rotation can also disrupt small grains, but damping (by microwave emission) usually limits the centrifugal stress to acceptable values for plasma densities n/sub H/ -3 . Sputtering rates are estimated for grains in hot gas, based upon a semiempirical fit to experimental data. Predicted sputtering rates for possible grain constituents are similar to estimates by Barlow, but in some cases differ significantly. Useful approximation formulae are given for the drag forces acting on a grain with arbitrary Mach number

  4. Introduction to Plasma Spectroscopy

    CERN Document Server

    Kunze, H-J

    2009-01-01

    Based on lectures given at the Ruhr-University of Bochum for graduate students and postgraduates starting in plasma physics as well as from low- to high-density hot plasmas, this book introduces basic ideas and fundamental concepts and typical instrumentation from the X-ray to the infrared spectral regions

  5. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  6. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  7. Ionospheric hot spot at high latitudes

    International Nuclear Information System (INIS)

    Schunk, R.W.; Sojka, J.J.

    1982-01-01

    A hot spot (or spots) can occur in the high-latitude ionosphere depending on the plasma convection pattern. The hot spot corresponds to a small magnetic local time-magnetic latitude region of elevated ion temperatures located near the dusk and/or dawn meridians. For asymmetric convection electric field patterns, with enhanced flow in either the dusk or dawn sector of the polar cap, a single hot spot should occur in association with the strong convection cell. However, on geomagnetically disturbed days, two strong convection cells can occur, and hence, two hot spots should exist. The hot spot should be detectable when the electric field in the strong convection cell exceeds about 40 mV m -1 . For electric fields of the order of 100 mV m -1 in the convection cell, the ion temperature in the hot spot is greatest at low altitudes, reaching 4000 0 K at 160 km, and decreases with altitude in the F-region. An ionospheric hot spot (or spots) can be expected at all seasons and for a wide range of solar cycle conditions

  8. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  9. Hydrodynamic excitations in hot QCD plasma

    Science.gov (United States)

    Abbasi, Navid; Allahbakhshi, Davood; Davody, Ali; Taghavi, Seyed Farid

    2017-12-01

    We study the long wavelength excitations in rotating QCD fluid in the presence of an external magnetic field at finite vector and axial charge densities. We consider the fluctuations of vector and axial charge currents coupled to energy and momentum fluctuations and compute the S O (3 ) covariant dispersion relations of the six corresponding hydrodynamic modes. Among them, there are always two scalar chiral-magnetic-vortical-heat (CMVH) waves; in the absence of a magnetic field (vorticity) these waves reduce to chiral-vortical-heat (CVH) [chiral-magnetic-heat (CMH)] waves. While CMVH waves are a mixture of CMH and CVH waves, they have generally different velocities compared to the sum of velocities of the latter waves. The other four modes, which are made out of scalar-vector fluctuations, are mixed sound-Alfvén waves. We show that when the magnetic field is parallel with the vorticity, these four modes are the two ordinary sound modes together with two chiral Alfvén waves propagating along the common direction of the magnetic field and vorticity.

  10. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  11. Hot Flow Anomaly formation by magnetic deflection

    International Nuclear Information System (INIS)

    Onsager, T.G.; Thomsen, M.F.; Winske, D.

    1990-01-01

    Hot Flow Anomalies (HFAs) are localized plasma structures observed in the solar wind and magnetosheath near the Earth's quasi-parallel bow shock. The authors present 1-D hybrid computer simulations illustrating a formation mechanism for HFAs in which the single, hot, ion population results from a spatial separation of two counterstreaming ion beams. The higher-density, cooler regions are dominated by the background (solar wind) ions, and the lower-density, hotter, internal regions are dominated by the beam ions. The spatial separation of the beam and background is caused by the deflection of the ions in large amplitude magnetic fields which are generated by ion/ion streaming instabilities

  12. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  13. Profile modification and hot electron temperature from resonant absorption at modest intensity

    International Nuclear Information System (INIS)

    Albritton, J.R.; Langdon, A.B.

    1980-01-01

    Resonant absorption is investigated in expanding plasmas. The momentum deposition associated with the ejection of hot electrons toward low density via wavebreaking readily exceeds that of the incident laser radiation and results in significant modification of the density profile at critical. New scaling of hot electron temperature with laser and plasma parameters is presented

  14. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    Bart, G.; Blanc, J.Y.; Duwe, R.

    2003-01-01

    divided in two parts: - First, a mutual share of real examples about the 'life' in hot laboratories: waste management, decommissioning and release, safety; - Second, a presentation of tools or facilities dealing with PIE or defueling. Special radwaste management was presented by: - ISPRA, for heavy water; - IFE Kjeller, for old stored steel waste; - FZ Juelich presented an example of decommissioning and re-opening of hot laboratories; - IFE Kjeller presented a synthesis of two questionnaires sent to European Hot Laboratories on 'the fire preparedness measures in buildings with hot laboratories'; - The creep test device settled in K6 LECI Hot Cells in CEA at the Saclay site was also described; - ITU Karlsruhe/FZ Juelich presented experimental details and results from a study on a Vicker hardness test; - CEA/Valrho presented the two newest facilities of Atalante; Session 3 - Prospective Research on Materials for Future Applications comprised four presentations concerning the development of future gas cooled reactors and the materials research for nuclear fusion plants, namely: - E.H. Toscano (European Commission, ITU-Karlsruhe,Germany) who described a new facility to measure the fission product inventory; - V. Basini (CEA Cadarache, France) who presented results of HTR fuel development and innovative elaboration processes of fuel particles; - M. Roedig (FZJ, Juelich, Germany) reported on post irradiation experiments on plasma facing materials and miniaturized components for the next step fusion device ITER; - J. P. Coad (EFDA-JET, Abingdon, U.K.) who gave an overview on the tritium related technology programs at JET

  15. Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Zaveryaev, V [Kurchatov Institute, Moscow (Russian Federation); others, and

    2012-09-15

    The success in achieving peaceful fusion power depends on the ability to control a high temperature plasma, which is an object with unique properties, possibly the most complicated object created by humans. Over years of fusion research a new branch of science has been created, namely plasma diagnostics, which involves knowledge of almost all fields of physics, from electromagnetism to nuclear physics, and up-to-date progress in engineering and technology (materials, electronics, mathematical methods of data treatment). Historically, work on controlled fusion started with pulsed systems and accordingly the methods of plasma parameter measurement were first developed for short lived and dense plasmas. Magnetically confined hot plasmas require the creation of special experimental techniques for diagnostics. The diagnostic set is the most scientifically intensive part of a plasma device. During many years of research operation some scientific tasks have been solved while new ones arose. New tasks often require significant changes in the diagnostic system, which is thus a very flexible part of plasma machines. Diagnostic systems are designed to solve several tasks. As an example here are the diagnostic tasks for the International Thermonuclear Experimental Reactor - ITER: (1) Measurements for machine protection and basic control; (2) Measurements for advanced control; (3) Additional measurements for performance evaluation and physics. Every new plasma machine is a further step along the path to the main goal - controlled fusion - and nobody knows in advance what new phenomena will be met on the way. So in the planning of diagnostic construction we should keep in mind further system upgrading to meet possible new scientific and technical challenges. (author)

  16. Estimation method for volumes of hot spots created by heavy ions

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Kanazawa, Satoshi; Kajii, Yuji

    1999-01-01

    As a ratio of volumes of hot spots to cones, which have the same lengths and bottom radii with the ones of hot spots, a simple and convenient method for estimating the volumes of hot spots is described. This calculation method is useful for the study of damage producing mechanism in hot spots, and is also convenient for the estimation of the electron-hole densities in plasma columns created by heavy ions in semiconductor detectors. (author)

  17. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  18. Production of hot electrons in mirror systems associated with ECR heating with longitudinal input of microwaves

    International Nuclear Information System (INIS)

    Zhil'tsov, V.A.; Skovoroda, A.A.; Timofeev, A.V.; Kharitonov, K.Yu.; Shcherbakov, A.G.

    1991-01-01

    Almost all experiments on ECR plasma heating are accompanied by the formation of hot electrons (i.e., electrons with energy substantially greater than the average of the bulk population). In mirror systems these electrons may determine the basic energy content (β) of the plasma. In this paper, results are presented from experimental measurements of the hot electron population resulting from ECR heating of the plasma in OGRA-4. A theoretical model is developed which describes the hot electron dynamics and the propagation of electromagnetic oscillations in the plasma self-consistently. The results obtained with this model are in agreement with experimental data

  19. Hot Weather Tips

    Science.gov (United States)

    ... the person plenty of water and fruit or vegetable juice even if they say they’re not thirsty. No alcohol, coffee or tea. Seek medical help if you suspect dehydration. Light meals: Avoid hot, heavy meals and don’ ...

  20. China's 'Hot Money' Problems

    National Research Council Canada - National Science Library

    Martin, Michael F; Morrison, Wayne M

    2008-01-01

    .... The recent large inflow of financial capital into China, commonly referred to as "hot money," has led some economists to warn that such flows may have a destabilizing effect on China's economy...

  1. Statistical properties of laser hot spots produced by a random phase plate

    International Nuclear Information System (INIS)

    Rose, H.A.; DuBois, D.F.

    1993-01-01

    A quantitative theory of laser hot spots, which control plasma instabilities in real laser--plasma interactions, is presented in the case of random phase plate (RPP) optics. It is shown that the probability density of intense hot spots with intensity I, P hot (I), is given by P hot (I)∼(I/I 0 2 )exp(-I/I 0 ) where I 0 is the average intensity, and that the detailed amplitude and phase variation of the laser field in the vicinity of an intense hot spot is uniquely specified by the optics and is deterministic. These hot spots may be the source of below threshold stimulated Raman scattering (SRS) and its variation with I 0 is shown to be super exponential. A brief preview of a quantitative nonlinear theory of hot-spot-induced laser filamentation is presented

  2. Hot Water Bathing Impairs Training Adaptation in Elite Teen Archers.

    Science.gov (United States)

    Hung, Ta-Cheng; Liao, Yi-Hung; Tsai, Yung-Shen; Ferguson-Stegall, Lisa; Kuo, Chia-Hua; Chen, Chung-Yu

    2018-04-30

    Despite heat imposes considerable physiological stress to human body, hot water immersion remains as a popular relaxation modality for athletes. Here we examined the lingering effect of hot tub relaxation after training on performance-associated measures and dehydroepiandrosterone sulfate (DHEA-S) in junior archers. Ten national level archers, aged 16.6 ± 0.3 years (M = 8, F = 2), participated in a randomized counter-balanced crossover study after baseline measurements. In particular, half participants were assigned to the hot water immersion (HOT) group, whereas another halves were assigned to the untreated control (CON) group. Crossover trial was conducted following a 2-week washout period. During the HOT trial, participants immersed in hot water for 30 min at 40°C, 1 h after training, twice a week (every 3 days) for 2 weeks. Participants during CON trial sat at the same environment without hot water after training. Performance-associated measures and salivary DHEA-S were determined 3 days after the last HOT session. We found that the HOT intervention significantly decreased shooting performance (CON: -4%; HOT: -22%, P HOT: -16%, P HOT: -60%, P < 0.05) of archers, compared with untreated CON trial. No group differences were found in motor unit recruitment (root mean square electromyography, RMS EMG) of arm muscles during aiming, autonomic nervous activity (sympathetic and vagal powers of heart rate variability, HRV), and plasma cortisol levels after treatments. Our data suggest that physiological adaptation against heat exposure takes away the sources needed for normal training adaptation specific to shooting performance in archers.

  3. Development of a high resolution cylindrical crystal spectrometer for line shape and spectral diagnostics of x-rays emitted from - hot - plasmas. Final report, June 1, 1976-December 31, 1983

    International Nuclear Information System (INIS)

    Kaellne, E.G.

    1984-01-01

    The development, installation and evaluation of a high resolution X-ray spectroscopic diagnostics are reported. The approach has been to optimize spectrometer throughput to enable single shot plasma diagnostics with good time resolution and to ensure sufficient energy resolution to allow line profile analysis. These goals have been achieved using a new X-ray geometry combined with a new position sensitive X-ray detector. These diagnostics have been used at Alcator C to detect X-ray emission of highly ionized impurity elements as well as argon seed elements specially introduced into the plasma for this diagnostic. Temporally resolved ion temperature profiles have been obtained from the recorded X-ray spectra simultaneously with other plasma parameters such as electron temperature, ionization temperature and ionization stage distribution. Radial profiles have also been measured. The developed X-ray diagnostics thus serve as a major multiparameter probe of the central core of the plasma with complementary informtion on radial profiles

  4. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  5. Study of hot electrons in a ECR ion source

    International Nuclear Information System (INIS)

    Barue, C.

    1992-12-01

    The perfecting of diagnosis connected with hot electrons of plasma, and then the behaviour of measured parameters of plasma according to parameters of source working are the purpose of this thesis. The experimental results obtained give new information on hot electrons of an ECR ion source. This thesis is divided in 4 parts: the first part presents an ECR source and the experimental configuration (ECRIS physics, minimafios GHz, diagnosis used); the second part, the diagnosis (computer code of cyclotron emission and calibration); the third part gives experimental results in continuous regime (emission cyclotron diagnosis, bremsstrahlung); the fourth part, experimental results in pulsed regime (emission cyclotron diagnosis, diamagnetism) calibration)

  6. HotRegion: a database of predicted hot spot clusters.

    Science.gov (United States)

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  7. Studies of Hot Spots in Imploding Wire Arrays at 1 MA on COBRA

    International Nuclear Information System (INIS)

    Pikuz, Sergey A.; Shelkovenko, Tatiana A.; McBride, Ryan D.; Hammer, David A.

    2009-01-01

    We present recent results from hot spot investigations in imploding Al wire array z-pinches on the COBRA generator at Cornell University using x-ray diagnostics. Measurements of the temporal and spatial distribution of hot spots in stagnating plasmas by an x-ray streak-camera are included. Experiments show that hot spots have nanosecond lifetime and appear randomly along the array axis after plasma stagnation in secondary pinches in 8 mm diameter and during plasma stagnation in the arrays with 4 mm diameter.

  8. Random phase plate hot spots and their effect on stimulated Brillouin backscatter and self-focusing

    International Nuclear Information System (INIS)

    Rose, H.A.

    1995-01-01

    Laser hot spots, as determined by Random Phase Plate (RPP) hot spots, control the critical value of the average intensity, I c , at which there is a rapid onset of stimulated scatter in the strongly damped convective regime of three wave parametric instabilities. For the case of stimulated Brillouin backscatter in a long scale length plasma, nascent hot spot ponderomotive self-focusing is shown to reduce the value of I c in the regime of very strongly damped acoustic waves. RPP hot spots have two, intrinsically nonlinear, thresholds for ponderomotive self-focusing. Large intensity amplifications occur in the hot spot neighborhood when the hot spot power exceeds a certain critical power, P c , which is independent of the optic's f number, F. When the second, F-dependent, hot spot power threshold is exceeded, a filament emerges from the far side of the hot spot, whose extent grows erratically in time

  9. Density and field effect on electron-ion collision cross-sections in hot dense plasma; Etude de l'influence de l'environnement plasma sur les sections efficaces d'excitation collisionnelle electron-ion dans un plasma chaud et dense

    Energy Technology Data Exchange (ETDEWEB)

    Gaufridy de Dortan, F. de

    2003-03-15

    Collisional excitation cross-sections are essential for the modeling of the properties of non equilibrium plasmas. There has been a lot of work on electron impact excitation of isolated ions, but in dense plasmas, neighboring particles are expected to widely disturb these electron transitions in atoms. Plasma modeling through a radially perturbed potential has already been done but is not satisfactory as it does not account for levels degeneracy breaking and its consequences. Introduction of a quasistatic electric micro-field of neighboring ions allows us to break spherical symmetry. Our original theoretical study has given birth to a numerical code that accurately computes collisional strengths and rates (in the Distorted Waves approach) in atoms submitted to a realistic micro-field. Hydrogen- and helium-like aluminium is studied. Stark mixing widely increases rates of transitions from high l levels and forbidden transitions are field-enhanced by many orders of magnitude until they reach allowed ones. Eventually, we conduct an elementary stationary collisional radiative study to investigate field-enhancement effects on corresponding line shapes. In cases we study (aluminium, hydrogen- and helium-like) we find a relatively weak increase of K-shell line broadening.

  10. Plasma expansion: fundamentals and applications

    International Nuclear Information System (INIS)

    Engeln, R; Mazouffre, S; Vankan, P; Bakker, I; Schram, D C

    2002-01-01

    The study of plasma expansion is interesting from a fundamental point of view as well as from a more applied point of view. We here give a short overview of the way properties like density, velocity and temperature behave in an expanding thermal plasma. Experimental data show that the basic phenomena of plasma expansion are to some extent similar to those of the expansion of a hot neutral gas. From the application point of view, we present first results on the use of an expanding thermal plasma in the plasma-activated catalysis of ammonia, from N 2 -H 2 mixtures

  11. Corpuscular plasma diagnostics

    International Nuclear Information System (INIS)

    Afrosimov, V.; Petrov, M.

    1984-01-01

    An elementary explanation is presented of the physical principles and important methods of corpuscular plasma diagnostics. The invaluable role of corpuscular methods for measuring the hot plasma ion component in thermonuclear facilities, especially hydrogen ions in tokamaks, is emphasized. All corpuscular methods employ analysis of fast neutral atoms and therefore the mechanism of their creation inside a hot plasma is explained first. The ammount of information obtainable from spectra of fast neutrals is discussed. Multichannel analyzers developed at the FTI A.F. Ioffe in Leningrad are described in detail. Classical passive corpuscular diagnostics are examined as are active methods using artifitial beams of hydrogen atoms. The method used for obtaining local values of ion temperature and density is explained. Corpuscular spectroscopic diagnostics and its application for measuring impurities is mentioned. (J.U.)

  12. Stimulated Raman scattering and hot-electron production

    International Nuclear Information System (INIS)

    Drake, R.P.; Turner, R.E.; Lasinski, B.F.; Estabrook, K.G.; Campbell, E.M.; Wang, C.L.; Phillion, D.W.; Williams, E.A.; Kruer, W.L.

    1985-01-01

    High-intensity laser light can excite parametric instabilities that scatter or absorb it. One instability that can arise when laser light penetrates a plasma is sub-quarter-critical stimulated Raman (SQSR) scattering. It occurs below the quarter-critical density of the incident light and involves the decay of the incident light wave into a scattered light wave and electron plasma wave. The scattered-light wavelength ranges from 1 to 2 times that of the incident light, depending on the plasma density and temperature. This article reports studies of SQSR scattering and hot-electron production in plasmas produced by irradiating thick gold targets with up to 4 kJ of 0.53-μm light in 1-ns (FWHM) pulses. These studies have important implications for laser fusion. Hot electrons attributed to the SQSR instability can increase the difficulty of achieving high-gain implosions by penetrating and preheating the fusion fuel

  13. Substorm processes in the magnetotail - Comments on 'On hot tenuous plasmas, fireballs, and boundary layers in the earth's magnetotail' by L. A. Frank, K. L. Ackerson, and R. P. Lepping

    Science.gov (United States)

    Hones, E. W., Jr.

    1977-01-01

    Various theories regarding the magnetotail are reviewed and discussed. These include the work of Dungey (1961) and Eastman et al., (1976) regarding the generation of the magnetotail, Frank et al., (1976) concerning the so-called magnetotail fireball and its characteristics, and Hones et al., (1976 and 1976a) on the formation of a neutral line across the near-earth plasma sheet near the substorm onset. A detailed discussion of a fireball encounter during 0900-1400 UT in April 1974 is presented, noting plasma and magnetic phenomena observed, and magnetic records from the earth. A critique is made by Hones of the interpretation of this fireball made by Frank et al. In an accompanying reply, Frank et al. comment on the observations made by Hones, with attention to the most evident discrepancy between the two theories, i.e., the generation of large closed magnetic loops in the plasma sheet during magnetic substorms.

  14. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  15. Utilizing hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Nozik, Arthur J.

    2018-03-01

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  16. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abdel-Rassoul, A.A.

    1983-01-01

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  17. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    Science.gov (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  18. Software Simulation of Hot Tearing

    DEFF Research Database (Denmark)

    Andersen, S.; Hansen, P.N.; Hattel, Jesper Henri

    1999-01-01

    The brittleness of a solidifying alloy in a temperature range near the solidus temperature has been recognised since the fifties as the mechanism responsible for hot tearing. Due to this brittlenes, the metal will crack under even small amounts of strain in that temperature range. We see these hot...... tears in castings close to hot centres, where the level of strain is often too high.Although the hot tearing mechanism is well understood, until now it has been difficult to do much to reduce the hot tearing tendency in a casting. In the seventies, good hot tearing criteria were developed by considering...... the solidification rate and the strain rate of the hot tear prone areas. But, until recently it was only possible to simulate the solidification rate, so that the criteria could not be used effectively.Today, with new software developments, it is possible to also simulate the strain rate in the hot tear prone areas...

  19. Hot Fuel Examination Facility (HFEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  20. Competition of circularly polarized laser modes in the modulation instability of hot magnetoplasma

    International Nuclear Information System (INIS)

    Sepehri Javan, N.

    2013-01-01

    The present study is aimed to investigate the problem of modulation instability of an intense laser beam in the hot magnetized plasma. The propagation of intense circularly polarized laser beam along the external magnetic field is considered using a relativistic fluid model. The nonlinear equation describing the interaction of laser pulse with magnetized hot plasma is derived in the quasi-neutral approximation, which is valid for hot plasma. Nonlinear dispersion equation for hot plasma is obtained. For left- and right-hand polarizations, the growth rate of instability is achieved and the effect of temperature, external magnetic field, and kind of polarization on the growth rate is considered. It is observed that for the right-hand polarization, increase of magnetic field leads to the increasing of growth rate. Also for the left-hand polarization, increase of magnetic field inversely causes decrease of the growth rate.

  1. Hot spot formation on different tokamak wall materials

    International Nuclear Information System (INIS)

    Nedospasov, A.V.; Bezlyudny, I.V.

    1998-01-01

    The thermal contraction phenomenon and generation of 'hot spots' due to thermoemission were described. The paper consider non-linear stages of heat contraction on the graphite, beryllium, tungsten and vanadium wall. It is shown that on the beryllium surface hot spot can't appear due to strong cooling by sublimation. For other materials the conditions of hot spot appearance due to local superheating of the wall have been calculated and their parameters were found: critical surface temperature, size of spots and their temperature profiles, heat fluxes from plasma to the spots. It have been calculated fluxes of sublimating materials from spots to the plasma. It is noticed that nominal temperature of the grafite divertor plate, accepted in ITER's project to being equal 1500 C, is lower then critical temperature of the development heat contraction due to thermoemission. (orig.)

  2. Statistical analysis of the sizes and velocities of laser hot spots of smoothed beams

    International Nuclear Information System (INIS)

    Garnier, J.; Videau, L.

    2001-01-01

    This paper presents a precise description of the characteristics of the hot spots of a partially coherent laser pulse. The average values of the sizes and velocities of the hot spots are computed, as well as the corresponding probability density functions. Applications to the speckle patterns generated by optical smoothing techniques for uniform irradiation in plasma physics are discussed

  3. On the origin of the warm-hot absorbers in the Milky Way's halo

    NARCIS (Netherlands)

    Marasco, A.; Marinacci, F.; Fraternali, F.

    2013-01-01

    Disc galaxies like the Milky Way are expected to be surrounded by massive coronae of hot plasma that may contain a significant fraction of the so-called missing baryons. We investigate whether the local (vertical bar v(LSR)vertical bar <400 km s(-1)) warm-hot absorption features observed towards

  4. Dynamics of Pierce instability of hot electron beams

    International Nuclear Information System (INIS)

    Ignatov, A.M.; Novikov, V.N.

    1986-01-01

    On the base of a new method of numerical solution of the Vlasov equation evolution of complete function of electron distribution at the injection of hot electron beams into plasma bounded with electrodes is investigated. It is shown that despite the development of electrostatic instabilities in the system the currents can run substantially exceeding the Pierce critical current

  5. Hot subluminous star: HDE 283048

    International Nuclear Information System (INIS)

    Laget, M.; Vuillemin, A.; Parsons, S.B.; Henize, K.G.; Wray, J.D.

    1978-01-01

    The star HDE 283048, located at α = 3/sup h/50/sup m/.3, delta = +25 0 36', shows a strong ultraviolet continuum. Ground-based observations indicate a hot-dominated composite spectrum. Several lines of evidence suggest that the hot component is a hot subdwarf. 2 figures

  6. Observation of electron plasma waves in plasma of two-temperature electrons

    International Nuclear Information System (INIS)

    Ikezawa, Shunjiro; Nakamura, Yoshiharu.

    1981-01-01

    Propagation of electron plasma waves in a large and unmagnetized plasma containing two Maxwellian distributions of electrons is studied experimentally. Two kinds of plasma sources which supply electrons of different temperature are used. The temperature ratio is about 3 and the density ratio of hot to cool electrons is varied from 0 to 0.5. A small contamination of hot electrons enhances the Landau damping of the principal mode known as the Bohm-Gross mode. When the density of hot electrons is larger than about 0.2, two modes are observed. The results agree with theoretical dispersion relations when excitation efficiencies of the modes are considered. (author)

  7. Refurbishment of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Rosenberg, K.; Henslee, S.P.; Michelbacher, J.A.; Coleman, R.M.

    1997-01-01

    An Analytical Laboratory Hot Cell (ALHC) Facility at Argonne National Laboratory-West (ANL-W) was in service for nearly thirty years. In order to comply with DOE regulations governing such facilities and meet ANL-W programmatic requirements, a major refurbishment effort was undertaken. All penetrations within the facility were sealed; the ventilation system was redesigned, upgraded and replaced; the manipulators were replaced; the hot cell windows were removed, refurbished, and reinstalled; all hot cell utilities were replaced; a lead-shielded glovebox housing an Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES) System was interfaced with the hot cells, and a new CO2 fire suppression system and other ALHC support equipment were installed

  8. Hot chocolate effect

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1982-01-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments

  9. Hot water reticulation

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, S. K.

    1977-10-15

    Hot water reticulation (district heating) is an established method of energy supply within cities in many countries. It is based on the fact that heat can often be obtained cheaply in bulk, and that the resultant savings can, in suitable circumstances, justify the investment in a reticulation network of insulated pipes to distribute the heat to many consumers in the form of hot water or occasionally steam. The heat can be used by domestic, commercial, and industrial consumers for space heating and water heating, and by industries for process heat. The costs of supplying domestic consumers can be determined by considering an average residential area, but industrial and commercial consumers are so varied in their requirements that every proposal must be treated independently. Fixed costs, variable costs, total costs, and demand and resource constraints are discussed.

  10. The hot chocolate effect

    Science.gov (United States)

    Crawford, Frank S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  11. Hot air balloon engine

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd, 12 Lentara Street, Kenmore, Brisbane 4069 (Australia)

    2009-04-15

    This paper describes a solar powered reciprocating engine based on the use of a tethered hot air balloon fuelled by hot air from a glazed collector. The basic theory of the balloon engine is derived and used to predict the performance of engines in the 10 kW to 1 MW range. The engine can operate over several thousand metres altitude with thermal efficiencies higher than 5%. The engine thermal efficiency compares favorably with the efficiency of other engines, such as solar updraft towers, that also utilize the atmospheric temperature gradient but are limited by technical constraints to operate over a much lower altitude range. The increased efficiency allows the use of smaller area glazed collectors. Preliminary cost estimates suggest a lower $/W installation cost than equivalent power output tower engines. (author)

  12. The ''hot'' patella

    International Nuclear Information System (INIS)

    Kipper, M.S.; Alazraki, N.P.; Feiglin, D.H.

    1982-01-01

    Increased patellar uptake on bone scans is seen quite commonly but the possible or probable etiologies of this finding have not been previously well described. A review of 100 consecutive bone scans showed that the incidence of bilateral ''hot'' patellae is 15%. Identified etiologies include osteoarthritic degenerative disease (35%), fracture, possible metastatic disease, bursitis, Paget's disease, and osteomyelitis. The value of careful history, physical examination, and radiographs is stressed

  13. Hot nuclei and fragmentation

    International Nuclear Information System (INIS)

    Guerreau, D.

    1993-01-01

    A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs

  14. 'Hot particle' intercomparison dosimetry

    International Nuclear Information System (INIS)

    Kaurin, D.G.L.; Baum, J.W.; Charles, M.W.; Darley, D.P.J.; Durham, J.S.; Scannell, M.J.; Soares, C.G.

    1996-01-01

    Dosimetry measurements of four 'hot particles' were made at different density thickness values using five different methods. The hot particles had maximum dimensions of 650 μm and maximum beta energies of 0.97, 046, 0.36, and 0.32 MeV. Absorbers were used to obtain the dose at different depths for each dosimeter. Measurements were made using exoelectron dosimeters, an extrapolation chamber, NE Extremity Tape Dosimeters (tm), Eberline RO-2 and RO-2A survey meters, and two sets of GafChromic (tm) dye film with each set read out at a different institution. From these results the dose was calculated averaged over 1 cm 2 of tissue at 18, 70, 125, and 400 μm depth. Comparisons of tissue-dose averaged over 1 cm 2 for 18, 70, and 125 μm depth based on interpolated measured values, were within 30% for the GafChromic (tm) dye film, extrapolation chamber, NE Extremity Tape Dosimeters (tm), and Eberline RO-2 and 2A (tm) survey meters except for the hot particle with 0.46 MeV maximum beta energy. The results for this source showed differences of up to 60%. The extrapolation chamber and NE Extremity Tape dosimeters under-responded for measurements at 400 μm by about a factor of 2 compared with the GafChromic dye films for two hot particles with maximum beta energy of 0.32 and 0.36 MeV which each emitted two 100% 1 MeV photons per disintegration. Tissue doses determined using exoelectron dosimeters were a factor of 2 to 5 less than those determined using other dosimeters, possibly due to failures of the equipment. (author)

  15. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  16. Rippled plasma wall accelerating structures

    International Nuclear Information System (INIS)

    Cavenago, M.

    1992-01-01

    A concept to form a hot, pulsed, inhomogeneous plasma and to use it as a linac structure is presented. The plasma spatial distribution is controlled by an external magnetic field and by the location of thermionic emitters; microwave ECR heating at frequency ω 1 favours plasma build up and reduces plasma resistivity. A shorter microwave pulse with frequency ω 2 ≠ ω 1 excites a longitudinal mode. An expression for the maximum attainable accelerating field is found. A linearized theory of accelerating modes is given. (Author) 6 refs., 3 figs

  17. Application and research of special waste plasma disposal technology

    International Nuclear Information System (INIS)

    Lan Wei

    2007-12-01

    The basic concept of plasma and the principle of waste hot plasma disposal technology are simply introduced. Several sides of application and research of solid waste plasma disposal technology are sumed up. Compared to the common technology, the advantages of waste hot plasma disposal technology manifest further. It becomes one of the most prospective and the most attended high tech disposal technology in particular kind of waste disposal field. The article also simply introduces some experiment results in Southwest Institute of Physics and some work on the side of importation, absorption, digestion, development of foreign plasma torch technology and researching new power sources for plasma torch. (authors)

  18. Hot-ion Bernstein wave with large kparallel

    International Nuclear Information System (INIS)

    Ignat, D.W.; Ono, M.

    1995-01-01

    The complex roots of the hot plasma dispersion relation in the ion cyclotron range of frequencies have been surveyed. Progressing from low to high values of perpendicular wave number k perpendicular we find first the cold plasma fast wave and then the well-known Bernstein wave, which is characterized by large dispersion, or large changes in k perpendicular for small changes in frequency or magnetic field. At still higher k perpendicular there can be two hot plasma waves with relatively little dispersion. The latter waves exist only for relatively large k parallel, the wave number parallel to the magnetic field, and are strongly damped unless the electron temperature is low compared to the ion temperature. Up to three mode conversions appear to be possible, but two mode conversions are seen consistently

  19. Emerging hot spot analysis

    DEFF Research Database (Denmark)

    Reinau, Kristian Hegner

    Traditionally, focus in the transport field, both politically and scientifically, has been on private cars and public transport. Freight transport has been a neglected topic. Recent years has seen an increased focus upon congestion as a core issue across Europe, resulting in a great need for know...... speed data for freight. Secondly, the analytical methods used, space-time cubes and emerging hot spot analysis, are also new in the freight transport field. The analysis thus estimates precisely how fast freight moves on the roads in Northern Jutland and how this has evolved over time....

  20. Progress in hot pressing

    International Nuclear Information System (INIS)

    Brodhag, C.; Thevenot, F.

    1988-01-01

    An experimental technique is described to study hot pressing of ceramics under conditions of controlled temperature and pressure during both the heating and final sintering stages. This method gives a better control of the final microstructure of the material. Transformation mechanisms can be studied during initial heating stage (impurity degasing, reaction, phase transformation, mechanical behavior of intergranular phase...) using computer control and graphical data representations. Some examples will be given for different systems studied in our laboratory: B (α, β, amorphous), B 12 O 2 (reaction of B + B 2 O 3 ), Si 3 N 4 ( + additives), TiN, Al 2 O 3 + AlON,ZrC

  1. Multipurpose reprocessing hot cell

    International Nuclear Information System (INIS)

    Fletcher, R.D.

    1975-01-01

    A multipurpose hot cell is being designed for use at the Idaho Chemical Processing Plant for handling future scheduled fuels that cannot be adequately handled by the existing facilities and equipment. In addition to providing considerable flexibility to handle a wide variety of fuel sizes up to 2,500 lb in weight the design will provide for remote maintenance or replacement of the in-cell equipment with a minimum of exposure to personnel and also provide process piping connections for custom processing of small quantities of fuel. (auth)

  2. Protective plasma envelope

    International Nuclear Information System (INIS)

    Bocharov, V.N.; Konstantinov, S.G.; Kudryavtsev, A.M.; Myskin, O.K.; Panasyuk, V.M.; Tsel'nik, F.A.

    1984-06-01

    A method of creating an annular plasma envelope used to protect the hot plasma from flows of impurities and gases from the walls of the vacuum chamber is described. The diameter of the envelope is 30 cm, the thickness of the wall is 1.5 cm, the length is 2.5 m, and its density is from 10 13 to 10 14 cm -3 . The envelope attenuates the incident (from outside) flow of helium 10-fold and the low of hydrogen 20-fold

  3. Simulations of Electron Transport in Laser Hot Spots

    International Nuclear Information System (INIS)

    Brunner, S.; Valeo, E.

    2001-01-01

    Simulations of electron transport are carried out by solving the Fokker-Planck equation in the diffusive approximation. The system of a single laser hot spot, with open boundary conditions, is systematically studied by performing a scan over a wide range of the two relevant parameters: (1) Ratio of the stopping length over the width of the hot spot. (2) Relative importance of the heating through inverse Bremsstrahlung compared to the thermalization through self-collisions. As for uniform illumination [J.P. Matte et al., Plasma Phys. Controlled Fusion 30 (1988) 1665], the bulk of the velocity distribution functions (VDFs) present a super-Gaussian dependence. However, as a result of spatial transport, the tails are observed to be well represented by a Maxwellian. A similar dependence of the distributions is also found for multiple hot spot systems. For its relevance with respect to stimulated Raman scattering, the linear Landau damping of the electron plasma wave is estimated for such VD Fs. Finally, the nonlinear Fokker-Planck simulations of the single laser hot spot system are also compared to the results obtained with the linear non-local hydrodynamic approach [A.V. Brantov et al., Phys. Plasmas 5 (1998) 2742], thus providing a quantitative limit to the latter method: The hydrodynamic approach presents more than 10% inaccuracy in the presence of temperature variations of the order delta T/T greater than or equal to 1%, and similar levels of deformation of the Gaussian shape of the Maxwellian background

  4. Residential solar hot water

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    This report examines the feasibility of using solar energy to preheat domestic water coming from the city supply at a temperature of approximately 4{degree}C. Four solar collectors totalling 7 m{sup 2} were installed on a support structure facing south at an angle of 60{degree} from the horizontal. The system worked most efficiently in the spring and early summer when the combination of long hours of sunshine, clean air and clear skies allowed for maximum availability of solar radiation. Performance dropped in late summer and fall mainly due to cloudier weather conditions. The average temperature in the storage tank over the 10 months of operation was 42{degree}C, ranging from a high of 83{degree}C in July to a low of 6{degree}C in November. The system provided a total of 7.1 GJ, which is approximately one-third the annual requirement for domestic hot water heating. At the present time domestic use of solar energy to heat water does not appear to be economically viable. High capital costs are the main problem. As a solar system with present day technology can only be expected to meet half to two-thirds of the hot water energy demand the savings are not sufficient for the system to pay for itself within a few years. 5 figs.

  5. Use of a hot sheath Tormac for advance fuels

    International Nuclear Information System (INIS)

    Levine, M.A.

    1977-01-01

    The use of hot electrons in a Tormac sheath is predicted to improve stability and increase ntau by an order of magnitude. An effective ntau for energy containment is derived and system parameters for several advance fuels are shown. In none of the advance fuels cases considered is a reactor with fields greater than 10 Wb or major plasma radius of more than 3 m required for ignition. Minimum systems have power output of under 100 MW thermal. System parameters for a hot sheath Tormac have a wide latitude. Sizes, magnetic fields, operating temperatures can be chosen to optimize engineering and economic considerations

  6. New method to determine structures in thermonuclear plasmas; Nieuwe methode voor de bepaling van structuren in thermonucleaire plasma`s

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, C.P. [FOM-Instituut voor Plasmafysica Rijnhuizen, Nieuwegein (Netherlands)

    1998-01-01

    The information from tomographic methods is not always sufficient to determine fast changing structures, e.g. very hot plasmas. A new method has been developed by means of which, among other things, physical mechanisms of plasma instability can be disentangled. 4 refs.

  7. Hot springs in Hokuriku District

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K. (Hot Springs Research Center, Japan)

    1971-01-01

    In the Hokuriku district including Toyama, Ishikawa, and Fukui Prefectures, hot springs of more than 25/sup 0/C were investigated. In the Toyama Prefecture, there are 14 hot springs which are located in an area from the Kurobe River to the Tateyama volcano and in the mountainous area in the southwest. In Ishikawa Prefecture there are 16 hot springs scattered in Hakusan and its vicinity, the Kaga mountains, and in the Noto peninsula. In northern Fukui Prefecture there are seven hot springs. The hot springs in Shirakawa in Gifu Prefecture are characterized as acid springs producing exhalations and H/sub 2/S. These are attributed to the Quaternary volcanoes. The hot springs of Wakura, Katayamazu, and Awara in Ishikawa Prefecture are characterized by a high Cl content which is related to Tertiary andesite. The hot springs of Daishoji, Yamanaka, Yamashiro, Kuritsu, Tatsunokuchi, Yuwaku, and Yunotani are characterized by a low HCO/sub 3/ content. The Ca and SO/sub 4/ content decreases from east to west, and the Na and Cl content increases from west to east. These fluctuations are related to the Tertiary tuff and rhyolite. The hot springs of Kuronagi, Kinshu, and Babadani, located along the Kurobe River are characterized by low levels of dissolved components and high CO/sub 2/ and HCO/sub 3/ content. These trends are related to late Paleozoic granite. Hot springs resources are considered to be connected to geothermal resources. Ten tables, graphs, and maps are provided.

  8. Multifunctional Hot Structure Heat Shield

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is performing preliminary development of a Multifunctional Hot Structure (HOST) heat shield for planetary entry. Results of this development will...

  9. Model for ion confinement in a hot-electron tandem mirror anchor

    International Nuclear Information System (INIS)

    Baldwin, D.E.

    1980-01-01

    Anisotropic, hot electrons trapped in local minimum-B wells have been proposed as MHD-stabilizing anchors to an otherwise axisymmetric tandem configuration. This work describes a model for plasma confinement between the anchors and the remainder of the system and calcuates the power loss implied by maintenance of this plasma

  10. The compressional Alfven instability in ECRH plasmas

    International Nuclear Information System (INIS)

    El Nadi, A.

    1982-01-01

    It is shown that the hot electron component present in an electron cyclotron resonance heated plasma can destabilize the compressional Alfven wave if β of the background plasma exceeds a certain limit. The relevance of the result to the Elmo Bumpy Torus experiment is discussed. (author)

  11. Measurements of hot spots and electron beams in Z-pinch devices

    International Nuclear Information System (INIS)

    Deeney, C.

    1988-04-01

    Hot spots and Electron Beams have been observed in different types of Z-pinches. There is, however, no conclusive evidence on how either are formed although there has been much theoretical interest in both these phenomena. In this thesis, nanosecond time resolved and time correlated, X-ray and optical diagnostics, are performed on two different types of Z-pinch: a 4 kJ, 30 kV Gas Puff Z-pinch and a 28 kJ, 60 kV Plasma Focus. The aim being to study hot spots and electron beams, as well as characterise the plasma, two different Z-pinch devices. Computer codes are developed to analyse the energy and time resolved data obtained in this work. These codes model both, X-ray emission from a plasma and X-ray emission due to electron beam bombardment of a metal surface. The hot spot and electron beam parameters are measured, from the time correlated X-ray data using these computer codes. The electron beams and the hot spots are also correlated to the plasma behaviour and to each other. The results from both devices are compared with each other and with the theoretical work on hot spot and electron beam formation. A previously unreported 3-5 keV electron temperature plasma is identified, in the gas puff Z-pinch plasma, prior to the formation of the hot spots. it is shown, therefore, that the hot spots are more dense but not hotter than the surrounding plasma. Two distinct periods of electron beam generation are identified in both devices. (author)

  12. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  13. Stationary quenching wave in magnetized plasma

    International Nuclear Information System (INIS)

    Alikhanov, S.G.; Glushkov, I.S.

    1976-01-01

    The interaction of a magnetized hot plasma (ωsub(e)tau sub(e)>>1) with cold plasma or a gas leads to the appearanci of a cooling wave. The transition layer between hot and cold plasma is the main source of radiation losses which should be compensated by a heat flow from the hot region. A stationary state is considered, equations are written in the system in which temperature and magnetic field profiles are steady, and the plasma flux with magnetic field passes through the cooling wave. Calculations, have been carried out on a computer. The dependence of the magnetized plasma flux velocity Vsub(r) on the ratio p/Hsub(r) is shown, where p is the pressure, Hsub(r) is the magnetic field in the hot reqion. The dependence of the characteristic dimension of the cooling wave on the magnetic field is determined for the hot plasma region. A considerable fraction of the rediation losses is shown to fall to the region of (ωsub(e)tausub(e)< or approximately)1

  14. Waves in inhomogeneous plasma of cylindrical geometry

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1966-01-01

    The conductivity tensor of a hot and inhomogeneous plasma has been calculated for a cylindrical geometry using Vlasov equations. The method used consists in a perturbation method involving the first integrals of the unperturbed movement. The conductivity tensor will be particularly useful for dealing with stability problems. In the case of a cold plasma the wave equation giving the electric fields as a function of the radius is obtained. This equation shows the existence of resonant layers which lead to an absorption analogous to the Landau absorption in a hot plasma. (author) [fr

  15. Hot cell verification facility update

    International Nuclear Information System (INIS)

    Titzler, P.A.; Moffett, S.D.; Lerch, R.E.

    1985-01-01

    The Hot Cell Verification Facility (HCVF) provides a prototypic hot cell mockup to check equipment for functional and remote operation, and provides actual hands-on training for operators. The facility arrangement is flexible and assists in solving potential problems in a nonradioactive environment. HCVF has been in operation for six years, and the facility is a part of the Hanford Engineering Development Laboratory

  16. Plasma density profiles and finite bandwidth effects on electron heating

    International Nuclear Information System (INIS)

    Spielman, R.B.; Mizuno, K.; DeGroot, J.S.; Bollen, W.M.; Woo, W.

    1980-01-01

    Intense, p-polarized microwaves are incident on an inhomogeneous plasma in a cylindrical waveguide. Microwaves are mainly absorbed by resonant absorption near the critical surface (where the plasma frequency, ω/sub pe/, equals the microwave frequency, ω/sub o/). The localized plasma waves strongly modify the plasma density. Step-plateau density profiles or a cavity are created depending on the plasma flow speed. Hot electron production is strongly affected by the microwave bandwidth. The hot electron temperature varies as T/sub H/ is proportional to (Δ ω/ω) -0 25 . As the hot electron temperature decreases with increasing driver bandwidth, the hot electron density increases. This increase is such that the heat flux into the overdense region (Q is proportional to eta/sub H/T/sub H/ 3 2 ) is nearly constant

  17. Hot spots on the neutralizer plates of a tokamak

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.

    1991-01-01

    The formation of hot spots on the neutralizing surfaces of tokamaks may be one of the reasons for the entry of large impurity fluxes into the plasmas of TFTR and JET (the so-called carbon catastrophe or carbon bloom) with high auxiliary heating powers. At this time it is unclear whether these hot spots are caused just by nonuniformities on the neutralizer surface or whether their appearance is the result of some more general behavior, with the surface nonuniformities only showing up as seed perturbations. In this paper it is shown that hot spots can also develop on smooth surfaces of carbon neutralizer plates as a result of the contraction of a heat flux incident on the plates

  18. Antenna Impedance Measures in a Magnetized Plasma. Part 1. Spherical Antenna

    National Research Council Canada - National Science Library

    Blackwell, David D; Walker, David N; Messer, Sarah J; Amatucci, William E

    2006-01-01

    .... The hot-filament argon plasma was varied between weakly (omega sub pe) and strongly (omega sub ce > omega sub pe) magnetized plasma with electron densities in the range 10 sup 7 - 10 sup 10 cm sup -3...

  19. Studies on laser–plasma interaction physics for shock ignition

    Czech Academy of Sciences Publication Activity Database

    Maheut, Y.; Batani, D.; Nicolai, Ph.; Antonelli, L.; Krouský, Eduard

    2015-01-01

    Roč. 170, č. 4 (2015), s. 325-336 ISSN 1042-0150 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 Keywords : shock ignition * plasma * hot electrons * shocks * fusion Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.472, year: 2015

  20. Collector floating potentials in a discharge plasma

    International Nuclear Information System (INIS)

    Cercek, M.; Gyergyek, T.

    1999-01-01

    We present the results of a study on electrode floating potential formation in a hot-cathode discharge plasma. The electron component of the plasma is composed from two populations. The high temperature component develops from primary electrons and the cool component from secondary electrons born by ionisation of cold neutral gas. A static, kinetic plasma-sheath model is use to calculate the pre-sheath potential and the floating potential of the electrode. For hot primary electrons a truncated Maxwellian distribution is assumed. The plasma system is also modelled numerically with a dynamic, electrostatic particle simulation. The plasma source injects temporally equal fluxes of ions and electrons with half-Maxwellian velocities. Again, the hot electron distribution is truncated in the high velocity tail. The plasma parameters, such as ion temperature and mass, electron temperatures, discharge voltages, etc. correspond to experimental values. The experimental measurements of the electrode floating potential are performed in weakly magnetised plasma produced with hot cathode discharge in argon gas. Theoretical, simulation and experimental results are compared and they agree very well.(author)

  1. Automatic plasma control in magnetic traps

    International Nuclear Information System (INIS)

    Samojlenko, Y.; Chuyanov, V.

    1984-01-01

    Hot plasma is essentially in thermodynamic non-steady state. Automatic plasma control basically means monitoring deviations from steady state and producing a suitable magnetic or electric field which brings the plasma back to its original state. Briefly described are two systems of automatic plasma control: control with a magnetic field using a negative impedance circuit, and control using an electric field. It appears that systems of automatic plasma stabilization will be an indispensable component of the fusion reactor and its possibilities will in many ways determine the reactor economy. (Ha)

  2. Ultra-dense hot low Z line transition opacity simulations

    International Nuclear Information System (INIS)

    Sauvan, P.; Minguez, E.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Martel, P.; Angelo, P.; Schott, R.; Philippe, F.; Leboucher-Dalimier, E.; Mancini, R.; Calisti, A.

    2002-01-01

    In this work two atomic physics models (the IDEFIX code using the dicenter model and the code based on parametric potentials ANALOP) have been used to calculate the opacities for bound-bound transitions in hot ultra-dense, low Z plasmas. These simulations are in connection with experiments carried out at LULI during the last two years, focused on bound-bound radiation. In this paper H-like opacities for aluminum and fluorine plasmas have been simulated, using both theoretical models, in a wide range of densities and temperatures higher than 200 eV

  3. Hot testing of coke

    Energy Technology Data Exchange (ETDEWEB)

    Balon, I D

    1976-07-01

    Earlier investigations failed to take full account of the factors affecting coke behavior within the blast furnace. An apparatus was accordingly developed for testing coke, based on a cyclone furnace where the sample could be held in a flow of hot oxidizing gases, simulating conditions in the blast furnace hearth. The results are said to be suitable for comprehensive assessment of the coke, including abrasive strength and its rate of gasification in a flow of carbon dioxide. Coke of size 6-10 mm tested at 1,100/sup 0/C in an atmosphere of oxidizing gases close to those obtaining in the blast furnace hearth, indicated that destruction and total gasification of the coke occurs after 5 minutes for a weak coke and 8 minutes for strong coke, depending on the physico-chemical and physico-mechanical properties of the particular coke. When samples were treated for a fixed period (3 minutes), the amount of coke remaining, and the percentage over 6 mm varied between 22 and 40 and between 4 and 7 percent respectively.

  4. Hot Hydrogen Test Facility

    International Nuclear Information System (INIS)

    W. David Swank

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed

  5. On the collinear singularity problem of hot QCD

    International Nuclear Information System (INIS)

    Candelpergher, B.; Grandou, T.

    2002-01-01

    The collinear singularity problem of hot QCD is revisited within a perturbative resummation scheme (PR) of the leading thermal fluctuations. On the basis of actual calculations, new aspects are discovered concerning the origin of the singularity plaguing the soft real photon emission rate out of a quark-gluon plasma at thermal equilibrium, when the latter is calculated by means of the Resummation Program (RP)

  6. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-01-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T eff > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  7. Hot workability of aluminium alloys

    International Nuclear Information System (INIS)

    Yoo, Yeon Chul; Oh, Kyung Jin

    1986-01-01

    Hot Workability of aluminium alloys, 2024, 6061 and 7075, has been studied by hot torsion tests at temperatures from 320 to 515 deg C and at strain rates from 1.26 x 10 -3 to 5.71 x 10 -3 sec -1 . Hot working condition of these aluminium alloys was determined quantitatively from the constitutive equations obtained from flow stress curves in torsion. Experimental data of the logarith of the Zener-Hollomonn parameter showed good linear relationships to the logarith of sinh(ασ-bar)

  8. Calculation of the fast ion tail distribution for a spherically symmetric hot spot

    Science.gov (United States)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-01

    The fast ion tail for a spherically symmetric hot spot is computed via the solution of a simplified Fokker-Planck collision operator. Emphasis is placed on describing the energy scaling of the fast ion distribution function in the hot spot as well as the surrounding cold plasma throughout a broad range of collisionalities and temperatures. It is found that while the fast ion tail inside the hot spot is significantly depleted, leading to a reduction of the fusion yield in this region, a surplus of fast ions is observed in the neighboring cold plasma region. The presence of this surplus of fast ions in the neighboring cold region is shown to result in a partial recovery of the fusion yield lost in the hot spot.

  9. Calculation of the fast ion tail distribution for a spherically symmetric hot spot

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Berk, H. L. [Department of Physics, University of Texas, Austin, Texas 78712 (United States)

    2014-10-15

    The fast ion tail for a spherically symmetric hot spot is computed via the solution of a simplified Fokker-Planck collision operator. Emphasis is placed on describing the energy scaling of the fast ion distribution function in the hot spot as well as the surrounding cold plasma throughout a broad range of collisionalities and temperatures. It is found that while the fast ion tail inside the hot spot is significantly depleted, leading to a reduction of the fusion yield in this region, a surplus of fast ions is observed in the neighboring cold plasma region. The presence of this surplus of fast ions in the neighboring cold region is shown to result in a partial recovery of the fusion yield lost in the hot spot.

  10. Hot Hydrogen Heat Source Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a  hot hydrogen heat source that would produce  a high temperature hydrogen flow which would be comparable to that produced...

  11. The decay of hot nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs

  12. Mercury content in Hot Springs

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, R

    1974-01-01

    A method of determination of mercury in hot spring waters by flameless atomic absorption spectrophotometry is described. Further, the mercury content and the chemical behavior of the elementary mercury in hot springs are described. Sulfide and iodide ions interfered with the determination of mercury by the reduction-vapor phase technique. These interferences could, however, be minimized by the addition of potassium permanganate. Waters collected from 55 hot springs were found to contain up to 26.0 ppb mercury. High concentrations of mercury have been found in waters from Shimoburo Springs, Aomori (10.0 ppb), Osorezan Springs, Aomori (1.3 approximately 18.8 ppb), Gosyogake Springs, Akita (26.0 ppb), Manza Springs, Gunma (0.30 approximately 19.5 ppb) and Kusatu Springs, Gunma (1.70 approximately 4.50 ppb). These hot springs were acid waters containing a relatively high quantity of chloride or sulfate.

  13. Do scientists trace hot topics?

    Science.gov (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  14. Plasma turbulence

    International Nuclear Information System (INIS)

    Horton, W.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates

  15. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1990-06-01

    This paper discusses the following topics: MHD plasma activity: equilibrium, stability and transport; statistical analysis; transport studies; edge physics studies; wave propagation analysis; basic plasma physics and fluid dynamics; space plasma; and numerical methods

  16. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  17. Cold versus hot fusion deuterium branching ratios

    International Nuclear Information System (INIS)

    Fox, H.; Bass, R.

    1995-01-01

    A major source of misunderstanding of the nature of cold nuclear fusion has been the expectation that the deuterium branching ratios occurring within a palladium lattice would be consistent with the gas-plasma branching ratios. This misunderstanding has led to the concept of the dead graduate student, the 1989's feverish but fruitless search for neutron emissions from cold fusion reactors, and the follow-on condemnation of the new science of cold fusion. The experimental facts are that in a properly loaded palladium lattice, the deuterium fusion produces neutrons at little above background, a greatly less-than-expected production of tritium (the tritium desert), and substantially more helium-4 than is observed in hot plasma physics. The experimental evidence is now compelling (800 reports of success from 30 countries) that cold nuclear fusion is a reality, that the branching ratios are unexpected, and that a new science is struggling to be recognized. Commercialization of some types of cold fusion devices has already begun

  18. Uncertainty analysis for hot channel

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2006-01-01

    The fulfillment of the safety analysis acceptance criteria is usually evaluated by separate hot channel calculations using the results of neutronic or/and thermo hydraulic system calculations. In case of an ATWS event (inadvertent withdrawal of control assembly), according to the analysis, a number of fuel rods are experiencing DNB for a longer time and must be regarded as failed. Their number must be determined for a further evaluation of the radiological consequences. In the deterministic approach, the global power history must be multiplied by different hot channel factors (kx) taking into account the radial power peaking factors for each fuel pin. If DNB occurs it is necessary to perform a few number of hot channel calculations to determine the limiting kx leading just to DNB and fuel failure (the conservative DNBR limit is 1.33). Knowing the pin power distribution from the core design calculation, the number of failed fuel pins can be calculated. The above procedure can be performed by conservative assumptions (e.g. conservative input parameters in the hot channel calculations), as well. In case of hot channel uncertainty analysis, the relevant input parameters (k x, mass flow, inlet temperature of the coolant, pin average burnup, initial gap size, selection of power history influencing the gap conductance value) of hot channel calculations and the DNBR limit are varied considering the respective uncertainties. An uncertainty analysis methodology was elaborated combining the response surface method with the one sided tolerance limit method of Wilks. The results of deterministic and uncertainty hot channel calculations are compared regarding to the number of failed fuel rods, max. temperature of the clad surface and max. temperature of the fuel (Authors)

  19. Statistical hot spot analysis of reactor cores

    International Nuclear Information System (INIS)

    Schaefer, H.

    1974-05-01

    This report is an introduction into statistical hot spot analysis. After the definition of the term 'hot spot' a statistical analysis is outlined. The mathematical method is presented, especially the formula concerning the probability of no hot spots in a reactor core is evaluated. A discussion with the boundary conditions of a statistical hot spot analysis is given (technological limits, nominal situation, uncertainties). The application of the hot spot analysis to the linear power of pellets and the temperature rise in cooling channels is demonstrated with respect to the test zone of KNK II. Basic values, such as probability of no hot spots, hot spot potential, expected hot spot diagram and cumulative distribution function of hot spots, are discussed. It is shown, that the risk of hot channels can be dispersed equally over all subassemblies by an adequate choice of the nominal temperature distribution in the core

  20. Plasma physics for controlled fusion

    International Nuclear Information System (INIS)

    Miyamoto, K.

    2010-01-01

    The primary objective of this lecture note is to present the theories and experiments of plasma physics for recent activities of controlled fusion research for graduate and senior undergraduate students. Chapters 1-6 describe the basic knowledge of plasma and magnetohydrodynamics (MHD). MHD instabilities limit the beta ratio (ratio of plasma pressure to magnetic pressure) of confined plasma. Chapters 7-9 provide the kinetic theory of hot plasma and discuss the wave heating and non-inductive current drive. The dispersion relation derived by the kinetic theory are used to discuss plasma waves and perturbed modes. Landau damping is the essential mechanism of plasma heating and the stabilization of perturbation. Landau inverse damping brings the amplification of waves and the destabilization of perturbed modes. Chapter 10 explains the plasma transport due to turbulence, which is the most important and challenging subject for plasma confinement. Theories and simulations including subject of zonal flow are introduced. Chapters 11, 12 and 13 describe the recent activities of tokamak including ITER as well as spherical tokamak, reversed field pinch (RFP) and stellarator including quasi-symmetric configurations. Emphasis has been given to tokamak research since it made the most remarkable progress and the construction phase of 'International Tokamak Experimental Reactor' called ITER has already started. (author)

  1. Hot dry rock heat mining

    International Nuclear Information System (INIS)

    Duchane, D.V.

    1992-01-01

    Geothermal energy utilizing fluids from natural sources is currently exploited on a commercial scale at sites around the world. A much greater geothermal resource exists, however, in the form of hot rock at depth which is essentially dry. This hot dry rock (HDR) resource is found almost everywhere, but the depth at which usefully high temperatures are reached varies from place to place. The technology to mine the thermal energy from HDR has been under development for a number of years. Using techniques adapted from the petroleum industry, water is pumped at high pressure down an injection well to a region of usefully hot rock. The pressure forces open natural joints to form a reservoir consisting of a small amount of water dispensed in a large volume of hot rock. This reservoir is tapped by second well located at some distance from the first, and the heated water is brought to the surface where its thermal energy is extracted. The same water is then recirculated to mine more heat. Economic studies have indicated that it may be possible to produce electricity at competitive prices today in regions where hot rock is found relatively close to the surface

  2. Hot Electron Generation and Transport Using Kα Emission

    International Nuclear Information System (INIS)

    Akli, K.U.; Stephens, R.B.; Key, M.H.; Bartal, T.; Beg, F.N.; Chawla, S.; Chen, C.D.; Fedosejevs, R.; Freeman, R.R.; Friesen, H.; Giraldez, E.; Green, J.S.; Hey, D.S.; Higginson, D.P.; Hund, J.; Jarrott, L.C.; Kemp, G.E.; King, J.A.; Kryger, A.; Lancaster, K.; LePape, S.; Link, A.; Ma, T.; Mackinnon, A.J.; MacPhee, A.G.; McLean, H.S.; Murphy, C.; Norreys, P.A.; Ovchinnikov, V.; Patel, P.K.; Ping, Y.; Sawada, H.; Schumacher, D.; Theobald, W.; Tsui, Y.Y.; Van Woerkom, L.D.; Wei, M.S.; Westover, B.; Yabuuchi, T.

    2010-01-01

    We have conducted experiments on both the Vulcan and Titan laser facilities to study hot electron generation and transport in the context of fast ignition. Cu wires attached to Al cones were used to investigate the effect on coupling efficiency of plasma surround and the pre-formed plasma inside the cone. We found that with thin cones 15% of laser energy is coupled to the 40(micro)m diameter wire emulating a 40(micro)m fast ignition spot. Thick cone walls, simulating plasma in fast ignition, reduce coupling by x4. An increase of prepulse level inside the cone by a factor of 50 reduces coupling by a factor of 3.

  3. Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma

    International Nuclear Information System (INIS)

    Gyergyek, T.; Cercek, M.; Erzen, D.

    2003-01-01

    Plasma potential formation in the pre-sheath region of a floating electron emitting electrode (collector) is studied theoretically in a two-electron-temperature plasma using a static kinetic plasma-sheath model. Dependence of the collector floating potential, the plasma potential in the pre-sheath region, and the critical emission coefficient on the hot electron density and temperature is calculated. It is found that for high hot to cool electron temperature ratio a double layer like solutions exist in a certain range of hot to cool electron densities

  4. Particle-in-cell studies of laser-driven hot spots and a statistical model for mesoscopic properties of Raman backscatter

    International Nuclear Information System (INIS)

    Albright, B.J.; Yin, L.; Bowers, K.J.; Kline, J.L.; Montgomery, D.S.; Fernandez, J.C.; Daughton, W.

    2006-01-01

    The authors use explicit particle-in-cell simulations to model stimulated scattering processes in media with both solitary and multiple laser hot spots. These simulations indicate coupling among hot spots, whereby scattered light, plasma waves, and hot electrons generated in one laser hot spot may propagate to neighboring hot spots, which can be destabilized to enhanced backscatter. A nonlinear statistical model of a stochastic beam exhibiting this coupled behavior is described here. Calibration of the model using particle-in-cell simulations is performed, and a threshold is derived for 'detonation' of the beam to high reflectivity. (authors)

  5. Flipped neutrino emissivity of hot plasma in supernova core

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, A.; Dutta, S. (Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India))

    1994-05-15

    We calculate the energy loss due to wrong-helicity sterile neutrinos produced due to the decay of plasmons into flipped neutrino pairs at relativistic temperatures and densities in the core of a nascent neutron star and compare our results with other processes.

  6. Photons from quark gluon plasma and hot hadronic matter

    Indian Academy of Sciences (India)

    fects have been taken into account through a K-factor ~2. Now the question is, ... firm conclusion from the results where eq. (2) is used at .... The initial temperature Ti can be related to the multiplicity of the event, dN/dy, by virtue of the isentropic ...

  7. Non-thermal effects in a hot dense plasma

    International Nuclear Information System (INIS)

    Jones, L.A.; Kania, D.R.; Hammel, B.A.; Kallne, E.; Maestas, M.D.; McGurn, J.; Shepherd, R.

    1985-01-01

    A hollow gas shell Z-pinch device is described, and some initial observations are shown to lead to the conclusion that there is an energetic electron beam produced along the axis of the collapsing gas shell. An experiment is summarized that directly measured some of the characteristics of this runaway electron beam. Finally, the results of an experiment which observed a new affect are presented along with a model that uses a runaway electron beam to explain this new effect. 9 refs., 17 figs

  8. Damage of metal surfaces by a hot, dense deuterium plasma

    International Nuclear Information System (INIS)

    Panayotou, N.F.

    1978-01-01

    The effect of differences in alloy chemistry and systematic changes in microstructural interface density on the occurrence of unipolar arcing was studied. The effect of thermionic emission is examined by comparing the refractory metals W, Nb, and Nb-751 alloy to the non-refractory stainless steels, AISI 304, 316 and Nimonic PE-16. The effect of alloying additions is examined by comparing Mo containing 316 and Mo free 304 stainless steels as well as Zr containing Nb-751 and Zr free Nb. The effect of interface density is examined by systematically varying the density of microstructural interfaces in AISI 4130, a ferritic steel. Although most of the metals and alloys studied are candidate fusion reactor materials, 4130 was chosen on the basis of our ability to modify the density of microstructural interfaces in the material by heat treatment. The results are discussed with respect to available unipolar arcing theory. The significance of the work, in terms of actual power reactors is assessed and the need for further work defined

  9. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described for electron beam heating of a high-density plasma to drive a fast liner. An annular or solid relativistic electron beam is used to heat a plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the plasma then converges on a fast liner to explosively or ablatively drive the liner to implosion. (U.K.)

  10. Hot Jupiters around M dwarfs

    Directory of Open Access Journals (Sweden)

    Murgas F.

    2013-04-01

    Full Text Available The WFCAM Transit Survey (WTS is a near-infrared transit survey running on the United Kingdom Infrared Telescope (UKIRT. We conduct Monte Carlo transit injection and detection simulations for short period (<10 day Jupiter-sized planets to characterize the sensitivity of the survey. We investigate the recovery rate as a function of period and magnitude in 2 hypothetical star-planet cases: M0–2 + hot Jupiter, M2–4 + hot Jupiter. We find that the WTS lightcurves are very sensitive to the presence of Jupiter-sized short-period transiting planets around M dwarfs. The non-detection of a hot-Jupiter around an M dwarf by the WFCAM Transit Survey allows us to place a firm upper limit of 1.9 per cent (at 95 per cent confidence on the planet occurrence rate.

  11. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    AM Girbik; PA Dilorenzo

    2006-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  12. Hot-pressing steatite bodies

    International Nuclear Information System (INIS)

    Aparicio Arroyo, E.

    1967-01-01

    Requirements for some special nuclear engineering ceramic shapes are: big size, impervious, dimensional accuracy and good mechanical and dielectric properties. Limitations of te conventional methods and advantages of te hot pressing techniques for the manufacturing of these shapes are discussed. Hot pressing characteristics of a certain steatite powder are studied. Occurrence of an optimum densification temperature just above the tale decomposition range is found. Experimental data show that the height/diameter ratio of the specimen has no effect on the sintering conditions. Increasing darkness from the graphite mould is detected above the optimum temperature. The hot-pressed steatite is compared with a fired dry-pressed sample of the same composition. (Author) 13 refs

  13. Effect of energetic electrons on dust charging in hot cathode filament discharge

    Science.gov (United States)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-03-01

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  14. Effect of energetic electrons on dust charging in hot cathode filament discharge

    International Nuclear Information System (INIS)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-01-01

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  15. Archaeal Nitrification in Hot Springs

    Science.gov (United States)

    Richter, A.; Daims, H.; Reigstad, L.; Wanek, W.; Wagner, M.; Schleper, C.

    2006-12-01

    Biological nitrification, i.e. the aerobic conversion of ammonia to nitrate via nitrite, is a major component of the global nitrogen cycle. Until recently, it was thought that the ability to aerobically oxidize ammonia was confined to bacteria of the phylum Proteobacteria. However, it has recently been shown that Archaea of the phylum Crenarchaeota are also capable of ammonia oxidation. As many Crenarchaeota are thermophilic or hyperthermophilic, and at least some of them are capable of ammonia oxidation we speculated on the existence of (hyper)thermophilic ammonia-oxidizing archaea (AOA). Using PCR primers specifically targeting the archaeal ammonia monooxygenase (amoA) gene, we were indeed able to confirm the presence of such organisms in several hot springs in Reykjadalur, Iceland. These hot springs exhibited temperatures well above 80 °C and pH values ranging from 2.0 to 4.5. To proof that nitrification actually took place under these extreme conditions, we measured gross nitrification rates by the isotope pool dilution method; we added 15N-labelled nitrate to the mud and followed the dilution of the label by nitrate production from ammonium either in situ (incubation in the hot spring) or under controlled conditions in the laboratory (at 80 °C). The nitrification rates in the hot springs ranged from 0.79 to 2.22 mg nitrate-N per L of mud and day. Controls, in which microorganisms were killed before the incubations, demonstrated that the nitrification was of biological origin. Addition of ammonium increased the gross nitrification rate approximately 3-fold, indicating that the nitrification was ammonium limited under the conditions used. Collectively, our study provides evidence that (1) AOA are present in hot springs and (2) that they are actively nitrifying. These findings have major implications for our understanding of nitrogen cycling of hot environments.

  16. Plasma Modes

    Science.gov (United States)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  17. Monopole transitions in hot nuclei

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1994-01-01

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs

  18. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  19. Hot atom chemistry of sulphur

    International Nuclear Information System (INIS)

    Todorovski, D. S.; Koleva, D. P.

    1982-01-01

    An attempt to cover all papers dealing with the hot atom chemistry of sulpphur is made. Publications which: a) only touch the problem, b) contain some data, indirectly connected with sulphur hot atom chemistry, c) deal with 35 S-production from a chloride matrix, are included as well. The author's name and literature source are given in the original language, transcribed, when it is necessary, in latine. A number of primery and secondary documents have been used including Chemical Abstracts, INIS Atomindex, the bibliographies of A. Siuda and J.-P. Adloff for 1973 - 77, etc. (authors)

  20. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1981-12-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design hasis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  1. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1980-09-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design basis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  2. Hot-cell verification facility

    International Nuclear Information System (INIS)

    Eschenbaum, R.A.

    1981-01-01

    The Hot Cell Verification Facility (HCVF) was established as the test facility for the Fuels and Materials Examination Facility (FMEF) examination equipment. HCVF provides a prototypic hot cell environment to check the equipment for functional and remote operation. It also provides actual hands-on training for future FMEF Operators. In its two years of operation, HCVF has already provided data to make significant changes in items prior to final fabrication. It will also shorten the startup time in FMEF since the examination equipment will have been debugged and operated in HCVF

  3. Renovations to a plasma teaching laboratory

    International Nuclear Information System (INIS)

    Brake, M.L.; Lee, M.; Ventzek, P.; Passow, M.

    1991-01-01

    With the aid of a National Science Foundation teaching equipment grant, replacement of dated equipment and the implementation of new experiments have upgraded the University of Michigan Department of Nuclear Engineering's 25-yr-old plasma laboratory course. The course teaches seniors and first-year graduate students methods of plasma production as well as plasma diagnostics. This paper describes four new experiments as well as the highlights of some of the equipment upgrades. The plasma lab course has introduced three new diagnostic techniques and one new plasma generation experiment in the past two years. They are (a) probe measurements of the electron energy distribution function, (b) laser/Schlieren photos of shock waves produced by a pulsed plasma, (c) a laser deflection technique for determining hot gas densities, and (d) capacitively coupled radio-frequency plasma generation

  4. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  5. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    Bradshaw, F.W.

    1996-01-01

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  6. Acupuncture as Treatment of Hot Flashes and the Possible Role of Calcitonin Gene-Related Peptide

    Directory of Open Access Journals (Sweden)

    Anna-Clara E. Spetz Holm

    2012-01-01

    Full Text Available The mechanisms behind hot flashes in menopausal women are not fully understood. The flashes in women are probably preceded by and actually initiated by a sudden downward shift in the set point for the core body temperature in the thermoregulatory center that is affected by sex steroids, β-endorphins, and other central neurotransmitters. Treatments that influence these factors may be expected to reduce hot flashes. Since therapy with sex steroids for hot flashes has appeared to cause a number of side effects and risks and women with hot flashes and breast cancer as well as men with prostate cancer and hot flashes are prevented from sex steroid therapy there is a great need for alternative therapies. Acupuncture affecting the opioid system has been suggested as an alternative treatment option for hot flashes in menopausal women and castrated men. The heat loss during hot flashes may be mediated by the potent vasodilator and sweat gland activator calcitonin gene-related peptide (CGRP the concentration of which increases in plasma during flashes in menopausal women and, according to one study, in castrated men with flushes. There is also evidence for connections between the opioid system and the release of CGRP. In this paper we discuss acupuncture as a treatment alternative for hot flashes and the role of CGRP in this context.

  7. Study on Laser Induced Plasma Produced in Liquid

    International Nuclear Information System (INIS)

    Tsuda, N.; Yamada, J.

    2003-01-01

    When an intense laser light is focused in liquid, a hot plasma is produced at the focal spot. The breakdown threshold and the transmittance of sodium choroids solution are observed using excimer laser or YAG laser. The breakdown threshold decreases with increasing NaCl concentration. Threshold intensity of plasma produced by YAG laser is lower than excimer laser. The behavior of plasma development is observed by a streak camera. The plasma produced by a YAG laser develops only backward. However, the plasma produced by excimer laser develops not only backward but also forward same as the plasma development in high-pressure gases

  8. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  9. On interaction of large dust grains with fusion plasma

    International Nuclear Information System (INIS)

    Krasheninnikov, S. I.; Smirnov, R. D.

    2009-01-01

    So far the models used to study dust grain-plasma interactions in fusion plasmas neglect the effects of dust material vapor, which is always present around dust in rather hot and dense edge plasma environment in fusion devices. However, when the vapor density and/or the amount of ionized vapor atoms become large enough, they can alter the grain-plasma interactions. Somewhat similar processes occur during pellet injection in fusion plasma. In this brief communication the applicability limits of the models ignoring vapor effects in grain-plasma interactions are obtained.

  10. Super-high magnetic fields in spatially inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nastoyashchiy, Anatoly F.

    2012-01-01

    The new phenomenon of a spontaneous magnetic field in spatially inhomogeneous plasma is found. The criteria for instability are determined, and both the linear and nonlinear stages of the magnetic field growth are considered; it is shown that the magnetic field can reach a considerable magnitude, namely, its pressure can be comparable with the plasma pressure. Especially large magnetic fields can arise in hot plasma with a high electron density, for example, in laser-heated plasma. In steady-state plasma, the magnetic field can be self-sustaining. The considered magnetic fields may play an important role in thermal insulation of the plasma. (author)

  11. Plasma radiation in tokamak disruption simulation experiments

    International Nuclear Information System (INIS)

    Arkhipov, N.; Bakhtin, V.; Safronov, V.; Toporkov, D.; Vasenin, S.; Zhitlukhin, A.; Wuerz, H.

    1995-01-01

    Plasma impact results in sudden evaporation of divertor plate material and produces a plasma cloud which acts as a protective shield. The incoming energy flux is absorbed in the plasma shield and is converted mainly into radiation. Thus the radiative characteristics of the target plasma determine the dissipation of the incoming energy and the heat load at the target. Radiation of target plasma is studied at the two plasma gun facility 2MK-200 at Troitsk. Space- and time-resolved spectroscopy and time-integrated space-resolved calorimetry are employed as diagnostics. Graphite and tungsten samples are exposed to deuterium plasma streams. It is found that the radiative characteristics depend strongly on the target material. Tungsten plasma arises within 1 micros close to the surface and shows continuum radiation only. Expansion of tungsten plasma is restricted. For a graphite target the plasma shield is a mixture of carbon and deuterium. It expands along the magnetic field lines with a velocity of v = (3--4) 10 6 cm/s. The plasma shield is a two zone plasma with a hot low dense corona and a cold dense layer close to the target. The plasma corona emits intense soft x-ray (SXR) line radiation in the frequency range from 300--380 eV mainly from CV ions. It acts as effective dissipation system and converts volumetrically the incoming energy flux into SXR radiation

  12. Solar Technician Program Blows Hot

    Science.gov (United States)

    Ziegler, Peg Moran

    1977-01-01

    A training program for solar heating technicians was initiated at Sonoma State College's School of Environmental Studies for CETA applicants. Among the projects designed and built were a solar alternative energy center, a solar hot water system, and a solar greenhouse. (MF)

  13. The design of hot laboratories

    International Nuclear Information System (INIS)

    1976-01-01

    The need for specialized laboratories to handle radioactive substances of high activity has increased greatly due to the expansion of the nuclear power industry and the widespread use of radioisotopes in scientific research and technology. Such laboratories, which are called hot laboratories, are specially designed and equipped to handle radioactive materials of high activity, including plutonium and transplutonium elements. The handling of plutonium and transplutonium elements presents special radiation-protection and safety problems because of their high specific activity and high radiotoxicity. Therefore, the planning, design, construction and operation of hot laboratories must meet the stringent safety, containment, ventilation, shielding, criticality control and fire-protection requirements. The IAEA has published two manuals in its Safety Series, one on the safety aspects of design and equipment of hot laboratories (SS No.30) and the other on the safe handling of plutonium (SS No.39). The purpose of the symposium in Otaniemi was to collect information on recent developments in the safety features of hot laboratories and to review the present state of knowledge. A number of new developments have taken place as the result of growing sophistication in the philosophy of radiation protection as given in the ICRP recommendations (Report No.22) and in the Agency's basic safety standards (No.9). The topics discussed were safety features of planning and design, air cleaning, transfer and transport systems, criticality control, fire protection, radiological protection, waste management, administrative arrangements and operating experience

  14. Interfaces in hot gauge theory

    CERN Document Server

    Bronoff, S.

    1996-01-01

    The string tension at low T and the free energy of domain walls at high T can be computed from one and the same observable. We show by explicit calculation that domain walls in hot Z(2) gauge theory have good thermodynamical behaviour. This is due to roughening of the wall, which expresses the restoration of translational symmetry.

  15. Was the big bang hot

    International Nuclear Information System (INIS)

    Wright, E.L.

    1983-01-01

    The author considers experiments to confirm the substantial deviations from a Planck curve in the Woody and Richards spectrum of the microwave background, and search for conducting needles in our galaxy. Spectral deviations and needle-shaped grains are expected for a cold Big Bang, but are not required by a hot Big Bang. (Auth.)

  16. A new hot pressing technique

    International Nuclear Information System (INIS)

    Carcey, J.

    1975-01-01

    An original hot pressing method which may be applied to ceramics, metals, and refractory powders is described. The products obtained are fine grained polycristalline materials, with homogeneous structure, very high density, unstrained and of very large dimensions (several square meters). This process equally applies to composite materials including powders, fibers, etc.. [fr

  17. Hot atom chemistry of carbon

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1975-01-01

    The chemistry of energetic carbon atoms is discussed. The experimental approach to studies that have been carried out is described and the mechanistic framework of hot carbon atom reactions is considered in some detail. Finally, the direction that future work might take is examined, including the relationship of experimental to theoretical work. (author)

  18. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  19. Interaction of the modulated electron beam with inhomogeneous plasma: plasma density profile deformation and langmuir waves excitation

    International Nuclear Information System (INIS)

    Anisimov, I.O.; Kelnyk, O.I.; Soroka, S.V.; Siversky, T.V.

    2005-01-01

    Nonlinear deformation of the initially linear plasma density profile due to the modulated electron beam is studied via computer simulation. In the initial time period the field slaves to the instantaneous profile of the plasma density. Langmuir waves excitation is suppressed by the density profile deformation. The character of the plasma density profile deformation for the late time period depends significantly on the plasma properties. Particularly, for plasma with hot electrons quasi-periodic generation of ion-acoustic pulses takes place in the vicinity of the initial point of plasma resonance

  20. Propagation of monochromatic light in a hot and dense medium

    Energy Technology Data Exchange (ETDEWEB)

    Masood, Samina S. [University of Houston Clear Lake, Department of Physical and Applied Sciences, Houston, TX (United States)

    2017-12-15

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe. (orig.)

  1. Propagation of monochromatic light in a hot and dense medium

    Science.gov (United States)

    Masood, Samina S.

    2017-12-01

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.

  2. Plasma centrifuges

    International Nuclear Information System (INIS)

    Karchevskij, A.I.; Potanin, E.P.

    2000-01-01

    The review of the most important studies on the isotope separation processes in the rotating plasma is presented. The device is described and the characteristics of operation of the pulse plasma centrifuges with weakly and strongly ionized plasma as well as the stationary plasma centrifuges with the medium weak ionization and devices, applying the stationary vacuum arc with the high ionization rate and the stationary beam-plasma discharge with complete ionization, are presented. The possible mechanisms of the isotope separation in plasma centrifuges are considered. The specific energy consumption for isotope separation in these devices is discussed [ru

  3. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  4. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  5. Hot Flashes amd Night Sweats (PDQ)

    Science.gov (United States)

    ... Professionals Questions to Ask about Your Treatment Research Hot Flashes and Night Sweats (PDQ®)–Patient Version Overview ... quality of life in many patients with cancer. Hot flashes and night sweats may be side effects ...

  6. The plasma-wall interaction region: a key low temperature plasma for controlled fusion

    International Nuclear Information System (INIS)

    Counsell, G F

    2002-01-01

    The plasma-wall interaction region of a fusion device provides the interface between the hot core plasma and the material surfaces. To obtain acceptably low levels of erosion from these surfaces requires most of the power leaving the core to be radiated. This is accomplished in existing devices by encouraging plasma detachment, in which the hot plasma arriving in the region is cooled by volume recombination and ion-neutral momentum transfer with a dense population of neutrals recycled from the surface. The result is a low temperature (1 eV e e >10 19 m -3 ) but weakly ionized (n 0 >10 20 m -3 , n e /n 0 <0.1) plasma found nowhere else in the fusion environment. This plasma provides many of the conditions found in industrial plasmas exploiting plasma chemistry and the presence of carbon in the region (in the form of carbon-fibre composite used in the plasma facing materials) can result in the formation of deposited hydrocarbon films. The plasma-wall interaction region is therefore among the most difficult in fusion to model, requiring an understanding of atomic, molecular and surface physics issues

  7. New method to determine structures in thermonuclear plasmas

    International Nuclear Information System (INIS)

    Tanzi, C.P.

    1998-01-01

    The information from tomographic methods is not always sufficient to determine fast changing structures, e.g. very hot plasmas. A new method has been developed by means of which, among other things, physical mechanisms of plasma instability can be disentangled. 4 refs

  8. Rarefaction Shock Waves in Collisionless Plasma with Electronic Beam

    OpenAIRE

    Gurovich, Victor Ts.; Fel, Leonid G.

    2011-01-01

    We show that an electronic beam passing through the collisionless plasma of the "cold" ions and the "hot" Boltzmann electrons can give rise to the propagation of the supersonic ion-acoustic rarefaction shock waves. These waves are analogous to those predicted by Zeldovich [5] in gasodynamics and complementary to the ion-acoustic compression shock waves in collisionless plasma described by Sagdeev [3].

  9. Magnetohydrodynamic Waves and Instabilities in Rotating Tokamak Plasmas

    NARCIS (Netherlands)

    J.W. Haverkort (Willem)

    2013-01-01

    htmlabstractOne of the most promising ways to achieve controlled nuclear fusion for the commercial production of energy is the tokamak design. In such a device, a hot plasma is confined in a toroidal geometry using magnetic fields. The present generation of tokamaks shows significant plasma

  10. OUT Success Stories: Solar Hot Water Technology

    International Nuclear Information System (INIS)

    Clyne, R.

    2000-01-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building

  11. OUT Success Stories: Solar Hot Water Technology

    Science.gov (United States)

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  12. Hot spots in Ar and Ne gas puff Z-pinch

    International Nuclear Information System (INIS)

    Krejci, A.; Krousky, E.; Renner, O.

    1989-02-01

    The hot spots in Ar and Ne pinch plasma were investigated. Two pinhole cameras with entrance diameter 13 to 250 μm and flat crystal spectrographs with Si and KAP crystals were used for spatially and spectrally resolved soft X-ray diagnostics. The diameters of Ar (25 to 30 μm) and Ne (40 μm) hot spots were found. From X-ray spectrum of Ar spots the following plasma parameters were determined: T e =1.0 to 1.1 keV and n e =(1.8 to 4.0)x10 27 m -3 . The validity of the Bennett equilibrium for unstable hot spots is discussed. (author). 1 fig., 11 refs

  13. Industrialization of hot wire chemical vapor deposition for thin film applications

    NARCIS (Netherlands)

    Schropp, Ruud

    2015-01-01

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical

  14. On lateral deflection of the SOL plasma in tokamaks during giant ELMs

    International Nuclear Information System (INIS)

    Landman, I.S.; Wuerz, H.

    2000-06-01

    In recent H-mode experiments at JET with giant ELMs a lateral deflection of hot tokamak plasma leaving the scrape-off layer and striking the divertor plate has been observed. This deflection can effect the divertor erosion caused by the hot plasma irradiation, because of enlarging the irradiated area. A simplified MHD model of the vapor shield plasma and of the hot plasma initially formed at time t → -∞ is analyzed. At t = -∞ both plasmas are assumed to stay on rest and to be separated by a boundary, which is parallel to the plate surface. The interaction between plasmas is assumed to develop gradually ('adiabatically') as exp(t/t 0 ) with t 0 ∝ 10 2 μs the ELM duration time. Electrical insulation of the core tokamak plasma is assumed everywhere except for the contact with the divertor. Electric currents are flowing only in the toroidal direction. These currents developing in the interaction zone of the hot plasma and the rather cold target plasma are calculated for inclined impact of the magnetized hot plasma. At such conditions the J x B force in the lateral direction accelerates the interacting plasmas. The motion of the cold plasma and the gradual increase of the plasma interaction intensity are shown to be important for the appropriate deflection magnitude. Adiabatically responding against the increase of the interaction intensity the cold plasma motion compensates significantly the currents thus decreasing the deflection compared to motionless approach. The calculated magnitude of the hot plasma deflection is comparable to the observed one. The results of the modeling are discussed in relation to the experiments. It is shown that sudden switching on of the interaction produces Alfven oscillations of large amplitudes causing much larger amplitudes of the magnetic field induced by the currents than in the adiabatic case. (orig.)

  15. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described of providing electron beam heating of a high-density plasma to drive a fast liner to implode a structured microsphere. An annular relativistic electron beam is used to heat an annular plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the annular plasma then converges on a fast liner to explosively or ablatively drive the liner to convergence to implode the structured microsphere. (U.K.)

  16. Recent trend of administration on hot springs

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Shigeru [Environment Agency, Tokyo (Japan)

    1989-01-01

    The Environmental Agency exercises jurisdiction over Hot Spring Act, and plans to protect the source of the hot spring and to utilize it appropriately. From the aspect of utilization, hot springs are widely used as a means to remedy chronic diseases and tourist spots besides places for recuperation and repose. Statistics on Japanese hot springs showed that the number of hot spring spots and utilized-fountainhead increased in 1987, compared with the number in 1986. Considering the utilized-headspring, the number of naturally well-out springs has stabilized for 10 years while power-operated springs have increased. This is because the demand of hot springs has grown as the number of users has increased. Another reason is to keep the amount of hot water by setting up the power facility as the welled-out amount has decreased. Major point of recent administration on the hot spring is to permit excavation and utilization of hot springs. Designation of National hot spring health resorts started in 1954 in order to ensure the effective and original use of hot springs and to promote the public use of them, for the purpose of arranging the sound circumstances of hot springs. By 1988, 76 places were designated. 4 figs., 3 tabs.

  17. Hot gauge field properties from the thermal variational principle

    International Nuclear Information System (INIS)

    Schroeder, Y.; Schulz, H.

    1995-10-01

    A Feynman-Jensen version of the thermal variational principle is applied to hot gauge fields, abelian as well as nonabelian: scalar electrodynamics (without scalar self-coupling) and the gluon plasma. The perturbatively known self-energies are shown to derive by variation from a free quadratic (''gaussian'') trial Lagrangian. Independence of the covariant gauge fixing parameter is reached (within the order g 2 studies and for scalar ED) after a reformulation of the partition function such that it depends on only even powers of the gauge field. This way, however, the potential non-perturbative power of the calculus seems to be ruined. (orig.)

  18. Electromagnetic signals of quark gluon plasma

    Indian Academy of Sciences (India)

    Successive equilibration of quark degrees of freedom and its effects on electromagnetic signals of quark gluon plasma are discussed. The effects of the variation of vector meson masses and decay widths on photon production from hot strongly interacting matter formed after Pb + Pb and S + Au collisions at CERN SPS ...

  19. Hot-electron surface retention in intense short-pulse laser-matter interactions.

    Science.gov (United States)

    Mason, R J; Dodd, E S; Albright, B J

    2005-07-01

    Implicit hybrid plasma simulations predict that a significant fraction of the energy deposited into hot electrons can be retained near the surface of targets with steep density gradients illuminated by intense short-pulse lasers. This retention derives from the lateral transport of heated electrons randomly emitted in the presence of spontaneous magnetic fields arising near the laser spot, from geometric effects associated with a small hot-electron source, and from E fields arising in reaction to the ponderomotive force. Below the laser spot hot electrons are axially focused into a target by the B fields, and can filament in moderate Z targets by resistive Weibel-like instability, if the effective background electron temperature remains sufficiently low. Carefully engineered use of such retention in conjunction with ponderomotive density profile steepening could result in a reduced hot-electron range that aids fast ignition. Alternatively, such retention may disturb a deeper deposition needed for efficient radiography and backside fast ion generation.

  20. Effects of Hot-Spot Geometry on Backscattering and Down-Scattering Neutron Spectra

    Science.gov (United States)

    Mohamed, Z. L.; Mannion, O. M.; Forrest, C. J.; Knauer, J. P.; Anderson, K. S.; Radha, P. B.

    2017-10-01

    The measured neutron spectrum produced by a fusion experiment plays a key role in inferring observable quantities. One important observable is the areal density of an implosion, which is inferred by measuring the scattering of neutrons. This project seeks to use particle-transport simulations to model the effects of hot-spot geometry on backscattering and down-scattering neutron spectra along different lines of sight. Implosions similar to those conducted at the Laboratory of Laser Energetics are modeled by neutron transport through a DT plasma and a DT ice shell using the particle transport codes MCNP and IRIS. Effects of hot-spot geometry are obtained by ``detecting'' scattered neutrons along different lines of sight. This process is repeated for various hot-spot geometries representing known shape distortions between the hot spot and the shell. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. Long-term evolution of broken wakefields in finite radius plasmas

    CERN Document Server

    Lotov, Konstantin; Petrenko, Alexey

    2014-01-01

    A novel effect of fast heating and charging a finite-radius plasma is discovered in the context of plasma wakefield acceleration. As the plasma wave breaks, the most of its energy is transferred to plasma electrons which create strong charge-separation electric field and azimuthal magnetic field around the plasma. The slowly varying field structure is preserved for hundreds of wakefield periods and contains (together with hot electrons) up to 80% of the initial wakefield energy.

  2. Plasma technology for treatment of waste

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Fusion Center

    1997-12-31

    Meeting goals for waste cleanup will require new technology with improved environmental attractiveness and reduced cost. Plasma technology appears promising because of the high degree of controllability; capability to process waste without the adverse effects of combustion; and a very wide temperature range of operation. At the Plasma Fusion Center at the Massachusetts Institute of Technology, a range of plasma technologies are being investigated. `Hot` thermal plasmas produced by DC arc technology are being examined for treatment of solid waste. In conjunction with this activity, new diagnostics are being developed for monitoring arc furnace operating parameters and gaseous emissions. Electron-beam generated plasma technology is being investigated as a means of producing non-thermal `cold` plasmas for selective processing of dilute concentrations of gaseous waste. (author). 4 figs., 5 refs.

  3. Hot sample archiving. Revision 3

    International Nuclear Information System (INIS)

    McVey, C.B.

    1995-01-01

    This Engineering Study revision evaluated the alternatives to provide tank waste characterization analytical samples for a time period as recommended by the Tank Waste Remediation Systems Program. The recommendation of storing 40 ml segment samples for a period of approximately 18 months (6 months past the approval date of the Tank Characterization Report) and then composite the core segment material in 125 ml containers for a period of five years. The study considers storage at 222-S facility. It was determined that the critical storage problem was in the hot cell area. The 40 ml sample container has enough material for approximately 3 times the required amount for a complete laboratory re-analysis. The final result is that 222-S can meet the sample archive storage requirements. During the 100% capture rate the capacity is exceeded in the hot cell area, but quick, inexpensive options are available to meet the requirements

  4. Models of hot stellar systems

    International Nuclear Information System (INIS)

    Van Albada, T.S.

    1986-01-01

    Elliptical galaxies consist almost entirely of stars. Sites of recent star formation are rare, and most stars are believed to be several billion years old, perhaps as old as the Universe itself (--10/sup 10/ yrs). Stellar motions in ellipticals show a modest amount of circulation about the center of the system, but most support against the force of gravity is provided by random motions; for this reason ellipticals are called 'hot' stellar systems. Spiral galaxies usually also contain an appreciable amount of gas (--10%, mainly atomic hydrogen) and new stars are continually being formed out of this gas, especially in the spiral arms. In contrast to ellipticals, support against gravity in spiral galaxies comes almost entirely from rotation; random motions of the stars with respect to rotation are small. Consequently, spiral galaxies are called 'cold' stellar systems. Other than in hot systems, in cold systems the collective response of stars to variations in the force field is an essential part of the dynamics. The present overview is limited to mathematical models of hot systems. Computational methods are also discussed

  5. Dusty plasmas

    International Nuclear Information System (INIS)

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities

  6. BOOK REVIEW: Kinetic theory of plasma waves, homogeneous plasmas

    Science.gov (United States)

    Porkolab, Miklos

    1998-11-01

    The linear theory of plasma waves in homogeneous plasma is arguably the most mature and best understood branch of plasma physics. Given the recently revised version of Stix's excellent Waves in Plasmas (1992), one might ask whether another book on this subject is necessary only a few years later. The answer lies in the scope of this volume; it is somewhat more detailed in certain topics than, and complementary in many fusion research relevant areas to, Stix's book. (I am restricting these comments to the homogeneous plasma theory only, since the author promises a second volume on wave propagation in inhomogeneous plasmas.) This book is also much more of a theorist's approach to waves in plasmas, with the aim of developing the subject within the logical framework of kinetic theory. This may indeed be pleasing to the expert and to the specialist, but may be too difficult to the graduate student as an `introduction' to the subject (which the author explicitly states in the Preface). On the other hand, it may be entirely appropriate for a second course on plasma waves, after the student has mastered fluid theory and an introductory kinetic treatment of waves in a hot magnetized `Vlasov' plasma. For teaching purposes, my personal preference is to review the cold plasma wave treatment using the unified Stix formalism and notation (which the author wisely adopts in the present book, but only in Chapter 5). Such an approach allows one to deal with CMA diagrams early on, as well as to provide a framework to discuss electromagnetic wave propagation and accessibility in inhomogeneous plasmas (for which the cold plasma wave treatment is perfectly adequate). Such an approach does lack some of the rigour, however, that the author achieves with the present approach. As the author correctly shows, the fluid theory treatment of waves follows logically from kinetic theory in the cold plasma limit. I only question the pedagogical value of this approach. Otherwise, I welcome this

  7. Plasma chromatography

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This book examines the fundamental theory and various applications of ion mobility spectroscopy. Plasma chromatography developed from research on the diffusion and mobility of ions. Topics considered include instrument design and description (e.g., performance, spectral interpretation, sample handling, mass spectrometry), the role of ion mobility in plasma chromatography (e.g., kinetic theory of ion transport), atmospheric pressure ionization (e.g., rate equations), the characterization of isomers by plasma chromatography (e.g., molecular ion characteristics, polynuclear aromatics), plasma chromatography as a gas chromatographic detection method (e.g., qualitative analysis, continuous mobility monitoring, quantitative analysis), the analysis of toxic vapors by plasma chromatography (e.g., plasma chromatograph calibration, instrument control and data processing), the analysis of semiconductor devices and microelectronic packages by plasma chromatography/mass spectroscopy (e.g., analysis of organic surface contaminants, analysis of water in sealed electronic packages), and instrument design and automation (hardware, software)

  8. ESA uncovers Geminga's `hot spot'

    Science.gov (United States)

    2004-07-01

    16 July 2004 Astronomers using ESA’s X-ray observatory XMM-Newton have detected a small, bright ‘hot spot’ on the surface of the neutron star called Geminga, 500 light-years away. The hot spot is the size of a football field and is caused by the same mechanism producing Geminga’s X-ray tails. This discovery identifies the missing link between the X-ray and gamma-ray emission from Geminga. hi-res Size hi-res: 1284 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot This figure shows the effects of charged particles accelerated in the magnetosphere of Geminga. Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of particles kicked out by Geminga’s strong magnetic field, trail the neutron star as it moves about in space. Panel (b) shows how electrically charged particles interact with Geminga’s magnetic field. For example, if electrons (blue) are kicked out by the star, positrons (in red) hit the star’s magnetic poles like in an ‘own goal’. Panel (c) illustrates the size of Geminga’s magnetic field (blue) compared to that of the star itself at the centre (purple). The magnetic field is tilted with respect to Geminga’s rotation axis (red). Panel (d) shows the magnetic poles of Geminga, where charged particles hit the surface of the star, creating a two-million degrees hot spot, a region much hotter than the surroundings. As the star spins on its rotation axis, the hot spot comes into view and then disappears, causing the periodic colour change seen by XMM-Newton. An animated version of the entire sequence can be found at: Click here for animated GIF [low resolution, animated GIF, 5536 KB] Click here for AVI [high resolution, AVI with DIVX compression, 19128 KB] hi-res Size hi-res: 371 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot, panel (a) Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of

  9. Computational prediction of protein hot spot residues.

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2012-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues.

  10. Computational Prediction of Hot Spot Residues

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2013-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues. PMID:22316154

  11. A review of quantum collision dynamics in Debye plasmas

    OpenAIRE

    Janev, R. K.; Zhang, Song Bin; Wang, Jian Guo

    2016-01-01

    Hot, dense plasmas exhibit screened Coulomb interactions, resulting from the collective effects of correlated many-particle interactions. In the lowest particle correlation order (pair-wise correlations), the interaction between charged plasma particles reduces to the Debye-H\\"uckel (Yukawa-type) potential, characterized by the Debye screening length D. Due to the importance of Coulomb interaction screening in dense laboratory and astrophysical plasmas, hundreds of theoretical investigations ...

  12. ''Heavy light bullets'' in electron-positron plasma

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1995-03-01

    The nonlinear propagation of circularly polarized electromagnetic waves with relativistically strong amplitudes in an unmagnetized hot electron-positron plasma with a small fraction of ions is investigated. The possibility of finding localized solutions in such a plasma is explored. It is shown that these plasmas support the propagation of ''heavy light bullets''; nondiffracting and nondispersive electromagnetic (EM) pulses with large density bunching. (author). 24 refs, 12 figs

  13. Energy transport in laser produced plasmas

    International Nuclear Information System (INIS)

    Key, M.H.

    1989-06-01

    The study of energy transport in laser produced plasmas is of great interest both because it tests and develops understanding of several aspects of basic plasma physics and also because it is of central importance in major applications of laser produced plasmas including laser fusion, the production of intense X-ray sources, and X-ray lasers. The three sections cover thermal electrons (energy transport in one dimension, plane targets and lateral transport from a focal spot, thermal smoothing, thermal instabilities), hot electrons (preheating in one dimension, lateral transport from a focal spot) and radiation (preheating in one dimension, lateral transport and smoothing, instabilities). (author)

  14. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  15. Relativistic laser channeling in plasmas for fast ignition

    Science.gov (United States)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  16. Equilibrium of rotating and nonrotating plasmas in tokamaks

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2003-01-01

    One studied plasma equilibrium in tokamak in case of toroidal rotation. Rotation associated centrifugal force is shown to result in decrease of equilibrium limit as to β. One analyzes unlike opinion and considers its supports. It is shown that in possible case of local improvement of equilibrium conditions associated with special selection of profile of plasma rotation rate, the combined integral effect turns to be negative one. But in case of typical conditions, decrease of equilibrium β caused by plasma rotation is negligible one and one may ignore effect of plasma rotation on its equilibrium for hot plasma [ru

  17. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    2007-01-01

    The Opening talk of the workshop 'Hot Laboratories and Remote Handling' was given by Marin Ciocanescu with the communication 'Overview of R and D Program in Romanian Institute for Nuclear Research'. The works of the meeting were structured into three sections addressing the following items: Session 1. Hot cell facilities: Infrastructure, Refurbishment, Decommissioning; Session 2. Waste, transport, safety and remote handling issues; Session 3. Post-Irradiation examination techniques. In the frame of Section 1 the communication 'Overview of hot cell facilities in South Africa' by Wouter Klopper, Willie van Greunen et al, was presented. In the framework of the second session there were given the following four communications: 'The irradiated elements cell at PHENIX' by Laurent Breton et al., 'Development of remote equipment for DUPIC fuel fabrication at KAERI', by Jung Won Lee et al., 'Aspects of working with manipulators and small samples in an αβγ-box, by Robert Zubler et al., and 'The GIOCONDA experience of the Joint Research Centre Ispra: analysis of the experimental assemblies finalized to their safe recovery and dismantling', by Roberto Covini. Finally, in the framework of the third section the following five communications were presented: 'PIE of a CANDU fuel element irradiated for a load following test in the INR TRIGA reactor' by Marcel Parvan et al., 'Adaptation of the pole figure measurement to the irradiated items from zirconium alloys' by Yury Goncharenko et al., 'Fuel rod profilometry with a laser scan micrometer' by Daniel Kuster et al., 'Raman spectroscopy, a new facility at LECI laboratory to investigate neutron damage in irradiated materials' by Lionel Gosmain et al., and 'Analysis of complex nuclear materials with the PSI shielded analytical instruments' by Didier Gavillet. In addition, eleven more presentations were given as posters. Their titles were: 'Presentation of CETAMA activities (CEA analytic group)' by Alain Hanssens et al. 'Analysis of

  18. Head-out immersion in hot water increases serum BDNF in healthy males.

    Science.gov (United States)

    Kojima, Daisuke; Nakamura, Takeshi; Banno, Motohiko; Umemoto, Yasunori; Kinoshita, Tokio; Ishida, Yuko; Tajima, Fumihiro

    2017-11-20

    Brain-derived neurotrophic factor (BDNF) is an important neurotrophin. The present study investigated the effects of head-out water immersion (HOI) on serum BDNF concentrations. Eight healthy men performed 20 min head-out water immersion at 42 °C (hot-HOI) and 35 °C (neutral-HOI). These experimental trials were administered in a randomised order separated by at least 7 days. Venous blood samples were withdrawn at rest, immediately after the 20-min HOI, as well as at 15 and 30 min after the end of the HOI. Serum BDNF and S100β, plasma cortisol, platelet and monocyte counts, and core body temperature (T cb ) were measured. T cb was higher at the end of the hot-HOI and 15 min after hot-HOI (p hot-HOI. No change in T cb was recorded during neutral-HOI. BDNF level was higher (p hot-HOI and at 15 min after the end of hot-HOI, and returned to the baseline at 30 min after hot-HOI. S100β, platelet count and monocyte count remained stable throughout the study. Cortisol level was lower at the end of the hot-HOI and returned to pre-HOI level during the recovery period. BDNF and S100β, cortisol, and platelet and monocyte counts did not change throughout the neutral-HOI study. The present findings suggested that the increase in BDNF during 20-min hot-HOI was induced by hyperthermia through enhanced production, rather than by changes in permeability of the blood-brain barrier (BBB), platelet clotting mechanisms or secretion from monocytes.

  19. Plasma physics via particle simulation

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1981-01-01

    Plasmas are studied by following the motion of many particles in applied and self fields, analytically, experimentally and computationally. Plasmas for magnetic fusion energy devices are very hot, nearly collisionless and magnetized, with scale lengths of many ion gyroradii and Debye lengths. The analytic studies of such plasmas are very difficult as the plasma is nonuniform, anisotropic and nonlinear. The experimental studies have become very expensive in time and money, as the size, density and temperature approach fusion reactor values. Computational studies using many particles and/or fluids have complemented both theories and experiments for many years and have progressed to fully three dimensional electromagnetic models, albeit with hours of running times on the fastest largest computers. Particle simulation methods are presented in some detail, showing particle advance from acceleration to velocity to position, followed by calculation of the fields from charge and current densities and then further particle advance, and so on. Limitations due to the time stepping and use of a spatial grid are given, to avoid inaccuracies and instabilities. Examples are given for an electrostatic program in one dimension of an orbit averaging program, and for a three dimensional electromagnetic program. Applications of particle simulations of plasmas in magnetic and inertial fusion devices continue to grow, as well as to plasmas and beams in peripheral devices, such as sources, accelerators, and converters. (orig.)

  20. Hot flashes and sleep in women.

    Science.gov (United States)

    Moe, Karen E

    2004-12-01

    Sleep disturbances during menopause are often attributed to nocturnal hot flashes and 'sweats' associated with changing hormone patterns. This paper is a comprehensive critical review of the research on the relationship between sleep disturbance and hot flashes in women. Numerous studies have found a relationship between self-reported hot flashes and sleep complaints. However, hot flash studies using objective sleep assessment techniques such as polysomnography, actigraphy, or quantitative analysis of the sleep EEG are surprisingly scarce and have yielded somewhat mixed results. Much of this limited evidence suggests that hot flashes are associated with objectively identified sleep disruption in at least some women. At least some of the negative data may be due to methodological issues such as reliance upon problematic self-reports of nocturnal hot flashes and a lack of concurrent measures of hot flashes and sleep. The recent development of a reliable and non-intrusive method for objectively identifying hot flashes during the night should help address the need for substantial additional research in this area. Several areas of clinical relevance are described, including the effects of discontinuing combined hormone therapy (estrogen plus progesterone) or estrogen-only therapy, the possibility of hot flashes continuing for many years after menopause, and the link between hot flashes and depression.

  1. Experimental studies on the production and suppression mechanism of the hot electrons produced by short wavelength laser

    International Nuclear Information System (INIS)

    Qi Lanying; Jiang Xiaohua; Zhao Xuewei; Li Sanwei; Zhang Wenhai; Li Chaoguang; Zheng Zhijian; Ding Yongkun

    1999-12-01

    The experiments on gold-disk and hohlraum and plastic hydrocarbon (CH) film targets irradiated by laser beams with wavelength 0.35 μm (Xingguang-II) and 0.53 μm (Shenguang-I) are performed. The characteristics of hot electrons are commonly deduced from spectrum of hard X-ray. Associated with the measurement of backward SRS and 3/2ω 0 , the production mechanism of hot electrons for different target type is analyzed in laser plasma with shorter wavelength. A effective way to suppress hot electrons has been found

  2. Structure and magnetic properties of hot deformed Nd2Fe14B magnets doped with DyHx nanoparticles

    Science.gov (United States)

    Wang, C. G.; Yue, M.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.

    2016-04-01

    Commercial NdFeB powders mixed with DyHx nanoparticles are hot pressed and hot deformed into anisotropic magnets by Spark Plasma Sintering (SPS). The hot deformed magnet exhibits strong c-axis crystallographic texture. The coercivity of the magnet doped with 1.0 wt% DyHx is increased by 66.7%, compared with the magnet without DyHx, while the remanence decreases only by 3%. TEM observation shows that there exists a continuous (Nd,Dy)2Fe14B layer between Nd-rich phase and NdFeB main phase.

  3. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  4. Hot moons and cool stars

    Directory of Open Access Journals (Sweden)

    Heller René

    2013-04-01

    Full Text Available The exquisite photometric precision of the Kepler space telescope now puts the detection of extrasolar moons at the horizon. Here, we firstly review observational and analytical techniques that have recently been proposed to find exomoons. Secondly, we discuss the prospects of characterizing potentially habitable extrasolar satellites. With moons being much more numerous than planets in the solar system and with most exoplanets found in the stellar habitable zone being gas giants, habitable moons could be as abundant as habitable planets. However, satellites orbiting planets in the habitable zones of cool stars will encounter strong tidal heating and likely appear as hot moons.

  5. Plasma physics

    CERN Document Server

    Drummond, James E

    1961-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  6. Plasma generator

    International Nuclear Information System (INIS)

    Omichi, Takeo; Yamanaka, Toshiyuki.

    1976-01-01

    Object: To recycle a coolant in a sealed hollow portion formed interiorly of a plasma limiter itself to thereby to cause direct contact between the coolant and the plasma limiter and increase of contact area therebetween to cool the plasma limiter. Structure: The heat resulting from plasma generated during operation and applied to the body of the plasma limiter is transmitted to the coolant, which recycles through an inlet and outlet pipe, an inlet and outlet nozzle and a hollow portion to hold the plasma limiter at a level less than a predetermined temperature. On the other hand, the heater wire is, at the time of emergency operation, energized to heat the plasma limiter, but this heat is transmitted to the limiter body to increase the temperature thereof. However, the coolant recycling the hollow portion comes into direct contact with the limiter body, and since the plasma limiter surround the hollow portion, the heat amount transmitted from the limiter body to the coolant increases to sufficiently cool the plasma limiter. (Yoshihara, H.)

  7. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums

    Science.gov (United States)

    Dewald, E. L.; Hartemann, F.; Michel, P.; Milovich, J.; Hohenberger, M.; Pak, A.; Landen, O. L.; Divol, L.; Robey, H. F.; Hurricane, O. A.; Döppner, T.; Albert, F.; Bachmann, B.; Meezan, N. B.; MacKinnon, A. J.; Callahan, D.; Edwards, M. J.

    2016-02-01

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10 × higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma.

  8. Solar wind flows associated with hot heavy ions

    International Nuclear Information System (INIS)

    Fenimore, E.E.

    1980-05-01

    Solar wind heavy ion spectra measured with the Vela instrumentation have been studied with the goal of determining the solar origins of various solar wind structures which contain anomalously high ionization states. Since the ionization states freeze-in close to the sun they are good indicators of the plasma conditions in the low and intermediate corona. Heavy ion spectra from three different periods throughout the solar cycle have been analyzed. These data are consistent with freezing-in temperatures ranging from approx. 1.5 x 10 6 K to higher than 9 x 10 6 . The spectra indicating hot coronal conditions occur in roughly 1/7 of all measurements and almost exclusively in postshock flows (PSFs), nonshock related helium abundance enhancements (HAEs), or noncompressive density enhancements (NCDEs). The PSFs and HAEs are both probably interplanetary manifestations of solar flares. The observation of several flare-related HAEs which were not preceded by an interplanetary shock suggests that the flare-heated plasma can evolve into the solar wind without producing a noticeable shock at 1 AU. The NCDEs with hot heavy ions differ from the PSF-HAEs in several ways implying that they evolve from events or places with lower temperatures and less energy than those associated with the flares, but with higher temperatures and densities than the quiet corona. Active regions, coronal mass ejections, and equatorial streamers are possible sources for the NCDEs with spectra indicating hot coronal conditions. These events owe their enhanced densities to coronal processes as opposed to interplanetary dynamical processes. Models of the solar wind expansion demonstrate how some NCDEs can have extreme, nonequilibrium ionization distributions

  9. Hot tearing studies in AA5182

    Science.gov (United States)

    van Haaften, W. M.; Kool, W. H.; Katgerman, L.

    2002-10-01

    One of the major problems during direct chill (DC) casting is hot tearing. These tears initiate during solidification of the alloy and may run through the entire ingot. To study the hot tearing mechanism, tensile tests were carried out in semisolid state and at low strain rates, and crack propagation was studied in situ by scanning electron microscopy (SEM). These experimentally induced cracks were compared with hot tears developed in an AA5182 ingot during a casting trial in an industrial research facility. Similarities in the microstructure of the tensile test specimens and the hot tears indicate that hot tearing can be simulated by performing tensile tests at semisolid temperatures. The experimental data were compared with existing hot tearing models and it was concluded that the latter are restricted to relatively high liquid fractions because they do not take into account the existence of solid bridges in the crack.

  10. Effects of fueling profiles on plasma transport

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Mense, A.T.; Attenberger, S.E.; Milora, S.L.

    1977-01-01

    The effects of cold particle fueling profiles on particle and energy transport in an ignition sized tokamak plasma are investigated in this study with a one-dimensional, multifluid transport model. A density gradient driven trapped particle microinstability model for plasma transport is used to demonstrate potential effects of fueling profiles on ignition requirements. Important criteria for the development of improved transport models under the conditions of shallow particle fueling profiles are outlined. A discrete pellet fueling model indicates that large fluctuations in density and temperature may occur in the outer regions of the plasma with large, shallowly penetrating pellets, but fluctuations in the pressure profile are small. The hot central core of the plasma remains unaffected by the large fluctuations near the plasma edge

  11. Plasmas the first state of matter

    CERN Document Server

    Krishan, Vinod

    2014-01-01

    Most astronomers believe that the universe began about 15 billion years ago when an explosion led to its expansion and cooling. The present state of the universe compels us to believe that the universe was extremely hot and dense in its infancy. In the beginning there was intense radiation. The photons produced equal amounts of matter and antimatter and a plasma soup of particles and antiparticles was present. Plasma is the first state of matter from which all the other states originated. This book discusses the diversity of cosmic and terrestrial plasmas found in the early universe, galactic and intergalactic media, stellar atmospheres, interstellar spaces, the solar system and the Earth's ionosphere, and their observability with the most recent telescopes such as the Chandra X-ray telescope and gamma ray telescopes. It deals with different ways of creating plasmas such as thermal, pressure and radiative ionization for laboratory and cosmic plasmas.

  12. How well do time-integrated Kα images represent hot electron spatial distributions?

    Science.gov (United States)

    Ovchinnikov, V. M.; Kemp, G. E.; Schumacher, D. W.; Freeman, R. R.; Van Woerkom, L. D.

    2011-07-01

    A computational study is described, which addresses how well spatially resolved time-integrated Kα images recorded in intense laser-plasma experiments correlate with the distribution of "hot" (>1 MeV) electrons as they propagate through the target. The hot electron angular distribution leaving the laser-plasma region is critically important for many applications such as Fast Ignition or laser based x-ray sources; and Kα images are commonly used as a diagnostic. It is found that Kα images can easily mislead due to refluxing and other effects. Using the particle-in-cell code LSP, it is shown that a Kα image is not solely determined by the initial population of forward directed hot electrons, but rather also depends upon "delayed" hot electrons, and in fact continues to evolve long after the end of the laser interaction. Of particular note, there is a population of hot electrons created during the laser-plasma interaction that acquire a velocity direction opposite that of the laser and subsequently reflux off the front surface of the target, deflect when they encounter magnetic fields in the laser-plasma region, and then traverse the target in a wide spatial distribution. These delayed fast electrons create significant features in the Kα time-integrated images. Electrons refluxing from the sides and the back of the target are also found to play a significant role in forming the final Kα image. The relative contribution of these processes is found to vary depending on depth within target. These effects make efforts to find simple correlations between Kα images and, for example, Fast Ignition relevant parameters prone to error. Suggestions for future target design are provided.

  13. Understanding plasma spraying process and characteristics of DC-arc plasma gun (PJ-100

    Directory of Open Access Journals (Sweden)

    Jovana Ružić

    2012-12-01

    Full Text Available The thermal spray processes are a group of coating processes used to apply metallic or non-metallic coatings. In these processes energy sources are used to heat the coating material (in the form of powder, wire, or rod form to a molten or semi-molten state and accelerated towards a prepared surface by either carrier gases or atomization jets. In plasma spraying process, the spraying material is generally in the form of powder and requires a carrier gas to feed the powder into the plasma jet, which is passing between the hot cathode and the cylindrical nozzle-shaped anode. The design of DC plasma gun (PJ - 100 is designed and manufactured in Serbia. Plasma spaying process, the powder injection with the heat, momentum and mass transfers between particles and plasma jet, and the latest developments related to the production of DC plasma gun are described in this article.

  14. Bridge between fusion plasma and plasma processing

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Takamura, Shuichi

    2008-01-01

    In the present review, relationship between fusion plasma and processing plasma is discussed. From boundary-plasma studies in fusion devices new applications such as high-density plasma sources, erosion of graphite in a hydrogen plasma, formation of helium bubbles in high-melting-point metals and the use of toroidal plasmas for plasma processing are emerging. The authors would like to discuss a possibility of knowledge transfer from fusion plasmas to processing plasmas. (T. Ikehata)

  15. Powerful Radio Galaxies with Simbol-X: Lobes and Hot Spots

    Science.gov (United States)

    Migliori, G.; Grandi, P.; Angelini, L.; Raimondi, L.; Torresi, E.; Palumbo, G. G. C.

    2009-05-01

    We present here the first Simbol-X simulations of the extended components, lobes and hot spots, of the radio galaxies. We use the paradigmatic case of Pictor A to test the capabilities of Simbol-X in this field of studies. Simulations demonstrate that Simbol-X will be able not only to perform spatially resolved studies on the lobes of radio galaxies below 10 keV but also to observe, for the first time, hard X-ray emission from the hot spots. These extremely promising results show the considerable potentiality of Simbol-X in studying interaction phenomena between relativistic plasma and surrounding environment.

  16. Powerful Radio Galaxies with Simbol-X: Lobes and Hot Spots

    International Nuclear Information System (INIS)

    Migliori, G.; Grandi, P.; Raimondi, L.; Torresi, E.; Angelini, L.; Palumbo, G. G. C.

    2009-01-01

    We present here the first Simbol-X simulations of the extended components, lobes and hot spots, of the radio galaxies. We use the paradigmatic case of Pictor A to test the capabilities of Simbol-X in this field of studies. Simulations demonstrate that Simbol-X will be able not only to perform spatially resolved studies on the lobes of radio galaxies below 10 keV but also to observe, for the first time, hard X-ray emission from the hot spots. These extremely promising results show the considerable potentiality of Simbol-X in studying interaction phenomena between relativistic plasma and surrounding environment.

  17. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    Science.gov (United States)

    Hoenig, C.L.

    1993-08-31

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  18. Menopausal Hot Flashes and White Matter Hyperintensities

    Science.gov (United States)

    Thurston, Rebecca C.; Aizenstein, Howard J.; Derby, Carol A.; Sejdić, Ervin; Maki, Pauline M.

    2015-01-01

    Objective Hot flashes are the classic menopausal symptom. Emerging data links hot flashes to cardiovascular disease (CVD) risk, yet how hot flashes are related to brain health is poorly understood. We examined the relationship between hot flashes - measured via physiologic monitor and self-report - and white matter hyperintensities (WMH) among midlife women. Methods Twenty midlife women ages 40-60 without clinical CVD, with their uterus and both ovaries, and not taking hormone therapy were recruited. Women underwent 24 hours of ambulatory physiologic and diary hot flash monitoring to quantify hot flashes; magnetic resonance imaging to assess WMH burden; 72 hours of actigraphy and questionnaires to quantify sleep; and a blood draw, questionnaires, and physical measures to quantify demographics and CVD risk factors. Test of a priori hypotheses regarding relations between physiologically-monitored and self-reported wake and sleep hot flashes and WMH were conducted in linear regression models. Results More physiologically-monitored hot flashes during sleep were associated with greater WMH, controlling for age, race, and body mass index [beta(standard error)=.0002 (.0001), p=.03]. Findings persisted controlling for sleep characteristics and additional CVD risk factors. No relations were observed for self-reported hot flashes. Conclusions More physiologically-monitored hot flashes during sleep were associated with greater WMH burden among midlife women free of clinical CVD. Results suggest that relations between hot flashes and CVD risk observed in the periphery may extend to the brain. Future work should consider the unique role of sleep hot flashes in brain health. PMID:26057822

  19. Plasma waves

    National Research Council Canada - National Science Library

    Swanson, D. G

    1989-01-01

    ... Swanson, D.G. (Donald Gary), D a t e - Plasma waves. Bibliography: p. Includes index. 1. Plasma waves. QC718.5.W3S43 1989 ISBN 0-12-678955-X I. Title. 530.4'4 88-34388 Printed in the United Sta...

  20. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1991-06-01

    The Magneto-Fluid Dynamics Division continues to study a broad range of problems originating in plasma physics. Its principal focus is fusion plasma physics, and most particularly topics of particular significance for the world magnetic fusion program. During the calendar year 1990 we explored a wide range of topics including RF-induced transport as a plasma control mechanism, edge plasma modelling, further statistical analysis of L and H mode tokamak plasmas, antenna design, simulation of the edge of a tokamak plasma and the L-H transition, interpretation of the CCT experimental results at UCLA, turbulent transport, studies in chaos, the validity of moment approximations to kinetic equations and improved neoclassical modelling. In more basic studies we examined the statistical mechanisms of Coulomb systems and applied plasma ballooning mode theory to conventional fluids in order to obtain novel fluid dynamics stability results. In space plasma physics we examined the problem of reconnection, the effect of Alfven waves in space environments, and correct formulation of boundary conditions of the Earth for waves in the ionosphere

  1. Plasma container

    International Nuclear Information System (INIS)

    Ebisawa, Katsuyuki.

    1985-01-01

    Purpose: To enable to easily detect that the thickness of material to be abraded is reduced to an allowable limit from the outerside of the plasma container even during usual operation in a plasma vessel for a thermonuclear device. Constitution: A labelled material is disposed to the inside or rear face of constituent members of a plasma container undergoing the irradiation of plasma particles. A limiter plate to be abraded in the plasma container is composed of an armour member and heat removing plate, in which the armour member is made of graphite and heat-removing plate is made of copper. If the armour member is continuously abraded under the effect of sputtering due to plasma particles, silicon nitride embedded so far in the graphite at last appears on the surface of the limiter plate to undergo the impact shocks of the plasma particles. Accordingly, abrasion of the limiter material can be detected by a detector comprising gas chromatography and it can easily be detected from the outside of the plasma content even during normal operation. (Horiuchi, T.)

  2. Microplasticity in hot-pressed beryllium

    International Nuclear Information System (INIS)

    Plane, D.C.; Bonfield, W.

    1977-01-01

    Closed hysteresis loops measured in the microstrain region of hot pressed, commercially pure, polycrystalline beryllium are correlated with a dislocation - impurity atom, energy dissipating mechanism. (author)

  3. Line Heat-Source Guarded Hot Plate

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. This facility provides for absolute measurement of thermal...

  4. Sanitary hot water; Eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Cegibat, the information-recommendation agency of Gaz de France for building engineering professionals, has organized this conference meeting on sanitary hot water to present the solutions proposed by Gaz de France to meet its clients requirements in terms of water quality, comfort, energy conservation and respect of the environment: quantitative aspects of the hot water needs, qualitative aspects, presentation of the Dolce Vita offer for residential buildings, gas water heaters and boilers, combined solar-thermal/natural gas solutions, key-specifications of hot water distribution systems, testimony: implementation of a gas hot water reservoir and two accumulation boilers in an apartment building for young workers. (J.S.)

  5. Cosmic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, H [California Univ., San Diego, La Jolla (USA)

    1981-01-01

    The properties of space plasmas are analyzed, based on laboratory results and data obtained by in situ measurements in the magnetosphere (including the heliosphere). Attention is given to the question of how much knowledge can be gained by a systematic comparison of different regions of plasma, and plasmas are considered with linear dimensions varying from laboratory size up to the Hubble distance. The traditional magnetic field description of plasmas is supplemented by an electric current description and it is demonstrated that many problems are easier to understand with a dualistic approach. Using the general plasma properties obtained, the origin and evolution of the solar system is summarized and the evolution and present structure of the universe (cosmology) is discussed.

  6. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A relativistic electron beam generator or accelerator produces a high-voltage electron beam which is modulated to initiate electron bunching within the beam which is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10 17 to 10 20 electrons per cubic centimeter. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target. The high-temperature plasma can be used to heat a high Z material to generate radiation. Alternatively, a tunable radiation source is produced by using a moderate Z gas or a mixture of high Z and low Z gas as the target plasma. (author)

  7. Ion emission from laser-produced plasmas with two electron temperatures

    International Nuclear Information System (INIS)

    Wickens, L.M.; Allen, J.E.; Rumsby, P.T.

    1978-01-01

    An analytic theory for the expansion of a laser-produced plasma with two electron temperatures is presented. It is shown that from the ion-emission velocity spectrum such relevant parameters as the hot- to -cold-electron density ratio, the absolute hot- and cold-electron temperatures, and a sensitive measure of hot- and cold-electron temperature ratio can be deduced. A comparison with experimental results is presented

  8. Superconducting plasmas

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro; Ohno, J.

    1994-01-01

    Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves

  9. Real-time monitoring of the laser hot-wire welding process

    Science.gov (United States)

    Liu, Wei; Liu, Shuang; Ma, Junjie; Kovacevic, Radovan

    2014-04-01

    The laser hot-wire welding process was investigated in this work. The dynamics of the molten pool during welding was visualized by using a high-speed charge-coupled device (CCD) camera assisted by a green laser as an illumination source. It was found that the molten pool is formed by the irradiation of the laser beam on the filler wire. The effect of the hot-wire voltage on the stability of the welding process was monitored by using a spectrometer that captured the emission spectrum of the laser-induced plasma plume. The spectroscopic study showed that when the hot-wire voltage is above 9 V a great deal of spatters occur, resulting in the instability of the plasma plume and the welding process. The effect of spatters on the plasma plume was shown by the identified spectral lines of the element Mn I. The correlation between the Fe I electron temperature and the weld-bead shape was studied. It was noted that the electron temperature of the plasma plume can be used to real-time monitor the variation of the weld-bead features and the formation of the weld defects.

  10. Polarization of X rays of multiply charged ions in dense high-temperature plasma

    NARCIS (Netherlands)

    Baronova, EO; Dolgov, AN; Yakubovskii, LK

    2004-01-01

    The development of a method for studying the features of X-ray emission by multiply charged ions in a dense hot plasma is considered. These features are determined by the radiation polarization phenomenon.

  11. Finite-Larmor-radius stability theory of EBT plasmas

    International Nuclear Information System (INIS)

    Berk, H.L.; Cheng, C.Z.; Rosenbluth, M.N.; Van Dam, J.W.

    1982-11-01

    An eikonal ballooning-mode formalism is developed to describe curvature-driven modes of hot electron plasmas in bumpy tori. The formalism treats frequencies comparable to the ion-cyclotron frequency, as well as arbitrary finite Larmor radius and field polarization, although the detailed analysis is restricted to E/sub parallel/ = 0. Moderate hot-electron finite-Larmor-radius effects are found to lower the background beta core limit, whereas strong finite-Lamor-radius effects produce stabilization

  12. Surge of plasma waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Benhassine, Mohammed

    1985-01-01

    The first part of this research thesis addresses the propagation of waves in a plasma. It presents the equation of propagation of an electromagnetic wave in a plasma without magnetic field, and analyses the propagation in an inhomogeneous medium. The second part addresses the wave-particle interaction: interaction between electrons and an electromagnetic wave, between electrons and an electrostatic wave (trapping), and between electrons and a localised electric field. The third chapter presents the analytic theory of oscillations of a cold plasma (macroscopic equations in Lagrangian coordinates, analytic solution before surge). The next chapter discusses physical interpretations before the wave surge, after the wave surge, and about energy exchange (within or outside of resonance). Numerical simulations and their results are then reported and discussed. The sixth chapter addresses the case of an electrostatic wave surge in a hot plasma. It notably addresses the following aspects: equivalence between the description of moments and the Waterbag model, interaction between non linearity and thermal effects, variation of electric field amplitude with temperature. Results of numerical simulations are presented, and the last part addresses experimental predictions for microwaves-plasma interaction and laser-matter interaction [fr

  13. The evolution of meteorites and planets from a hot nebula

    Directory of Open Access Journals (Sweden)

    Donald H. Tarling

    2015-06-01

    Full Text Available Meteorites have a hot origin as planetary materials derive from a supernova, similar to SN1987A, and were acquired by a nearby nova, the Sun. The supernova plasmas became zoned around the nova, mainly by their electromagnetic properties. Carbon and carbide dusts condensed first, followed, within the Inner Planetary Zone, by Ca–Mg–Al oxides and then by iron and nickel metal droplets. In the inner Asteroid Belt, the metals aggregated into clumps as they solidified but over a much longer time in the Inner Zone. ‘Soft’ collisions formed larger (<∼20 km objects in the Asteroid Belt; in the Inner Zone these aggregated forming proto-planetary cores during inwards orbital migration. In the Asteroid Belt, glassy olivines condensed, followed more open lattice minerals growing grew primarily by diffusion. Brittle silicate crystals were comminuted and only aggregated into the carbonaceous meteorites when water–ices formed. The inner planets differentiated by at least 4.4 Ga. Jupiter and the outer planets grew on asteroidal bodies thrown out into freezing water vapours and only formed by 4.1 Ga, resulting in the Late Heavy Bombardment, initially by meteoritic materials and later supplemented by ices from, and beyond, the Asteroid Belt. Critical factors are the properties of very high temperature supernova plasmas, the duration of the molten iron phase in the inner zone. Evidence usually quoted for a cold origin derives from late stage processes in hot meteorite evolution. While highly speculative, it is shown that meteorites and planets can be formed by known processes as supernova plasmas cool.

  14. Effects of nonresonant hot ions with large orbits on Alfven cascades and on magnetohydrodynamic instabilities in tokamaks

    International Nuclear Information System (INIS)

    Sharapov, S.E.; Mikhailovskii, A.B.; Huysmans, G.T.A.

    2004-01-01

    The effects of nonresonating hot ions on the spectrum of magnetohydrodynamic (MHD) waves and instabilities in tokamaks are studied in the limit when the width of the hot ion drift orbits is much larger than the radial scale length of the MHD perturbations. Due to the large magnetic drift velocities the hot ions cannot contribute to the MHD perturbations directly, but two main effects of the hot ions, the hot-ion density-dependent effect and the hot-ion pressure-dependent effect, influence the MHD perturbations indirectly. The physics of both effects is elucidated and it is shown that both these effects can be described in MHD approach. A new code, MISHKA-H (MISHKA including the hot-ion indirect effects), is developed as an extension of the ideal MHD code MISHKA-D [Huysmans et al., Phys. Plasmas 8, 4292 (2002)]. Analytical benchmarks for this code are given. Results of the MISHKA-H code on Alfven spectrum in a shear-reversed discharges with ion-cyclotron resonance frequency (ICRF) heating are presented. Modeling of Alfven cascades and their transition into toroidal Alfven eigenmodes in shear-reversed tokamak equilibrium is considered. The hot-ion effect on the unstable branch of the MHD spectrum is studied for the test case of an n=1 ideal MHD internal kink mode, which is relevant to short-period sawteeth in low-density plasmas observed in Joint European Torus (JET) [Rebut et al., Proceedings of the 10th International Conference, Plasma Physics and Controlled Nuclear Fusion, London (International Atomic Energy Agency, Vienna, 1985), Vol. I, p. 11] experiments with high-power ICRF heating

  15. Handbook of hot atom chemistry

    International Nuclear Information System (INIS)

    Adloff, J.P.; Matsuura, Tatsuo; Yoshihara, Kenji

    1992-01-01

    Hot atom chemistry is an increasingly important field, which has contributed significantly to our understanding of many fundamental processes and reactions. Its techniques have become firmly entrenched in numerous disciplines, such as applied physics, biomedical research, and all fields of chemistry. Written by leading experts, this comprehensive handbook encompasses a broad range of topics. Each chapter comprises a collection of stimulating essays, given an in-depth account of the state-of-the-art of the field, and stressing opportunities for future work. An extensive introduction to the whole area, this book provides unique insight into a vast subject, and a clear delineation of its goals, techniques, and recent findings. It also contains detailed discussions of applications in fields as diverse as nuclear medicine, geochemistry, reactor technology, and the chemistry of comets and interstellar grains. (orig.)

  16. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  17. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  18. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  19. Plasma universe

    International Nuclear Information System (INIS)

    Alfven, H.

    1986-04-01

    Traditionally the views in our cosmic environment have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasma. Such a medium may also emit synchrotron radiation which is observable in the radio region. If we try to base a model of the universe on the plasma phenomena mentioned we find that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasma. This approach is possible because it is likely that the basic properties of plasma are the same everywhere. In order to test the usefulness of the plasma universe model we apply it to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4-5 bilions years ago with an accuracy of better than 1 percent

  20. Plasma physics

    International Nuclear Information System (INIS)

    1979-01-01

    This report contains the papers delivered at the AEB - Natal University summer school on plasma physics held in Durban during January 1979. The following topics were discussed: Tokamak devices; MHD stability; trapped particles in tori; Tokamak results and experiments; operating regime of the AEB Tokamak; Tokamak equilibrium; high beta Tokamak equilibria; ideal Tokamak stability; resistive MHD instabilities; Tokamak diagnostics; Tokamak control and data acquisition; feedback control of Tokamaks; heating and refuelling; neutral beam injection; radio frequency heating; nonlinear drift wave induced plasma transport; toroidal plasma boundary layers; microinstabilities and injected beams and quasilinear theory of the ion acoustic instability

  1. Plasma centrifuge

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Mase, Hiroshi

    1998-01-01

    The plasma centrifuge is one of statistical isotope separation processes which uses the centrifugal force of a J x B driven rotating plasma in a magnetic field to give rise to the mass-dependent radial transport of isotopic ions. The system has been developed as an alternative to the gas centrifuge because a much higher rotational velocity and separation factor have been achieved. In this review, the physical aspects of the plasma centrifuge followed by the recent experimental achievements are described, especially in comparison with the gas centrifuge. (author)

  2. THE USE OF COATINGS FOR HOT CORROSION AND EROSION PROTECTION IN TURBINE HOT SECTION COMPONENTS

    Directory of Open Access Journals (Sweden)

    Hayrettin AHLATCI

    1999-01-01

    Full Text Available High pressure turbine components are subjected to a wide variety of thermal and mechanical loading during service. In addition, the components are exposed to a highly oxidizing atmosphere which may contain contaminants such as sulphates, chlorides and sulphuorous gases along with erosive media. So the variety of surface coatings and deposition processes available for the protection of blade and vane components in gas turbines are summarised in this study. Coating types range from simple diffusion aluminides to modified aluminides and a CoCrAlY overlayer. The recommendations for corrosion-resistant coatings (for low temperature and high temperature hot corrosion environments are as follows: silicon aluminide and platinumchromium aluminide for different gas turbine section superalloys substrates. Platinum metal additions are used to improve the properties of coatings on turbine components. Inorganic coatings based on ceramic films which contain aluminium or aluminium and silicon are very effective in engines and gas turbines. Diffusion, overlayer and thermal barrier coatings which are deposited on superalloys gas turbine components by pack cementation, plasma spraying processes and a number of chemical vapour deposition, physical vapour deposition processes (such as electron beam, sputtering, ion plating are described. The principles underlying the development of protective coatings serve as a useful guide in the choice of coatings for other high temperature applications.

  3. Hot Blade Cuttings for the Building Industries

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Evgrafov, Anton

    2016-01-01

    . The project aims to reduce the amount of manual labour as well as production time by applying robots to cut expanded polystyrene (EPS) moulds for the concrete to form doubly curved surfaces. The scheme is based upon the so-called Hot Wire or Hot Blade technology where the surfaces are essentially swept out...

  4. "Hot Tub Rash" and "Swimmer's Ear" (Pseudomonas)

    Science.gov (United States)

    Facts About “Hot Tub Rash” and “Swimmer’s Ear” (Pseudomonas) What is Pseudomonas and how can it affect me? Pseudomonas (sue-doh- ... a major cause of infections commonly known as “hot tub rash” and “swimmer’s ear.” This germ is ...

  5. The Hot Hand Belief and Framing Effects

    Science.gov (United States)

    MacMahon, Clare; Köppen, Jörn; Raab, Markus

    2014-01-01

    Purpose: Recent evidence of the hot hand in sport--where success breeds success in a positive recency of successful shots, for instance--indicates that this pattern does not actually exist. Yet the belief persists. We used 2 studies to explore the effects of framing on the hot hand belief in sport. We looked at the effect of sport experience and…

  6. Hot Spot Removal System: System description

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  7. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  8. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  9. Hot Mix Asphalt Recycling : Practices and Principles

    NARCIS (Netherlands)

    Mohajeri, M.

    2015-01-01

    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a

  10. Static and dynamical properties of hot nuclei

    International Nuclear Information System (INIS)

    Suraud, E.

    1990-01-01

    We briefly review our understanding of the formation of excited/hot nuclei in heavy-ion collisions at some tens of MeV/A. We recall the major theoretical frameworks used for describing as well the entrance channel of the reaction as the structure properties of hot nuclei. We finally focus on multifragmentation within insisting upon the theoretical challenge it does represent

  11. Hot Spot Removal System: System description

    International Nuclear Information System (INIS)

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System''s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section

  12. Plasma fluctuation measurements in tokamaks using beam-plasma interactions

    International Nuclear Information System (INIS)

    Fonck, R.J.; Duperrex, P.A.; Paul, S.F.

    1990-01-01

    High-frequency observations of light emitted from the interactions between plasma ions and injected neutral beam atoms allow the measurement of moderate-wavelength fluctuations in plasma and impurity ion densities. To detect turbulence in the local plasma ion density, the collisionally excited fluorescence from a neutral beam is measured either separately at several spatial points or with a multichannel imaging detector. Similarly, the role of impurity ion density fluctuations is measured using charge exchange recombination excited transitions emitted by the ion species of interest. This technique can access the relatively unexplored region of long-wavelength plasma turbulence with k perpendicular ρ i much-lt 1, and hence complements measurements from scattering experiments. Optimization of neutral beam geometry and optical sightlines can result in very good localization and resolution (Δx≤1 cm) in the hot plasma core region. The detectable fluctuation level is determined by photon statistics, atomic excitation processes, and beam stability, but can be as low as 0.2% in a 100 kHz bandwidth over the 0--1 MHz frequency range. The choices of beam species (e.g., H 0 , He 0 , etc.), observed transition (e.g., H α , L α , He I singlet or triplet transitions, C VI Δn=1, etc.) are dictated by experiment-specific factors such as optical access, flexibility of beam operation, plasma conditions, and detailed experimental goals. Initial tests on the PBX-M tokamak using the H α emissions from a heating neutral beam show low-frequency turbulence in the edge plasma region

  13. On plasma ion beam formation in the Advanced Plasma Source

    International Nuclear Information System (INIS)

    Harhausen, J; Foest, R; Hannemann, M; Ohl, A; Brinkmann, R P; Schröder, B

    2012-01-01

    The Advanced Plasma Source (APS) is employed for plasma ion-assisted deposition (PIAD) of optical coatings. The APS is a hot cathode dc glow discharge which emits a plasma ion beam to the deposition chamber at high vacuum (p ≲ 2 × 10 −4 mbar). It is established as an industrial tool but to date no detailed information is available on plasma parameters in the process chamber. As a consequence, the details of the generation of the plasma ion beam and the reasons for variations of the properties of the deposited films are barely understood. In this paper the results obtained from Langmuir probe and retarding field energy analyzer diagnostics operated in the plasma plume of the APS are presented, where the source was operated with argon. With increasing distance to the source exit the electron density (n e ) is found to drop by two orders of magnitude and the effective electron temperature (T e,eff ) drops by a factor of five. The parameters close to the source region read n e ≳ 10 11 cm −3 and T e,eff ≳ 10 eV. The electron distribution function exhibits a concave shape and can be described in the framework of the non-local approximation. It is revealed that an energetic ion population leaves the source region and a cold ion population in the plume is build up by charge exchange collisions with the background neutral gas. Based on the experimental data a scaling law for ion beam power is deduced, which links the control parameters of the source to the plasma parameters in the process chamber. (paper)

  14. 'Hot' cognition in major depressive disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Carvalho, Andre F

    2014-01-01

    Major depressive disorder (MDD) is associated with significant cognitive dysfunction in both 'hot' (i.e. emotion-laden) and 'cold' (non-emotional) domains. Here we review evidence pertaining to 'hot' cognitive changes in MDD. This systematic review searched the PubMed and PsycInfo computerized......-limbic network with hyper-activity in limbic and ventral prefrontal regions paired with hypo-activity of dorsal prefrontal regions subserve these abnormalities. A cross-talk of 'hot' and 'cold' cognition disturbances in MDD occurs. Disturbances in 'hot cognition' may also contribute to the perpetuation......' cognition deficits in healthy relatives of patients with MDD. Taken together, these findings suggest that abnormalities in 'hot' cognition may constitute a candidate neurocognitive endophenotype for depression....

  15. 'Hot' particles in the atmosphere (Vilnius, 1986)

    International Nuclear Information System (INIS)

    Lujanas, V.; Shpirkauskaite, N.

    1992-01-01

    After the Chernobyl accident in the atmosphere above Vilnius the alpha-and beta- 'hot' particles were discovered. The amount of particles and their size were measured by the alpha-radiography. After the exposition of nuclear plates the 'auroras' of the beta hot particles were of the size 0.37-22.2 μm. The change in time of the beta- 'hot' particles amount in the ground level air from the 25th of April to the 9th of May, 1986 was given. The amount of this particles deposited in the adult man respiratory tract was calculated. The energy of the discovered 8 'hot' alpha-particles ranged from 4.2 to 6.6 MeV. All the samples in which alpha- 'hot' particles found were taken in anticyclone conditions. (author). 1 tab., 1 ref

  16. Suppression of sawtooth oscillations due to hot electrons and hot ions

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Berk, H.L.

    1989-01-01

    The theory of m = 1 kink mode stabilization is discussed in the presence of either magnetically trapped hot electrons or hot ions. For instability hot ion requires particles peaked inside the q = 1 surface, while hot electrons require that its pressure profile be increasing at the q = 1 surface. Experimentally observed sawtooth stabilization usually occurs with off-axis heating with ECRH and near axis heating with ICRH. Such heating may produce the magnetically trapped hot particle pressure profiles that are consistent with theory. 17 refs., 2 figs

  17. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  18. Laser Plasmas

    Indian Academy of Sciences (India)

    -focusing in a plasma ... Center for Energy Studies, Indian Institute of Technology, New Delhi 110 016, India; Tata Consultancy Services, Gurgaon, India; Ideal Institute of Technology, Ghaziabad, India; Center for Research in Cognitive, ...

  19. Plasma will…

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg

    2016-01-01

    Roč. 174, č. 3 (2016), s. 486-487 ISSN 0007-0963 Institutional support: RVO:68378271 Keywords : plasma * ionized gas Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 4.706, year: 2016

  20. Plasma technology

    International Nuclear Information System (INIS)

    Drouet, M.G.

    1984-03-01

    IREQ was contracted by the Canadian Electrical Association to review plasma technology and assess the potential for application of this technology in Canada. A team of experts in the various aspects of this technology was assembled and each team member was asked to contribute to this report on the applications of plasma pertinent to his or her particular field of expertise. The following areas were examined in detail: iron, steel and strategic-metals production; surface treatment by spraying; welding and cutting; chemical processing; drying; and low-temperature treatment. A large market for the penetration of electricity has been identified. To build up confidence in the technology, support should be provided for selected R and D projects, plasma torch demonstrations at full power, and large-scale plasma process testing