WorldWideScience

Sample records for hot magnetized plasma

  1. Obliquely Propagating Non-Monotonic Double Layer in a Hot Magnetized Plasma

    International Nuclear Information System (INIS)

    Kim, T.H.; Kim, S.S.; Hwang, J.H.; Kim, H.Y.

    2005-01-01

    Obliquely propagating non-monotonic double layer is investigated in a hot magnetized plasma, which consists of a positively charged hot ion fluid and trapped, as well as free electrons. A model equation (modified Korteweg-de Vries equation) is derived by the usual reductive perturbation method from a set of basic hydrodynamic equations. A time stationary obliquely propagating non-monotonic double layer solution is obtained in a hot magnetized-plasma. This solution is an analytic extension of the monotonic double layer and the solitary hole. The effects of obliqueness, external magnetic field and ion temperature on the properties of the non-monotonic double layer are discussed

  2. Effects of magnetic configuration on hot electrons in highly charged ECR plasma

    International Nuclear Information System (INIS)

    Zhao, H Y; Zhao, H W; Sun, L T; Wang, H; Ma, B H; Zhang, X Zh; Li, X X; Ma, X W; Zhu, Y H; Lu, W; Shang, Y; Xie, D Z

    2009-01-01

    To investigate the hot electrons in highly charged electron cyclotron resonance (ECR) plasma, Bremsstrahlung radiations were measured on two ECR ion sources at the Institute of Modern Physics. Used as a comparative index of the mean energy of the hot electrons, a spectral temperature, T spe , is derived through a linear fitting of the spectra in a semi-logarithmic representation. The influences of the external source parameters, especially the magnetic configuration, on the hot electrons are studied systematically. This study has experimentally demonstrated the importance of high microwave frequency and high magnetic field in the electron resonance heating to produce a high density of hot electrons, which is consistent with the empirical ECR scaling laws. The experimental results have again shown that a good compromise is needed between the ion extraction and the plasma confinement for an efficient production of highly charged ion beams. In addition, this investigation has shown that the correlation between the mean energy of the hot electrons and the magnetic field gradient at the ECR is well in agreement with the theoretical models.

  3. Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma

    OpenAIRE

    Liu, Wei; Hsu, Scott C.

    2010-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a uniform hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER and NSTX (National Spherical Torus Experiment). Unmagnetized dense plasma jet injection is similar to compact toroid injection but with much higher plasma density and total mass, and consequently lower required injection velocit...

  4. Coercivity of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering method

    Directory of Open Access Journals (Sweden)

    Tetsuji Saito

    2017-05-01

    Full Text Available The effects of Nd-Cu alloy powder addition on the microstructures and magnetic properties of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering (SPS method were investigated. The addition of a small amount of Nd-Cu alloy powder, up to 2%, significantly increased the coercivity of the Nd-Fe-B hot-deformed magnets without deteriorating the crystallographic alignment of the Nd2Fe14B phase. The Nd-Fe-B hot-deformed magnet with 2% Nd-Cu alloy powder had the same remanence value as the Nd-Fe-B hot-deformed magnet without Nd-Cu alloy powder addition, but the magnet with 2% Nd-Cu alloy powder exhibited higher coercivity and a higher maximum energy product than the magnet without Nd-Cu alloy powder addition.

  5. The thermo magnetic instability in hot viscose plasmas

    Science.gov (United States)

    Haghani, A.; Khosravi, A.; Khesali, A.

    2017-10-01

    Magnetic Rotational Instability (MRI) can not performed well in accretion disks with strong magnetic field. Studies have indicated a new type of instability called thermomagnetic instability (TMI) in systems where Nernst coefficient and gradient temperature were considered. Nernst coefficient would appear if Boltzman equation could be expanded through ω_{Be} (cyclotron frequency). However, the growth rate of this instability was two magnitude orders below MRI growth (Ωk), which could not act the same as MRI. Therefor, a higher growth rate of unstable modes was needed. In this paper, rotating viscid hot plasma with strong magnetic filed was studied. Firstly, a constant alpha viscosity was studied and then a temperature sensitive viscosity. The results showed that the temperature sensitive viscosity would be able to increase the growth rate of TMI modes significantly, hence capable of acting similar to MRI.

  6. Stationary quenching wave in magnetized plasma

    International Nuclear Information System (INIS)

    Alikhanov, S.G.; Glushkov, I.S.

    1976-01-01

    The interaction of a magnetized hot plasma (ωsub(e)tau sub(e)>>1) with cold plasma or a gas leads to the appearanci of a cooling wave. The transition layer between hot and cold plasma is the main source of radiation losses which should be compensated by a heat flow from the hot region. A stationary state is considered, equations are written in the system in which temperature and magnetic field profiles are steady, and the plasma flux with magnetic field passes through the cooling wave. Calculations, have been carried out on a computer. The dependence of the magnetized plasma flux velocity Vsub(r) on the ratio p/Hsub(r) is shown, where p is the pressure, Hsub(r) is the magnetic field in the hot reqion. The dependence of the characteristic dimension of the cooling wave on the magnetic field is determined for the hot plasma region. A considerable fraction of the rediation losses is shown to fall to the region of (ωsub(e)tausub(e)< or approximately)1

  7. Faraday rotation applied to the hot plasmas diagnosis

    International Nuclear Information System (INIS)

    Cojocaru, E.

    1980-01-01

    In many circumstances it is of theoretical or practical interest to know the electric and magnetic fields in the hot plasmas. A method for the determination of the magnetic field in the hot plasmas is the Faraday rotation measurement. The aim of this paper is to point out the principle and application of this rarely used optical method. (author)

  8. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rajirufai@gmail.com; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India)

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  9. Physical processes in hot cosmic plasmas

    International Nuclear Information System (INIS)

    Fabian, A.G.; Giovannelli, F.

    1990-01-01

    The interpretation of many high energy astrophysical phenomena relies on a detailed knowledge of radiation and transport processes in hot plasmas. The understanding of these plasma properties is one of the aims of terrestrial plasma physics. While the microscopic properties of astrophysical plasmas can hardly be determined experimentally, laboratory plasmas are more easily accessible to experimental techniques, but transient phenomena and the interaction of the plasma with boundaries often make the interpretation of measurements cumbersome. This book contains the talks given at the NATO Advanced Research Workshop on astro- and plasma-physics in Vulcano, Sicily, May 29-June 2, 1989. The book focuses on three main areas: radiation transport processes in hot (astrophysical and laboratory) plasmas; magnetic fields; their generation, reconnection and their effects on plasma transport properties; relativistic and ultra-high density plasmas

  10. Super-high magnetic fields in spatially inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nastoyashchiy, Anatoly F.

    2012-01-01

    The new phenomenon of a spontaneous magnetic field in spatially inhomogeneous plasma is found. The criteria for instability are determined, and both the linear and nonlinear stages of the magnetic field growth are considered; it is shown that the magnetic field can reach a considerable magnitude, namely, its pressure can be comparable with the plasma pressure. Especially large magnetic fields can arise in hot plasma with a high electron density, for example, in laser-heated plasma. In steady-state plasma, the magnetic field can be self-sustaining. The considered magnetic fields may play an important role in thermal insulation of the plasma. (author)

  11. Hot electron plasma equilibrium and stability in the Constance B mirror experiment

    International Nuclear Information System (INIS)

    Chen, Xing.

    1988-04-01

    An experimental study of the equilibrium and macroscopic stability property of an electron cyclotron resonance heating (ECRH) generated plasma in a minimum-B mirror is presented. The Constance B mirror is a single cell quadrupole magnetic mirror in which high beta (β ≤ 0.3) hot electron plasmas (T/sub e/≅400 keV) are created with up to 4 kW of ECRH power. The plasma equilibrium profile is hollow and resembles the baseball seam geometry of the magnet which provides the confining magnetic field. This configuration coincides with the drift orbit of deeply trapped particles. The on-axis hollowness of the hot electron density profile is 50 /+-/ 10%, and the pressure profile is at least as hollow as, if not more than, the hot electron density profile. The hollow plasma equilibrium is macroscopically stable and generated in all the experimental conditions in which the machine has been operated. Small macroscopic plasma fluctuations in the range of the hot electron curvature drift frequency sometimes occur but their growth rate is small (ω/sub i//ω/sub r/ ≤ 10 -2 ) and saturate at very low level (δB//bar B/ ≤ 10 -3 ). Particle drift reversal is predicted to occur for the model pressure profile which best fits the experimental data under the typical operating conditions. No strong instability is observed when the plasma is near the drift reversal parameter regime, despite a theoretical prediction of instability under such conditions. The experiment shows that the cold electron population has no stabilizing effect to the hot electrons, which disagrees with current hot electron stability theories and results of previous maximum-B experiments. A theoretical analysis using MHD theory shows that the compressibility can stabilize a plasma with a hollowness of 20--30% in the Constance B mirror well. 57 refs

  12. Simulation studies on stability of hot electron plasma

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu

    1985-01-01

    Stability of a hot electron plasma in an NBT(EBT)-like geometry is studied by using a 2-1/2 dimensional relativistic, electromagnetic particle code. For the low-frequency hot electron interchange mode, comparison of the simulation results with the analytical predictions of linear stability theory show fairly good agreement with the magnitude of the growth rates calculated without hot electron finite Larmor radius effects. Strong stabilizing effects by finite Larmor radius of the hot electrons are observed for short wavelength modes. As for the high-frequency hot electron interchange mode, there is a discrepancy between the simulation results and the theory. The high-frequency instability is not observed though a parameter regime is chosen in which the high-frequency hot electron interchange mode is theoretically predicted to grow. Strong cross-field diffusion in a poloidal direction of the hot electrons might explain the stability. Each particle has a magnetic drift velocity, and the speed of the magnetic drift is proportional to the kinetic energy of each particle. Hence, if the particles have high temperature, the spread of the magnetic drift velocity is large. This causes a strong cross-field diffusion of the hot electrons. In the simulation for this interchange mode, an enhanced temperature relaxation is observed between the hot and cold electrons although the theoretically predicted high frequency modes are stable. (Nogami, K.)

  13. Automatic plasma control in magnetic traps

    International Nuclear Information System (INIS)

    Samojlenko, Y.; Chuyanov, V.

    1984-01-01

    Hot plasma is essentially in thermodynamic non-steady state. Automatic plasma control basically means monitoring deviations from steady state and producing a suitable magnetic or electric field which brings the plasma back to its original state. Briefly described are two systems of automatic plasma control: control with a magnetic field using a negative impedance circuit, and control using an electric field. It appears that systems of automatic plasma stabilization will be an indispensable component of the fusion reactor and its possibilities will in many ways determine the reactor economy. (Ha)

  14. On hot tenuous plasmas, fireballs, and boundary layers in the earth's magnetotail

    International Nuclear Information System (INIS)

    Frank, L.A.; Ackerson, K.L.; Lepping, R.P.

    1976-01-01

    Intensive correlative studies of magnetic fields and plasmas within the earth's magnetotail at geocentric radial distances of approx. 23--46 R/sub E/ during March--October 1974 revealed striking new features. The hot tenuous plasmas within the plasma sheet were found to be in a state of almost continual flow and were threaded with northward, or closed, geomagnetic field lines. Proton bulk speeds were in the range 50--500 km s -1 . The magnetic fields are directed northward. These observations demand a strong persistent source of magnetic flux and hot plasmas for the plasma sheet. No characteristic proton bulk flows were evident during crossings of the neutral sheet. Occasionally, the satellite encountered the region of acceleration in the magnetotail, the 'fireball.' This spectacular phenomenon exhibits strong jetting of plasmas in exces of 1000 km s -1 , proton temperatures of approx. 10 7 degreeK (kT approx. 1 keV), disordered magnetic fields, southward magnetic fields during tailward jetting of the plasmas. Earthward plasma flows within the fireball are threaded with closed geomagnetic field lines, and open magnetic field lines are embedded in the tailward jetting plasmas. The magnetosheathlike plasmas within the boundary layers which are positioned contiguous to the plasma sheet display striking evidences of plasma heating, great changes in bulk flow velocities and acceleration of energetic electrons with E > 45 keV. Persistent zones of southward magnetic fields are detected, which are often positioned adjacent to the plasma sheet and within the boundary layer plasmas. Rotations of the magnetic fields from southward to northward, or vice versa, in these boundary layers are accompanied by large enhancements of energetic electron intensities, substantial heating of the low-energy electron distributions, and strong perturbations of the proton velocity distribution functions

  15. Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei [Los Alamos National Laboratory; Hsu, Scott [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory

    2009-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.

  16. Structure and magnetic properties of hot deformed Nd2Fe14B magnets doped with DyHx nanoparticles

    Science.gov (United States)

    Wang, C. G.; Yue, M.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.

    2016-04-01

    Commercial NdFeB powders mixed with DyHx nanoparticles are hot pressed and hot deformed into anisotropic magnets by Spark Plasma Sintering (SPS). The hot deformed magnet exhibits strong c-axis crystallographic texture. The coercivity of the magnet doped with 1.0 wt% DyHx is increased by 66.7%, compared with the magnet without DyHx, while the remanence decreases only by 3%. TEM observation shows that there exists a continuous (Nd,Dy)2Fe14B layer between Nd-rich phase and NdFeB main phase.

  17. Microstructure and property evolution of isotropic and anisotropic NdFeB magnets fabricated from nanocrystalline ribbons by spark plasma sintering and hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z W; Huang, H Y; Yu, H Y; Zhong, X C; Zeng, D C [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X X; Zhu, J, E-mail: zwliu@scut.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2011-01-19

    Isotropic and anisotropic NdFeB magnets were synthesized by spark plasma sintering (SPS) and SPS+HD (hot deformation), respectively, using melt-spun ribbons as the starting materials. Spark plasma sintered magnets sintered at low temperatures (<700 {sup 0}C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, due to the local high-temperature field caused by the spark plasma discharge, the grain growth occurred at the initial particle surfaces and the coarse grain zones formed in the vicinity of the particle boundaries. Since the interior of the particles maintained the fine grain structure, a distinct two-zone structure was formed in the spark plasma sintered magnets. The SPS temperature and pressure have important effects on the widths of coarse and fine grain zones, as well as the grain sizes in two zones. The changes in grain structure led to variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. An anisotropic magnet with a maximum energy product of {approx}30 MG Oe was produced by the SPS+HD process. HD at 750 {sup 0}C did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. Intergranular exchange coupling was demonstrated in the spark plasma sintered magnets and was enhanced by the HD process, which reduced the coercivity. Good temperature stability was manifested by low temperature coefficients of remanence and coercivity. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes.

  18. The hot plasma environment at jupiter: ulysses results.

    Science.gov (United States)

    Lanzerotti, L J; Armstrong, T P; Gold, R E; Anderson, K A; Krimigis, S M; Lin, R P; Pick, M; Roelof, E C; Sarris, E T; Simnett, G M; Maclennan, C G; Choo, H T; Tappin, S J

    1992-09-11

    Measurements of the hot plasma environment during the Ulysses flyby of Jupiter have revealed several new discoveries related to this large rotating astrophysical system. The Jovian magnetosphere was found by Ulysses to be very extended, with the day-side magnetopause located at approximately 105 Jupiter radii. The heavy ion (sulfur, oxygen, and sodium) population in the day-side magnetosphere increased sharply at approximately 86 Jupiter radii. This is somewhat more extended than the "inner" magnetosphere boundary region identified by the Voyager hot plasma measurements. In the day-side magnetosphere, the ion fluxes have the anisotropy direction expected for corotation with the planet, with the magnitude of the anisotropy increasing when the spacecraft becomes more immersed in the hot plasma sheet. The relative abundances of sulfur, oxygen, and sodium to helium decreased somewhat with decreasing radial distance from the planet on the day-side, which suggests that the abundances of the Jupiter-derived species are dependent on latitude. In the dusk-side, high-latitude region, intense fluxes of counter-streaming ions and electrons were discovered from the edge of the plasma sheet to the dusk-side magnetopause. These beams of electrons and ions were found to be very tightly aligned with the magnetic field and to be superimposed on a time- and space-variable isotropic hot plasma background. The currents carried by the measured hot plasma particles are typically approximately 1.6 x 10(-4) microamperes per square meter or approximately 8 x 10(5) amperes per squared Jupiter radius throughout the high-latitude magnetosphere volume. It is likely that the intense particle beams discovered at high Jovian latitudes produce auroras in the polar caps of the planet.

  19. Magnetic pressure effects in a plasma-liner interface

    Science.gov (United States)

    García-Rubio, F.; Sanz, J.

    2018-04-01

    A theoretical analysis of magnetic pressure effects in a magnetized liner inertial fusion-like plasma is presented. In previous publications [F. García-Rubio and J. Sanz, Phys. Plasmas 24, 072710 (2017)], the evolution of a hot magnetized plasma in contact with a cold unmagnetized plasma, aiming to represent the hot spot and liner, respectively, was investigated in planar geometry. The analysis was made in a double limit low Mach and high thermal to magnetic pressure ratio β. In this paper, the analysis is extended to an arbitrary pressure ratio. Nernst, Ettingshausen, and Joule effects come into play in the energy balance. The region close to the liner is governed by thermal conduction, while the Joule dissipation becomes predominant far from it when the pressure ratio is low. Mass ablation, thermal energy, and magnetic flux losses are reduced with plasma magnetization, characterized by the electron Hall parameter ω e τ e , until β values of order unity are reached. From this point forward, increasing the electron Hall parameter no longer improves the magnetic flux conservation, and mass ablation is enhanced due to the magnetic pressure gradients. A thoughtful simplification of the problem that allows to reduce the order of the system of governing equations while still retaining the finite β effects is presented and compared to the exact case.

  20. Isotropic and anisotropic nanocrystalline NdFeB-based magnets prepared by spark plasma sintering and hot deformation

    International Nuclear Information System (INIS)

    Liu, Z.W.; Huang, Y.L.; Huang, H.Y.; Zhong, X.C.; Yu, Y.H.; Zeng, D.C.

    2011-01-01

    Isotropic and anisotropic NdFeB permanent magnets were prepared by Spark Plasma Sintering (SPS) and SPS followed hot deformation (HD), respectively, using melt spun NdFeB ribbons with various compositions as starting materials. It is found that, based on RE-rich composition, SPSed magnets sintered at low temperatures (<700 C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, a distinct two-zone (coarse grain and fine grain zones) structure was formed in the SPSed magnets. The SPS temperature and pressure have important effects on the grain structure, which led to the variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. For single phase NdFeB alloy, because of the deficiency of Nd-rich phases, it is relatively difficult to consolidate micro-sized melt spun powders into high density bulk magnet, but generally a larger particle size is beneficial to achieve better magnetic properties. Anisotropic magnets with a maximum energy product of approx. equal to 38 MGOe were produced by the SPS+HD process. HD did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes. (author)

  1. Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface

    Science.gov (United States)

    García-Rubio, F.; Sanz, J.

    2017-07-01

    The understanding of energy and magnetic flux losses in a magnetized plasma medium confined by a cold wall is of great interest in the success of magnetized liner inertial fusion (MagLIF). In a MagLIF scheme, the fuel is magnetized and subsonically compressed by a cylindrical liner. Magnetic flux conservation is degraded by the presence of gradient-driven transport processes such as thermoelectric effects (Nernst) and magnetic field diffusion. In previous publications [Velikovich et al., Phys. Plasmas 22, 042702 (2015)], the evolution of a hot magnetized plasma in contact with a cold solid wall (liner) was studied using the classical collisional Braginskii's plasma transport equations in one dimension. The Nernst term degraded the magnetic flux conservation, while both thermal energy and magnetic flux losses were reduced with the electron Hall parameter ωeτe with a power-law asymptotic scaling (ωeτe)-1/2. In the analysis made in the present paper, we consider a similar situation, but with the liner being treated differently. Instead of a cold solid wall acting as a heat sink, we model the liner as a cold dense plasma with low thermal conduction (that could represent the cryogenic fuel layer added on the inner surface of the liner in a high-gain MagLIF configuration). Mass ablation comes into play, which adds notably differences to the previous analysis. The direction of the plasma motion is inverted, but the Nernst term still convects the magnetic field towards the liner. Magnetization suppresses the Nernst velocity and improves the magnetic flux conservation. Thermal energy in the hot plasma is lost in heating the ablated material. When the electron Hall parameter is large, mass ablation scales as (ωeτe)-3/10, while both the energy and magnetic flux losses are reduced with a power-law asymptotic scaling (ωeτe)-7/10.

  2. Anomalous properties of hot dense nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Ferrante, G; Zarcone, M; Uryupin, S A

    2005-01-01

    A concise overview of a number of anomalous properties of hot dense nonequilibrium plasmas is given. The possibility of quasistationary megagauss magnetic field generation due to Weibel instability is discussed for plasmas created in atom tunnel ionization. The collisionless absorption and reflection of a test electromagnetic wave normally impinging on the plasma with two-temperature bi-maxwellian electron velocity distribution function are studied. Due to the wave magnetic field influence on the electron kinetics in the skin layer the wave absorption and reflection significantly depend on the degree of the electron temperature anisotropy. The linearly polarized impinging wave during reflection transforms into an elliptically polarized one. The problem of transmission of an ultrashort laser pulse through a layer of dense plasma, formed as a result of ionization of a thin foil, is considered. It is shown that the strong photoelectron distribution anisotropy yields an anomalous penetration of the wave field through the foil

  3. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rrufai@csir.co.za [Council for Scientific and Industrial Research, Pretoria (South Africa); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Bellville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi, Mumbai-410218 (India)

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  4. Self-organization of hot plasmas the canonical profile transport model

    CERN Document Server

    Dnestrovskij, Yu N

    2015-01-01

    In this monograph the author presents the Canonical Profile Transport Model or CPTM as a rather general mathematical framework to simulate plasma discharges.The description of hot plasmas in a magnetic fusion device is a very challenging task and many plasma properties still lack a physical explanation. One important property is plasma self-organization.It is very well known from experiments that the radial profile of the plasma pressure and temperature remains rather unaffected by changes of the deposited power or plasma density. The attractiveness of the CPTM is that it includes the effect o

  5. X-ray hot plasma diagnostics

    International Nuclear Information System (INIS)

    Cojocaru, E.

    1984-11-01

    X-ray plasma emission study is powerful diagnostic tool of hot plasmas. In this review article the main techniques of X-ray plasma emission measurement are shortly presented: X-ray spectrometry using absorbent filters, crystal and grating spectrometers, imaging techniques using pinhole cameras, X-ray microscopes and Fresnel zone plate cameras, X-ray plasma emission calorimetry. Advances in these techniques with examples for different hot plasma devices are also presentes. (author)

  6. A new derivation of the plasma susceptibility tensor for a hot magnetized plasma without infinite sums of products of Bessel functions

    International Nuclear Information System (INIS)

    Qin Hong; Phillips, Cynthia K.; Davidson, Ronald C.

    2007-01-01

    The susceptibility tensor of a hot, magnetized plasma is conventionally expressed in terms of infinite sums of products of Bessel functions. For applications where the particle's gyroradius is larger than the wavelength, such as alpha particle dynamics interacting with lower-hybrid waves, and the focusing of charged particle beams using a solenoidal field, the infinite sums converge slowly. In this paper, a new derivation of the plasma susceptibility tensor is presented which exploits a symmetry in the particle's orbit to simplify the integration along the unperturbed trajectories. As a consequence, the infinite sums appearing in the conventional expression are replaced by definite double integrals over one gyroperiod, and the cyclotron resonances of all orders are captured by a single term. Furthermore, the double integrals can be carried out and expressed in terms of Bessel functions of complex order, in agreement with expressions deduced previously using the Newburger sum rule. From this new formulation, it is straightforward to derive the asymptotic form of the full hot plasma susceptibility tensor for a gyrotropic but otherwise arbitrary plasma distribution in the large gyroradius limit. These results are of more general importance in the numerical evaluation of the plasma susceptibility tensor. Instead of using the infinite sums occurring in the conventional expression, it is only necessary to evaluate the Bessel functions once according to the new expression, which has significant advantages, especially when the particle's gyroradius is large and the conventional infinite sums converge slowly. Depending on the size of the gyroradius, the computational saving enabled by this representation can be several orders-of-magnitude

  7. Hot-electron plasma formation and confinement in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Ress, D.B.

    1988-01-01

    Electron-cyclotron range-of-frequency heating (ECRH) at 28 GHz is used to create a population of mirror-confined hot electrons in the Tandem Mirror Experiment-Upgrade (TMX-U). Generation of a large fraction of such electrons within each end-cell of TMX-U is essential to the formation of the desired electrostatic potential profile of the thermal-barrier tandem mirror. The formation and confinement of the ECRH-generated hot-electron plasma was investigated with a variety of diagnostic instruments, including a novel instrumented limiter probe. The author characterized the spatial structure of the hot-electron plasma. Details of the heating process cause the plasma to separate into two regions: a halo, consisting entirely of energetic electrons, and a core, which is dominated by cooler electrons. The plasma structure forms rapidly under the action of second-harmonic ECRH. Fundamental ECRH, which is typically applied simultaneously, is only weakly absorbed and generally does not create energetic electrons. The ECRH-generated plasma displays several loss mechanisms. Hot electrons in the halo region, with T e ∼ 30 keV, are formed by localized ECRH near the plasma boundary, and are lost through a radial process involving open magnetic-curvature-drift surfaces

  8. Generation of poloidal magnetic field in a hot collisional plasma by inverse Faraday effect

    International Nuclear Information System (INIS)

    Srivastava, M.K.; Lawande, S.V.; Dutta, D.; Sarkar, S.; Khan, M.; Chakraborty, B.

    1996-01-01

    Generation of poloidal magnetic field in a hot and collisional plasma by an inverse Faraday effect is discussed. This field can either be induced by a circularly polarized laser beam (CPLB) or a plane-polarized laser beam (PPLB). For the CPLB, an average field left-angle Re x right-angle ∼I 0 λ∼11.6 MG could be produced in a DT plasma for a high intensity (I 0 =10 22 W/m 2 ) and shorter wavelength (λ=0.35 μm) laser. This field is essentially induced by the field inhomogeneity effect and dominates over that induced by the plasma inhomogeneity effect (left-angle Re x right-angle ∼I 2/3 0 λ 7/3 ∼2.42 MG). The collisional and thermal contribution to left-angle Re x right-angle is just negligible for the CPLB. However, in the case of PPLB the poloidal field is generated only for a hot and collisional plasma and can be quite large for a longer wavelength laser (e.g., CO 2 laser, λ=10.6 μm). The collisional effect induces a field left-angle Re x right-angle ∼0.08 kG, which dominates near the turning point and is independent of the laser parameters. However, in the outer cronal region the thermal pressure effect dominates (e.g., left-angle Re x right-angle ∼I 5/3 0 λ 4/3 ∼3.0 MG). Further, left-angle Re x right-angle for the p-polarized beam is, in general, relatively smaller than that for the s-polarized beam. Practical implications of these results and their limitations are discussed. copyright 1996 American Institute of Physics

  9. Concerning the electromagnetic radiation spectrum of a hot plasma with Langmuir turbulence in a magnetic field

    International Nuclear Information System (INIS)

    Tirsky, V.V.; Ledenev, V.G.; Tomozov, V.M.

    2001-01-01

    We consider the process of generation of electromagnetic waves as a consequence of the merging of two Langmuir plasmons. The case of a hot plasma in a magnetic field is investigated. It is shown that under such conditions the frequency of Langmuir plasmons can vary over the range from 0.8 to 1.1 of the Langmuir frequency of electrons. The spectrum and polarization of electromagnetic radiation are analyzed. It is shown that allowance for the thermal motion of plasma particles under the conditions involved permits electromagnetic waves in the range from 1.6 to 2.2 of the Langmuir frequency of electrons to be generated. The degree of circular polarization of the radiation can reach 50% even in the case of an isotropic spectrum of Langmuir turbulence. (orig.)

  10. Hot Flow Anomaly formation by magnetic deflection

    International Nuclear Information System (INIS)

    Onsager, T.G.; Thomsen, M.F.; Winske, D.

    1990-01-01

    Hot Flow Anomalies (HFAs) are localized plasma structures observed in the solar wind and magnetosheath near the Earth's quasi-parallel bow shock. The authors present 1-D hybrid computer simulations illustrating a formation mechanism for HFAs in which the single, hot, ion population results from a spatial separation of two counterstreaming ion beams. The higher-density, cooler regions are dominated by the background (solar wind) ions, and the lower-density, hotter, internal regions are dominated by the beam ions. The spatial separation of the beam and background is caused by the deflection of the ions in large amplitude magnetic fields which are generated by ion/ion streaming instabilities

  11. Interaction of graphite with a hot, dense deuterium plasma

    International Nuclear Information System (INIS)

    Desko, J.C. Jr.

    1980-01-01

    The erosion of ATJ-S graphite caused by a hot, dense deuterium plasma has been investigated experimentally. The plasma was produced in an electromagnetic shock tube. Plasma characteristics were typically: ion temperature approx. = 800 eV (approx. 1 x 10 7 0 K), number density approx. = 10 16 /cm 3 , and transverse magnetic field approx. = 1 tesla. The energetic ion flux, phi, to the sample surfaces was approx. 10 23 ions/cm 2 -sec for a single pulse duration of approx. 0.1 usec. Sample surfaces were metallographically prepared and examined with a scanning electron microscope before and after exposure

  12. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  13. Structure and magnetic properties of hot deformed Nd{sub 2}Fe{sub 14}B magnets doped with DyH{sub x} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.G.; Yue, M., E-mail: yueming@bjut.edu.cn; Zhang, D.T.; Liu, W.Q.; Zhang, J.X.

    2016-04-15

    Commercial NdFeB powders mixed with DyH{sub x} nanoparticles are hot pressed and hot deformed into anisotropic magnets by Spark Plasma Sintering (SPS). The hot deformed magnet exhibits strong c-axis crystallographic texture. The coercivity of the magnet doped with 1.0 wt% DyH{sub x} is increased by 66.7%, compared with the magnet without DyH{sub x}, while the remanence decreases only by 3%. TEM observation shows that there exists a continuous (Nd,Dy){sub 2}Fe{sub 14}B layer between Nd-rich phase and NdFeB main phase. - Highlights: • The hot deformed magnet exhibits strong c-axis crystallographic texture. • The coercivity of the magnet significantly improved, and the remanence decreases slight. • TEM observation shows that there exists a continuous (Nd,Dy){sub 2}Fe{sub 14}B layer.

  14. Anisotropy effects on curvature-driven flute instabilities in a hot-electron plasma

    International Nuclear Information System (INIS)

    Spong, D.A.; Berk, H.L.; Van Dam, J.W.; Rosenbluth, M.N.

    1982-08-01

    The effects of finite parallel temperature are investigated for a hot electron plasma with sufficiently large beta that the magnetic field scale length (Δ/sub B/) is small compared with the vacuum field radius of curvature (R). Numerical and analytical estimates of stability boundaries are obtained for the four possible modes that can be treated in this limit: the conventional hot electron interchange, the high frequency hot electron interchange (ω > ω/sub ci/), the compressional Alfven mode, and the interacting pressure-driven interchange

  15. Parametric instabilities in a magnetized and collisional plasma

    Energy Technology Data Exchange (ETDEWEB)

    Phalswal, D R; Dube, A [Punjabi Univ., Patiala (India). Dept. of Physics

    1980-09-01

    The dispersion relation for a magnetized, collisional and hot plasma in the presence of a pump wave is developed for the case where the pump frequency ..omega../sub 0/ is large compared with the cyclotron frequency ..omega..sub(c) and the plasma frequency ..omega..sub(p). Formulae for the growth rate, the damping rate for the free electron plasma wave and the threshold power are derived and discussed numerically under different conditions. It is found that in a hot plasma (for magnetic fields with ..omega..sub(c)/..omega..sub(p) = 1 and 10) the threshold power Psub(T) is less than or greater than that in a cold plamsa for the (Re..omega../sub 2/)sub(+) or (Re..omega../sub 2/)sub(-) modes respectively. In a weak magnetic field (..omega..sub(c)/..omega..sub(p) = 0.1), Psub(T) does not vary with the direction theta of the magnetic field for the (Re..omega../sub 2/) sub(+) mode. However, Psub(T) for the (Re..omega../sub 2/)sub(-) mode is a minimum at theta = 30deg. and 10deg. for ..omega..sub(c)/ ..omega..sub(p) = 1 and 10 respectively, and it becomes very large (10/sup 5/-10/sup 7/ times its value in a cold unmagnetized plasma) for ..omega..sub(c)/..omega..sub(p) = 0.1. The results for the growth are found to be just the reverse of those for the threshold power.

  16. HOT PLASMA FROM SOLAR ACTIVE-REGION CORES: CONSTRAINTS FROM THE HINODE X-RAY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schmelz, J. T. [USRA, 7178 Columbia Gateway Drive, Columbia, MD 21046 (United States); Christian, G. M.; Matheny, P. O., E-mail: jschmelz@usra.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2016-12-20

    Mechanisms invoked to heat the solar corona to millions of degrees kelvin involve either magnetic waves or magnetic reconnections. Turbulence in the convection zone produces MHD waves, which travel upward and dissipate. Photospheric motions continuously build up magnetic energy, which is released through magnetic reconnection. In this paper, we concentrate on hot non-flaring plasma with temperatures of 5 MK <  T  < 10 MK because it is one of the few observables for which wave and reconnection models make different predictions. Wave models predict no (or little) hot plasma, whereas reconnection models predict it, although in amounts that are challenging to detect with current instrumentation. We used data from the X-ray Telescope (XRT) and the Atmospheric Imaging Assembly (AIA). We requested a special XRT observing sequence, which cycled through the thickest XRT filter several times per hour so we could average these images and improve the signal-to-noise. We did differential emission measure (DEM) analysis using the time-averaged thick-filter data as well as all available channels from both the XRT and AIA for regions observed on 2014 December 11. Whereas our earlier work was only able to determine that plasma with a temperature greater than 5 MK was present , we are now able to find a well-constrained DEM distribution. We have therefore added a strong observational constraint that must be explained by any viable coronal heating model. Comparing state-of-the-art wave and reconnection model predictions, we can conclude that reconnection is heating the hot plasma in these active regions.

  17. A new multi-line cusp magnetic field plasma device (MPD) with variable magnetic field

    Science.gov (United States)

    Patel, A. D.; Sharma, M.; Ramasubramanian, N.; Ganesh, R.; Chattopadhyay, P. K.

    2018-04-01

    A new multi-line cusp magnetic field plasma device consisting of electromagnets with core material has been constructed with a capability to experimentally control the relative volume fractions of magnetized to unmagnetized plasma volume as well as accurate control on the gradient length scales of mean density and temperature profiles. Argon plasma has been produced using a hot tungsten cathode over a wide range of pressures 5 × 10-5 -1 × 10-3 mbar, achieving plasma densities ranging from 109 to 1011 cm-3 and the electron temperature in the range 1-8 eV. The radial profiles of plasma parameters measured along the non-cusp region (in between two consecutive magnets) show a finite region with uniform and quiescent plasma, where the magnetic field is very low such that the ions are unmagnetized. Beyond that region, both plasma species are magnetized and the profiles show gradients both in temperature and density. The electrostatic fluctuation measured using a Langmuir probe radially along the non-cusp region shows less than 1% (δIisat/Iisat physics parameter space relevant to both laboratory multi-scale plasmas and astrophysical plasmas.

  18. Hot spots and filaments in the pinch of a plasma focus: a unified approach

    International Nuclear Information System (INIS)

    Di Vita, A.

    2009-01-01

    To date, no MHD-based complete description of the tiny, relatively stable, well-ordered structures (hot spots, filaments) observed in the pinch of a plasma focus seems to be feasible. Indeed, the large value of electron density suggests that a classification of such structures which is based on the approximation of local thermodynamical equilibrium (LTE) is possible. Starting from an often overlooked, far-reaching result of LTE, we derive a purely analytical description of both hot spots and filaments. In spite of their quite different topology, both configurations are extrema of the same variational principle. Well-known results of conventional MHD are retrieved as benchmark cases. It turns out that hot spots satisfy Taylor's principle of constrained minimum of magnetic energy, the constraint being given by fixed magnetic helicity. Filaments are similar to the filaments of a superconductor and form a plasma with β equals 0.11 and energy diffusion coefficient equals 0.88*D(Bohm). Any process - like e.g. radiative collapse - which raises particle density while reducing radial size may transform filaments into hot spots. A well-known scaling law is retrieved - the collisional Vlasov high beta scaling. A link between dissipation and topology is highlighted. Accordingly, a large-current pinch may give birth to tiny hot spots with large electron density and magnetic field. (author)

  19. Antenna Impedance Measures in a Magnetized Plasma. Part 1. Spherical Antenna

    National Research Council Canada - National Science Library

    Blackwell, David D; Walker, David N; Messer, Sarah J; Amatucci, William E

    2006-01-01

    .... The hot-filament argon plasma was varied between weakly (omega sub pe) and strongly (omega sub ce > omega sub pe) magnetized plasma with electron densities in the range 10 sup 7 - 10 sup 10 cm sup -3...

  20. Flute-interchange stability in a hot electron plasma

    International Nuclear Information System (INIS)

    Dominguez, R.R.

    1980-01-01

    Several topics in the kinetic stability theory of flute-interchange modes in a hot electron plasma are discussed. The stability analysis of the hot-electron, curvature-driven flute-interchange mode, previously performed in a slab geometry, is extended to a cylindrical plasma. The cold electron concentration necessary for stability differs substantially from previous criteria. The inclusion of a finite temperature background plasma in the stability analysis results in an ion curvature-driven flute-interchange mode which may be stabilized by either hot-electron diamagnetic effects, hot-electron plasma density, or finite (ion) Larmor radius effects

  1. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    Science.gov (United States)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.

  2. Multi-dimensional instability of electrostatic solitary structures in magnetized nonthermal dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Russel, S.M.; Mendoza-Briceno, C.A.; Alam, M.N.; Datta, T.K.; Das, A.K.

    1999-05-01

    A rigorous theoretical investigation has been made of multi-dimensional instability of obliquely propagating electrostatic solitary structures in a hot magnetized nonthermal dusty plasma which consists of a negatively charged hot dust fluid, Boltzmann distributed electrons, and nonthermally distributed ions. The Zakharov-Kuznetsov equation for the electrostatic solitary structures that exist in such a dusty plasma system is derived by the reductive perturbation method. The multi-dimensional instability of these solitary waves is also studied by the small-k (long wavelength plane wave) perturbation expansion method. The nature of these solitary structures, the instability criterion, and their growth rate depending on dust-temperature, external magnetic field, and obliqueness are discussed. The implications of these results to some space and astrophysical dusty plasma situations are briefly mentioned. (author)

  3. Effect of multi-ions on electromagnetic ion-cyclotron waves with a hot plasma around the polar cusp

    International Nuclear Information System (INIS)

    Patel, Soniya; Varma, P; Tiwari, M S

    2011-01-01

    Electromagnetic ion cyclotron (EMIC) instabilities with an isotropic ion beam and general loss-cone distribution of hot core plasmas are discussed. The growth rate of the wave, perpendicular heating of ions, parallel resonant energy and marginal instability of the EMIC waves in homogeneous plasmas are obtained using the dispersion relation for hot plasmas consisting of H + , He + ,O + ions and electrons. The wave is assumed to propagate parallel to the static magnetic field. The whole plasma is considered to consist of resonant and non-resonant particles permeated by the isotropic ion beam. It is assumed that the resonant particles and the ion beam participate in energy exchange with the wave, whereas the non-resonant particles support the oscillatory motion of the wave. We determined the variation in energies and growth rate in hot plasmas by the energy conservation method with a general loss-cone distribution function. We also discuss the effect of positive and negative ion beam velocity on the growth rate of the wave. The thermal anisotropy of the ions of the core plasma acts as a source of free energy for EMIC waves and enhances the growth rate. Heating of ions perpendicular to the magnetic field is discussed along with EMIC wave emission in the polar cusp region.

  4. Study of the magnetic compressional mode in a hot particle plasma

    International Nuclear Information System (INIS)

    Stotler, D.P.; Berk, H.L.; Engquist, M.G.

    1985-09-01

    The integral equation for the magnetic compressional mode, accounting for geometrical effects along the field line and using the eikonal approximation across the field line, is solved numerically for the eigenvalues and eigenfunctions. These results reproduce the analytic estimates when there is strong drift reversal. For typical EBT-S parameters, instability is observed for all pressure scale lengths just below those needed for drift reversal, i.e., vertical bar Rpar. delta(P/sub c/ + P/sub perpendicular h/)/2B 2 par. deltar vertical bar > 1 (where P is the particle pressure, c and h refer to cold and hot components, B is the midplane magnetic field, and R is the midplane radius of curvature). If larger core densities are present, a wave-particle resonance arises when the particle drifts are not reversed, causing instability up to much larger pressure scale lengths. Stability for all values of the ratio of hot electron density to core density is obtained with vertical bar Rpar. deltaP/sub c//B 2 par. deltar vertical bar > 1 + P/sub parallel h//P/sub perpendicular h/

  5. Electromagnetic wave propagation in relativistic magnetized plasmas

    International Nuclear Information System (INIS)

    Weiss, I.

    1985-01-01

    An improved mathematical technique and a new code for deriving the conductivity tensor for collisionless plasmas have been developed. The method is applicable to a very general case, including both hot (relativistic) and cold magnetized plasmas, with only isotropic equilibrium distributions being considered here. The usual derivation starts from the relativistic Vlasov equation and leads to an integration over an infinite sum of Bessel functions which has to be done numerically. In the new solution the integration is carried out over a product of two Bessel functions only. This reduces the computing time very significantly. An added advantage over existing codes is our capability to perform the computations for waves propagating obliquely to the magnetic field. Both improvements greatly facilitate investigations of properties of the plasma under conditions hitherto unexplored

  6. Active control of magneto-hydrodynamic instabilities in hot plasmas

    CERN Document Server

    2015-01-01

    During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity.  However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for "old hands" and newcomers alike.

  7. Effects of nonextensivity on the electron-acoustic solitary structures in a magnetized electron−positron−ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rafat, A., E-mail: rafat.plasma@gmail.com; Rahman, M. M.; Alam, M. S.; Mamun, A. A. [Jahangirnagar University, Department of Physics (Bangladesh)

    2016-08-15

    Obliquely propagating electron-acoustic solitary waves (EASWs) in a magnetized electron−positron−ion plasma (containing nonextensive hot electrons and positrons, inertial cold electrons, and immobile positive ions) are precisely investigated by deriving the Zakharov–Kuznetsov equation. It is found that the basic features (viz. polarity, amplitude, width, phase speed, etc.) of the EASWs are significantly modified by the effects of the external magnetic field, obliqueness of the system, nonextensivity of hot positrons and electrons, ratio of the hot electron temperature to the hot positron temperature, and ratio of the cold electron number density to the hot positron number density. The findings of our results can be employed in understanding the localized electrostatic structures and the characteristics of EASWs in various astrophysical plasmas.

  8. Parametrically induced low-frequency waves in weakly inhomogeneous magnetized plasmas

    International Nuclear Information System (INIS)

    Pesic, S.

    1981-01-01

    The linear dispersion relation governing the parametric interaction of a lower hybrid pump wave with a weakly-inhomogeneous current carrying hot plasma confined by a helical magnetic field is derived and solved numerically. The stability boundaries are delineated over a wide range in the k-space. The frequency and growth rate of decay instabilities are calculated for plasma parameters relevant to lower hybrid plasma heating experiments. The parametric excitation of drift waves and ion cyclotron current instabilities is discussed. In the low-density plasma region low minimum thresholds and high growth rates are obtained for the pump decay into ion cyclotron and nonresonant quasimodes. The spatial amplification of hot ion Bernstein waves and nonresonant quasimodes dominate in the plasma core (ω 0 /ωsub(LH) < 2). The presented theoretical results are in qualitative agreement with current LH plasma heating experiments. (author)

  9. Hot deformed anisotropic nanocrystalline NdFeB based magnets prepared from spark plasma sintered melt spun powders

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y.H.; Huang, Y.L. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2013-09-01

    Highlights: • Microstructure evolution and its influence on the magnetic properties were investigated. • The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. • The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. • Magnetic properties and temperature coefficient of coercivity are indeed very promising without heavy rare earth elements. -- Abstract: Anisotropic magnets were prepared by spark plasma sintering (SPS) followed by hot deformation (HD) using melt-spun powders as the starting material. Good magnetic properties with the remanence J{sub r} > 1.32 T and maximum of energy product (BH){sub max} > 303 kJ/m{sup 3} have been obtained. The microstructure evolution during HD and its influence on the magnetic properties were investigated. The fine grain zone and coarse grain zone formed in the SPS showed different deformation behaviors. The microstructure also had an important effect on the temperature coefficients of coercivity. A strong domain-wall pinning model was valid to interpret the coercivity mechanism of the HDed magnets. The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. The polarization characteristics of HDed magnets were demonstrated. It was found out that the HDed magnets had better corrosion resistance than the counterpart sintered magnet.

  10. Magnetic confinement of laser produced LiH plasma in LITE

    International Nuclear Information System (INIS)

    Ard, W.B.; Stufflebeam, J.H.; Tomlinson, R.G.

    1976-01-01

    In the LITE experiment, a hot, dense plasma produced by laser heating of an approximately 100 μ dia LiH particle is used to fill a minimum-B baseball coil mirror magnetic containment field. The confined laser produced plasma subsequently serves as the target for an energetic neutral hydrogen beam in experiments to investigate the target plasma buildup approach for creating and sustaining an equilibrium, steady state mirror fusion plasma. In the experiments, the LiH particle is positioned in vacuum at the laser beam focus by a feedback particle suspension system and heated by two sided irradiation with the focused dual beam, 50 j, 7 nsec output of a Q-switched Nd-glass laser. The energy density of the laser produced plasma is initially much greater than that of the surrounding magnetic field and the plasma expands, converting its internal energy into expansion kinetic energy and displacement of the magnetic field. As the energy density falls below that of the magnetic field, the expansion is stopped and the plasma becomes trapped, making the transition to a low beta, mirror confined plasma. This report is concerned with the properties and behavior of the plasma in the confinement stage

  11. An infrared diagnostic for magnetism in hot stars

    Science.gov (United States)

    Oksala, M. E.; Grunhut, J. H.; Kraus, M.; Borges Fernandes, M.; Neiner, C.; Condori, C. A. H.; Campagnolo, J. C. N.; Souza, T. B.

    2015-06-01

    Magnetospheric observational proxies are used for indirect detection of magnetic fields in hot stars in the X-ray, UV, optical, and radio wavelength ranges. To determine the viability of infrared (IR) hydrogen recombination lines as a magnetic diagnostic for these stars, we have obtained low-resolution (R~ 1200), near-IR spectra of the known magnetic B2V stars HR 5907 and HR 7355, taken with the Ohio State Infrared Imager/Spectrometer (OSIRIS) attached to the 4.1 m Southern Astrophysical Research (SOAR) Telescope. Both stars show definite variable emission features in IR hydrogen lines of the Brackett series, with similar properties as those found in optical spectra, including the derived location of the detected magnetospheric plasma. These features also have the added advantage of a lowered contribution of stellar flux at these wavelengths, making circumstellar material more easily detectable. IR diagnostics will be useful for the future study of magnetic hot stars, to detect and analyze lower-density environments, and to detect magnetic candidates in areas obscured from UV and optical observations, increasing the number of known magnetic stars to determine basic formation properties and investigate the origin of their magnetic fields. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  12. Fast Advection of Magnetic Fields by Hot Electrons

    International Nuclear Information System (INIS)

    Willingale, L.; Thomas, A. G. R.; Krushelnick, K.; Nilson, P. M.; Kaluza, M. C.; Dangor, A. E.; Evans, R. G.; Fernandes, P.; Haines, M. G.; Kamperidis, C.; Kingham, R. J.; Ridgers, C. P.; Sherlock, M.; Wei, M. S.; Najmudin, Z.; Bandyopadhyay, S.; Notley, M.; Minardi, S.; Tatarakis, M.; Rozmus, W.

    2010-01-01

    Experiments where a laser-generated proton beam is used to probe the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target are presented. At intensities of 10 15 W cm -2 and under conditions of significant fast electron production and strong heat fluxes, the electron mean-free-path is long compared with the temperature gradient scale length and hence nonlocal transport is important for the dynamics of the magnetic field in the plasma. The hot electron flux transports self-generated magnetic fields away from the focal region through the Nernst effect [A. Nishiguchi et al., Phys. Rev. Lett. 53, 262 (1984)] at significantly higher velocities than the fluid velocity. Two-dimensional implicit Vlasov-Fokker-Planck modeling shows that the Nernst effect allows advection and self-generation transports magnetic fields at significantly faster than the ion fluid velocity, v N /c s ≅10.

  13. Stimulated Brillouin backscattering and magnetic field generation in laser-produced plasmas

    International Nuclear Information System (INIS)

    Bawa'aneh, M.S.

    1999-01-01

    This thesis is concerned with aspects of laser-plasma interactions related to fusion reactions; in particular thermoelectric magnetic field generation around a hole dug in plasma by intense laser beams, and stimulated Brillouin back scattering (SBBS) from plasmas containing hot spots. A hole, of the size of the laser focal spot, is dug in the plasma when illuminated by intense laser if the laser pressure exceeds the plasma thermal pressure. This hole is found to have steep, radial density gradients. My first concern arose from the prediction that magnetic fields might be generated around the hole-plasma interface in places where the steep density gradients overlap with the non-aligned temperature gradients. When a high-power laser beam is focused on a solid pellet, plasma is formed at the surface. In order to create conditions for thermonuclear reactions in the interior of the pellet, an effective deposition of the laser energy to thermal energy of the pellet via laser-plasma coupling is necessary. When light irradiates a plasma collective processes occur, which can either enhance or reduce the light absorption. For a better understanding of the fusion problem a knowledge of the nature of these collective processes and of the fraction of light reflected from the plasma modes is required. Local hot spots seen experimentally lead to higher gain levels of scattered light. These local temperature inhomogeneities could lead to non-equilibrium distributions, which result in a free energy leading to some interesting phenomena in plasma. In the second part of the thesis stimulated Brillouin back scattering from an ion acoustic mode in a hot spot is studied. Temperature inhomogeneities lead to an ion acoustic instability, and to higher levels of SBBS gain, which leads to lower thresholds for the same electron to ion temperature ratios. This could be the answer for the observed high levels of scattering from hot spots. (author)

  14. Possible parametric instabilities of beat waves in a transversely magnetized plasma

    International Nuclear Information System (INIS)

    Salimullah, M.

    1988-05-01

    The effect of an external magnetic field on the various possible parametric instabilities of the longitudinal beat wave at the difference frequency of two incident laser beams in a hot plasma has been thoeretically investigated. The kinetic equation is employed to obtain the nonlinear response of the magnetized electrons due to the nonlinear coupling of the beat wave with the low-frequency electrostatic plasma modes. It is noted that the growth rates of the three-wave and the four-wave parametric instabilities can be influenced by the external transverse magnetic field. (author). 20 refs, 3 figs

  15. Stabilizing effects of hot electrons on low frequency plasma drift waves

    International Nuclear Information System (INIS)

    Huang Chaosong; Qiu Lijian; Ren Zhaoxing

    1988-01-01

    The MHD equation is used to study the stabilization of low frequency drift waves driven by density gradient of plasma in a hot electron plasma. The dispersion relation is derived, and the stabilizing effects of hot electrons are discussed. The physical mechanism for hot electron stabilization of the low frequency plasma perturbations is charge uncovering due to the hot electron component, which depends only on α, the ratio of N h /N i , but not on the value of β h . The hot electrons can reduce the growth rate of the interchange mode and drift wave driven by the plasma, and suppress the enomalous plasma transport caused by the drift wave. Without including the effectof β h , the stabilization of the interchange mode requires α≅2%, and the stabilization of the drift wave requires α≅40%. The theoretical analyses predict that the drift wave is the most dangerous low frequency instability in the hot electron plasma

  16. Hot spot model of MagLIF implosions: Nernst term effect on magnetic flux losses

    Science.gov (United States)

    Garcia Rubio, Fernando; Sanz Recio, Javier; Betti, Riccardo

    2016-10-01

    An analytical model of a collisional plasma being compressed by a cylindrical liner is proposed and solved in a magnetized liner inertial fusion-like context. The implosion is assumed to be isobaric, and the magnetic diffusion is confined to a thin layer near the liner. Both unmagnetized and magnetized plasma cases are considered. The model reduces to a system of two partial differential equations for temperature and magnetic field. Special attention is given to the effect of the Nernst term on the evolution of the magnetic field. Scaling laws for temperature, magnetic field, hot spot mass increase and magnetic field losses are obtained. The temperature and magnetic field spatial profiles tend to a self-similar state. It is found that when the Nernst term is taken into account, the magnetic field is advected towards the liner, and the magnetic flux losses are independent of the magnetic Lewis number. Research supported by the Spanish Ministerio de Economía y Competitividad, Project No. ENE2014-54960R. Acknowledgements to the Laboratory of Laser Energetics (Rochester) for its hospitality.

  17. Effect of deformation ratios on grain alignment and magnetic properties of hot pressing/hot deformation Nd-Fe-B magnets

    Science.gov (United States)

    Guo, Zhaohui; Li, Mengyu; Wang, Junming; Jing, Zheng; Yue, Ming; Zhu, Minggang; Li, Wei

    2018-05-01

    The magnetic properties, microstructure and orientation degrees of hot pressing magnet and hot deformation Nd-Fe-B magnets with different deformation ratios have been investigated in this paper. The remanence (Br) and maximum magnetic energy product ((BH)max) were enhanced gradually with the deformation ratio increasing from 0% to 70%, whereas the coercivity (HCj) decreased. The scanning electron microscopy (SEM) images of fractured surfaces parallel to the pressure direction during hot deformation show that the grains tend to extend perpendicularly to the c-axes of Nd2Fe14B grains under the pressure, and the aspect ratios of the grains increase with the increase of deformation ratio. Besides, the compression stress induces the long axis of grains to rotate and the angle (θ) between c-axis and pressure direction decreases. The X-ray diffraction (XRD) patterns reveal that orientation degree improves with the increase of deformation ratio, agreeing well with the SEM results. The hot deformation magnet with a deformation ratio of 70% has the best Br and (BH)max, and the magnetic properties are as followed: Br=1.40 T, HCj=10.73 kOe, (BH)max=42.30 MGOe.

  18. Characteristics of hot electron ring in a simple magnetic mirror field

    International Nuclear Information System (INIS)

    Hosokawa, M.; Ikegami, H.

    1980-12-01

    Characteristics of hot electron ring are studied in a simple magnetic mirror machine (mirror ratio 2 : 1) with a diameter of 30 cm at the midplane and with the distance of 80 cm between the mirrors. Maximum microwave input power is 5 kW at 6.4 GHz with the corresponding power density of approximately 0.3 W/cm 3 . With a background cold plasma of 4 x 10 11 cm -3 , hot electron rings are most effectively generated in two cases when the magnetic field on the axis of the midplane is set near the fundamental or the second harmonic electron cyclotron resonance to the applied microwave frequency. Density profile of the hot electrons is observed to take a so-called ring shape with a radius controllable by the magnetic field intensity and with an axial length of approximately 10 cm. The radial cut view of the ring, however, indicates an M shape density profile, and the density of the hot electrons on the axis is about one half of the density at the ring. Approximately 30 msec is needed before generating the hot electron ring at the density of 10 10 cm -3 with an average kinetic energy of 100 keV. The ultimate energy distribution function is observed to have a stepwise cut in the high energy tail and no energetic components above 1 MeV are detected. The hot electron ring is susceptible to a few instabilities which can be artificially triggered. One of the instabilities is observed to associate with a loss of lower energetic electrons and microwave bursts. At the instability, the ring shape is observed to transform into a filled cylinder in a few microseconds and disappear. (author)

  19. Formation of compact toroidal configurations for magnetic confinement of high temperature plasmas

    International Nuclear Information System (INIS)

    Fuentes, N.O.; Rodrigo, A.B.

    1986-01-01

    The formation stage of inverted magnetic field toroidal configurations (FRC) for hot plasmas confinement using a low energy linear theta pinch is studied. The diagnostic techniques used are based on optical spectroscopy, ultrarapid photography, magnetic probes and excluded flux compensated bonds. The generalities of the present research program, the used diagnostic techniques and the results obtained are discussed. (Author)

  20. Studies of instabilities and waves in a mirror confined hot electron plasma

    International Nuclear Information System (INIS)

    Huang Chaosong; Qiu Lijian; Ren Zhaoxing

    1989-01-01

    The stability of hot electron plasmas is studied. The hot electron component can stabilize the low frequency drift wave and the interchange mode driven by the plasma, which depends only on α=N h /N i , the density ratio of the hot electrons to the plasma ions, but not on the beta value and the annular structure of the hot electrons. Stabilization of the drift wave occurs for α > 40%, and that of the interchange mode for α > 5%, which allows the prediction that the interchange mode can be suppressed in hot electron plasma experiments. The experiments have been conducted in a simple mirror machine. It is observed that the plasma drives a drift wave at 40 kHz and an interchange mode at about 100 kHz. The fluctuation amplitude of the drift wave is much higher than that of the interchange mode. The hot electrons reduce the density gradient, the fluctuation amplitude and the radial loss of the plasma. On the other hand, the hot electrons drive the interchange mode and drift wave in the ion cyclotron frequency region. The effects of a cold plasma on hot electron perturbations are discussed. (author). 10 refs, 6 figs

  1. Competition of circularly polarized laser modes in the modulation instability of hot magnetoplasma

    International Nuclear Information System (INIS)

    Sepehri Javan, N.

    2013-01-01

    The present study is aimed to investigate the problem of modulation instability of an intense laser beam in the hot magnetized plasma. The propagation of intense circularly polarized laser beam along the external magnetic field is considered using a relativistic fluid model. The nonlinear equation describing the interaction of laser pulse with magnetized hot plasma is derived in the quasi-neutral approximation, which is valid for hot plasma. Nonlinear dispersion equation for hot plasma is obtained. For left- and right-hand polarizations, the growth rate of instability is achieved and the effect of temperature, external magnetic field, and kind of polarization on the growth rate is considered. It is observed that for the right-hand polarization, increase of magnetic field leads to the increasing of growth rate. Also for the left-hand polarization, increase of magnetic field inversely causes decrease of the growth rate.

  2. Direct observation of magnetization reversal of hot-deformed Nd-Fe-B magnet

    Science.gov (United States)

    Zhu, Xiaoyun; Tang, Xu; Pei, Ke; Tian, Yue; Liu, Jinjun; Xia, Weixing; Zhang, Jian; Liu, J. Ping; Chen, Renjie; Yan, Aru

    2018-01-01

    The dynamic magnetic domain structure in magnetization and demagnetization process of hot-deformed and NdCu-diffused Nd2Fe14B magnets were in-situ observed by Lorentz transmission electron microscopy (LTEM). The demagnetization process of hot-deformed sample is dominated by domain-wall pinning, while that of NdCu-diffused sample is mainly the magnetization reversal of single grains or grain aggregations. This firstly observed result gives an explicit evidence to understand the coercivity mechanism of magnetically segregated magnet. The effect of magnetic field of TEM on decrease in domain wall energy was theoretically analyzed, which helps to understand the in-situ observation process of magnetic materials.

  3. Radial structure of curvature-driven instabilities in a hot-electron plasma

    International Nuclear Information System (INIS)

    Spong, D.A.; Berk, H.L.; Van Dam, J.W.

    1984-01-01

    A nonlocal analysis of curvature-driven instabilities for a hot-electron ring interacting with a warm background plasma has been made. Four different instability modes characteristic of hot-electron plasmas have been examined: the high-frequency hot-electron interchange (at frequencies larger than the ion-cyclotron frequency), the compressional Alfven instability, the interacting background pressure-driven interchange, and the conventional hot-electron interchange (at frequencies below the ion-cyclotron frequency). The decoupling condition between core and hot-electron plasmas has also been examined, and its influence on the background and hot-electron interchange stability boundaries has been studied. The assumed equilibrium plasma profiles and resulting radial mode structure differ somewhat from those used in previous local analytic estimates; however, when the analysis is calibrated to the appropriate effective radial wavelength of the nonlocal calculation, reasonable agreement is obtained. Comparison with recent experimental measurements indicates that certain of these modes may play a role in establishing operating boundaries for the ELMO Bumpy Torus-Scale (EBT-S) experiment. The calculations given here indicate the necessity of having core plasma outside the ring to prevent the destabilizing wave resonance of the precessional mode with a cold plasma

  4. Magnetic field generation by circularly polarized laser light and inertial plasma confinement in a miniature 'Magnetic Bottle' induced by circularly polarized laser light

    International Nuclear Information System (INIS)

    Kolka, E.

    1993-07-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested in this work. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss. In this configuration the circularly polarized laser light is used to get confinement of a plasma contained in a good conductor vessel. The poloidal magnetic field induced by the circularly polarized laser and the efficiency of laser absorption by the plasma are calculated in this work. The confinement in this scheme is supported by the magnetic forces and the Lawson criterion for a DT plasma might be achieved for number density n=5*10 21 cm -3 and confinement time τ= 20 nsec. The laser and the plasma parameters required to get an energetic gain are calculated. (authors)

  5. Direct observation of magnetization reversal of hot-deformed Nd-Fe-B magnet

    Directory of Open Access Journals (Sweden)

    Xiaoyun Zhu

    2018-01-01

    Full Text Available The dynamic magnetic domain structure in magnetization and demagnetization process of hot-deformed and NdCu-diffused Nd2Fe14B magnets were in-situ observed by Lorentz transmission electron microscopy (LTEM. The demagnetization process of hot-deformed sample is dominated by domain-wall pinning, while that of NdCu-diffused sample is mainly the magnetization reversal of single grains or grain aggregations. This firstly observed result gives an explicit evidence to understand the coercivity mechanism of magnetically segregated magnet. The effect of magnetic field of TEM on decrease in domain wall energy was theoretically analyzed, which helps to understand the in-situ observation process of magnetic materials.

  6. 16. Hot dense plasma atomic processes

    International Nuclear Information System (INIS)

    Werner, Dappen; Totsuji, H.; Nishii, Y.

    2002-01-01

    This document gathers 13 articles whose common feature is to deal with atomic processes in hot plasmas. Density functional molecular dynamics method is applied to the hydrogen plasma in the domain of liquid metallic hydrogen. The effects of the density gradient are taken into account in both the electronic kinetic energy and the exchange energy and it is shown that they almost cancel with each other, extending the applicability of the Thomas-Fermi-Dirac approximation to the cases where the density gradient is not negligible. Another article reports about space and time resolved M-shell X-ray measurements of a laser-produced gas jet xenon plasma. Plasma parameters have been measured by ion acoustic and electron plasma waves Thomson scattering. Photo-ionization becomes a dominant atomic process when the density and the temperature of plasmas are relatively low and when the plasma is submitted to intense external radiation. It is shown that 2 plasmas which have a very different density but have the same ionization parameters, are found in a similar ionization state. Most radiation hydrodynamics codes use radiative opacity data from available libraries of atomic data. Several articles are focused on the determination of one group Rosseland and Planck mean analytical formulas for several single elements used in inertial fusion targets. In another paper the plasma density effect on population densities, effective ionization, recombination rate coefficients and on emission lines from carbon and Al ions in hot dense plasma, is studied. The last article is devoted to a new atomic model in plasmas that considers the occupation probability of the bound state and free state density in the presence of the plasma micro-field. (A.C.)

  7. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    International Nuclear Information System (INIS)

    Stratton, B.C.; Bitter, M.; Hill, K.W.; Hillis, D.L.; Hogan, J.T.

    2007-01-01

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  8. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  9. Two-dimensional plasma expansion in a magnetic nozzle: Separation due to electron inertia

    International Nuclear Information System (INIS)

    Ahedo, Eduardo; Merino, Mario

    2012-01-01

    A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards or inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly.

  10. Evolution of particle clouds around ablating pellets in magnetically confined hot plasmas

    International Nuclear Information System (INIS)

    Lengyel, L.L.

    1991-08-01

    Cryogenic hydrogen isotope pellets are being currently used for introducing fuel particles into the palsma interior in magnetic confinement fusion experiments. The spatial and time evolution of the initially low-temperature high-density particle clouds forming around such pellets are considered here, with particular attention being given to such physical processes as heating of the cloud by the energy fluxes carried by incident plasma particles, gasdynamic expansion with j vectorxB vector - produced deceleration in the transverse direction, finite-rate ionization and recombination processes, and magnetic field convection and diffusion. While the dynamic processes associated with the ionization and radial confinement processes are characterized by the relatively short Alfven time scale (μs range), the subsequent phase of axial expansion is associated with a notably larger hadrodynamic time scale defined by the heat input and gasdynamic expansion rates (ms range). Data stemming from experimental measurements in toroidal confinement machines are compared with results of model calculations. Some similarities with space plasmas are briefly discussed. (orig.)

  11. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  12. Hot-plasma decoupling condition for long-wavelength modes

    International Nuclear Information System (INIS)

    Berk, H.L.; Van Dam, J.W.; Spong, D.

    1982-10-01

    The stability of layer modes is analyzed for z-pinch and bumpy cylinder models. These modes are long wavelength across the layer and flute-like along the field line. The stability condition can be expressed in terms of the ratio of hot to core plasma density. It is shown that to achieve conditions close to the Nelson, Lee-Van Dam core beta limit, one needs a considerably smaller hot to core plasma density than is required to achieve stability at zero core beta

  13. Hot-working behavior of cast Pr-Fe-B magnets

    International Nuclear Information System (INIS)

    Shimoda, T.; Akioka, K.; Kobayashi, O.; Yamagami, T.; Ohki, T.; Miyagawa, M.; Yuri, T.

    1989-01-01

    The hot-working behavior of cast Pr-Fe-B magnets is investigated. The hot-working is done both at a low strain rate (hot-pressing) and a high strain rate (hot-rolling). Magnetic alignment induced by the hot-working is found to be closely related to the macrostructure of the cast ingots and the direction of principal stress. The appropriate structure is a columnar structure. The c-axis of the Pr2Fe14B phase is lying in the plane perpendicular to the growth direction of the dendrites. The principal stress during working should be given perpendicular to the growth direction

  14. Observation of spatial resolution of ECR plasma on the MM-2 magnetic mirror

    International Nuclear Information System (INIS)

    Duan Shuyun; Gu Biao; Guan Weishu; Cheng Shiqing; Liu Rong; Chen Kangwei; Shang Zhenkui

    1991-04-01

    The measuring method and results of the ECR plasma properties taken from hard X-ray pinhole camera on the MM-2 magnetic mirror are presented. This non-destructive imaging method can directly display the spatial distribution of hot electron plasma. A frame of clear picture could be taken at one shot of discharge. The relationships between emission intensity and discharge parameters are also shown by experimental pictures

  15. Anomalous energy transport in hot plasmas: solar corona and Tokamak

    International Nuclear Information System (INIS)

    Beaufume, P.

    1992-04-01

    Anomalous energy transport is studied in two hot plasmas and appears to be associated with a heating of the solar corona and with a plasma deconfining process in tokamaks. The magnetic structure is shown to play a fundamental role in this phenomenon through small scale instabilities which are modelized by means of a nonlinear dynamical system: the Beasts' Model. Four behavior classes are found for this system, which are automatically classified in the parameter space thanks to a neural network. We use a compilation of experimental results relative to the solar corona to discuss current-based heating processes. We find that a simple Joule effect cannot provide the required heating rates, and therefore propose a dimensional model involving a resistive reconnective instability which leads to an efficient and discontinuous heating mechanism. Results are in good agreement with the observations. We give an analytical expression for a diffusion coefficient in tokamaks when magnetic turbulence is perturbing the topology, which we validate thanks to the standard mapping. A realistic version of the Beasts' Model allows to test a candidate to anomalous transport: the thermal filamentation instability

  16. The answer to the comment of Prof. S.M. Grach to the paper by V.V. Tirskii, V.G. Ledenev, and V.M. Tomozov, Spectra of Electromagnetic Radiation from a Hot Plasma with Langmuir Turbulence in a Magnetic Field, Fiz. Plazmy 27, 423 (2001) [Plasma Physics Report 27, 398 (2001)

    International Nuclear Information System (INIS)

    Tirskij, V.V.; Ledenev, V.G.; Tomozov, V.M.

    2002-01-01

    One gives answer to comment on the article entitled On Spectrum of Electromagnetic Radiation from a Hot plasma with the Langmuir Turbulence in a Magnetic Field. The authors of the article state that this comment is true for a cold plasma only. The results of calculations conducted by the mentioned authors support this reason [ru

  17. Dynamics of self-generated magnetic fields in stagnation phase and their effects on hot spark formation

    International Nuclear Information System (INIS)

    Hata, Akiro; Mima, Kunioki; Nagatomo, Hideo; Sunahara, Atsushi; Nishiguchi, Akio

    2006-01-01

    The generalized temporal evolution equation of a magnetic field is derived for high density laser-fusion plasmas. Magnetic field generation and convection are simulated by using the 2D hydrodynamic code together with the magnetic field equation. It is found that magnetic fields are generated and compressed in association with the Rayleigh-Taylor instability of an imploding shell. In particular, the magnetic field convection by the Nernst effect is found to play an important role in the amplification of magnetic fields. The maximum magnetic field reaches 30 MG at maximum compression. This magnetic field may reduce the electron heat conduction around the hot spark. Therefore, it is concluded that the ignition condition for non-uniform implosion is influenced by self-generated magnetic fields. (author)

  18. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    Science.gov (United States)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  19. Turbulence and intermittent transport at the boundary of magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2005-01-01

    Numerical fluid simulations of interchange turbulence for geometry and parameters relevant to the boundary region of magnetically confined plasmas are shown to result in intermittent transport qualitatively similar to recent experimental measurements. The two-dimensional simulation domain features...... a forcing region with spatially localized sources of particles and heat outside which losses due to the motion along open magnetic-field lines dominate, corresponding to the edge region and the scrape-off layer, respectively. Turbulent states reveal intermittent eruptions of hot plasma from the edge region...... fluctuation wave forms and transport statistics are also in a good agreement with those derived from the experiments. Associated with the turbulence bursts are relaxation oscillations in the particle and heat confinements as well as in the kinetic energy of the sheared poloidal flows. The formation of blob...

  20. Ponderomotive Acceleration of Hot Electrons in Tenuous Plasmas

    International Nuclear Information System (INIS)

    Geyko, V.I.; Fraiman, G.M.; Dodin, I.Y.; Fisch, N.J.

    2009-01-01

    The oscillation-center Hamiltonian is derived for a relativistic electron injected with an arbitrary momentum in a linearly polarized laser pulse propagating in tenuous plasma, assuming that the pulse length is smaller than the plasma wavelength. For hot electrons generated at collisions with ions under intense laser drive, multiple regimes of ponderomotive acceleration are identified and the laser dispersion is shown to affect the process at plasma densities down to 10 17 cm -3 . Assuming a/γ g 0 ∼ g , where a is the normalized laser field, and γ g is the group velocity Lorentz factor. Yet γ ∼ Γ is attained within a wide range of initial conditions; hence a cutoff in the hot electron distribution is predicted

  1. Production and study of high-beta plasma confined by a superconducting dipole magnet

    International Nuclear Information System (INIS)

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-01-01

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure (β>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large

  2. White noise excitation in a hot plasma

    International Nuclear Information System (INIS)

    Ito, Masataka

    1977-01-01

    In a low frequency range, a property of white noise in a hot plasma is studied experimentally. A frequency component of white noise is observed to propagate with a phase velocity which is equal to the ion accoustic wave velocity. The white noise, which is launched in a plasma, is considered as the sum of ion acoustic waves. (auth.)

  3. A pilot study of magnetic therapy for hot flashes after breast cancer.

    Science.gov (United States)

    Carpenter, Janet S; Wells, Nancy; Lambert, Beth; Watson, Peggy; Slayton, Tami; Chak, Bapsi; Hepworth, Joseph T; Worthington, W Bradley

    2002-04-01

    The purpose of this randomized placebo-controlled crossover pilot study was to evaluate the effectiveness and acceptability of magnetic therapy for hot flashes among breast cancer survivors. Participants completed a 24-hour baseline hot-flash monitoring session, wore the magnetic devices or placebo for 3 days, completed an after-treatment hot-flash monitoring session, experienced a 10-day washout period, and then crossed over to the opposite study arm. Magnetic devices and placebos were placed on 6 acupressure sites corresponding to hot-flash relief. Complete data were available from 11 survivors of breast cancer. Results indicated magnetic therapy was no more effective than placebo in decreasing hot-flash severity, and contrary to expectations, placebo was significantly more effective than magnets in decreasing hot-flash frequency, bother, interference with daily activities, and overall quality of life. Implications for clinical practice and future research include the need to explore alternative interventions aimed at alleviating hot flashes in this population.

  4. Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Ress, D.B.

    1988-06-01

    The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs

  5. Ion-acoustic double-layers in a magnetized plasma with nonthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rios, L. A. [Centro Brasileiro de Pesquisas Físicas and Instituto Nacional de Ciência e Tecnologia de Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Galvão, R. M. O. [Centro Brasileiro de Pesquisas Físicas and Instituto Nacional de Ciência e Tecnologia de Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Instituto de Física, Universidade de São Paulo, 05508-900 São Paulo (Brazil)

    2013-11-15

    In the present work we investigate the existence of obliquely propagating ion-acoustic double layers in magnetized two-electron plasmas. The fluid model is used to describe the ion dynamics, and the hot electron population is modeled via a κ distribution function, which has been proved to be appropriate for modeling non-Maxwellian plasmas. A quasineutral condition is assumed to investigate these nonlinear structures, which leads to the formation of double-layers propagating with slow ion-acoustic velocity. The problem is investigated numerically, and the influence of parameters such as nonthermality is discussed.

  6. Numerical method for the dispersion relation of a hot and inhomogeneous plasma with an electron beam

    International Nuclear Information System (INIS)

    Devia, A.; Orrego, C.E.; Buitrago, G.

    1990-01-01

    A numerical method that is based in kinetic theory (Vlasov-Poison equations) was developed in order to calculate the dispersion relation for the interaction between a hot cylindrical and electron beam in any temperature and density. The plasma-beam system is located in a strong magnetic field. Many examples showing the effect of the temperatures and densities on the dispersion relation are given. (Author)

  7. X-ray polarization studies of plasma focus experiments with a single hot spots

    International Nuclear Information System (INIS)

    Jakubowski, L.; Sadowski, M.J.; Baronova, E.O.

    2004-01-01

    In high current pulse discharges of the plasma focus (PF) type, inside the collapsing pinch column, there are formed local micro-regions of high-density and high-temperature plasma, so-called hot spots. Individual hot spots are separated in space and time. Each hot spot is characterized by its specific electron concentration and temperature, as well as by the emission of x-ray lines with different polarization. When numerous hot spots are produced it is impossible to determine local plasma parameters and to interpret the polarization effects. To eliminate this problem this study was devoted to the realization of PF-type discharges with single hot spot only. It has been achieved by a choice of the electrode configuration, which facilitated the formation of a single hot spot emitting intense x-ray lines. At the chosen experimental conditions it was possible to determine local plasma parameters and to demonstrate evident differences in the polarization of the observed x-ray lines. (author)

  8. Magnetic field-aligned plasma expansion in critical ionization velocity space experiments

    International Nuclear Information System (INIS)

    Singh, N.

    1989-01-01

    Motivated by the recent Critical Ionization Velocity (CIV) experiments in space, the temporal evolution of a plasma cloud released in an ambient plasma is studied. Time-dependent Vlasov equations for both electrons and ions, along with the Poisson equation for the self-consistent electric field parallel to the ambient magnetic field, are solved. The initial cloud is assumed to consist of cold, warm, and hot electrons with temperatures T/sub c/ ≅ 0.2 eV, T/sub w/ ≅ 2 eV, and T/sub h/ ≅ 10 eV, respectively. It is found that the minor hot electrons escape the cloud, and their velocity distribution function shows the typical time-of-flight dispersion feature - that is, the larger the distance from the cloud, the larger is the average drift velocity of the escaping electrons. The major warm electrons expand along the magnetic field line with the corresponding ion-acoustic speed. The combined effect of the escaping hot electrons and the expanding warm ones sets up an electric potential structure which accelerates the ambient electrons into the cloud. Thus, the energy loss due to the electron escape is partly replenished. The electric field distribution in the potential structure depends on the stage of the evolution; before the rarefaction waves propagating from the edges of the cloud reach its center, the electric fields point into the cloud. After this stage the cloud divides into two subclouds, with each having their own bipolar electric fields. Effects of collisions on the evolution of plasma clouds are also discussed. The relevance of the results seen from the calculations are discussed in the context of recent space experiments on CIV

  9. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-01-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω e τ e effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω e τ e as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics

  10. Plasma hot machining for difficult-to-cut materials, 1

    International Nuclear Information System (INIS)

    Kitagawa, Takeaki; Maekawa, Katsuhiro; Kubo, Akihiko

    1987-01-01

    Machinability of difficult-to-cut materials has been a great concern to manufacturing engineers since demands for new materials in the aerospace and nuclear industries are more and more increasing. The purpose of this study is to develop a hot machining to improve machinability of high hardness materials. A plasma arc is used for heating materials cut. The surface just after being heated is removed as a chip by tungsten carbide tools. The turning experiments of high hardness steels with aid of plasma arc heating show not only the decrease in cutting forces but also the following effectiveness: (1) The application of the plasma hot machining to the condition, under which a built-up edge (BUE) appears in turning 0.46%C steel, makes the BUE disappeared, bringing less flank wear. (2) In the case of 18%Mn steel cutting, deep groove wear on the end-cutting edge diminishes, and roughness of the machined surface is improved by the prevention from chatter. (3) Although the chilled cast iron has high hardness of above HB = 350, the plasma hot machining makes it possible to cut it with tungsten carbide tools having less chipping and flank wear. (author)

  11. Hot tungsten plate based ionizer for cesium plasma in a multi-cusp field experiment

    International Nuclear Information System (INIS)

    Patel, Amitkumar D.; Sharma, Meenakshee; Ramasubramanian, Narayanan; Chattopadhyay, Prabal K.

    2015-01-01

    In a newly proposed basic experiment, contact-ionized cesium ions will be confined by a multi cups magnetic field configuration. The cesium ion will be produced by impinging collimated neutral atoms on an ionizer consisting of the hot tungsten plate. The temperature of the tungsten plate will also be made high enough (∼2700 K) such that it will contribute electrons also to the plasma. It is expected that at this configuration the cesium plasma would be really quiescent and would be free from even the normal drift waves observed in the classical Q-machines. For the ionizer a design based on F. F. Chen's design was made. This ionizer is very fine machining and exotic material like Tungsten plate, Molybdenum screws, rings, and Boron Nitride ceramics etc. The fine and careful machining of these materials was very hard. In this paper, the experience about to join the tungsten wire to molybdenum plate and alloy of tantalum and molybdenum ring is described. In addition experimental investigations have been made to measure 2D temperature distribution profile of the Tungsten hot plate using infrared camera and the uniformity of temperature distribution over the hot plate surface is discussed. (author)

  12. Study of aerosol sample interaction with dc plasma in the presence of oscillating magnetic field

    International Nuclear Information System (INIS)

    Stoiljkovic, M.M.; Pavlovic, M.S.; Savovic, J.; Kuzmanovic, M.; Marinkovic, M.

    2005-01-01

    Oscillating magnetic field was used to study the efficiency of the aerosol sample introduction into the dc plasma. At atmospheric plasmas, the effect of magnetic field is reduced to Lorentz forces on the current carrying plasma, which produces motion of the plasma. The motion velocity of dc plasma caused by oscillating magnetic field was correlated to spectral emission enhancement of analytes introduced as aerosols. Emission enhancement is the consequence of the reduced barrier to introduction of analyte species and aerosol particles into the hot plasma region. Two hypotheses described in the literature for the origin of the barrier are considered: (i) barrier induced by temperature field is based upon the thermophoretic forces on the aerosol particles when their radius is comparable to the molecular free path in the surrounding gas and (ii) barrier induced by radial electric field, recently described, that originates from gradients of charged particles in radial direction. Correlation between ionization energy of the analyte atoms with experimental emission enhancement obtained by the use of oscillating magnetic field indicates that mechanism (ii) based upon the radial electric field is predominant. The ultimate emission enhancement and possible analytical advantage is discussed

  13. Coercivities of hot-deformed magnets processed from amorphous and nanocrystalline precursors

    International Nuclear Information System (INIS)

    Tang, Xin; Sepehri-Amin, H.; Ohkubo, T.; Hioki, K.; Hattori, A.; Hono, K.

    2017-01-01

    Hot-deformed magnets have been processed from amorphous and nanocrystalline precursors and their hard magnetic properties and microstructures have been investigated in order to explore the optimum process route. The hot-deformed magnets processed from an amorphous precursor exhibited the coercivity of 1.40 T that is higher than that processed from nanocrystalline powder, ∼1.28 T. The average grain size was larger in the magnets processed from amorphous precursor. Detailed microstructure analyses by aberration corrected scanning transmission electron microscopy revealed that the Nd + Pr concentrations in the intergranular phases were higher in the hot-deformed magnet processed from the amorphous precursor, which is considered to lead to the enhanced coercivity due to a stronger pinning force against magnetic domain wall motion.

  14. Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas

    International Nuclear Information System (INIS)

    Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.

    2008-01-01

    Two different experiments involving pressure gradients across the confinement magnetic field in a large plasma column are found to exhibit a broadband turbulence that displays an exponential frequency spectrum for frequencies below the ion cyclotron frequency. The exponential feature has been traced to the presence of solitary pulses having a Lorentzian temporal signature. These pulses arise from nonlinear interactions of drift-Alfven waves driven by the pressure gradients. In both experiments the width of the pulses is narrowly distributed resulting in exponential spectra with a single characteristic time scale. The temporal width of the pulses is measured to be a fraction of a period of the drift-Alfven waves. The experiments are performed in the Large Plasma Device (LAPD-U) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] operated by the Basic Plasma Science Facility at the University of California, Los Angeles. One experiment involves a controlled, pure electron temperature gradient associated with a microscopic (6 mm gradient length) hot electron temperature filament created by the injection a small electron beam embedded in the center of a large, cold magnetized plasma. The other experiment is a macroscopic (3.5 cm gradient length) limiter-edge experiment in which a density gradient is established by inserting a metallic plate at the edge of the nominal plasma column of the LAPD-U. The temperature filament experiment permits a detailed study of the transition from coherent to turbulent behavior and the concomitant change from classical to anomalous transport. In the limiter experiment the turbulence sampled is always fully developed. The similarity of the results in the two experiments strongly suggests a universal feature of pressure-gradient driven turbulence in magnetized plasmas that results in nondiffusive cross-field transport. This may explain previous observations in helical confinement devices, research tokamaks, and arc plasmas.

  15. Magnetic Detachment and Plume Control in Escaping Magnetized Plasma

    International Nuclear Information System (INIS)

    Schmit, P.F.; Fisch, N.J.

    2008-01-01

    The model of two-fluid, axisymmetric, ambipolar magnetized plasma detachment from thruster guide fields is extended to include plasmas with non-zero injection angular velocity profiles. Certain plasma injection angular velocity profiles are shown to narrow the plasma plume, thereby increasing exhaust efficiency. As an example, we consider a magnetic guide field arising from a simple current ring and demonstrate plasma injection schemes that more than double the fraction of useful exhaust aperture area, more than halve the exhaust plume angle, and enhance magnetized plasma detachment

  16. Hot electron spatial distribution under presence of laser light self-focusing in over-dense plasmas

    International Nuclear Information System (INIS)

    Tanimoto, T; Yabuuchi, T; Habara, H; Kondo, K; Kodama, R; Mima, K; Tanaka, K A; Lei, A L

    2008-01-01

    In fast ignition for laser thermonuclear fusion, an ultra intense laser (UIL) pulse irradiates an imploded plasma in order to fast-heat a high-density core with hot electrons generated in laser-plasma interactions. An UIL pulse needs to make plasma channel via laser self-focusing and to propagate through the corona plasma to reach close enough to the core. Hot electrons are used for heating the core. Therefore the propagation of laser light in the high-density plasma region and spatial distribution of hot electron are important in issues in order to study the feasibility of this scheme. We measure the spatial distribution of hot electron when the laser light propagates into the high-density plasma region by self-focusing

  17. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    International Nuclear Information System (INIS)

    Tsventoukh, M. M.

    2010-01-01

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ∼ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those

  18. Observations and modeling of magnetized plasma jets and bubbles launched into a transverse B-field

    Science.gov (United States)

    Fisher, Dustin M.; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward B., IV; van der Holst, Bart; Rogers, Barrett N.; Hsu, Scott C.

    2017-10-01

    Hot, dense, plasma structures launched from a coaxial plasma gun on the HelCat dual-source plasma device at the University of New Mexico drag frozen-in magnetic flux into the chamber's background magnetic field providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, shocks, as well as CME-like dynamics possibly relevant to the solar corona. Vector magnetic field data from an eleven-tipped B-dot rake probe and images from an ultra-fast camera will be presented in comparison with ongoing MHD modeling using the 3-D MHD BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid (AMR) that enables the capture and resolution of shock structures and current sheets and is uniquely suited for flux-rope expansion modeling. Recent experiments show a possible magnetic Rayleigh-Taylor (MRT) instability that appears asymmetrically at the interface between launched spheromaks (bubbles) and their entraining background magnetic field. Efforts to understand this instability using in situ measurements, new chamber boundary conditions, and ultra-fast camera data will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  19. Eigenmodes of a microwave cavity partially filled with an anisotropic hot plasma

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1978-01-01

    The eigenmodes of a microwave cavity, which contains a uniform hot plasma with anisotropic temperature, are determined using the linearized fluid equations together with Maxwell's equations. Conditions are discussed under which hot plasma mode and the cold plasma mode are decoupled. The frequency shift of the microwave cavity is calculated and the theoretical results are shown to be in very good qualitative agreement with published experimental results obtained for the TM 010 mode. (author)

  20. Hot-ion Bernstein wave with large kparallel

    International Nuclear Information System (INIS)

    Ignat, D.W.; Ono, M.

    1995-01-01

    The complex roots of the hot plasma dispersion relation in the ion cyclotron range of frequencies have been surveyed. Progressing from low to high values of perpendicular wave number k perpendicular we find first the cold plasma fast wave and then the well-known Bernstein wave, which is characterized by large dispersion, or large changes in k perpendicular for small changes in frequency or magnetic field. At still higher k perpendicular there can be two hot plasma waves with relatively little dispersion. The latter waves exist only for relatively large k parallel, the wave number parallel to the magnetic field, and are strongly damped unless the electron temperature is low compared to the ion temperature. Up to three mode conversions appear to be possible, but two mode conversions are seen consistently

  1. Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma

    Science.gov (United States)

    Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.

    2016-10-01

    The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  2. Characterization of hot dense plasma with plasma parameters

    Science.gov (United States)

    Singh, Narendra; Goyal, Arun; Chaurasia, S.

    2018-05-01

    Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.

  3. Hot plasma parameters in Neptune's magnetosphere

    International Nuclear Information System (INIS)

    Krimigis, S.M.; Mauk, B.H.; Cheng, A.F.; Keath, E.P.; Kane, M.; Armstrong, T.P.; Gloeckler, G.; Lanzerotti, L.J.

    1990-01-01

    Energy spectra of energetic protons and electrons (E p approx-gt 28 keV, E e approx-gt 22 keV, respectively) obtained with the Low Energy Charged Particle (LECP) instrument during the Voyager 2 encounter with Neptune on August 24-25, 1989 are presented. The proton spectral form was a power law (dj/dE = KE -γ ), outside the orbit of Triton (∼14.3 R N ); inside that distance, it was found to be a hot (kT ≅ 60 keV) Maxwellian distribution. Such distributions, observed in other planets as well, have yet to be explained theoretically. Similarly, the electron spectral form changed from a simple power law outside Triton to a two-slope power law with a high energy tail inside. Intensity and spectral features in both proton and electron fluxes were identified in association with the crossings of the Triton and 1989 N1 L-shells, but these features do not occur simultaneously in both species. Such signatures were manifested by relative peaks in both kT and γ spectral indices. Peak proton pressures of ∼2x10 -9 dynes cm -2 , and β ∼ 0.2 were measured at successive magnetic equatorial crossings, both inbound and outbound. These parameters show Neptune's magnetosphere to be relatively undistorted by hot plasma loading, similar to that of Uranus and unlike those of Saturn and Jupiter. Trapped electron fluxes at Neptune, as at Uranus, exceed the whistler mode stably trapped flux limit. Whistler-induced pitch angle scattering of energetic electrons in the radiation belts can yield a precipitating energy flux sufficient to drive Neptune's aurora

  4. Stark broadening in hot, dense laser-produced plasmas

    International Nuclear Information System (INIS)

    Tighe, R.J.; Hooper, C.F. Jr.

    1976-01-01

    Broadened Lyman-α x-ray lines from neon X and argon XVIII radiators, which are immersed in a hot, dense deuterium or deuterium-tritium plasma, are discussed. In particular, these lines are analyzed for several temperature-density cases, characteristic of laser-produced plasmas; special attention paid to the relative importance of ion, electron, and Doppler effects. Static ion microfield distribution functions are tabulated

  5. Estimating the Magnetic Field Strength in Hot Jupiters

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Rakesh K. [Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138 (United States); Thorngren, Daniel P., E-mail: rakesh_yadav@fas.harvard.edu [Department of Physics, University of California, Santa Cruz, CA (United States)

    2017-11-01

    A large fraction of known Jupiter-like exoplanets are inflated as compared to Jupiter. These “hot” Jupiters orbit close to their parent star and are bombarded with intense starlight. Many theories have been proposed to explain their radius inflation and several suggest that a small fraction of the incident starlight is injected into the planetary interior, which helps to puff up the planet. How will such energy injection affect the planetary dynamo? In this Letter, we estimate the surface magnetic field strength of hot Jupiters using scaling arguments that relate energy available in planetary interiors to the dynamo-generated magnetic fields. We find that if we take into account the energy injected in the planetary interior that is sufficient to inflate hot Jupiters to observed radii, then the resulting dynamo should be able generate magnetic fields that are more than an order of magnitude stronger than the Jovian values. Our analysis highlights the potential fundamental role of the stellar light in setting the field strength in hot Jupiters.

  6. Dust in flowing magnetized plasma

    International Nuclear Information System (INIS)

    Pandey, Birendra P.; Samarian, Alex A.; Vladimirov, Sergey V.

    2009-01-01

    Plasma flows occur in almost every laboratory device and interactions of flowing plasmas with near-wall impurities and/or dust significantly affects the efficiency and lifetime of such devices. The charged dust inside the magnetized flowing plasma moves primarily under the influence of the plasma drag and electric forces. Here, the charge on the dust, plasma potential, and plasma density are calculated self-consistently. The electrons are assumed non-Boltzmannian and the effect of electron magnetization and electron-atom collisions on the dust charge is calculated in a self-consistent fashion. For various plasma magnetization parameters viz. the ratio of the electron and ion cyclotron frequencies to their respective collision frequencies, plasma-atom and ionization frequencies, the evolution of the plasma potential and density in the flow region is investigated. The variation of the dust charge profile is shown to be a sensitive function of plasma parameters. (author)

  7. Introduction to Plasma Physics

    Science.gov (United States)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  8. Hot electron effects on the satellite spectrum of laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM (United States); Faenov, A.Y.; Pikuz, T.A. [MISDC, NPO ' VNIIFTRI' , Mendeleevo, Moscow Region, 141570 (Russian Federation); Wilke, M.D.; Kyrala, G.A.; Clark, R.E.H. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM (United States)

    1999-05-01

    In laser-produced plasmas, the interaction of the intense laser light with plasma electrons can produce high-energy superthermal electrons with energies in the keV range. These hot electrons can influence the level populations which determine spectral line structure. In the present paper, the effect of hot electrons on the X-ray satellite spectrum of laser-produced plasmas is studied. Calculated spectra are compared with experimental observations. Magnesium targets irradiated by three different types of laser pulses are considered. These include, a high-intensity 600 fs Nd-glass laser, a 1 ns Nd-glass laser, and a 2ns CO{sub 2} laser. The Nd-glass laser experiments were conducted recently at the Los Alamos Trident Facility and the CO{sub 2} data were recorded by MISDC. High-resolution spectra were measured near the He-like resonance line of magnesium. The calculations employ an electron energy distribution which includes a thermal and a hot electron component, as part of a detailed collisional-radiative model. Plasma parameters including electron temperature, density, and hot electron fraction are estimated by choosing best fits to the experimental measurements. The calculations show that hot electrons can cause several anomalous effects. The Li-like jkl, abcd, and qr satellites can show intensities which are generally attributed to electron densities in excess of 10{sup 23} cm{sup -3}. In addition, the relative amplitude of the intercombination line can be unusually large even at high electron densities due to enhanced collisional excitation of the 1s2p{sup 3}P state by hot electrons. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  10. Delayed hot spots in a low energy plasma focus

    International Nuclear Information System (INIS)

    Rout, R.K.; Shyam, A.

    1991-01-01

    In a low energy Mather-type plasma focus device, hot spots having temperature in the range of few keV have been observed even 1 μs after the pinch disintegration and in regions away from the pinch area. These hot spots are perhaps created by the thermal runaway due to temperature fluctuations in the background gas. (author). 12 refs., 6 figs

  11. The role of alpha particles in magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Lisak, M.; Wilhelmsson, H.

    1986-01-01

    Recent progress in the confinement of hot plasmas in magnetic fusion experiments throughout the world has intensified interest and research in the physics of D-T burning plasmas especially in the wide range of unresolved theoretical as well as experimental questions associated with the role of alpha particles in such devices. In order to review the state-of-the- art in this field, and to identify new issues and problems for further research, the Symposium on the Role of Alpha Particles in Magnetically Confined Fusion Plasmas was held from 24 to 26 June 1986 at Aspenaesgaarden near Goeteborg, Sweden. About 25 leading experts from nine countries attended the Symposium and gave invited talks. The major part of the programme was devoted to alpha-particle effects in tokamaks but some aspects of open systems were also discussed. The possibilities of obtaining ignition in JET and TFTR as well as physics issues for the compact ignition experiments were considered in particular. A special session was devoted to the diagnostics of alpha particles and other fusion products. In this report are summarised some of the highlights of the symposium. (authors)

  12. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  13. Some recent results from European sounding rocket and satellite observations of the hot magnetospheric plasma

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1979-03-01

    A brief summary of some recent results from European studies of the hot magnetospheric plasma is presented. The material is organized in four main sections: 1) Observations of keV auroral electrons. 2) Observation of the hot ion component of the magnetospheric plasma. 3) Sudden changes of the distribution of the hot plasma in the dayside magnetosphere. 4) Banded electron cyclotron harmonic instability in the magnetosphere - a first comparison of theory and experiment. (E.R.)

  14. Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma

    International Nuclear Information System (INIS)

    Panwar, A.; Ryu, C. M.; Bains, A. S.

    2014-01-01

    A study is presented for the oblique propagation of ion acoustic cnoidal waves in a magnetized plasma consisting of cold ions and two temperature superthermal electrons modelled by kappa-type distributions. Using the reductive perturbation method, the nonlinear Korteweg de-Vries equation is derived, which further gives the solutions with a special type of cnoidal elliptical functions. Both compressive and rarefactive structures are found for these cnoidal waves. Nonlinear periodic cnoidal waves are explained in terms of plasma parameters depicting the Sagdeev potential and the phase curves. It is found that the density ratio of hot electrons to ions μ significantly modifies compressive/refractive wave structures. Furthermore, the combined effects of superthermality of cold and hot electrons κ c ,κ h , cold to hot electron temperature ratio σ, angle of propagation and ion cyclotron frequency ω ci have been studied in detail to analyze the height and width of compressive/refractive cnoidal waves. The findings in the present study could have important implications in understanding the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature superthermal electrons are present

  15. Enhanced self-magnetic field by atomic polarization in partially stripped plasma produced by a short and intense laser pulse

    International Nuclear Information System (INIS)

    Hu Qianglin; Liu Shibing; Jiang, Y.J.; Zhang Jie

    2005-01-01

    The enhancement and redistribution of a self-generated quasistatic magnetic field, due to the presence of the polarization field induced by partially ionized atoms, are analytically revealed when a linearly polarized intense and short pulse laser propagates in a partially stripped plasma with higher density. In particular, the shorter wavelength of the laser pulse can evidently intensify the amplitude of the magnetic field. These enhancement and redistribution of the magnetic field are considered physically as a result of the competition of the electrostatic field (electron-ion separation) associated with the plasma wave, the atomic polarization field, and the pondoromotive potential associated with the laser field. This competition leads to the generation of a positive, large amplitude magnetic field in the zone of the pulse center, which forms a significant difference in partially and fully stripped plasmas. The numerical result shows further that the magnetic field is resonantly modulated by the plasma wave when the pulse length is the integer times the plasma wavelength. This apparently implies that the further enhancement and restructure of the large amplitude self-magnetic field can evidently impede the acceleration and stable transfer of the hot-electron beam

  16. Importance of field-reversing ion ring formation in hot electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, K.

    1975-11-01

    Formation of the field reversing ion ring in the mirror confined hot electron plasma may offer a device to confine the fusion plasma even under the restriction of the present technology. (Author) (GRA)

  17. High-frequency microinstabilities in hot-electron plasmas

    International Nuclear Information System (INIS)

    Chen, Y.J.; Nevins, W.M.; Smith, G.R.

    1981-01-01

    Instabilities with frequencies in the neighborhood of the electron cyclotron frequency are of interest in determining stable operating regimes of hot-electron plasmas in EBT devices and in tandem mirrors. Previous work used model distributions significantly different than those suggested by recent Fokker-Planck studies. We use much more realistic model distributions in a computer code that solves the full electromagnetic dispersion relation governing longitudinal and transverse waves in a uniform plasma. We allow for an arbitrary direction of wave propagation. Results for the whistler and upper-hybrid loss-cone instabilities are presented

  18. Magnetized relativistic electron-ion plasma expansion

    Science.gov (United States)

    Benkhelifa, El-Amine; Djebli, Mourad

    2016-03-01

    The dynamics of relativistic laser-produced plasma expansion across a transverse magnetic field is investigated. Based on a one dimensional two-fluid model that includes pressure, enthalpy, and rest mass energy, the expansion is studied in the limit of λD (Debye length) ≤RL (Larmor radius) for magnetized electrons and ions. Numerical investigation conducted for a quasi-neutral plasma showed that the σ parameter describing the initial plasma magnetization, and the plasma β parameter, which is the ratio of kinetic to magnetic pressure are the key parameters governing the expansion dynamics. For σ ≪ 1, ion's front shows oscillations associated to the break-down of quasi-neutrality. This is due to the strong constraining effect and confinement of the magnetic field, which acts as a retarding medium slowing the plasma expansion.

  19. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    International Nuclear Information System (INIS)

    Lin, Min; Wang, Huijie; Zheng, Jingwu; Yan, Aru

    2015-01-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B r and the (BH) max get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix

  20. Effects of Fe fine powders doping on hot deformed NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Min, E-mail: linm@nimte.ac.cn [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China); Wang, Huijie [Ningbo Jinji Strong Magnetic Material Company, Ningbo 315041 (China); Zheng, Jingwu [Zhejiang University of Technology, Hangzhou 310014 (China); Yan, Aru [Ningbo Institute of Material Technology & Engineering Chinese Academy of Science, Ningbo 315201 (China)

    2015-04-01

    The composite NdFeB magnets with blending melt-spun flakes and Fe fine powders were prepared by the hot-pressed and hot-deformed route. Characterizations of the hot-deformed NdFeB magnets affected by the doped Fe powders were tested. The doped Fe powders decrease the hot-deformed pressure when the strain is between 15 and 50%. XRD patterns show that the doped Fe powders have little influence on the c-axis alignment of hot-deformed NdFeB magnets in the press direction. The B{sub r} and the (BH){sub max} get improved when the doped Fe powders are less than 3 wt%. The doped Fe of hot-deformed NdFeB magnets exists in the elongated state and the spherical state surrounded by the Nd-rich phase. With the Fe fraction increasing, the potential of magnet moves to the positive direction and the diameter of the Nyquist arc becomes larger, which indicate that the corrosion resistance improved effectively. The bending strength was enhanced by the elongated α-Fe phase embedded in the matrix 2:14:1 phase. - Highlights: • The doped Fe powders have little influence on the c-axis alignment of magnets. • The elongated Fe powders are more than the spherical Fe powders in the magnets. • The corrosion resistance is improved effectively with the increasing Fe fraction. • The bending strength is enhanced by the elongated α-Fe phase embedded in the matrix.

  1. The optimization of production and control of hot-electron plasmas

    International Nuclear Information System (INIS)

    1989-01-01

    The present project was initially undertaken to develop a number of innovative concepts for using electron cyclotron heating (ECH) to enhance tokamak performance. A common feature of the various applications under consideration is efficient, spatially-localized generation of hot-electron plasmas; and the first phase of the work addressed the basic aspects of an approach to achieving this Upper Off-Resonant Heating (UORH) and open-resonator couplers to confine the weakly damped microwave power to the particular region where the hot electrons are to be generated. The results of the first year's work provided strong evidence that hot-electron plasmas with electron energies of hundreds of keV could be generated using multiple-frequency ECH and fully-toroidal open-resonator couplers. The evidence was sufficiently compelling to suggest that the project be focused on a suitable near-term application to the TEXT device

  2. Effect of low-melting point phases on the microstructure and properties of spark plasma sintered and hot deformed Nd-Fe-B alloys

    Science.gov (United States)

    Zhang, Li; Wang, Meiyu; Yan, Xueliang; Lin, Ye; Shield, Jeffrey

    2018-04-01

    The effect of adding a low melting point Pr-Cu-Al alloy during spark plasma sintering of melt-spun Nd-Fe-B ribbons is investigated. Regions of coarse grains were reduced and overall grain refinement was observed after the addition of Pr68Cu25Al7, leading to an enhancement of coercivity from 12.7 kOe to 20.4 kOe. Hot deformation of the samples in the spark plasma sintering system resulted in the formation of platelet-like grains, producing crystallographic alignment and magnetic anisotropy. The hot deformation process improved the remanence and energy product but reduced the coercivity. The decrease of coercivity resulted from grain growth and aggregation of Pr and Nd elements at triple-junction phases.

  3. Response to "Comment on `Solitonic and chaotic behaviors for the nonlinear dust-acoustic waves in a magnetized dusty plasma'" [Phys. Plasmas 24, 094701 (2017)

    Science.gov (United States)

    Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong

    2018-02-01

    On our previous construction [H. L. Zhen et al., Phys. Plasmas 23, 052301 (2016)] of the soliton solutions of a model describing the dynamics of the dust particles in a weakly ionized, collisional dusty plasma comprised of the negatively charged cold dust particles, hot ions, hot electrons, and stationary neutrals in the presence of an external static magnetic field, Ali et al. [Phys. Plasmas 24, 094701 (2017)] have commented that there exists a different form of Eq. (4) from that shown in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and that certain interesting phenomena with the dust neutral collision frequency ν0>0 are ignored in Zhen et al. [Phys. Plasmas 23, 052301 (2016)]. In this Reply, according to the transformation given by the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment, we present some one-, two-, and N-soliton solutions which have not been obtained in the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment. We point out that our previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] are still valid because of the similarity between the two dispersion relations of previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and the solutions presented in this Reply. Based on our soliton solutions in this Reply, it is found that the soliton amplitude is inversely related to Zd and B0, but positively related to md and α, where α refers to the coefficient of the nonlinear term, Zd and md are the charge number and mass of a dust particle, respectively, B0 represents the strength of the external static magnetic field. We also find that the two solitons are always in parallel during the propagation.

  4. Nonlocal transport in hot plasma. Part I

    International Nuclear Information System (INIS)

    Brantov, A. V.; Bychenkov, V. Yu.

    2013-01-01

    The problem of describing charged particle transport in hot plasma under the conditions in which the ratio of the electron mean free path to the gradient length is not too small is one of the key problems of plasma physics. However, up to now, there was a deficit of the systematic interpretation of the current state of this problem, which, in most studies, is formulated as the problem of nonlocal transport. In this review, we fill this gap by presenting a self-consistent linear theory of nonlocal transport for small plasma perturbations and an arbitrary collisionality from the classical highly collisional hydrodynamic regime to the collisionless regime. We describe a number of nonlinear transport models and demonstrate the application of the nonclassical transport theory to the solution of some problems of plasma physics, first of all for plasmas produced by nanosecond laser pulses with intensities of 10 13 –10 16 W/cm 2

  5. Magnetic reconnection in nontoroidal plasmas

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2005-01-01

    Magnetic reconnection is a major issue in solar and astrophysical plasmas. The mathematical result that the evolution of a magnetic field with only point nulls is always locally ideal limits the nature of reconnection in nontoroidal plasmas. Here it is shown that the exponentially increasing separation of neighboring magnetic field lines, which is generic, tends to produce rapid magnetic reconnection if the length of the field lines is greater than about 20 times the exponentiation, or Lyapunov, length

  6. Ionospheric hot spot at high latitudes

    International Nuclear Information System (INIS)

    Schunk, R.W.; Sojka, J.J.

    1982-01-01

    A hot spot (or spots) can occur in the high-latitude ionosphere depending on the plasma convection pattern. The hot spot corresponds to a small magnetic local time-magnetic latitude region of elevated ion temperatures located near the dusk and/or dawn meridians. For asymmetric convection electric field patterns, with enhanced flow in either the dusk or dawn sector of the polar cap, a single hot spot should occur in association with the strong convection cell. However, on geomagnetically disturbed days, two strong convection cells can occur, and hence, two hot spots should exist. The hot spot should be detectable when the electric field in the strong convection cell exceeds about 40 mV m -1 . For electric fields of the order of 100 mV m -1 in the convection cell, the ion temperature in the hot spot is greatest at low altitudes, reaching 4000 0 K at 160 km, and decreases with altitude in the F-region. An ionospheric hot spot (or spots) can be expected at all seasons and for a wide range of solar cycle conditions

  7. Laser-plasma interactions in magnetized environment

    Science.gov (United States)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interaction enters a relativistic-quantum regime. Using quantum electrodynamics, we compute a modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.

  8. ARE TORNADO-LIKE MAGNETIC STRUCTURES ABLE TO SUPPORT SOLAR PROMINENCE PLASMA?

    Energy Technology Data Exchange (ETDEWEB)

    Luna, M.; Moreno-Insertis, F. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Priest, E. [Mathematics Institute, University of St Andrews, St Andrews KY16 9SS (United Kingdom)

    2015-07-20

    Recent high-resolution and high-cadence observations have surprisingly suggested that prominence barbs exhibit apparent rotating motions suggestive of a tornado-like structure. Additional evidence has been provided by Doppler measurements. The observations reveal opposite velocities for both hot and cool plasma on the two sides of a prominence barb. This motion is persistent for several hours and has been interpreted in terms of rotational motion of prominence feet. Several authors suggest that such barb motions are rotating helical structures around a vertical axis similar to tornadoes on Earth. One of the difficulties of such a proposal is how to support cool prominence plasma in almost-vertical structures against gravity. In this work we model analytically a tornado-like structure and try to determine possible mechanisms to support the prominence plasma. We have found that the Lorentz force can indeed support the barb plasma provided the magnetic structure is sufficiently twisted and/or significant poloidal flows are present.

  9. ARE TORNADO-LIKE MAGNETIC STRUCTURES ABLE TO SUPPORT SOLAR PROMINENCE PLASMA?

    International Nuclear Information System (INIS)

    Luna, M.; Moreno-Insertis, F.; Priest, E.

    2015-01-01

    Recent high-resolution and high-cadence observations have surprisingly suggested that prominence barbs exhibit apparent rotating motions suggestive of a tornado-like structure. Additional evidence has been provided by Doppler measurements. The observations reveal opposite velocities for both hot and cool plasma on the two sides of a prominence barb. This motion is persistent for several hours and has been interpreted in terms of rotational motion of prominence feet. Several authors suggest that such barb motions are rotating helical structures around a vertical axis similar to tornadoes on Earth. One of the difficulties of such a proposal is how to support cool prominence plasma in almost-vertical structures against gravity. In this work we model analytically a tornado-like structure and try to determine possible mechanisms to support the prominence plasma. We have found that the Lorentz force can indeed support the barb plasma provided the magnetic structure is sufficiently twisted and/or significant poloidal flows are present

  10. Are Tornado-Like Magnetic Structures Able to Support Solar Prominence Plasma?

    Science.gov (United States)

    Ogunjo, S. T.; Luna Bennasar, M.; Moreno-Insertis, F.; Priest, E. R.

    2015-12-01

    Recent high-resolution and high-cadence observations have surprisingly suggested that prominence barbs exhibit apparent rotating motions suggestive of a tornado-like structure. Additional evidence has been provided by Doppler measurements. The observations reveal opposite velocities for both hot and cool plasma on the two sides of a prominence barb. This motion is persistent for several hours and has been interpreted in terms of rotational motion of prominence feet. Several authors suggest that such barb motions are rotating helical structures around a vertical axis similar to tornadoes on Earth. One of the difficulties of such a proposal is how to support cool prominence plasma in almost-vertical structures against gravity. In this work we model analytically a tornado-like structure and try to determine possible mechanisms to support the prominence plasma. We have found that the Lorentz force can indeed support the barb plasma provided the magnetic structure is sufficiently twisted and/or significant poloidal flows are present.

  11. Plasma behavior and plasma-wall interaction in magnetic fusion divices

    International Nuclear Information System (INIS)

    Ohtsuka, Hideo

    1984-10-01

    To study the fundamental behavior of plasma in magnetic field is the main subject in the early stage of the magnetic fusion research. At the next stage, it is necessary to overcome some actual problems in order to attain reactor grade plasmas. One of them is to control impurities in the plasma. In these points of view, we carried out several experiments or theoretical analyses. Firstly, anomalous loss mechanisms in magnetic field were investigated in a toroidal multipole device JFT-1 and the role of motions of charged particles in the magnetic field was exhibited. Various measurements of plasma in the scrape-off layer were made in a divertor tokamak JFT-2a and in an ordinary tokamak JFT-2. The former study demonstrated the first successful divertor operation of the tokamak device and the latter one clarified the mechanism of arcing on the tokamak first wall. As to arcing, a new theory which describes the retrograde motion, the well known strange motion of arcs in a magnetic field, was proposed. Good agreement with the experimental results was shown. Finally, by considering a zero-dimensional sputtering model a self-consistent relation between light and metal impurities in tokamak plasmas was obtained. It was shown that the relation well describes some fundamental aspects of the plasma-wall interaction. As a conclusion, the importance of simple behavior of charged particles in magnetic fields was pointed out not only for the plasma confinement but also for the plasma-wall interaction. (author)

  12. Curvature-driven instabilities in a hot-electron plasma: radial analysis

    International Nuclear Information System (INIS)

    Berk, H.L.; Van Dam, J.W.; Rosenbluth, M.N.; Spong, D.A.

    1981-12-01

    The theory of unfavorable curvature-driven instabilities is developed for a plasma interacting with a hot electron ring whose drift frequencies are larger than the growth rates predicted from conventional magnetohydrodynamic theory. A z-pinch model is used to emphasize the radial structure of the problem. Stability criteria are obtained for the five possible modes of instability: the conventional hot electron interchange, a high-frequency hot electron interchange (at frequencies larger than the ion cyclotron frequency), a compressional instability, a background pressure-driven interchange, and an interacting pressure-driven interchange

  13. Plasma and magnetic field characteristics of the distant polar cusp near local noon: The entry layer

    International Nuclear Information System (INIS)

    Paschmann, G.; Haerendel, G.; Sckopke, N.; Rosenbauer, H.; Hedgecock, P.C.

    1976-01-01

    Heos 2 plasma and magnetic field measurements in the distant polar cusp region reveal the existence of a plasma layer on day side field lines just inside the magnetopause. Density and temperature in this layer are nearly the same as they are in the adjacent magnetosheath, but the flow lacks the order existing both in the magnetosheath and in the plasma mantle. Flow directions toward and away from the sun but, in general, parallel to the field lines have been found. The magnetopause (as defined by a sudden rotation of the magnetic field vector) mostly coincides with the transition to ordered magnetosheath flow. The inner boundary of the layer is located just within the outer boundary of the hot ring current plasma. In the region of overlap the hot electrons have the signature of trapped particles, though often at reduced intensity. The magnetic field is strongly fluctuating in magnitude, while its orientation is more stable, consistent with a connection to the earth, but is systematically distorted out of the meridian plane. The layer is thought to be a consequence of the entry of magnetosheath plasma, which does not appear to be unobstructed, as has been claimed in the concept of a magnetospheric cleft. The magnetopause has a cusplike indentation which is elongated in local time. The existence of field-aligned currents (total strength approx. =10 6 A) and their location of flow in the inner part of the entry layer (into the ionosphere before noon and out of it after noon) are inferred from the systematic bending of field lines. It is proposed that the dynamo of the related current system is provided by the transfer of perpendicular momentum resulting from the plasma entry into the layer. The essential features of the entry layer might be compatible with the model of plasma flow through the magnetopause of Levy et al. (1964) if a 'dam' effect caused by the cusp geometry were added

  14. Plasma relaxation of cold electrons and hot ions

    International Nuclear Information System (INIS)

    Potapenko, I.F.; Sakanaka, P.H.

    1996-01-01

    The relaxation process of a space uniform plasma composed of cold electrons and one species of hot ions studied numerically. Special attention has been paid to the deviation of relaxation from the classical picture which is characterized by a weakly non-isothermic situation. (author). 6 refs., 2 figs

  15. Hot spots and dark current in advanced plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. G. Manahan

    2016-01-01

    Full Text Available Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.

  16. (RN) pair production by photons in a hot Maxwellian plasma

    International Nuclear Information System (INIS)

    Haug, E.

    2004-01-01

    The production of electron-positron pairs by photons in the Coulomb Field of electrons and positrons (triplet production) in hot thermal plasmas is investigated. The pair production rate for this process is calculated as a function of the photon energy and compared with the rate of photon-nucleus pair production for semi-relativistic and relativistic plasma temperatures. (author)

  17. Magnetic stresses in ideal MHD plasmas

    DEFF Research Database (Denmark)

    Jensen, V.O.

    1995-01-01

    The concept of magnetic stresses in ideal MHD plasma theory is reviewed and revisited with the aim of demonstrating its advantages as a basis for calculating and understanding plasma equilibria. Expressions are derived for the various stresses that transmit forces in a magnetized plasma...... and it is shown that the resulting magnetic forces on a finite volume element can be obtained by integrating the magnetic stresses over the surface of the element. The concept is used to rederive and discuss the equilibrium conditions for axisymmetric toroidal plasmas, including the virial theorem...... and the Shafranov shift. The method had pedagogical merits as it simplifies the calculations, improves the physical understanding and facilitates an assessment of the approximations made in the calculations....

  18. Soft photons from off-shell particles in a hot plasma

    International Nuclear Information System (INIS)

    Henning, P.A.; Quack, E.

    1995-05-01

    Considering the propagation of off-shell particles in the framework of thermal field theory, we present the general formalism for the calculation of the production rate of soft photons and dileptons from a hot plasma. This approach is illustrated with an electrodynamic plasma. The photon production rate from strongly interacting quarks in the quark-gluon plasma, which might be formed in ultrarelativistic heavy ion collisions, is calculated in the previously unaccessible regime of photon energies of the order of the plasma temperature within an effective field theory incorporating dynamical chiral symmetry breaking. (orig.)

  19. Plasma heating and hot ion sustaining in mirror based hybrids

    International Nuclear Information System (INIS)

    Moiseenko, V. E.; Ågren, O.

    2012-01-01

    Possibilities of plasma heating and sloshing ion sustaining in mirror based hybrids are briefly reviewed. Sloshing ions, i.e. energetic ions with a velocity distribution concentrated to a certain pitch-angle, play an important role in plasma confinement and generation of fusion neutrons in mirror machines. Neutral beam injection (NBI) is first discussed as a method to generate sloshing ions. Numerical results of NBI modeling for a stellarator-mirror hybrid are analyzed. The sloshing ions could alternatively be sustained by RF heating. Fast wave heating schemes, i.e. magnetic beach, minority and second harmonic heating, are addressed and their similarities and differences are described. Characteristic features of wave propagation in mirror hybrid devices including both fundamental harmonic minority and second harmonic heating are examined. Minority heating is efficient for a wide range of minority concentration and plasma densities; it allows one to place the antenna aside from the hot ion location. A simple-design strap antenna suitable for this has good performance. However, this scenario is appropriate only for light minority ions. The second harmonic heating can be applied for the heavy ion component. Arrangements are similar for minority and second harmonic heating. The efficiency of second harmonic heating is influenced by a weaker wave damping than for minority heating. Numerical calculations show that in a hybrid reactor scaled mirror machine the deuterium sloshing ions could be heated within the minority heating scheme, while the tritium ions could be sustained by second harmonic heating.

  20. Measurement of The Magnetic Field in a Spherical Torus Plasma via Electron Bernstein Wave Emission Harmonic Overlap

    International Nuclear Information System (INIS)

    Jones, B.; Taylor, G.; Efthimion, P.C.; Munsat, T.

    2004-01-01

    Measurement of the magnetic field in a spherical torus by observation of harmonic overlap frequencies in the electron Bernstein wave (EBW) spectrum has been previously suggested [V.F. Shevchenko, Plasma Phys. Reports 26 (2000) 1000]. EBW mode conversion to X-mode radiation has been studied in the Current Drive Experiment-Upgrade spherical torus, [T. Jones, Ph.D. thesis, Princeton University, 1995] with emission measured at blackbody levels [B. Jones et al., Phys. Rev. Lett. 90 (2003) article no. 165001]. Sharp transitions in the thermally emitted EBW spectrum have been observed for the first two harmonic overlaps. These transition frequencies are determined by the magnetic field and electron density at the mode conversion layer in accordance with hot-plasma wave theory. Prospects of extending this measurement to higher harmonics, necessary in order to determine the magnetic field profile, and high beta equilibria are discussed for this proposed magnetic field diagnostic

  1. Magnetic field in expanding quark-gluon plasma

    Science.gov (United States)

    Stewart, Evan; Tuchin, Kirill

    2018-04-01

    Intense electromagnetic fields are created in the quark-gluon plasma by the external ultrarelativistic valence charges. The time evolution and the strength of this field are strongly affected by the electrical conductivity of the plasma. Yet, it has recently been observed that the effect of the magnetic field on the plasma flow is small. We compute the effect of plasma flow on magnetic field and demonstrate that it is less than 10%. These observations indicate that the plasma hydrodynamics and the dynamics of electromagnetic field decouple. Thus, it is a very good approximation, on the one hand, to study QGP in the background electromagnetic field generated by external sources and, on the other hand, to investigate the dynamics of magnetic field in the background plasma. We also argue that the wake induced by the magnetic field in plasma is negligible.

  2. Numerical simulation of neutral injection in a hot-electron mirror target plasma

    International Nuclear Information System (INIS)

    Werkoff, F.; Bardet, R.; Briand, P.; Dupas, L.; Gormezano, C.; Melin, G.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Grenoble, 38

    1976-01-01

    In the case of neutral injection into a hot-electron target plasma, the use of the existing Fokker-Planck codes is greatly complicated by the fact that the scale of the energies and times of the confined ions and electrons is very large. To avoid this difficulty, a simplified multi-species model is set up, in which each species is described by time-dependent density and energy equations with analytical approximations for the interactions between the species. During the neutral injection, instantaneous high values of the ambipolar potential (higher than the half value of hot-ion energy) may appear, but do not prevent hot-ion density build-up. However, the hot-electron target plasma must not be maintained for a too long time. Numerical runs are performed with typical target parameters: density 2x10 13 cm -3 , electron energy 30 keV, ion energy 400 eV, time duration during which the target density is maintained 1 ms. Hot-ion density, a few 10 14 cm -3 , can be achieved with a neutral beam of 100 A, 20 keV. (author)

  3. Magnetic and microstructural investigation of high-coercivity net-shape Nd-Fe-B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF3

    Science.gov (United States)

    Žagar, Kristina; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd-Fe-B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd2Fe14B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (Hci), are insufficient at automotive-relevant temperatures of 100-150 °C since the material Hci has a large temperature coefficient. In this study, we instead add a thin layer of DyF3 to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd2Fe14B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques.

  4. X-ray emission from hot plasma

    International Nuclear Information System (INIS)

    Hayakawa, Satio; Kato, Takako.

    1979-01-01

    X-ray emission from hot plasmas is discussed with a critical review of different theories. The results given in the present paper are complementary to those given by Kato in the sense that the present paper is introductory to the paper by Kato. The contents of the present paper are; 1. Introduction 2. Ionization and Recombination Rate Coefficients 3. Relative Abundances of Ions 4. Intensity and Spectra of Radiation 5. Comparison with Earlier Results 6. Emission and Absorption Lines (author)

  5. Localized structures of electromagnetic waves in hot electron-positron plasma

    International Nuclear Information System (INIS)

    Kartal, S.; Tsintsadze, L.N.; Berezhiani, V.I.

    1995-08-01

    The dynamics of relatively strong electromagnetic (EM) wave propagation in hot electron-positron plasma is investigated. The possibility of finding localized stationary structures of EM waves is explored. It it shown that under certain conditions the EM wave forms a stable localized soliton-like structures where plasma is completely expelled from the region of EM field location. (author). 9 refs, 2 figs

  6. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility (open-quotes OHBISclose quotes, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility

  7. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Shimakawa, S.; Akiba, M.; Kawamura, H.

    1996-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop plasma facing components which can resist these. We have established electron beam heat facility ('OHBIS', Oarai hot-cell electron beam irradiating system) at a hot cell in JMTR (Japan materials testing reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50 kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30 kV (constant) and 1.7 A, respectively. The loading time of the electron beam is more than 0.1 ms. The shape of vacuum vessel is cylindrical, and the main dimensions are 500 mm in inside diameter, 1000 mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for the thermal shock test has been established in a hot cell. The performance of the electron beam is being evaluated at this time. In the future, the equipment for conducting static heat loadings will be incorporated into the facility. (orig.)

  8. Investigation of magnetic drift on transport of plasma across magnetic field

    International Nuclear Information System (INIS)

    Hazarika, Parismita; Chakraborty, Monojit; Das, Bidyut; Bandyopadhyay, Mainak

    2015-01-01

    When a metallic body is inserted inside plasma chamber it is always associated with sheath which depends on plasma and wall condition. The effect of sheath formed in the magnetic drift and magnetic field direction on cross field plasma transport has been investigated in a double Plasma device (DPD). The drifts exist inside the chamber in the transverse magnetic field (TMF) region in a direction perpendicular to both magnetic field direction and axis of the DPD chamber. The sheath are formed in the magnetic drift direction in the experimental chamber is due to the insertion of two metallic plates in these directions and in the magnetic field direction sheath is formed at the surface of the TMF channels. These metallic plates are inserted in order to obstruct the magnetic drift so that we can minimised the loss of plasma along drift direction and density in the target region is expected to increase due to the obstruction. It ultimately improves the negative ion formation parameters. The formation of sheath in the transverse magnetic field region is studied by applying electric field both parallel and antiparallel to drift direction. Data are acquired by Langmuir probe in source and target region of our chamber. (author)

  9. Micromagnetic simulation for the magnetization reversal process of Nd-Fe-B hot-deformed nanocrystalline permanent magnets

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2017-05-01

    Full Text Available We numerically demonstrated the magnetization reversal process inside a hot-deformed nanocrystalline permanent magnet. We performed large-scale micromagnetics simulation based on the Landau–Lifshitz–Gilbert equation with 0.1 billion calculation cells. The simulation model for the hot-deformed nanocrystalline permanent magnet consists of 2622 tabular grains that interact with each other by inter-grain exchange and dipole interactions. When the strength of the external field approached a coercive force, nucleation cores were created at the grain surface. The magnetization reversal was propagated by the inter-grain and dipole interactions. When the grains had overlapping regions parallel to the external field, the magnetization reversal propagated quickly between the grains due to the dipole interaction. In contrast, the motion of the magnetic domain wall was inhibited at interfaces between the grains perpendicular to the external field. Reversal magnetic domains had a pillar-shaped structure that is parallel to the external field. In the perpendicular direction, the reversal magnetic domain expanded gradually because of the inhibition of the domain wall motion.

  10. Electron waves and resonances in bounded plasmas

    CERN Document Server

    Vandenplas, Paul E

    1968-01-01

    General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.

  11. Magnetic-flutter-induced pedestal plasma transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Hegna, C.C.; Cole, A.J.

    2013-01-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δB ρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δB ρ s induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δB ρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δB ρ /B 0 ) 2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an

  12. Magnetic-flutter-induced pedestal plasma transport

    Science.gov (United States)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2013-11-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron

  13. Finite orbit analysis for long wavelength modes in a plasma with a hot component

    International Nuclear Information System (INIS)

    Hammer, J.H.; Berk, H.L.

    1985-01-01

    The z-pinch model is used to calculate finite Larmor radius effects of a plasma with a hot component plasma annulus. The equations are analyzed for layer modes and the finite Larmor radius stabilization condition is calculated. Stability requires k 2 rho/sub h/ 2 Rβ/sub h//Δ greater than or equal to 1, where k is the wavenumber in the z-direction, rho/sub h/ the hot species Larmor radius, β/sub h/ the hot particle beta and Δ the thickness of the pressure profile. In addition a new instability is found due to the interaction of the precessional modes associated with inner and outer edges of the hot particle pressure profile

  14. Stochastic Fermi Energization of Coronal Plasma during Explosive Magnetic Energy Release

    Science.gov (United States)

    Pisokas, Theophilos; Vlahos, Loukas; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2017-02-01

    The aim of this study is to analyze the interaction of charged particles (ions and electrons) with randomly formed particle scatterers (e.g., large-scale local “magnetic fluctuations” or “coherent magnetic irregularities”) using the setup proposed initially by Fermi. These scatterers are formed by the explosive magnetic energy release and propagate with the Alfvén speed along the irregular magnetic fields. They are large-scale local fluctuations (δB/B ≈ 1) randomly distributed inside the unstable magnetic topology and will here be called Alfvénic Scatterers (AS). We constructed a 3D grid on which a small fraction of randomly chosen grid points are acting as AS. In particular, we study how a large number of test particles evolves inside a collection of AS, analyzing the evolution of their energy distribution and their escape-time distribution. We use a well-established method to estimate the transport coefficients directly from the trajectories of the particles. Using the estimated transport coefficients and solving the Fokker-Planck equation numerically, we can recover the energy distribution of the particles. We have shown that the stochastic Fermi energization of mildly relativistic and relativistic plasma can heat and accelerate the tail of the ambient particle distribution as predicted by Parker & Tidman and Ramaty. The temperature of the hot plasma and the tail of the energetic particles depend on the mean free path (λsc) of the particles between the scatterers inside the energization volume.

  15. Stochastic Fermi Energization of Coronal Plasma during Explosive Magnetic Energy Release

    Energy Technology Data Exchange (ETDEWEB)

    Pisokas, Theophilos; Vlahos, Loukas; Isliker, Heinz; Tsiolis, Vassilis [Department of Physics, Aristotle University of Thessaloniki GR-52124 Thessaloniki (Greece); Anastasiadis, Anastasios [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens GR-15236 Penteli (Greece)

    2017-02-01

    The aim of this study is to analyze the interaction of charged particles (ions and electrons) with randomly formed particle scatterers (e.g., large-scale local “magnetic fluctuations” or “coherent magnetic irregularities”) using the setup proposed initially by Fermi. These scatterers are formed by the explosive magnetic energy release and propagate with the Alfvén speed along the irregular magnetic fields. They are large-scale local fluctuations ( δB / B ≈ 1) randomly distributed inside the unstable magnetic topology and will here be called Alfvénic Scatterers (AS). We constructed a 3D grid on which a small fraction of randomly chosen grid points are acting as AS. In particular, we study how a large number of test particles evolves inside a collection of AS, analyzing the evolution of their energy distribution and their escape-time distribution. We use a well-established method to estimate the transport coefficients directly from the trajectories of the particles. Using the estimated transport coefficients and solving the Fokker–Planck equation numerically, we can recover the energy distribution of the particles. We have shown that the stochastic Fermi energization of mildly relativistic and relativistic plasma can heat and accelerate the tail of the ambient particle distribution as predicted by Parker and Tidman and Ramaty. The temperature of the hot plasma and the tail of the energetic particles depend on the mean free path ( λ {sub sc}) of the particles between the scatterers inside the energization volume.

  16. Ion distribution in the hot spot of an inertial confinement fusion plasma

    Science.gov (United States)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  17. The Influence of Hot-Rolled Temperature on Plasma Nitriding Behavior of Iron-Based Alloys

    Science.gov (United States)

    El-Hossary, F. M.; Khalil, S. M.; Lotfy, Kh.; Kassem, M. A.

    2009-07-01

    Experiments were performed with an aim of studying the effect of hot-rolled temperature (600 and 900°C) on radio frequency (rf) plasma nitriding of Fe93Ni4Zr3 alloy. Nitriding was carried out for 10 min in a nitrogen atmosphere at a base pressure of 10-2 mbarr. Different continuous plasma processing powers of 300-550 W in steps 50 W or less were applied. Nitrided hot-rolled specimens were characterized by optical microscopy (OM), X-ray diffraction (XRD) and microhardness measurements. The results reveal that the surface of hot-rolled rf plasma nitrided specimens at 600°C is characterized with a fine microstructure as a result of the high nitrogen solubility and diffusivity. Moreover, the hot-rolled treated samples at 600°C exhibit higher microhardness value than the associated values of hot-rolled treated samples at 900°C. The enhancement of microhardness is due to precipitation and predominance of new phases ( γ and ɛ phases). Mainly, this conclusion has been attributed to the high defect densities and small grain sizes of the samples hot-rolled at 600°C. Generally, the refinement of grain size plays a dramatic role in improvement of mechanical properties of tested samples.

  18. Consolidation of W–Ta composites: Hot isostatic pressing and spark and pulse plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M., E-mail: marta.dias@itn.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Guerreiro, F. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); Galatanu, A. [National Institute of Materials Physics, Atomistilor 105 bis Bucharest-Magurele, 077125 Ilfov (Romania); Rosiński, M. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Monge, M.A.; Munoz, A. [Departamento de Física, Univerdidad Carlos III de Madrid, Avd. de la Universidad 30, 28911 Madrid (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carvalho, P.A. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Consolidation of W–Ta composites using three techniques: HIP, SPS and PPS. • Comparison of consolidation methods in terms of W–Ta interdiffusion and densification. • Microstructure analysis in terms of oxides formation. - Abstract: Composites consisting of tantalum fiber/powder dispersed in a nanostructured W matrix have been consolidated by spark and pulse plasma sintering as well as by hot isostatic pressing. The microstructural observations revealed that the tungsten–tantalum fiber composites consolidated by hot isostatic pressing and pulse plasma sintering presented a continuous layer of Ta{sub 2}O{sub 5} phase at the W/Ta interfaces, while the samples consolidated by spark plasma sintering evidenced a Ta + Ta{sub 2}O{sub 5} eutectic mixture due to the higher temperature of this consolidation process. Similar results have been obtained for the tungsten–tantalum powder composites. A (W, Ta) solid solution was detected around the prior nanostructured W particles in tungsten–tantalum powder composites consolidated by spark and pulse plasma sintering. Higher densifications were obtained for composites consolidated by hot isostatic pressing and pulse plasma sintering.

  19. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  20. Theory of hot particle stability

    International Nuclear Information System (INIS)

    Berk, H.L.; Wong, H.V.; Tsang, K.T.

    1986-10-01

    The investigation of stabilization of hot particle drift reversed systems to low frequency modes has been extended to arbitrary hot beta, β/sub H/ for systems that have unfavorable field line curvature. We consider steep profile equilibria where the thickness of the pressure drop, Δ, is less than plasma radius, r/sub p/. The analysis describes layer modes which have mΔ/r/sub p/ 2/3. When robust stability conditions are fulfilled, the hot particles will have their axial bounce frequency less than their grad-B drift frequency. This allows for a low bounce frequency expansion to describe the axial dependence of the magnetic compressional response

  1. Nonlinear magnetic electron tripolar vortices in streaming plasmas.

    Science.gov (United States)

    Vranjes, J; Marić, G; Shukla, P K

    2000-06-01

    Magnetic electron modes in nonuniform magnetized and unmagnetized streaming plasmas, with characteristic frequencies between the ion and electron plasma frequencies and at spatial scales of the order of the collisionless skin depth, are studied. Two coupled equations, for the perturbed (in the case of magnetized plasma) or self-generated (for the unmagnetized plasma case) magnetic field, and the temperature, are solved in the strongly nonlinear regime and stationary traveling solutions in the form of tripolar vortices are found.

  2. Turbulent transport in magnetized plasmas

    CERN Document Server

    Horton, Wendell

    2012-01-01

    This book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.

  3. Lateral deflection of the SOL plasma during a giant ELM

    International Nuclear Information System (INIS)

    Landman, I.S.; Wuerz, H.

    2001-01-01

    In recent H-mode experiments at JET with giant ELMs a lateral deflection of hot tokamak plasma striking the divertor plate has been observed. This deflection can effect the divertor erosion caused by the hot plasma irradiation. Based on the MHD model for the vapor shield plasma and the hot plasma, the Seebeck effect is analyzed for explanation of the deflection. At t=-∞ both plasmas are at rest and separated by a boundary parallel to the target. The interaction between plasmas develops gradually ('adiabatically') as exp(t/t 0 ) with t 0 ∼10 2 μs the ELM duration time. At inclined impact of the magnetized hot plasma a toroidal current develops in the interaction zone of the plasmas. The JxB force accelerates the interacting plasmas in the lateral direction. The cold plasma motion essentially compensates the current. The magnitude of the hot plasma deflection is comparable to the observed one

  4. Effects of 3D Magnetic Perturbations on Toroidal Plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.

    2010-01-01

    Full text: To lowest order tokamaks are two-dimensional (2D) axisymmetric magnetic systems. But small 3D magnetic perturbations (both externally applied and from plasma instabilities) have many interesting and useful effects on tokamak (and quasi-symmetric stellarator) plasmas. Plasma transport equations that include these effects, especially on diamagnetic-level toroidal plasma rotation, have recently been developed. The 3D magnetic perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (1 to 5) resonant (q = m/n in plasma) and non-resonant fields, medium n (due to toroidal field ripple), and high n (due to microturbulence). This paper concentrates on low and medium n perturbations. Low n non-resonant magnetic fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal plasma rotation throughout the plasma toward an offset flow in the counter-I p direction; recent tokamak experiments have confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n perturbations have similar effects plus possible ripple trapping and resultant edge ion losses. A low n resonant magnetic field induces a toroidal plasma torque in the vicinity of the rational surface; when large enough it can stop plasma rotation there and lead to a locked mode, which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components; in the plasma their lowest n components are amplified by plasma responses, particularly at high beta. Low n plasma instabilities (e.g., NTMs, RWMs) cause additional 3D magnetic perturbations in tokamak plasmas; tearing modes can bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can cause local magnetic stochasticity and influence H-mode edge pedestal transport. These various effects of 3D magnetic perturbations can be used to control the toroidal plasma

  5. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  6. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI.

    Science.gov (United States)

    Mascali, D; Celona, L; Maimone, F; Maeder, J; Castro, G; Romano, F P; Musumarra, A; Altana, C; Caliri, C; Torrisi, G; Neri, L; Gammino, S; Tinschert, K; Spaedtke, K P; Rossbach, J; Lang, R; Ciavola, G

    2014-02-01

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source - operating at GSI, Darmstadt - has been carried out. Two different detectors (a SDD - Silicon Drift Detector and a HpGe - hyper-pure Germanium detector) have been used to characterize the warm (2-30 keV) and hot (30-500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  7. Transport of energetic electrons in a magnetically expanding helicon double layer plasma

    International Nuclear Information System (INIS)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Cox, Wes; Hatakeyama, Rikizo

    2009-01-01

    Peripheral magnetic field lines extending from the plasma source into the diffusion chamber are found to separate two regions of Maxwellian electron energy probability functions: the central, ion-beam containing region with an electron temperature of 5 eV, and region near the chamber walls with electrons at 3 eV. Along the peripheral field lines a bi-Maxwellian population with a hot tail at 9 eV is shown to both originate from electrons in the source traveling downstream across the double layer and correspond to a local maximum in ion and electron densities.

  8. The magnet system of the Tokamak T-15 upgrade

    International Nuclear Information System (INIS)

    Khvostenko, P.P.; Azizov, E.A.; Alfimov, D.E.; Belyakov, V.A.; Bondarchuk, E.N.; Chudnovsky, A.N.; Dokuka, V.N.; Kavin, A.A.; Khayrutdinov, R.R.; Khokhlov, M.V.; Kitaev, B.A.; Krasnov, S.V.; Maximova, I.I.; Labusov, A.N.; Lukash, V.E.; Mineev, A.B.; Muratov, V.P.

    2015-01-01

    Highlights: • T-15U project is the initial technical base for creating fusion neutron sources. • Magnet system of T-15U will confine the hot plasma in the divertor configuration. • Toroidal magnetic field at the plasma axis is 2 T. • T-15U should begin operations in 2016. - Abstract: Presently, the Tokamak T-15 is being upgraded. The magnet system of the Tokamak T-15 upgrade will obtain and confine the hot plasma in the divertor configuration. Plasma parameters are a major radius of 1.48 m, a minor radius of 0.67 m, an elongation of 1.7–1.9 and a triangularity of 0.3–0.4. The magnet system includes the toroidal winding and the poloidal magnet system. The poloidal magnet system generates the divertor with single null and double null magnetic configurations. The power supply system provides the necessary current scenarios in the windings of the magnet system. All elements of the magnet system will be manufactured by the end of 2015. The Tokamak T-15 upgrade should begin operations in 2016.

  9. The magnet system of the Tokamak T-15 upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, P.P., E-mail: ppkhvost@rambler.ru [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Azizov, E.A.; Alfimov, D.E. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Belyakov, V.A.; Bondarchuk, E.N. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); Chudnovsky, A.N.; Dokuka, V.N. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Kavin, A.A. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); Khayrutdinov, R.R. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Khokhlov, M.V.; Kitaev, B.A.; Krasnov, S.V.; Maximova, I.I.; Labusov, A.N. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); Lukash, V.E. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Mineev, A.B.; Muratov, V.P. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); and others

    2015-10-15

    Highlights: • T-15U project is the initial technical base for creating fusion neutron sources. • Magnet system of T-15U will confine the hot plasma in the divertor configuration. • Toroidal magnetic field at the plasma axis is 2 T. • T-15U should begin operations in 2016. - Abstract: Presently, the Tokamak T-15 is being upgraded. The magnet system of the Tokamak T-15 upgrade will obtain and confine the hot plasma in the divertor configuration. Plasma parameters are a major radius of 1.48 m, a minor radius of 0.67 m, an elongation of 1.7–1.9 and a triangularity of 0.3–0.4. The magnet system includes the toroidal winding and the poloidal magnet system. The poloidal magnet system generates the divertor with single null and double null magnetic configurations. The power supply system provides the necessary current scenarios in the windings of the magnet system. All elements of the magnet system will be manufactured by the end of 2015. The Tokamak T-15 upgrade should begin operations in 2016.

  10. Fluctuations from dissipation in a hot non-Abelian plasma

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Manuel, Cristina

    2000-01-01

    We consider a transport equation of the Boltzmann-Langevin type for non-Abelian plasmas close to equilibrium to derive the spectral functions of the underlying microscopic fluctuations from the entropy. The correlator of the stochastic source is obtained from the dissipative processes in the plasma. This approach, based on classical transport theory, exploits the well-known link between a linearized collision integral, the entropy and the spectral functions. Applied to the ultra-soft modes of a hot non-Abelian (classical or quantum) plasma, the resulting spectral functions agree with earlier findings obtained from the microscopic theory. As a by-product, it follows that theorem.

  11. Plasma diffusion due to magnetic field fluctuations

    International Nuclear Information System (INIS)

    Okuda, H.; Lee, W.W.; Lin, A.T.

    1979-01-01

    Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale

  12. Lazer-produced plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Kaitmazov, S.D.; Shklovskij, E.I.

    1978-01-01

    Investigations on interaction of laser plasma with the magnetic field in the range of 100-300 kOe are surveyed. Problems associated with the effect of the field on the optical breakdown threshold in gases, the geometry (kinetics) of laser plasma and its radiation are mainly considered. It is noted that the magnetic field may reduce the o tical breakdown threshold in gases, promote the spreading of plasma predominantly in the direction of tice magnetic field, and also affect (increase in the visible range) the radiation intensity of the laser plasma. The effect of the magnetic field on the temperature of the laser plasma is not completely understood yet, but the very fact of existence of this dependence is important; it enables one to search for conditions under which the magnetic field would promote the increase at the temperature of laser plasma

  13. Parametric analysis of a magnetized cylindrical plasma

    International Nuclear Information System (INIS)

    Ahedo, Eduardo

    2009-01-01

    The relevant macroscopic model, the spatial structure, and the parametric regimes of a low-pressure plasma confined by a cylinder and an axial magnetic field is discussed for the small-Debye length limit, making use of asymptotic techniques. The plasma response is fully characterized by three-dimensionless parameters, related to the electron gyroradius, and the electron and ion collision mean-free-paths. There are the unmagnetized regime, the main magnetized regime, and, for a low electron-collisionality plasma, an intermediate-magnetization regime. In the magnetized regimes, electron azimuthal inertia is shown to be a dominant phenomenon in part of the quasineutral plasma region and to set up before ion radial inertia. In the main magnetized regime, the plasma structure consists of a bulk diffusive region, a thin layer governed by electron inertia, a thinner sublayer controlled by ion inertia, and the non-neutral Debye sheath. The solution of the main inertial layer yields that the electron azimuthal energy near the wall is larger than the electron thermal energy, making electron resistivity effects non-negligible. The electron Boltzmann relation is satisfied only in the very vicinity of the Debye sheath edge. Ion collisionality effects are irrelevant in the magnetized regime. Simple scaling laws for plasma production and particle and energy fluxes to the wall are derived.

  14. Controlled Fusion with Hot-ion Mode in a Degenerate Plasma

    International Nuclear Information System (INIS)

    S. Son and N.J. Fisch

    2005-01-01

    In a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from the classical prediction, possibly enabling new regimes for controlled nuclear fusion, including the hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Previous calculations of these processes in dense plasmas are now corrected for partial degeneracy and relativistic effects, leading to an expanded regime of self-sustained fusion

  15. MAGNETIC GRAIN TRAPPING AND THE HOT EXCESSES AROUND EARLY-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, G. H.; Gáspár, András; Ballering, N. P., E-mail: grieke@as.arizona.edu, E-mail: agaspar@as.arizona.edu, E-mail: ballerin@email.arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2016-01-10

    A significant fraction of main sequence stars observed interferometrically in the near-infrared have slightly extended components that have been attributed to very hot dust. To match the spectrum appears to require the presence of large numbers of very small (<200 nm in radius) dust grains. However, particularly for the hotter stars, it has been unclear how such grains can be retained close to the star against radiation pressure force. We find that the expected weak stellar magnetic fields are sufficient to trap nm-sized dust grains in epicyclic orbits for a few weeks or longer, sufficient to account for the hot excess emission. Our models provide a natural explanation for the requirement that the hot excess dust grains be smaller than 200 nm. They also suggest that magnetic trapping is more effective for rapidly rotating stars, consistent with the average vsini measurements of stars with hot excesses being larger (at ∼2σ) than those for stars without such excesses.

  16. Effects of excessive grain growth on the magnetic and mechanical properties of hot-deformed NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M., E-mail: linm@nimte.ac.c [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Wang, H.J. [Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081 (China); Yi, P.P.; Yan, A.R. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China)

    2010-08-15

    The magnetic and mechanical properties of rare-earth magnets hot-deformed at temperature range 750-950 deg. C have been investigated. The grains tended to grow excessively from dozens of nanometers to several microns at the temperatures above 850 deg. C. The alignment of grains was disrupted by the hot deformation at the high temperatures. The Nd-rich phase was extruded at the temperatures which are higher than 850 deg. C. The Nd-rich phase extrusion resulted in the reduction of density by 1% and the reduction of remanence from 1.42 to 0.72 T. The reduction of grain boundaries caused by flat platelet-shaped grains changing to spherical grains and the weak binding strength among large grains of Nd{sub 2}Fe{sub 14}B phase may be the main reasons for the low mechanical strength of hot-deformed magnets.

  17. Nd-Fe-B-Cu hot deformation processing: a comparison of deformation modes, microstructural development and magnetic properties

    International Nuclear Information System (INIS)

    Ferrante, M.; Sinka, V.; Assis, O.B.G.; Oliveira, I. de; Freitas, E. de

    1996-01-01

    Due to its relative simplicity and low cost the hot deformation of Nd-Fe-B ingots is rapidly reaching the status of a valid alternative to sintering. Among the possible deformation modes, pressing, rolling and forging are perhaps the most successful. This paper describes the research programme undertaken so far, by discussing the relationship between deformation mode, microstructure and magnetic properties of magnets produced by hot deformation mode, microstructure and magnetic properties of magnets produced by hot deformation of a number of Nd-fe-B-Cu alloys. Microstructural observation showed that both pressed and forged samples are characterized by a heterogeneous microstructure and from magnetic measurements it was concluded that magnetic properties differ when taken in the center or in the periphery of the sample. On the other hand roller magnets were homogeneous both in terms of microstructure and magnetic properties, and interpretations of the mechanisms of texture development and of microstructural development of hot deformed magnets is put forward. (author)

  18. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  19. Demonstration of Ion Kinetic Effects in Inertial Confinement Fusion Implosions and Investigation of Magnetic Reconnection Using Laser-Produced Plasmas

    Science.gov (United States)

    Rosenberg, M. J.

    2016-10-01

    Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion-ion collisions (λii) approaches the size of the hot-fuel region (Rfuel) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of N - K =λii /Rfuel was varied in D3He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions (NK 0.01) to strongly kinetic conditions (NK 10). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as NK increases from 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments-namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity-are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.

  20. Effects of dust size distribution on dust negative ion acoustic solitary waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Ma, Yi-Rong; Qi, Xin; Sun, Jian-An; Duan, Wen-Shan; Yang, Lei

    2013-01-01

    Dust negative ion acoustic solitary waves in a magnetized multi-ion dusty plasma containing hot isothermal electron, ions (light positive ions and heavy negative ions) and extremely massive charge fluctuating dust grains are investigated by employing the reductive perturbation method. How the dust size distribution affect the height and the thickness of the nonlinear solitary wave are given. It is noted that the characteristic of the solitary waves are different with the different dust size distribution. The magnitude of the external magnetic field also affects the solitary wave form

  1. Experimental investigation of magnetically confined plasma loops

    International Nuclear Information System (INIS)

    Tenfelde, Jan

    2012-01-01

    Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion

  2. Experimental investigation of magnetically confined plasma loops

    Energy Technology Data Exchange (ETDEWEB)

    Tenfelde, Jan

    2012-12-11

    Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion

  3. Three Dimensional Double Layers in Magnetized Plasmas

    DEFF Research Database (Denmark)

    Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul

    1982-01-01

    Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0.......4 cm along the magnetic field from one end of the column. The voltage drop across the double layer is found to be determined by the energy of the incoming electron beam. In general we find that the width of the double layer along the external magnetic field is determined by plasma density and beam...

  4. Electronic oscillations in a hot plasma due the non-Maxwellian velocity distributions

    International Nuclear Information System (INIS)

    Dias, L.A.V.; Nakamura, Y.

    1977-01-01

    In a completely ionized hot plasma, with a non-Maxwellian electron velocity distribution, it is shown that, depending on the electron temperature, oscillations may occur at the elctron plasma and gyro frequencies. For three different electron velocity distributions, it is shown the oscillations dependency on the temperature. This situation occurs in the ionospheric plasma when artificially heated by HF radio waves. If the distribution is Maxwellian, the oscillation only occur near the electron plasma frequency [pt

  5. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    Science.gov (United States)

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2018-05-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81, 345810104 (2015)]. A magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink stabilization threshold 0.1kVA [Y. Zhang et al., Phys. Plasmas 24, 110702 (2017)]. Injection of a spheromak-like plasma into a transverse background magnetic field led to the observation of finger-like structures on the side with a stronger magnetic field null between the spheromak and the background field. The finger-like structures are consistent with magneto-Rayleigh-Taylor instability. Jets or spheromaks launched into a background, low-β magnetized plasma show similar behavior as above, respectively, in both cases.

  6. X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

    Science.gov (United States)

    Miceli, M.; Reale, F.; Gburek, S.; Terzo, S.; Barbera, M.; Collura, A.; Sylwester, J.; Kowalinski, M.; Podgorski, P.; Gryciuk, M.

    2012-08-01

    Aims: The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods: We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. Results: The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistical significance of the count rates and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 × 1044 cm-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present in both the high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss the possibility of a non-thermal origin (which would be compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Conclusions: Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.

  7. Magnetized whirls in plasma focus discharges

    International Nuclear Information System (INIS)

    Witalis, E.

    1979-05-01

    The plasma focus is briefly described with emphasis on its capabilities as a neutron source. The filamentary whirl structures observed in the discharge plasma are described. Starting with a simple, early and particularly well established case of vorticity imparted by a rotational electric field to the plasma in MHD generators, a general derivation is then outlined proving that such magnetically induced rotation is a general feature for the normally Hall-conducting magnetized plasma. Physical interpretations of the effect are given and objections to it are critically reviewed as is also a theory proposing radiation cooling as the cause of plasma filamentation. A more detailed derivation based essentially on the consistent description of the motion and the field generation of the charged plasma particles yields a theoretical model where the specific features of magnetically compressed plasmas are found. In particular, the ion collisionless skin depth is obtained as the key length parameter. This length is identified as roughly the whirl radius. In conjunction with a generalized Bennett relation theoretical whirl properties are predicted and found to agree with observations. Mechanisms that relate the whirls to nuclear fusion reaction conditions are tentatively indicated. (author)

  8. A review on ion–ion plasmas created in weakly magnetized electronegative plasmas

    International Nuclear Information System (INIS)

    Aanesland, A; Bredin, J; Chabert, P

    2014-01-01

    Ion–Ion plasmas are electronegative plasmas where the electron density is several orders of magnitude lower than the negative ion density. These plasmas have been scarcely observed and investigated since the 1960s and are formed as a transient state of pulsed plasmas or in separate regions in magnetized plasmas. In this review we focus on the latter case of continuous formation of ion–ion plasmas created at the periphery of magnetized plasma columns or downstream localized magnetic barriers. We bring together and review experimental results already published elsewhere and complement them with new results to illustrate the physics important in ion–ion plasma formation and highlight in particular unanswered questions. We show that with a good design the density in the ion–ion region is dropping only by a factor of 2–3 from the initial plasma density. These plasmas can therefore be well suited for various ion source applications when both fluxes or beams of positive and negative ions are desired, and when electrons can cause harmful effects. (paper)

  9. Time and space resolved observation of hot spots in a plasma focus

    International Nuclear Information System (INIS)

    Choi, P.; Aliaga, R.; Herold, H.

    1990-01-01

    The authors report some recent results on the time and space evolution of hot spots on the DPF-78 plasma focus at the University of Stuttgart. The experiments were carried out in mixtures of deuterium and krypton at a bank voltage of 60 kV and a stored energy of 28 kJ. A modification of the ADRRM streak technique carried out in the soft x-ray region allowed us to directly examine some characteristics of the hot spots. Simultaneous measurements were carried out on the hard x-ray radiation (80 keV), the spatially resolved optical emissions, the neutron yield rate with TOF information and the plasma and bank currents

  10. Ion Motion in a Plasma Interacting with Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.

    1999-01-01

    The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized

  11. Production of field-reversed plasma with a magnetized coaxial plasma gun

    International Nuclear Information System (INIS)

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1981-01-01

    Experimental data are presented on the production of field-reversed deuterium plasma by a modified coaxial plasma gun. The coaxial gun is constructed with solenoid coils along the inner and outer electrodes that, together with an external guide field solenoid, form a magnetic cusp at the gun muzzle. The net flux inside the inner electrode is arranged to be opposite the external guide field and is the source of field-reversed flux trapped by the plasma. The electrode length is 145 cm, the diameter of the inner (outer) electrode is 15 cm (32 cm). The gun discharge is driven with a 232-μF 40-kV capacitor bank. Acceleration of plasma through the magnetic cusp at the gun muzzle results in entrainment of field-reversed flux that is detected by magnetic probes 75 cm from the gun muzzle. Field-reversed plasma has been produced for a variety of experimental conditions. In one typical case, the guide magnetic field was B 0 =4.8 kG and the change in axial magnetic field ΔB/sub z/ normalized to B 0 was ΔB/sub z/ /B 0 =-3.1. Total field-reversed flux (poloidal flux) obtained by integrating ΔB/sub z/ profiles is in the range 2 x 10 3 kG cm 2 . Measurement of the orthogonal field component indicates a sizable toroidal field peaked off axis at rapprox. =10 cm with a magnitude of roughly one-half the poloidal field component that is measured on magnetic axis. Reconnection of the poloidal field lines has not been established for the data reported in the paper and will be addressed in future experiments which attempt to trap and confine the field-reversed plasma in a magnetic mirror

  12. Plasma sprayed Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.; Bauser, S.; Liu, S.; Huang, M.

    2003-01-01

    This study demonstrated that the plasma spray deposition method is an alternative process for producing Nd-Fe-B magnets in addition to the two existing principal processes: the powder metallurgy process for producing sintered Nd-Fe-B magnets and the melt spinning process for bonded Nd-Fe-B magnets. Plasma spray is a potentially better process for producing magnetic parts with complicated shape, large area, thin thickness, small dimension, or unusual geometry. High intrinsic coercivity greater than 15 kOe was readily obtained for Nd 16 Dy 1 Fe 76 B 7 even in the as-deposited condition when the substrate was preheated. The plasma spray process contains only three steps: melting, crushing, and plasma spray, which is much simpler than the powder metallurgy and melt spinning processes. Without preheating the substrate, the coercivity was usually very low (∼0.1 kOe) in the as-deposited condition and it increased to 10 to >15 kOe after anneal. Evidence of magnetocrystalline anisotropy was observed in plasma sprayed Nd 15 Dy 1 Fe 77 B 7 magnets when the substrate was not preheated. It is believed that a crystal texture was developed during the plasma spray as a result of the existence of a temperature gradient in the solidifying melt

  13. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    OpenAIRE

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2017-01-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys.81, 345810104 (2015)]. Magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink-stabilizati...

  14. Magnetic field measurements using the transient internal probe (TIP)

    International Nuclear Information System (INIS)

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1995-01-01

    Knowledge of the internal magnetic field profile in hot plasmas is fundamental to understanding the structure and behavior of the current profile. The transient internal probe (TIP) is a novel diagnostic designed to measure internal magnetic fields in hot plasmas. The diagnostic involves shooting a magneto-optic probe through the plasma at high velocities (greater than 2 km/s) using a two stage light gas gun. Local fields are obtained by illuminating the probe with an argon ion laser and measuring the amount of Faraday rotation in the reflected beam. Initial development of the diagnostic is complete. Results of magnetic field measurements conducted at 2 km/s will be presented. Helium muzzle gas introduction to the plasma chamber has been limited to less than 0.4 Torr-ell. Magnetic field resolution of 40 Gauss and spatial resolution of 5 mm have been achieved. System frequency response is 10 MHz

  15. Dispersion functions for weakly relativistic magnetized plasmas in inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Gaelzer, R.; Schneider, R.S.; Ziebell, L.F.

    1995-01-01

    The study of wave propagation and absorption inhomogeneous plasmas can be made by using a formulation in which the dielectric properties of the plasma are described by an effective dielectric tensor which incorporates inhomogeneity effects, inserted into a dispersion relation which is formally the same as that of an homogeneous plasma. We have recently utilized this formalism in the study of electron cyclotron absorption in inhomogeneous media, both in the case of homogeneous magnetic field and in the case of inhomogeneous magnetic field. In the present paper we resume the study of the case with inhomogeneous magnetic field, in order to introduce a generalized dispersion function useful for the case of a Maxwellian plasma, and discuss some of its properties. (author). 10 refs

  16. Three-dimensional plasma transport in open chaotic magnetic fields. A computational assessment for tokamak edge layers

    International Nuclear Information System (INIS)

    Frerichs, Heinke Gerd

    2010-04-01

    The development of nuclear fusion as an alternative energy source requires the research on magnetically confined, high temperature plasmas. In particular, the quantification of plasma flows in the domain near exposed material surfaces of the plasma container by computer simulations is of key importance, both for guiding interpretation of present fusion experiments and for aiding the ongoing design activities for large future devices such as ITER, W7-X or the DEMO reactor. There is a large number of computational issues related to the physics of hot, fully ionized and magnetized plasmas near surfaces of the vacuum chamber. This thesis is dedicated to one particular such challenge, namely the numerical quantification of self-consistent kinetic neutral gas and plasma fluid flows in very complex 3D (partially chaotic) magnetic fields, in the absence of any common symmetries for plasma and neutral gas dynamics. Such magnetic field configurations are e.g. generated by externally applied magnetic perturbations at the plasma edge, and are of great interest for the control of particle and energy exhausts. In the present thesis the 3D edge plasma and neutral particle transport code EMC3-EIRENE is applied to two distinct configurations of open chaotic magnetic system: at the TEXTOR and DIII-D tokamaks. Improvements of the edge transport model and extensions of the transport code are presented, which have allowed such simulations for the first time for 3D scenarios at DIII-D with ITER similar plasmas. A strong 3D effect of the chaotic magnetic field on the DIII-D edge plasma is found and analyzed in detail. It is found that a pronounced striation pattern of target particle and heat fluxes at DIII-D can only be obtained up to a certain upper limiting level of anomalous cross-field transport. Hence, in comparison to experimental data, these findings allow to narrow down the range of this model parameter. One particular interest at TEXTOR is the achievement of a regime with

  17. Effects of 3D magnetic perturbations on toroidal plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.

    2011-01-01

    Small three-dimensional (3D) magnetic field perturbations have many interesting and possibly useful effects on tokamak and quasi-symmetric stellarator plasmas. Plasma transport equations that include these effects, most notably on diamagnetic-level toroidal plasma flows, have recently been developed. The 3D field perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (say 1-5) resonant (with field line pitch, q = m/n) and non-resonant fields, medium n (∼20, due to toroidal field ripple) and high n (due to microturbulence). Low n non-resonant fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal rotation throughout the plasma towards an offset rotation in the counter-current direction. Recent tokamak experiments have generally confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n toroidal field ripple produces similar effects plus possible ripple-trapping NTV effects and ion direct losses in the edge. A low n (e.g. n = 1) resonant field is mostly shielded by the toroidally rotating plasma at and inside the resonant (rational) surface. If it is large enough it can stop plasma rotation at the rational surface, facilitate magnetic reconnection there and lead to a growing stationary magnetic island (locked mode), which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components. In the plasma their lowest n (e.g. n = 1) externally resonant components can be amplified by kink-type plasma responses, particularly at high β. Low n plasma instabilities (e.g. resistive wall modes, neoclassical tearing modes) cause additional 3D magnetic perturbations in tokamak plasmas. Tearing modes in their nonlinear (Rutherford) regime bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can, if not shielded by plasma rotation effects, cause local magnetic

  18. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Celona, L.; Castro, G.; Torrisi, G.; Neri, L.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); Maimone, F.; Maeder, J.; Tinschert, K.; Spaedtke, K. P.; Rossbach, J.; Lang, R. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Romano, F. P. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Musumarra, A.; Altana, C.; Caliri, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, via S. Sofia 64, 95123 Catania (Italy)

    2014-02-15

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source – operating at GSI, Darmstadt – has been carried out. Two different detectors (a SDD – Silicon Drift Detector and a HpGe – hyper-pure Germanium detector) have been used to characterize the warm (2–30 keV) and hot (30–500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  19. Plasma membrane isolation using immobilized concanavalin A magnetic beads.

    Science.gov (United States)

    Lee, Yu-Chen; Srajer Gajdosik, Martina; Josic, Djuro; Lin, Sue-Hwa

    2012-01-01

    Isolation of highly purified plasma membranes is the key step in constructing the plasma membrane proteome. Traditional plasma membrane isolation method takes advantage of the differential density of organelles. While differential centrifugation methods are sufficient to enrich for plasma membranes, the procedure is lengthy and results in low recovery of the membrane fraction. Importantly, there is significant contamination of the plasma membranes with other organelles. The traditional agarose affinity matrix is suitable for isolating proteins but has limitation in separating organelles due to the density of agarose. Immobilization of affinity ligands to magnetic beads allows separation of affinity matrix from organelles through magnets and could be developed for the isolation of organelles. We have developed a simple method for isolating plasma membranes using lectin concanavalin A (ConA) magnetic beads. ConA is immobilized onto magnetic beads by binding biotinylated ConA to streptavidin magnetic beads. The ConA magnetic beads are used to bind glycosylated proteins present in the membranes. The bound membranes are solubilized from the magnetic beads with a detergent containing the competing sugar alpha methyl mannoside. In this study, we describe the procedure of isolating rat liver plasma membranes using sucrose density gradient centrifugation as described by Neville. We then further purify the membrane fraction by using ConA magnetic beads. After this purification step, main liver plasma membrane proteins, especially the highly glycosylated ones and proteins containing transmembrane domains could be identified by LC-ESI-MS/MS. While not described here, the magnetic bead method can also be used to isolate plasma membranes from cell lysates. This membrane purification method should expedite the cataloging of plasma membrane proteome.

  20. Dynamic magnetic x-points

    International Nuclear Information System (INIS)

    Leboeuf, J.N.; Tajima, T.; Dawson, J.M.

    1981-03-01

    Two-and-one-half dimensional magnetostatic and electromagnetic particle simulations of time-varying magnetic x-points and the associated plasma response are reported. The stability and topology depend on the crossing angle of the field lines at the x-point, irrespective of the plasma β. The electrostatic field and finite Larmor radius effects play an important role in current penetration and shaping of the plasma flow. The snapping of the field lines, and dragging of the plasma into, and confinement of the plasma at, an o-point (magnetic island) is observed. Magnetic island coalescence with explosive growth of the coalescence mode occurs and is accompanied by a large increase of kinetic energy and temperature as well as the formation of hot tails on the distribution functions

  1. Tomography of a simply magnetized toroidal plasma

    Science.gov (United States)

    Ruggero, BARNI; Stefano, CALDIROLA; Luca, FATTORINI; Claudia, RICCARDI

    2018-02-01

    Optical emission spectroscopy is a passive diagnostic technique, which does not perturb the plasma state. In particular, in a hydrogen plasma, Balmer-alpha (H α ) emission can be easily measured in the visible range along a line of sight from outside the plasma vessel. Other emission lines in the visible spectral range from hydrogen atoms and molecules can be exploited too, in order to gather complementary pieces of information on the plasma state. Tomography allows us to capture bi-dimensional structures. We propose to adopt an emission spectroscopy tomography for studying the transverse profiles of magnetized plasmas when Abel inversion is not exploitable. An experimental campaign was carried out at the Thorello device, a simple magnetized torus. The characteristics of the profile extraction method, which we implemented for this purpose are discussed, together with a few results concerning the plasma profiles in a simply magnetized torus configuration.

  2. Increase of hot initial plasma energy content in the end system of AMBAL-M during hydrogen puffing

    International Nuclear Information System (INIS)

    Akhmetov, Timour; Bekher, Sergei; Davydenko, Vladimir; Krivenko, Aleksander; Muraviev, Maksim; Reva, Vladimir; Sokolov, Vladimir

    2001-01-01

    At the end system of the completely axisymmetric mirror trap AMBAL-M the experiments on creation and study of a hot initial plasma have been performed. In the experiments a gas-box was used for hydrogen supply into the hot startup plasma in the mirror trap to increase the plasma density. The hot initial plasma in the trap was produced by the trapping of a plasma stream with developed electrostatic turbulence generated by a gas-discharge source located outside the entrance throat. It was found that in addition to the increase in the plasma density by a factor of 2-3, hydrogen puffing resulted in an unexpected nearly twofold diamagnetism increase. The gas puffing did not reduce the electron temperature in the trap. Essential for explanation of the observed effect is the fact that with the gas puffing the measured plasma potential in the trap increased. The increase in the plasma potential enhanced the trapping of the ion flow entering the trap and increased the average energy of the electron flow entering the trap. It was found that with the increasing hydrogen puffing rate plasma parameters in the trap were saturated. (author)

  3. Interaction between laser-produced plasma and guiding magnetic field

    International Nuclear Information System (INIS)

    Hasegawa, Jun; Takahashi, Kazumasa; Ikeda, Shunsuke; Nakajima, Mitsuo; Horioka, Kazuhiko

    2013-01-01

    Transportation properties of laser-produced plasma through a guiding magnetic field were examined. A drifting dense plasma produced by a KrF laser was injected into an axisymmetric magnetic field induced by permanent ring magnets. The plasma ion flux in the guiding magnetic field was measured by a Faraday cup at various distances from the laser target. Numerical analyses based on a collective focusing model were performed to simulate plasma particle trajectories and then compared with the experimental results. (author)

  4. Optimization of the Magnetic Field Structure for Sustained Plasma Gun Helicity Injection for Magnetic Turbulence Studies at the Bryn Mawr Plasma Laboratory

    Science.gov (United States)

    Cartagena-Sanchez, C. A.; Schaffner, D. A.; Johnson, H. K.; Fahim, L. E.

    2017-10-01

    A long-pulsed magnetic coaxial plasma gun is being implemented and characterized at the Bryn Mawr Plasma Laboratory (BMPL). A cold cathode discharged between the cylindrical electrodes generates and launches plasma into a 24cm diameter, 2m long chamber. Three separately pulsed magnetic coils are carefully positioned to generate radial magnetic field between the electrodes at the gun edge in order to provide stuffing field. Magnetic helicity is continuously injected into the flux-conserving vacuum chamber in a process akin to sustained slow-formation of spheromaks. The aim of this source, however, is to supply long pulses of turbulent magnetized plasma for measurement rather than for sustained spheromak production. The work shown here details the optimization of the magnetic field structure for this sustained helicity injection.

  5. A guide to Internet atomic databases for hot plasmas

    International Nuclear Information System (INIS)

    Ralchenko, Yuri

    2006-01-01

    Internet atomic databases are nowadays considered to be the primary tool for dissemination of atomic data. We present here a review of numerical and bibliographic databases of importance for diagnostics of hot plasmas. Special attention is given to new and emerging trends, such as online calculation of various atomic parameters. The recently updated NIST databases are presented in detail

  6. A guide to Internet atomic databases for hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ralchenko, Yuri [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)]. E-mail: yuri.ralchenko@nist.gov

    2006-05-15

    Internet atomic databases are nowadays considered to be the primary tool for dissemination of atomic data. We present here a review of numerical and bibliographic databases of importance for diagnostics of hot plasmas. Special attention is given to new and emerging trends, such as online calculation of various atomic parameters. The recently updated NIST databases are presented in detail.

  7. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--cobalt permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high-temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating cobalt--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--cobalt magnets, sprayed from samarium-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million gauss-oersteds and coercive forces of approximately 6000 oersteds. Bar magnet arrays were constructed by depositing magnets on ceramic substrates. (auth)

  8. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--Co permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating Co--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--Co magnets, sprayed from Sm-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million G-Oe and coercive forces of approximately 6000 Oe. Bar magnet arrays were constructed by depositing magnets on ceramic substrates

  9. A Detection of the Same Hot Plasma in the Corona: During a CME and Later at Ulysses

    Science.gov (United States)

    Suess, S. T.; Poletto, G.

    2004-01-01

    We show direct evidence for the same very hot plasma being detected remotely from SOHO in the corona and subsequently, at Ulysses in the solar wind. This is, to our knowledge, the first time that such an unambiguous identification has been made in the case of hot plasma. This detection complements studies correlating other plasma and field properties observed to the properties measured at the source in the corona. This observation takes advantage of a SOHO-Sun-Ulysses quadrature, during which the Sun-Ulysses included angle is $90^\\circ$ and it is possible to observe with Ulysses instruments the same plasma that has previously been remotely observed with SOHO instruments in the corona on the limb of the Sun. The identification builds on an existing base of separate SOHO and interplanetary detections of hot plasma. SOHO/UVCS has found evidence for very hot coronal plasma in current sheets in the aftermath of CMEs in the [Fe XVIII] $\\lambda$ \\AA\\ line, implying a temperature on the order of $6\\times 10(exp 6)$ K. This temperature is unusually high even for active regions, but is compatible with the high temperature predicted in current sheets. In the solar wind, ACE data from early 1998 to middle 2000 revealed high frozen-in Fe charge state in many cases to be present in interplanetary plasma.

  10. Wakefield generation in magnetized plasmas

    International Nuclear Information System (INIS)

    Holkundkar, Amol; Brodin, Gert; Marklund, Mattias

    2011-01-01

    We consider wakefield generation in plasmas by electromagnetic pulses propagating perpendicular to a strong magnetic field, in the regime where the electron cyclotron frequency is equal to or larger than the plasma frequency. Particle-in-cell simulations reveal that for moderate magnetic field strengths previous results are reproduced, and the wakefield wave number spectrum has a clear peak at the inverse skin depth. However, when the cyclotron frequency is significantly larger than the plasma frequency, the wakefield spectrum becomes broadband, and simultaneously the loss rate of the driving pulse is much enhanced. A set of equations for the scalar and vector potentials reproducing these results are derived, using only the assumption of a weakly nonlinear interaction.

  11. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    Albertazzi, Bruno

    2014-01-01

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author) [fr

  12. On lateral deflection of the SOL plasma in tokamaks during giant ELMs

    International Nuclear Information System (INIS)

    Landman, I.S.; Wuerz, H.

    2000-06-01

    In recent H-mode experiments at JET with giant ELMs a lateral deflection of hot tokamak plasma leaving the scrape-off layer and striking the divertor plate has been observed. This deflection can effect the divertor erosion caused by the hot plasma irradiation, because of enlarging the irradiated area. A simplified MHD model of the vapor shield plasma and of the hot plasma initially formed at time t → -∞ is analyzed. At t = -∞ both plasmas are assumed to stay on rest and to be separated by a boundary, which is parallel to the plate surface. The interaction between plasmas is assumed to develop gradually ('adiabatically') as exp(t/t 0 ) with t 0 ∝ 10 2 μs the ELM duration time. Electrical insulation of the core tokamak plasma is assumed everywhere except for the contact with the divertor. Electric currents are flowing only in the toroidal direction. These currents developing in the interaction zone of the hot plasma and the rather cold target plasma are calculated for inclined impact of the magnetized hot plasma. At such conditions the J x B force in the lateral direction accelerates the interacting plasmas. The motion of the cold plasma and the gradual increase of the plasma interaction intensity are shown to be important for the appropriate deflection magnitude. Adiabatically responding against the increase of the interaction intensity the cold plasma motion compensates significantly the currents thus decreasing the deflection compared to motionless approach. The calculated magnitude of the hot plasma deflection is comparable to the observed one. The results of the modeling are discussed in relation to the experiments. It is shown that sudden switching on of the interaction produces Alfven oscillations of large amplitudes causing much larger amplitudes of the magnetic field induced by the currents than in the adiabatic case. (orig.)

  13. Exponential Frequency Spectrum in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.

    2008-01-01

    Measurements of a magnetized plasma with a controlled electron temperature gradient show the development of a broadband spectrum of density and temperature fluctuations having an exponential frequency dependence at frequencies below the ion cyclotron frequency. The origin of the exponential frequency behavior is traced to temporal pulses of Lorentzian shape. Similar exponential frequency spectra are also found in limiter-edge plasma turbulence associated with blob transport. This finding suggests a universal feature of magnetized plasma turbulence leading to nondiffusive, cross-field transport, namely, the presence of Lorentzian shaped pulses

  14. Magnetic traps with a sperical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1979-11-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphesis on Tornado spiral coil configurations. The confinement and heating of static plasmas in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In additio, the mode of rotating plasma operation by crossed electric and magnetic fields is being described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps for the creation and containment of hot plasmas. (author)

  15. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    Science.gov (United States)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  16. Confinement of laser plasma expansion with strong external magnetic field

    Science.gov (United States)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  17. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jeffrey N. [Univ. of California, Davis, CA (United States)

    2009-01-01

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  18. Prediction of hot electron production by ultraintense KrF laser-plasma interactions on solid-density targets

    International Nuclear Information System (INIS)

    Kato, Susumu; Takahashi, Eiichi; Miura, Eisuke; Owadano, Yoshiro; Nakamura, Tatsufumi; Kato, Tomokazu

    2002-01-01

    The scaling of hot electron temperature and the spectrum of electron energy by intense laser plasma interactions are reexamined from a viewpoint of the difference in laser wavelength. Laser plasma interaction such as parametric instabilities is usually determined by the Iλ2 scaling, where I and λ is the laser intensity and wavelength, respectively. However, the hot electron temperature is proportional to (ncr/ne0)1/2 [(1 + a 0 2 ) 1/2 - 1] rather than [(1 + a 0 2 ) 1/2 - 1] at the interaction with overdense plasmas, where ne0 is a electron density of overdense plasmas and a0 is a normalized laser intensity

  19. Advanced energy systems: 2XIIB: heating and containing magnetically confined plasmas

    International Nuclear Information System (INIS)

    Coensgen, F.H.

    1975-01-01

    Recent experiments on the 2XIIB mirror machine have produced encouraging results: a buildup of hot ion densities to 4 x 10 13 cm -3 , ion temperatures of 13 keV (the highest ever observed in a major fusion experiment), and a confinement time exceeding 5 ms. Two major factors in these achievements were the injection of twelve 20-keV neutral beams to increase plasma temperature and the introduction of warm streaming plasma to suppress microinstabilities. With them, near-classical confinement of a hot plasma was demonstrated. We are now doubling the injected neutral beam energy to see if plasma stability and energy scaling of plasma confinement persist at higher ion temperatures

  20. Spin and magnetization effects in plasmas

    International Nuclear Information System (INIS)

    Brodin, G; Marklund, M; Zamanian, J; Stefan, M

    2011-01-01

    Quantum effects in plasmas are of interest for a diverse set of systems, and have thus as a field been revived and attracted a lot of attention from a wide community over the past decade. In models of quantum plasmas, the effects studied mostly are due to the quantum particle dispersion and tunnelling. Such effects can be of importance in dense systems and on short length scales. There are also a number of effects related to spin and statistics. However, up to recently the magnetization effect in plasmas due to the intrinsic electron spin has been largely ignored. The magnetization dynamics of e.g. solids has many important applications, such as components for memory storage, but has also been discussed in more 'proper' plasma environments, such as fusion plasmas. Furthermore, also from a basic science point-of-view the effects of intrinsic spin and gyromagnetic effects are of considerable interest. Here we give a short review of a number of different models for treating magnetization effects in plasmas, with a focus on recent results. In particular, the transition between kinetic models and fluid models is discussed. We also give a number of examples of applications of such theories, as well as an outlook for possible future work.

  1. Plasma heating in a variable magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kichigin, G. N., E-mail: king@iszf.irk.ru [Russian Academy of Sciences, Institute of Solar-Terrestrial Physics (Russian Federation)

    2013-05-15

    The problem of particle acceleration in a periodically variable magnetic field that either takes a zero value or passes through zero is considered. It is shown that, each time the field [0]passes through zero, the particle energy increases abruptly. This process can be regarded as heating in the course of which plasma particles acquire significant energy within one field period. This mechanism of plasma heating takes place in the absence of collisions between plasma particles and is analogous to the mechanism of magnetic pumping in collisional plasma considered by Alfven.

  2. Holographic quark–antiquark potential in hot, anisotropic Yang–Mills plasma

    International Nuclear Information System (INIS)

    Chakraborty, Somdeb; Haque, Najmul

    2013-01-01

    Using the gauge/gravity duality we calculate the heavy quark–antiquark potential in a hot, anisotropic and strongly coupled Yang–Mills plasma in (3+1)-dimensions. As the anisotropic medium we take a deformed version of N=4 super Yang–Mills theory at finite temperature following a recent work where the dual type IIB supergravity solution is also proposed. We turn on a small value of the anisotropy parameter, for which the gravity dual is known analytically (perturbatively), and compute the velocity-dependent quark–antiquark interaction potential when the pair is moving through the plasma with a velocity v. By setting v=0 we recover the static quark–antiquark potential. We numerically study how the potential is modified in the presence of anisotropy. We further show numerically how the quark–antiquark separation (both in the static and the velocity-dependent case) and hence, the screening length gets modified by anisotropy. We discuss various cases depending upon the direction of the dipole and the direction of its propagation and make a comparative study of these cases. We are also able to obtain an analytical expression for the screening length of the dipole moving in a hot, anisotropic plasma in a special case

  3. Injection of a coaxial-gun-produced magnetized plasma into a background helicon plasma

    Science.gov (United States)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott

    2014-10-01

    A compact coaxial plasma gun is employed for experimental investigation of plasma bubble relaxation into a lower density background plasma. Experiments are being conducted in the linear device HelCat at UNM. The gun is powered by a 120-uF ignitron-switched capacitor bank, which is operated in a range of 5 to 10 kV and 100 kA. Multiple diagnostics are employed to investigate the plasma relaxation process. Magnetized argon plasma bubbles with velocities 1.2Cs, densities 1020 m-3 and electron temperature 13eV have been achieved. The background helicon plasma has density 1013 m-3, magnetic field from 200 to 500 Gauss and electron temperature 1eV. Several distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. Additionally a B-dot probe array has been employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify plasma bubble configurations. Experimental data and analysis will be presented.

  4. Magnetic microstructure and magnetic properties of spark plasma sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.L., E-mail: hyl1019_lin@163.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wang, Y.; Hou, Y.H.; Wang, Y.L.; Wu, Y.; Ma, S.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Z.W.; Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Tian, Y.; Xia, W.X. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2016-02-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) technique using melt-spun ribbons as starting materials. A distinct two-zone structure with coarse grain zone and fine grain zone was formed in the SPSed magnets. Multi-domain particle in coarse grain zone and exchange interaction domain for fine grain zone were observed. Intergranular non-magnetic phase was favorable to improve the coercivity due to the enhancement of domain wall pinning effects and increased exchange-decouple. The remanent polarization of 0.83 T, coercivity of 1516 kA/m, and maximum energy product of 118 kJ/m{sup 3} are obtained for an isotropic magnet. - Highlights: • Nanocrystalline NdFeB magnets were prepared by spark plasma sintering technique. • Multi-domain particle and exchange interaction domain were observed. • Magnetic microstructure and their relation to the properties were investigated.

  5. Effects of assistant anode on planar inductively coupled magnetized argon plasma in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tang, Deli; Chu, Paul K.

    2003-01-01

    The enhancement of planar radio frequency (RF) inductively coupled argon plasma is studied in the presence of an assistant anode and an external magnetic field at low pressure. The influence of the assistant anode and magnetic field on the efficiency of RF power absorption and plasma parameters is investigated. An external axial magnetic field is coupled into the plasma discharge region by an external electromagnetic coil outside the discharge chamber and an assistant cylindrical anode is inserted into the discharge chamber to enhance the plasma discharge. The plasma parameters and density profile are measured by an electrostatic Langmuir probe at different magnetic fields and anode voltages. The RF power absorption by the plasma can be effectively enhanced by the external magnetic field compared with the nonmagnetized discharge. The plasma density can be further increased by the application of a voltage to the assistant anode. Owing to the effective power absorption and enhanced plasma discharge by the assistant anode in a longitudinal magnetic field, the plasma density can be enhanced by more than a factor of two. Meanwhile, the nonuniformity of the plasma density is less than 10% and it can be achieved in a process chamber with a diameter of 600 mm

  6. Current filaments in turbulent magnetized plasmas

    DEFF Research Database (Denmark)

    Martines, E.; Vianello, N.; Sundkvist, D.

    2009-01-01

    gradient region of a fusion plasma confined in reversed field pinch configuration and in a density gradient region in the Earth magnetosphere are measured and compared, showing that in both environments they can be attributed to drift-Alfvén vortices. Current structures associated with reconnection events......Direct measurements of current density perturbations associated with non-linear phenomena in magnetized plasmas can be carried out using in situ magnetic measurements. In this paper we report such measurements for three different kinds of phenomena. Current density fluctuations in the edge density...... measured in a reversed field pinch plasma and in the magnetosheath are detected and compared. Evidence of current filaments occurring during ELMs in an H-mode tokamak plasma is displayed....

  7. Miniature magnetic bottle confined by circularly polarized laser light and measurements of the inverse Faraday effect in plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Paiss, Y.; Horovitz, Y.; Henis, Z.

    1997-01-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss, depending on the laser intensity. In this configuration the circularly polarized light is used to obtain confinement of a plasma contained in a good conductor vessel. The confinement in this scheme is supported by the magnetic forces. The Lawson criterion for a DT plasma might be achieved for number density n = 5*10 21 cm -3 and confinement time τ= 20 ns. The laser and plasma parameters required to obtain an energetic gain are calculated. Experiments and preliminary calculations were performed to study the feasibility of the above scheme. Measurements of the axial magnetic field induced by circularly polarized laser light, the so called inverse Faraday effect, and of the absorption of circularly polarized laser light in plasma, are reported. The experiments were performed with a circularly polarized Nd:YAG laser, having a wavelength of 1.06 τm and a pulse duration of 7 ns, in a range of irradiances from 10 9 to 10 14 W/cm 2 . Axial magnetic fields from 500 Gauss to 2 megagauss were measured. Up to 5*10 13 W/cm 3 the results are in agreement with a nonlinear model of the inverse Faraday effect dominated by the ponderomotive force. For the laser irradiance studied here, 9*10 13 - 2.5*10 14 W/cm 2 , the absorption of circularly polarized light was 14% higher relative to the absorption of linear polarized light

  8. Self-similar compression of a magnetized plasma filled liner

    International Nuclear Information System (INIS)

    Felber, F.S.; Liberman, M.A.; Velikovich, A.L.

    1985-01-01

    New analytic, one-dimensional, self-similar solutions of magnetohydrodynamic equations describing the compression of a magnetized plasma by a thin cylindrical liner are presented. The solutions include several features that have not been included in an earlier self-similar solution of the equations of ideal magnetohydrodynamics. These features are the effects of finite plasma electrical conductivity, induction heating, thermal conductivity and related thermogalvanomagnetic effects, plasma turbulence, and plasma boundary effects. These solutions have been motivated by recent suggestions for production of ultrahigh magnetic fields by new methods. The methods involve radially imploding plasmas in which axial magnetic fields have been entrained. These methods may be capable of producing controlled magnetic fields up to approx. = 100 MG. Specific methods of implosion suggested were by ablative radial acceleration of a liner by a laser and by a gas-puff Z pinch. The model presented here addresses the first of these methods. The solutions derived here are used to estimate magnetic flux losses out of the compression volume, and to indicate conditions under which an impulsively-accelerated, plasma-filled liner may compress an axial magnetic field to large magnitude

  9. Magnetic traps with a spherical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1981-01-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphasis on Tornado spiral coil configurations. The confinement and heating of static plasms in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In addition, the mode of rotating plasma operation by crossed electric and magnetic fields is described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps in the creation and containment of hot plasmas. (orig.)

  10. Magnetic and microstructural investigation of high-coercivity net-shape Nd–Fe–B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Žagar, Kristina, E-mail: kristina.zagar@ijs.si; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd–Fe–B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd{sub 2}Fe{sub 14}B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (H{sub ci}), are insufficient at automotive-relevant temperatures of 100–150 °C since the material H{sub ci} has a large temperature coefficient. In this study, we instead add a thin layer of DyF{sub 3} to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd{sub 2}Fe{sub 14}B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques. - Highlights: • We produced high coercivity magnets with drastically reduced amounts of HRE. • Microstructural analysis was conducted of the “free” and “wheel” side of Dy-treated Nd{sub 2}Fe{sub 14}B ribbons. • Dy-diffusion mechanism into ribbons depending on processing parameters is shown.

  11. New experimental results on beam-plasma interaction in solenoids

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Burdakov, A.V.; Kapitonov, V.A.

    1988-01-01

    New results are presented on studying the beam-plasma interaction and plasma heating dynamics at the INAR device. The specific features of the generation of ''hot'' (E greater than or ∼ 1 keV) plasma electrons containing the main part of the plasma energy are studied. In the case of a beam with a small initial angular spread, the ''hot'' electrons are shown to be mainly generated near the point where the beam is injected into the plasma. Also reported are the results of the experiments in which the magnetic field in the beam-plasma interaction region was increased up to 70 kOe. In this case, at the plasma length of 75 cm, the total beam energy losses exceed 40%. The growth of the plasma energy content at higher magnetic field is observed. The first stage of the GOL-3 experiment is described which is aimed at the study of the plasma heating is solonoid by a 100 kJ microsecond electron beam. This new experimental device is now ready for operation (author)

  12. Dipolar vortex structures in magnetized rotating plasma

    International Nuclear Information System (INIS)

    Liu Jixing

    1990-01-01

    Dipolar solitary vortices of both electrostatic and electromagnetic character in low-β, in homogeneous rotating plasma confined in a constant external magnetic field were systematically presented. The main stimulus to this investigation is the expectation to apply this coherent structure as a candidate constituent of plasma turbulance to understand the anomalous transport phenomena in confined plasma. The electrostatic vortices have similar structure and properties as the Rossby vortices in rotating fluids, the electromagnetic vortices obtained here have no analogy in hydrodynamics and hence are intrinsic to magnetized plasma. It is valuably remarked that the intrinsic electromagnetic vortices presented here have no discontinuity of perturbed magnetic field δB and parallel current j(parallel) on the border of vortex core. The existence region of the new type of vortex is found much narrower than the Rossby type one. (M.T.)

  13. Emergent kink stability of a magnetized plasma jet injected into a transverse background magnetic field

    Science.gov (United States)

    Zhang, Yue; Gilmore, Mark; Hsu, Scott C.; Fisher, Dustin M.; Lynn, Alan G.

    2017-11-01

    We report experimental results on the injection of a magnetized plasma jet into a transverse background magnetic field in the HelCat linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81(1), 345810104 (2015)]. After the plasma jet leaves the plasma-gun muzzle, a tension force arising from an increasing curvature of the background magnetic field induces in the jet a sheared axial-flow gradient above the theoretical kink-stabilization threshold. We observe that this emergent sheared axial flow stabilizes the n = 1 kink mode in the jet, whereas a kink instability is observed in the jet when there is no background magnetic field present.

  14. Ionization processes in the Fe 27 region of hot iron plasma in the field of hard gamma radiation

    International Nuclear Information System (INIS)

    Illarionov, A.F.

    1989-01-01

    A highly ionized hot plasma of an iron 26 56 Fe-type heavy element in the field of hard ionizing gamma-ray radiation is considered. The processes of ionization and recombination are discussed for a plasma consisting of the fully ionized Fe 27 and the hydrogen-like Fe 26 ions of iron in the case of large optical depth of the plasma with respect to the photoionization by gamma-ray quanta. The self-ionization process of a hot plasma with the temperature kT ≅ I (I being the ionization potential), due to the production of the own ionizing gamma-ray quanta, by the free-free (ff) and recombination (fb) radiation mechanisms, is investigated. It is noted that in the stationary situation the process of self-ionization of a hot plasma imposes the restriction upon the plasma temperature, kT<1.5 I. It is shown that the ionization of heavy-ion plasma by the impact of thermal electrons is dominating over the processes of ff- and fb-selfionization of plasma only by the large concentration of hydrogen-like iron at the periphery of the region of fully ionized iron Fe 27

  15. Experimental investigation of the hot point generation in the Z pinch plasma

    International Nuclear Information System (INIS)

    Afonin, V.I.; Podgornov, V.A.; Litvin, D.N.; Senik, A.V.

    1999-01-01

    Experiments to explode thin composite (W-Al-W, W-SiO 2 -W) wires in SIGNAL fast high-current generator diode under about 200 kA load current amplitude and about 50 ns rise duration were carried out to study the possibility to control generation of hot point in Z pinch plasma. The parameters of generated hot points were studied using X-ray techniques. Analysis of the experiment results shows the possibility to control this process [ru

  16. Progress In Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; hide

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  17. Periodical plasma structures controlled by external magnetic field

    Science.gov (United States)

    Schweigert, I. V.; Keidar, M.

    2017-11-01

    The plasma of Hall thruster type in external magnetic field is studied in 2D3V kinetic simulations using PIC MCC method. The periodical structure with maxima of electron and ion densities is formed and becomes more pronounced with increase of magnetic field incidence angle in the plasma. These ridges of electron and ion densities are aligned with the magnetic field vector and shifted relative each other. This leads to formation of two-dimensional double-layers structure in cylindrical plasma chamber. Depending on Larmor radius and Debye length up to nineteen potential steps appear across the oblique magnetic field. The electrical current gathered on the wall is associated with the electron and ion density ridges.

  18. Plasma target output from a magnetically augmented, gas-injected, washer-stack plasma gun

    International Nuclear Information System (INIS)

    Osher, J.E.

    1982-01-01

    This article describes a new washer-stack gun design developed for the application of plasma target production for the startup of neutral-beam trapping in a fusion research magnetic confinement system. The gun is a Mo anode type that is D 2 injected and has an auxiliary pulsed magnet for control of plasma-flux mapping. One of the principal features of 2--10-ms duration pulses for gun operation in a suitable magnetic field is the formation of an arc column along magnetic field lines from the gun's central cathode electrode to the vacuum chamber walls (at common anode potential). The primary power output from a 5.0-cm-i.d. gun is typically carried along this arc column by a stream of approximately 2000 A of 50--250-eV electrons. This primary stream of relatively low-density energetic electrons efficiently ionizes the injected gas, forming a quasi-dc source of denser secondary plasma of approx.10 13 /cm 3 at a few eV, which is able to flow or diffuse away along a somewhat larger column of magnetic field lines. In plasma-target production tests on a test stand, a gun operated at a D 2 gas flow of 22 Torr ls -1 yielded 250 A of equivalent plasma flow

  19. Production of a large, quiescent, magnetized plasma

    Science.gov (United States)

    Landt, D. L.; Ajmera, R. C.

    1976-01-01

    An experimental device is described which produces a large homogeneous quiescent magnetized plasma. In this device, the plasma is created in an evacuated brass cylinder by ionizing collisions between electrons emitted from a large-diameter electron gun and argon atoms in the chamber. Typical experimentally measured values of the electron temperature and density are presented which were obtained with a glass-insulated planar Langmuir probe. It is noted that the present device facilitates the study of phenomena such as waves and diffusion in magnetized plasmas.

  20. Transport of plasma across a braided magnetic field

    International Nuclear Information System (INIS)

    Stix, T.H.

    1976-10-01

    Transport rates are calculated for a plasma immersed in a region through which magnetic lines of force meander in a stochastic fashion and in which the magnetic surfaces are destroyed. Such a magnetic condition, termed magnetic braiding, may be brought about by asymmetric magnetic perturbations, perhaps quite weak, which typically produce overlap of two sets of magnetic islands. Plasma transport is calculated for this environment, using both a fluid and a kinetic drift model. The latter gives an appreciably higher rate, namely, a fast-particle diffusion coefficient equal to ( 1 / 2 )D/sub M/ [absolute value of v/sub ''/], where D/sub M/ is the coefficient of spatial diffusion for the magnetic lines of force. Correction terms, due to polarization-associated E/sub ''/ fields, are small unless components of the braiding field resonate with ion-acoustic or drift waves. Insertion of a Bhatnager--Gross--Krook collision term shows the diffusion rate is unaffected by weak collisions. Diffusion due to magnetic braiding is of interest for tokamaks, particularly with respect to enhanced electron heat transport, enhanced current penetration, plasma disruption, and internal sawtooth oscillations

  1. Electro-Magnetic Fields and Plasma in the Cosmos

    International Nuclear Information System (INIS)

    Scott, Donald E.

    2006-01-01

    It is becoming widely recognized that a majority of baryons in the cosmos are in the plasma state. But, fundamental disagreements about the properties and behavior of electro-magnetic fields in these plasmas exist between the science of modern astronomy and the experimentally verified laws of electrical engineering and physics. Some astronomers claim that magnetic fields can be open-ended - that they begin on or beneath the Sun's surface and extend outward to infinity. Astrophysicists have claimed that galactic magnetic fields begin and end on molecular clouds. Electrical engineers, most physicists, and the pioneers in electromagnetic field theory disagree - magnetic fields have no beginning or end. Since these two viewpoints are mutually exclusive, both cannot be correct; one must be completely false. Many astrophysicists claim that magnetic fields are 'frozen into' electric plasma. We also examine the basis for this claim. It has been shown to be incorrect in the laboratory. The hypothetical 'magnetic merging' mechanism is also reviewed in light of both theoretical and experimental investigations. The cause of large-scale filamentation in the cosmos is also simply revealed by experimental results obtained in plasma laboratories

  2. Neutrino (antineutrino) effective charge in a magnetized electron-positron plasma

    International Nuclear Information System (INIS)

    Serbeto, A.; Rios, L.A.; Mendonca, J.T.; Shukla, P.K.

    2004-01-01

    Using dynamical techniques of the plasma physics, the neutrino (antineutrino) effective charge in a magnetized dense electron-positron plasma is determined here. It shown that its value, which is determined by the plasma collective processes, depends mainly on the propagation direction of plasma waves and neutrinos against the external magnetic field direction. The direction dependence of the effective charge occurs due to the fact that the magnetic field breaks the plasma isotropy. The present theory gives a unified picture of the problem which is valid for an external magnetic field below the Landau-Schwinger critical value. Comparison with some of the results from the quantum field theory has been made

  3. Hot-electron-plasma accumulation in the CIRCE mirror experiment

    International Nuclear Information System (INIS)

    Bardet, R.; Briand, P.; Dupas, L.; Gormezano, C.; Melin, G.

    1975-01-01

    In the CIRCE experiment, the plasma is obtained by the trapping of a plasma injected into a magnetic bottle by electron heating at cyclotron resonance. The plasma density lies between 5x10 11 cm -3 and 10 12 cm -3 , the electron temperature is about 100 keV and the ion temperature is in the range of few hundred electronvolts. Gross instabilities are not observed. The ratio of the plasma density to the neutral-gas density inside the plasma is higher than 100. A few kilowatts of r.f. power at 8 GHz are sufficient to obtain these results, a fact which looks encouraging as far as the creation of a more effective fast-neutral-target plasma using the CIRCE-experiment concept is concerned. (author)

  4. The kappa Distribution as Tool in Investigating Hot Plasmas in the Magnetospheres of Outer Planets

    Science.gov (United States)

    Krimigis, S. M.; Carbary, J. F.

    2014-12-01

    The first use of a Maxwellian distribution with a high-energy tail (a κ-function) was made by Olbert (1968) and applied by Vasyliunas (1968) in analyzing electron data. The k-function combines aspects of both Maxwellian and power law forms to provide a reasonably complete description of particle density, temperature, pressure and convection velocity, all of which are key parameters of magnetospheric physics. Krimigis et al (1979) used it to describe flowing plasma ions in Jupiter's magnetosphere measured by Voyager 1, and obtained temperatures in the range of 20 to 35 keV. Sarris et al (1981) used the κ-function to describe plasmas in Earth's distant plasma sheet. The κ-function, in various formulations and names (e. g., γ-thermal distribution, Krimigis and Roelof, 1983) has been used routinely to parametrize hot, flowing plasmas in the magnetospheres of the outer planets, with typical kT ~ 10 to 50 keV. Using angular measurements, it has been possible to obtain pitch angle distributions and convective flow directions in sufficient detail for computations of temperatures and densities of hot particle pressures. These 'hot' pressures typically dominate the cold plasma pressures in the high beta (β > 1) magnetospheres of Jupiter and Saturn, but are of less importance in the relatively empty (β Cambridge University Press, New York, 1983

  5. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Daniel [Los Alamos National Laboratory; Hsu, Scott C. [Los Alamos National Laboratory

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  6. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan, E-mail: dngupta@physics.du.ac.in

    2016-04-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  7. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    International Nuclear Information System (INIS)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan

    2016-01-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  8. Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields

    International Nuclear Information System (INIS)

    Parker, E.N.

    1987-01-01

    This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case the phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field. 47 references

  9. Formation of magnetized plasma stream in the CTCC-I experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ikegami, K.; Ozaki, A.; Uyama, T.; Satomi, N.; Watenabe, K. (Osaka Univ., Suita (Japan). Faculty of Engineering)

    1981-10-01

    Magnetized plasma stream with the kinetic energy of more than 500 eV was produced successfully using a coaxial plasma gun with the subsidiary coils for providing the radial magnetic field at its muzzle. It was injected into the drift tube and the characteristics were investigated experimentally using the streak photographs, magnetic probes and flux loops. It was confirmed that this plasma stream had really both toroidal and poloidal magnetic fields.

  10. Magnetic tearing in plasma focus

    International Nuclear Information System (INIS)

    Sharkawy, W.

    1994-01-01

    A plasma focus device used is Mather type filled with hydrogen gas at pressure between 0.1 and 1 torr. When connected to a large capacitor ≤10 KV a discharge is started with peak current 100 KA. Under the influence of the radial electric field E r , due to the potential between electrodes, and B φ the plasma will drift in the axial direction with velocity cE r /B φ . An induced axial magnetic field B z has been detected which due to sheath velocity. A propagation of magnetosonic wave has been observed with velocity ≅10 3 m sec -1 . Such a wave might be excited when the magnetic pressure is much greater than the plasma kinetic pressure B 2 /8π>nKT. Assuming (MHD) to be stable, Tearing model was driven which generally has smaller growth rates than (MHD) modes. Using the designed theoretical model and the plasma parameters the electron energy dΦ/dt=Ba 2 /τ R was calculated to be 2.22 KeV, which is comparable with that detected from X-ray measurements. (author)

  11. Nernst Effect in Magnetized Plasmas

    OpenAIRE

    Joglekar, Archis S.; Thomas, Alexander G. R.; Ridgers, Christopher P.; Kingham, Robert J.

    2015-01-01

    We present nanosecond timescale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's Law, including Nernst advection of magnetic fields. In addition to showing the prevalence of non-local behavior, we demonstrate that effects such...

  12. AMPTE/CCE observations of the plasma composition below 17 keV during the September 4, 1984 magnetic storm

    International Nuclear Information System (INIS)

    Shelley, E.G.; Klumpar, D.M.; Peterson, W.K.; Ghielmetti, A.; Balsiger, H.; Geiss, J.; Rosenbauer, H.; Bern Universitaet, Switzerland; Max-Planck-Institut fuer Aeronomie, Katlenburg, West Germany)

    1985-01-01

    Observations from the Hot Plasma Composition Experiment on the AMPTE/CCE spacecraft during the magnetic storm of 4-5 September 1984 reveal that significant injection of ions of terrestrial origin accompanied the storm development. The compression of the magnetosphere at storm sudden commencement carried the magnetopause inside the CCE orbit clearly revealing the shocked solar wind plasma. A build up of suprathermal ions is observed near the plasmapause during the storm main phase and recovery phase. Pitch angle distributions in the ring current during the main phase show differences between H(+) and O(+) that suggest mass dependent injection, transport and/or loss processes. 9 references

  13. Interaction of counter-streaming plasma flows in dipole magnetic field

    OpenAIRE

    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Prokopov, P A; Boyarintsev, E L; Zakharov, Yu P; Ponomarenko, A G

    2017-01-01

    Transient interaction of counter-streaming super-sonic plasma flows in dipole magnetic dipole is studied in laboratory experiment. First quasi-stationary flow is produced by teta-pinch and forms a magnetosphere around the magnetic dipole while laser beams focused at the surface of the dipole cover launch second explosive plasma expanding from inner dipole region outward. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. ...

  14. Local thermodynamics of a magnetized, anisotropic plasma

    International Nuclear Information System (INIS)

    Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J.

    2013-01-01

    An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.

  15. Formation of magnetized plasma stream in the CTCC-I experiment

    International Nuclear Information System (INIS)

    Ikegami, Kazunori; Ozaki, Atsuhiko; Uyama, Tadao; Satomi, Norio; Watanabe, Kenji

    1981-01-01

    Magnetized plasma stream with the kinetic energy of more than 500 eV was produced successfully using a coaxial plasma gun with the subsidiary coils for providing the radial magnetic field at its muzzle. It was injected into the drift tube and the characteristics were investigated experimentally using the streak photographs, magnetic probes and flux loops. It was confirmed that this plasma stream had really both toroidal and poloidal magnetic fields. (author)

  16. Spin-dependent hot electron transport and nano-scale magnetic imaging of metal/Si structures

    International Nuclear Information System (INIS)

    Kaidatzis, A.

    2008-10-01

    In this work, we experimentally study spin-dependent hot electron transport through metallic multilayers (ML), containing single magnetic layers or 'spin-valve' (SV) tri layers. For this purpose, we have set up a ballistic electron emission microscope (BEEM), a three terminal extension of scanning tunnelling microscopy on metal/semiconductor structures. The implementation of the BEEM requirements into the sample fabrication is described in detail. Using BEEM, the hot electron transmission through the ML's was systematically measured in the energy range 1-2 eV above the Fermi level. By varying the magnetic layer thickness, the spin-dependent hot electron attenuation lengths were deduced. For the materials studied (Co and NiFe), they were compared to calculations and other determinations in the literature. For sub-monolayer thickness, a non uniform morphology was observed, with large transmission variations over sub-nano-metric distances. This effect is not yet fully understood. In the imaging mode, the magnetic configurations of SV's were studied under field, focusing on 360 degrees domain walls in Co layers. The effects of the applied field intensity and direction on the DW structure were studied. The results were compared quantitatively to micro-magnetic calculations, with an excellent agreement. From this, it can be shown that the BEEM magnetic resolution is better than 50 nm. (author)

  17. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  18. Magnetohydrodynamic Waves and Instabilities in Rotating Tokamak Plasmas

    NARCIS (Netherlands)

    J.W. Haverkort (Willem)

    2013-01-01

    htmlabstractOne of the most promising ways to achieve controlled nuclear fusion for the commercial production of energy is the tokamak design. In such a device, a hot plasma is confined in a toroidal geometry using magnetic fields. The present generation of tokamaks shows significant plasma

  19. Sheath formation of a plasma containing multiply charged ions, cold and hot electrons, and emitted electrons

    International Nuclear Information System (INIS)

    You, H.J.

    2012-01-01

    It is quite well known that ion confinement is an important factor in an electron cyclotron resonance ion source (ECRIS) as it is closely related to the plasma potential. A model of sheath formation was extended to a plasma containing multiply charged ions (MCIs), cold and hot electrons, and secondary electrons emitted either by MCIs or hot electrons. In the model, a modification of the 'Bohm criterion' was given, the sheath potential drop and the critical emission condition were also analyzed. It appears that the presence of hot electrons and emitted electrons strongly affects the sheath formation so that smaller hot electrons and larger emission current result in reduced sheath potential (or floating potential). However the sheath potential was found to become independent of the emission current J when J > J c , (where J c is the critical emission current. The paper is followed by the associated poster

  20. Magnetic Field Analysis of Plasma Guide in Galathea Trimyx

    Directory of Open Access Journals (Sweden)

    Jin Xianji

    2016-01-01

    Full Text Available You Galathea Trimyx is a kind of small size, multipole magnetic confinement devices in controlled thermonuclear fusion. Plasma guide is one of important part in Galathea Trimyx which is responsible for transporting fast and slow plasma bunches ejected from plasma gun. The distribution and uniformity of magnetic field in completed plasma guide is analyzed in detail, including in x -axis direction and in z-axis direction. On the basis, the motion of plasma in the guide is discussed.

  1. 3-D MHD modeling and stability analysis of jet and spheromak plasmas launched into a magnetized plasma

    Science.gov (United States)

    Fisher, Dustin; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward; Arge, C. Nick

    2016-10-01

    The Plasma Bubble Expansion Experiment (PBEX) at the University of New Mexico uses a coaxial plasma gun to launch jet and spheromak magnetic plasma configurations into the Helicon-Cathode (HelCat) plasma device. Plasma structures launched from the gun drag frozen-in magnetic flux into the background magnetic field of the chamber providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, and shocks. Preliminary modeling is presented using the highly-developed 3-D, MHD, BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid that enables the capture and resolution of shock structures and current sheets, and is particularly suited to model the parameter regime under investigation. CCD images and magnetic field data from the experiment suggest the stabilization of an m =1 kink mode trailing a plasma jet launched into a background magnetic field. Results from a linear stability code investigating the effect of shear-flow as a cause of this stabilization from magnetic tension forces on the jet will be presented. Initial analyses of a possible magnetic Rayleigh Taylor instability seen at the interface between launched spheromaks and their entraining background magnetic field will also be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  2. Relativistic degenerate electron plasma in an intense magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1978-01-01

    The dielectric response function for a dense, ultra-degenerate relativistic electron plasma in an intense uniform magnetic field is presented. Dispersion relations for plasma oscillations parallel and perpendicular to the magnetic field are obtained

  3. SO-FDTD analysis of anisotropic magnetized plasma

    International Nuclear Information System (INIS)

    Yang Hongwei; Nanjing Univ. of Science and Technology, Nanjing; Yuan Hong; Chen Rushan; Yang Yang

    2007-01-01

    A novel finite-difference time-domain (FDTD) method, called shift operator FDTD (SO-FDTD) method is developed for anisotropic magnetized dispersive media. The recursive relation between operators is used. In this paper, some expressions containing the dielectric constants of magnetized dispersive media are written as rational polynomial function. The SO-FDTD formulation for anisotropic magnetized plasma is derived. The high efficiency and effectiveness of the method are confirmed by computing the reflection and transmission through a magnetized plasma layer, with the direction of the propagation parallel to the direction of the biasing field. A comparison with frequency domain analytic results is included. The CPU time was several times shorter than that of the JEC method. (authors)

  4. Observations of dusty plasmas with magnetized dust grains

    Science.gov (United States)

    Luo, Q.-Z.; D'Angelo, N.

    2000-11-01

    We report a newly observed phenomenon in a dusty plasma device of the \\mbox{Q-machine} type. At low plasma densities the time required by the plasma to return to its no-dust conditions, after the dust dispenser is turned off, can be as long as many tens of seconds or longer. A tentative interpretation of this observation in terms of magnetized dust grains is advanced. It appears that an important loss mechanism of fine dust grains is by ion drag along the magnetic field lines. The effect of ion drag is somewhat counteracted by the -µ∇B force present when the magnetic field has a mirror geometry.

  5. Langmuir probe characteristic in a current - carrying magnetized plasma

    International Nuclear Information System (INIS)

    Stanojevic, M.; Cercek, M.; Gyergyek, T.

    1995-01-01

    Experimental investigation of the Langmuir probe characteristic is a magnetized plasma with an electron current along the magnetic field direction shows that the standard procedure for determination of the electron temperature and plasma density, which is applicable in a current - free magnetized plasma, gives erroneous results for these plasma parameters. However, more precise values of the plasma parameters can be calculated from the ion saturation currents and electron temperatures obtained with that procedure for two opposite orientations of the one - sided planar probe collecting surface with respect to the direction of the electron drift. With the existing theoretical models only the order of magnitude of the electron drift velocity can be accurately determined from the measured electron saturation currents for the two probe orientations. (author)

  6. Mechanism of hot spots formation in magnetic Z-pinch

    Energy Technology Data Exchange (ETDEWEB)

    Kubes, P; Kravarik, J [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Fakulta Elektrotechnicka; Kolacek, K; Krejci, A [Akademie Ved Ceske Republiky, Prague (Czech Republic). Ustav Fyziky Plazmatu; Paduch, M; Tomaszewski, K [Inst. of Plasma Physics and Laser Microfusion, Warsaw (Poland)

    1997-12-31

    The evolution of neon implosion of low energy discharge (4 kJ, 40 kV, 150 kA, 1.1 {mu}s) was studied using X-ray, schlieren and high speed electrooptical visible gated Quadro camera diagnostics. The geometry, the helical structure of pinched column, two steps of pinching and X-ray emission were studied. The diameters, electron density and temperature of the hot spots were determined. The hypothesis of axial component of magnetic field generation, of helical shape of magnetic and electric field lines, of the possibility of the release of magnetic energy and of the acceleration of the keV electrons and ions due to voltage induction during the second pinching of the column are discussed. (author). 3 figs., 5 refs.

  7. Apparatus for magnetic and electrostatic confinement of plasma

    Science.gov (United States)

    Rostoker, Norman; Binderbauer, Michl

    2013-06-11

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  8. Relaxed plasmas in external magnetic fields

    International Nuclear Information System (INIS)

    Spies, G.O.; Li, J.

    1991-08-01

    The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)

  9. Parametric instabilities in magnetized bi-ion and dusty plasmas

    Indian Academy of Sciences (India)

    -ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and parametrically excited transverse modes propagating along the magnetic field are found.

  10. Fueling of magnetically confined plasmas by single- and two-stage repeating pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Foust, C.R.; Milora, S.L.

    1990-01-01

    Advanced plasma fueling systems for magnetic fusion confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range using single shot and repetitive pneumatic (light-gas gun) pellet injectors. The millimeter-to-centimeter size pellets enter the plasma and continuously ablate because of the plasma electron heat flux, depositing fuel atoms along the pellet trajectory. This fueling method allows direct fueling in the interior of the hot plasma and is more efficient than the alternative method of injecting room temperature fuel gas at the wall of the plasma vacuum chamber. Single-stage pneumatic injectors based on the light-gas gun concept have provided hydrogenic fuel pellets in the speed range of 1--2 km/s in single-shot injector designs. Repetition rates up to 5 Hz have been demonstrated in repetitive injector designs. Future fusion reactor-scale devices may need higher pellet velocities because of the larger plasma size and higher plasma temperatures. Repetitive two-stage pneumatic injectors are under development at ORNL to provide long-pulse plasma fueling in the 3--5 km/s speed range. Recently, a repeating, two-stage light-gas gun achieved repetitive operation at 1 Hz with speeds in the range of 2--3 km/s

  11. Nonlinear electron transport in magnetized laser plasmas

    International Nuclear Information System (INIS)

    Kho, T.H.; Haines, M.G.

    1986-01-01

    Electron transport in a magnetized plasma heated by inverse bremsstrahlung is studied numerically using a nonlinear Fokker--Planck model with self-consistent E and B fields. The numerical scheme is described. Nonlocal transport is found to alter many of the transport coefficients derived from linear transport theory, in particular, the Nernst and Righi--Leduc effects, in addition to the perpendicular heat flux q/sub perpendicular/, are substantially reduced near critical surface. The magnetic field, however, remains strongly coupled to the nonlinear q/sub perpendicular/ and, as has been found in hydrosimulations, convective amplification of the magnetic field occurs in the overdense plasma

  12. Three-dimensional simulation study of compact toroid injection into magnetized plasmas

    International Nuclear Information System (INIS)

    Yoshio Suzuki; Tomohiko Watanabe; Tetsuya Sato; Takaya Hayashi

    1999-01-01

    Three-dimensional dynamics of a compact toroid (CT), which is injected into a magnetized target plasma modeling a part of a fusion device is investigated by using magnetohydrodynamic numerical simulations. It is found that the injected CT penetrates into the device region, suffering from a tilting instability. In this process, magnetic reconnection between the CT magnetic field and the device magnetic field takes place, which disrupts the magnetic configuration of the CT. As a result, the high density plasma confined in the CT magnetic field is locally supplied in the device region. Furthermore, the authors examine the penetration depth of the CT high density plasma. And it is revealed that the CT high density plasma is decelerated by the device magnetic field through the compressional heating

  13. Effects of a nonuniform open magnetic field on the plasma presheath

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1991-01-01

    Effects of a nonuniform magnetic field on the plasma presheath is numerically investigated using the plasma equation for a collisionless plasma with a finite-temperature particle source. The present calculation confirms that analytical solutions previously published by the authors are available over a wide range of mirror ratio. Potential drop in the presheath, which considerably depends on both the magnetic strength profile and the spatial distribution of the particle source, is remarkably increased by applying an expanding magnetic field when plasma particles are generated in the inner part of the plasma. An effect of a nonuniform magnetic field on sheath formation is also discussed by using the calculated ion distribution function. If the plasma equation has no singularity at the sheath edge, its solution satisfies the generalized Bohm criterion with the inequality sign in the expanding magnetic field. (author)

  14. Reduced energy conservation law for magnetized plasma

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Decyk, V.K.

    1994-01-01

    A global energy conservation law for a magnetized plasma is studied within the context of a quasiparticle description. A reduced energy conservation law is derived for low-frequency, as compared to the gyromagnetic frequency, plasma motions with regard to both non-uniform mean flows and fluctuations in the plasma. The mean value of plasma energy is calculated and sufficient stability conditions for non-equilibrium plasmas are derived. (orig.)

  15. Three dimensional simulation study of spheromak injection into magnetized plasmas

    International Nuclear Information System (INIS)

    Suzuki, Y.; Watanabe, T.H.; Sato, T.; Hayashi, T.

    2000-01-01

    The three dimensional dynamics of a spheromak-like compact toroid (SCT) plasmoid, which is injected into a magnetized target plasma region, is investigated by using MHD numerical simulations. It is found that the process of SCT penetration into this region is much more complicated than that which has been analysed so far by using a conducting sphere (CS) model. The injected SCT suffers from a tilting instability, which grows with a similar timescale to that of the SCT penetration. The instability is accompanied by magnetic reconnection between the SCT magnetic field and the target magnetic field, which disrupts the magnetic configuration of the SCT. Magnetic reconnection plays a role in supplying the high density plasma, initially confined in the SCT magnetic field, to the target region. The penetration depth of the SCT high density plasma is also examined. It is shown to be shorter than that estimated from the CS model. The SCT high density plasma is decelerated mainly by the Lorentz force of the target magnetic field, which includes not only the magnetic pressure force but also the magnetic tension force. Furthermore, by comparing the SCT plasmoid injection with the bare plasmoid injection, magnetic reconnection is considered to relax the magnetic tension force, i.e. the deceleration of the SCT plasmoid. (author)

  16. Plasma effects in aligned carbon nanoflake growth by plasma-enhanced hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Cheng, Q.J., E-mail: qijin.cheng@xmu.edu.cn [School of Energy Research, Xiamen University, Xiamen 361005 (China); Ostrikov, K. [Plasma Nanoscience Center Australia (PNCA), Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organization, PO Box 218, Lindfield 2070, NSW (Australia); Institute for Future Environments and School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, QLD (Australia); Plasma Nanoscience, School of Physics, The University of Sydney, Sydney 2006, NSW (Australia)

    2015-01-15

    Highlights: • Plasma-specific effects in the growth of carbon nanoflakes (CNFs) are studied. • Electic field in the plasma sheath promotes separation of CNFs from the substrate. • The orentention of GNFs is related to the combined electic force and growth effects. • The high growth grates of aligned GNFs are plasma-related. - Abstract: Carbon nanofilms are directly grown on silicon substrates by plasma-enhanced hot filament chemical vapor deposition in methane environment. It is shown that the nanofilms are composed of aligned carbon nanoflakes by extensive investigation of experimental results of field emission scanning electron microscopy, micro-Raman spectroscopy and transmission electron microscopy. In comparison with the graphene-like films grown without plasmas, the carbon nanoflakes grow in an alignment mode and the growth rate of the films is increased. The effects of the plasma on the growth of the carbon nanofilms are studied. The plasma plays three main effects of (1) promoting the separation of the carbon nanoflakes from the silicon substrate, (2) accelerating the motion of hydrocarbon radicals, and (3) enhancing the deposition of hydrocarbon ions onto the substrate surface. Due to these plasma-specific effects, the carbon nanofilms can be formed from the aligned carbon nanoflakes with a high rate. These results advance our knowledge on the synthesis, properties and applications of graphene-based materials.

  17. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, Amitava [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2017-04-06

    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study these processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.

  18. Dynamics of a rarefied plasma in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeyev, R S; Kadomtsev, B B; Rudakov, L I; Vedyonov, A A

    1958-07-01

    The nature of the motion and properties of high temperature plasma in a magnetic field is of particular interest for the problem of producing controlled thermonuclear reactions. The most general theoretical approach to such problems lies in the description of the plasma by the Boltzmann and Maxwell equations that connect the self-consistent electric and magnetic fields with the ion and electron distribution functions. The exact equations for the motion of plasma in an electromagnetic field can only be solved in certain simple cases especially because the fields are influenced by the collective motion of all the particles. For a certain class of problems it is possible to work out a procedure for decreasing the number of variables and thus simplify the characteristic equations. In this work the following cases are considered and equations derived: equations for the macroscopic motion of the plasma; hydrodynamics of a low pressure plasma; instability of plasma in a magnetic field with an anisotropic ion velocity distribution; stability of a pinched cylindrical plasma using the kinetic equation; non-linear one-dimensional motion of a rarefied plasma.

  19. Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V

    International Nuclear Information System (INIS)

    Juárez, Carmen; Girart, Josep M.; Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier; Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab; Zhang, Qizhou; Qiu, Keping

    2017-01-01

    We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s −1 , converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.

  20. Cladding nuclear steels - the application of plasma-arc hot wire surfacing

    International Nuclear Information System (INIS)

    Trarbach, K.O.

    1981-01-01

    The effect of one and two layer plasma-arc hot wire cladding on the HAZ microstructure of the fine grained structural steel 22 NiMoCr 3 7, which is similar to ASTM A 508, class 2, and steel 20 MnMoNi 5 5, similar to ASTM A 533, grade B, class 1 is determined. Attention is directed particularly to the behaviour of the susceptible region, and the consumables considered are cladding materials X 2 CrNiNb 19 9, similar to ER 347 Elc, and S-NiCr 20 Nb, similar to ER NiCr-3 (Inconel 82). Results of corrosion resistance tests show that this cladding technique can be recommended for manufacture of equipment for the chemical industry to avoid corrosion failure. Plasma-arc hot wire surfacing is also shown to be capable of depositing single or double clad layers to meet the highest safety requirements and could be applied to nuclear power plants for the special manufacture of wear resistant parts and for protection of equipment subject to a variety of corrosive environments. (U.K.)

  1. Dual-function magnetic structure for toroidal plasma devices

    International Nuclear Information System (INIS)

    Brown, R.L.

    1978-01-01

    This invention relates to a support system wherein the iron core and yoke of the plasma current system of a tokamak plasma containment device is redesigned to support the forces of the magnet coils. The containment rings, which occupy very valuable space around the magnet coils, are utilized to serve as yokes for the core such that the conventional yoke is eliminated. The overall result is an improved aspect ratio, reduction in structure, smaller overall size, and improved access to the plasma ring

  2. Plasma flow in a curved magnetic field

    International Nuclear Information System (INIS)

    Lindberg, L.

    1977-09-01

    A beam of collisionless plasma is injected along a longitudinal magnetic field into a region of curved magnetic field. Two unpredicted phenomena are observed: The beam becomes deflected in the direction opposite to that in which the field is curved, and it contracts to a flat slab in the plane of curvature of the magnetic field. The phenomenon is of a general character and can be expected to occur in a very wide range of densities. The lower density limit is set by the condition for self-polarization, nm sub(i)/epsilon 0 B 2 >> 1 or, which is equivalent, c 2 /v 2 sub(A) >> 1, where c is the velocity of light, and v sup(A) the Alfven velocity. The upper limit is presumably set by the requirement ωsub(e)tau(e) >> 1. The phenomenon is likely to be of importance e.g. for injection of plasma into magnetic bottles and in space and solar physics. The paper illustrates the comlexity of plasma flow phenomena and the importance of close contact between experimental and theoretical work. (author)

  3. Properties of plasma sheath with ion temperature in magnetic fusion devices

    International Nuclear Information System (INIS)

    Liu Jinyuan; Wang Feng; Sun Jizhong

    2011-01-01

    The plasma sheath properties in a strong magnetic field are investigated in this work using a steady state two-fluid model. The motion of ions is affected heavily by the strong magnetic field in fusion devices; meanwhile, the effect of ion temperature cannot be neglected for the plasma in such devices. A criterion for the plasma sheath in a strong magnetic field, which differs from the well-known Bohm criterion for low temperature plasma sheath, is established theoretically with a fluid model. The fluid model is then solved numerically to obtain detailed sheath information under different ion temperatures, plasma densities, and magnetic field strengths.

  4. Characteristics of an elongated plasma column produced by magnetically coupled hollow cathode plasma source

    Science.gov (United States)

    Bhuva, M. P.; Karkari, S. K.; Kumar, Sunil

    2018-03-01

    An elongated plasma column in the presence of an axial magnetic field has been formed using a cylindrical hollow cathode (HC) and a constricted anode (CA). The plasma characteristics of the central line have been found to vary with the magnetic field strength and the axial distance from the source. It is believed that the primary electrons constituting the discharge current are steered by the axial magnetic field to undertake ionizing collisions along the plasma column. The current carrying electrons from the HC reach the anode by cross-field diffusion towards the central line. The above observation has been substantiated using a phenomenological model which links the observed characteristics of the source with the plasma column. The experimental results are found to be in qualitative agreement with the model.

  5. Electromagnetic Calculation and Plasma Leakage Rate Analysis of the Magnetically Confined Plasma Rocket

    International Nuclear Information System (INIS)

    Ni Zhipeng; Wang Liangbin; Li Jiangang; Chen Zhiyou; Zhang Yong; Wang Futang

    2008-01-01

    An electromagnetic calculation and the parameters of the magnet system of the magnetically confined plasma rocket were established. By using ANSYS code, it was found that the leakage rate depends on the current intensity of the magnet and the change of the magnet position.

  6. Novel magnetic controlled plasma sputtering method

    International Nuclear Information System (INIS)

    Axelevich, A.; Rabinovich, E.; Golan, G.

    1996-01-01

    A novel method to improve thin film vacuum sputtering is presented. This method is capable of controlling the sputtering plasma via an external set of magnets, in a similar fashion to the tetrode sputtering method. The main advantage of the Magnetic Controlled Plasma Sputtering (MCPS) is its ability to independently control all deposition parameters without any interference or cross-talk. Deposition rate, using the MCPS, is found to be almost twice the rate of triode and tetrode sputtering techniques. Experimental results using the MCPS to deposit Ni layers are described. It was demonstrated that using the MCPS method the ion beam intensity at the target is a result of the interaction of a homogeneous external magnetic field and the controlling magnetic fields. The MCPS method was therefore found to be beneficial for the production of pure stoichiometric thin solid films with high reproducibility. This method could be used for the production of compound thin films as well. (authors)

  7. Slow convection of a magnetized plasma and the earth plasma sheet

    International Nuclear Information System (INIS)

    Hruska, A.

    1980-01-01

    Stationary convection of an isotropic, infinitely conducting plasma in a magnetic field with non-trivial geometry is discussed under the assumption that the inertial term in the equation of motion may be ignored. The energy gained or lost by a volume element of plasma per unit time does not vary along the field-lines. Simple relations between the components of the current density, depending on the field-line geometry, exist. Similar relations hold for the components of the plasma velocity. The theoretical analysis is applied to the geomagnetically-quiet plasma sheet and a qualitative physical picture of the sheet is suggested. The observed structure of the sheet is compatible with Axford-Hines type of convection perhaps combined with a low-speed flow from a distant neutral point. The magnetic-field-aligned currents are driven by the deformations of the closed field-lines which are enforced by the solar wind. (orig.)

  8. Magnetic field propagation in a two ion species planar plasma opening switch

    International Nuclear Information System (INIS)

    Strauss, H. R.; Doron, R.; Arad, R.; Rubinstein, B.; Maron, Y.; Fruchtman, A.

    2007-01-01

    Three fluid plasma evolution equations are applied to the problem of magnetic field propagation in a planar plasma opening switch. For certain initial conditions in which Hall parameter H∼1, magnetic field penetration due to the Hall field, initially, as expected, either opposes or adds to the hydromagnetic pushing, depending on the polarity of the magnetic field relative to the density gradient. Later, however, the plasma pushing by the magnetic field is found in the case studied here to modify the plasma density in a way that the density gradient tends to align with the magnetic field gradient, effectively turning off the Hall effect. The penetration of the magnetic field then ceases and plasma pushing becomes the dominant process

  9. Transport quasiparticles and transverse interactions in quark-gluon plasmas

    International Nuclear Information System (INIS)

    Baym, Gordon

    1996-01-01

    Calculations of the properties of interacting quark-gluon plasmas are beset by infrared divergences associated with the fact that magnetic interactions, i.e., those occurring through exchange of transverse gluons, are, in the absence of a 'magnetic mass''in QCD, not screened. In this lecture we discuss the effects of magnetic interactions on the transport coefficients and the quasiparticle structure of quark-gluon plasmas. We describe how inclusion of dynamical screening effects - corresponding to Landau damping of the virtual quanta exchanged - leads to finite transport scattering rates. In the weak coupling limit, dynamical screening effects dominate over a magnetic mass. We illustrate the breakdown of the quasi particle structure of degenerate plasmas caused by long-ranged magnetic interactions, describe the structure of fermion quasiparticles in hot relativistic plasmas, and touch briefly on the problem of the lifetime of quasiparticle in the presence of long-ranged magnetic interactions. (author)

  10. Optimal Design of Magnetic ComponentsinPlasma Cutting Power Supply

    Science.gov (United States)

    Jiang, J. F.; Zhu, B. R.; Zhao, W. N.; Yang, X. J.; Tang, H. J.

    2017-10-01

    Phase-shifted transformer and DC reactor are usually needed in chopper plasma cutting power supply. Because of high power rate, the loss of magnetic components may reach to several kilowatts, which seriously affects the conversion efficiency. Therefore, it is necessary to research and design low loss magnetic components by means of efficient magnetic materials and optimal design methods. The main task in this paper is to compare the core loss of different magnetic material, to analyze the influence of transformer structure, winding arrangement and wire structure on the characteristics of magnetic component. Then another task is to select suitable magnetic material, structure and wire in order to reduce the loss and volume of magnetic components. Based on the above outcome, the optimization design process of transformer and dc reactor are proposed in chopper plasma cutting power supply with a lot of solutions. These solutions are analyzed and compared before the determination of the optimal solution in order to reduce the volume and power loss of the two magnetic components and improve the conversion efficiency of plasma cutting power supply.

  11. Plasma cluster acceleration by means of external magnetic fields

    International Nuclear Information System (INIS)

    Kracik, J.; Maloch, J.; Sobra, K.

    1975-01-01

    The electromagnetic shock tubes are used not only for shock wave creation and study but also for pulse plasma acceleration. By applying the rail acceleration the external magnetic field perpendicular to the plasma cluster velocity can be increased. In the present work is theoretically and experimentally confirmed the external magnetic field influence on the plasma cluster acceleration when the 'snow plough' model is used. (Auth.)

  12. Influence of pinches on magnetic reconnection in turbulent space plasmas

    Science.gov (United States)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey

    A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.

  13. Streaming-plasma measurements in the Baseball II-T mirror experiment

    International Nuclear Information System (INIS)

    Damm, C.C.; Foote, J.H.; Futch, A.H.; Goodman, R.K.; Hornady, R.S.; Osher, J.E.; Porter, G.D.

    1977-01-01

    The warm plasma from a deuterium-loaded titanium washer gun, streaming along magnetic-field lines through the steady-state magnetic well of Baseball II, has been examined for its suitability in this experimental situation as a target plasma for hot-ion buildup experiments and for microinstability control. The gun was positioned near the magnetic axis outside the mirror region. Measurements were made with gridded, end-loss detectors placed outside the opposite mirror, a microwave interferometer, a beam-attenuation detector, and other diagnostics

  14. Occurrence of Equatorial Plasma Bubbles during Intense Magnetic Storms

    Directory of Open Access Journals (Sweden)

    Chao-Song Huang

    2011-01-01

    Full Text Available An important issue in low-latitude ionospheric space weather is how magnetic storms affect the generation of equatorial plasma bubbles. In this study, we present the measurements of the ion density and velocity in the evening equatorial ionosphere by the Defense Meteorological Satellite Program (DMSP satellites during 22 intense magnetic storms. The DMSP measurements show that deep ion density depletions (plasma bubbles are generated after the interplanetary magnetic field (IMF turns southward. The time delay between the IMF southward turning and the first DMSP detection of plasma depletions decreases with the minimum value of the IMF Bz, the maximum value of the interplanetary electric field (IEF Ey, and the magnitude of the Dst index. The results of this study provide strong evidence that penetration electric field associated with southward IMF during the main phase of magnetic storms increases the generation of equatorial plasma bubbles in the evening sector.

  15. Collective fluctuations in magnetized plasma: Transition probability approach

    International Nuclear Information System (INIS)

    Sosenko, P.P.

    1997-01-01

    Statistical plasma electrodynamics is elaborated with special emphasis on the transition probability approach and quasi-particles, and on modern applications to magnetized plasmas. Fluctuation spectra in the magnetized plasma are calculated in the range of low frequencies (with respect to the cyclotron one), and the conditions for the transition from incoherent to collective fluctuations are established. The role of finite-Larmor-radius effects and particle polarization drift in such a transition is explained. The ion collective features in fluctuation spectra are studied. 63 refs., 30 figs

  16. A theoretical study of hot plasma spheroids in the presence of low-frequency electromagnetic waves

    Science.gov (United States)

    Ahmadizadeh, Y.; Jazi, B.; Barjesteh, S.

    2016-07-01

    While taking into account thermal motion of electrons, scattering of electromagnetic waves with low frequency from hot plasma spheroids is investigated. In this theoretical research, ions are heavy to respond to electromagnetic fluctuations. The solution of scalar wave equation in spheroidal coordinates for electric potential inside the plasma spheroids are obtained. The variations of resonance frequencies vs. Debye length are studied and consistency between the obtained results in this paper and the results for the well-known plasma objects such as plasma column and spherical plasma have been proved.

  17. Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel

    International Nuclear Information System (INIS)

    Chen, S.; Butler, J.; Melzer, S.

    2014-01-01

    In this study, both asymmetric hot rolling (AHR) and conventional hot rolling (CHR) were carried out to study the effect of the hot rolling conditions on the evolution of the texture and microstructure in a non-grain oriented (NGO) steel. The microstructure and texture in the subsequent processing stages were characterised and related to the final magnetic properties. The results show that AHR, compared with CHR, tends to homogenise texture through thickness of the hot band strips. AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips, which are favourable features in relation to the magnetic properties of the strip. However, the favourable features observed in hot rolled AHR strips are eliminated after cold rolling and annealing. Contrarily, the required θ-fibre is decreased and the unwanted γ-fibre is intensified in the AHR sheet after cold rolling and their strength is maintained in the subsequent process steps. On the other hand, AHR does not produce a discernible change in the grain size in the hot band annealed strip and in the final annealed sheet, except that the magnetic anisotropy in the AHR is improved after skin pass and extra annealing as the result of the redistribution of the texture components within the θ-fibre, no significant improvement of the magnetic properties as a direct consequence of the application of asymmetric hot rolling has been observed under the current AHR experimental conditions. - Highlights: • Asymmetrical hot rolling (AHR) produces more uniform distribution of texture through the thickness of the hot rolled strips and of the hot band annealed strips when compared with conventional hot rolling (CHR). • AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips. The θ-fibre is decreased but the γ-fibre is intensified in the AHR sheet after cold rolling

  18. Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S., E-mail: Shangping.chen@tatasteel.com [Tata Steel, 1970 CA IJmuiden (Netherlands); Butler, J. [Tata Steel, S60 3AR South Yorkshire (United Kingdom); Melzer, S. [Tata Steel, 1970 CA IJmuiden (Netherlands)

    2014-11-15

    In this study, both asymmetric hot rolling (AHR) and conventional hot rolling (CHR) were carried out to study the effect of the hot rolling conditions on the evolution of the texture and microstructure in a non-grain oriented (NGO) steel. The microstructure and texture in the subsequent processing stages were characterised and related to the final magnetic properties. The results show that AHR, compared with CHR, tends to homogenise texture through thickness of the hot band strips. AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips, which are favourable features in relation to the magnetic properties of the strip. However, the favourable features observed in hot rolled AHR strips are eliminated after cold rolling and annealing. Contrarily, the required θ-fibre is decreased and the unwanted γ-fibre is intensified in the AHR sheet after cold rolling and their strength is maintained in the subsequent process steps. On the other hand, AHR does not produce a discernible change in the grain size in the hot band annealed strip and in the final annealed sheet, except that the magnetic anisotropy in the AHR is improved after skin pass and extra annealing as the result of the redistribution of the texture components within the θ-fibre, no significant improvement of the magnetic properties as a direct consequence of the application of asymmetric hot rolling has been observed under the current AHR experimental conditions. - Highlights: • Asymmetrical hot rolling (AHR) produces more uniform distribution of texture through the thickness of the hot rolled strips and of the hot band annealed strips when compared with conventional hot rolling (CHR). • AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips. The θ-fibre is decreased but the γ-fibre is intensified in the AHR sheet after cold rolling

  19. Influence of magnetic window for mitigating on antenna performance in plasma

    International Nuclear Information System (INIS)

    Xing Xiaojun; Zhao Qing; Zheng Ling; Tang Jianming; Chen Yuxu; Liu Shuzhang

    2013-01-01

    The communication blackout caused by the plasma sheath around a hypersonic vehicle flying in atmosphere is a problem to aerospace vehicles. When a vehicle enters the communication blackout phase, it loses all communication including GPS signals, data telemetry, and voice communication. The communication blackout becomes an even more critical issue with development of re-entry vehicles missions. During such missions, the communication loss caused by radio blackout introduces significant problems related to the vehicle's safety. This paper analyzes the interaction of electromagnetic waves with plasma in an external magnetic field in theory. The external magnetic field can improve the transmission of electromagnetic waves in plasma from the theoretical analysis. The magnetic window antenna which is designed by integrating the permanent magnet and the helical antenna is proposed. The performance of the helical antenna and magnetic window antenna in plasma is studied. The simulation results show that using the magnetic window antenna can weaken the influence on the antenna performance in plasma. The magnetic window antenna makes it possible for electromagnetic waves to spread in plasma. This provides another way to solve the problem of spacecraft re-entry blackout. (authors)

  20. Research status of fast flows and shocks in laboratory plasmas. Supersonic plasma flow and shock waves in various magnetic channels

    International Nuclear Information System (INIS)

    Inutake, Masaaki; Ando, Akira

    2007-01-01

    Fast plasma flow is produced by Magneto-Plasma-Dynamic Arcjet (MPDA). The properties of fast flow and shock wave in various magnetic channels are reported by the experiment results. Fast plasma flow by MPDA, shocked flow in the magnetic channel, supersonic plasma flow in the divergence magnetic nozzle, ion acoustic wave in the mirror field, transonic flow and sonic throat in the magnetic Laval nozzle, fast flow in the helical magnetic channel, and future subjects are reported. Formation of the supersonic plasma flow by the divergence magnetic nozzle and effects of background gas, helical-kink instability in the fast plasma jet, and formation of convergence magnetic nozzle near outlet are described. From the phase difference of azimuthal and axial probe array signals, the plasma has twisted structure and it rotates in the same direction of the twist. Section of MPDA, principle of magnetic acceleration of MPDA, HITOP, relation among velocities, temperature, and Mach number of He ion and atom and the discharge current, distribution of magnetic-flux density in the direction of electromagnetic field, measurement of magnetic field near MPDA exit are illustrated. (S.Y.)

  1. Relaxational dissipation of magnetic field energy in a rarefied plasma

    International Nuclear Information System (INIS)

    Vekshtejn, G.E.

    1987-01-01

    A mechanism of solar corona plasma heating connected with relaxation of a magnetic configuration in the corona to the state of the magnetic energy minimum at restrictions imposed by high conductivity of a medium is considered. Photospheric plasma pulsations leading to generation of longitudinal currents in the corona are in this case energy sources. The excess magnetic energy of these currents is dissipated as a result of reclosing of force lines of the magnetic field in narrow current layers. Plasmaturbulence related to the process of magnetic reclosing is phenomenologically described in this case by introducing certain characteristic time of relaxation. Such an approach permits to relate the plasma heating energy with parameters of photospheric motions in the framework of a simple model of the magnetic field

  2. Rippled plasma wall accelerating structures

    International Nuclear Information System (INIS)

    Cavenago, M.

    1992-01-01

    A concept to form a hot, pulsed, inhomogeneous plasma and to use it as a linac structure is presented. The plasma spatial distribution is controlled by an external magnetic field and by the location of thermionic emitters; microwave ECR heating at frequency ω 1 favours plasma build up and reduces plasma resistivity. A shorter microwave pulse with frequency ω 2 ≠ ω 1 excites a longitudinal mode. An expression for the maximum attainable accelerating field is found. A linearized theory of accelerating modes is given. (Author) 6 refs., 3 figs

  3. Analysis of plasma behavior and electro-magnetic interaction between plasma and device

    International Nuclear Information System (INIS)

    Kobayashi, Tomofumi

    1980-01-01

    A simulation program for the analysis of plasma behavior and the electromagnetic interaction between plasma and device has been developed. The program consists of a part for the analysis of plasma behavior (plasma system) and a part for the analysis of the electro-magnetic interaction between plasma and devices (circuit system). The parameters which connect the plasma system and the circuit system are the electric resistance of plasma, the internal inductance, and the plasma current. For the plasma system, the simultaneous equations which describe the density distribution of plasma particles, the temperature distribution of electrons and ions, and the space-time variation of current density distribution were derived. The one-dimensional plasma column in γ-direction was considered. The electric resistance and the internal inductance can be deduced. The circuit components are a current transformer, a vertical field coil, a quadrupole field coil, a vacuum chamber and others. An equation which describes plasma position and the shape of cross section is introduced. The plasma position can be known by solving the Mukhavatov's formula of equilibrium. By using this program, the build-up process of plasma current in JT-60 was analysed. It was found that the expansion of plasma sub radius and the control of current distribution by gas injection are the effective methods to obtain high temperature and high density plasma. The eddy current induced in a vacuum vessel shields 40 percent of magnetic field made in the plasma region by a vertical field coil. (Kato, T.)

  4. On tenuous plasmas, fireballs, and boundary layers in the earth's magnetotail

    Science.gov (United States)

    Frank, L. A.; Ackerson, K. L.; Lepping, R. P.

    1976-01-01

    The plasma instrumentation (the Lepedea) and the magnetometer aboard IMP 8 performed correlative measurements of magnetic fields and plasmas within the geomagnetic tail at geocentric radial distances of about 23-46 R-E during March-October 1974. The hot tenuous plasmas within the plasma sheet were found to be in a state of almost continuous flow and were threaded with northward, or closed geomagnetic lines. The satellite encountered a region of acceleration in the magnetotail, the 'fireball' which exhibits strong jetting of plasmas in excess of 1000 km/s, proton temperatures of about 10 to the 7th K, disordered magnetic fields, southward magnetic fields during tailward jetting of plasmas, and northward magnetic fields for fast plasma flows toward earth. In addition, the magnetosheath plasmas within the boundary layers which are contiguous to the plasma sheet display evidence of plasma heating, great changes in bulk flow velocities, and acceleration of energetic electrons with an energy of greater than 45 keV.

  5. Quasiparticles in non-uniformly magnetized plasma

    International Nuclear Information System (INIS)

    Sosenko, P.P.

    1994-01-01

    A quasiparticle concept is generalized for the case of non-uniformly magnetized plasma. Exact and reduced continuity equations for the microscopic density in the quasiparticle phase space are derived, and the nature of quasiparticles is analyzed. The theory is developed for the general case of relativistic particles in electromagnetic fields, besides non-uniform but stationary magnetic fields. Effects of non-stationary magnetic fields are briefly investigated also. 26 refs

  6. METHOD FOR EXCHANGING ENERGY WITH A PLASMA BY MAGNETIC PUMPING

    Science.gov (United States)

    Hall, L.S.

    1963-12-31

    A method of heating a plasma confined by a static magnetic field is presented. A time-varying magnetic field having a rise time to a predetermined value substantially less than its fall time is applied to a portion of the plasma. Because of the much shorter rise time, the plasma is reversibly heated. This cycle is repeated until the desired plasma temperature is reached. (AEC)

  7. Expansion of dense particle clouds in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Lengyel, L.L.

    1988-01-01

    A single-cell Lagrangian model has been developed for calculating the ionization and expansion dynamics of high-density clouds in magnetic fields or in magnetically confined plasmas. The model was tested by means of data from magnetospheric barium cloud experiments and approximately reproduced such global characteristics as expansion rate, stopping radius, stopping time, and magnetic cavity lifetime. Detailed calculations were performed for hydrogen clouds associated with the injection of frozen hydrogen pellets into tokamak plasmas. The dynamic characteristics of the cloud expansion, such as ionization radius, stopping time, lifetime, oscillation frequencies, and amplitudes, etc., are computed as functions of the magnetic field strength, the background plasma temperature, and the cloud mass. The results are analyzed and compared with experimental observations

  8. An experimental determination of the hot electron ring geometry in a Bumpy Torus and its implications for Bumpy Torus stability

    International Nuclear Information System (INIS)

    Hillis, D.L.; Wilgen, J.B.; Bigelow, T.S.; Jaeger, E.F.; Swain, D.W.; Hankins, O.E.; Juhala, R.E.

    1986-10-01

    The hot electron rings of the ELMO Bumpy Torus (EBT) [Plasma Physics and Controlled Nuclear Fusion (IAEA, Vienna, 1975), Vol. II, p. 141] are formed by electron cyclotron resonance heating (ECRH) and have an electron temperature of 350 to 500 keV. The original intention of these hot electron rings was to provide a local minimum in the magnetic field and, thereby, stabilize the simple interchange and flute modes, which are inherent in a closed field line bumpy torus. To evaluate the electron energy density of the EBT rings and determine if enough stored energy is present to provide a local minimum in the magnetic field, a detailed understanding of the spatial distribution of the rings is imperative. The purpose of this report is to measure the ring thickness and investigate its implications for bumpy torus stability. The spatial location and radial profile of the hot electron ring are measured with a unique metal ball pellet injector, which injects small metallic balls into the EBT ring plasma. From these measurements the radial extent (or ring thickness) is about 5 to 7 cm full width at half maximum for typical EBT operation, which is much larger than previously expected. These measurements and recent modeling of the EBT plasma indicate that the hot electron ring's stored energy may not be sufficient to produce a local minimum in the magnetic field

  9. Spectral line intensity irreversibility in circulatory plasma magnetization processes

    Science.gov (United States)

    Qu, Z. Q.; Dun, G. T.

    2012-01-01

    Spectral line intensity variation is found to be irreversible in circulatory plasma magnetization process by experiments described in this paper, i.e., the curves illustrating spectral line photon fluxes irradiated from a light source immerged in a magnetic field by increasing the magnetic induction cannot be reproduced by decreasing the magnetic induction within the errors. There are two plasma magnetization patterns found. One shows that the intensities are greater at the same magnetic inductions during the magnetic induction decreasing process after the increasing, and the other gives the opposite effect. This reveals that the magneto-induced excitation and de-excitation process is irreversible like ferromagnetic magnetization. But the two irreversible processes are very different in many aspects stated in the text.

  10. Experimental and numerical study of electromagnetically induced transparency in magnetized plasmas

    International Nuclear Information System (INIS)

    Kawamori, Eiichirou; Hsieh, Tung-Yuan; Nishida, Yasushi; Cheng, C-Z

    2012-01-01

    We present a demonstration of electromagnetically induced transparency (EIT) in magnetized plasmas by means of experiment and numerical simulation. EIT in magnetized plasmas is a phenomenon by which a plasma-absorbing electron cyclotron wave is rendered transparent by a pump wave, which is a classical analog to conventional quantum EIT although the plasma EIT is not a quantum-mechanics-based phenomenon. This paper describes an attempt to identify plasma oscillations excited by the mode coupling of a pump wave and a probe wave, which is a key mechanism for achieving magnetized plasma EIT, by an experiment and a particle-in-cell (PIC) simulation. A preliminary result of the longitudinal electric field measurement indicates an enhancement of the plasma oscillation in the vicinity of the beat frequency between the probe and pump waves. Also the PIC calculation, which simulated the real experiment, shows a plasma oscillation excited by the mode coupling between the probe and pump waves in the magnetized plasma EIT, showing agreement with theory and experiment. (paper)

  11. Plasma flow healing of magnetic islands in stellarators

    International Nuclear Information System (INIS)

    Hegna, C. C.

    2012-01-01

    Recent experiments from the large helical device (LHD) demonstrate a correlation between the “healing” of vacuum magnetic islands in stellarators and changes in the plasma flow. A model explaining this phenomenon is developed based on self-consistent torque balance and island evolution equations. In conventional stellarators, neoclassical flow damping physics plays an important role in establishing the flow profiles. The balance of neoclassical damping and cross-field viscosity produces a radial boundary layer for the plasma rotation profile outside the separatrix of a locked magnetic island. The width of this boundary layer decreases as the plasma becomes less collisional. Associated with these flow effects are plasma currents flowing in the island region that attempt to suppress island formation. These currents are enhanced as the collisionality drops making magnetic island healing occur more readily in high temperature conventional stellarators. The analytic theory produces a critical β for healing that scales monotonically with collisionality and is in qualitative agreement with LHD observations.

  12. Studies on the transmission of sub-THz waves in magnetized inhomogeneous plasma sheath

    Science.gov (United States)

    Yuan, Kai; Shen, Linfang; Yao, Ming; Deng, Xiaohua; Chen, Zhou; Hong, Lujun

    2018-01-01

    There have been many studies on the sub-terahertz (sub-THz) wave transmission in reentry plasma sheaths. However, only some of them have paid attention to the transmission of sub-THz waves in magnetized plasma sheaths. In this paper, the transmission of sub-THz waves in both unmagnetized and magnetized reentry plasma sheaths was investigated. The impacts of temporal evolution of the plasma sheath on the wave transmission were studied. The transmission of "atmospheric window" frequencies in a magnetized plasma sheath was discussed in detail. According to the study, the power transmission rates (Tp) for the left hand circular (LHC) and the right hand circular modes in the magnetized plasma sheath are obviously higher and lower than those in the unmagnetized plasma sheath, respectively. The Tp of LHC mode increases with both wave frequency and external magnetic field strength. Also, the Tp of LHC mode in both magnetized and unmagnetized plasma sheaths varies with time due to the temporal evolution of the plasma sheath. Moreover, the performance of sub-THz waves in magnetized plasma sheath hints at a new approach to the "blackout" problem. The new approach, which is in the capability of modern technology, is to utilize the communication system operating at 140 GHz with an onboard magnet installed near the antenna.

  13. Suppression of sawtooth oscillations due to hot electrons and hot ions

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Berk, H.L.

    1989-01-01

    The theory of m = 1 kink mode stabilization is discussed in the presence of either magnetically trapped hot electrons or hot ions. For instability hot ion requires particles peaked inside the q = 1 surface, while hot electrons require that its pressure profile be increasing at the q = 1 surface. Experimentally observed sawtooth stabilization usually occurs with off-axis heating with ECRH and near axis heating with ICRH. Such heating may produce the magnetically trapped hot particle pressure profiles that are consistent with theory. 17 refs., 2 figs

  14. Solenoidal magnetic field influences the beam neutralization by a background plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.

    2004-01-01

    An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration is much longer than the electron plasma period. In the opposite limit, the beam pulse excites large-amplitude plasma waves. Figure 1 shows the influence of a solenoidal magnetic field on charge and current neutralization. Analytical studies show that the solenoidal magnetic field begins to influence the radial electron motion when ω ce > βω pe . Here, ω ce is the electron gyrofrequency, ω pe is the electron plasma frequency, and β = V b /c is the ion beam velocity. If a solenoidal magnetic field is not applied, plasma waves do not propagate. In contrast, in the presence of a solenoidal magnetic field, whistler waves propagate ahead of the beam and can perturb the plasma ahead of the beam pulse. In the limit ω ce >> βω pe , the electron current completely neutralizes the ion beam current and the beam self magnetic field greatly diminishes. Application of an external solenoidal magnetic field clearly makes the collective processes of ion beam-plasma interactions rich in physics content. Many results of the PIC simulations remain to be explained by analytical theory. Four new papers have been published or submitted describing plasma neutralization of an intense ion beam pulse

  15. Magnetic diagnostic plasma position in the TCA/BR tokamak

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Kuznetsov, Yu.K.; Nascimento, I.C.

    1996-01-01

    The cross-section of the plasma column is TCA/BR has a nearly circular plasma shape. This allows implementation of simplified methods of magnetic diagnostics. Although these methods were in may tokamaks and are well described, their accuracies are not clearly defined because the very simplified theoretical model of plasma equilibrium on which they are based differs from the real conditions in tokamaks like TCA/BR. In this paper we present the methods of plasma position diagnostics in TCA/BR from external magnetic measurements with an error analysis. (author). 4 refs., 3 figs

  16. Toroidal plasma reactor with low external magnetic field

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Khayrutdinov, R.R.; Petviashvili, V.I.; Tajima, T.; Gordin, V.A.; Tajima, T.

    1991-01-01

    A toroidal pinch configuration with safety factor q < 0.5 decreasing from the center to periphery without field reversal is proposed. This is capable of containing high pressure plasma with only small toroidal external magnetic field. Sufficient conditions for magnetohydrodynamic stability are fulfilled in this configuration. The stability is studied by constructing the Lyapunov functional and investigating its extrema both analytically and numerically. Comparison of the Lyapunov stability conditions with the conventional linear theory is carried out. Stable configurations are found with average β near 15%, with magnetic field associated mainly with plasma current. The β value calculated with the external magnetic field can be over 100%. Fast charged particles produced by fusion reactions are asymmetrically confined by the poloidal magnetic field (and due to the lack of strong toroidal field). They thus generate a current in the noncentral part of plasma to reinforce the poloidal field. This current drive can sustain the monotonic decrease of q with radius. 20 refs., 9 figs

  17. Neutral beam injection and plasma convection in a magnetic field

    International Nuclear Information System (INIS)

    Okuda, H.; Hiroe, S.

    1988-06-01

    Injection of a neutral beam into a plasma in a magnetic field has been studied by means of numerical plasma simulations. It is found that, in the absence of a rotational transform, the convection electric field arising from the polarization charges at the edges of the beam is dissipated by turbulent plasma convection, leading to anomalous plasma diffusion across the magnetic field. The convection electric field increases with the beam density and beam energy. In the presence of a rotational transform, polarization charges can be neutralized by the electron motion along the magnetic field. Even in the presence of a rotational transform, a steady-state convection electric field and, hence, anomalous plasma diffusion can develop when a neutral beam is constantly injected into a plasma. Theoretical investigations on the convection electric field are described for a plasma in the presence of rotational transform. 11 refs., 19 figs

  18. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    Science.gov (United States)

    2016-08-19

    Science, University ofMichigan, AnnArbor,MI 48109-2099, USA E-mail: czulick@umich.edu Keywords: laser- plasma ,mass-limited, fast electrons , sheath...New J. Phys. 18 (2016) 063020 doi:10.1088/1367-2630/18/6/063020 PAPER Target surface area effects on hot electron dynamics from high intensity laser... plasma interactions CZulick, ARaymond,AMcKelvey, VChvykov, AMaksimchuk, AGRThomas, LWillingale, VYanovsky andKKrushelnick Center forUltrafast Optical

  19. X-ray Spectroscopy of Hot Dense Plasmas: Experimental Limits, Line Shifts and Field Effects

    International Nuclear Information System (INIS)

    Renner, Oldrich; Sauvan, Patrick; Dalimier, Elisabeth; Riconda, Caterina; Rosmej, Frank B.; Weber, Stefan; Nicolai, Philippe; Peyrusse, Olivier; Uschmann, Ingo; Hoefer, Sebastian; Kaempfer, Tino; Loetzsch, Robert; Zastrau, Ulf; Foerster, Eckhart; Oks, Eugene

    2008-01-01

    High-resolution x-ray spectroscopy is capable of providing complex information on environmental conditions in hot dense plasmas. Benefiting from application of modern spectroscopic methods, we report experiments aiming at identification of different phenomena occurring in laser-produced plasma. Fine features observed in broadened profiles of the emitted x-ray lines and their satellites are interpreted using theoretical models predicting spectra modification under diverse experimental situations.

  20. Magnetic reconnection and self-organized plasma systems

    International Nuclear Information System (INIS)

    Yamada, Masaaki; Ji, Hantao

    2000-01-01

    In this paper the recent results from the Magnetic Reconnection Experiment (MRX) at PPPL are discussed along with their relationship to observations from solar flares, the magnetosphere, and current carrying pinch discharges such as tokamaks, reversed field pinches, spheromaks and field reversed configurations. It is found that the reconnection speed decreases as the angle of merging field lines decreases, consistent with the well-established observation in the dayside magnetosphere. This observation can also provide a qualitative interpretation of a generally observed trend in pinch plasmas, namely that magnetic field diffuses (or reconnects) faster when magnetic shear is larger. A recently conceived research project, SPIRIT (Self-organized Plasma with Induction, Reconnection, and Injection Techniques), will also be discussed. (author)

  1. Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Carmen; Girart, Josep M. [Institut de Ciències de l’Espai, (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193 Cerdanyola del Vallès, Catalonia (Spain); Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090, Morelia, Michoacán (Mexico); Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, 10617, Taiwan (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping, E-mail: juarez@ice.cat [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China)

    2017-07-20

    We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s{sup −1}, converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.

  2. A collisional-radiative average atom model for hot plasmas

    International Nuclear Information System (INIS)

    Rozsnyai, B.F.

    1996-01-01

    A collisional-radiative 'average atom' (AA) model is presented for the calculation of opacities of hot plasmas not in the condition of local thermodynamic equilibrium (LTE). The electron impact and radiative rate constants are calculated using the dipole oscillator strengths of the average atom. A key element of the model is the photon escape probability which at present is calculated for a semi infinite slab. The Fermi statistics renders the rate equation for the AA level occupancies nonlinear, which requires iterations until the steady state. AA level occupancies are found. Detailed electronic configurations are built into the model after the self-consistent non-LTE AA state is found. The model shows a continuous transition from the non-LTE to the LTE state depending on the optical thickness of the plasma. 22 refs., 13 figs., 1 tab

  3. ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS

    International Nuclear Information System (INIS)

    Murphy, Nicholas A.; Lukin, Vyacheslav S.

    2015-01-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase

  4. Theory of plasma confinement in non-axisymmetric magnetic fields.

    Science.gov (United States)

    Helander, Per

    2014-08-01

    The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.

  5. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Roberto E., E-mail: roberto.navarro@ug.uchile.cl; Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Araneda, Jaime [Departamento de Física, Universidad de Concepción, Concepción 4070386 (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington, D. C. 20064 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad, CEIBA complejidad, Bogotá (Colombia)

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  6. Nonlinear Electron Waves in Strongly Magnetized Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens

    1980-01-01

    Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed....

  7. Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong, E-mail: kwhang@snu.ac.kr [Plasma Laboratory, Inter-University Semiconductor Research Center, Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyuk [Samsung Electronics Co., Banwol-dong, Hwaseong 445-701 (Korea, Republic of); Park, Wanjae [Tokyo Electron Miyagi Ltd., Taiwa-cho, Kurokawa-gun, Miyagi 981-3629 (Japan)

    2015-07-15

    Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.

  8. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    Science.gov (United States)

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  9. Plasma transport in mixed magnetic topologies

    International Nuclear Information System (INIS)

    Hegna, C.C.; Callen, J.D.

    1992-12-01

    A simple model is introduced to illustrate some features concerning anomalous transport associated with magnetic turbulence. For magnetic topologies that are described as bands of stochasticity separated by regions with good flux surfaces, the transport coefficients deviate significantly from those describing completely stochastic magnetic fields. It is possible to have the electron heat diffusivity exceed a runaway electron diffusion coefficient, despite the existence of widespread magnetic stochasticity. Comparing the ratios of transport coefficients is not an accurate way to determine whether anomalous plasma transport is controlled by electrostatic or electromagnetic fluctuations

  10. Jeans instability of self-gravitating magnetized strongly coupled plasma

    International Nuclear Information System (INIS)

    Prajapati, R P; Sharma, P K; Sanghvi, R K; Chhajlani, R K

    2012-01-01

    We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.

  11. Plasma self-oscillations in the temperature-limited current regime of a hot cathode discharge

    International Nuclear Information System (INIS)

    Arnas Capeau, C.; Bachet, G.; Doveil, F.

    1995-01-01

    Experimental observations of self-oscillations occurring in the so-called ''temperature-limited current regime'' of a hot cathode discharge are presented. Their frequency and amplitude are strongly dependent on the discharge parameters. The scaling laws of their variation and an example of a period-doubling route to chaos are reported. A two probe experiment showing that the plasma behavior is closely related to the hot cathode sheath stability is also reported. copyright 1995 American Institute of Physics

  12. Effects of Non-Maxwellian Plasma Species on ICRF Propagation and Absorption in Toroidal Magnetic Confinement Devices

    International Nuclear Information System (INIS)

    Dumont, R.J.; Phillips, C.K.; Smithe, D.N.

    2003-01-01

    Auxiliary heating supplied by externally launched electromagnetic waves is commonly used in toroidal magnetically confined fusion experiments for profile control via localized heating, current drive and perhaps flow shear. In these experiments, the confined plasma is often characterized by the presence of a significant population of non-thermal species arising from neutral beam injection, from acceleration of the particles by the applied waves, or from copious fusion reactions in future devices. Such non-thermal species may alter the wave propagation as well as the wave absorption dynamics in the plasma. Previous studies have treated the corresponding velocity distributions as either equivalent Maxwellians, or else have included realistic distributions only in the finite Larmor radius limit. In this work, the hot plasma dielectric response of the plasma has been generalized to treat arbitrary distribution functions in the non-relativistic limit. The generalized dielectric tensor has been incorporated into a one-dimensional full wave all-orders kinetic field code. Initial comparative studies of ion cyclotron range of frequency wave propagation and heating in plasmas with nonthermal species, represented by realistic distribution functions or by appropriately defined equivalent Maxwellians, have been completed for some specific experiments and are presented

  13. Maximum thermal energy density in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Coppi, B.

    1977-01-01

    The consequences of the limiting value of β that follows from analyzing the onset of high temperature ballooning modes is examined in high temperature regimes where the ideal MHD approximation is not strictly valid and for finite-β configurations exhibiting the main features of those that are obtained by magnetic flux conservation. These modes are localized over periodically space intervals of a given magnetic field line and are driven by the combined effects of finite plasma pressure and the locally unfavorable magnetic curvature. The effects of finite β, insofar as they shorten the effective connection length, steepen the pressure gradient, and influence the magnetic well dug by the plasma, are studied using a model dispersion relation. 14 references

  14. Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshova, M., E-mail: maryna.chernyshova@ipplm.pl [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gribkov, V.A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Kowalska-Strzeciwilk, E.; Kubkowska, M.; Miklaszewski, R.; Paduch, M.; Pisarczyk, T.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Demina, E.V.; Pimenov, V.N.; Maslyaev, S.A. [Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Bondarenko, G.G. [National Research University Higher School of Economics (HSE), Moscow (Russian Federation); Vilemova, M.; Matejicek, J. [Institute of Plasma Physics of the CAS, Prague (Czech Republic)

    2016-12-15

    Highlights: • Materials perspective for use in mainstream nuclear fusion facilities were studied. • Powerful streams of hot plasma and fast ions were used to induce irradiation. • High temporal, spatial, angular and spectral resolution available in experiments. • Results of irradiation were investigated by number of analysis techniques. - Abstract: A process of irradiating and ablating solid-state targets with hot plasma and fast ion streams in two Dense Plasma Focus (DPF) devices – PF-6 and PF-1000 was examined by applying a number of diagnostics of nanosecond time resolution. Materials perspective for use in chambers of the mainstream nuclear fusion facilities (mainly with inertial plasma confinement like NIF and Z-machine), intended both for the first wall and for constructions, have been irradiated in these simulators. Optical microscopy, SEM, Atomic Emission Spectroscopy, images in secondary electrons and in characteristic X-ray luminescence of different elements, and X-ray elemental analysis, gave results on damageability for a number of materials including low-activated ferritic and austenitic stainless steels, β-alloy of Ti, as well as two types of W and a composite on its base. With an increase of the number of shots irradiating the surface, its morphology changes from weakly pronounced wave-like structures or ridges to strongly developed ones. At later stages, due to the action of the secondary plasma produced near the target materials they melted, yielding both blisters and a fracturing pattern: first along the grain and then “in-between” the grains creating an intergranular net of microcracks. At the highest values of power flux densities multiple bubbles appeared. Furthermore, in this last case the cracks were developed because of microstresses at the solidification of melt. Presence of deuterium within the irradiated ferritic steel surface nanolayers is explained by capture of deuterons in lattice defects of the types of impurity atoms

  15. Plasma acceleration by magnetic nozzles and shock waves

    International Nuclear Information System (INIS)

    Hattori, Kunihiko; Murakami, Fumitake; Miyazaki, Hiroyuki; Imasaki, Atsushi; Yoshinuma, Mikirou; Ando, Akira; Inutake, Masaaki

    2001-01-01

    We have measured axial profiles of ion acoustic Mach number, M i , of a plasma flow blowing off from an MPD (magneto-plasma-dynamic) arc-jet in various magnetic configurations. It is found that the Mach number increases in a divergent nozzle up to 3, while it stays at about unity in a uniform magnetic channel. When a magnetic bump is added in the exit of the divergent magnetic nozzle, the Mach number suddenly decreases below unity, due to an occurrence of shock wave. The subsonic flow after the shock wave is re-accelerated to a supersonic flow through a magnetic Laval nozzle. This behavior is explained well by the one-dimensional isotropic flow model. The shock wave is discussed in relation to the Rankine-Hugoniot relation. (author)

  16. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    Science.gov (United States)

    Zanáška, M.; Adámek, J.; Peterka, M.; Kudrna, P.; Tichý, M.

    2015-03-01

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents Isat-/Isat+ to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.

  17. Proton probe measurement of fast advection of magnetic fields by hot electrons

    International Nuclear Information System (INIS)

    Willingale, L; Thomas, A G R; Nilson, P M; Kaluza, M C; Dangor, A E; Evans, R G; Fernandes, P; Haines, M G; Kamperidis, C; Kingham, R J; Ridgers, C P; Sherlock, M; Wei, M S; Najmudin, Z; Krushelnick, K; Bandyopadhyay, S; Notley, M; Minardi, S; Rozmus, W; Tatarakis, M

    2011-01-01

    A laser generated proton beam was used to measure the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target. At intensities of 10 15 W cm −2 , the significant hot electron production and strong heat fluxes result in non-local transport becoming important to describe the magnetic field dynamics. Two-dimensional implicit Vlasov–Fokker–Planck modeling shows that fast advection of the magnetic field from the focal region occurs via the Nernst effect at significantly higher velocities than the sound speed, v N /c s ≈ 10.

  18. MAGNETIC END CLOSURES FOR PLASMA CONFINING AND HEATING DEVICES

    Science.gov (United States)

    Post, R.F.

    1963-08-20

    More effective magnetic closure field regions for various open-ended containment magnetic fields used in fusion reactor devices are provided by several spaced, coaxially-aligned solenoids utilized to produce a series of nodal field regions of uniform or, preferably, of incrementally increasing intensity separated by lower intensity regions outwardly from the ends of said containment zone. Plasma sources may also be provided to inject plasma into said lower intensity areas to increase plasma density therein. Plasma may then be transported, by plasma diffusion mechanisms provided by the nodal fields, into the containment field. With correlated plasma densities and nodal field spacings approximating the mean free partl cle collision path length in the zones between the nodal fields, optimum closure effectiveness is obtained. (AEC)

  19. Laboratory experiments on plasma jets in a magnetic field using high-power lasers

    Directory of Open Access Journals (Sweden)

    Nishio K.

    2013-11-01

    Full Text Available The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2∼0.3 T perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≫ 1, and the magnetic Reynolds number is ∼150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation.

  20. FDTD analysis of 3-D conducting target coated by anisotropic magnetized plasma

    International Nuclear Information System (INIS)

    Xu Lijun; Liu Shaobin; Mo Jinjun; Yuan Naichang

    2006-01-01

    The JEC finite-difference time-domain (JEC-FDTD) method is extended to three dimensional anisotropic dispersive media- the magnetized plasma. The problem which incorporates both anisotropy and frequency dispersion at the same time is solved for the electromagnetic wave propagation. The three dimensional JEC-FDTD formulations for anisotropic magnetized plasma are derived. The method is applied to the electromagnetic scattering of dihedral corner reflector and sphere-cone coated with anisotropic magnetized plasma. By simulating the interaction of electromagnetic wave with magnetized plasma, some numerical results are obtained, which indicate that an appropriate plasma coating may efficiently reduce the RCS of a metallic target. (authors)

  1. Fluid model of the magnetic presheath in a turbulent plasma

    International Nuclear Information System (INIS)

    Stanojevic, M; Duhovnik, J; Jelic, N; Kendl, A; Kuhn, S

    2005-01-01

    A fluid model of the magnetic presheath in a turbulent boundary plasma is presented. Turbulent transport corrections of the classical three-dimensional fluid transport equations, which can be used to study magnetic presheaths in various geometries, are derived by means of the ensemble averaging procedure from the statistical theory of plasma turbulence. Then, the magnetic presheath in front of an infinite plane surface is analysed in detail. The linearized planar magnetic presheath equations are applied to the plasma-presheath-magnetic-presheath boundary (i.e. the magnetic presheath edge), whereas the original non-linear planar magnetic presheath equations are used for the entire magnetic presheath, allowing for various sets of experimentally relevant free model parameters to be applied. Important new results of this study are, among others, new expressions for the fluid Bohm criterion at the Debye sheath edge and for the ion flux density perpendicular to the wall. These new results, which exhibit corrections due to the turbulent charged particle transport, can qualitatively explain the fact that whenever the angle between the magnetic field and the wall is very small (i.e. several degrees) or zero, electric currents, measured by Langmuir probes in the boundary regions of nuclear fusion devices and in various low-temperature plasmas, are anomalously enhanced in comparison with those expected or predicted by other theoretical models

  2. Periodical plasma structures controlled by external magnetic field

    Science.gov (United States)

    Schweigert, I. V.; Keidar, M.

    2017-06-01

    The characteristics of two-dimensional periodical structures in a magnetized plasma are studied using kinetic simulations. Ridges (i.e. spikes in electron and ion density) are formed and became more pronounced with an increase of magnetic field incidence angle in the plasma volume in the cylindrical chamber. These ridges are shifted relative to each other, which results in the formation of a two-dimensional double-layer structure. Depending on Larmor radius and Debye length up to 19 potential steps appear across the oblique magnetic field. The electrical current gathered into the channels is associated with the electron and ion density ridges.

  3. Interaction of a supersonic plasma jet with a coaxial dipole magnetic field

    International Nuclear Information System (INIS)

    Landes, K.

    1975-01-01

    A low pressure plasma jet of considerable conductivity can be influenced by a magnetic field. On the other hand the influencing magnetic field is changed by currents induced in the plasma jet. New astrophysical examples of suchlike interaction have been found in the investigation of the moon, where the partially not currentfree solar wind is influenced by locally confined magnetic fields. In the experiment reported, the interaction of a supersonic plasma jet with a coaxial, dipole-shaped magnetic field is investigated. A current is superimposed to the plasma jet. (Auth.)

  4. Nonlocal analyses of electrostatic and electromagnetic waves in hot, magnetized, nonuniform, bounded plasmas

    International Nuclear Information System (INIS)

    Sauter, O.

    1992-05-01

    Heating of tokamak plasmas up to temperatures of the order of 10 keV (∼10 8 o K) is one of the main subjects in plasma physics research. Much experimental and theoretical effort has been devoted to the improvement of the heating efficiency and to the understanding of the beam-particle or wave-particle interactions. We have studied the latter subject. In present day experiments, the temperature of the particles is very high. Increasing numbers of experiments use heating scenarii at high harmonic frequencies. Because these cases can no longer be studied using a local model, we have developed a 'nonlocal' model which is not limited by the size of the Larmor radii nor by the harmonic considered. This model is based on the global wave approach and therefore can treat a variety of problems. Nevertheless, we have limited our work to uni-dimensional geometry, Maxwellian equilibrium distribution functions and slowly-varying equilibrium magnetic field. We have also neglected k y in the conductivity tensor, where y is the direction normal to the direction of the inhomogeneity and to the magnetostatic field. Starting from the linearized Vlasov-Maxwell equations, we have derived the equations in the Fourier and the configuration spaces. We have also derived a formulation of the local power absorption allowing us to determine the profile of absorption of the wave by the particles. The equations are solved numerically using the finite element method. We have developed two codes, SEAL and SEMAL, which calculate the wave field in the electrostatic and electromagnetic cases, respectively. These codes have been tested. We have shown that the local model was inadequate and have studied in more detail the effect of temperature and the strong influence of the alpha particle concentration. (author) figs., tabs., 91 refs

  5. Plasma transport across a braided magnetic field

    International Nuclear Information System (INIS)

    Stix, T.H.

    1978-01-01

    Simple fluid and particle models are used to estimate the transport of density, current, and electron heat for a plasma immersed in a region through which magnetic lines of force meander in a stochastic fashion and in which magnetic surfaces are destroyed. (author)

  6. Use of a hot sheath Tormac for advance fuels

    International Nuclear Information System (INIS)

    Levine, M.A.

    1977-01-01

    The use of hot electrons in a Tormac sheath is predicted to improve stability and increase ntau by an order of magnitude. An effective ntau for energy containment is derived and system parameters for several advance fuels are shown. In none of the advance fuels cases considered is a reactor with fields greater than 10 Wb or major plasma radius of more than 3 m required for ignition. Minimum systems have power output of under 100 MW thermal. System parameters for a hot sheath Tormac have a wide latitude. Sizes, magnetic fields, operating temperatures can be chosen to optimize engineering and economic considerations

  7. Investigation of MHD Instabilities in Jets and Bubbles Using a Compact Coaxial Plasma Gun in a Background Magnetized Plasma

    Science.gov (United States)

    Zhang, Y.; Fisher, D. M.; Wallace, B.; Gilmore, M.; Hsu, S. C.

    2016-10-01

    A compact coaxial plasma gun is employed for experimental investigation of launching plasma into a lower density background magnetized plasma. Experiments are being conducted in the linear device HelCat at UNM. Four distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. For regime I plasma jet formation, a global helical magnetic configuration is determined by a B-dot probe array data. Also the m =1 kink instability is observed and verified. Furthermore, when the jet is propagating into background magnetic field, a longer length and lifetime jet is formed. Axial shear flow caused by the background magnetic tension force contributes to the increased stability of the jet body. In regime II, a spheromak-like plasma bubble formation is identified when the gun plasma is injected into vacuum. In contrast, when the bubble propagates into a background magnetic field, the closed magnetic field configuration does not hold anymore and a lateral side, Reilgh-Taylor instability develops. Detailed experimental data and analysis will be presented for these cases.

  8. Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas

    International Nuclear Information System (INIS)

    Jardin, S.C.

    2010-01-01

    Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today's magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today's computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.

  9. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    Science.gov (United States)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  10. Method and apparatus for producing average magnetic well in a reversed field pinch

    International Nuclear Information System (INIS)

    Ohkawa, T.

    1983-01-01

    A magnetic well reversed field plasma pinch method and apparatus produces hot magnetically confined pinch plasma in a toroidal chamber having a major toroidal axis and a minor toroidal axis and a small aspect ratio, e.g. < 6. A pinch current channel within the plasma and at least one hyperbolic magnetic axis outside substantially all of the plasma form a region of average magnetic well in a region surrounding the plasma current channel. The apparatus is operated so that reversal of the safety factor q and of the toroidal magnetic field takes place within the plasma. The well-producing plasma cross section shape is produced by a conductive shell surrounding the shaped envelope and by coils. A shell is of copper or aluminium with non-conductive breaks, and is bonded to a thin aluminium envelope by silicone rubber. (author)

  11. Probing a dusty magnetized plasma with self-excited dust-density waves

    Science.gov (United States)

    Tadsen, Benjamin; Greiner, Franko; Piel, Alexander

    2018-03-01

    A cloud of nanodust particles is created in a reactive argon-acetylene plasma. It is then transformed into a dusty magnetized argon plasma. Plasma parameters are obtained with the dust-density wave diagnostic introduced by Tadsen et al. [Phys. Plasmas 22, 113701 (2015), 10.1063/1.4934927]. A change from an open to a cylindrically enclosed nanodust cloud, which was observed earlier, can now be explained by a stronger electric confinement if a vertical magnetic field is present. Using two-dimensional extinction measurements and the inverse Abel transform to determine the dust density, a redistribution of the dust with increasing magnetic induction is found. The dust-density profile changes from being peaked around the central void to being peaked at an outer torus ring resulting in a hollow profile. As the plasma parameters cannot explain this behavior, we propose a rotation of the nanodust cloud in the magnetized plasma as the origin of the modified profile.

  12. Low-frequency fluctuations in a pure toroidal magnetized plasma

    Indian Academy of Sciences (India)

    A magnetized, low- plasma in pure toroidal configuration is formed and extensively studied with ion mass as control parameter. Xenon, krypton and argon plasmas are formed at a fixed toroidal magnetic field of 0.024 T, with a peak density of ∼ 1011 cm-3, ∼ 4 × 1010 cm-3 and ∼ 2 × 1010 cm−3 respectively.

  13. Magnetic filtered plasma deposition and implantation technique

    CERN Document Server

    Zhang Hui Xing; Wu Xian Ying

    2002-01-01

    A high dense metal plasma can be produced by using cathodic vacuum arc discharge technique. The microparticles emitted from the cathode in the metal plasma can be removed when the metal plasma passes through the magnetic filter. It is a new technique for making high quality, fine and close thin films which have very widespread applications. The authors describe the applications of cathodic vacuum arc technique, and then a filtered plasma deposition and ion implantation system as well as its applications

  14. Modeling of magnetically enhanced capacitively coupled plasma sources: Ar discharges

    International Nuclear Information System (INIS)

    Kushner, Mark J.

    2003-01-01

    Magnetically enhanced capacitively coupled plasma sources use transverse static magnetic fields to modify the performance of low pressure radio frequency discharges. Magnetically enhanced reactive ion etching (MERIE) sources typically use magnetic fields of tens to hundreds of Gauss parallel to the substrate to increase the plasma density at a given pressure or to lower the operating pressure. In this article results from a two-dimensional hybrid-fluid computational investigation of MERIE reactors with plasmas sustained in argon are discussed for an industrially relevant geometry. The reduction in electron cross field mobility as the magnetic field increases produces a systematic decrease in the dc bias (becoming more positive). This decrease is accompanied by a decrease in the energy and increase in angular spread of the ion flux to the substrate. Similar trends are observed when decreasing pressure for a constant magnetic field. Although for constant power the magnitudes of ion fluxes to the substrate increase with moderate magnetic fields, the fluxes decreased at larger magnetic fields. These trends are due, in part, to a reduction in the contributions of more efficient multistep ionization

  15. Studies of the formation of field reversed plasma by a magnetized co-axial plasma gun

    International Nuclear Information System (INIS)

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1980-01-01

    The gun injects axially into a drift tank followed by a magnetic mirror. For the experiments reported here, only the guide coils outside the vacuum vessel and solenoids on the plasma gun electrodes were used; the mirror coil was not energized. A stainless steel flux conserver is placed in the mirror throat to prevent the plasma from contacting the nonconducting vacuum wall in the region of the mirror. An axis encircling array of magnetic loop probes includes four diamagnetic loops and a loop which measures the azimuthally averaged outward pointing radial component of magnetic field. These loop probes are stainless steel jacketed and form a flux conserving boundary (at a radius = 30 cm) for plasma emitted from the gun. A five tip probe that can be positioned anywhere along the axis of the experiment is used to measure internal components of magnetic field

  16. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Quebec J3X 1S2 (Canada); Beard, J.; Billette, J.; Portugall, O. [LNCMI, UPR 3228, CNRS-UFJ-UPS-INSA, 31400 Toulouse (France); Ciardi, A. [LERMA, Observatoire de Paris, Ecole Normale Superieure, Universite Pierre et Marie Curie, CNRS UMR 8112, Paris (France); Vinci, T.; Albrecht, J.; Chen, S. N.; Da Silva, D.; Hirardin, B.; Nakatsutsumi, M.; Romagnagni, L.; Simond, S.; Veuillot, E.; Fuchs, J. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Burris-Mog, T.; Dittrich, S.; Herrmannsdoerfer, T.; Kroll, F.; Nitsche, S. [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); and others

    2013-04-15

    The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary results demonstrating the possibility to magnetically collimate plasma jets are given.

  17. Plasma confinement in a magnetic field of the internal ring current

    International Nuclear Information System (INIS)

    Shafranov, Vitaly; Popovich, Paul; Samitov, Marat

    2000-01-01

    Plasma confinement in compact region surrounding an internal ring current is considered. As the limiting case of large aspect ratio system the cylindrical plasma is considered initially. Analysis of the cylindrical tubular plasma equilibrium and stability against the most dangerous flute (m=0) and kink (m=1) modes revealed the possibility of the MHD stable plasma confined by magnetic field of the internal rod current, with rather peaked plasma pressure and maximal local beta β(γ)=0.4. In case of the toroidal internal ring system an additional external magnetic field creates the boundary separatrix witch limits the plasma volume. The dependence of the plasma pressure profiles, marginally stable with respect to the flute modes, from the shape of the external plasma boundary (separatrix) in such kind closed toroidal systems is investigated. The internal ring system with circular poloidal magnetic mirror, where the ring supports could be placed, is proposed. (author)

  18. Chaotic magnetic field line in toroidal plasmas

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu; Abe, Yoshihiko; Urata, Kazuhiro; Irie, Haruyuki.

    1989-05-01

    This is an introductory review of chaotic magnetic field line in plasmas, together with some new results, with emphasis on the long-time tail and the fractional Brownian motion of the magnetic field line. The chaotic magnetic field line in toroidal plasmas is a typical chaotic phenomena in the Hamiltonian dynamical systems. The onset of stochasticity induced by a major magnetic perturbation is thought to cause a macroscopic rapid phenomena called the current disruption in the tokamak discharges. Numerical simulations on the basis of magnetohydrodynamics reveal in fact the disruptive phenomena. Some dynamical models which include the area-preserving mapping such as the standard mapping, and the two-wave Hamiltonian system can model the stochastic magnetic field. Theoretical results with use of the functional integral representation are given regarding the long-time tail on the basis of the radial twist mapping. It is shown that application of renormalization group technique to chaotic orbit in the two-wave Hamiltonian system proves decay of the velocity autocorrelation function with the power law. Some new numerical results are presented which supports these theoretical results. (author)

  19. On the electric and magnetic field generation in expanding plasmas

    International Nuclear Information System (INIS)

    Gielen, H.J.G.

    1989-01-01

    This thesis deals with the generation of electric and magnetic fields in expanding plasmas. The theoretical model used to calculate the different field quantities in such plasmas is discussed in part 1 and is in fact an analysis of Ohm's law. A general method is given that decomposes each of the forces terms in Ohm's law in a component that induces a charge separation in the plasma and in a component that can drive current. This decomposition is unambiguous and depends upon the boundary conditions for the electric potential. It is shown that in calculating the electromagnetic field quantities in a plasma that is located in the vicinity of a boundary that imposes constraints on the electric potential, Ohm's law should be analyzed instead of the so-called induction equation. Three applications of the model are presented. A description is given of the unipolar arc discharge where both plasma and sheath effects have been taken into account. Secondly a description is presented of the plasma effects of a cathode spot. The third application of the model deals with the generation of magnetic fields in laser-produced plasmas. The second part of this thesis describes the experiments on a magnetized argon plasma expanding from a cascaded arc. With the use of spectroscopic techniques the electron density, ion temperature and the rotation velocity profiles of the ion gas have been determined. The magnetic field generated by the plasma has been measured with the use of the Zeeman effect. Depending on the channel diameter of the nozzle of the cascaded arc, self-generated magnetic fields with axial components of the order of 1% of the externally applied mangetic field have been observed. From the measured ion rotation it has been concluded that this magnetic field is mainly generated by azimuthal electron currents. The corresponding azimuthal current density is of the order of 15% of the axial current density. The observed ion rotation is caused by electron-ion friction. (author

  20. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    Science.gov (United States)

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  1. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    International Nuclear Information System (INIS)

    Zanáška, M.; Kudrna, P.; Tichý, M.; Adámek, J.; Peterka, M.

    2015-01-01

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents I sat − /I sat + to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa

  2. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zanáška, M.; Kudrna, P.; Tichý, M. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 12116 Prague 2 (Czech Republic); Adámek, J. [Institute of Plasma Physics AS CR, v.v.i., Za Slovankou 3, 18200 Prague 8 (Czech Republic); Peterka, M. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 12116 Prague 2 (Czech Republic); Institute of Plasma Physics AS CR, v.v.i., Za Slovankou 3, 18200 Prague 8 (Czech Republic)

    2015-03-15

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents I{sub sat}{sup −}/I{sub sat}{sup +} to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.

  3. Effects of a vertical magnetic field on particle confinement in a magnetized plasma torus.

    Science.gov (United States)

    Müller, S H; Fasoli, A; Labit, B; McGrath, M; Podestà, M; Poli, F M

    2004-10-15

    The particle confinement in a magnetized plasma torus with superimposed vertical magnetic field is modeled and measured experimentally. The formation of an equilibrium characterized by a parallel plasma current canceling out the grad B and curvature drifts is described using a two-fluid model. Characteristic response frequencies and relaxation rates are calculated. The predictions for the particle confinement time as a function of the vertical magnetic field are verified in a systematic experimental study on the TORPEX device, including the existence of an optimal vertical field and the anticorrelation between confinement time and density.

  4. Instabilities responsible for magnetic turbulence in laboratory rotating plasma

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Erokhin, N.N.; Pustovitov, V.D.; Konovalov, S.V.

    2008-01-01

    Instabilities responsible for magnetic turbulence in laboratory rotating plasma are investigated. It is shown that the plasma compressibility gives a new driving mechanism in addition to the known Velikhov effect due to the negative rotation frequency gradient. This new mechanism is related to the perpendicular plasma pressure gradient, while the density gradient gives an additional drive depending also on the pressure gradient. It is shown that these new effects can manifest themselves even in the absence of the equilibrium magnetic field, which corresponds to nonmagnetic instabilities

  5. Interpretation of the electron cyclotron emission of hot ASDEX upgrade plasmas at optically thin frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Denk, Severin Sebastian; Stroth, Ulrich [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, 85748 Garching (Germany); Fischer, Rainer; Poli, Emanuele; Willensdorfer, Matthias; Maj, Omar; Stober, Joerg; Suttrop, Wolfgang [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Collaboration: The ASDEX Upgrade Team

    2016-07-01

    The electron cyclotron emission diagnostic (ECE) provides routinely electron temperature (T{sub e}) measurements. ''Kinetic effects'' (relativistic mass shift and Doppler shift) can cause the measured radiation temperatures (T{sub rad}) to differ from T{sub e} at cold resonance position complicating the determination of T{sub e} from the measured radiation temperature profile (T{sub rad}). For the interpretation of such ECE measurements an electron cyclotron forward model solving the radiation transport equation for given T{sub e} and electron density profiles is in use in the framework of Integrated Data Analysis at ASDEX Upgrade. While the original model lead to improved T{sub e} profiles near the plasma edge in moderately hot H-mode discharges, vacuum approximations in the model lead to inaccuracies given large T{sub e}. In hot plasmas ''wave-plasma interaction'', i.e. the dielectric effect of the background plasma onto the electron cyclotron emission, becomes important at optical thin measured frequencies. Additionally, given moderate electron densities and large T{sub e}, the refraction of the line of sight has to be considered for the interpretation of ECE measurements with low optical depth.

  6. Interelectrode plasma evolution in a hot refractory anode vacuum arc: Theory and comparison with experiment

    International Nuclear Information System (INIS)

    Beilis, I.I.; Goldsmith, S.; Boxman, R.L.

    2002-01-01

    In this paper a theoretical study of a hot refractory anode vacuum arc, which was previously investigated experimentally [Phys. Plasmas 7, 3068 (2000)], is presented. The arc was sustained between a thermally isolated refractory anode and a water-cooled copper cathode. The arc started as a multicathode-spot (MCS) vacuum arc and then switched to the hot refractory anode vacuum arc (HRAVA) mode. In the MCS mode, the cathodic plasma jet deposits a film of the cathode material on the anode. Simultaneously, the temperature of the thermally isolated anode begins to rise, reaching eventually a sufficiently high temperature to re-evaporate the deposited material, which is subsequently ionized in the interelectrode gap. The transition to the HRAVA mode is completed when the density of the interelectrode plasma consists mostly of ionized re-evaporated atoms--the anode plasma. The evolution of the HRAVA mode is characterized by the propagation of a luminous plasma plume from the anode to the cathode. The time dependent model of the various physical processes taking place during the transition to the HRAVA mode is represented by a system of equations describing atom re-evaporation, atom ionization through the interaction of the cathode jet and the interelectrode plasma with the anode vapor, plasma plume propagation, plasma radial expansion, plasma energy, and heavy particle density balance. The time dependence of the anode heat flux and the effective anode voltage were obtained by solving these equations. In addition, the time dependent plasma electron temperature, plasma density, anode potential drop, arc voltage, and anode temperature distribution were calculated and compared with previous measurements. It was shown that the observed decrease of the effective anode voltage with time during the mode transition is due to decrease of the heat flux incident on the anode surface from the cathode spot jets

  7. Alternative lines with magnetic plasma confinement

    International Nuclear Information System (INIS)

    Wobig, H.

    1981-01-01

    Plasma confinement with the aid of a magnetic field is the most common and also the most frequently investigated principle on the way to controlled nuclear fusion. Apart from the Tokamak principle, which is the most advanced principle as far as fusion-relevant plasma parameters are concerned, also other approaches are being investigated, e.g. the mirror device, the bumpy tons, and the stellarator. In principle, all three concepts permit 'stationary' plasma confinement in a stationary fusion reactor. Compared with the pulsed Tokamak reactor, this is a considerable advantage. (orig./GG) [de

  8. Nonlocality of plasma fluctuations and transport in magnetically confined plasmas nonlocal plasma transport and radial structural formation

    International Nuclear Information System (INIS)

    Toi, Kazuo

    2002-01-01

    Experimental evidence and underlying physical processes of nonlocal characters and structural formation in magnetically confined toroidal plasmas are reviewed. Radial profiles of the plasmas exhibit characteristic structures, depending on the various confinement regimes. Profile stiffness subjected to some global constraint and rapid plasma responses to applied plasma perturbation result from nonlocal transport. Once the plasma is free from the constraint, the plasma state can be changed to a new state exhibiting various types of prominent structural formation such as an internal transport barrier. (author)

  9. Dynamic and Stagnating Plasma Flow Leading to Magnetic-Flux-Tube Collimation

    International Nuclear Information System (INIS)

    You, S.; Yun, G.S.; Bellan, P.M.

    2005-01-01

    Highly collimated, plasma-filled magnetic-flux tubes are frequently observed on galactic, stellar, and laboratory scales. We propose that a single, universal magnetohydrodynamic pumping process explains why such collimated, plasma-filled magnetic-flux tubes are ubiquitous. Experimental evidence from carefully diagnosed laboratory simulations of astrophysical jets confirms this assertion and is reported here. The magnetohydrodynamic process pumps plasma into a magnetic-flux tube and the stagnation of the resulting flow causes this flux tube to become collimated

  10. Plasma streams mixing in two-channel t-shaped magnetic filter

    International Nuclear Information System (INIS)

    Aksyonov, D.S.; Aksenov, I.I.; Luchaninov, A.A.; Reshetnyak, E.N.; Strel'nitskij, V.E.

    2011-01-01

    Ti-Al-N films were deposited by vacuum arc method. T-shaped magnetic filter with two channels was used for films preparation. Deposition was performed after aluminum and titanium separate plasma streams from two plasma sources were mixed into single one inside plasma duct having weakened magnetic field near its output. Obtained films have uniform distribution of composition and thickness on 180 mm diameter substrate surface. It was found that mixing and homogenization degree depends on nitrogen pressure, output magnetic field intensity and output- to-substrate distance. Film self-sputtering and aluminum preferential sputtering were observed for elevated negative substrate bias potentials.

  11. Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jardin, S C

    2010-09-28

    Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.

  12. Magnesium plasma immersion ion implantation in a large straight magnetic duct

    International Nuclear Information System (INIS)

    Tan, Ing Hwie; Ueda, Mario; Dallaqua, Renato S; Rossi, Jose O; Beloto, Antonio F; Abramof, Eduardo; Inoue, Y; Takai, Osamu

    2002-01-01

    Magnesium ions were implanted on silicon wafers using a vacuum arc plasma system with a straight 1 m long magnetic duct, 0.22 m in diameter. Good macroparticle filtering was obtained in samples positioned facing the plasma stream and complete filtering was achieved in samples with surfaces parallel to the plasma stream and magnetic field. Deposition is also minimized by placing sample surfaces parallel to the plasma stream. High resolution x-ray diffraction rocking curves of implanted samples show that the changes in lattice constant are due to compressive strain, and the distortion is larger for higher voltages. Without magnetic field the implantation was a few hundred angstroms deep, as expected, but with magnetic field the depth profile was surprisingly extended to over 0.1 μm, a fact for which we do not yet have a convincing explanation, but could be related to radiation enhanced segregation. The presence of a magnetic field increases substantially the retained implantation dose due to the increase in plasma density by two orders of magnitude

  13. a Novel Method for Improving Plasma Nitriding Efficiency: Pre-Magnetization by DC Magnetic Field

    Science.gov (United States)

    Kovaci, Halim; Yetim, Ali Fatih; Bozkurt, Yusuf Burak; Çelik, Ayhan

    2017-06-01

    In this study, a novel pre-magnetization process, which enables easy diffusion of nitrogen, was used to enhance plasma nitriding efficiency. Firstly, magnetic fields with intensities of 1500G and 2500G were applied to the untreated samples before nitriding. After the pre-magnetization, the untreated and pre-magnetized samples were plasma nitrided for 4h in a gas mixture of 50% N2-50% H2 at 500∘C and 600∘C. The structural, mechanical and morphological properties of samples were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness tester and surface tension meter. It was observed that pre-magnetization increased the surface energy of the samples. Therefore, both compound and diffusion layer thicknesses increased with pre-magnetization process before nitriding treatment. As modified layer thickness increased, higher surface hardness values were obtained.

  14. Interaction of plasma with magnetic fields in coaxial discharge

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10 2 -10 3 G) is introduced at the end of the central electrode of coaxial discharge with 45 μf capacitor bank, U ch =13-17 KV, peak current ∼0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs

  15. Vlasov-Fokker-Planck modeling of magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-08-01

    Understanding the magnetic fields that can develop in high-power-laser interactions with solid-density plasma is important because such fields significantly modify both the magnitude and direction of electron heat fluxes. The dynamics of such fields evidently have consequences for inertial fusion energy applications, as the coupling of the laser beams with the walls or pellet and the development of temperature inhomogeneities are critical to the uniformity of the implosion and potentially the success of, for example, the National Ignition Facility. To study these effects, we used the code Impacta, a two-dimensional, fully implicit, Vlasov-Fokker-Planck code with self-consistent magnetic fields and a hydrodynamic ion model, designed for nanosecond time-scale laser-plasma interactions. Heat-flux effects in Ohm’s law under non-local conditions was investigated; physics that is not well captured by standard numerical models but is nevertheless important in fusion-related scenarios. Under such conditions there are numerous interesting physical effects, such as collisional magnetic instabilities, amplification of magnetic fields, re-emergence of non-locality through magnetic convection, and reconnection of magnetic field lines and redistribution of thermal energy. In this project highlights included the first full-scale kinetic simulations of a magnetized hohlraum and the discovery of a new magnetic reconnection mechanism, as well as a completed PhD thesis and the production of a new code for Inertial Fusion research.

  16. Vlasov-Fokker-Planck modeling of magnetized plasma

    International Nuclear Information System (INIS)

    Thomas, Alexander

    2016-01-01

    Understanding the magnetic fields that can develop in high-power-laser interactions with solid-density plasma is important because such fields significantly modify both the magnitude and direction of electron heat fluxes. The dynamics of such fields evidently have consequences for inertial fusion energy applications, as the coupling of the laser beams with the walls or pellet and the development of temperature inhomogeneities are critical to the uniformity of the implosion and potentially the success of, for example, the National Ignition Facility. To study these effects, we used the code Impacta, a two-dimensional, fully implicit, Vlasov-Fokker-Planck code with self-consistent magnetic fields and a hydrodynamic ion model, designed for nanosecond time-scale laser-plasma interactions. Heat-flux effects in Ohm's law under non-local conditions was investigated; physics that is not well captured by standard numerical models but is nevertheless important in fusion-related scenarios. Under such conditions there are numerous interesting physical effects, such as collisional magnetic instabilities, amplification of magnetic fields, re-emergence of non-locality through magnetic convection, and reconnection of magnetic field lines and redistribution of thermal energy. In this project highlights included the first full-scale kinetic simulations of a magnetized hohlraum and the discovery of a new magnetic reconnection mechanism, as well as a completed PhD thesis and the production of a new code for Inertial Fusion research.

  17. Electromagnetic waves in a layer of hot plasma with negligible collisions

    International Nuclear Information System (INIS)

    Vacca, J.

    1975-01-01

    The propagation of electromagnetic waves in a plane plasma layer in a uniform magnetic field has been studied, following the hypothesis of immoble ions and negligible ion-electron interactions. Waves dependent on one spatial coordinate are considered and all the parameters of the problems are considered. The cases of perpendicular and parallel magnetic field are treated

  18. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    Science.gov (United States)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  19. Self-Generated Magnetic Fields in Stagnation-Phase ICF Implosions

    Science.gov (United States)

    Walsh, Christopher; Chittenden, Jeremy; McGlinchey, Kristopher; Niasse, Nicolas

    2016-10-01

    3-D extended-MHD simulations of the stagnation phase of an ICF implosion are presented, showing significant self-generated magnetic fields (1000-5000T) due to the Biermann Battery effect. Perturbed hot-spots generate magnetic fields at their edges, as the extremities of hot bubbles are rapidly cooled by the surrounding low temperature fuel, giving non-parallel electron pressure and density gradients. Larger amplitude and higher mode-number perturbations lead to an increased hot-spot surface area and more heat flow, developing greater non-parallel gradients and therefore larger magnetic fields. Due to this, largely perturbed hot-spots can be affected more by magnetic fields, although the accelerated cooling associated with greater deviations from symmetry lowers magnetisation. The Nernst effect advects magnetic field down temperature gradients towards the outer region of the hot-spot, which can also lower the magnetisation of the plasma. In some regions, however, the Nernst velocity is convergent, magnetising the tips of cold fuel spikes, resulting in anisotropic heat-flow and an improvement in energy containment. Low-mode and multi-high-mode simulations are shown, with magnetisations reaching sufficiently high levels in some regions of the hot-spot to suppress thermal conduction to lower than 50% of the unmagnetised case. A quantitative analysis of how this affects the hot-spot energy balance is included.

  20. Long-term evolution of broken wakefields in finite radius plasmas

    CERN Document Server

    Lotov, Konstantin; Petrenko, Alexey

    2014-01-01

    A novel effect of fast heating and charging a finite-radius plasma is discovered in the context of plasma wakefield acceleration. As the plasma wave breaks, the most of its energy is transferred to plasma electrons which create strong charge-separation electric field and azimuthal magnetic field around the plasma. The slowly varying field structure is preserved for hundreds of wakefield periods and contains (together with hot electrons) up to 80% of the initial wakefield energy.

  1. Numerical investigation of three-dimensional single-species plasma equilibria on magnetic surfaces

    International Nuclear Information System (INIS)

    Lefrancois, Remi G.; Pedersen, Thomas Sunn; Boozer, Allen H.; Kremer, Jason P.

    2005-01-01

    Presented for the first time are numerical solutions to the three-dimensional nonlinear equilibrium equation for single-species plasmas confined on magnetic surfaces and surrounded by an equipotential boundary. The major-radial shift of such plasmas is found to be outward, qualitatively similar to the Shafranov shift of quasineutral plasmas confined on magnetic surfaces. However, this is the opposite of what occurs in the pure toroidal field equilibria of non-neutral plasmas (i.e., in the absence of magnetic surfaces). The effect of varying the number of Debye lengths in the plasma for the three-dimensional (3D) model is in agreement with previous 2D calculations: the potential varies significantly on magnetic surfaces for plasmas with few Debye lengths (a d ), and tends to be constant on surfaces when many Debye lengths are present (a > or approx. 10λ d ). For the case of a conducting boundary that does not conform to the outer magnetic surface, the plasma is shifted towards the conductor and the potential varies significantly on magnetic surfaces near the plasma edge. Debye shielding effects are clearly demonstrated when a nonuniform bias is applied to the boundary. Computed equilibrium profiles are presented for the Columbia Non-Neutral Torus [T. S. Pedersen, A. H. Boozer, J. P. Kermer, R. Lefrancois, F. Dahlgren, N. Pomphrey, W. Reiersen, and W. Dorland, Fusion Sci. Technol. 46, 200 (2004)], a stellarator designed to confine non-neutral plasmas

  2. Resonant absorption of radar waves by a magnetized collisional plasma

    International Nuclear Information System (INIS)

    Sun Aiping; Tong Honghui; Shen Liru; Tang Deli; Qiu Xiaoming

    2001-01-01

    The propagation of radar waves in a magnetized collisional plasma slab is studied numerically. It is found for uniform plasma that: first, the wave attenuation and absorbed power show a peak value, i.e., resonant absorption when the collision frequency f en = 0.1, 0.5, 1 GHz and the wave frequency nears upper hybrid frequency. Secondly, the attenuation, absorbed, and transmitted power curves become flat at f en = 5, 10 Ghz. thirdly, the attenuation and absorbed power increase with plasma density, and the attenuation and the proportion of absorbed power can reach 100 dB and 80%, respectively, at the plasma density n = 10 11 cm -3 . For nonuniform plasma, the peak value of reflected power is larger than that in uniform plasma. So, uniform magnetized plasma is of more benefit to plasma cloaking

  3. ON THE RELATIONSHIP BETWEEN A HOT-CHANNEL-LIKE SOLAR MAGNETIC FLUX ROPE AND ITS EMBEDDED PROMINENCE

    International Nuclear Information System (INIS)

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Chen, P. F.; Sun, J. Q.; Srivastava, A. K.

    2014-01-01

    A magnetic flux rope (MFR) is a coherent and helical magnetic field structure that has recently been found likely to appear as an elongated hot channel prior to a solar eruption. In this Letter, we investigate the relationship between the hot channel and the associated prominence through analysis of a limb event on 2011 September 12. In the early rise phase, the hot channel was initially cospatial with the prominence. It then quickly expanded, resulting in a separation of the top of the hot channel from that of the prominence. Meanwhile, they both experienced an instantaneous morphology transformation from a Λ shape to a reversed-Y shape and the top of these two structures showed an exponential increase in height. These features are a good indication of the occurrence of kink instability. Moreover, the onset of kink instability is found to coincide in time with the impulsive enhancement of flare emission underneath the hot channel, suggesting that ideal kink instability likely also plays an important role in triggering fast flare reconnection besides initiating the impulsive acceleration of the hot channel and distorting its morphology. We conclude that the hot channel is most likely the MFR system and the prominence only corresponds to the cool materials that are collected in the bottom of the helical field lines of the MFR against gravity

  4. Dynamics of the plasma injected into the gap of a plasma opening switch across a strong magnetic field

    International Nuclear Information System (INIS)

    Dolgachev, G. I.; Maslennikov, D. D.; Ushakov, A. G.; Fedotkin, A. S.; Khodeev, I. A.; Shvedov, A. A.

    2011-01-01

    A method is proposed to increase the linear charge density transferred through a plasma opening switch (POS) and, accordingly, reduce the POS diameter by enhancing the external magnetic field in the POS gap. Results are presented from experimental studies of the dynamics of the plasma injected into the POS gap across a strong magnetic field. The possibility of closing the POS gap by the plasma injected across an external magnetic field of up to 60 kG is demonstrated.

  5. Topics on the formation and stability of magnetic-mirror-confined plasmas

    International Nuclear Information System (INIS)

    Wickham, M.G.

    1981-01-01

    We have investigated two methods of creating a magnetic mirror confined plasma. The first method used the direct cross-field injection of a potassium plasma into a magnetic mirror, and the second applied ion-cyclotron-resonance heating (ICRH) to a barium Q-machine plasma in a simple axisymmetric mirror field. The latter procedure provided a plasma which was particularly suitable for the investigation of MHD stability and kinetic microstability

  6. Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field

    KAUST Repository

    Ratushnaya, Valeria

    2016-12-17

    We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.

  7. Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field

    KAUST Repository

    Ratushnaya, Valeria; Samtaney, Ravi

    2016-01-01

    We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.

  8. Progress towards experimental realization of extreme-velocity flow-dominated magnetized plasmas

    Science.gov (United States)

    Weber, T. E.; Adams, C. S.; Welch, D. R.; Kagan, G.; Bean, I. A.; Henderson, B. R.; Klim, A. J.

    2017-10-01

    Interactions of flow-dominated plasmas with other plasmas, neutral gases, magnetic fields, solids etc., take place with sufficient velocity that kinetic energy dominates the dynamics of the interaction (as opposed to magnetic or thermal energy, which dominates in most laboratory plasma experiments). Building upon progress made by the Magnetized Shock Experiment (MSX) at LANL, we are developing the experimental and modeling capability to increase our ultimate attainable plasma velocities well in excess of 1000 km/s. Ongoing work includes designing new pulsed power switches, triggering, and inductive adder topologies; development of novel high-speed optical diagnostics; and exploration of new numerical techniques to specifically model the unique physics of translating/stagnating flow-dominated plasmas. Furthering our understanding of the physical mechanisms of energy conversion from kinetic to other forms, such as thermal energy, non-thermal tails/accelerated populations, enhanced magnetic fields, and radiation (both continuum and line), has wide-ranging significance in basic plasma science, astrophysics, and plasma technology applications such as inertial confinement fusion and intense radiation sources. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration. LA-UR-17-25786.

  9. Experimental investigation of axial plasma injection into a magnetic dipole field

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1968-01-01

    A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves t...... towards the injector. Simultaneously with the compression, an increase in the electron temperature and reflection of a small amount of plasma are seen. The amount of plasma transmitted through the dipole field is found to be nearly independent of the field strength.......A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves...

  10. Performance improvement of magnetized coaxial plasma gun by magnetic circuit on a bias coil

    Science.gov (United States)

    Edo, Takahiro; Matsumoto, Tadafumi; Asai, Tomohiko; Kamino, Yasuhiro; Inomoto, Michiaki; Gota, Hiroshi

    2016-10-01

    A magnetized coaxial plasmoid accelerator has been utilized for compact torus (CT) injection to refuel into fusion reactor core plasma. Recently, CT injection experiments have been conducted on the C-2/C-2U facility at Tri Alpha Energy. In the series of experiments successful refueling, i.e. increased particle inventory of field-reversed configuration (FRC) plasma, has been observed. In order to improve the performance of CT injector and to refuel in the upgraded FRC device, called C-2W, with higher confinement magnetic field, magnetic circuit consisting of magnetic material onto a bias magnetic coil is currently being tested at Nihon University. Numerical work suggests that the optimized bias magnetic field distribution realizes the increased injection velocity because of higher conversion efficiency of Lorenz self force to kinetic energy. Details of the magnetic circuit design as well as results of the test experiment and field calculations will be presented and discussed.

  11. Temperature anisotropy instabilities in a plasma containing cold and hot species in the magnetosphere

    International Nuclear Information System (INIS)

    Renuka, G.; Viswanathan, K.S.

    1980-01-01

    The nature of convective instability has been investigated for an electromagnetic wave, either right circularly polarised or left circularly polarised, propagating along a magnetic line of force in a plasma whose distribution function exhibits a temperature anisotropy in the hot species, a loss cone structure and a beam of cold electrons or ions travelling along the line of force with velocity V 1 . Detailed numerical calculations have been made using a computer for the growth and decay of the wave for different values of the anisotropy ratio Tsub(perpendicular to)/Tsub(parallel to) delta of the perpendicular and parallel temperatures, the McIlwain parameter L, the loss cone index j, velocity V 1 of the streaming particle and the particle density ratio epsilon. The ranges of the values of epsilon and delta for which the waves becomes unstable have been studied in detail. It is found that wave propagation shows no dependence on the loss cone index but shows very strong dependence on the temperature anisotropy delta. (author)

  12. Production of a hot ion plasma at the lower hybrid resonance and measurement of its parameters

    International Nuclear Information System (INIS)

    Glagolev, V.M.; Dyubajlov, A.G.; Krivov, N.A.; Martynenko, V.V.; Skosyrev, Yu.V.

    1975-01-01

    Electromagnetic fields delayed along a magnetic field have been created within a plasma with the aid of a coil encircling the plasma column. When these waves were propagated transversely in relation to the magnetic field in a plasma with density rising along its radius, they were delayed in the direction of propagation. The amplitude and phase distributions of the electromagentic fields along the radius of the plasma column were measured at different moments in time. The existence of an absorption band of these waves within the plasma was detected. The absorption band was shifted towards the outer boundary from the plasma when plasma density was increased. By four independent methods it was established that the gas-kinetic pressure of the plasma, measured according to its diamagnetism, is determined by the ion component. It was found that the energy of electrons at right angles to the magnetic field is considerably less than that of the ions. The cause of limited heating was an increase in density and energy losses in the charge-exchange process. In order to improve vacuum conditions, the coil around the plasma was placed in a metallic chamber, and the UHF plasma source used in the original experiments was replaced by a hydride-film source. This made it possible to increase the internal energy of the plasma to 3x10 15 eV cm -3 at a density of (1-3)x10 12 cm -3 . The mean energy of atoms leaving the plasma at right angles to the magnetic field as a result of charge exchange reached 1 keV. The region of change in plasma parameters (density and magnetic field) for which heating was observed corresponded to the linear transformation theory. Non-linear effects could occur only in the first stage of heating, when the electric fields were strong, but plasma temperature was low. Heating efficiency was measured by a reflectometer installed in the coaxial line connecting the generator and the HF input coil to the plasma. The measurements showed that about 20% of the power

  13. Rotating structures in low temperature magnetized plasmas - Insight from particle simulations

    Directory of Open Access Journals (Sweden)

    Jean-Pierre eBoeuf

    2014-12-01

    Full Text Available The EXB configuration of various low temperature plasma devices is often responsible for the formation of rotating structures and instabilities leading to anomalous electron transport across the magnetic field. In these devices, electrons are strongly magnetized while ions are weakly or not magnetized and this leads to specific physical phenomena that are not present in fusion plasmas where both electrons and ions are strongly magnetized. In this paper we describe basic phenomena involving rotating plasma structures in simple configurations of low temperature EXB plasma devices on the basis of PIC-MCC (Particle-In-Cell Monte Carlo Collisions simulations. We focus on three examples: rotating electron vortices and rotating spokes in cylindrical magnetrons, and azimuthal electron-cyclotron drift instability in Hall thrusters. The simulations are not intended to give definite answers to the many physics issues related to low temperature EXB plasma devices but are used to illustrate and discuss some of the basic questions that need further studies.

  14. Initial development of ponderomotive filaments in plasma from intense hot spots produced by a random phase plate

    International Nuclear Information System (INIS)

    Rose, H.A.; DuBois, D.F.

    1993-01-01

    Local intensity peaks, hot spots, in laser beams may initiate self-focusing, in lieu of linear instabilities. If the hot spot power, P, contains several times the critical power, P c , and if the plasma density, n, is small compared to the critical density, n c , then on a time scale less than an acoustic transit time across the hot spot radius, τ ia , the hot spot collapses, capturing order unity of the initial hot spot power. The collapse time is determined as a universal function of P/P c and τ ia . The focal region moves towards the laser with an initially supersonic speed, and decelerates as it propagates. The power of this back propagating focus decreases monotonically until the critical power is reached. This limiting, shallowest, focus develops on a time scale long compared to τ ia and corresponds to the focus obtained in a model with adiabatically responding ions. For low-density plasma nonlinear ion effects terminate collapse and a bound on the transient intensity amplification is obtained as a universal function of the optics f/number, F, and n/n c . The boundary between thermal and ponderomotive regimes depends upon F and not the laser intensity

  15. Current control for magnetized plasma in direct-current plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Tang Deli; Chu, Paul K.

    2003-01-01

    A method to control the ion current in direct-current plasma-immersion ion implantation (PIII) is reported for low-pressure magnetized inductively coupled plasma. The ion current can be conveniently adjusted by applying bias voltage to the conducting grid that separates plasma formation and implantation (ion acceleration) zones without the need to alter the rf input power, gas flux, or other operating conditions. The ion current that diminishes with an increase in grid bias in magnetized plasmas can be varied from 48 to 1 mA by increasing the grid voltage from 0 to 70 V at -50 kV sample bias and 0.5 mTorr hydrogen pressure. High implantation voltage and monoenergetic immersion implantation can now be achieved by controlling the ion current without varying the macroscopic plasma parameters. The experimental results and interpretation of the effects are presented in this letter. This technique is very attractive for PIII of planar samples that require on-the-fly adjustment of the implantation current at high implantation voltage but low substrate temperature. In some applications such as hydrogen PIII-ion cut, it may obviate the need for complicated sample cooling devices that must work at high voltage

  16. Velocity space ring-plasma instability, magnetized, Part I: Theory

    International Nuclear Information System (INIS)

    Lee, J.K.; Birdsall, C.K.

    1979-01-01

    The interaction of magnetized monoenergetic ions (a ring in velocity space) with a homogeneous Maxwellian target plasma is studied numerically using linear Vlasov theory. The ring may be produced when an energetic beam is injected perpendicular to a uniform magnetic field. In addition to yielding the previously known results, the present study classifies this flute-like instability into three distinct regimes based on the beam density relative to the plasma density, where many features such as physical mechanisms, dispersion diagrams, and maximum growth rates are quite different. The effects of electron dynamics, plasma or ring thermal spread, the ratio of ω/sub p//ω/sub c/ for plasma ions, and electromagnetic modifications are also considered

  17. Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet

    International Nuclear Information System (INIS)

    Huo Wenqing; Guo Shijie; Ding Liang; Xu Yuemin

    2013-01-01

    A large magnetized plasma sheet with size of 60 cm × 60 cm × 2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the plasma sheet was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the plasma sheet were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the electron density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the electron density of this magnetized plasma sheet apparatus. Moreover, it is pointed out that the operating parameters of the large plasma sheet in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion

  18. Plasma parameters, fluctuations and kinetics in a magnetic field line reconnection experiment

    International Nuclear Information System (INIS)

    Wild, N.C. Jr.

    1983-01-01

    The processes associated with reconnecting magnetic field lines have been studied in a large experimental laboratory plasma. Detailed time- and space-resolved probe measurements of the plasma density, temperature, potential and electric and magnetic fields are discussed. Plasma currents are seen to modify the vacuum magnetic field topology. A flat neutral sheet develops along the separatrix where magnetic flux is transferred from regions of private to common flux. Forced tearing and magnetic island formation are also observed. Rapid electron heating, density and temperature nonuniformities and plasma potential gradients are all observed. The pressure is found to peak at the two edges of the neutral sheet. The dissipation E.J is determined and analyzed in terms of particle heating and fluid acceleration. A consistent, detailed picture of the energy flow via Poynting's theorem is also described. Significant temporal fluctuations in the magnetic fields and electron velocity distribution are measured and seen to give rise to anomalously high values for the plasma resistivity, the ion viscosity and the cross-field thermal conductivity. Electron temperature fluctuations, double layers associated with partial current disruptions, and whistler wave magnetic turbulence have all been identified and studied during the course of the reconnection event

  19. Magnetic pulse compression circuits for plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Georgescu, N; Zoita, V; Presura, R [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania)

    1997-12-31

    Two magnetic pulse compression circuits (MPCC), for two different plasma devices, are presented. The first is a 20 J/pulse, 3-stage circuit designed to trigger a low pressure discharge. The circuit has 16-18 kV working voltage, and 200 nF in each stage. The saturable inductors are realized with toroidal 25 {mu}m strip-wound cores, made of a Fe-Ni alloy, with 1.5 T saturation induction. The total magnetic volume is around 290 cm{sup 3}. By using a 25 kV/1 A thyratron as a primary switch, the time compression is from 3.5 {mu}s to 450 ns, in a short-circuit load. The second magnetic pulser is a 200 J/pulse circuit, designed to drive a high average power plasma focus soft X-ray source, for X-ray microlithography as the main application. The 3-stage pulser should supply a maximum load current of 100 kA with a rise-time of 250 - 300 ns. The maximum pulse voltage applied on the plasma discharge chamber is around 20 - 25 kV. The three saturable inductors in the circuit are made of toroidal strip-wound cores with METGLAS 2605 CO amorphous alloy as the magnetic material. The total, optimized mass of the magnetic material is 34 kg. The maximum repetition rate is limited at 100 Hz by the thyratron used in the first stage of the circuit, the driver supplying to the load about 20 kW average power. (author). 1 tab., 3 figs., 3 refs.

  20. Three-dimensional simulation study of compact toroid plasmoid injection into magnetized plasmas

    International Nuclear Information System (INIS)

    Suzuki, Y.; Watanabe, T.-H.; Sato, T.; Hayashi, T.

    1999-04-01

    Three-dimensional dynamics of a compact toroid (CT) plasmoid, which is injected into a magnetized target plasma region is investigated by using magnetohydrodynamic (MHD) numerical simulations. It is found that the process of the CT penetration into this region is much more complicated than what has been analyzed so far by using a conducting sphere (CS) model. The injected CT suffers from a tilting instability, which grows with the similar time scale as the CT penetration. The instability is accompanied by magnetic reconnection between the CT magnetic field and the target magnetic field, which disrupts the magnetic configuration of the CT. Magnetic reconnection plays a role to supply the high density plasma initially confined in the CT magnetic field into the target region. Also, the penetration depth of the CT high density plasma is examined. It is shown to be shorter than that estimated from the CS model. The CT high density plasma is decelerated mainly by the Lorentz force of the target magnetic field, which includes not only the magnetic pressure force but also the magnetic tension force. Furthermore, by comparing the CT plasmoid injection with the bare plasmoid injection, magnetic reconnection is considered to relax the magnetic tension force, that is the deceleration of the CT plasmoid. (author)

  1. Magnetic field line draping in the plasma depletion layer

    Science.gov (United States)

    Sibeck, D. G.; Lepping, R. P.; Lazarus, A. J.

    1990-01-01

    Simultaneous IMP 8 solar wind and ISEE 1/2 observations for a northern dawn ISEE 1/2 magnetopause crossing on November 6, 1977. During this crossing, ISEE 1/2 observed quasi-periodic pulses of magnetosheathlike plasma on northward magnetic field lines. The ISEE 1/2 observations were originally interpreted as evidence for strong diffusion of magnetosheath plasma across the magnetopause and the Kelvin-Helmholtz instability at the inner edge of the low-latitude boundary layer. An alternate explanation, in terms of magnetic field merging and flux transfer events, has also been advocated. In this paper, a third interpretation is proposed in terms of quasi-periodic magnetopause motion which causes the satellites to repeatedly exit the magnetosphere and observe draped northward magnetosheath magnetic field lines in the plasma depletion layer.

  2. Synthesis and anomalous magnetic properties of LaFeO{sub 3} nanoparticles by hot soap method

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tatsuo, E-mail: tfujii@cc.okayama-u.ac.jp [Department of Applied Chemistry, Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530 (Japan); Matsusue, Ikkoh; Nakatsuka, Daisuke; Nakanishi, Makoto; Takada, Jun [Department of Applied Chemistry, Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530 (Japan)

    2011-10-03

    Highlights: {yields} Nanocrystalline LaFeO{sub 3} particles were synthesized by using hot soap technique. {yields} Average diameter of the obtained LaFeO{sub 3} nanoparticles was about 15 nm. {yields} They exhibited superparamagnetic behavior with a blocking temperature of 30 K. {yields} Large magnetization due to the presence of uncompensated surface spins was induced. - Abstract: Nanocrystalline LaFeO{sub 3} particles were synthesized at low temperatures by using hot soap technique. The synthesis was based on the thermal decomposition of organometallic compounds precipitated in a hot coordinating solvent. Moderate heat treatment at low temperature far below the combustion point of organic compounds produced spherical LaFeO{sub 3} nanoparticles with average diameter of about 15 nm. The crystalline phase, structure and particle size of obtained products were characterized by X-ray diffraction, infrared spectroscopy and transmission electron microscopy observations. In spite of the antiferromagnetic nature of bulk LaFeO{sub 3}, the obtained nanoparticles exhibited anomalous large magnetization. Superparamagnetic behavior with a blocking temperature of about 30 K was observed in both magnetization and Moessbauer spectroscopic analyses.

  3. Penetration of magnetic fields into plasmas

    International Nuclear Information System (INIS)

    Bengtson, R.D.

    1976-01-01

    A pulsed plasma experiment was constructed to study the penetration of a fast-rising magnetic pulse into an initially unmagnetized, weakly ionized plasma of density 10 11 to 10 13 cm -3 . Magnetic probe data was analyzed using a magnetohydrodynamic approach to obtain detailed information about the dynamics of the penetration mechanism. In particular it is possible to obtain the local resistivity and thus the collision frequency from this data. These collision frequencies compare favorably with theoretical estimates of turbulent collision frequencies. The data indicates that sufficient energy is absorbed to heat the bulk of the plasma to temeratures in excess of 1 keV. A differential rotation of a collisionless theta-pinch column during implosion has been observed and explained by a model in which the driving mechanism is the off-diagonal element p/sub r theta/ of the pressure tensor. Rotational motion was detected by directional probes and spectroscopic techniques. Experimental data were modeled by a one-dimensional hybrid code which included ionization and charge exchange of protons with neutral H atoms

  4. Interaction of plasma with magnetic fields in coaxial discharge

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H.M.; Masoud, M.M. (National Research Centre, Cairo (Egypt))

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10[sup 2]-10[sup 3] G) is introduced at the end of the central electrode of coaxial discharge with 45 [mu]f capacitor bank, U[sub ch]=13-17 KV, peak current [approx]0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs.

  5. Plasma transport in the Scrape-off-Layer of magnetically confined plasma and the plasma exhaust

    DEFF Research Database (Denmark)

    Rasmussen, Jens Juul; Naulin, Volker; Nielsen, Anders Henry

    An overview of the plasma dynamics in the Scrape-off-Layer (SOL) of magnetically confined plasma is presented. The SOL is the exhaust channel of the warm plasma from the core, and the understanding of the SOL plasma dynamics is one of the key issues in contemporary fusion research. It is essential...... for operation of fusion experiments and ultimately fusion power plants. Recent results clearly demonstrate that the plasma transport through the SOL is dominated by turbulent intermittent fluctuations organized into filamentary structures convecting particles, energy, and momentum through the SOL region. Thus......, the transport cannot be described and parametrized by simple diffusive type models. The transport leads to strong localized power loads on the first wall and the plasma facing components, which have serious lasting influence....

  6. Effect of ECRH and resonant magnetic fields on formation of magnetic islands in the T-10 tokamak plasma

    Science.gov (United States)

    Shestakov, E. A.; Savrukhin, P. V.

    2017-10-01

    Experiments in the T-10 tokamak demonstrated possibility of controlling the plasma current during disruption instability using the electron cyclotron resonance heating (ECRH) and the controlled operation of the ohmic current-holding system. Quasistable plasma discharge with repeating sawtooth oscillations can be restored after energy quench using auxiliary ECRH power when PEC / POH > 2-5. The external magnetic field generation system consisted of eight saddle coils that were arranged symmetrically relative to the equatorial plane of the torus outside of the vacuum vessel of the T-10 tokamak to study the possible resonant magnetic field effects on the rotation frequency of magnetic islands. The saddle coils power supply system is based on four thyristor converters with a total power of 300 kW. The power supply control system is based on Siemens S7 controllers. As shown by preliminary experiments, the interaction efficiency of external magnetic fields with plasma depends on the plasma magnetic configuration. Optimal conditions for slowing the rotation of magnetic islands were determined. Additionally, the direction of the error magnetic field in the T-10 tokamak was determined, and the threshold value of the external magnetic field was determined.

  7. Magnetized plasma kinetic theory

    International Nuclear Information System (INIS)

    Hassan, M.H.A.; Watson, C.J.H.

    1977-01-01

    The magnetized Balescu-Lenard Collision integral for a multi-species plasma in the form derived by Hassan and Watson (1976) is approximated by ignoring wave effects. The resulting collision integral is put in Fokker-Planck form and most of the integrals occurring in the coefficients are performed analytically. The remaining integral is evaluated approximately in various limits for ion-electron, electron-electron and electron-ion interactions. (author)

  8. Plasma opening switch with extrinsic magnetic field

    CERN Document Server

    Dolgachev, G; Maslennikov, D

    2001-01-01

    Summary form only given, as follows. We have demonstrated in series of experiments that plasma opening switch (POS) switching voltage (UPOS) is defined by energy density (w) deposited in the POS plasma. If we then consider a plasma erosion mainly responsible for the effect of POS switching (the erosion effect could be described by Hall or Child-Langmuir models) the energy density (w) could be measured as a function of a system "macro-parameter" such as the initial charging voltage of the capacity storage system (the Marx pulsed voltage generator) UMarx. The POS voltage in this case could be given by UPOS"aw=aUMarx4/7, where a is a constant. This report demonstrates that for the high-impedance POS which has limited charge density transferred through the POS plasma a"2.5 (MV3/7) with no external magnetic field applied. The use of the extrinsic magnetic field allows to increase a up to 3.6 (MV3/7) and to achieve higher voltages at the opening phase - UPOS=3.6UMarx4/7. To verify this approach set of experimental ...

  9. Rayleigh scattering for a magnetized cold plasma sphere

    International Nuclear Information System (INIS)

    Li Yingle; Wang Mingjun; Tang Gaofeng; Li Jin

    2010-01-01

    The transformation of parameter tensors for anisotropic medium in different coordinate systems is derived. The electric field for a magnetized cold plasma sphere and the general expression of scattering field from anisotropic target are obtained. The functional relations of differential scattering cross section and the radar cross section for the magnetized plasma sphere are presented. Simulation results agree with that in the literatures, which shows the method used is correct and therefore the results may provide a theoretical base for anisotropic target identification. (authors)

  10. Dynamics of Plasma Jets and Bubbles Launched into a Transverse Background Magnetic Field

    Science.gov (United States)

    Zhang, Yue

    2017-10-01

    A coaxial magnetized plasma gun has been utilized to launch both plasma jets (open B-field) and plasma bubbles (closed B-field) into a transverse background magnetic field in the HelCat (Helicon-Cathode) linear device at the University of New Mexico. These situations may have bearing on fusion plasmas (e.g. plasma injection for tokamak fueling, ELM pacing, or disruption mitigation) and astrophysical settings (e.g. astrophysical jet stability, coronal mass ejections, etc.). The magnetic Reynolds number of the gun plasma is 100 , so that magnetic advection dominates over magnetic diffusion. The gun plasma ram pressure, ρjetVjet2 >B02 / 2μ0 , the background magnetic pressure, so that the jet or bubble can easily penetrate the background B-field, B0. When the gun axial B-field is weak compared to the gun azimuthal field, a current-driven jet is formed with a global helical magnetic configuration. Applying the transverse background magnetic field, it is observed that the n = 1 kink mode is stabilized, while magnetic probe measurements show contrarily that the safety factor q(a) drops below unity. At the same time, a sheared axial jet velocity is measured. We conclude that the tension force arising from increasing curvature of the background magnetic field induces the measured sheared flow gradient above the theoretical kink-stabilization threshold, resulting in the emergent kink stabilization of the injected plasma jet. In the case of injected bubbles, spheromak-like plasma formation is verified. However, when the spheromak plasma propagates into the transverse background magnetic field, the typical self-closed global symmetry magnetic configuration does not hold any more. In the region where the bubble toroidal field opposed the background B-field, the magneto-Rayleigh-Taylor (MRT) instability has been observed. Details of the experiment setup, diagnostics, experimental results and theoretical analysis will be presented. Supported by the National Science Foundation

  11. Compact dispersion relations for parametric instabilities of electromagnetic waves in magnetized plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1987-01-01

    The existence of compact dispersion relations for parametric instabilities of coherent electromagnetic waves in magnetized plasmas is addressed here. In general, comprehensive dispersion relations for parametric instabilities in unmagnetized plasmas become more complicated in the presence of an applied time-independent magnetic field. This is demonstrated with a fluid perturbation theory. A compact dispersion relation for parametric instabilities in unmagnetized plasma is heuristically extended here to the case of a magnetized plasma. This dispersion relation gives the correct results in a variety of circumstances of interest in considering electron cyclotron heating applications

  12. Radiative properties of strongly magnetized plasmas

    International Nuclear Information System (INIS)

    Weisheit, J.C.

    1993-11-01

    The influence of strong magnetic fields on quantum phenomena continues to be a topic of much interest to physicists and astronomers investigating a wide array of problems - the formation of high energy-density plasmas in pulsed power experiments, the crustal structure and radiative properties of neutron stars, transport coefficients of matter irradiated by subpicosecond lasers, the spectroscopy of magnetic white dwarf stars, the quantum Hall effect, etc. The passage of time finds more questions being asked than being answered in this subject, where even the hydrogen atom open-quotes paradigmclose quotes remains a major challenge. This theoretical program consists of two distinct parts: (1) investigation into the structure and transport properties of many-electron atoms in fields B > 10 8 Gauss; and (2) extension of spectral lineshape methods for diagnosing fields in strongly magnetized plasmas. Research during the past year continued to be focused on the first topic, primarily because of the interest and skills of Dr. E.P. Lief, the postdoctoral research associate who was hired to work on the proposal

  13. Recent Progress on the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory

    Science.gov (United States)

    Schaffner, D. A.; Cartagena-Sanchez, C. A.; Johnson, H. K.; Fahim, L. E.; Fiedler-Kawaguchi, C.; Douglas-Mann, E.

    2017-10-01

    Recent progress is reported on the construction, implementation and testing of the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory (BMPL). The experiment at the BMPL consists of an ( 300 μs) long coaxial plasma gun discharge that injects magnetic helicity into a flux-conserving chamber in a process akin to sustained slow-formation of spheromaks. A 24cm by 2m cylindrical chamber has been constructed with a high density axial port array to enable detailed simultaneous spatial measurements of magnetic and plasma fluctuations. Careful positioning of the magnetic structure produced by the three separately pulsed coils (one internal, two external) are preformed to optimize for continuous injection of turbulent magnetized plasma. High frequency calibration of magnetic probes is also underway using a power amplifier.

  14. Dynamics of hot spots in the DPF-78 plasma focus from x-ray spectra and REB emission

    International Nuclear Information System (INIS)

    Schmidt, H.; Wang, X.X.

    1995-01-01

    The X-ray emission from hot spots in the plasma focus DPF-78 was investigated with the help of two X-ray quartz crystal spectrometers of the Johann type and a 4 fold magnifying X-ray pinhole camera. In the experiments the working gas was chosen to be 300 Pa deuterium with 20 Pa argon admixture. X-ray spectra in the wavelength range from 3.55 angstrom to 4.0 angstrom, including H-like and He-like Argon lines, were recorded on Kodak DEF-2 film. From the spatially resolved spectra recorded side-on, a relative spectral shift between different hot spots of the same shot was often observed. The shift could be attributed to the Doppler shift. From spectral characteristics such as intensities and FWHM of Ar resonant and intercombination lines electron densities of up to 3 x 10 27 m -3 were determined. Radial dimensions of the hot spots ranging from about 140 microm to 300 microm were found from pinhole pictures applying the penumbra method. Usually two pulses of relativistic electron beams were observed using Cherenkov detectors in a magnetic spectrometer. The energy of the first pulse, which was emitted at the time of maximum compression, was higher than that of the second pulse. The measured FWHM of the REB pulses ranges from 3 ns to about 10 ns. The characteristics of the time-integrated X-ray spectra and the time resolved REB spectra and their dependence on the composition of the filling gas are discussed

  15. Initial measurements of two- and three-dimensional ordering, waves, and plasma filamentation in the Magnetized Dusty Plasma Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Konopka, Uwe [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-05-15

    The Magnetized Dusty Plasma Experiment at Auburn University has been operational for over one year. In that time, a number of experiments have been performed at magnetic fields up to B = 2.5 T to explore the interaction between magnetized plasmas and charged, micron-sized dust particles. This paper reports on the initial results from studies of: (a) the formation of imposed, ordered structures, (b) the properties of dust wave waves in a rotating frame, and (c) the generation of plasma filaments.

  16. Laser propagation and soliton generation in strongly magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W.; Li, J. Q.; Kishimoto, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-03-15

    The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Most interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.

  17. 2D simulations of hohlraum targets for laser-plasma experiments and ion stopping measurement in hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Basko, M.M. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany). ExtreMe Matter Institute EMMI; Maruhn, J.; Tauschwitz, Anna [Frankfurt Univ. (Germany); Novikov, V.G.; Grushin, A.S. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)

    2011-12-15

    An attractive way to create uniform plasma states at high temperatures and densities is by using hohlraums - cavities with heavy-metal walls that are either directly or indirectly heated by intense laser pulses to x-ray temperatures of tens and hundreds electron volts. A sample material, whose plasma state is to be studied, can be placed inside such a hohlraum (usually in the form of a low-density foam) and uniformly heated to a high temperature. In this case a high-Z hohlraum enclosure serves a double purpose: it prevents the hot plasma from rapid disassembly due to hydrodynamic expansion and, at the same time, suppresses its rapid radiative cooling by providing high diffusive resistivity for X-rays. Of course, both the inertial and the thermal confinement of high-temperature plasmas can be achieved only for a limited period of time - on the order of nanoseconds for millimeter-scale hohlraums. Some time ago such hohlraum targets were proposed for measurements of the stopping power of hot dense plasmas for fast ions at GSI (Darmstadt). Theoretical modeling of hohlraum targets has always been a challenging task for computational physics because it should combine multidimensional hydrodynamic simulations with the solution of the spectral transfer equation for thermal radiation. In this work we report on our latest progress in this direction, namely, we present the results of 2D (two-dimensional) simulations with a newly developed radiation-hydrodynamics code RALEF-2D of two types of the hohlraum targets proposed for experiments on the PHELIX laser at GSI. The first configuration is a simple spherical hohlraum with gold walls and empty interior, which has two holes - one for laser beam entrance, and the other for diagnostics. The hohlraums of this type have already been used in several experimental sessions with the NHELIX and PHELIX lasers at GSI. The second type is a two-chamber cylindrical hohlraum with a characteristic {omega}-shaped cross-section of the enclosure

  18. Magnetosheath plasma precipitation in the polar cusp and its control by the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Woch, J.; Lundin, R.

    1992-01-01

    Magnetosheath particle precipitation in the polar cusp region is studied based on Viking hot plasma data obtained on meridional cusp crossings. Two distinctively different regions are commonly encountered on a typical pass. One region is characterized by high-density particle precipitation, with an ion population characterized by a convecting Maxwellian distribution. Typical magnetosheath parameters are inferred for the spectrum of the source population. The spectral shape of the ion population encountered in the second region suggests that here the magnetosheath ions have been energized by about 1 keV, corresponding to an ion velocity gain of about twice the magnetosheath Alfven velocity. The location of the region containing the accelerated plasma is dependent on the IMF B z component. For southward IMF the acceleration region is bounded by the ring current population on the equatorward side and by the unaccelerated magnetosheath plasma precipitation on the poleward side. For northward IMF the region is located at the poleward edge of the region with unaccelerated precipitation. The accelerated ion population is obviously transported duskward (dawnward) for a dawnward (duskward) directed IMF. These observations are interpreted as evidence for plasma acceleration due to magnetopause current sheet disruptions/merging of magnetospheric and interplanetary magnetic flux tubes

  19. A new linear plasma device for various edge plasma studies at SWIP

    Science.gov (United States)

    Xu, Min; Zheng, Pengfei; Tynan, George; Che, Tong; Wang, Zhanhui; Guo, Dong; Wei, Ran

    2017-10-01

    To facilitate the plasma-material interactions (PMI) studies, Southwestern Institute of Physics (SWIP) has constructed a linear plasma device. It is comprised of a source chamber (Φ 0.4 m), a target chamber (Φ 0.9 m), 15 magnets with different sizes, and power supplies with the total power of a few hundred kilowatts, etc. A maximum magnetic field of 0.3 Tesla along the axial direction can be produced. The current of each of the 15 magnets can be independently controlled. More than 60 ports are available for diagnostics, with the sizes vary from Φ 50 mm to Φ 150 mm. Rectangular ports of 190 mm × 270 mm are also available. 12 ports looking at the sample holder are specially designed for ion beam injection, of which the axes are 25 to the chamber axis. The device is equipped with a LaB6 hot cathode plasma source, which is able to generate steady-state H/D/He plasmas with a diameter of Φ 100 mm, density of 1x1019 /m3 , and a particle flux of 1022 1023 n/m2 .s. The electron temperature is usually a few eV. Further, a Helicon RF plasma source is also planned for plasma transport studies. Int'l Sci & Tech Cooperation Program of China (No. 2015DFA61760).

  20. Magnetorotational and Parker instabilities in magnetized plasma Dean flow as applied to centrifugally confined plasmas

    International Nuclear Information System (INIS)

    Huang Yimin; Hassam, A.B.

    2003-01-01

    The ideal magnetohydrodynamics stability of a Dean flow plasma supported against centrifugal forces by an axial magnetic field is studied. Only axisymmetric perturbations are allowed for simplicity. Two distinct but coupled destabilization mechanisms are present: flow shear (magnetorotational instability) and magnetic buoyancy (Parker instability). It is shown that the flow shear alone is likely insufficient to destabilize the plasma, but the magnetic buoyancy instability could occur. For a high Mach number (M S ), high Alfven Mach number (M A ) system with M S M A > or approx. πR/a (R/a is the aspect ratio), the Parker instability is unstable for long axial wavelength modes. Implications for the centrifugal confinement approach to magnetic fusion are also discussed

  1. Whistleron gas in magnetized plasmas

    International Nuclear Information System (INIS)

    De Martino, Salvatore; Falanga, Mariarosaria; Tzenov, Stephan I.

    2005-01-01

    The nonlinear dynamics of whistler waves in magnetized plasmas is studied. Since the plasmas and beam-plasma systems considered here are assumed to be weakly collisional, the point of reference for the analysis performed in the present paper is the system of hydrodynamic and field equations. The renormalization group method is applied to obtain dynamical equations for the slowly varying amplitudes of whistler waves. Further, it has been shown that the amplitudes of eigenmodes satisfy an infinite system of coupled nonlinear Schroedinger equations. In this sense, the whistler eigenmodes form a sort of a gas of interacting quasiparticles, while the slowly varying amplitudes can be considered as dynamical variables heralding the relevant information about the system. An important feature of the approach is that whistler waves do not perturb the initial uniform density of plasma electrons. The plasma response to the induced whistler waves consists in velocity redistribution which follows exactly the behavior of the whistlers. In addition, selection rules governing the nonlinear mode coupling have been derived, which represent another interesting peculiarity of the description presented here

  2. Modified Debye screening potential in a magnetized quantum plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Hussain, A.; Sara, I.; Murtaza, G.; Shah, H.A.

    2009-01-01

    The effects of quantum mechanical influence and uniform static magnetic field on the Shukla-Nambu-Salimullah potential in an ultracold homogeneous electron-ion Fermi plasma have been examined in detail. It is noticed that the strong quantum effect arising through the Bohm potential and the ion polarization effect can give rise to a new oscillatory behavior of the screening potential beyond the shielding cloud which could explain a new type of possible robust ordered structure formation in the quantum magnetoplasma. However, the magnetic field enhances the Debye length perpendicular to the magnetic field in the weak quantum limit of the quantum plasma.

  3. Global low-frequency modes in weakly ionized magnetized plasmas: effects of equilibrium plasma rotation

    International Nuclear Information System (INIS)

    Sosenko, P.; Pierre, Th.; Zagorodny, A.

    2004-01-01

    The linear and non-linear properties of global low-frequency oscillations in cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of equilibrium plasma rotation. The theoretical results are compared with the experimental observations of rotating plasmas in laboratory devices, such as Mistral and Mirabelle in France, and KIWI in Germany. (authors)

  4. ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics: an executive summary

    Science.gov (United States)

    Gribkov, V. A.; Mank, G.; Markowicz, A.; Miklaszewski, R.; Tuniz, C.; Crespo, M. L.

    2011-12-01

    The Workshop on Dense Magnetized Plasma and Plasma Diagnostics was held from 15 to 26 November 2010 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. It was attended by 60 participants, including 15 lecturers, 2 tutors and 37 trainees, representing 25 countries.

  5. Momentum transfer to rotating magnetized plasma from gun plasma injection

    International Nuclear Information System (INIS)

    Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.

    2006-01-01

    Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1 87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented

  6. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  7. Production of free radical by magnetized sheet plasma with vertical gas-flow

    International Nuclear Information System (INIS)

    Tonegawa, Akira; Takatori, Masahiko; Kawamura, Kazutaka

    1995-01-01

    Free radicals play an important role in plasma processing, environment problem, and space plasma and so on because of their outstanding physical properties. Although much work has been done on the free radicals in the reactive plasma, very little is known about the production mechanism of the free radicals against various plasma parameters. To overcome this problem, we have proposed to do a new system of a magnetized sheet plasma with vertical gas-flow. The sheet plasma is a special type of strongly magnetized highly ionized slab plasma. This system is controlled to the parameters of radicals and plasma independently. Therefore, it is possible to make a quantitative analysis of free radicals as the simple one. In this paper, we describe the magnetized sheet plasma with vertical gas-flow system and report the preliminary results of production of the free radical. In particular, we show to produce and control the OH free radical which has been the most commonly studied combustion species

  8. Transformation of QSPA plasma streams in longitudinal magnetic field

    International Nuclear Information System (INIS)

    Makhlaj, V.A.; Bandura, A.N.; Chebotarev, V.V.; Kulik, N.V.; Wuerz, H.

    2002-01-01

    The main aim of this work is analysis of efficiency of QSPA powerful plasma streams transportation in longitudinal magnetic field in dependence on operational mode of accelerator and plasma stream parameters

  9. Instabilities, turbulence and transport in a magnetized plasma

    International Nuclear Information System (INIS)

    Garbet, X.

    2001-06-01

    The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)

  10. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    International Nuclear Information System (INIS)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-01-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons

  11. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S., E-mail: ikeda.s.ae@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Takahashi, K. [Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2137 (Japan); Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Horioka, K. [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan)

    2016-02-15

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  12. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Science.gov (United States)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-02-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  13. Study of magnetic field expansion using a plasma generator for space radiation active protection

    International Nuclear Information System (INIS)

    Jia Xianghong; Jia Shaoxia; Wan Jun; Wang Shouguo; Xu Feng; Bai Yanqiang; Liu Hongtao; Jiang Rui; Ma Hongbo

    2013-01-01

    There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power. (authors)

  14. Solitons and nonlinear waves in space plasmas

    International Nuclear Information System (INIS)

    Stasiewicz, K.

    2005-01-01

    Recent measurements made on the ESA/NASA Cluster mission to the Earth's magnetosphere have provided first detailed measurements of magnetosonic solitons in space. The solitons represent localized enhancements of the magnetic field by a factor of 2-10, or depressions down to 10% of the ambient field. The magnetic field signatures are associated with density depressions/enhancements A two-fluid model of nonlinear electron and ion inertial waves in anisotropic plasmas explains the main properties of these structures. It is shown that warm plasmas support four types of nonlinear waves, which correspond to four linear modes: Alfvenic, magnetosonic, sound, and electron inertial waves. Each of these nonlinear modes has slow and fast versions. It is shown by direct integration that the exponential growth rate of nonlinear modes is balanced by the ion and electron dispersion leading to solutions in the form of trains of solitons or cnoidal waves. By using a novel technique of phase portraits it is shown how the dispersive properties of electron and ion inertial waves change at the transition between warm and hot plasmas, and how trains of solitons ('' mirror modes '') are produced in a hot, anisotropic plasma. The applicability of the model is illustrated with data from Cluster spacecraft. (author)

  15. Plasma transport through magnetic boundaries

    International Nuclear Information System (INIS)

    Treumann, R.A.

    1992-01-01

    We examine the overall plasma diffusion processes across tangential discontinuities of which the best known example is the Earth's magnetopause during northward interplanetary magnetic field conditions. The existence of the low latitude boundary layer (LLBL) adjacent to the magnetopause during those periods is ample evidence for the presence of so far poorly defined and understood entry processes acting at the magnetopause. We conclude that microscopic instabilities are probably not efficient enough to account for the LLBL. They affect only a small number of resonant particles. It is argued that macroscopic nonresonant turbulence is the most probable mechanism for plasma transport

  16. Finite geometry effect on the interaction of a hot beam with a plasma

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1977-01-01

    The effect of finite geometry on the interaction of a hot low-density beam with a uniform plasma filling a circular waveguide is studied. An expression is derived for the growth rate of the instabilities developing at the harmonic of the beam gyrofrequency, taking the finite beam gyroradius into account. The calculations are done in the quasistatic approximation. (author)

  17. Nonequilibrium phenomena and determination of plasma parameters in the hot core of the cathode region in free-burning arc discharges

    International Nuclear Information System (INIS)

    Kuehn, Gerrit; Kock, Manfred

    2007-01-01

    We present spectroscopic measurements of plasma parameters (electron density n e , electron temperature T e , gas temperature T g , underpopulation factor b) in the hot-core region in front of the cathode of a low-current, free-burning arc discharge in argon under atmospheric pressure. The discharge is operated in the hot-core mode, creating a hot cathode region with plasma parameters similar to high-current arcs in spite of the fact that we use comparatively low currents (less than 20 A). We use continuum emission and (optically thin) line emission to determine n e and T e . We apply relaxation measurements based on a power-interruption technique to investigate deviations from local thermodynamic equilibrium (LTE). These measurements let us determine the gas temperature T g . All measurements are performed side-on with charge-coupled-device cameras as detectors, so that all measured plasma parameters are spatially resolved after an Abel inversion. This yields the first ever spatially resolved observation of the non-LTE phenomena of the hot core in the near-cathode region of free-burning arcs. The results only partly coincide with previously published predictions and measurements in the literature

  18. ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics: an executive summary

    International Nuclear Information System (INIS)

    Gribkov, V.A.; Mank, G.; Markowicz, A.; Miklaszewski, R.; Tuniz, C.; Crespo, M.L.

    2011-01-01

    The Workshop on Dense Magnetized Plasma and Plasma Diagnostics was held from 15 to 26 November 2010 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. It was attended by 60 participants, including 15 lecturers, 2 tutors and 37 trainees, representing 25 countries. (conference report)

  19. Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian.

    Science.gov (United States)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J

    2017-08-01

    Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.

  20. Dynamo Effects in Magnetized Ideal Plasma Cosmologies

    Science.gov (United States)

    Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios; Vlahos, Loukas

    The excitation of cosmological perturbations in an anisotropic cosmological model and in the presence of a homogeneous magnetic field has been studied, using the ideal magnetohydrodynamic (MHD) equations. In this case, the system of partial differential equations which governs the evolution of the magnetized cosmological perturbations can be solved analytically. Our results verify that fast-magnetosonic modes propagating normal to the magnetic field, are excited. But, what is most important, is that, at late times, the magnetic-induction contrast (δB/B) grows, resulting in the enhancement of the ambient magnetic field. This process can be particularly favored by condensations, formed within the plasma fluid due to gravitational instabilities.

  1. Buneman instability in hot electron plasma (Te>>Ti)

    International Nuclear Information System (INIS)

    Khalil, S.M.; Sayed, Y.A.; Sayed, R.A.

    1986-07-01

    We shall investigate the linear excitation of electrostatic current Buneman instability in both unmagnetized and magnetized homogeneous plasma. The frequency, growth rate and conditions of excitation of such instability are obtained analytically. We consider that the current velocity u (due to relative streaming of ions and electrons) slightly exceeds the instability threshold velocity u cr and that the electron temperature is much higher than the ion temperature (T e >>T i ). (author)

  2. Compressional heating in magnetized disks neighborhood: from the galactic center to micro-quasars

    International Nuclear Information System (INIS)

    Belmont, Renaud

    2005-01-01

    Faint, magnetized and energetic plasmas are very common media in Astrophysics. This thesis is dedicated to two specific cases characterized by a thin disk geometry: the Galactic center and the corona of micro-quasars. In both cases, observations show evidence for a faint and very hot plasma (at 100 million and 1 billion degrees) whose origin is unknown; some clues seem also to indicate a strong, large scale bipolar magnetic field. At the Galactic Center, the gas temperature is such that, if it were collisional and mostly composed by hydrogen, it would escape quickly, so that the power required to sustain the related energy losses would be huge. We however show that the specific conditions of this region can lead to form a helium plasma that is confined by the Galactic potential. In this favorable situation, we study a possible heating mechanism based on the high viscosity of the hot plasma and friction with cold molecular clouds flowing in this region. The corona of micro-quasars is a very similar issue but it is probably weakly collisional. In this regime we study a heating by magnetic pumping, by which the resonance between the periodic motion of some coronal ions and the periodic excitation by an instability in the disc itself can energize the corona. We show that this mechanism is inefficient to explain the hot temperature. (author) [fr

  3. Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions.

    Science.gov (United States)

    Chatterjee, Gourab; Singh, Prashant Kumar; Robinson, A P L; Blackman, D; Booth, N; Culfa, O; Dance, R J; Gizzi, L A; Gray, R J; Green, J S; Koester, P; Kumar, G Ravindra; Labate, L; Lad, Amit D; Lancaster, K L; Pasley, J; Woolsey, N C; Rajeev, P P

    2017-08-21

    The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-μm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~10 20 W/cm 2 . The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear.

  4. Modification and damping of Alfven waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Dasgupta, B.; Watanabe, K.; Sato, T.

    1994-10-01

    The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlation. It is found that in addition to the usual Landau damping which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field. (author)

  5. Nonlinear electrostatic excitations in magnetized dense plasmas with nonrelativistic and ultra-relativistic degenerate electrons

    International Nuclear Information System (INIS)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.

    2013-01-01

    Linear and nonlinear electrostatic waves in magnetized dense electron-ion plasmas are studied with nonrelativistic and ultra-relativistic degenerate and singly, doubly charged helium (He + , He ++ ) and hydrogen (H + ) ions, respectively. The dispersion relation of electrostatic waves in magnetized dense plasmas is obtained under both the energy limits of degenerate electrons. Using reductive perturbation method, the Zakharov-Kuznetsov equation for nonlinear propagation of electrostatic solitons in magnetized dense plasmas is derived for both nonrelativistic and ultra-relativistic degenerate electrons. It is found that variations in plasma density, magnetic field intensity, different mass, and charge number of ions play significant role in the formation of electrostatic solitons in magnetized dense plasmas. The numerical plots are also presented for illustration using the parameters of dense astrophysical plasma situations such as white dwarfs and neutron stars exist in the literature. The present investigation is important for understanding the electrostatic waves propagation in the outer periphery of compact stars which mostly consists of hydrogen and helium ions with degenerate electrons in dense magnetized plasmas

  6. Effect of solenoidal magnetic field on drifting laser plasma

    Science.gov (United States)

    Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter

    2013-04-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  7. Effect of solenoidal magnetic field on drifting laser plasma

    International Nuclear Information System (INIS)

    Takahashi, Kazumasa; Sekine, Megumi; Okamura, Masahiro; Cushing, Eric; Jandovitz, Peter

    2013-01-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  8. Effect of solenoidal magnetic field on drifting laser plasma

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazumasa; Sekine, Megumi [Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Okamura, Masahiro [Brookhaven National Laboratory, Upton, NY 11973 (United States) and RIKEN, Wako-shi, Saitama 351-0198 (United States); Cushing, Eric [Pennsylvania State University, University Park, PA 16802 (United States); Jandovitz, Peter [Cornell University, Ithaca, NY 14853 (United States)

    2013-04-19

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  9. Rotation of dust plasma crystals in an axial magnetic field

    International Nuclear Information System (INIS)

    Cheung, F.; Prior, N.; Mitchell, L.

    2000-01-01

    Full text: Micron-sized melamine formaldehyde particles were introduced into argon plasma. As a result, the particles were negatively charged due to collision with the electrons within the plasma. With the right conditions, these particles formed a stable macroscopic crystal lattice, known as dust plasma crystal. In our experiment we conduct at Flinders University, we apply an external axial magnetic field to various configurations of dust plasma crystal. These configurations include small crystal lattices consisting of one to several particles, and large crystal lattices with many hundreds of particles. The magnetic field strength ranged from 0-32G and was uniform over the extent of the crystal. The crystals were observed to be rotating collectively in the left-handed direction under the influence of the axial magnetic field. In the case of the large crystals, the angular velocity was about 2 complete rotations per minute and was proportional to the applied magnetic field. The angular velocity changes only slightly depending on the plasma conditions. Neither radial variance in the angular velocity nor shear velocity in the vertical direction was observed in the crystal's rotational motion. In the case of the small crystals, we managed to rotate 2-6 particles (whether they are planar, 2 layers or tetrahedral). We discovered that the ease and the uniformity of the rotation of the different crystals increase as its rotational symmetry increases. Also an increase in the magnetic field strength will correspond to an increase in the angular velocity. Crystals in the shape of an annulus were also tested for theoretical reasons. The poster presentation will contain the experimental procedures, a detailed analysis and an explanation for such dust plasma crystal rotational motion

  10. Development of a monoenergetic 1-10 keV neutral lithium beam for the diagnostic of edge plasmas in magnetic confinement devices

    International Nuclear Information System (INIS)

    Ueda, Mario.

    1994-09-01

    Diagnostic of plasmas confined by magnetic fields for fusion research based on neutral lithium beam (NLB) is presently considered to be one of the most appropriate methods to carry out the important measurements of edge density and its fluctuation profiles without plasma perturbation. In this CRP project we proposed the development of an NLB source with 1-10 KeV based on a traditional β-eucryptite surface emission source coupled to a Pierce gun geometry accelerator and subsequent neutralization of the Li + beam by a Li-oven neutralizer. Possible application of such an NLB probe in a medium term (2-3 years) in our country would be in a small RFP in operation and in a low-aspect-ratio tokamak in construction both at LAP/INPE and in other hot plasma devices operating at brazilian universities of Sao Paulo (USP) and Campinas (UNICAMP) with whom we maintain strong collaboration efforts in plasma research. (author). 8 refs

  11. How well do time-integrated Kα images represent hot electron spatial distributions?

    Science.gov (United States)

    Ovchinnikov, V. M.; Kemp, G. E.; Schumacher, D. W.; Freeman, R. R.; Van Woerkom, L. D.

    2011-07-01

    A computational study is described, which addresses how well spatially resolved time-integrated Kα images recorded in intense laser-plasma experiments correlate with the distribution of "hot" (>1 MeV) electrons as they propagate through the target. The hot electron angular distribution leaving the laser-plasma region is critically important for many applications such as Fast Ignition or laser based x-ray sources; and Kα images are commonly used as a diagnostic. It is found that Kα images can easily mislead due to refluxing and other effects. Using the particle-in-cell code LSP, it is shown that a Kα image is not solely determined by the initial population of forward directed hot electrons, but rather also depends upon "delayed" hot electrons, and in fact continues to evolve long after the end of the laser interaction. Of particular note, there is a population of hot electrons created during the laser-plasma interaction that acquire a velocity direction opposite that of the laser and subsequently reflux off the front surface of the target, deflect when they encounter magnetic fields in the laser-plasma region, and then traverse the target in a wide spatial distribution. These delayed fast electrons create significant features in the Kα time-integrated images. Electrons refluxing from the sides and the back of the target are also found to play a significant role in forming the final Kα image. The relative contribution of these processes is found to vary depending on depth within target. These effects make efforts to find simple correlations between Kα images and, for example, Fast Ignition relevant parameters prone to error. Suggestions for future target design are provided.

  12. Linear and nonlinear electrostatic modes in a nonuniform magnetized electron plasma

    International Nuclear Information System (INIS)

    Vranjes, J.; Shukla, P.K.; Kono, M.; Poedts, S.

    2001-01-01

    Linear and nonlinear low-frequency modes in a magnetized electron plasma are studied, taking into account a proper description of the equilibrium plasma state that is inhomogeneous. Assuming a homogeneous magnetic field and sheared plasma flows, flute-like perturbations are studied in the presence of density and potential gradients. Linear analysis reveals the presence of a streaming instability and depicts conditions for global linear spiral mode. In the nonlinear domain, a tripolar vortex, which is driven and carried by the flow, is found. Also investigated are the consequences of a magnetic shear as well as nonuniformities along the magnetic field lines, which are shown to be responsible for the possible annulment of the magnetic shear effects. Streaming along the lines of the sheared magnetic field is also studied. A variety of nonlinear structures (viz. global multipolar vortices, local vortex chains, and tripolar vortices) is shown to be the consequence of the simultaneous action of the parallel and perpendicular flows

  13. Effects of hot rolled microstructure after twin-roll casting on microstructure, texture and magnetic properties of low silicon non-oriented electrical steel

    International Nuclear Information System (INIS)

    Liu, Hai-Tao; Wang, Yin-Ping; An, Ling-Zi; Wang, Zhao-Jie; Hou, Dao-Yuan; Chen, Jun-Mou; Wang, Guo-Dong

    2016-01-01

    In this work, a 0.71 wt%Si+0.44 wt%Al as-cast strip was produced by novel twin-roll casting. Some as-cast samples were respectively reheated and hot rolled at different temperatures in order to obtain different microstructure prior to cold rolling and annealing. The effects of the hot rolled microstructure on microstructure, texture evolution and magnetic properties were investigated in detail. A coarse deformed microstructure with λ-fiber texture was formed after hot rolling at 850–1050 °C, finally leading to an inhomogeneous recrystallization microstructure with strong λ-fiber, Goss and extremely weak γ-fiber texture. By contrast, a fine transformed microstructure was formed after hot rolling at 1150–1250 °C, finally leading to a fine and homogeneous recrystallization microstructure with stronger α-fiber, γ-fiber and much weaker λ-fiber texture. It should be noted that both the magnetic induction and core loss non-monotonically decreased or increased according to the hot rolling temperature. The unfavorable α-fiber and γ-fiber textures in the annealed sheets were much weaker than those of the conventional products regardless of the hot rolling temperature, thus contributing to a much higher magnetic induction. However, the average grain size in the annealed sheets was much lower than those of the conventional products regardless of the hot rolling temperature, thus leading to a higher core loss except the case of 1050 °C. Hence, it is underscored that better integrated magnetic properties than those of the conventional products can be obtained by optimizing the hot rolled microstructure to produce final desirable recrystallization microstructure and texture. - Highlights: • Non-oriented silicon steel was fabricated using twin-roll casting route. • Microstructure and texture evolution were clarified. • Effects of the hot rolled microstructure were investigated in detail. • Formation mechanism of the recrystallization texture was explored.

  14. Effects of hot rolled microstructure after twin-roll casting on microstructure, texture and magnetic properties of low silicon non-oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; An, Ling-Zi; Wang, Zhao-Jie; Hou, Dao-Yuan; Chen, Jun-Mou; Wang, Guo-Dong

    2016-12-15

    In this work, a 0.71 wt%Si+0.44 wt%Al as-cast strip was produced by novel twin-roll casting. Some as-cast samples were respectively reheated and hot rolled at different temperatures in order to obtain different microstructure prior to cold rolling and annealing. The effects of the hot rolled microstructure on microstructure, texture evolution and magnetic properties were investigated in detail. A coarse deformed microstructure with λ-fiber texture was formed after hot rolling at 850–1050 °C, finally leading to an inhomogeneous recrystallization microstructure with strong λ-fiber, Goss and extremely weak γ-fiber texture. By contrast, a fine transformed microstructure was formed after hot rolling at 1150–1250 °C, finally leading to a fine and homogeneous recrystallization microstructure with stronger α-fiber, γ-fiber and much weaker λ-fiber texture. It should be noted that both the magnetic induction and core loss non-monotonically decreased or increased according to the hot rolling temperature. The unfavorable α-fiber and γ-fiber textures in the annealed sheets were much weaker than those of the conventional products regardless of the hot rolling temperature, thus contributing to a much higher magnetic induction. However, the average grain size in the annealed sheets was much lower than those of the conventional products regardless of the hot rolling temperature, thus leading to a higher core loss except the case of 1050 °C. Hence, it is underscored that better integrated magnetic properties than those of the conventional products can be obtained by optimizing the hot rolled microstructure to produce final desirable recrystallization microstructure and texture. - Highlights: • Non-oriented silicon steel was fabricated using twin-roll casting route. • Microstructure and texture evolution were clarified. • Effects of the hot rolled microstructure were investigated in detail. • Formation mechanism of the recrystallization texture was explored.

  15. Effect of energetic electrons on dust charging in hot cathode filament discharge

    Science.gov (United States)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-03-01

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  16. Effect of energetic electrons on dust charging in hot cathode filament discharge

    International Nuclear Information System (INIS)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-01-01

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  17. Magnetic fields and chiral asymmetry in the early hot universe

    Energy Technology Data Exchange (ETDEWEB)

    Sydorenko, Maksym; Shtanov, Yuri [Bogolyubov Institute for Theoretical Physics, 03680 Kiev (Ukraine); Tomalak, Oleksandr, E-mail: maxsydorenko@gmail.com, E-mail: tomalak@uni-mainz.de, E-mail: shtanov@bitp.kiev.ua [Institut für Kernphysik, Johannes Gutenberg Universität, 55128 Mainz (Germany)

    2016-10-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  18. Magnetic fields and chiral asymmetry in the early hot universe

    International Nuclear Information System (INIS)

    Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr

    2016-01-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  19. Hot ion buildup and lifetime in LITE. Final report

    International Nuclear Information System (INIS)

    1978-09-01

    An experimental investigation of hot ion buildup and lifetime in a small scale mirror device (LITE) is described. Hot ions were produced by 27 kV neutral beam injection into laser produced LiH plasmas and H plasmas produced by a washer gun. Hot H ion (12 kV) densities of approx. = 10 12 cm -3 were produced with the LiH target plasmas and densities an order of magnitude lower were produced with the washer gun target plasmas. Hot ion dominant plasmas were not achieved in LITE. The experimental measurements and subsequent analysis using numerical models of the plasma buildup indicate that in small, unshielded mirror plasmas, careful control must be maintained over the transient background gas density in the vicinity of the plasma surface. The hot ion lifetime in LITE was set by the transient cold neutral background resulting from the washer gun of reflux from the target plasma striking the adjacent surfaces

  20. Generation of zonal flows in rotating fluids and magnetized plasmas

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Garcia, O.E.; Naulin, V.

    2006-01-01

    The spontaneous generation of large-scale flows by the rectification of small-scale turbulent fluctuations is of great importance both in geophysical flows and in magnetically confined plasmas. These flows regulate the turbulence and may set up effective transport barriers. In the present....... The analogy to large-scale flow generation in drift-wave turbulence dynamics in magnetized plasma is briefly discussed....

  1. Pressure and compressibility of a quantum plasma in a magnetic field

    NARCIS (Netherlands)

    Suttorp, L.G.

    1993-01-01

    The equilibrium pressure tensor that occurs in the momentum balance equation for a quantum plasma in a magnetic field is shown to be anisotropic. Its relation to the pressure that follows from thermodynamics is elucidated. A general proof of the compressibility rule for a magnetized quantum plasma

  2. Latitudinal oscillations of plasma within the Io torus

    Science.gov (United States)

    Cummings, W. D.; Dessler, A. J.; Hill, T. W.

    1980-01-01

    The equilibrium latitude and the period of oscillations about this equilibrium latitude are calculated for a plasma in a centrifugally dominated tilted dipole magnetic field representing Jupiter's inner magnetosphere. It is found that for a hot plasma the equilibrium latitude in the magnetic equator, for a cold plasma it is the centrifugal equator, and for a warm plasma it is somewhere in between. An illustrative model is adopted in which atoms are sputtered from the Jupiter-facing hemisphere of Io and escape Io's gravity to be subsequently ionized some distance from Io. Finally, it is shown that ionization generally does not occur at the equilibrium altitude, and that the resulting latitudinal oscillations provide an explanation for the irregularities in electron concentration within the torus, as reported by the radioastronomy experiment aboard Voyager I.

  3. Endogenous magnetic reconnection and associated high energy plasma processes

    Science.gov (United States)

    Coppi, B.; Basu, B.

    2018-02-01

    An endogenous reconnection process involves a driving factor that lays inside the layer where a drastic change of magnetic field topology occurs. A process of this kind is shown to take place when an electron temperature gradient is present in a magnetically confined plasma and the evolving electron temperature fluctuations are anisotropic. The width of the reconnecting layer remains significant even when large macroscopic distances are considered. In view of the fact that there are plasmas in the Universe with considerable electron thermal energy contents this feature can be relied upon in order to produce generation or conversion of magnetic energy, high energy particle populations and momentum and angular momentum transport.

  4. High magnetic field generation for laser-plasma experiments

    International Nuclear Information System (INIS)

    Pollock, B. B.; Froula, D. H.; Davis, P. F.; Ross, J. S.; Fulkerson, S.; Bower, J.; Satariano, J.; Price, D.; Krushelnick, K.; Glenzer, S. H.

    2006-01-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented

  5. Heliosheath ENA images by Cassini/INCA and in-situ hot plasma ion measurements by Voyagers

    Science.gov (United States)

    Krimigis, Stamatios; Roelof, Edmond; Mitchell, Donald; Decker, Robert; Dialynas, Konstantinos

    2016-07-01

    The advent of Energetic Neutral Atom (ENA) imaging, (the result of charge-exchange with energetic ions), has revealed the global nature of the heliosheath (HS) at both high ( > 5 keV, Cassini from 10 AU) and low (INCA (Ion and Neutral CAmera) since 2003 with a full image available since 2009, when IBEX global imaging observations also became available. The presence of the two Voyagers measuring ions locally in the HS contemporaneously with INCA global imaging through ENA in overlapping energy bands provides a powerful tool for examining the spatial, temporal, and spectral evolution of the source hot plasma ions and the global variability of the neutral component. Some of the key findings from the Voyagers and INCA measurements are as follows: (a) The HS contains a hot plasma population that carries a substantial part (30-50%) of the total pressure at E > 5 keV, the rest residing below that range, resulting in a beta (particle/magnetic pressure) always > 1, typically > 10. (b) The width of the HS in the direction of V1 is ˜~ 30 AU, but is thought to be larger (40-70 AU) in the southern ecliptic where V2 currently travels. (c) The ENA intensities at E > 5 keV exhibit a correlation with the solar cycle (SC) over the period 2003 to 2014, with minimum intensities in the anti-nose direction observed ˜~ 1.5 yrs after solar minimum followed by a recovery thereafter, and (d) The in situ ion measurements at V2 within the HS also show a similar SC dependence. The totality of the observations, together with the near-contemporaneous variability in intensities of ions in situ in the HS and ENA in the inner heliosphere suggests that the source of such emissions at E > 5 keV must reside in the HS. These observations constrain the shape of the HS and suggest configurations that are at some variance with current models.

  6. Electric and magnetic properties of hot gluons

    International Nuclear Information System (INIS)

    Hansson, T.H.; Zahed, I.

    1987-01-01

    The dielectric constant ε and magnetic permeability μ for gluon plasma are calculated from the one-loop gauge-invariant effective action. The real parts are gauge-fixing independent and agree with earlier work. The imaginary part of μ/sup -1/ is zero in any covariant background-field gauge, while the imaginary part of ε is gauge-fixing dependent and negative definite. This result indicates that there is no consistent perturbative description of gluonic plasmons on scale ≥(g 2 T)/sup -1/

  7. Magnetohydrodynamic structure of an interplanetary flux according to measurements of plasma and magnetic field on the ''Prognoz-7'' satellite (VI STIP interval, April 25, 1979)

    International Nuclear Information System (INIS)

    Zastenker, G.N.; Omel'chenko, A.N.; Eroshenko, E.G.; Ivanov, K.G.; Styazhkin, B.A.

    1982-01-01

    MHD structure of an interplanetary flow on 25.04.1979 is studied using plasma and magnetic field measurements at the Prognoz 7 near-earth cosmic satellite. The main attention was paid to the interaction region between rapid flow (presumably from a low-latitudinal coronal hole) and slow solar wind. It is discovered that specific large break (flow boundary) divides the interaction region into a head shock wave with hot dense (β > 1) turbulent magnetoplasma and a back shock wave with a strong regular magnetic field and cold (β << 1) plasma. Ouantity of motion gained with slow wind in the head wave exceeds 4 times quantity of motion lost with rapid flow in a back wave. An additional quantity of motion to the acceleration region is suggested to go near the Sun at the expense of pulse of electrodynamic forces

  8. Magnetic Field Effects and Electromagnetic Wave Propagation in Highly Collisional Plasmas.

    Science.gov (United States)

    Bozeman, Steven Paul

    The homogeneity and size of radio frequency (RF) and microwave driven plasmas are often limited by insufficient penetration of the electromagnetic radiation. To investigate increasing the skin depth of the radiation, we consider the propagation of electromagnetic waves in a weakly ionized plasma immersed in a steady magnetic field where the dominant collision processes are electron-neutral and ion-neutral collisions. Retaining both the electron and ion dynamics, we have adapted the theory for cold collisionless plasmas to include the effects of these collisions and obtained the dispersion relation at arbitrary frequency omega for plane waves propagating at arbitrary angles with respect to the magnetic field. We discuss in particular the cases of magnetic field enhanced wave penetration for parallel and perpendicular propagation, examining the experimental parameters which lead to electromagnetic wave propagation beyond the collisional skin depth. Our theory predicts that the most favorable scaling of skin depth with magnetic field occurs for waves propagating nearly parallel to B and for omega << Omega_{rm e} where Omega_{rm e} is the electron cyclotron frequency. The scaling is less favorable for propagation perpendicular to B, but the skin depth does increase for this case as well. Still, to achieve optimal wave penetration, we find that one must design the plasma configuration and antenna geometry so that one generates primarily the appropriate angles of propagation. We have measured plasma wave amplitudes and phases using an RF magnetic probe and densities using Stark line broadening. These measurements were performed in inductively coupled plasmas (ICP's) driven with a standard helical coil, a reverse turn (Stix) coil, and a flat spiral coil. Density measurements were also made in a microwave generated plasma. The RF magnetic probe measurements of wave propagation in a conventional ICP with wave propagation approximately perpendicular to B show an increase in

  9. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Li, C. K.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Igumenshchev, I.; Stoeckl, C.; Glebov, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-04-15

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β ∼ 10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  10. Nonlinear evolution of a three dimensional longitudinal plasma wavepacket in a hot plasma including the effect of its interaction with an ion-acoustic wave

    International Nuclear Information System (INIS)

    Das, K.P.; Sihi, S.

    1979-01-01

    Assuming amplitudes as slowly varying functions of space and time and using perturbation method three coupled nonlinear partial differential equations are obtained for the nonlinear evolution of a three dimensional longitudinal plasma wave packet in a hot plasma including the effect of its interaction with a long wavelength ion-acoustic wave. These three equations are used to derive the instability conditions of a uniform longitudinal plasma wave train including the effect of its interaction both at resonance and nonresonance, with a long wavelength ion-acoustic wave. (author)

  11. Solar Magnetized Tornadoes: Rotational Motion in a Tornado-like Prominence

    Science.gov (United States)

    Su, Yang; Gömöry, Peter; Veronig, Astrid; Temmer, Manuela; Wang, Tongjiang; Vanninathan, Kamalam; Gan, Weiqun; Li, YouPing

    2014-04-01

    Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ~5 km s-1.

  12. Classical impurity ion confinement in a toroidal magnetized fusion plasma.

    Science.gov (United States)

    Kumar, S T A; Den Hartog, D J; Caspary, K J; Magee, R M; Mirnov, V V; Chapman, B E; Craig, D; Fiksel, G; Sarff, J S

    2012-03-23

    High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.

  13. The vacuum-arc plasma motion in a toroidal magnetic field

    International Nuclear Information System (INIS)

    Timoshenko, A.I.; Gnybida, M.V.; Taran, V.S.; Tereshin, V.I.; Chechelnitskij, O.G.

    2005-01-01

    The separation of the vacuum-arc plasma from macro-particles in the curvilinear plasma filters allows obtaining coatings with especially high characteristics. However, inside such filters the significant plasma losses also have been occurred. At the same time, increasing in the filter's efficiency is a difficult task without an effective mathematical model that really would describe the vacuum-arc plasma motion in a toroidal magnetic field. The description based on the flax-tube model was in fact only the first approximation in the decision of this problem. According to detailed flax-tube analysis of ions passage through the quarter torus plasma guide, the efficiency of the filter should grow up to 85% as the positive potential U, applied to the body of the plasma guide, is on the increase. However, the experiment showed that maximum of transparency reach up to ∼ 12%, at potential about of +18 Volts, and comes down under the further increase in potential. Such big digression from experiment does not justify the use of flux-tube model for designing of curvilinear plasma filters. We offer the new approach to the description of the vacuum-arc plasma motion in a toroidal magnetic field based on the solutions of steady-state (∂/∂t=0) Vlasov-Maxwell equations for the long plasma column aligned parallel to a constant axial magnetic field. The relations for the self-consistent electric polarization fields, which appear due to displacement of the electron component from ionic one on the curvilinear part of motion, were derived within a framework of the drift approximation. The dynamics of the central part of the plasma flow in the electric polarization fields was considered in detail. The displacement of the plasma flow at the output of the plasma guide was calculated for the carbon and titanium plasmas. The good agreement with the experimental data was obtained. (author)

  14. Transparency of Magnetized Plasma at Cyclotron Frequency

    International Nuclear Information System (INIS)

    G. Shvets; J.S. Wurtele

    2002-03-01

    Electromagnetic radiation is strongly absorbed by a magnetized plasma if the radiation frequency equals the cyclotron frequency of plasma electrons. It is demonstrated that absorption can be completely canceled in the presence of a magnetostatic field of an undulator or a second radiation beam, resulting in plasma transparency at the cyclotron frequency. This effect is reminiscent of the electromagnetically induced transparency (EIT) of the three-level atomic systems, except that it occurs in a completely classical plasma. Unlike the atomic systems, where all the excited levels required for EIT exist in each atom, this classical EIT requires the excitation of the nonlocal plasma oscillation. The complexity of the plasma system results in an index of refraction at the cyclotron frequency that differs from unity. Lagrangian description was used to elucidate the physics and enable numerical simulation of the plasma transparency and control of group and phase velocity. This control naturally leads to applications for electromagnetic pulse compression in the plasma and electron/ion acceleration

  15. A Revised Piecewise Linear Recursive Convolution FDTD Method for Magnetized Plasmas

    International Nuclear Information System (INIS)

    Liu Song; Zhong Shuangying; Liu Shaobin

    2005-01-01

    The piecewise linear recursive convolution (PLRC) finite-different time-domain (FDTD) method improves accuracy over the original recursive convolution (RC) FDTD approach and current density convolution (JEC) but retains their advantages in speed and efficiency. This paper describes a revised piecewise linear recursive convolution PLRC-FDTD formulation for magnetized plasma which incorporates both anisotropy and frequency dispersion at the same time, enabling the transient analysis of magnetized plasma media. The technique is illustrated by numerical simulations of the reflection and transmission coefficients through a magnetized plasma layer. The results show that the revised PLRC-FDTD method has improved the accuracy over the original RC FDTD method and JEC FDTD method

  16. Plasma diffusion in systems with disrupted magnetic surfaces

    International Nuclear Information System (INIS)

    Morozov, D.K.; Pogutse, O.P.

    1982-01-01

    Plasma diffusion is analyzed in the case in which the system of magnetic surfaces is disrupted by a stochastic perturbation of the magnetic field. The diffusion coefficient is related to the statistical properties of the field. The statistical characteristics of the field are found when the magnetic surfaces near the separatrix are disrupted by an external perturbation. The diffusion coefficient is evaluated in the region in which the magnetic surfaces are disrupted. In this region the diffusion coefficient is of the Bohm form

  17. Low-dimensional model of resistive interchange convection in magnetized plasma

    International Nuclear Information System (INIS)

    Bazdenkov, S.; Sato, Tetsuya

    1997-09-01

    Self-organization and generation of large shear flow component in turbulent resistive interchange convection in magnetized plasma is considered. The effect of plasma density-electrostatic potential coupling via the inertialess electron dynamics along the magnetic field is shown to play significant role in the onset of shear component. The results of large-scale numerical simulation and low-dimensional (reduced) model are presented and compared. (author)

  18. Thermal fluctuations and critical behavior in a magnetized, anisotropic plasma

    International Nuclear Information System (INIS)

    Hazeltine, R. D.; Mahajan, S. M.

    2013-01-01

    Thermal fluctuations in a magnetized, anisotropic plasma are studied by applying standard methods, based on the Einstein rule, to the known thermodynamic potential of the system. It is found in particular that magnetic fluctuations become critical when the anisotropy p ∥ −p ⊥ changes sign. By examining the critical region, additional insight on the equations of state for near-critical anisotropic plasma is obtained

  19. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    Science.gov (United States)

    Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA; Qerushi, Artan [Irvine, CA; Tahsiri, Hooshang [Irvine, CA

    2008-10-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  20. Plasma injection from the independent SHF-source in the open configuration 2. Magnetic fields of magnetic mirror configurations

    International Nuclear Information System (INIS)

    Beriya, Z.R.; Gogashvili, G.E.; Nanobashvili, S.I.

    1992-01-01

    The investigation was aimed at studying the characteristics and properties of plasma injected from independent stationary SHF source into an open magnetic trap of mirror geometry within a wide range of change in the experimental conditions. The investigations were primarily based on measurements of the distribution of charged particles in a plasma along the trap and on the dependence of the concentration on plasma production conditions in a SHF source. It is shown that the aggregate of the experimental data enables a conclusion that independent of SHF plasma can be succesfully used for filling on open magnetic trap of mirror configuration with plasma

  1. Dynamic identification of plasma magnetic contour in fusion machines

    International Nuclear Information System (INIS)

    Bettini, P.; Trevisan, F.; Cavinato, M.

    2005-01-01

    The paper presents a method to identify the plasma magnetic contour in fusion machines, when eddy currents are present in the conducting structures surrounding the plasma. The approach presented is based on the integration of an electromagnetic model of the plasma with a lumped parameters model of the conducting structures around the plasma. This approach has been validated against experimental data from RFX, a reversed field pinch machine. (author)

  2. Plasma dynamics in current sheets

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Drejden, G.V.; Kirij, N.P.; AN SSSR, Leningrad

    1992-01-01

    Plasma dynamics in successive stages of current sheet evolution is investigated on the base of analysis of time-spatial variations of electron density and electrodynamic force fields. Current sheet formation is realized in a two-dimensional magnetic field with zero line under the action of relatively small initial disturbances (linear regimes). It is established that in the limits of the formed sheet is concentrated dense (N e ∼= 10 16 cm -3 ) (T i ≥ 100 eV, bar-Z i ≥ 2) hot pressure of which is balanced by the magnetic action of electrodynamic forces is carried out both plasma compression in the sheet limits and the acceleration along the sheet surface from a middle to narrow side edges

  3. On the Magnetic Shield for a Vlasov-Poisson Plasma

    Science.gov (United States)

    Caprino, Silvia; Cavallaro, Guido; Marchioro, Carlo

    2017-12-01

    We study the screening of a bounded body Γ against the effect of a wind of charged particles, by means of a shield produced by a magnetic field which becomes infinite on the border of Γ . The charged wind is modeled by a Vlasov-Poisson plasma, the bounded body by a torus, and the external magnetic field is taken close to the border of Γ . We study two models: a plasma composed by different species with positive or negative charges, and finite total mass of each species, and another made of many species of the same sign, each having infinite mass. We investigate the time evolution of both systems, showing in particular that the plasma particles cannot reach the body. Finally we discuss possible extensions to more general initial data. We show also that when the magnetic lines are straight lines, (that imposes an unbounded body), the previous results can be improved.

  4. Experimental investigation of plasma sheaths in magnetic mirror and cusp configurations

    Science.gov (United States)

    Jiang, Zhengqi; Wei, Zi-an; Ma, J. X.

    2017-11-01

    Sheath structures near a metal plate in a magnetized plasma were experimentally investigated in magnetic mirror and cusp configurations. Plasma parameters and the sheath potential distributions were probed by a planar and an emissive probe, respectively. The measured sheath profiles in the mirror configuration show that the sheath thickness first decreases and then increases when the magnetic strength is raised. A magnetic flux-tube model was used to explain this result. In the cusp configuration, the measured sheath thickness decreases with the increase of the coil current creating the magnetic cusp. However, when normalized by the electron Debye length, the dependence of the sheath thickness on the coil current is reversed.

  5. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson, E-mail: hudsonzanin@gmail.com [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Peterlevitz, Alfredo Carlos; Ceragioli, Helder Jose [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Rodrigues, Ana Amelia; Belangero, William Dias [Laboratorio de Biomateriais em Ortopedia, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Rua Cinco de Junho 350 CEP 13083970, Campinas, Sao Paulo (Brazil); Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil)

    2012-12-01

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: Black-Right-Pointing-Pointer Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. Black-Right-Pointing-Pointer CVD diamonds have been prepared with magnetic and semiconductor properties. Black-Right-Pointing-Pointer Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  6. Pattern formation and filamentation in low temperature, magnetized plasmas - a numerical approach

    Science.gov (United States)

    Menati, Mohamad; Konopka, Uwe; Thomas, Edward

    2017-10-01

    In low-temperature discharges under the influence of high magnetic field, pattern and filament formation in the plasma has been reported by different groups. The phenomena present themselves as bright plasma columns (filaments) oriented parallel to the magnetic field lines at high magnetic field regime. The plasma structure can filament into different shapes from single columns to spiral and bright rings when viewed from the top. In spite of the extensive experimental observations, the observed effects lack a detailed theoretical and numerical description. In an attempt to numerically explain the plasma filamentation, we present a simplified model for the plasma discharge and power deposition into the plasma. Based on the model, 2-D and 3-D codes are being developed that solve Poisson's equation along with the fluid equations to obtain a self-consistent description of the plasma. The model and preliminary results applied to the specific plasma conditions will be presented. This work was supported by the US Dept. of Energy and NSF, DE-SC0016330, PHY-1613087.

  7. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    Science.gov (United States)

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  8. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization

    International Nuclear Information System (INIS)

    Zhang, H.-S.; Komvopoulos, K.

    2008-01-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp 3 ) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study

  9. Novel Technique for Direct Measurement of the Plasma Diffusion Coefficient in Magnetized Plasma

    Czech Academy of Sciences Publication Activity Database

    Brotánková, Jana; Martines, E.; Adámek, Jiří; Stöckel, Jan; Popa, G.; Costin, C.; Ionita, G.; Schrittwieser, R.; Van Oost, G.

    2008-01-01

    Roč. 48, 5-7 (2008), s. 418-423 ISSN 0863-1042. [International Workshop on Electrical Probes in Magnetized Plasmas/7th./. Praha, 22.07.2007-25.07.2007] Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * probe diagnostics * diffusion coefficient Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.250, year: 2008

  10. The effect of resonant magnetic perturbations on the impurity transport in TEXTOR-DED plasmas

    International Nuclear Information System (INIS)

    Greiche, Albert Josef

    2009-01-01

    Thermonuclear fusion provides a new mechanism for the generation of electrical power which has the perspective to serve humanity for several millions of years. One possibility to implement fusion on earth is to magnetically confine hot deuterium tritium plasmas in so called tokamaks. The fusion reactions take place in the hot plasma core. Each of the fusion reactions between deuterium and tritium yields 17.6 MeV which can be used in the process of generating electrical power. Impurities contaminate the plasma which then is cooled down and diluted. This leads to a reduction of the fusion reactions and in consequence the energy yield. The transport behaviour of the impurities in the plasma is not fully understood up to now. Nevertheless, experiments have shown that the application of resonant magnetic perturbations (RMP) can control the impurity content in the plasma. The dynamic ergodic divertor (DED) on the tokamak Textor is able to induce static and dynamic RMPs. During the application of RMPs transient impurity transport experiments with argon have been performed and the time evolution of the impurity concentrations have been monitored. The line emission intensity of the impurities in the plasma is measured in the vacuum ultraviolet (VUV) and in the soft X-ray (SXR) with the absolutely calibrated VUV spectrometer Hexos and SXR PIN diodes, respectively. The analysis of the transient impurity transport experiments is performed with the help of the transport code Strahl. The impurity flows in Strahl are described by a combination of a diffusive and a convective flow. In the computing process the code solves the coupled set of continuity equations of each of the ionization stages of an impurity. With this method the time evolution of the impurity ion densities and the line emission intensities of the ionization stages can be computed. The adaption to the experimental measurements is performed with the help of the diffusion coefficient and the drift velocity which

  11. Collisionless scattering of plasma cloud in a dipole magnetic field

    International Nuclear Information System (INIS)

    Osipyan, D.A.

    2006-01-01

    Results of numerical simulation of dense plasma cloud scattering dynamics in a magnetized background and MHD indignations generation are presented. The magnetic field has dipole structure. The initial system of equations includes the Vlasov equations for ionic components of plasma, hydrodynamic approach for electrons and Maxwell's system of equations. The method of solution is based on the use of the method of particles in cells and finite difference splitting schemes. Quantitative characteristics of dependence of scattering cloud parameters from the Mach-Alfven number and parameter of magnetic laminar interaction are observed. In particular, a condition of more effective deformation of a cloud is large values of the Mach-Alfven numbers and small parameters of the magnetic laminar interaction

  12. Microstructure and thermoelectric properties of β-FeSi2 ceramics fabricated by hot-pressing and spark plasma sintering

    International Nuclear Information System (INIS)

    Qu Xiurong; Lue Shuchen; Hu Jianmin; Meng Qingyu

    2011-01-01

    Highlights: → With increasing hot-pressing (HP) temperature, the thermoelectric figure of merit of β-FeSi 2 ceramics is improved slightly. → The grain size of the sample sintered by the spark plasma sintering (SPS) process is smaller than that by the HP process. → The SPS sample shows excellent thermoelectric performance attributed to low thermal conductivity. - Abstract: The microstructure and thermoelectric properties of β-FeSi 2 ceramics by hot pressing (HP) and spark plasma sintering (SPS) are investigated. With increasing hot-pressing temperature, the density, electronic conductivity and thermal conductivity of the samples increase significantly, the thermoelectric figure of merit is improved slightly. The microstructure study indicates that the sizes of the β-FeSi 2 and ε-FeSi phases in the sample sintered by the SPS process are smaller than that by the HP process. The SPS sample shows excellent thermoelectric performance due to the low thermal conductivity.

  13. Effect of duct bias on transport of vacuum arc plasmas through curved magnetic filters

    International Nuclear Information System (INIS)

    Anders, A.; Anders, S.; Brown, I.G.

    1994-01-01

    The plasma output of a 90 degree magnetic macroparticle filter of vacuum arc plasma was monitored by a Langmuir probe as a function of bias of the duct wall and guiding magnetic field. Maximum plasma transport through the filter was found at a positive bias of about 20 V. A relatively small magnetic field of 10--30 mT is sufficient for effective guiding of the plasma, and further increase of the guiding field improves the filter efficiency only gradually. The potential of a floating duct changes from negative to positive when the guiding field is increased. This can be explained by the balance of electron and ion flux transverse to the magnetic field. Saturation in the plasma output at high guiding field (>120 mT) is observed for carbon but not for heavy elements. The transport of plasma through bent ducts is made possible by the magnetic pressure of the guiding field, and by sheath and space-charge electric fields

  14. Explosive X-point collapse in relativistic magnetically dominated plasma

    Science.gov (United States)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  15. Electron cooling and finite potential drop in a magnetized plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Sanchez, M. [Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Navarro-Cavallé, J. [Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ahedo, E. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganés 28911, Madrid (Spain)

    2015-05-15

    The steady, collisionless, slender flow of a magnetized plasma into a surrounding vacuum is considered. The ion component is modeled as mono-energetic, while electrons are assumed Maxwellian upstream. The magnetic field has a convergent-divergent geometry, and attention is restricted to its paraxial region, so that 2D and drift effects are ignored. By using the conservation of energy and magnetic moment of particles and the quasi-neutrality condition, the ambipolar electric field and the distribution functions of both species are calculated self-consistently, paying attention to the existence of effective potential barriers associated to magnetic mirroring. The solution is used to find the total potential drop for a set of upstream conditions, plus the axial evolution of various moments of interest (density, temperatures, and heat fluxes). The results illuminate the behavior of magnetic nozzles, plasma jets, and other configurations of interest, showing, in particular, in the divergent plasma the collisionless cooling of electrons, and the generation of collisionless electron heat fluxes.

  16. Boundary conditions for plasma fluid models at the magnetic presheath entrance

    International Nuclear Information System (INIS)

    Loizu, J.; Ricci, P.; Halpern, F. D.; Jolliet, S.

    2012-01-01

    The proper boundary conditions at the magnetic presheath entrance for plasma fluid turbulence models based on the drift approximation are derived, focusing on a weakly collisional plasma sheath with T i ≪T e and a magnetic field oblique to a totally absorbing wall. First, the location of the magnetic presheath entrance is rigorously derived. Then boundary conditions at the magnetic presheath entrance are analytically deduced for v ||i , v ||e , n, φ, T e , and for the vorticity ω=∇ ⊥ 2 φ. The effects of E × B and diamagnetic drifts on the boundary conditions are also investigated. Kinetic simulations are performed that confirm the analytical results. Finally, the new set of boundary conditions is implemented in a three-dimensional global fluid code for the simulation of plasma turbulence and, as an example, the results of a tokamak scrape-off layer simulation are discussed. The framework presented can be generalized to obtain boundary conditions at the magnetic presheath entrance in more complex scenarios.

  17. Some remarks on coherent nonlinear coupling of waves in plasmas

    International Nuclear Information System (INIS)

    Wilhelmsson, H.

    1976-01-01

    The analysis of nonlinear processes in plasma physics has given rise to a basic set of coupled equations. These equations describe the coherent nonlinear evolution of plasma waves. In this paper various possibilities of analysing these equations are discussed and inherent difficulties in the description of nonlinear interactions between different types of waves are pointed out. Specific examples of stimulated excitation of waves are considered. These are the parametric excitation of hybrid resonances in hot magnetized multi-ion component plasma and laser-plasma interactions. (B.D.)

  18. Ion heating and magnetic flux pile-up in a magnetic reconnection experiment with super-Alfvénic plasma inflows

    Science.gov (United States)

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; Ciardi, A.; Loureiro, N. F.; Burdiak, G. C.; Chittenden, J. P.; Clayson, T.; Halliday, J. W. D.; Niasse, N.; Russell, D.; Suzuki-Vidal, F.; Tubman, E.; Lane, T.; Ma, J.; Robinson, T.; Smith, R. A.; Stuart, N.

    2018-04-01

    This work presents a magnetic reconnection experiment in which the kinetic, magnetic, and thermal properties of the plasma each play an important role in the overall energy balance and structure of the generated reconnection layer. Magnetic reconnection occurs during the interaction of continuous and steady flows of super-Alfvénic, magnetized, aluminum plasma, which collide in a geometry with two-dimensional symmetry, producing a stable and long-lasting reconnection layer. Optical Thomson scattering measurements show that when the layer forms, ions inside the layer are more strongly heated than electrons, reaching temperatures of Ti˜Z ¯ Te≳300 eV—much greater than can be expected from strong shock and viscous heating alone. Later in time, as the plasma density in the layer increases, the electron and ion temperatures are found to equilibrate, and a constant plasma temperature is achieved through a balance of the heating mechanisms and radiative losses of the plasma. Measurements from Faraday rotation polarimetry also indicate the presence of significant magnetic field pile-up occurring at the boundary of the reconnection region, which is consistent with the super-Alfvénic velocity of the inflows.

  19. Pressure profiles of plasmas confined in the field of a magnetic dipole

    International Nuclear Information System (INIS)

    Davis, Matthew S; Mauel, M E; Garnier, Darren T; Kesner, Jay

    2014-01-01

    Equilibrium pressure profiles of plasmas confined in the field of a dipole magnet are reconstructed using magnetic and x-ray measurements on the levitated dipole experiment (LDX). LDX operates in two distinct modes: with the dipole mechanically supported and with the dipole magnetically levitated. When the dipole is mechanically supported, thermal particles are lost along the field to the supports, and the plasma pressure is highly peaked and consists of energetic, mirror-trapped electrons that are created by electron cyclotron resonance heating. By contrast, when the dipole is magnetically levitated losses to the supports are eliminated and particles are lost via slower cross-field transport that results in broader, but still peaked, plasma pressure profiles. (paper)

  20. Dynamics of Dust in a Plasma Sheath with Magnetic Field

    International Nuclear Information System (INIS)

    Duan Ping; Liu Jinyuan; Gon Ye; Liu Yue; Wang Xiaogang

    2007-01-01

    Dynamics of dust in a plasma sheath with a magnetic field was investigated using a single particle model. The result shows that the radius, initial position, initial velocity of the dust particles and the magnetic field do effect their movement and equilibrium position in the plasma sheath. Generally, the dust particles with the same size, whatever original velocity and position they have, will locate at the same position in the end under the net actions of electrostatic, gravitational, neutral collisional, and Lorentz forces. But the dust particles will not locate in the plasma sheath if their radius is beyond a certain value