WorldWideScience

Sample records for hot intergalactic medium

  1. DETECTING THE WARM-HOT INTERGALACTIC MEDIUM THROUGH X-RAY ABSORPTION LINES

    International Nuclear Information System (INIS)

    Yao Yangsen; Shull, J. Michael; Cash, Webster; Wang, Q. Daniel

    2012-01-01

    The warm-hot intergalactic medium (WHIM) at temperatures 10 5 -10 7 K is believed to contain 30%-50% of the baryons in the local universe. However, all current X-ray detections of the WHIM at redshifts z > 0 are of low statistical significance (∼ Ovii ∼10 15 cm -2 (corresponding to an equivalent width of 2.5 mÅ for a Doppler velocity of 50 km s –1 ) at ∼> 3σ significance level. The simulation results also suggest that it would take >60 Ms for Chandra and 140 Ms for XMM-Newton to measure the N Ovii at ≥4σ from a spectrum of a background QSO with flux of ∼0.2 mCrab (1 Crab = 2 × 10 –8 erg s –1 cm –2 at 0.5-2 keV). Future X-ray spectrographs need to be equipped with spectral resolution R ∼ 4000 and effective area A ≥ 100 cm 2 to accomplish the similar constraints with an exposure time of ∼2 Ms and would require ∼11 Ms to survey the 15 QSOs with flux ∼> 0.2 mCrab along which clear intergalactic O VI absorbers have been detected.

  2. DETECTING THE WARM-HOT INTERGALACTIC MEDIUM THROUGH X-RAY ABSORPTION LINES

    Energy Technology Data Exchange (ETDEWEB)

    Yao Yangsen; Shull, J. Michael; Cash, Webster [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Wang, Q. Daniel, E-mail: yaoys@colorado.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2012-02-20

    The warm-hot intergalactic medium (WHIM) at temperatures 10{sup 5}-10{sup 7} K is believed to contain 30%-50% of the baryons in the local universe. However, all current X-ray detections of the WHIM at redshifts z > 0 are of low statistical significance ({approx}< 3{sigma}) and/or controversial. In this work, we aim to establish the detection limits of current X-ray observatories and explore requirements for next-generation X-ray telescopes for studying the WHIM through X-ray absorption lines. We analyze all available grating observations of Mrk 421 and obtain spectra with signal-to-noise ratios (S/Ns) of {approx}90 and 190 per 50 mA spectral bin from Chandra and XMM-Newton observations, respectively. Although these spectra are two of the best ever collected with Chandra and XMM-Newton, we cannot confirm the two WHIM systems reported by Nicastro et al. in 2005. Our bootstrap simulations indicate that spectra with such high S/N cannot constrain the WHIM with O VII column densities N{sub Ovii}{approx}10{sup 15} cm{sup -2} (corresponding to an equivalent width of 2.5 mA for a Doppler velocity of 50 km s{sup -1}) at {approx}> 3{sigma} significance level. The simulation results also suggest that it would take >60 Ms for Chandra and 140 Ms for XMM-Newton to measure the N{sub Ovii} at {>=}4{sigma} from a spectrum of a background QSO with flux of {approx}0.2 mCrab (1 Crab = 2 Multiplication-Sign 10{sup -8} erg s{sup -1} cm{sup -2} at 0.5-2 keV). Future X-ray spectrographs need to be equipped with spectral resolution R {approx} 4000 and effective area A {>=} 100 cm{sup 2} to accomplish the similar constraints with an exposure time of {approx}2 Ms and would require {approx}11 Ms to survey the 15 QSOs with flux {approx}> 0.2 mCrab along which clear intergalactic O VI absorbers have been detected.

  3. Intergalactic medium heating by dark matter

    NARCIS (Netherlands)

    Ripamonti, E.; Mapelli, M.; Ferrara, A.

    2006-01-01

    Abstract: We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction f_abs~0.5 of their rest mass energy into the IGM;

  4. COINCIDENCES BETWEEN O VI AND O VII LINES: INSIGHTS FROM HIGH-RESOLUTION SIMULATIONS OF THE WARM-HOT INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Cen Renyue

    2012-01-01

    With high-resolution (0.46 h –1 kpc), large-scale, adaptive mesh-refinement Eulerian cosmological hydrodynamic simulations we compute properties of O VI and O VII absorbers from the warm-hot intergalactic medium (WHIM) at z = 0. Our new simulations are in broad agreement with previous simulations with ∼40% of the intergalactic medium being in the WHIM. Our simulations are in agreement with observed properties of O VI absorbers with respect to the line incidence rate and Doppler-width-column-density relation. It is found that the amount of gas in the WHIM below and above 10 6 K is roughly equal. Strong O VI absorbers are found to be predominantly collisionally ionized. It is found that (61%, 57%, 39%) of O VI absorbers of log N(O VI) cm 2 = (12.5-13, 13-14, > 14) have T 5 K. Cross correlations between galaxies and strong [N(O VI) > 10 14 cm –2 ] O VI absorbers on ∼100-300 kpc scales are suggested as a potential differentiator between collisional ionization and photoionization models. Quantitative prediction is made for the presence of broad and shallow O VI lines that are largely missed by current observations but will be detectable by Cosmic Origins Spectrograph observations. The reported 3σ upper limit on the mean column density of coincidental O VII lines at the location of detected O VI lines by Yao et al. is above our predicted value by a factor of 2.5-4. The claimed observational detection of O VII lines by Nicastro et al., if true, is 2σ above what our simulations predict.

  5. The physical state of the intergalactic medium

    International Nuclear Information System (INIS)

    Barcons, X.; Fabian, A.C.; Rees, M.J.

    1991-01-01

    Because the process of galaxy formation is most unlikely to be perfectly efficient, there is a strong possibility that some baryonic gas remains outside collapsed structures such as galaxies and clusters of galaxies. What fraction of the baryonic content of the Universe resides in this intergalactic medium (IGM) and what physical state it is in are open questions. Here we use observational limits on the density of neutral hydrogen in the IGM, on the lack of deviations from a black-body spectrum of the cosmic microwave background (MBR), and on the extragalactic component of the soft X-ray background (XRB) to constrain the state of the IGM. From the lack of MBR fluctuations, any energetic IGM (containing as much energy as the binding energy in galaxies) is inferred to be smoothly distributed on scales greater than galactic. This rules out hot IGM models for the origin of the hard X-ray background, as well as the hypothesis that cosmic explosions may have given rise to cosmological structure on scales larger than galaxies. (author)

  6. Interactions between intergalactic medium and galaxies

    International Nuclear Information System (INIS)

    Einasto, J.; Saar, E.

    1977-01-01

    The interaction of galaxies with the environmental gas both in clusters and in small groups of galaxies is investigated. Interaction between galaxies and the ambient medium can be considered simply as final touches in the process of galaxy formation. Large relative velocities of galaxies in their clusters and of the intercluster gas result in a loss of the intergalactic gas, that in its turn affects the morphology of cluster galaxies. Interaction between the coronal clouds and the gas in the disk of spiral galaxies may result in regular patterns of star formation and in the bending of planes of galaxies

  7. Physics of the interstellar and intergalactic medium

    CERN Document Server

    Draine, Bruce T

    2010-01-01

    This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium--the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves. Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium; and star formation. While it is assumed that the reader has a background in undergraduate-level physics, including some prior exposure to atomic and molecular physics, statistical mechanics, and electromagnetism, the first six chapters of the book include a review of the basic physics that is used in later chapters. This graduate-level textbook includes references for further reading, and serves as an invaluable resourc...

  8. The effect of UV stars on the intergalactic medium. II

    International Nuclear Information System (INIS)

    Sonnanstine, A.E.; Hills, J.G.

    1976-01-01

    The effect of ionizing radiation from the UV stars (hot prewhite dwarfs) on the intergalactic medium (IGM) has been investigated. If the UV stars are powered only by gravitational contraction they radiate most of their energy at a typical surface temperature of 1.5 x 10 5 K which produces a very highly ionized IGM in which the elements carbon, nitrogen and oxygen are left with only one or two electrons. This result in these elements being very inefficient coolants. The gas is cooled principally by free-free emission and the collisional ionization of hydrogen and helium. For a typical UV star temperature of T=1.5 x 10 5 K, the temperature of the ionized gas in the IGM is Tsub(g)=1.2 x 10 5 K for a Hubble constant H 0 =75 kms -1 Mpc -1 and a hydrogen density nsub(H)=10 -6 cm -3 . Heating by cosmic rays and X-rays is insignificant in the IGM except perhaps in the H I clouds because when a hydrogen atom recombines in the IGM it is far more likely to be re-ionized by a UV-star photon than by either of the other two types of particles due to the greater space density of UV-star photons and their appreciably larger ionization cross sections. If the UV stars radiate a substantial fraction of their energy in a helium-burning stage in which they have surface temperatures of about 5 x 10 4 K, the temperature of the IGM could be lowered to about 5 x 10 4 K. (Auth.)

  9. Simulating the interaction of galaxies and the intergalactic medium

    Science.gov (United States)

    Carin, Robert A.

    2008-11-01

    The co-evolution of galaxies and the intergalactic medium as a function of environment is studied using hydrodynamic simulations of the ΛCDM cosmogony. It is demonstrated with non-radiative calculations that, in the absence of non-gravitational mechanisms, dark matter haloes accrete a near-universal fraction (˜ 0.9Ω_{b}/&Omega_;{m}) of baryons. The absence of a mass or redshift dependence of this fraction augurs well for parameter tests that use X-ray clusters as cosmological probes. Moreover, this result indicates that non-gravitational processes must efficiently regulate the formation of stars in dark matter haloes if the halo mass function is to be reconciled with the observed galaxy luminosity function. Simulations featuring stellar evolution and non-gravitational feedback mechanisms (photo-heating by the ultraviolet background, and thermal and kinetic supernovae feedback) are used to follow the evolution of star formation, and the thermo- and chemo-dynamical evolution of baryons. The observed star formation history of the Universe is reproduced, except at low redshift where it is overestimated by a factor of a few, possibly indicating the need for feedback from active galactic nuclei to quench cooling flows around massive galaxies. The simulations more accurately reproduce the observed abundance of galaxies with late-type morphologies than has been reported elsewhere. The unique initial conditions of these simulations, based on the Millennium Simulation, allow an unprecedented study of the role of large-scale environment to be conducted. The cosmic star formation rate density is found to vary by an order of magnitude across the extremes of environment expected in the local Universe. The mass fraction of baryons in the observationally elusive warm-hot intergalactic medium (WHIM), and the volume filling factor that this gas occupies, is also shown to vary by a factor of a few across such environments. This variation is attributed to differences in the halo

  10. Extended H I regions around spiral galaxies: a probe for galactic structure and the intergalactic medium

    International Nuclear Information System (INIS)

    Bergeron, J.

    1977-01-01

    The H I disks observed at large radii around nearby spiral galaxies provide sensitive probes for the mass distributions in these galaxies and of their environments. We show, for a few well-observed systems, that there is an unseen component which dominates the mass at large radii. This additional matter cannot be gas, either neutral or ionized. The data do not distinguish strongly between flat and spherical spatial distributions for this mass, though they suggest that the distribution is spherical. An observational test is proposed to differentiate the two. We investigate the thermal interaction between a hot intergalactic medium near the closure density and these extended H I regions in the assumption of magnetic field lines extended outward into the intergalactic medium (IGM). We show that, with plausible initial conditions, the intergalactic temperature at present cannot exceed 1 x 10 7 K if the H I is to have survived until now. Consideration of conditions in the past places even more stringent limits on the temperature and density of the IGM. Survival of the H I disk also implies that these galaxies cannot have persistent hot, dense halos. The X-ray observations of M31, in particular, cannot be interpreted in terms of a thermal bremsstrahlung halo model, unless this halo is younger than about 10 7 yr

  11. The physics and early history of the intergalactic medium

    International Nuclear Information System (INIS)

    Barkana, Rennan; Loeb, Abraham

    2007-01-01

    The intergalactic medium-the cosmic gas that fills the great spaces between the galaxies-is affected by processes ranging from quantum fluctuations in the very early Universe to radiative emission from newly formed stars. This gives the intergalactic medium a dual role as a powerful probe both of fundamental physics and of astrophysics. The heading of fundamental physics includes conditions in the very early Universe and cosmological parameters that determine the age of the Universe and its matter content. The astrophysics refers to chapters of the long cosmic history of stars and galaxies that are being revealed through the effects of stellar feedback on the cosmic gas. This review describes the physics of the intergalactic medium, focusing on recent theoretical and observational developments in understanding early cosmic history. In particular, the earliest generation of stars is thought to have transformed the Universe from darkness to light and to have had an enormous impact on the intergalactic medium. Half a million years after the Big Bang the Universe was filled with atomic hydrogen. As gravity pulled gas clouds together, the first stars ignited and their radiation turned the surrounding atoms back into free electrons and ions. From the observed spectral absorption signatures of the gas between us and distant sources, we know that the process of reionization pervaded most of space a billion years after the Big Bang, so that only a small fraction of the primordial hydrogen atoms remained between galaxies. Knowing exactly when and how the reionization process happened is a primary goal of cosmologists, because this would tell us when the early stars and black holes formed and in what kinds of galaxies. The distribution and clustering of these galaxies is particularly interesting since it is driven by primordial density fluctuations in the dark matter. Cosmic reionization is beginning to be understood with the help of theoretical models and computer

  12. A photoionization instability in the early intergalactic medium

    Science.gov (United States)

    Hogan, Craig J.

    1992-01-01

    It is argued that any fairly uniform source of ionizing photons can be the cause of an instability in the pregalactic medium on scales larger than a photon path length. Underdense regions receive more ionizing energy per atom and reach higher temperature and entropy, driving the density down still further. Fluctuations created by this instability can lead to the formation of structures resembling protogalaxies and intergalactic clouds, obviating the need for gas clouds or density perturbations of earlier cosmological provenance, as is usually assumed in theories of galaxy and structure formation. Characteristic masses for clouds produced by the instability, with log mass in solar units plotted against log radius in kpc, are illustrated.

  13. Probing the intergalactic medium with fast radio bursts

    International Nuclear Information System (INIS)

    Zheng, Z.; Ofek, E. O.; Kulkarni, S. R.; Neill, J. D.; Juric, M.

    2014-01-01

    The recently discovered fast radio bursts (FRBs), presumably of extragalactic origin, have the potential to become a powerful probe of the intergalactic medium (IGM). We point out a few such potential applications. We provide expressions for the dispersion measure and rotation measure as a function of redshift, and we discuss the sensitivity of these measures to the He II reionization and the IGM magnetic field. Finally, we calculate the microlensing effect from an isolated, extragalactic stellar-mass compact object on the FRB spectrum. The time delays between the two lensing images will induce constructive and destructive interference, leaving a specific imprint on the spectra of FRBs. With a high all-sky rate, a large statistical sample of FRBs is expected to make these applications feasible.

  14. TEMPORAL SMEARING OF TRANSIENT RADIO SOURCES BY THE INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Macquart, Jean-Pierre; Koay, Jun Yi

    2013-01-01

    The temporal smearing of impulsive radio events at cosmological redshifts probes the properties of the ionized intergalactic medium (IGM). We relate the degree of temporal smearing and the profile of a scattered source to the evolution of a turbulent structure in the IGM as a function of redshift. We estimate the degree of scattering expected by analyzing the contributions to the scattering measure of the various components of baryonic matter embedded in the IGM, including the diffuse IGM, intervening galaxies, and intracluster gas. These estimates predict that the amount of temporal smearing expected at 300 MHz is typically as low as ∼1 ms and suggests that these bursts may be detectable with low-frequency widefield arrays. A generalization of the dispersion-measure-scattering-measure relation observed for Galactic scattering to the densities and turbulent conditions relevant to the IGM suggests that scattering measures on the order of 10 –6 kpc m –20/3 would be expected at z ∼ 1. This scattering is sufficiently low enough that its effects would not, for most lines of sight, be manifested in existing observations of the scatter broadening in images of extragalactic compact sources. The redshift dependence on the temporal smearing discriminates between scattering that occurs in the host galaxy of the burst and the IGM, with τ host ∝(1 + z) –3 if the scattering probes length scales below the inner scale of the turbulence or τ host ∝(1 + z) –17/5 if the turbulence follows a Kolmogorov spectrum. This differs strongly from the expected IGM scaling τ IGM ∼ z 2 for z ∼ 0.2–0.5 for z ∼> 1

  15. X-ray ionization of the intergalactic medium by quasars

    Science.gov (United States)

    Graziani, Luca; Ciardi, B.; Glatzle, M.

    2018-06-01

    We investigate the impact of quasars on the ionization of the surrounding intergalactic medium (IGM) with the radiative transfer code CRASH4, now accounting for X-rays and secondary electrons. After comparing with analytic solutions, we post-process a cosmic volume (≈1.5 × 104 Mpc3h-3) containing a ULAS J1120+0641-like quasar (QSO) hosted by a 5 × 1011M⊙h-1 dark matter (DM) halo. We find that: (i) the average HII region (R ˜ 3.2 pMpc in a lifetime tf = 107 yrs) is mainly set by UV flux, in agreement with semi-analytic scaling relations; (ii) a largely neutral (xHII < 0.001), warm (T ˜ 103 K) tail extends up to few Mpc beyond the ionization front, as a result of the X-ray flux; (iii) LyC-opaque inhomogeneities induce a line of sight (LOS) scatter in R as high as few physical Mpc, consistent with the DLA scenario proposed to explain the anomalous size of the ULAS J1120+0641 ionized region. On the other hand, with an ionization rate \\dot{N}_{γ ,0} ˜ 10^{57} s-1, the assumed DLA clustering and gas opacity, only one LOS shows an HII region compatible with the observed one. We deduce that either the ionization rate of the QSO is at least one order of magnitude lower or the ULAS J1120+0641 bright phase is shorter than 107 yrs.

  16. The evolution of the intergalactic medium and the origin of the galaxy luminosity function

    Science.gov (United States)

    Valls-Gabaud, David; Blanchard, Alain; Mamon, Gary

    1993-01-01

    The coupling of the Press and Schechter prescription with the CDM scenario and the Hoyle-Rees-Ostriker cooling criterion leads to a galaxy formation scenario in which galaxies are overproduced by a large factor. Although star formation might be suppressed in the smaller halos, a large amount of energy per galactic mass is needed to account for the present number density of galaxies. The evolution of the intergalactic medium (IGM) provides a simple criterion to prevent galaxy formation without requiring feedback, since halos with small virial temperatures are not able to retain the infalling hot gas of the IGM. If the ionizing background has decreased since z is approximately 1 - 2, then this criterion explains the slope of the luminosity function at the faint end. In addition, this scenario predicts two populations of dwarf galaxies, well differentiated in age, gas content, stellar populations, and clustering properties, which can be identified with dE and dIm galaxies.

  17. Evolution of the intergalactic medium - What happened during the epoch z = 3-10?

    Science.gov (United States)

    Ikeuchi, S.; Ostriker, J. P.

    1986-01-01

    An attempt is made to model consistently the thermal and dynamic history of the intergalactic medium (IGM) from the era of reheating (z = 10-5) to the present, and to provide a unified explanation for the origin of ordinary galaxies, blue compact objects, and Lyman-alpha clouds. The evolution of the intergalactic gas is analyzed, treating the IGM as perfectly homogeneous at every epoch and taking into account radiative and Compton cooling, adiabatic cooling, shock heating, and heating produced by the diffuse UV flux. It is suggested that the IGM must have been heated to higher than a 10 to the 6th K by shock heasting caused either by explosions of pregalactic objects or expanding voids. The formation of intergalactic clouds by fragmentation of the resulting shells and the subsequent collapse of the shells to form galaxies are studied. An attempt is made to determine model parameters on the basis of an analysis of Lyman-alpha absorption lines.

  18. STAR FORMATION FEEDBACK AND METAL-ENRICHMENT HISTORY OF THE INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Cen Renyue; Chisari, Nora Elisa

    2011-01-01

    Using the state-of-the-art cosmological hydrodynamic simulations of the standard cold dark matter model with star formation feedback strength normalized to match the observed star formation history of the universe at z= 0-6, we compute the metal-enrichment history of the intergalactic medium (IGM). Overall we show that galactic superwind (GSW) feedback from star formation can transport metals to the IGM and that the properties of simulated metal absorbers match current observations. The distance of influence of GSW from galaxies is typically limited to about ≤0.5 Mpc and within regions of overdensity δ ≥ 10. Most C IV and O VI absorbers are located within shocked regions of elevated temperature (T ≥ 2 x 10 4 K), overdensity (δ ≥ 10), and metallicity ([Z/Z sun ] = [ - 2.5, - 0.5]), enclosed by double shocks propagating outward. O VI absorbers have typically higher metallicity, lower density, and higher temperature than C IV absorbers. For O VI absorbers, collisional ionization dominates over the entire redshift range z= 0-6, whereas for C IV absorbers the transition occurs at moderate redshift z ∼ 3 from collisionally dominated to photoionization dominated. We find that the observed column density distributions for C IV and O VI in the range log N cm 2 =12-15 are reasonably reproduced by the simulations. The evolution of mass densities contained in C IV and O VI lines, Ω CIV and Ω OVI , is also in good agreement with observations, which shows a near constancy at low redshifts and an exponential drop beyond redshift z= 3-4. For both C IV and O VI, most absorbers are transient and the amount of metals probed by C IV and O VI lines of column log N cm 2 =12-15 is only ∼2% of total metal density at any epoch. While gravitational shocks from large-scale structure formation dominate the energy budget (80%-90%) for turning about 50% of the IGM to the warm-hot intergalactic medium (WHIM) by z = 0, GSW feedback shocks are energetically dominant over

  19. IGMtransmission: A Java GUI to model the effects of the Intergalactic Medium on the colours of high redshift galaxies

    OpenAIRE

    Harrison, Christopher M.; Meiksin, Avery; Stock, David

    2011-01-01

    IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colours of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colours for a wide range of filter responses and model galaxy spectra....

  20. Does Light from Steady Sources Bear Any Observable Imprint of the Dispersive Intergalactic Medium?

    Science.gov (United States)

    Lieu, Richard; Duan, Lingze

    2018-02-01

    There has recently been some interest in the prospect of detecting ionized intergalactic baryons by examining the properties of incoherent light from background cosmological sources, namely quasars. Although the paper by Lieu et al. proposed a way forward, it was refuted by the later theoretical work of Hirata & McQuinn and the observational study of Hales et al. In this paper we investigate in detail the manner in which incoherent radiation passes through a dispersive medium both from the frameworks of classical and quantum electrodynamics, leading us to conclude that the premise of Lieu et al. would only work if the pulses involved are genuinely classical ones containing many photons per pulse; unfortunately, each photon must not be treated as a pulse that is susceptible to dispersive broadening. We are nevertheless able to change the tone of the paper at this juncture by pointing out that because current technology allows one to measure the phase of individual modes of radio waves from a distant source, the most reliable way of obtaining irrefutable evidence of dispersion, namely via the detection of its unique signature of a quadratic spectral phase, may well be already accessible. We demonstrate how this technique is only applied to measure the column density of the ionized intergalactic medium.

  1. On modeling and measuring the temperature of the z ∼ 5 intergalactic medium

    International Nuclear Information System (INIS)

    Lidz, Adam; Malloy, Matthew

    2014-01-01

    The temperature of the low-density intergalactic medium (IGM) at high redshift is sensitive to the timing and nature of hydrogen and He II reionization, and can be measured from Lyman-alpha (Lyα) forest absorption spectra. Since the memory of intergalactic gas to heating during reionization gradually fades, measurements as close as possible to reionization are desirable. In addition, measuring the IGM temperature at sufficiently high redshifts should help to isolate the effects of hydrogen reionization since He II reionization starts later, at lower redshift. Motivated by this, we model the IGM temperature at z ≳ 5 using semi-numeric models of patchy reionization. We construct mock Lyα forest spectra from these models and consider their observable implications. We find that the small-scale structure in the Lyα forest is sensitive to the temperature of the IGM even at redshifts where the average absorption in the forest is as high as 90%. We forecast the accuracy at which the z ≳ 5 IGM temperature can be measured using existing samples of high resolution quasar spectra, and find that interesting constraints are possible. For example, an early reionization model in which reionization ends at z ∼ 10 should be distinguishable—at high statistical significance—from a lower redshift model where reionization completes at z ∼ 6. We discuss improvements to our modeling that may be required to robustly interpret future measurements.

  2. Measurement of the small-scale structure of the intergalactic medium using close quasar pairs.

    Science.gov (United States)

    Rorai, Alberto; Hennawi, Joseph F; Oñorbe, Jose; White, Martin; Prochaska, J Xavier; Kulkarni, Girish; Walther, Michael; Lukić, Zarija; Lee, Khee-Gan

    2017-04-28

    The distribution of diffuse gas in the intergalactic medium (IGM) imprints a series of hydrogen absorption lines on the spectra of distant background quasars known as the Lyman-α forest. Cosmological hydrodynamical simulations predict that IGM density fluctuations are suppressed below a characteristic scale where thermal pressure balances gravity. We measured this pressure-smoothing scale by quantifying absorption correlations in a sample of close quasar pairs. We compared our measurements to hydrodynamical simulations, where pressure smoothing is determined by the integrated thermal history of the IGM. Our findings are consistent with standard models for photoionization heating by the ultraviolet radiation backgrounds that reionized the universe. Copyright © 2017, American Association for the Advancement of Science.

  3. Probing the Intergalactic Medium with Ly α and 21 cm Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Heneka, Caroline [Dark Cosmology Center, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Cooray, Asantha; Feng, Chang [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2017-10-10

    We study 21 cm and Ly α fluctuations, as well as H α , while distinguishing between Ly α emission of galactic, diffuse, and scattered intergalactic medium (IGM) origin. Cross-correlation information about the state of the IGM is obtained, testing neutral versus ionized medium cases with different tracers in a seminumerical simulation setup. In order to pave the way toward constraints on reionization history and modeling beyond power spectrum information, we explore parameter dependencies of the cross-power signal between 21 cm and Ly α , which displays a characteristic morphology and a turnover from negative to positive correlation at scales of a couple Mpc{sup −1}. In a proof of concept for the extraction of further information on the state of the IGM using different tracers, we demonstrate the use of the 21 cm and H α cross-correlation signal to determine the relative strength of galactic and IGM emission in Ly α . We conclude by showing the detectability of the 21 cm and Ly α cross-correlation signal over more than one decade in scale at high signal-to-noise ratio for upcoming probes like SKA and the proposed all-sky intensity mapping satellites SPHEREx and CDIM, while also including the Ly α damping tail and 21 cm foreground avoidance in the modeling.

  4. Distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    International Nuclear Information System (INIS)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code

  5. Distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  6. Diagnosing the reionization of the universe - The absorption spectrum of the intergalactic medium and Lyman alpha clouds

    Science.gov (United States)

    Giroux, Mark L.; Shapiro, Paul R.

    1991-01-01

    The thermal and ionization evolution of a uniform intergalactic medium composed of H and He and undergoing reionization is studied. The diagnosis of the metagalactic ionizing radiation background at z of about three using metal line ratios for Lyman limit quasar absorption line systems is addressed. The use of the He II Gunn-Peterson effect to diagnose the reionization source and/or nature of the Hy-alpha forest clouds is considered.

  7. PATCHY BLAZAR HEATING: DIVERSIFYING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Lamberts, Astrid; Chang, Philip; Pfrommer, Christoph; Puchwein, Ewald; Broderick, Avery E.; Shalaby, Mohamad

    2015-01-01

    TeV-blazars potentially heat the intergalactic medium (IGM) as their gamma rays interact with photons of the extragalactic background light to produce electron–positron pairs, which lose their kinetic energy to the surrounding medium through plasma instabilities. This results in a heating mechanism that is only weakly sensitive to the local density, and therefore approximately spatially uniform, naturally producing an inverted temperature–density relation in underdense regions. In this paper we go beyond the approximation of uniform heating and quantify the heating rate fluctuations due to the clustered distribution of blazars and how this impacts the thermal history of the IGM. We analytically compute a filtering function that relates the heating rate fluctuations to the underlying dark matter density field. We implement it in the cosmological code GADGET-3 and perform large-scale simulations to determine the impact of inhomogeneous heating. We show that because of blazar clustering, blazar heating is inhomogeneous for z ≳ 2. At high redshift, the temperature–density relation shows an important scatter and presents a low temperature envelope of unheated regions, in particular at low densities and within voids. However, the median temperature of the IGM is close to that in the uniform case, albeit slightly lower at low redshift. We find that blazar heating is more complex than initially assumed and that the temperature–density relation is not unique. Our analytic model for the heating rate fluctuations couples well with large-scale simulations and provides a cost-effective alternative to subgrid models

  8. Probing the nature of dark matter through the metal enrichment of the intergalactic medium

    Science.gov (United States)

    Bremer, Jonas; Dayal, Pratika; Ryan-Weber, Emma V.

    2018-06-01

    We focus on exploring the metal enrichment of the intergalactic medium (IGM) in cold and warm (1.5 and 3 keV) dark matter (DM) cosmologies, and the constraints this yields on the DM particle mass, using a semi-analytic model, DELPHI, that jointly tracks the DM and baryonic assembly of galaxies at z ≃ 4-20 including both supernova (SN) and (a range of) reionization feedback (models). We find that while M_{UV}≳ -15 galaxies contribute half of all IGM metals in the cold dark matter (CDM) model by z ≃ 4.5, given the suppression of low-mass haloes, larger haloes with M_{UV}≲ -15 provide about 80 per cent of the IGM metal budget in 1.5 keV warm dark matter (WDM) models using two different models for the metallicity of the interstellar medium. Our results also show that the only models compatible with two different high-redshift data sets, provided by the evolving ultraviolet luminosity function (UV LF) at z ≃ 6-10 and IGM metal density, are standard CDM and 3 keV WDM that do not include any reionization feedback; a combination of the UV LF and the Díaz et al. point provides a weaker constraint, allowing CDM and 3 and 1.5 keV WDM models with SN feedback only, as well as CDM with complete gas suppression of all haloes with v_{circ} ≲ 30 km s^{-1}. Tightening the error bars on the IGM metal enrichment, future observations, at z ≳ 5.5, could therefore represent an alternative way of shedding light on the nature of DM.

  9. Efficient adiabatic hydrodynamical simulations of the high-redshift intergalactic medium

    Science.gov (United States)

    Gaikwad, Prakash; Choudhury, Tirthankar Roy; Srianand, Raghunathan; Khaire, Vikram

    2018-02-01

    We present a post-processing tool for GADGET-2 adiabatic simulations to model various observed properties of the Ly α forest at 2.5 ≤ z ≤ 4 that enables an efficient parameter estimation. In particular, we model the thermal and ionization histories that are not computed self-consistently by default in GADGET-2. We capture the effect of pressure smoothing by running GADGET-2 at an elevated temperature floor and using an appropriate smoothing kernel. We validate our procedure by comparing different statistics derived from our method with those derived using self-consistent simulations with GADGET-3. These statistics are: line-of-sight density field power spectrum, flux probability distribution function, flux power spectrum, wavelet statistics, curvature statistics, H I column density (N_{H I}) distribution function, linewidth (b) distribution and b versus log N_{H I} scatter. For the temperature floor of 104 K and typical signal-to-noise ratio of 25, the results agree well within 20 per cent of the self-consistent GADGET-3 simulation. However, this difference is smaller than the expected 1σ sample variance for an absorption path length of ˜5.35 at z = 3. Moreover for a given cosmology, we gain a factor of ˜N in computing time for modelling the intergalactic medium under N ≫ 1 different thermal histories. In addition, our method allows us to simulate the non-equilibrium evolution of thermal and ionization state of the gas and include heating due to non-standard sources like cosmic rays and high-energy γ-rays from Blazars.

  10. Thermal Sunyaev-Zel'dovich effect in the intergalactic medium with primordial magnetic fields

    Science.gov (United States)

    Minoda, Teppei; Hasegawa, Kenji; Tashiro, Hiroyuki; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2017-12-01

    The presence of ubiquitous magnetic fields in the universe is suggested from observations of radiation and cosmic ray from galaxies or the intergalactic medium (IGM). One possible origin of cosmic magnetic fields is the magnetogenesis in the primordial universe. Such magnetic fields are called primordial magnetic fields (PMFs), and are considered to affect the evolution of matter density fluctuations and the thermal history of the IGM gas. Hence the information of PMFs is expected to be imprinted on the anisotropies of the cosmic microwave background (CMB) through the thermal Sunyaev-Zel'dovich (tSZ) effect in the IGM. In this study, given an initial power spectrum of PMFs as P (k )∝B1Mpc 2knB , we calculate dynamical and thermal evolutions of the IGM under the influence of PMFs, and compute the resultant angular power spectrum of the Compton y -parameter on the sky. As a result, we find that two physical processes driven by PMFs dominantly determine the power spectrum of the Compton y -parameter; (i) the heating due to the ambipolar diffusion effectively works to increase the temperature and the ionization fraction, and (ii) the Lorentz force drastically enhances the density contrast on small scale just after the recombination epoch. These facts result in making the anisotropies of the CMB temperature on small scales, and we find that the signal goes up to 10 μ K2 around ℓ˜106 with B1 Mpc=0.1 nG and nB=0.0 . Therefore, CMB measurements on such small scales may provide a hint for the existence of the PMFs.

  11. PAPER-64 CONSTRAINTS ON REIONIZATION. II. THE TEMPERATURE OF THE z = 8.4 INTERGALACTIC MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Pober, Jonathan C. [Physics Dept., U. Washington, Seattle, WA (United States); Ali, Zaki S.; Parsons, Aaron R.; Cheng, Carina; Liu, Adrian [Astronomy Dept., University of California, Berkeley, CA (United States); McQuinn, Matthew [Astronomy Dept., University of Washington, Seattle, WA (United States); Aguirre, James E.; Kohn, Saul A. [Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bernardi, Gianni; Grobbelaar, Jasper; Horrell, Jasper; Maree, Matthys [Square Kilometre Array South Africa (SKA SA), Pinelands (South Africa); Bradley, Richard F. [Dept. of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Obs., Socorro, NM (United States); DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E. [Radio Astronomy Lab., University of California, Berkeley, CA (United States); Furlanetto, Steven R. [Dept. of Physics and Astronomy, University of California, Los Angeles, CA (United States); Jacobs, Daniel C. [School of Earth and Space Exploration, Arizona State U., Tempe, AZ (United States); Klima, Patricia J. [National Radio Astronomy Obs., Charlottesville, VA (United States); and others

    2015-08-10

    We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z = 8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. Twenty-one cm power spectra with amplitudes of hundreds of mK{sup 2} can be generically produced if the kinetic temperature of the IGM is significantly below the temperature of the cosmic microwave background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z = 8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ≈5 K for neutral fractions between 10% and 85%, above ≈7 K for neutral fractions between 15% and 80%, or above ≈10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.

  12. Formation of hot intergalactic gas by gas ejection from a galaxy in an early explosive era

    International Nuclear Information System (INIS)

    Ikeuchi, Satoru

    1977-01-01

    Chemical evolution of a galaxy in an early explosive era is studied by means of one zone model. Calculating the thermal properties of interstellar gas and the overlapping factor of expanding supernova-remnant shells, the gas escape conditions from a galaxy are examined. From these, it is shown that the total mass of ejected gas from a galaxy amounts to 10 -- 40% of the initial mass of a galaxy. The ejected gas extends to the intergalactic space and the whole universe. The mass, the heavy-element abundance and other physical properties of thus formed intergalactic gas are investigated for various parameters of galactic evolution. Some other effects of gas release on the evolution of a galaxy and the evolution of the universe are discussed. (auth.)

  13. Tracing the cosmic metal evolution in the low-redshift intergalactic medium

    Energy Technology Data Exchange (ETDEWEB)

    Michael Shull, J. [Also at Institute of Astronomy, University of Cambridge, Cambridge CB3 OHA, UK. (United Kingdom); Danforth, Charles W.; Tilton, Evan M., E-mail: michael.shull@colorado.edu, E-mail: danforth@colorado.edu, E-mail: evan.tilton@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2014-11-20

    Using the Cosmic Origins Spectrograph aboard the Hubble Space Telescope, we measured the abundances of six ions (C III, C IV, Si III, Si IV, N V, and O VI) in the low-redshift (z ≤ 0.4) intergalactic medium (IGM). Both C IV and Si IV have increased in abundance by a factor of ∼10 from z ≈ 5.5 to the present. We derive ion mass densities, ρ{sub ion} ≡ Ω{sub ion}ρ{sub cr}, with Ω{sub ion} expressed relative to the closure density. Our models of mass-abundance ratios, (Si III/Si IV) =0.67{sub −0.19}{sup +0.35}, (C III/C IV) =0.70{sub −0.20}{sup +0.43}, and (Ω{sub C} {sub III}+Ω{sub C} {sub IV})/(Ω{sub Si} {sub III}+Ω{sub Si} {sub IV})=4.9{sub −1.1}{sup +2.2}, are consistent with the photoionization parameter log U = –1.5 ± 0.4, hydrogen photoionization rate Γ{sub H} = (8 ± 2) × 10{sup –14} s{sup –1} at z < 0.4, and specific intensity I {sub 0} = (3 ± 1) × 10{sup –23} erg cm{sup –2} s{sup –1} Hz{sup –1} sr{sup –1} at the Lyman limit. Consistent ionization corrections for C and Si are scaled to an ionizing photon flux Φ{sub 0} = 10{sup 4} cm{sup –2} s{sup –1}, baryon overdensity Δ {sub b} ≈ 200 ± 50, and ''alpha-enhancement'' (Si/C enhanced to three times its solar ratio). We compare these metal abundances to the expected IGM enrichment and abundances in higher photoionized states of carbon (C V) and silicon (Si V, Si VI, and Si VII). Our ionization modeling infers IGM metal densities of (5.4 ± 0.5) × 10{sup 5} M {sub ☉} Mpc{sup –3} in the photoionized Lyα forest traced by the C and Si ions and (9.1 ± 0.6) × 10{sup 5} M {sub ☉} Mpc{sup –3} in hotter gas traced by O VI. Combining both phases, the heavy elements in the IGM have mass density ρ {sub Z} = (1.5 ± 0.8) × 10{sup 6} M {sub ☉} Mpc{sup –3} or Ω {sub Z} ≈ 10{sup –5}. This represents 10% ± 5% of the metals produced by (6 ± 2) × 10{sup 8} M {sub ☉} Mpc{sup –3} of integrated star formation with yield y{sub m} = 0

  14. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. II. REWRITING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Philip; Broderick, Avery E; Pfrommer, Christoph [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2012-06-10

    The universe is opaque to extragalactic very high energy gamma rays (VHEGRs, E > 100 GeV) because they annihilate and pair produce on the extragalactic background light. The resulting ultrarelativistic pairs are commonly assumed to lose energy primarily through inverse Compton scattering of cosmic microwave background (CMB) photons, reprocessing the original emission from TeV to GeV energies. In Broderick et al., we argued that this is not the case; powerful plasma instabilities driven by the highly anisotropic nature of the ultrarelativistic pair distribution provide a plausible way to dissipate the kinetic energy of the TeV-generated pairs locally, heating the intergalactic medium (IGM). Here, we explore the effect of this heating on the thermal history of the IGM. We collate the observed extragalactic VHEGR sources to determine a local VHEGR heating rate. Given the pointed nature of VHEGR observations, we estimate the correction for the various selection effects using Fermi observations of high- and intermediate-peaked BL Lac objects. As the extragalactic component of the local VHEGR flux is dominated by TeV blazars, we then estimate the evolution of the TeV blazar luminosity density by tying it to the well-observed quasar luminosity density and producing a VHEGR heating rate as a function of redshift. This heating is relatively homogeneous for z {approx}< 4, but there is greater spatial variation at higher redshift (order unity at z {approx} 6) because of the reduced number of blazars that contribute to local heating. We show that this new heating process dominates photoheating in the low-redshift evolution of the IGM and calculate the effect of this heating in a one-zone model. As a consequence, the inclusion of TeV blazar heating qualitatively and quantitatively changes the structure and history of the IGM. Due to the homogeneous nature of the extragalactic background light, TeV blazars produce a uniform volumetric heating rate. This heating is sufficient to

  15. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. II. REWRITING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Chang, Philip; Broderick, Avery E.; Pfrommer, Christoph

    2012-01-01

    The universe is opaque to extragalactic very high energy gamma rays (VHEGRs, E > 100 GeV) because they annihilate and pair produce on the extragalactic background light. The resulting ultrarelativistic pairs are commonly assumed to lose energy primarily through inverse Compton scattering of cosmic microwave background (CMB) photons, reprocessing the original emission from TeV to GeV energies. In Broderick et al., we argued that this is not the case; powerful plasma instabilities driven by the highly anisotropic nature of the ultrarelativistic pair distribution provide a plausible way to dissipate the kinetic energy of the TeV-generated pairs locally, heating the intergalactic medium (IGM). Here, we explore the effect of this heating on the thermal history of the IGM. We collate the observed extragalactic VHEGR sources to determine a local VHEGR heating rate. Given the pointed nature of VHEGR observations, we estimate the correction for the various selection effects using Fermi observations of high- and intermediate-peaked BL Lac objects. As the extragalactic component of the local VHEGR flux is dominated by TeV blazars, we then estimate the evolution of the TeV blazar luminosity density by tying it to the well-observed quasar luminosity density and producing a VHEGR heating rate as a function of redshift. This heating is relatively homogeneous for z ∼< 4, but there is greater spatial variation at higher redshift (order unity at z ∼ 6) because of the reduced number of blazars that contribute to local heating. We show that this new heating process dominates photoheating in the low-redshift evolution of the IGM and calculate the effect of this heating in a one-zone model. As a consequence, the inclusion of TeV blazar heating qualitatively and quantitatively changes the structure and history of the IGM. Due to the homogeneous nature of the extragalactic background light, TeV blazars produce a uniform volumetric heating rate. This heating is sufficient to increase

  16. Reionization in a cold dark matter universe: The feedback of galaxy formation on the intergalactic medium

    Science.gov (United States)

    Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif

    1994-01-01

    We study the coupled evolution of the intergalactic medium (IGM) and the emerging structure in the universe in the context of the cold dark matter (CDM) model, with a special focus on the consequences of imposing reionization and the Gunn-Peterson constraint as a boundary condition on the model. We have calculated the time-varying density of the IGM by coupling our detailed, numerical calculations of the thermal and ionization balance and radiative transfer in a uniform, spatially averaged IGM of H and He, including the mean opacity of an evolving distribution of gas clumps which correspond to quasar absorption line clouds, to the linearized equations for the growth of density fluctuations in both the gaseous and dark matter components in a CDM universe. We use the linear growth equations to identify the fraction of the gas which must have collapsed out at each epoch, an approach similar in spirit to the so-called Press-Schechter formalism. We identify the IGM density with the uncollapsed baryon fraction. The collapsed fraction is postulated to be a source of energy injection into the IGM, by radiation or bulk hydrodynamical heating (e.g., via shocks) or both, at a rate which is marginally enough to satisfy the Gunn-Peterson constraint at z less than 5. Our results include the following: (1) We find that the IGM in a CDM model must have contained a substantial fraction of the total baryon density of the universe both during and after its reionization epoch. (2) As a result, our previous conclusion that the observed Quasi-Stellar Objects (QSOs) at high redshift are not sufficient to ionize the IGM enough to satisfy the Gunn-Peterson constraint is confirmed. (3) We predict a detectable He II Gunn-Peterson effect at 304(1 + z) A in the spectra of quasars at a range of redshift z greater than or approx. 3, depending on the nature of the sources of IGM reionization. (4) We find, moreover, that a CDM model with high bias parameter b (i.e., b greater than or approx. 2

  17. Probing the Metal Enrichment of the Intergalactic Medium at z = 5–6 Using the Hubble Space Telescope

    International Nuclear Information System (INIS)

    Cai, Zheng; Fan, Xiaohui; Dave, Romeel; Finlator, Kristian; Oppenheimer, Ben

    2017-01-01

    We test the galactic outflow model by probing associated galaxies of four strong intergalactic C iv absorbers at z = 5–6 using the Hubble Space Telescope ( HST ) Advanced Camera for Surveys (ACS) ramp narrowband filters. The four strong C iv absorbers reside at z = 5.74, 5.52, 4.95, and 4.87, with column densities ranging from N Civ = 10 13.8 to 10 14.8 cm −2 . At z = 5.74, we detect an i-dropout Ly α emitter (LAE) candidate with a projected impact parameter of 42 physical kpc from the C iv absorber. This LAE candidate has a Ly α -based star formation rate (SFR Lyα ) of 2 M ⊙ yr −1 and a UV-based SFR of 4 M ⊙ yr −1 . Although we cannot completely rule out that this i-dropout emitter may be an [O ii] interloper, its measured properties are consistent with the C iv powered galaxy at z = 5.74. For C iv absorbers at z = 4.95 and z = 4.87, although we detect two LAE candidates with impact parameters of 160 and 200 kpc, such distances are larger than that predicted from the simulations. Therefore, we treat them as nondetections. For the system at z = 5.52, we do not detect LAE candidates, placing a 3 σ upper limit of SFR Lyα ≈ 1.5 M ⊙ yr −1 . In summary, in these four cases, we only detect one plausible C iv source at z = 5.74. Combining the modest SFR of the one detection and the three nondetections, our HST observations strongly support that smaller galaxies (SFR Lyα ≲ 2 M ⊙ yr −1 ) are main sources of intergalactic C iv absorbers, and such small galaxies play a major role in the metal enrichment of the intergalactic medium at z ≳ 5.

  18. Probing the Metal Enrichment of the Intergalactic Medium at z = 5–6 Using the Hubble Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zheng [UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Fan, Xiaohui [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Dave, Romeel [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Finlator, Kristian [New Mexico State University, Las Cruces, NM 88003 (United States); Oppenheimer, Ben, E-mail: zcai@ucolick.org [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO 80309 (United States)

    2017-11-01

    We test the galactic outflow model by probing associated galaxies of four strong intergalactic C iv absorbers at z = 5–6 using the Hubble Space Telescope ( HST ) Advanced Camera for Surveys (ACS) ramp narrowband filters. The four strong C iv absorbers reside at z = 5.74, 5.52, 4.95, and 4.87, with column densities ranging from N {sub Civ} = 10{sup 13.8} to 10{sup 14.8} cm{sup −2}. At z = 5.74, we detect an i-dropout Ly α emitter (LAE) candidate with a projected impact parameter of 42 physical kpc from the C iv absorber. This LAE candidate has a Ly α -based star formation rate (SFR{sub Lyα} ) of 2 M {sub ⊙} yr{sup −1} and a UV-based SFR of 4 M {sub ⊙} yr{sup −1}. Although we cannot completely rule out that this i-dropout emitter may be an [O ii] interloper, its measured properties are consistent with the C iv powered galaxy at z = 5.74. For C iv absorbers at z = 4.95 and z = 4.87, although we detect two LAE candidates with impact parameters of 160 and 200 kpc, such distances are larger than that predicted from the simulations. Therefore, we treat them as nondetections. For the system at z = 5.52, we do not detect LAE candidates, placing a 3 σ upper limit of SFR{sub Lyα} ≈ 1.5 M {sub ⊙} yr{sup −1}. In summary, in these four cases, we only detect one plausible C iv source at z = 5.74. Combining the modest SFR of the one detection and the three nondetections, our HST observations strongly support that smaller galaxies (SFR{sub Lyα} ≲ 2 M {sub ⊙} yr{sup −1}) are main sources of intergalactic C iv absorbers, and such small galaxies play a major role in the metal enrichment of the intergalactic medium at z ≳ 5.

  19. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-01-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  20. Filling the Void: A Comprehensive Survey of the Intergalactic Medium at z 1 Using STIS/COS Archival Spectra

    Science.gov (United States)

    Khaire, Vikram

    2017-08-01

    There exists a large void in our understanding of the intergalactic medium (IGM) at z=0.5-1.5, spanning a significant cosmic time of 4 Gyr. This hole resulted from a paucity of near-UV QSO spectra, which were historically very expensive to obtain. However, with the advent of COS and the HST UV initiative, sufficient STIS/COS NUV spectra have finally become available, enabling the first statistical analyses. We propose a comprehensive study of the z 1 IGM using the Ly-alpha forest of 26 archival QSO spectra. This analysis will: (1) measure the distribution of HI absorbers to several percent precision down to log NHI science cases. These results, along with our state-of-the-art hydrodynamical simulations, and theoretical models of the UVB, will fill the 4 Gyr hole in our understanding of the IGM. When combined with existing HST and ground-based data from lower and higher z, they will lead to a complete, empirical description of the IGM from HI reionization to the present, spanning more than 10 Gyr of cosmic history, adding substantially to Hubble's legacy of discovery on the IGM.

  1. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega0 = 1 and h = 0.5 was considered (here h = H0 bar 100/kms/Mpc and H0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  2. The Dispersion of Fast Radio Bursts from a Structured Intergalactic Medium at Redshifts z < 1.5

    Science.gov (United States)

    Shull, J. Michael; Danforth, Charles W.

    2018-01-01

    We analyze the sources of free electrons that produce the large dispersion measures, {DM}≈ 300{--}1600 (in units of cm‑3 pc), observed toward fast radio bursts (FRBs). Individual galaxies typically produce {DM}∼ 25{--}60 {{cm}}-3 {pc} from ionized gas in their disk, disk-halo interface, and circumgalactic medium. Toward an FRB source at redshift z, a homogeneous intergalactic medium (IGM) containing a fraction {f}{IGM} of cosmological baryons will produce {DM}=(935 {{cm}}-3 {pc}){f}{IGM} {h}70-1I(z), where I{(z)=(2/3{{{Ω }}}m)[\\{{{{Ω }}}m(1+z)}3+{{{Ω }}}{{Λ }}\\}{}1/2-1]. A structured IGM of photoionized Lyα absorbers in the cosmic web produces similar dispersion, modeled from the observed distribution, {f}b(N,z), of H I (Lyα-forest) absorbers in column density and redshift with ionization corrections and scaling relations from cosmological simulations. An analytic formula for DM(z) applied to observed FRB dispersions suggests that {z}{FRB}≈ 0.2{--}1.5 for an IGM containing a significant baryon fraction, {f}{IGM}=0.6+/- 0.1. Future surveys of the statistical distribution, DM(z), of FRBs identified with specific galaxies and redshifts can be used to calibrate the IGM baryon fraction and distribution of Lyα absorbers. Fluctuations in DM at the level ±10 cm‑3 pc will arise from filaments and voids in the cosmic web.

  3. The concerted impact of galaxies and QSOs on the ionization and thermal state of the intergalactic medium

    Science.gov (United States)

    Kakiichi, Koki; Graziani, Luca; Ciardi, Benedetta; Meiksin, Avery; Compostella, Michele; Eide, Marius B.; Zaroubi, Saleem

    2017-07-01

    We present a detailed analysis of the ionization and thermal structure of the intergalactic medium (IGM) around a high-redshift (z = 10) QSO, using a large suite of cosmological, multifrequency radiative transfer simulations, exploring the contribution from galaxies as well as the QSO, and the effect of X-rays and secondary ionization. We show that in high-z QSO environments both the central QSO and the surrounding galaxies concertedly control the reionization morphology of hydrogen and helium and have a non-linear impact on the thermal structure of the IGM. A QSO imprints a distinctive morphology on H II regions if its total ionizing photon budget exceeds that of the surrounding galaxies since the onset of hydrogen reionization; otherwise, the morphology shows little difference from that of H II regions produced only by galaxies. In addition, the spectral shape of the collective radiation field from galaxies and QSOs controls the thickness of the I-fronts. While a UV-obscured QSO can broaden the I-front, the contribution from other UV sources, either galaxies or unobscured QSOs, is sufficient to maintain a sharp I-front. X-ray photons from the QSO are responsible for a prominent extended tail of partial ionization ahead of the I-front. QSOs leave a unique imprint on the morphology of He II/He III regions. We suggest that, while the physical state of the IGM is modified by QSOs, the most direct test to understand the role of galaxies and QSOs during reionization is to perform galaxy surveys in a region of sky imaged by 21 cm tomography.

  4. Using gamma-ray bursts to probe the cosmic intergalactic medium

    International Nuclear Information System (INIS)

    Sudilovsky, Vladimir

    2014-01-01

    Gamma-ray bursts (GRBs) rapidly liberate enormous amounts of energy through the cataclysmic destruction of an individual massive object. GRBs are the most energetic events in the Universe, boasting isotropic equivalent energy releases of E∝10 51-54 erg in time scales of seconds - more energy than even active galaxies in the same time-frame. These transient events represent the ultimate high energy laboratories, and their afterglows are readily detectable from ground-based observatories out to cosmological distances out to z∝8. For this reason, GRBs are a natural tool to probe the early universe. To this end, programs to quickly measure the photometric and spectroscopic properties of GRB afterglows are providing a wealth of data that enable us to characterize the physical properties of both the burst itself and its host environment. In addition to providing extremely poignant information on the burst and its medium, GRB afterglow spectra show the presence of matter intervening along the line of sight. MgII, an important tracer of α-element processes and thus of star formation and galaxies, has been measured in ∝ 60% of GRB afterglow spectra. Surprisingly, MgII is only found in ∝30% of quasar spectra. This discrepancy in the number density dn/dz of intervening MgII absorbers implies that there are significant observational biases in either the spectroscopic samples of either GRB afterglows or quasars. In this work, we review the MgII issue and the biases proposed to explain it. We find that observations of other tracer systems (namely CIV) do not show the same overdensity, and thus conclude that solution to the MgII problem is related to the geometry of the sight-line relative to the absorbers. We conclude that an observational bias stemming from dust extinction arising from MgII cannot explain such a large discrepancy. Finally, we search for a signal of the MgII discrepancy in the transverse direction by computing the GRB-galaxy two point correlation

  5. Using gamma-ray bursts to probe the cosmic intergalactic medium

    Energy Technology Data Exchange (ETDEWEB)

    Sudilovsky, Vladimir

    2014-05-28

    Gamma-ray bursts (GRBs) rapidly liberate enormous amounts of energy through the cataclysmic destruction of an individual massive object. GRBs are the most energetic events in the Universe, boasting isotropic equivalent energy releases of E∝10{sup 51-54} erg in time scales of seconds - more energy than even active galaxies in the same time-frame. These transient events represent the ultimate high energy laboratories, and their afterglows are readily detectable from ground-based observatories out to cosmological distances out to z∝8. For this reason, GRBs are a natural tool to probe the early universe. To this end, programs to quickly measure the photometric and spectroscopic properties of GRB afterglows are providing a wealth of data that enable us to characterize the physical properties of both the burst itself and its host environment. In addition to providing extremely poignant information on the burst and its medium, GRB afterglow spectra show the presence of matter intervening along the line of sight. MgII, an important tracer of α-element processes and thus of star formation and galaxies, has been measured in ∝ 60% of GRB afterglow spectra. Surprisingly, MgII is only found in ∝30% of quasar spectra. This discrepancy in the number density dn/dz of intervening MgII absorbers implies that there are significant observational biases in either the spectroscopic samples of either GRB afterglows or quasars. In this work, we review the MgII issue and the biases proposed to explain it. We find that observations of other tracer systems (namely CIV) do not show the same overdensity, and thus conclude that solution to the MgII problem is related to the geometry of the sight-line relative to the absorbers. We conclude that an observational bias stemming from dust extinction arising from MgII cannot explain such a large discrepancy. Finally, we search for a signal of the MgII discrepancy in the transverse direction by computing the GRB-galaxy two point correlation

  6. The Column Density Distribution and Continuum Opacity of the Intergalactic and Circumgalactic Medium at Redshift langzrang = 2.4

    Science.gov (United States)

    Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.; Pettini, Max

    2013-06-01

    We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at langzrang = 2.4. Using Voigt profile fits to the full Lyα and Lyβ forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14 \\lesssim log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\lesssim 17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than in the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N H I absorbers than low-N H I absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) law parameterization of the frequency distribution with a break near N H I ≈1015 cm-2. We compute new estimates of the mean free path (λmfp) to hydrogen-ionizing photons at z em = 2.4, finding λmfp = 147 ± 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to λmfp = 121 ± 15 Mpc. These λmfp measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background and of ionizing sources at z ≈ 2-3. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space

  7. A model for the distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter-dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1989-01-01

    The spatial distribution of the cold-dark-matter (CDM) and baryonic components of CDM-dominated cosmological models are characterized, summarizing the results of recent theoretical investigations. The evolution and distribution of matter in an Einstein-de Sitter universe on length scales small enough so that the Newtonian approximation is valid is followed chronologically, assuming (1) that the galaxies, CDM, and the intergalactic medium (IGM) are coupled by gravity, (2) that galaxies form by taking mass and momentum from the IGM, and (3) that the IGM responds to the energy input from the galaxies. The results of the numerical computations are presented in extensive graphs and discussed in detail.

  8. GRB 130606A AS A PROBE OF THE INTERGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM IN A STAR-FORMING GALAXY IN THE FIRST Gyr AFTER THE BIG BANG

    International Nuclear Information System (INIS)

    Chornock, Ryan; Berger, Edo; Lunnan, Ragnhild; Drout, Maria R.; Fong Wenfai; Laskar, Tanmoy; Fox, Derek B.; Roth, Katherine C.

    2013-01-01

    We present high signal-to-noise ratio Gemini and MMT spectroscopy of the optical afterglow of the gamma-ray burst (GRB) 130606A at redshift z = 5.913, discovered by Swift. This is the first high-redshift GRB afterglow to have spectra of comparable quality to those of z ≈ 6 quasars. The data exhibit a smooth continuum at near-infrared wavelengths that is sharply cut off blueward of 8410 Å due to absorption from Lyα at redshift z ≈ 5.91, with some flux transmitted through the Lyα forest between 7000 and 7800 Å. We use column densities inferred from metal absorption lines to constrain the metallicity of the host galaxy between a lower limit of [Si/H] ∼> –1.7 and an upper limit of [S/H] ∼ GP eff (Lyα) > 6.4). This is comparable to the lowest-redshift Gunn-Peterson troughs found in quasar spectra. Some Lyβ and Lyγ transmission is detected in this redshift window, indicating that it is not completely opaque, and hence that the intergalactic medium (IGM) is nonetheless mostly ionized at these redshifts. We set a 2σ upper limit of 0.11 on the neutral fraction of the IGM at the redshift of the GRB from the lack of a Lyα red damping wing, assuming a model with a constant neutral density. GRB 130606A thus for the first time realizes the promise of GRBs as probes of the first galaxies and cosmic reionization

  9. A NEW METHOD TO DIRECTLY MEASURE THE JEANS SCALE OF THE INTERGALACTIC MEDIUM USING CLOSE QUASAR PAIRS

    International Nuclear Information System (INIS)

    Rorai, Alberto; Hennawi, Joseph F.; White, Martin

    2013-01-01

    Although the baryons in the intergalactic medium (IGM) trace dark matter fluctuations on megaparsec scales, on smaller scales ∼100 kpc, fluctuations are suppressed because the finite temperature gas is pressure supported against gravity, analogous to the classical Jeans argument. This Jeans filtering scale, which quantifies the small-scale structure of the IGM, has fundamental cosmological implications. First, it provides a thermal record of heat injected by ultraviolet photons during cosmic reionization events, and thus constrains the thermal and reionization history of the universe. Second, the Jeans scale determines the clumpiness of the IGM, a critical ingredient in models of cosmic reionization. Third, it sets the minimum mass scale for gravitational collapse from the IGM, and hence plays a pivotal role in galaxy formation. Unfortunately, it is extremely challenging to measure the Jeans scale via the standard technique of analyzing purely longitudinal Lyα forest spectra, because the thermal Doppler broadening of absorption lines along the line-of-sight, is highly degenerate with Jeans smoothing. In this work, we show that the Jeans filtering scale can be directly measured by characterizing the coherence of correlated Lyα forest absorption in close quasar pairs, with separations small enough ∼100 kpc to resolve it. We present a novel technique for this purpose, based on the probability density function (PDF) of phase angle differences of homologous longitudinal Fourier modes in close quasar pair spectra. A Bayesian formalism is introduced based on the phase angle PDF, and Markov Chain Monte Carlo techniques are used to characterize the precision of a hypothetical Jeans scale measurement, and explore degeneracies with other thermal parameters governing the IGM. A semi-analytical model of the Lyα forest is used to generate a large grid (500) of thermal models from a dark matter only simulation. Our full parameter study indicates that a realistic sample of

  10. A NEW METHOD TO DIRECTLY MEASURE THE JEANS SCALE OF THE INTERGALACTIC MEDIUM USING CLOSE QUASAR PAIRS

    Energy Technology Data Exchange (ETDEWEB)

    Rorai, Alberto; Hennawi, Joseph F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); White, Martin [Department of Astronomy, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720-3411 (United States)

    2013-10-01

    Although the baryons in the intergalactic medium (IGM) trace dark matter fluctuations on megaparsec scales, on smaller scales ∼100 kpc, fluctuations are suppressed because the finite temperature gas is pressure supported against gravity, analogous to the classical Jeans argument. This Jeans filtering scale, which quantifies the small-scale structure of the IGM, has fundamental cosmological implications. First, it provides a thermal record of heat injected by ultraviolet photons during cosmic reionization events, and thus constrains the thermal and reionization history of the universe. Second, the Jeans scale determines the clumpiness of the IGM, a critical ingredient in models of cosmic reionization. Third, it sets the minimum mass scale for gravitational collapse from the IGM, and hence plays a pivotal role in galaxy formation. Unfortunately, it is extremely challenging to measure the Jeans scale via the standard technique of analyzing purely longitudinal Lyα forest spectra, because the thermal Doppler broadening of absorption lines along the line-of-sight, is highly degenerate with Jeans smoothing. In this work, we show that the Jeans filtering scale can be directly measured by characterizing the coherence of correlated Lyα forest absorption in close quasar pairs, with separations small enough ∼100 kpc to resolve it. We present a novel technique for this purpose, based on the probability density function (PDF) of phase angle differences of homologous longitudinal Fourier modes in close quasar pair spectra. A Bayesian formalism is introduced based on the phase angle PDF, and Markov Chain Monte Carlo techniques are used to characterize the precision of a hypothetical Jeans scale measurement, and explore degeneracies with other thermal parameters governing the IGM. A semi-analytical model of the Lyα forest is used to generate a large grid (500) of thermal models from a dark matter only simulation. Our full parameter study indicates that a realistic sample of

  11. GRB 130606A AS A PROBE OF THE INTERGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM IN A STAR-FORMING GALAXY IN THE FIRST Gyr AFTER THE BIG BANG

    Energy Technology Data Exchange (ETDEWEB)

    Chornock, Ryan; Berger, Edo; Lunnan, Ragnhild; Drout, Maria R.; Fong Wenfai; Laskar, Tanmoy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fox, Derek B. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Roth, Katherine C., E-mail: rchornock@cfa.harvard.edu [Gemini Observatory, 670 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-09-01

    We present high signal-to-noise ratio Gemini and MMT spectroscopy of the optical afterglow of the gamma-ray burst (GRB) 130606A at redshift z = 5.913, discovered by Swift. This is the first high-redshift GRB afterglow to have spectra of comparable quality to those of z Almost-Equal-To 6 quasars. The data exhibit a smooth continuum at near-infrared wavelengths that is sharply cut off blueward of 8410 A due to absorption from Ly{alpha} at redshift z Almost-Equal-To 5.91, with some flux transmitted through the Ly{alpha} forest between 7000 and 7800 A. We use column densities inferred from metal absorption lines to constrain the metallicity of the host galaxy between a lower limit of [Si/H] {approx}> -1.7 and an upper limit of [S/H] {approx}< -0.5 set by the non-detection of S II absorption. We demonstrate consistency between the dramatic evolution in the transmission fraction of Ly{alpha} seen in this spectrum over the redshift range z = 4.9-5.85 with that previously measured from observations of high-redshift quasars. There is an extended redshift interval of {Delta}z = 0.12 in the Ly{alpha} forest at z = 5.77 with no detected transmission, leading to a 3{sigma} upper limit on the mean Ly{alpha} transmission fraction of {approx}<0.2% (or {tau}{sub GP}{sup eff} (Ly{alpha}) > 6.4). This is comparable to the lowest-redshift Gunn-Peterson troughs found in quasar spectra. Some Ly{beta} and Ly{gamma} transmission is detected in this redshift window, indicating that it is not completely opaque, and hence that the intergalactic medium (IGM) is nonetheless mostly ionized at these redshifts. We set a 2{sigma} upper limit of 0.11 on the neutral fraction of the IGM at the redshift of the GRB from the lack of a Ly{alpha} red damping wing, assuming a model with a constant neutral density. GRB 130606A thus for the first time realizes the promise of GRBs as probes of the first galaxies and cosmic reionization.

  12. Hadrons in hot and dense medium

    International Nuclear Information System (INIS)

    Mallik, S.

    2004-01-01

    We review chiral perturbation theory in some detail and construct interaction terms involving the Goldstone and the different non-Goldstone fields, in presence of external (classical) fields coupled to currents. The ensemble average of the two-point functions of the currents can now be expanded in terms of Feynman diagrams. We evaluate the one-loop diagrams in the neighbourhood of the respective poles to find the effective couplings and masses of the particles in medium. We also describe the virial formula for the self-energy of a particle in medium, giving its pole position. It proves useful if the scattering amplitude of the particle with particles in medium is known experimentally. (author)

  13. Propagation of monochromatic light in a hot and dense medium

    Energy Technology Data Exchange (ETDEWEB)

    Masood, Samina S. [University of Houston Clear Lake, Department of Physical and Applied Sciences, Houston, TX (United States)

    2017-12-15

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe. (orig.)

  14. Propagation of monochromatic light in a hot and dense medium

    Science.gov (United States)

    Masood, Samina S.

    2017-12-01

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.

  15. Hot ductility of medium carbon steel with vanadium

    International Nuclear Information System (INIS)

    Lee, Chang-Hoon; Park, Jun-Young; Chung, JunHo; Park, Dae-Bum; Jang, Jin-Young; Huh, Sungyul; Ju Kim, Sung; Kang, Jun-Yun; Moon, Joonoh; Lee, Tae-Ho

    2016-01-01

    Hot ductility of medium carbon steel containing 0.52 wt% of carbon and 0.11 wt% of vanadium was investigated using a hot tensile test performed up to fracture. The hot ductility was evaluated by measuring the reduction of area of the fractured specimens, which were strained at a variety of test temperatures in a range of 600–1100 °C at a strain rate of 2×10"−"3/s. The hot ductility was excellent in a temperature range of 950–1100 °C, followed by a decrease of the hot ductility below 950 °C. The hot ductility continued to drop as the temperature was lowered to 600 °C. The loss of hot ductility in a temperature range of 800–950 °C, which is above the Ae_3 temperature, was due to V(C,N) precipitation at austenite grain boundaries. The further decline of hot ductility between 700 °C and 750 °C resulted from the transformation of ferrite films decorating austenite grain boundaries. The hot ductility continued to decrease at 650 °C or less, owing to ferrite films and the pearlite matrix, which is harder than ferrite. The pearlite was transformed from austenite due to relatively high carbon content.

  16. X-ray imaging and spectro-imaging techniques for investigating the intergalactic medium properties within merging clusters of galaxies

    International Nuclear Information System (INIS)

    Bourdin, Herve

    2004-01-01

    Clusters of galaxies are gravitationally bound matter over-densities which are filled with a hot and ionized gas emitting in X-rays. They form during merging phases of subgroups, so that the gas undergoes shock and mixing processes which perturb its physical properties at hydrostatic equilibrium. In order to map the spatial distributions of the gas emissivity, temperature and entropy as observed by X-ray telescopes, we compared different multi-scale imaging algorithms, and also developed and tested a new multi-scale spectro-imaging algorithm. With this algorithm, the searched parameter is first estimated from a count statistics within different spatial resolution elements, and its space-frequency variations are then coded by Haar wavelet coefficients. The optimal spatial distribution of the parameter is finally restored by thresholding the noisy wavelet transform. (author) [fr

  17. Contribution to the study of the intergalactic medium physical properties through infrared, sub-millimetric and millimetric observations

    International Nuclear Information System (INIS)

    Pointecouteau, Etienne

    1999-01-01

    This work concerns the largest self-gravitating structures of the Universe, clusters of galaxies. Due to its thermodynamical conditions, their intracluster atmosphere is completely ionised. This gas is observed at X-ray wavelengths through its free-free emission, and at submillimeter-millimeter wavelengths through the Sunyaev-Zel'dovich (SZ) effect. This effect is due to the inverse Compton scattering of the cosmic microwave background photons by the hot intracluster electrons. First, taking into account the weakly relativistic behaviour of the electrons, we performed exact calculations of the SZ spectrum. The resulting spectra show the strong dependency of the SZ effect spectral shape with respect to the gas temperature. Making use of this work, we analysed the millimeter data from the DiaBolo spectrophotometer in the direction of a massive and distant cluster, RXJ1347-1145. With a high angular resolution, we have mapped the centre and the extended emission of this cluster, leading to the detection of the strongest SZ effect measured to date. The comparison with the X-ray data shows some very exciting and puzzling differences. In the third part, we present for the first time the spectrum of a galaxy cluster, A2163, from far infrared (90 μm) to millimeter (2.1 mm) wavelengths. The constraints set by the FIR measurements on the residual dust emission, allowed us put strong constraints on the SZ parameters. Finally, we propose a new method which allows to extract the intracluster gas temperature from a set of SZ data. We have quantified the reliability of this method in case of observations obtained from the Planck surveyor and the Herschel space missions. (author) [fr

  18. THE SIZE AND ORIGIN OF METAL-ENRICHED REGIONS IN THE INTERGALACTIC MEDIUM FROM SPECTRA OF BINARY QUASARS

    International Nuclear Information System (INIS)

    Martin, Crystal L.; Fournier, Amanda P.; Scannapieco, Evan; Ellison, Sara L.; Hennawi, Joseph F.; Djorgovski, S. G.

    2010-01-01

    We present tomography of the circum-galactic metal distribution at redshift 1.7-4.5 derived from echellete spectroscopy of binary quasars. We find C IV systems at similar redshifts in paired sightlines more often than expected for sightline-independent redshifts. As the separation of the sightlines increases from 36 kpc to 907 kpc, the amplitude of this clustering decreases. At the largest separations, the C IV systems cluster similar to the Lyman-break galaxies studied by Adelberger et al. in 2005. The C IV systems are significantly less correlated than these galaxies, however, at separations less than R 1 ≅ 0.42 ± 0.15 h -1 comoving Mpc. Measured in real space, i.e., transverse to the sightlines, this length scale is significantly smaller than the break scale estimated previously from the line-of-sight correlation function in redshift space by Scannapieco et al. in 2006. Using a simple model, we interpret the new real-space measurement as an indication of the typical physical size of enriched regions. We adopt this size for enriched regions and fit the redshift-space distortion in the line-of-sight correlation function. The fitted velocity kick is consistent with the peculiar velocity of galaxies as determined by the underlying mass distribution and places an upper limit on the average outflow (or inflow) speed of metals. The implied timescale for dispersing metals is larger than the typical stellar ages of Lyman-break galaxies, and we argue that enrichment by galaxies at z ≥ 4.3 played a greater role in dispersing metals. To further constrain the growth of enriched regions, we discuss empirical constraints on the evolution of the C IV correlation function with cosmic time. This study demonstrates the potential of tomography for measuring the metal enrichment history of the circum-galactic medium.

  19. The Faint End of the Quasar Luminosity Function at z ~ 4: Implications for Ionization of the Intergalactic Medium and Cosmic Downsizing

    Science.gov (United States)

    Glikman, Eilat; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Lee, Kyoung-Soo

    2011-02-01

    We present an updated determination of the z ~ 4 QSO luminosity function (QLF), improving the quality of the determination of the faint end of the QLF presented by Glikman et al. (2010). We have observed an additional 43 candidates from our survey sample, yielding one additional QSO at z = 4.23 and increasing the completeness of our spectroscopic follow-up to 48% for candidates brighter than R = 24 over our survey area of 3.76 deg2. We study the effect of using K-corrections to compute the rest-frame absolute magnitude at 1450 Å compared with measuring M 1450 directly from the object spectra. We find a luminosity-dependent bias: template-based K-corrections overestimate the luminosity of low-luminosity QSOs, likely due to their reliance on templates derived from higher luminosity QSOs. Combining our sample with bright quasars from the Sloan Digital Sky Survey and using spectrum-based M 1450 for all the quasars, we fit a double power law to the binned QLF. Our best fit has a bright-end slope, α = 3.3 ± 0.2, and faint-end slope, β = 1.6+0.8 -0.6. Our new data revise the faint-end slope of the QLF down to flatter values similar to those measured at z ~ 3. The break luminosity, though poorly constrained, is at M* = -24.1+0.7 -1.9, approximately 1-1.5 mag fainter than at z ~ 3. This QLF implies that QSOs account for about half the radiation needed to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  20. New limits on 21 cm epoch of reionization from paper-32 consistent with an x-ray heated intergalactic medium at z = 7.7

    International Nuclear Information System (INIS)

    Parsons, Aaron R.; Liu, Adrian; Ali, Zaki S.; Pober, Jonathan C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E.; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Pat; Manley, Jason R.; Walbrugh, William P.; Stefan, Irina I.

    2014-01-01

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK 2 ). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK) 2 for k = 0.27 h Mpc –1 at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  1. New limits on 21 cm epoch of reionization from paper-32 consistent with an x-ray heated intergalactic medium at z = 7.7

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Aaron R.; Liu, Adrian; Ali, Zaki S.; Pober, Jonathan C. [Astronomy Department, University of California, Berkeley, CA (United States); Aguirre, James E.; Moore, David F. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Observatory, Socorro, NM (United States); DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E. [Radio Astronomy Laboratory, University of California, Berkeley, CA (United States); Gugliucci, Nicole E. [Department of Astronomy, University of Virginia, Charlottesville, VA (United States); Jacobs, Daniel C. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Klima, Pat [National Radio Astronomy Observatory, Charlottesville, VA (United States); Manley, Jason R.; Walbrugh, William P. [Square Kilometer Array, South Africa Project, Cape Town (South Africa); Stefan, Irina I. [Cavendish Laboratory, Cambridge (United Kingdom)

    2014-06-20

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK{sup 2}). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK){sup 2} for k = 0.27 h Mpc{sup –1} at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  2. THE HOT INTERSTELLAR MEDIUM OF THE INTERACTING GALAXY NGC 4490

    International Nuclear Information System (INIS)

    Richings, A. J.; Fabbiano, G.; Wang Junfeng; Roberts, T. P.

    2010-01-01

    We present an analysis of the hot interstellar medium (ISM) in the spiral galaxy NGC 4490, which is interacting with the irregular galaxy NGC 4485, using ∼100 ks of Chandra ACIS-S observations. The high angular resolution of Chandra enables us to remove discrete sources and perform spatially resolved spectroscopy for the star-forming regions and associated outflows, allowing us to look at how the physical properties of the hot ISM such as temperature, hydrogen column density, and metal abundances vary throughout these galaxies. We find temperatures of >0.41 keV and 0.85 +0.59 -0.12 keV, electron densities of >1.87η -1/2 x 10 -3 cm -3 and 0.21 +0.03 -0.04 η -1/2 x 10 -3 cm -3 , and hot gas masses of >1.1η 1/2 x 10 7 M sun and ∼3.7η 1/2 x 10 7 M sun in the plane and halo of NGC 4490, respectively, where η is the filling factor of the hot gas. The abundance ratios of Ne, Mg, and Si with respect to Fe are found to be consistent with those predicted by theoretical models of type II supernovae (SNe). The thermal energy in the hot ISM is ∼5% of the total mechanical energy input from SNe, so it is likely that the hot ISM has been enriched and heated by type II SNe. The X-ray emission is anticorrelated with the Hα and mid-infrared emission, suggesting that the hot gas is bounded by filaments of cooler ionized hydrogen mixed with warm dust.

  3. Intergalactic medium emission observations with the cosmic web imager. II. Discovery of extended, kinematically linked emission around SSA22 Lyα BLOB 2

    International Nuclear Information System (INIS)

    Christopher Martin, D.; Chang, Daphne; Matuszewski, Matt; Morrissey, Patrick; Rahman, Shahin; Moore, Anna; Steidel, Charles C.; Matsuda, Yuichi

    2014-01-01

    The intergalactic medium (IGM) is the dominant reservoir of baryons, delineates the large-scale structure of the universe at low to moderate overdensities, and provides gas from which galaxies form and evolve. Simulations of a cold-dark-matter- (CDM-) dominated universe predict that the IGM is distributed in a cosmic web of filaments and that galaxies should form along and at the intersections of these filaments. While observations of QSO absorption lines and the large-scale distribution of galaxies have confirmed the CDM paradigm, the cosmic web of IGM has never been confirmed by direct imaging. Here we report our observation of the Lyα blob 2 (LAB2) in SSA22 with the Cosmic Web Imager (CWI). This is an integral field spectrograph optimized for low surface brightness, extended emission. With 22 hr of total on- and off-source exposure, CWI has revealed that LAB2 has extended Lyα emission that is organized into azimuthal zones consistent with filaments. We perform numerous tests with simulations and the data to secure the robustness of this result, which relies on data with modest signal-to-noise ratios. We have developed a smoothing algorithm that permits visualization of data cube slices along image or spectral image planes. With both raw and smoothed data cubes we demonstrate that the filaments are kinematically associated with LAB2 and display double-peaked profiles characteristic of optically thick Lyα emission. The flux is 10-20 times brighter than expected for the average emission from the IGM but is consistent with boosted fluorescence from a buried QSO or gravitation cooling radiation. Using simple emission models, we infer a baryon mass in the filaments of at least 1-4 × 10 11 M ☉ , and the dark halo mass is at least 2 × 10 12 M ☉ . The spatial-kinematic morphology is more consistent with inflow from the cosmic web than outflow from LAB2, although an outflow feature maybe present at one azimuth. LAB2 and the surrounding gas have significant and

  4. Intergalactic medium emission observations with the cosmic web imager. II. Discovery of extended, kinematically linked emission around SSA22 Lyα BLOB 2

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Martin, D.; Chang, Daphne; Matuszewski, Matt; Morrissey, Patrick; Rahman, Shahin [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 278-17, Pasadena, CA 91125 (United States); Moore, Anna [Caltech Optical Observatories, Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 11-17, Pasadena, CA 91125 (United States); Steidel, Charles C.; Matsuda, Yuichi, E-mail: cmartin@srl.caltech.edu [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 249-17, Pasadena, CA 91125 (United States)

    2014-05-10

    The intergalactic medium (IGM) is the dominant reservoir of baryons, delineates the large-scale structure of the universe at low to moderate overdensities, and provides gas from which galaxies form and evolve. Simulations of a cold-dark-matter- (CDM-) dominated universe predict that the IGM is distributed in a cosmic web of filaments and that galaxies should form along and at the intersections of these filaments. While observations of QSO absorption lines and the large-scale distribution of galaxies have confirmed the CDM paradigm, the cosmic web of IGM has never been confirmed by direct imaging. Here we report our observation of the Lyα blob 2 (LAB2) in SSA22 with the Cosmic Web Imager (CWI). This is an integral field spectrograph optimized for low surface brightness, extended emission. With 22 hr of total on- and off-source exposure, CWI has revealed that LAB2 has extended Lyα emission that is organized into azimuthal zones consistent with filaments. We perform numerous tests with simulations and the data to secure the robustness of this result, which relies on data with modest signal-to-noise ratios. We have developed a smoothing algorithm that permits visualization of data cube slices along image or spectral image planes. With both raw and smoothed data cubes we demonstrate that the filaments are kinematically associated with LAB2 and display double-peaked profiles characteristic of optically thick Lyα emission. The flux is 10-20 times brighter than expected for the average emission from the IGM but is consistent with boosted fluorescence from a buried QSO or gravitation cooling radiation. Using simple emission models, we infer a baryon mass in the filaments of at least 1-4 × 10{sup 11} M {sub ☉}, and the dark halo mass is at least 2 × 10{sup 12} M {sub ☉}. The spatial-kinematic morphology is more consistent with inflow from the cosmic web than outflow from LAB2, although an outflow feature maybe present at one azimuth. LAB2 and the surrounding gas

  5. Suprathermal grains: on intergalactic magnetic fields

    International Nuclear Information System (INIS)

    Dasgupta, A.K.

    1979-01-01

    Charged dust grains of radii a approximately equal to 3 x 10 -6 to approximately 3 x 10 -5 cm may be driven out of the galaxy due to radiation pressure of starlight. Once clear of the main gas-dust layer, dust grains may then escape into intergalactic space. Such grains are virtually indestructible-being evaporated only during formation. The dust grains, once injected into the intergalactic medium, may acquire suprathermal energy, thus 'suprathermal grains' in collision with magnetized cloud by the Fermi process. In order to attain relativistic energy, suprathermal grains have to move in and out ('scattering') of the magnetic field of the medium. It is now well established that high energy cosmic rays are of the order 10 20 eV or more. It has been speculated that these high energy (> = 10 18 eV) cosmic ray particles are charged dust grains, of intergalactic origin. This is possible only if there exists a magnetic field in the intergalactic medium. (Auth.)

  6. Widespread rotationally hot hydronium ion in the galactic interstellar medium

    International Nuclear Information System (INIS)

    Lis, D. C.; Phillips, T. G.; Schilke, P.; Comito, C.; Higgins, R.

    2014-01-01

    We present new Herschel observations of the (6,6) and (9,9) inversion transitions of the hydronium ion toward Sagittarius B2(N) and W31C. Sensitive observations toward Sagittarius B2(N) show that the high, ∼500 K, rotational temperatures characterizing the population of the highly excited metastable H 3 O + rotational levels are present over a wide range of velocities corresponding to the Sagittarius B2 envelope, as well as the foreground gas clouds between the Sun and the source. Observations of the same lines toward W31C, a line of sight that does not intersect the Central Molecular Zone but instead traces quiescent gas in the Galactic disk, also imply a high rotational temperature of ∼380 K, well in excess of the kinetic temperature of the diffuse Galactic interstellar medium. While it is plausible that some fraction of the molecular gas may be heated to such high temperatures in the active environment of the Galactic center, characterized by high X-ray and cosmic-ray fluxes, shocks, and high degree of turbulence, this is unlikely in the largely quiescent environment of the Galactic disk clouds. We suggest instead that the highly excited states of the hydronium ion are populated mainly by exoergic chemical formation processes and the temperature describing the rotational level population does not represent the physical temperature of the medium. The same arguments may be applicable to other symmetric top rotors, such as ammonia. This offers a simple explanation of the long-standing puzzle of the presence of a pervasive, hot molecular gas component in the central region of the Milky Way. Moreover, our observations suggest that this is a universal process not limited to the active environments associated with galactic nuclei.

  7. Intergalactic Travel Bureau

    Science.gov (United States)

    Koski, Olivia; Rosin, Mark; Guerilla Science Team

    2014-03-01

    The Intergalactic Travel Bureau is an interactive theater outreach experience that engages the public in the incredible possibilities of space tourism. The Bureau is staffed by professional actors, who play the role of space travel agents, and professional astrophysicists, who play the role of resident scientists. Members of the public of all ages were invited to visit with bureau staff to plan the vacation of their dreams-to space. We describe the project's successful nine day run in New York in August 2013. Funded by the American Physical Society Public Outreach and Informing the Public Grants.

  8. Intergalactic dust and quasar distribution

    International Nuclear Information System (INIS)

    Soltan, A.

    1979-01-01

    Non-homogeneous intergalactic extinction may considerably affect the quasar distribution. Especially samples of quasars isolated on the basis of B-V colours are subject to this phenomenon. Apparent grouping and close pairs of quasars reported in the literature may be a result of intergalactic dust. Using surface distribution of faint blue objects selected by Hawkins and Reddish it is estimated that intergalactic extinction in B should reach approximately 1 mag out to the redshift of approximately 1. This is slightly larger than predicted by theory and comparable to the mean dust density derived from observations. (Author)

  9. The Intergalactic Medium as a Cosmological Tool

    Energy Technology Data Exchange (ETDEWEB)

    Viel, Matteo, E-mail: viel@oats.inaf.i [INAF - Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34131 Trieste (Italy); INFN/National Institute for Nuclear Physics, Via Valerio 2, I-34127 Trieste (Italy)

    2009-10-15

    In this talk I will review the capabilities of high-resolution (UVES and Keck) and low resolution (Sloan Digital Sky Survey - SDSS) quasar (QSO) Lyman-alpha absorption spectra as cosmological tools to probe the dark matter distribution in the high redshift universe. I will first summarize the results in terms of cosmological parameters and then discuss consistency with the parameters derived from other large scale structure observable such as the Cosmic Microwave Background (CMB) and weak lensing surveys. When the Lyman-alpha forest data are combined with CMB data and the weak lensing results of the z-COSMOS survey the constraints are: sigma{sub 8}=0.800+-0.023, n{sub s}=0.971+-0.011OMEGA{sub m}=0.247+-0.016 (1-sigma error bars), in perfect agreement with the CMB results of WMAP year five alone. I will briefly address the importance of Lyman-alpha for constraining the neutrino mass fraction. Furthermore, I will present constraints on the mass of warm dark matter (WDM) particles derived from the Lyman-alpha flux power spectrum of 55 high-resolution HIRES Lyman-alpha forest spectra at 2.0=1.2keV (2sigma) if the WDM consists of early decoupled thermal relics and m{sub WDM}>=5.6keV (2sigma) for sterile neutrinos. Adding the SDSS Lyman-alpha flux power spectrum at 2.2=4keV and m{sub WDM}>=28keV (2sigma) for thermal relics and sterile neutrinos. These results improve previous findings by a factor two and are currently the tightest constraints on the coldness of cold dark matter. Finally, I will discuss: i) recent results for a mixture of cold and warm dark matter and the constraints for sterile neutrinos as dark matter candidates in a physically motivated framework (resonant production); ii) perspectives of cross-correlating the Lyman-alpha forest with convergence maps of the cosmic microwave background; iii) fitting of the flux probability distribution function.

  10. THE DISTORTION OF THE COSMIC MICROWAVE BACKGROUND SPECTRUM DUE TO INTERGALACTIC DUST

    Energy Technology Data Exchange (ETDEWEB)

    Imara, Nia; Loeb, Abraham, E-mail: nimara@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-07-10

    Infrared emission from intergalactic dust might compromise the ability of future experiments to detect subtle spectral distortions in the Cosmic Microwave Background (CMB) from the early universe. We provide the first estimate of foreground contamination of the CMB signal due to diffuse dust emission in the intergalactic medium. We use models of the extragalactic background light to calculate the intensity of intergalactic dust emission and find that emission by intergalactic dust at z ≲ 0.5 exceeds the sensitivity of the planned Primordial Inflation Explorer to CMB spectral distortions by 1–3 orders of magnitude. In the frequency range ν = 150–2400 GHz, we place an upper limit of 0.06% on the contribution to the far-infrared background from intergalactic dust emission.

  11. Interstellar depletions and the filling factor of the hot interstellar medium

    International Nuclear Information System (INIS)

    Dwek, E.; Scalo, J.M.

    1979-01-01

    We have examined theoretically the evolution of refractory interstellar grain abundances and corresponding metal deplections in the solar neighborhood. The calculations include a self-consistent treatment of red-giant winds, planetary nebulae, protostellar nebulae, and suprnovae as sources of grains and star formation, and of encounters with supernova blast waves as sinks. We find that in the standard two-phase model for the interstellar medium (ISM), grain destruction is very efficient, and the abundance of refractory grains should be negligible, contrary to observations. In a cloudy three-phase ISM most grains reside in the warm and cold phases of the medium. Supernova blast waves expand predominantly in the hot and tenuous phase of the medium and are showed down as they propagate through a cloud. In order to obtain significant (approx.3) depletions of metals presubably locked up in refractory grain cores, the destruction of grains that reside in the clouds must be minimal. This requires that (a) the density contrast between the cloud and intercloud medium be sufficiently high, and (b) the filling factor of the hot and tenuous gas of the interstellar medium, which presumably gives rise to the O VI absorption and soft X-ray emission, be nearly unity. Much larger depletions (> or approx. =10) must reflect accretion of mantles within interstellar clouds

  12. The dynamics of the water droplet impacting onto hot solid surfaces at medium Weber numbers

    Science.gov (United States)

    Mitrakusuma, Windy H.; Kamal, Samsul; Indarto; Dyan Susila, M.; Hermawan; Deendarlianto

    2017-10-01

    The effects of the wettability of a droplet impacting onto a hot solid surface under medium Weber numbers were studied experimentally. The Weber numbers used in the present experiment were 52.1, 57.6, and 63.1. Three kinds of solid surfaces with different wettability were used. These were normal stainless steel (NSS), TiO2 coated NSS, and TiO2 coated NSS radiated with ultraviolet rays. The surface temperatures were varied from 60 to 200 °C. The image of side the view and 30° from horizontal were taken to explain the spreading and the interfacial behavior of a single droplet during impact the hot solid surfaces. It was found that under medium Weber numbers, the surface wettability plays an important role on the droplet spreading and evaporation time during the impact on the hot solid surfaces. The higher the wettability, the larger the droplet spreading on the hot surface, and the lower the evaporation time.

  13. Large scale features of the hot component of the interstellar medium

    International Nuclear Information System (INIS)

    Garmire, G.P.

    1983-01-01

    The interstellar medium contains identifiable hot plasma clouds occupying up to about 35% of the volume of the local galactic disc. The temperature of these clouds is not uniform but ranges from 10 5 up to 4 x 10 6 K. Besides the high temperature which places the emission spectrum in the soft X-ray band, the implied pressure of the hot plasma compared to the cooler gas reveals the importance of this component in determining the motions and evolution of the cooler gas in the disc, as well as providing a source of hot gas which may extend above the galactic disc to form a corona. The author presents data from the A-2 soft X-ray experiment on the HEAO-1 spacecraft concerning the large scale features of this gas. These features are interpreted in terms of the late phases of supernovae expansion, multiple supernovae and the possible creation of a hot halo surrounding the region of the galactic nucleus. (Auth.)

  14. Observing Interstellar and Intergalactic Magnetic Fields

    Science.gov (United States)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  15. Dissociation of 1P states in hot QCD Medium Using Quasi-Particle Model

    Science.gov (United States)

    Nilima, Indrani; Agotiya, Vineet Kumar

    2018-03-01

    We extend the analysis of a very recent work [1] to study the dissociation phenomenon of 1P states of the charmonium and bottomonium spectra (χc and χb) in a hot QCD medium using Quasi-Particle Model. This study employed a medium modified heavy quark potential which has quite different form in the sense that it has a lomg range Coulombic tail in addition to the Yukawa term even above the deconfinement temperature. Then we study the flavor dependence of their binding energies and explore the nature of dissociation temperatures by employing the Quasi-Particle debye mass for pure gluonic and full QCD case. Interestingly, the dissociation temperatures obtained by employing EoS1 and EoS2 with the Γ criterion, is closer to the upper bound of the dissociation temperatures which are obtained by the dissolution of a given quarkonia state by the mean thermal energy of the quasi-partons in the hot QCD/QGP medium.

  16. Hot gas in the interstellar medium, from supernova remnants to the diffuse coronal phase

    International Nuclear Information System (INIS)

    Ballet, Jean

    1988-01-01

    This research thesis addresses the study of the hot interstellar medium and of its main component, supernovae remnants. The author studied the hypothesis according to which ions observed in the interstellar medium are produced during the evaporation of cold clouds in the coronal phase. He shows that effects of ionisation delay are important and modify by a factor 10 the total quantity of ions predicted by the model. The study of the influence on ionisation of hot electrons penetrating cold layers revealed that this effect is rather weak. Then, based on the observation of the Kepler supernovae remnants by means of EXOSAT, and on the use of a hydrodynamics code coupled with a step-by-step calculation of ionisation of elements, the author studied the evolution of young supernovae remnants: propagation of the main shock in the interstellar medium, and of the backlash in the matter ejected by the star. The author also studied the X emission of an older supernovae remnant (the Cygnus Loop) by analysing three EXOSAT observations of this remnant. Results of Fabry-Perot spectrophotometry have been used to study optic lines [fr

  17. Study on the behavior of medium carbon vanadium microalloyed steel by hot compression test

    Energy Technology Data Exchange (ETDEWEB)

    Meysami, Majid [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, P.O. Box 11155-4653, Tehran (Iran, Islamic Republic of); Mousavi, Seyed Ali Asghar Akbari, E-mail: akbarimusavi@ut.ac.ir [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, P.O. Box 11155-4653, Tehran (Iran, Islamic Republic of)

    2011-03-25

    Research highlights: {yields} At low Z parameter, the multi peak dynamic recrystallization behavior was observed. {yields} At high Z, the stress-strain curves were exhibited with a single peak stress. {yields} The hyperbolic sine law was found to provide the best fit for calculation of Q. {yields} The average value of n was obtained as 4.687. {yields} The peak stress and of the studied material was obtained. - Abstract: This article investigates the hot working behavior of medium carbon vanadium microalloyed steel by hot compression tests over the temperature range of 850-1100 deg. C and strain rate range of 0.001-0.5 s{sup -1} to strain of 0.8. In this study, the general constitutive equations were used to determine the hot working constants. The peak stress ({sigma}{sub P}) and strain ({epsilon}{sub P}) for initiation of dynamic recrystallization (DRX) at different temperatures and strain rates were calculated. The power law, exponential and hyperbolic sinusoidal types of Zener-Hollomon equations were used to determine the hot deformation activation energy (Q). The results suggested that the highest correlation coefficient was achieved for the hyperbolic sine law for the studied material. The magnitude of hot deformation activation energy (Q) was obtained as 319.910 kJ/mol. The classical single peak DRX was observed in most of temperatures and strain rates. However, for temperature of 1100 deg. C and strain rates of 0.001 s{sup -1}, 0.01 s{sup -1}, and also for temperature of 950 deg. C and strain rate of 0.001 s{sup -1} the multiple peak dynamic recrystallization (MDRX) was observed, which showed that the 'recrystallization' was an observed strain rate behavior.

  18. Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies

    Science.gov (United States)

    Li, Jiang-Tao; Bregman, Joel N.; Wang, Q. Daniel; Crain, Robert A.; Anderson, Michael E.

    2018-03-01

    The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these “missing baryons” may be stored in a hot tenuous circumgalactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev–Zel’dovich (SZ) signals claimed that ∼(1–50)% of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%–20% of the virial radius). Here, we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of ≈200 kpc (or ≈130 kpc above the 1σ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for (8 ± 4)% of the baryonic mass expected for the halos. Including the stars, the baryon fraction is (27 ± 16)%, or (39 ± 20)% by assuming a flattened density profile at r ≳ 130 kpc. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the “missing baryons.”

  19. Study on the behavior of medium carbon vanadium microalloyed steel by hot compression test

    International Nuclear Information System (INIS)

    Meysami, Majid; Mousavi, Seyed Ali Asghar Akbari

    2011-01-01

    Research highlights: → At low Z parameter, the multi peak dynamic recrystallization behavior was observed. → At high Z, the stress-strain curves were exhibited with a single peak stress. → The hyperbolic sine law was found to provide the best fit for calculation of Q. → The average value of n was obtained as 4.687. → The peak stress and of the studied material was obtained. - Abstract: This article investigates the hot working behavior of medium carbon vanadium microalloyed steel by hot compression tests over the temperature range of 850-1100 deg. C and strain rate range of 0.001-0.5 s -1 to strain of 0.8. In this study, the general constitutive equations were used to determine the hot working constants. The peak stress (σ P ) and strain (ε P ) for initiation of dynamic recrystallization (DRX) at different temperatures and strain rates were calculated. The power law, exponential and hyperbolic sinusoidal types of Zener-Hollomon equations were used to determine the hot deformation activation energy (Q). The results suggested that the highest correlation coefficient was achieved for the hyperbolic sine law for the studied material. The magnitude of hot deformation activation energy (Q) was obtained as 319.910 kJ/mol. The classical single peak DRX was observed in most of temperatures and strain rates. However, for temperature of 1100 deg. C and strain rates of 0.001 s -1 , 0.01 s -1 , and also for temperature of 950 deg. C and strain rate of 0.001 s -1 the multiple peak dynamic recrystallization (MDRX) was observed, which showed that the 'recrystallization' was an observed strain rate behavior.

  20. Cosmic-ray self-confinement in the hot phase of the interstellar medium

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Kulsrud, R.M.

    1981-01-01

    Until a few years ago, it was believed that the interstellar medium was mostly filled by a neutral gas, of density approximately 0.1 cm -3 and a temperature of several thousand degrees. Kulsrud and Cesarsky (1971) showed that, in such a medium, cosmic rays of energy >approximately100 GeV are not confined at all, because the waves are damped very rapidly by the effect of the collisions between the neutral and the charged particles in the medium. The case of streaming in HII regions was considered by Wentzel (1974) and Skilling (1975), and did not lead either to a satisfactory solution. At present, the authors think that a substantial fraction of the interstellar medium is filled with a hot (approximately 10 6 K) and diffuse 'coronal gas' (10 -3 cm -3 ). The strength of the magnetic field in such regions is unknown; it is probably lower than the normal interstellar value, 2.5 μG, by a factor which may be in the range 3-30. (Auth.)

  1. Numerical simulation of springback of medium-thick plates in local hot rolling

    Directory of Open Access Journals (Sweden)

    XIE Dong

    2017-10-01

    Full Text Available [Objectives] In order to understand the factors of springback in the local hot rolling of medium-thick steel plates,[Methods] a 3D thermal-elastic-plastic analysis is conducted to investigate the factors affecting the amount of springback. Through a series of numerical analyses,the influence of deformation temperature,temperature field distribution,plate size and local loading are examined. [Results] The results show that when the deformation temperature exceeds a certain level at which material yield stress begins to decrease significantly,the springback will reduce markedly with the increase in temperature. Due to the distribution characteristics of the deformation area,the influence of temperature distribution on springback where the local deformation scale is larger is dominated by the three dimensions of temperature field distribution. Changes in the length and width of the plate have a certain influence on the springback,in which changes to the length of a plate where the local deformation scale is larger have a more obvious influence on springback. The springback of the plate decreases with the increase of local loading. [Conclusions] The results of this study can assist in the optimization of parameters in the automatic hot rolling of thick plates,while also having a basic guiding effect on the further study of springback in the local hot rolling of thick plates.

  2. POLARIZATION MEASUREMENTS OF HOT DUST STARS AND THE LOCAL INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J. P.; Cotton, D. V.; Bott, K.; Bailey, J.; Kedziora-Chudczer, L. [School of Physics, UNSW Australia, High Street, Kensington, NSW 2052 (Australia); Ertel, S. [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Kennedy, G. M.; Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Burgo, C. del [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); Absil, O. [Institut d’Astrophysique et de Géophysique, University of Liège, 19c allée du Six Août, B-4000 Liège (Belgium)

    2016-07-10

    Debris discs are typically revealed through the presence of excess emission at infrared wavelengths. Most discs exhibit excess at mid- and far-infrared wavelengths, analogous to the solar system’s Asteroid and Edgeworth-Kuiper belts. Recently, stars with strong (∼1%) excess at near-infrared wavelengths were identified through interferometric measurements. Using the HIgh Precision Polarimetric Instrument, we examined a sub-sample of these hot dust stars (and appropriate controls) at parts-per-million sensitivity in SDSS g ′ (green) and r ′ (red) filters for evidence of scattered light. No detection of strongly polarized emission from the hot dust stars is seen. We, therefore, rule out scattered light from a normal debris disk as the origin of this emission. A wavelength-dependent contribution from multiple dust components for hot dust stars is inferred from the dispersion (the difference in polarization angle in red and green) of southern stars. Contributions of 17 ppm (green) and 30 ppm (red) are calculated, with strict 3- σ upper limits of 76 and 68 ppm, respectively. This suggests weak hot dust excesses consistent with thermal emission, although we cannot rule out contrived scenarios, e.g., dust in a spherical shell or face-on discs. We also report on the nature of the local interstellar medium (ISM), obtained as a byproduct of the control measurements. Highlights include the first measurements of the polarimetric color of the local ISM and the discovery of a southern sky region with a polarization per distance thrice the previous maximum. The data suggest that λ {sub max}, the wavelength of maximum polarization, is bluer than typical.

  3. Hot granules medium pressure forming process of AA7075 conical parts

    Science.gov (United States)

    Dong, Guojiang; Zhao, Changcai; Peng, Yaxin; Li, Ying

    2015-05-01

    High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing flexible mould forming process, the heat resistance of the medium and pressurizing device makes the application of aluminum alloy plate thermoforming restricted. To solve this problem, the existing medium is replaced by the heat-resisting solid granules and the general pressure equipments are applied. Based on the pressure-transfer performance test of the solid granules medium, the feasibility that the assumption of the extended Drucker-Prager linear model can be used in the finite element analysis is proved. The constitutive equation, the yield function and the theoretical forming limit diagram(FLD) of AA7075 sheet are established. Through the finite element numerical simulation of hot granules medium pressure forming(HGMF) process, not only the influence laws of the process parameters, such as forming temperature, the blank-holder gap and the diameter of the slab, on sheet metal forming performance are discussed, but also the broken area of the forming process is analyzed and predicted, which are coincided with the technological test. The conical part whose half cone angle is 15° and relative height H/d 0 is 0.57, is formed in one process at 250°C. The HGMF process solves the problems of loading and seal in the existing flexible mould forming process and provides a novel technology for thermoforming of light alloy plate, such as magnesium alloy, aluminium alloy and titanium alloy.

  4. UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.

    Science.gov (United States)

    Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas

    2018-01-01

    The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.

  5. INTERGALACTIC 'PIPELINE' FUNNELS MATTER BETWEEN COLLIDING GALAXIES

    Science.gov (United States)

    2002-01-01

    This visible-light picture, taken by NASA's Hubble Space Telescope, reveals an intergalactic 'pipeline' of material flowing between two battered galaxies that bumped into each other about 100 million years ago. The pipeline [the dark string of matter] begins in NGC 1410 [the galaxy at left], crosses over 20,000 light-years of intergalactic space, and wraps around NGC 1409 [the companion galaxy at right] like a ribbon around a package. Although astronomers have taken many stunning pictures of galaxies slamming into each other, this image represents the clearest view of how some interacting galaxies dump material onto their companions. These results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. Astronomers used the Space Telescope Imaging Spectrograph to confirm that the pipeline is a continuous string of material linking both galaxies. Scientists believe that the tussle between these compact galaxies somehow created the pipeline, but they're not certain why NGC 1409 was the one to begin gravitationally siphoning material from its partner. And they don't know where the pipeline begins in NGC 1410. More perplexing to astronomers is that NGC 1409 is seemingly unaware that it is gobbling up a steady flow of material. A stream of matter funneling into the galaxy should have fueled a spate of star birth. But astronomers don't see it. They speculate that the gas flowing into NGC 1409 is too hot to gravitationally collapse and form stars. Astronomers also believe that the pipeline itself may contribute to the star-forming draught. The pipeline, a pencil-thin, 500 light-year-wide string of material, is moving a mere 0.02 solar masses of matter a year. Astronomers estimate that NGC 1409 has consumed only about a million solar masses of gas and dust, which is not enough material to spawn some of the star-forming regions seen in our Milky Way. The low amount means that there may not be enough material to ignite star birth

  6. Intergalactic extinction and the deceleration parameter

    International Nuclear Information System (INIS)

    Meinel, R.

    1981-01-01

    The deceleration parameter q 0 is calculated from the relation between apparent magnitudes m of the brightest galaxies in clusters and their redshifts z considering an intergalactic extinction. The calculation is valid for a Friedman universe, homogeneously filled with dust grains, assuming the extinction to be 0.5 mag at z = 1 and aΛ -1 -law of extinction (according to Oleak and Schmidt 1976). Using the m,z-values of Kristian, Sandage, and Westphal (1978) a formal value of q 0 approximately 2.1 is obtained instead of q 0 approximately 1.6 without consideration of intergalactic extinction. (author)

  7. Cosmic gamma-ray burst from intergalactic relativistic dust grains

    International Nuclear Information System (INIS)

    Dasgupta, A.K.

    1979-01-01

    Charged dust grains of radii a approximately 3 x 10 -6 approximately 3 x 10 -5 cm may acquire relativistic energy (>10 18 eV) in the intergalactic medium. In order to attain relativistic energy, dust grains have to move in and out ('scattering') of the magnetic field of the medium. A relativistic grain of radius a -5 cm with Lorentz factor γ approximately 10 3 approaching the Earth will break up either due to electrostatic charge or due to sputtering about 150 approximately 100 km, and may scatter solar photons via a fluorescence process. Dust grains may also melt into droplets in the solar vicinity and may contribute towards observed gamma-ray bursts. (Auth.)

  8. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    Energy Technology Data Exchange (ETDEWEB)

    Alves Batista, Rafael [Oxford Univ. (United Kingdom). Dept. of Physics and Astrophysics; Saveliev, Andrey [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Russian Academy of Sciences, Moscow (Russian Federation). Keldysh Inst. of Applied Mathematics; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vachaspati, Tanmay [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics

    2016-12-15

    We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called ''Large Sphere Observer'' method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q-statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S-statistics. Both methods provide a quantative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B>or similar 10{sup -15} G and magnetic coherence lengths L{sub c}>or similar 100 Mpc. We show that the S-statistics has a better performance than the Q-statistics when assessing magnetic helicity from the simulated halos.

  9. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    International Nuclear Information System (INIS)

    Alves Batista, Rafael; Saveliev, Andrey; Russian Academy of Sciences, Moscow; Sigl, Guenter; Vachaspati, Tanmay

    2016-12-01

    We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called ''Large Sphere Observer'' method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q-statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S-statistics. Both methods provide a quantative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B>or similar 10"-"1"5 G and magnetic coherence lengths L_c>or similar 100 Mpc. We show that the S-statistics has a better performance than the Q-statistics when assessing magnetic helicity from the simulated halos.

  10. Non-Metallic Inclusions and Hot-Working Behaviour of Advanced High-Strength Medium-Mn Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available The work addresses the production of medium-Mn steels with an increased Al content. The special attention is focused on the identification of non-metallic inclusions and their modification using rare earth elements. The conditions of the thermomechanical treatment using the metallurgical Gleeble simulator and the semi-industrial hot rolling line were designed for steels containing 3 and 5% Mn. Hot-working conditions and controlled cooling strategies with the isothermal holding of steel at 400°C were selected. The effect of Mn content on the hot-working behaviour and microstructure of steel was addressed. The force-energetic parameters of hot rolling were determined. The identification of structural constituents was performed using light microscopy and scanning electron microscopy methods. The addition of rare earth elements led to the total modification of non-metallic inclusions, i.e., they replaced Mn and Al forming complex oxysulphides. The Mn content in a range between 3 and 5% does not affect the inclusion type and the hot-working behaviour. In contrast, it was found that Mn has a significant effect on a microstructure.

  11. Heavy Scalar, Vector, and Axial-Vector Mesons in Hot and Dense Nuclear Medium

    Directory of Open Access Journals (Sweden)

    Arvind Kumar

    2014-01-01

    Full Text Available In this work we shall investigate the mass modifications of scalar mesons (D0; B0, vector mesons (D*; B*, and axial-vector mesons (D1; B1 at finite density and temperature of the nuclear medium. The above mesons are modified in the nuclear medium through the modification of quark and gluon condensates. We will find the medium modification of quark and gluon condensates within chiral SU(3 model through the medium modification of scalar-isoscalar fields σ and ζ at finite density and temperature. These medium modified quark and gluon condensates will further be used through QCD sum rules for the evaluation of in-medium properties of the above mentioned scalar, vector, and axial vector mesons. We will also discuss the effects of density and temperature of the nuclear medium on the scattering lengths of the above scalar, vector, and axial-vector mesons. The study of the medium modifications of the above mesons may be helpful for understanding their production rates in heavy-ion collision experiments. The results of present investigations of medium modifications of scalar, vector, and axial-vector mesons at finite density and temperature can be verified in the compressed baryonic matter (CBM experiment of FAIR facility at GSI, Germany.

  12. Simulation of the hot flow behaviour of a medium carbon microalloyed steel. Part 2. Dynamic recrystallization: onset and kinetics

    International Nuclear Information System (INIS)

    Cabrera, J.M.; Al Omar, A.; Prado, J.M.

    1997-01-01

    According to the part 1 of this work, in this second part the dynamic recrystallization of a commercial medium carbon microalloyed steel is characterized from the point of view of its onset and kinetics. For this purpose uniaxial hot compression tests were carried out over a range of five orders of magnitude in strain rate and 300 degree centigree of temperature. Experimental results are compared with those reported in the literature and the possible effect of dynamic precipitation is also analyzed. It is verified that the kinetics of dynamics recrystallization can balefully be described by the classical Avrami equation. (Author) 42 refs

  13. Structure of a Wear-Resistant Medium-Carbon Steel After Hot Deformation in Hammer Dies and Heat Treatment

    Science.gov (United States)

    Knyazyuk, T. V.; Petrov, S. N.; Ryabov, V. V.; Khlusova, E. I.

    2018-01-01

    The structure of model specimens and articles fabricated from medium-carbon high-strength steels is studied for developing modes of forming of working members of tilling machines with cutting edges thinned without the expensive operation of electromachining. The effect of the temperature of heating of billets on the grain size of austenite is determined. The kinetics of recrystallization is studied in the temperature, rate and strain ranges typical for hot forming. A quantitative crystallographic analysis of the microstructure is performed by the EBSD technique. The degrees of distortion of the crystal lattices of structural components and the mean sizes of martensite blocks are determined.

  14. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  15. Simulation of the hot flow behaviour of a medium carbon microalloyed steel

    International Nuclear Information System (INIS)

    Cabrera, J.M.; Al Omar, A.; Prado, J.M.

    1997-01-01

    According to the part 1 of this work the constitutive equations of the hot flow behaviour of a commercial microalloyed steel have been obtained. For this purpose, the uniaxial hot compression tests described in the part 2 were employed. Tests were carried out over a range of 5 orders of magnitude in strain rate and 300 degree centigree of temperature. Experimental results are compared with the theoretical model introduced in the first part of this study. It is concluded that deviations between experimental and theoretical curves are lower than 10%. It is shown that the classical hyperbolic sine constitutive equation described accurately the experimental behaviour provided that stresses are normalized by the Young's modulus and strain rates by the self-diffusion coefficient. An internal stress must also be introduced in the latter equation when the initial grain size is fine enough. (Author) 24 refs

  16. AN IN-DEPTH STUDY OF THE ABUNDANCE PATTERN IN THE HOT INTERSTELLAR MEDIUM IN NGC 4649

    International Nuclear Information System (INIS)

    Loewenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzaku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of O. We construct steady-state solutions to the chemical evolution equations that include infall in addition to stellar mass return and Type Ia supernova (SNIa) enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649, we infer that introduction of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern toward low α/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly introduced gas is heated as it is integrated into, and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an Appendix, we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  17. Simulating the chemical enrichment of the intergalactic medium

    NARCIS (Netherlands)

    Wiersma, Robert Peter Coalter

    2010-01-01

    Over the past few decades, it has become evident that the vast amount of space that exists between galaxies contains trace amounts of elements heavier than helium ('metals' in astronomical terms). This is surprising since the baryonic universe is expected to initially be composed of solely hydrogen,

  18. Quasar Absorption in the UV: Probing the Intergalactic Medium

    Science.gov (United States)

    Weinberg, David; Katz, Neal

    1998-01-01

    The purpose of this project is to model the low-redshift Lyman-alpha forest and exploration of the relation between Lyman-alpha absorbers and galaxies. This paper shows that the simulation models that are so successful at explaining properties of the high-redshift forest also account for the most important results of observational studies of the low-redshift forest, from HST (especially the Quasar Absorption Line Key Project) and ground-based follow-up.

  19. Determination of the Mean HI Absorption of the Intergalactic Medium ...

    Indian Academy of Sciences (India)

    4Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, .... New Technology Telescope (NTT) of the European Southern Observatory (ESO) or .... Wavelengths were air-vacuum corrected using the Edlén (1966) formula.

  20. Simulation of the hot flow behaviour of a medium carbon microalloyed steel. Part 1. Theoretical approach

    International Nuclear Information System (INIS)

    Cabrera, J.M.; Prado, J.M.

    1997-01-01

    The constitutive equations to model the hot flow behaviour of metallic materials in general, and of microalloyed steels in particular (see part 2 of this work) are established in this work. Special emphasis is done on the dynamic softening mechanisms, i.e., dynamic recovery and recrystallization phenomena. The equations developed are physic-based, not empirical, and the modelling allows an easy implementation in an analysis by numerical methods. The resulting equations are even able to predict the final grain size. (Author) 39 refs

  1. Dimming of supernovae by photon-pseudoscalar conversion and the intergalactic plasma

    International Nuclear Information System (INIS)

    Deffayet, Cedric; Harari, Diego; Uzan, Jean-Philippe; Zaldarriaga, Matias

    2002-01-01

    It has been suggested recently that the observed dimming of distant type Ia supernovae may be a consequence of mixing of the photons with very light axions. We point out that the effect of the plasma, in which the photons are propagating, must be taken into account. This effect changes the oscillation probability and renders the dimming frequency dependent, contrary to observations. One may hope to accommodate the data by averaging the oscillations over many different coherence domains. We estimate the effect of coherence loss, either due to the inhomogeneities of the magnetic field or of the intergalactic plasma. These estimates indicate that the achromaticity problem can be resolved only with very specific, and probably unrealistic, properties of the intergalactic medium

  2. Drag and diffusion of heavy quarks in a hot and anisotropic QCD medium

    International Nuclear Information System (INIS)

    Srivastava, P.K.; Patra, Binoy Krishna

    2017-01-01

    The propagation of heavy quarks (HQs) in a medium was quite often modeled by the Fokker-Planck (FP) equation. Since the transport coefficients, related to drag and diffusion processes, are the main ingredients in the FP equation, the evolution of HQs is thus effectively controlled by them. At the initial stage of the relativistic heavy-ion collisions, asymptotic weak-coupling causes the free-streaming motions of partons in the beam direction and the expansions in transverse directions are almost frozen, hence an anisotropy in the momentum space sets in. Since HQs are too produced in the same time, the study of the effect of momentum anisotropy on the drag and diffusion coefficients becomes highly desirable. In this article we have thus studied the drag and diffusion of HQs in the anisotropic medium and found that the presence of the anisotropy reduces both drag and diffusion coefficients. In addition, the anisotropy introduces an angular dependence to both the drag and diffusion coefficients, as a result both coefficients get more inflated when the partons are moving transversely to the direction of anisotropy than when moving parallel to the direction of anisotropy. (orig.)

  3. Drag and diffusion of heavy quarks in a hot and anisotropic QCD medium

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, P.K.; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)

    2017-06-15

    The propagation of heavy quarks (HQs) in a medium was quite often modeled by the Fokker-Planck (FP) equation. Since the transport coefficients, related to drag and diffusion processes, are the main ingredients in the FP equation, the evolution of HQs is thus effectively controlled by them. At the initial stage of the relativistic heavy-ion collisions, asymptotic weak-coupling causes the free-streaming motions of partons in the beam direction and the expansions in transverse directions are almost frozen, hence an anisotropy in the momentum space sets in. Since HQs are too produced in the same time, the study of the effect of momentum anisotropy on the drag and diffusion coefficients becomes highly desirable. In this article we have thus studied the drag and diffusion of HQs in the anisotropic medium and found that the presence of the anisotropy reduces both drag and diffusion coefficients. In addition, the anisotropy introduces an angular dependence to both the drag and diffusion coefficients, as a result both coefficients get more inflated when the partons are moving transversely to the direction of anisotropy than when moving parallel to the direction of anisotropy. (orig.)

  4. Two particle correlations with photon triggers to study hot QCD medium in ALICE at LHC

    CERN Document Server

    Yaxian, Mao; Shou, Daicui; Schutz, Yves

    2011-01-01

    With the advent of the Large Hadron Collider (LHC)at the end of 2009, the new accelerator at CERN collides protons and heavy-ions at unprecedented high energies. ALICE , one of the major experiment installed at LHC, is dedicated to the study of nuclear matter under extreme conditions of energy density with the opportunity of creating a partonic medium called the Quark- Gluon-Plasma (QGP). This new experimental facility opens new avenues for the understanding of fundamental properties of the strong interaction and its vacuum. To reach the objectives of this scientific program, it is required to select a set of appropriate probes carrying relevant information on the properties of the medium created in ultra-relativistic heavy-ion collisions. Based on the information delivered by all the observables and guided by modelization of the fundamental principles in action, a coherent picture will emerge to interpret the observed phenomena. In the first part of the present document I describe the context of the scientif...

  5. MEASURING THE SOURCES OF THE INTERGALACTIC IONIZING FLUX

    International Nuclear Information System (INIS)

    Cowie, L. L.; Barger, A. J.; Trouille, L.

    2009-01-01

    We use a wide-field (0.9 deg 2 ) X-ray sample with optical and Galaxy Evolution Explorer (GALEX) ultraviolet observations to measure the contribution of active galactic nuclei (AGNs) to the ionizing flux as a function of redshift. Our analysis shows that the AGN contribution to the metagalactic ionizing background peaks at around z = 2. The measured values of the ionizing background from the AGNs are lower than previous estimates and confirm that ionization from AGNs is insufficient to maintain the observed ionization of the intergalactic medium (IGM) at z > 3. We show that only X-ray sources with broad lines in their optical spectra have detectable ionizing flux and that the ionizing flux seen in an AGN is not correlated with its X-ray color. We also use the GALEX observations of the GOODS-N region to place a 2σ upper limit of 0.008 on the average ionization fraction f ν (700 A)/f ν (1500 A) for 626 UV selected galaxies in the redshift range z = 0.9-1.4. We then use this limit to estimate an upper bound to the galaxy contribution in the redshift range z = 0-5. If the z ∼ 1.15 ionization fraction is appropriate for higher-redshift galaxies, then contributions from the galaxy population are also too low to account for the IGM ionization at the highest redshifts (z > 4).

  6. Intergalactic stellar populations in intermediate redshift clusters

    Science.gov (United States)

    Melnick, J.; Giraud, E.; Toledo, I.; Selman, F.; Quintana, H.

    2012-11-01

    A substantial fraction of the total stellar mass in rich clusters of galaxies resides in a diffuse intergalactic component usually referred to as the intracluster light (ICL). Theoretical models indicate that these intergalactic stars originate mostly from the tidal interaction of the cluster galaxies during the assembly history of the cluster, and that a significant fraction of these stars could have formed in situ from the late infall of cold metal-poor gas clouds on to the cluster. However, these models also overpredict the fraction of stellar mass in the ICL by a substantial margin, something that is still not well understood. The models also make predictions about the age distribution of the ICL stars, which may provide additional observational constraints. Here we present population synthesis models for the ICL of an intermediate redshift (z = 0.29) X-ray cluster that we have extensively studied in previous papers. The advantage of observing intermediate redshift clusters rather than nearby ones is that the former fit the field of view of multi-object spectrographs in 8-m telescopes and therefore permit us to encompass most of the ICL with only a few well-placed slits. In this paper we show that by stacking spectra at different locations within the ICL it is possible to reach sufficiently high signal-to-noise ratios to fit population synthesis models and derive meaningful results. The models provide ages and metallicities for the dominant populations at several different locations within the ICL and the brightest cluster galaxies (BCG) halo, as well as measures of the kinematics of the stars as a function of distance from the BCG. We thus find that the ICL in our cluster is dominated by old metal-rich stars, at odds with what has been found in nearby clusters where the stars that dominate the ICL are old and metal poor. While we see weak evidence of a young, metal-poor component, if real, these young stars would amount to less than 1 per cent of the total ICL

  7. New photoionization models of intergalactic clouds

    Science.gov (United States)

    Donahue, Megan; Shull, J. M.

    1991-01-01

    New photoionization models of optically thin low-density intergalactic gas at constant pressure, photoionized by QSOs, are presented. All ion stages of H, He, C, N, O, Si, and Fe, plus H2 are modeled, and the column density ratios of clouds at specified values of the ionization parameter of n sub gamma/n sub H and cloud metallicity are predicted. If Ly-alpha clouds are much cooler than the previously assumed value, 30,000 K, the ionization parameter must be very low, even with the cooling contribution of a trace component of molecules. If the clouds cool below 6000 K, their final equilibrium must be below 3000 K, owing to the lack of a stable phase between 6000 and 3000 K. If it is assumed that the clouds are being irradiated by an EUV power-law continuum typical of WSOs, with J0 = 10 exp -21 ergs/s sq cm Hz, typical cloud thicknesses along the line of sight that are much smaller than would be expected from shocks, thermal instabilities, or gravitational collapse are derived.

  8. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Li, Xiaodong; Chang, Ying; Wang, Cunyu; Hu, Ping; Dong, Han

    2017-01-01

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M s temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  9. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaodong [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Chang, Ying, E-mail: yingc@dlut.edu.cn [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Wang, Cunyu [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China); Hu, Ping [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Dong, Han [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China)

    2017-01-02

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M{sub s} temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  10. A SEARCH FOR DUST EMISSION IN THE LEO INTERGALACTIC CLOUD

    International Nuclear Information System (INIS)

    Bot, Caroline; Helou, George; Puget, Jeremie; Latter, William B.; Schneider, Stephen; Terzian, Yervant

    2009-01-01

    We present a search for infrared dust emission associated with the Leo cloud, a large intergalactic cloud in the M96 group. Mid-infrared and far-infrared images were obtained with the InfraRed Array Camera and the Multiband Imaging Photometer for Spitzer on the Spitzer Space Telescope. Our analysis of these maps is done at each wavelength relative to the H I spatial distribution. We observe a probable detection at 8 μm and a marginal detection at 24 μm associated with the highest H I column densities in the cloud. At 70 and 160 μm, upper limits on the dust emission are deduced. The level of the detection is low so that the possibility of a fortuitous cirrus clump or of an overdensity of extragalactic sources along the line of sight cannot be excluded. If this detection is confirmed, the quantities of dust inferred imply a dust-to-gas ratio in the intergalactic cloud up to a few times solar but no less than 1/20 solar. A confirmed detection would therefore exclude the possibility that the intergalactic cloud has a primordial origin. Instead, this large intergalactic cloud could therefore have been formed through interactions between galaxies in the group.

  11. Warm-hot gas in X-ray bright galaxy clusters and the H I-deficient circumgalactic medium in dense environments

    Science.gov (United States)

    Burchett, Joseph N.; Tripp, Todd M.; Wang, Q. Daniel; Willmer, Christopher N. A.; Bowen, David V.; Jenkins, Edward B.

    2018-04-01

    We analyse the intracluster medium (ICM) and circumgalactic medium (CGM) in seven X-ray-detected galaxy clusters using spectra of background quasi-stellar objects (QSOs) (HST-COS/STIS), optical spectroscopy of the cluster galaxies (MMT/Hectospec and SDSS), and X-ray imaging/spectroscopy (XMM-Newton and Chandra). First, we report a very low covering fraction of H I absorption in the CGM of these cluster galaxies, f_c = 25^{+25}_{-15} {per cent}, to stringent detection limits (N(H I) detect O VI in any cluster, and we only detect BLA features in the QSO spectrum probing one cluster. We estimate that the total column density of warm-hot gas along this line of sight totals to ˜ 3 per cent of that contained in the hot T > 107 K X-ray emitting phase. Residing at high relative velocities, these features may trace pre-shocked material outside the cluster. Comparing gaseous galaxy haloes from the low-density `field' to galaxy groups and high-density clusters, we find that the CGM is progressively depleted of H I with increasing environmental density, and the CGM is most severely transformed in galaxy clusters. This CGM transformation may play a key role in environmental galaxy quenching.

  12. Radioactive Mapping Contaminant of Alpha on The Air in Space of Repair of Hot Cell and Medium Radioactivity Laboratory in Radio metallurgy Installation

    International Nuclear Information System (INIS)

    Yusuf-Nampira; Endang-Sukesi; S-Wahyuningsih; R-Budi-Santoso

    2007-01-01

    Hot cell and space of acid laboratory medium activity in Radio metallurgy Installation are used for the examination preparation of fuel nuclear post irradiation. The sample examined is dangerous radioactive material representing which can disseminate passing air stream. The dangerous material spreading can be pursued by arranging air stream from laboratory space to examination space. To know the performance the air stream arrangement is hence conducted by radioactive mapping contaminant of alpha in laboratory / space of activity place, for example, medium activity laboratory and repair space. This mapping radioactivity contaminant is executed with the measurement level of the radioactivity from sample air taken at various height with the distance of 1 m, various distance and from potential source as contaminant spreading access. The mapping result indicate that a little spreading of radioactive material happened from acid cupboard locker to laboratory activity up to distance of 3 m from acid cupboard locker and spreading of radioactive contaminant from goods access door of the hot cell 104 to repair space reach the distance of 2 m from goods door access. Level of the radioactive contamination in the space was far under maximum limitation allowed (20 Bq / m 3 ). (author)

  13. The Interaction of Hot and Cold Gas in the Disk and Halo of Galaxies

    Science.gov (United States)

    Slavin, Jonathan; Salamon, Michael (Technical Monitor)

    2004-01-01

    Most of the thermal energy in the Galaxy and perhaps most of the baryons in the Universe are found in hot (log T approximately 5.5 - 7) gas. Hot gas is detected in the local interstellar medium, in supernova remnants (SNR), the Galactic halo, galaxy clusters and the intergalactic medium (IGM). In our own Galaxy, hot gas exists in large superbubbles up to several hundred pc in diameter that locally dominate the interstellar medium (ISM) and determine its thermal and dynamic evolution. While X-ray observations using ROSAT, Chandra and XMM have allowed us to make dramatic progress in mapping out the morphology of the hot gas and in understanding some of its spectral characteristics, there remain fundamental questions that are unanswered. Chief among these questions is the way that hot gas interacts with cooler phase gas and the effects these interactions have on hot gas energetics. The theoretical investigations we proposed in this grant aim to explore these interactions and to develop observational diagnostics that will allow us to gain much improved information on the evolution of hot gas in the disk and halo of galaxies. The first of the series of investigations that we proposed was a thorough exploration of turbulent mixing layers and cloud evaporation. We proposed to employ a multi-dimensional hydrodynamical code that includes non-equilibrium ionization (NEI), radiative cooling and thermal conduction. These models are to be applied to high velocity clouds in our galactic halo that are seen to have O VI by FUSE (Sembach et ai. 2000) and other clouds for which sufficient constraining observations exist.

  14. Phonon-mediated distributed transition-edge-sensor X-ray detectors for surveys of galaxy clusters and the warm-hot interstellar medium

    International Nuclear Information System (INIS)

    Leman, Steven W.; Brink, Paul L.; Cabrera, Blas; Castle, Joseph P.; Chakraborty, Sudeepto; Deiker, Steve; Kahn, Steve; Martinez-Galarce, Dennis S.; Stern, Robert A.; Tomada, Astrid

    2006-01-01

    We are developing a novel phonon-mediated distributed-TES X-ray detector in which X-rays are absorbed in a large germanium or silicon crystal, and the energy is read out by four distributed TESs. This design takes advantage of existing TES technology while overcoming the difficulties of designing spatially large arrays. The sum of the four TES signals will yield energy resolution of E/δE∼1000 and the partitioning of energy between the four will yield position resolution of X/δX and Y/δY∼100. These macropixels, with advances in multiplexing, could be close-packed into 30x30 arrays equivalent to imaging instruments of 10 megapixels or more. We report on our progress to date and discuss its application to galaxy cluster searches and studies of the Warm-Hot Interstellar Medium

  15. Atomic Data Revisions for Transitions Relevant to Observations of Interstellar, Circumgalactic, and Intergalactic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cashman, Frances H.; Kulkarni, Varsha P. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208 (United States); Kisielius, Romas; Bogdanovich, Pavel [Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio al. 3, LT-10222 Vilnius (Lithuania); Ferland, Gary J. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

    2017-05-01

    Measurements of element abundances in galaxies from astrophysical spectroscopy depend sensitively on the atomic data used. With the goal of making the latest atomic data accessible to the community, we present a compilation of selected atomic data for resonant absorption lines at wavelengths longward of 911.753 Å (the H i Lyman limit), for key heavy elements (heavier than atomic number 5) of astrophysical interest. In particular, we focus on the transitions of those ions that have been observed in the Milky Way interstellar medium (ISM), the circumgalactic medium (CGM) of the Milky Way and/or other galaxies, and the intergalactic medium (IGM). We provide wavelengths, oscillator strengths, associated accuracy grades, and references to the oscillator strength determinations. We also attempt to compare and assess the recent oscillator strength determinations. For about 22% of the lines that have updated oscillator strength values, the differences between the former values and the updated ones are ≳0.1 dex. Our compilation will be a useful resource for absorption line studies of the ISM, as well as studies of the CGM and IGM traced by sight lines to quasars and gamma-ray bursts. Studies (including those enabled by future generations of extremely large telescopes) of absorption by galaxies against the light of background galaxies will also benefit from our compilation.

  16. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    International Nuclear Information System (INIS)

    Xu, Yun-bo; Hu, Zhi-ping; Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing; Ma, De-gang; Misra, R.D.K.

    2017-01-01

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  17. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yun-bo [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Hu, Zhi-ping, E-mail: huzhiping900401@126.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Ma, De-gang [Tangshan Iron and Steel Company, Tangshan 063000, People' s Republic China (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States)

    2017-03-14

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  18. An optical search for the intergalactic HI cloud in Leo

    International Nuclear Information System (INIS)

    Kibblewhite, E.J.; Cawson, M.G.M.; Disney, M.J.; Phillipps, S.

    1985-01-01

    An optical search has been made for the large intergalactic HI cloud discovered from Arecibo by previous authors. A very deep red UKSTU plate of the area has been scanned by the APM machine and deep CCD frames of a small area near a peak in the HI emission have been acquired. No extended emission is found at the limiting surface brightness of the photographic material and no excess of stars above that expected from the Galaxy is found in the CCD data. However, due to the extreme size of the HI cloud, the upper limit on the total luminosity is that of a dwarf galaxy, Msub(B) >approx.-18. As its hydrogen and total masses would not be unusual for a galaxy, a highly extended very low surface brightness galaxy can not be ruled out, at present. (author)

  19. The cosmic transparency measured with Type Ia supernovae: implications for intergalactic dust

    Science.gov (United States)

    Goobar, Ariel; Dhawan, Suhail; Scolnic, Daniel

    2018-06-01

    Observations of high-redshift Type Ia supernovae (SNe Ia) are used to study the cosmic transparency at optical wavelengths. Assuming a flat Λ cold dark matter (ΛCDM) cosmological model based on baryon acoustic oscillations and cosmic microwave background measurements, redshift dependent deviations of SN Ia distances are used to constrain mechanisms that would dim light. The analysis is based on the most recent Pantheon SN compilation, for which there is a 0.03 ± 0.01 {({stat})} mag discrepancy in the distant supernova distance moduli relative to the ΛCDM model anchored by supernovae at z < 0.05. While there are known systematic uncertainties that combined could explain the observed offset, here we entertain the possibility that the discrepancy may instead be explained by scattering of supernova light in the intergalactic medium (IGM). We focus on two effects: Compton scattering by free electrons and extinction by dust in the IGM. We find that if the discrepancy is entirely due to dimming by dust, the measurements can be modelled with a cosmic dust density Ω _IGM^dust = 8 × 10^{-5} (1+z)^{-1}, corresponding to an average attenuation of 2 × 10-5 mag Mpc-1 in V band. Forthcoming SN Ia studies may provide a definitive measurement of the IGM dust properties, while still providing an unbiased estimate of cosmological parameters by introducing additional parameters in the global fits to the observations.

  20. A new measurement of the intergalactic temperature at z ˜ 2.55-2.95

    Science.gov (United States)

    Rorai, Alberto; Carswell, Robert F.; Haehnelt, Martin G.; Becker, George D.; Bolton, James S.; Murphy, Michael T.

    2018-03-01

    We present two measurements of the temperature-density relationship (TDR) of the intergalactic medium (IGM) in the redshift range 2.55 law parameters T0 and γ describing the TDR. This approach yields T0/103 K = 15.6 ± 4.4 and γ = 1.45 ± 0.17 independent of the assumed pressure smoothing of the small-scale density field. In order to explore the information contained in the overall b-N_{H I} distribution rather than only the lower cut-off, we obtain a second measurement based on a similar Bayesian analysis of the median Doppler parameter for separate column-density ranges of the absorbers. In this case, we obtain T0/103 K = 14.6 ± 3.7 and γ = 1.37 ± 0.17 in good agreement with the first measurement. Our Bayesian analysis reveals strong anticorrelations between the inferred T0 and γ for both methods as well as an anticorrelation of the inferred T0 and the pressure smoothing length for the second method, suggesting that the measurement accuracy can in the latter case be substantially increased if independent constraints on the smoothing are obtained. Our results are in good agreement with other recent measurements of the thermal state of the IGM probing similar (over-)density ranges.

  1. Are there really intergalactic hydrogen clouds in the Sculptor group

    International Nuclear Information System (INIS)

    Haynes, M.P.; Roberts, M.S.

    1979-01-01

    High-sensitivity 21 cm observations of the region of the Sculptor group of galaxies reveal at least 30 H I clouds distributed over only the southern sector of the group. These new data add two striking complications to the picture of the clouds as H I companions of Sculptor galaxies: first, a much wider spatial distribution of clouds in marked contrast with the clustering of clouds around NGC 55 and NGC 300 previously reported by Mathewson, Cleary, and Murray; and second, a cloud velocity distribution which does not match that of the galaxies.We cannot reconcile the spatial and velocity distributions of the H I clouds with those of the group or of any subgroup. We conclude that there are no intergalactic H I clouds of > or =10 8 M/sub sun/ and galactic dimensions within the Sculptor group. Of a number of explanations alternative to group membership, we favor the identification of the clouds as a component of the Magellanic Stream which is seen in projection. Observations reported here of other nearby groups, combined with those of Sculptor, rule out the existence of a significant population of discrete H I clouds having the above properties

  2. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  3. The Temperature-Density Relation in the Intergalactic Medium at Redshift langzrang = 2.4

    Science.gov (United States)

    Rudie, Gwen C.; Steidel, Charles C.; Pettini, Max

    2012-10-01

    We present new measurements of the temperature-density (T-ρ) relation for neutral hydrogen in the 2.0 law index of (Γ - 1) = 0.15 ± 0.02. Using analytic arguments, these measurements imply an "equation of state" for the IGM at langzrang = 2.4 of the form T=T_0 \\left(\\rho /\\bar{\\rho }\\right)^{\\gamma -1} with a temperature at mean density of T 0 = [1.94 ± 0.05] × 104 K and a power-law index (γ - 1) = 0.46 ± 0.05. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Multifrequency survey of the intergalactic cloud in the M96 group

    International Nuclear Information System (INIS)

    Schneider, S.E.; Skrutskie, M.F.; Hacking, P.B.; Young, J.S.; Dickman, R.L.

    1989-01-01

    The intergalactic cloud of neutral hydrogen in the M96 group are examined for signs of emission over a wide range of frequencies, from radio waves to X rays. Past or present stellar activity in the gas might have been expected to produce detectable visual infrared, CO, OH, or radio recombination-line emission. None was detected. The limits are used to study physical conditions in the intergalactic gas. In particular, B and V band limits on starlight and IRAS limits on the presence of dust strongly constrain the presence of stars or stellar by-products. However, given the uncertainties about physical conditions in the intergalactic environment, it is difficult to rule out entirely the presence of stellar-processed materials. Results of neutral hydrogen mapping from a large-scale survey of the intergalactic cloud and surrounding region are also presented. These observations confirm that the gas is confined to a large ringlike structure. The simplest interpretation remains that the intergalactic gas in Leo is primordial. 36 references

  5. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.

    Science.gov (United States)

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-12-03

    Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.

  6. Formation and early evolution of galaxies: Constraints on the properties of hot protogalaxies

    International Nuclear Information System (INIS)

    Berman, V.G.; Suchkov, A.A.

    1989-01-01

    In the framework of the hot model of galaxy formation, the following results are obtained: (1) to explain the mass and chemical composition of the intergalactic medium, the mass of the stellar component, and the mass of the x-ray coronas of giant elliptical and spiral galaxies (M s ∼ 10 11 Mass Sun ) the protogalaxies must have been heated to temperatures approximately five times greater than the virial temperature; (2) the x-ray luminosities of the coronas of models of spiral galaxies are less than for the analogous models of elliptical galaxies. Moreover, for unit potential of hidden mass the stellar mass of spiral galaxies is an order of magnitude greater; (3) if a hot protogalaxy is initially compact (R ∼ 20 kpc), then the stellar component is formed rapidly, during a time t ∼ 1 x 10 9 yr; but if the protogalaxy is diffuse (R ∼ 100 kpc), then t ∼ (5-7) x 10 9 yr; (4) coronas are not formed in models of heat-conducting protogalaxies; (5) hidden mass cannot be formed by low-mass stars formed in cooling flows - such flows do not arise if hidden mass is not present from the beginning. 23 refs., 4 figs., 2 tabs

  7. Counts of galaxies in the region of the 'intergalactic dark cloud' near iota Microscopii

    International Nuclear Information System (INIS)

    Meinunger, I.

    1976-01-01

    The distribution of the total numbers of galaxies down to about 18th magnitude on 84 squares is largely in agreement with the structure of the hypothetic intergalactic absorbing cloud near iota Microscopii found by C. Hoffmeister. The counts of galaxies were performed on the Whiteoak prints covering that region. (author)

  8. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    Science.gov (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  9. Theoretical and experimental drying of a cylindrical sample by applying hot air and infrared radiation in an inert medium fluidized bed

    Directory of Open Access Journals (Sweden)

    B. Honarvar

    2012-06-01

    Full Text Available Drying of a cylindrical sample in a fluidized bed dryer containing inert particles was studied. For this purpose, a pilot-scaled fluidized bed dryer was constructed in which two different heat sources, hot air and infrared radiation were applied, and pieces of carrot were chosen as test samples. The heat transfer coefficient for cylindrical objects in a fluidized bed was also measured. The heat absorption coefficient for carrot was studied. The absorption coefficient can be computed by dividing the absorbed heat by the carrot to the heat absorbed for the water and black ink. In this regard, absorbed heat values by the carrot, water and black ink were used A mathematical model was proposed based on the mass and heat transfer phenomena within the drying sample. The results obtained by the proposed model were in favorable agreement with the experimental data.

  10. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  11. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  12. Application of processing maps in the optimization of the parameters of a hot working process. Part 2. Processing maps of a microalloyed medium carbon steel

    International Nuclear Information System (INIS)

    Al Omar, A.; Cabrera, J.M.; Prado, J.M.

    1997-01-01

    Part 1 of this work presents a revision of the general characteristics of the so called dynamic materials model on which processing maps are developed. In this part following the methodology described in part 1, processing maps of a microalloyed medium carbon steel are developed over a temperature range varying from 900 to 1.150 degree centigree at different true strain rates ranging from 10''-4 to 10s''-1. The analysis of these maps revealed a domain of dynamic recrystallization centred at about 1.1.50 degree centigree and strain rate 10 s''-1 and a domain of dynamic recovery centred at 900 degree centigree and 0,1 s''-1. (Author) 20 refs

  13. Mid-Infrared Observations of Possible Intergalactic Star Forming Regions in the Leo Ring

    Science.gov (United States)

    Giroux, Mark; Smith, B.; Struck, C.

    2011-05-01

    Within the Leo group of galaxies lies a gigantic loop of intergalactic gas known as the Leo Ring. Not clearly associated with any particular galaxy, its origin remains uncertain. It may be a primordial intergalactic cloud alternatively, it may be a collision ring, or have a tidal origin. Combining archival Spitzer images of this structure with published UV and optical data, we investigate the mid-infrared properties of possible knots of star formation in the ring. These sources are very faint in the mid-infrared compared to star forming regions in the tidal features of interacting galaxies. This suggests they are either deficient in dust, or they may not be associated with the ring.

  14. Supergalactic studies. II. Supergalactic distribution of the nearest intergalactic gas clouds

    International Nuclear Information System (INIS)

    de Vaucouleurs, G.; Corwin, H.G. Jr.

    1975-01-01

    The report by Mathewson, Cleary, and Murray that the nearby ''high velocity'' H i clouds, and in particular the Magellanic Stream, are strongly concentrated toward the supergalactic plane is confirmed. The observed concentration within +-30degree from the supergalactic equator of 21 out of 25 clouds in the north galactic hemisphere and 27 out of 31 clouds in the south galactic hemisphere could occur by chance in less than 7 and 3 percent of random samples from a population having a statistically isotropic Poisson distribution. Since the two galactic hemispheres are substantially independent samples, the combined probability of the chance hypothesis is P -3 . It is found that actually the high-velocity clouds are not so much concentrated toward the supergalactic equator (SGE) as toward the equator of the ''Local Cloud'' of galaxies inclined 14degree to the main supergalactic plane. Both galaxies and H i clouds define the same small circle of maximum concentration and exhibit the same standard deviation (15degree) from it, demonstrating closely related space distributions. It is concluded that, with the possible exception of a few of the largest and probably nearest cloud complexes (MS, AC, C), most of the high-velocity clouds are truly intergalactic and associated with the Local Group and nearer groups of galaxies. Half the population in a total sample of 115 nearby galaxies and intergalactic gas coulds is within 11degree from the Local equator, indicating a half-thickness of approx.0.75 Mpc for the Local Cloud. Intergalactic gas clouds have already been identified near 10 of the nearest galaxies (including our Galaxy and the Magellanic Clouds), most within approx.3 Mpc. The estimated space density of intergalactic gas clouds is Napprox. =20--25 Mpc -3 , in approximate agreement with the densities required by the collision theory of ring galaxies

  15. How Does the Medium Affect the Message?

    Science.gov (United States)

    Dommermuth, William P.

    1974-01-01

    This experimental comparison of the advertising effectiveness of television, movies, radio, and print finds no support for McLuhan's idea that television is a "cool" medium and movies are a "hot" medium. (RB)

  16. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. I. IMPLICATIONS OF PLASMA INSTABILITIES FOR THE INTERGALACTIC MAGNETIC FIELD AND EXTRAGALACTIC GAMMA-RAY BACKGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E; Chang, Philip; Pfrommer, Christoph [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2012-06-10

    Inverse Compton cascades (ICCs) initiated by energetic gamma rays (E {approx}> 100 GeV) enhance the GeV emission from bright, extragalactic TeV sources. The absence of this emission from bright TeV blazars has been used to constrain the intergalactic magnetic field (IGMF), and the stringent limits placed on the unresolved extragalactic gamma-ray background (EGRB) by Fermi have been used to argue against a large number of such objects at high redshifts. However, these are predicated on the assumption that inverse Compton scattering is the primary energy-loss mechanism for the ultrarelativistic pairs produced by the annihilation of the energetic gamma rays on extragalactic background light photons. Here, we show that for sufficiently bright TeV sources (isotropic-equivalent luminosities {approx}> 10{sup 42} erg s{sup -1}) plasma beam instabilities, specifically the 'oblique' instability, present a plausible mechanism by which the energy of these pairs can be dissipated locally, heating the intergalactic medium. Since these instabilities typically grow on timescales short in comparison to the inverse Compton cooling rate, they necessarily suppress the ICCs. As a consequence, this places a severe constraint on efforts to limit the IGMF from the lack of a discernible GeV bump in TeV sources. Similarly, it considerably weakens the Fermi limits on the evolution of blazar populations. Specifically, we construct a TeV-blazar luminosity function from those objects currently observed and find that it is very well described by the quasar luminosity function at z {approx} 0.1, shifted to lower luminosities and number densities, suggesting that both classes of sources are regulated by similar processes. Extending this relationship to higher redshifts, we show that the magnitude and shape of the EGRB above {approx}10 GeV are naturally reproduced with this particular example of a rapidly evolving TeV-blazar luminosity function.

  17. Effects on the spectrum of the cosmic microwave background due to intergalactic dust

    International Nuclear Information System (INIS)

    Kurtz, R.C.

    1981-01-01

    A model for intergalactic dust composed of graphite grains is presented. The model is examined in the context of the Rayleigh approximation for results due to long-wavelength scattering and absorption by the grains. The temperature of the scattering grains as a function of redshift is found, based on reasonable assumptions of the density of optical wavelength radiation in the universe. Mechanisms for aligning the grains on a scale large enough to produce polarization in the microwave region are discussed. The results are used to predict features that may be present in the observed cosmic microwave background radiation spectrum

  18. Intergalactic Leadership: Practical Tips for Leading Where No One Has Gone Before

    Directory of Open Access Journals (Sweden)

    Peg A Lonnquist

    2015-07-01

    Full Text Available Most of the transformational, inclusive, partnership leadership literature, while brilliant and inspirational, does not provide day-to-day ideas for practitioners. Drawing on several key leadership theories and theorists (Kouzes and Posner’s five core behaviors of successful leaders, the Athena Model based on research on women leaders, Centered Leadership from the McKinsey Project, the Research-Productivity and Engagement Model, Burn’s and Bass’ Transformational Leadership Theory, Riane Eisler’s partnership leadership, multicultural leadership theorist Juana Bordas, and feminist leadership theorists, the author describes how she has translated and implemented day-to-day leadership practices which she calls Intergalactic Leadership.

  19. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  20. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  1. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  2. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    Energy Technology Data Exchange (ETDEWEB)

    Duplessis, Francis [Physics Department, Arizona State University, Tempe, AZ 85287 (United States); Vachaspati, Tanmay, E-mail: fdupless@asu.edu, E-mail: tvachasp@asu.edu [Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742 (United States)

    2017-05-01

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.

  3. The Magnetic Field in Galaxies, Galaxy Clusters, and the InterGalactic Space

    CERN Document Server

    Dar, A; Dar, Arnon

    2005-01-01

    Magnetic fields of debated origin appear to permeate the Universe on all large scales. There is mounting evidence that supernovae produce not only roughly spherical ejecta and winds, but also highly relativistic jets of ordinary matter. These jets, which travel long distances, slow down by accelerating the matter encountered on their path to cosmic-ray energies. We show that, if the turbulent motions induced by the winds and the cosmic rays generate magnetic fields in rough energy equipartition, the predicted magnetic-field strengths coincide with the ones observed not only in galaxies (5 $\\mu$G in the Milky Way) but also in galaxy clusters (6 $\\mu$G in Coma). The prediction for the intergalactic (or inter-cluster) field is 50 nG.

  4. Power-law to Power-law Mapping of Blazar Spectra from Intergalactic Absorption

    International Nuclear Information System (INIS)

    Stecker, F W; Scully, S T

    2007-01-01

    We have derived a useful analytic approximation for determining the effect of intergalactic absorption on the γ-ray spectra of TeV blazars the energy range 0.2 TeV γ γ ) is approximately logarithmic. The effect of this energy dependence is to steepen intrinsic source spectra such that a source with an approximate power-law spectral index Γ s is converted to one with an observed spectral index Γ o ≅ Γ s + ΔΓ(z) where ΔΓ(z) is a linear function of z in the redshift range 0.05-0.4. We apply this approximation to the spectra of 7 TeV blazars

  5. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  6. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  7. Properties of the Intergalactic Magnetic Field Constrained by Gamma-Ray Observations of Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Veres, P.; Dermer, C. D.; Dhuga, K. S. [Department of Physics, George Washington University, Washington, DC 20052 (United States)

    2017-09-20

    The magnetic field in intergalactic space gives important information about magnetogenesis in the early universe. The properties of this field can be probed by searching for radiation of secondary e {sup +} e {sup −} pairs created by TeV photons that produce GeV range radiation by Compton-scattering cosmic microwave background photons. The arrival times of the GeV “echo” photons depend strongly on the magnetic field strength and coherence length. A Monte Carlo code that accurately treats pair creation is developed to simulate the spectrum and time-dependence of the echo radiation. The extrapolation of the spectrum of powerful gamma-ray bursts (GRBs) like GRB 130427A to TeV energies is used to demonstrate how the intergalactic magnetic field can be constrained if it falls in the 10{sup −21}–10{sup −17} G range for a 1 Mpc coherence length.

  8. Discovery of intergalactic radio emission in the Coma-A1367 supercluster

    International Nuclear Information System (INIS)

    Kim, K.T.; Kronberg, P.P.; Venturi, T.

    1989-01-01

    The Coma cluster is a rich cluster of galaxies nested in an even larger super cluster of galaxies. The plane of the supercluster seems to be defined by the Coma cluster itself and another galaxy cluster, Abell 1367, which lies ∼ 40 Mpc farther west. The largest structures known are the giant voids and superclusters which are as large as 70h 75 -1 Mpc (refs 3-5). The Coma cluster of galaxies seems to be located on the rim of a giant void in the three-dimensional distribution of galaxies. Here we describe the detection of faint, supercluster-scale radio emission at 326 MHz that extends between the Coma cluster of galaxies and the Abell 1367 cluster and which is apparently not associated with any individual galaxy system in the complex. The radiation's synchrotron origin implies the existence of a large-scale intercluster magnetic field with an estimated strength of 0.3-0.6 μG, which is remarkably strong. The synchrotron-emitting relativistic electrons cannot be older than a few times 10 8 yr, but we speculate that the magnetic field is the fossil of a pre-galactic primaeval field, which was amplified in the course of the formation of intergalactic voids and superclusters. (author)

  9. A model for intergalactic filaments and galaxy formation during the first gigayear

    Science.gov (United States)

    Harford, A. Gayler; Hamilton, Andrew J. S.

    2017-11-01

    We propose a physically based, analytic model for intergalactic filaments during the first gigayear of the universe. The structure of a filament is based upon a gravitationally bound, isothermal cylinder of gas. The model successfully predicts for a cosmological simulation the total mass per unit length of a filament (dark matter plus gas) based solely upon the sound speed of the gas component, contrary to the expectation for collisionless dark matter aggregation. In the model, the gas, through its hydrodynamic properties, plays a key role in filament structure rather than being a passive passenger in a preformed dark matter potential. The dark matter of a galaxy follows the classic equation of collapse of a spherically symmetric overdensity in an expanding universe. In contrast, the gas usually collapses more slowly. The relative rates of collapse of these two components for individual galaxies can explain the varying baryon deficits of the galaxies under the assumption that matter moves along a single filament passing through the galaxy centre, rather than by spherical accretion. The difference in behaviour of the dark matter and gas can be simply and plausibly related to the model. The range of galaxies studied includes that of the so-called too big to fail galaxies, which are thought to be problematic for the standard Λ cold dark matter model of the universe. The isothermal-cylinder model suggests a simple explanation for why these galaxies are, unaccountably, missing from the night sky.

  10. An intergalactic absorbing cloud in the neighbourhood of the North galactic pole

    International Nuclear Information System (INIS)

    Murawski, W.

    1983-01-01

    The purpose of this investigation is to study the possibility that the lack of galaxies in the area between the Virgo and Coma clusters, to which OKROY (1965) drew attention, is due to an intergalactic cloud. Using Zwicky's Catalogue of Galaxies and Clusters of Galaxies, it is shown that there is a shortage of galaxies in the suspected area for all magnitude classes. The absorption of the cloud is calculated to be 0.45+-05 mag. A quantity called the areal colour index (ACI) is introduced and defined as ACI=a sub(b) b sub(b)/(a sub(r) b sub(r)) where a and b are the lengths of the major and minor axes of a galaxy, respectively, and the subscripts b and r respectively refer to measurements on the blue and red prints of the Palomar survey, given in the Uppsala Catalogue of Galaxies. The average ACI is found to be 1.25 for the control area, and 1.04 for the area covered by Okroy's alleged obscuring cloud. On the basis of this colour data an approximate map showing the shape of the cloud is given. The effect of the alleged cloud on the shape frequency of types of galaxies is discussed. It is found that the cloud significantly increases the ratio of elliptical and dwarf galaxies to SO's. The determination of the distance to the cloud and its density is discussed. (author)

  11. HOT 2017

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis.......HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis....

  12. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.

    1989-01-01

    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  13. Agnostic stacking of intergalactic doublet absorption: measuring the Ne VIII population

    Science.gov (United States)

    Frank, Stephan; Pieri, Matthew M.; Mathur, Smita; Danforth, Charles W.; Shull, J. Michael

    2018-05-01

    We present a blind search for doublet intergalactic metal absorption with a method dubbed `agnostic stacking'. Using a forward-modelling framework, we combine this with direct detections in the literature to measure the overall metal population. We apply this novel approach to the search for Ne VIII absorption in a set of 26 high-quality COS spectra. We probe to an unprecedented low limit of log N>12.3 at 0.47≤z ≤1.34 over a path-length Δz = 7.36. This method selects apparent absorption without requiring knowledge of its source. Stacking this mixed population dilutes doublet features in composite spectra in a deterministic manner, allowing us to measure the proportion corresponding to Ne VIII absorption. We stack potential Ne VIII absorption in two regimes: absorption too weak to be significant in direct line studies (12.3 13.7). We do not detect Ne VIII absorption in either regime. Combining our measurements with direct detections, we find that the Ne VIII population is reproduced with a power-law column density distribution function with slope β = -1.86 ^{+0.18 }_{ -0.26} and normalization log f_{13.7} = -13.99 ^{+0.20 }_{ -0.23}, leading to an incidence rate of strong Ne VIII absorbers dn/dz =1.38 ^{+0.97 }_{ -0.82}. We infer a cosmic mass density for Ne VIII gas with 12.3 value significantly lower that than predicted by recent simulations. We translate this density into an estimate of the baryon density Ωb ≈ 1.8 × 10-3, constituting 4 per cent of the total baryonic mass.

  14. The HOT (Healthy Outcome for Teens) project. Using a web-based medium to influence attitude, subjective norm, perceived behavioral control and intention for obesity and type 2 diabetes prevention.

    Science.gov (United States)

    Muzaffar, Henna; Chapman-Novakofski, Karen; Castelli, Darla M; Scherer, Jane A

    2014-01-01

    We hypothesized that Theory of Planned Behavior (TPB) constructs (behavioral belief, attitude, subjective norm, perceived behavioral control, knowledge and behavioral intention) regarding preventive behaviors for obesity and type 2 diabetes will change favorably after completing the web-based intervention, HOT (Healthy Outcome for Teens) project, grounded in the TPB; and that passive online learning (POL) group will improve more than the active online learning (AOL) group. The secondary hypothesis was to determine to what extent constructs of the TPB predict intentions. 216 adolescents were recruited, 127 randomly allocated to the treatment group (AOL) and 89 to the control group (POL). The subjects completed a TPB questionnaire pre and post intervention. Both POL and AOL groups showed significant improvements from pretest to posttest survey. However, the results indicated no significant difference between POL and AOL for all constructs except behavioral belief. Correlational analysis indicated that all TPB constructs were significantly correlated with intentions for pretest and posttest for both groups. Attitude and behavioral control showed strongest correlations. Regression analysis indicated that TPB constructs were predictive of intentions and the predictive power improved post intervention. Behavioral control consistently predicted intentions for all categories and was the strongest predictor for pretest scores. For posttest scores, knowledge and attitude were the strongest predictors for POL and AOL groups respectively. Thus, HOT project improved knowledge and the TPB constructs scores for targeted behaviors, healthy eating and physical activity, for prevention of obesity and type 2 diabetes. Published by Elsevier Ltd.

  15. Study of the thermo-mechanical behavior of medium carbon microalloyed steel during hot forming process using an artificial neural network; Estudio del comportamiento termo-mecanico de un acero microaleado de medio carbono durante un proceso de conformado en caliente usando una red neuronal artificial

    Energy Technology Data Exchange (ETDEWEB)

    Alcelay, I.; Pena, E.; Al Omar, A.

    2016-10-01

    The thermo-mechanical behavior of medium carbon microalloyed steel has been analyzed by an Artificial Neural Network (ANN). The flow curves for training the ANN have been obtained from the hot compression tests, carried out over a temperature range varying from 900 to 1150 degree centigrade and at different true strain rates ranging from 10{sup -}4 to 10 s{sup -}1. It has been found that the ANN model developed in this study is capable to predict accurately and efficiently the flow behavior of the studied steel and there is a good agreement between the experimental results and the ANN results. To analyze the formability of the studied steel, processing maps have been constructed on the basis of the Dynamic Materials Model (DMM), using the ANN values of the flow stress. The study of maps reveals the different domains of the flow behavior of the studied steel and shows the great similarity between the experimental results and the theoretical results, so the use of the ANN can constitute an interesting alternative for design and study of hot forming processes. (Author)

  16. HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES

    International Nuclear Information System (INIS)

    Mulchaey, John S.; Jeltema, Tesla E.

    2010-01-01

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L X -L K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L K ∼ * suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L K ∼ * galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  17. TeV gamma rays from 3C 279 - A possible probe of origin and intergalactic infrared radiation fields

    Science.gov (United States)

    Stecker, F. W.; De Jager, O. C.; Salamon, M. H.

    1992-01-01

    The gamma-ray spectrum of 3C 279 during 1991 June exhibited a near-perfect power law between 50 MeV and over 5 GeV with a differential spectral index of -(2.02 +/- 0.07). If extrapolated, the gamma-ray spectrum of 3C 279 should be easily detectable with first-generation air Cerenkov detectors operating above about 0.3 TeV provided there is no intergalactic absorption. However, by using model-dependent lower and upper limits for the extragalactic infrared background radiation field, a sharp cutoff of the 3C 279 spectrum is predicted at between about 0.1 and about 1 TeV. The sensitivity of present air Cerenkov detectors is good enough to measure such a cutoff, which would provide the first opportunity to obtain a measurement of the extragalactic background infrared radiation field.

  18. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  19. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  20. A model for the distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter-dominated universe

    International Nuclear Information System (INIS)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1989-01-01

    Until now, most studies on the cold dark matter (CDM) universe have considered only the distribution of the dark matter and compared that with the observed distribution of galaxies. Even though the dark matter determines the overall dynamics of the large-scale structure, galaxies form out of the baryonic matter whose density and velocity distributions can be different from those of the dark matter, depending on the thermal history of the universe. In this paper, the authors study both the dark matter component and the baryonic component, that is, galaxies and the IGM, with several simplifying assumptions, by explicitly following the evolution. The dark matter, galaxies, and IGM are coupled through gravity; galaxies form out of the IGM by taking mass and momentum, whereas the IGM responds to the energy input from the galaxies

  1. Hot tub folliculitis

    Science.gov (United States)

    ... survives in hot tubs, especially tubs made of wood. Symptoms The first symptom of hot tub folliculitis ... may help prevent the problem. Images Hair follicle anatomy References D'Agata E. Pseudomonas aeruginosa and other ...

  2. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  3. Medium dependence of vector meson properties in heavy ion collisions

    International Nuclear Information System (INIS)

    Faessler, Amand; Fuchs, Christian

    2007-01-01

    Heavy ion collisions produce dense and hot nuclear matter. Dileptons give information about this hot and dense phase. The dileptons are produced by vector mesons. Theoretical calculation of dilepton production in the DLS (Berkeley), the HADES (GSI) experiments and the CERES, HELIOS and NA60 data from CERN give information about possible modifications of the vector meson properties in hot and dense nuclear matter. Here the description in relativistic quantum molecular dynamics of heavy ion collisions and dilepton production are presented and compared with data. (authors) Key words: heavy ion collisions; dense and hot nuclear matter; dileptons; medium dependence

  4. The Dual-channel Extreme Ultraviolet Continuum Experiment: Sounding Rocket EUV Observations of Local B Stars to Determine Their Potential for Supplying Intergalactic Ionizing Radiation

    Science.gov (United States)

    Erickson, Nicholas; Green, James C.; France, Kevin; Stocke, John T.; Nell, Nicholas

    2018-06-01

    We describe the scientific motivation and technical development of the Dual-channel Extreme Ultraviolet Continuum Experiment (DEUCE). DEUCE is a sounding rocket payload designed to obtain the first flux-calibrated spectra of two nearby B stars in the EUV 650-1150Å bandpass. This measurement will help in understanding the ionizing flux output of hot B stars, calibrating stellar models and commenting on the potential contribution of such stars to reionization. DEUCE consists of a grazing incidence Wolter II telescope, a normal incidence holographic grating, and the largest (8” x 8”) microchannel plate detector ever flown in space, covering the 650-1150Å band in medium and low resolution channels. DEUCE will launch on December 1, 2018 as NASA/CU sounding rocket mission 36.331 UG, observing Epsilon Canis Majoris, a B2 II star.

  5. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  6. STIS observations of five hot white dwarfs

    OpenAIRE

    Bannister, N. P.; Barstow, M. A.; Holberg, J. B.; Bruhweiler, F. C.

    2000-01-01

    We present some early results from a study of five hot DA white dwarf stars, based on spectra obtained using STIS. All show multiple components in one or more of the strong resonance absorption lines typically associated with the stellar photosphere (e.g. C IV, Si IV, N V and O V). Possible relationships between the non-photospheric velocity components and the interstellar medium or local stellar environment, are investigated, including contributions from gravitational redshifting.

  7. Transfer flask for hot active fuel elements

    International Nuclear Information System (INIS)

    Aubert, Roger; Moutard, Daniel.

    1980-01-01

    This invention concerns a flask for transporting active fuel elements removed from a nuclear reactor vessel, after only a few days storage and hence cooling, either within a nuclear power station itself or between such a station and a near-by storage area. This containment system is not a flask for conveyance over long and medium distances. Specifically, the invention concerns a transport flask that enables hot fuel elements to be cooled, even in the event of accidents [fr

  8. EXCITATION TEMPERATURE OF THE WARM NEUTRAL MEDIUM AS A NEW PROBE OF THE Lyα RADIATION FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Claire E.; Lindner, Robert R.; Stanimirović, Snežana; Pingel, Nickolas M.; Lawrence, Allen; Babler, Brian L. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Goss, W. M.; Jencson, Jacob [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Heiles, Carl [Radio Astronomy Laboratory, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Dickey, John [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia); Hennebelle, Patrick, E-mail: cmurray@astro.wisc.edu [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp—CNRS—Université Paris Diderot, F-91191 Gif-sur-Yvette Cedex (France)

    2014-02-01

    We use the Karl G. Jansky Very Large Array to conduct a high-sensitivity survey of neutral hydrogen (H I) absorption in the Milky Way. In combination with corresponding H I emission spectra obtained mostly with the Arecibo Observatory, we detect a widespread warm neutral medium component with excitation temperature 〈T{sub s}〉=7200{sub −1200}{sup +1800} K (68% confidence). This temperature lies above theoretical predictions based on collisional excitation alone, implying that Lyα scattering, the most probable additional source of excitation, is more important in the interstellar medium (ISM) than previously assumed. Our results demonstrate that H I absorption can be used to constrain the Lyα radiation field, a critical quantity for studying the energy balance in the ISM and intergalactic medium yet notoriously difficult to model because of its complicated radiative transfer, in and around galaxies nearby and at high redshift.

  9. FIREBall-2: Trailblazing observations of the space UV circumgalactic medium

    Science.gov (United States)

    Martin, Christopher

    The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3zz 0.7, conduct a targeted search of circumquasar (CQM) media for selected targets, and conduct follow up on likely tar-gets selected via GALEX and a pilot survey conducted by our group. We will also conduct a statistical search for the faint IGM via statistical stacking of our data. The FIREBall-2 team includes two female graduate students in key roles (both of whom are finishing their PhDs in 2016) and is overseen by a female Postdoctoral scholar (supported by NSF AAPF and Caltech Millikan Fellowships, in addition to a recent Roman Technology Fellowship award). Additional funding is necessary to keep this highly qualified balloon team together for a second flight. FIREBall-2 will test key technologies and science strategies for a future space mission to map emission from CGM and IGM baryons. Its flights will continue to provide important training for the next generation of space astrophysicists working in UV and other wavelength instrumentation. Most importantly, FIREBall-2 will detect emission from the CGM of nearby galaxies, providing the first census of the density and kinematics of this material for low z galaxies and open-ing a new field of CGM science.

  10. Hot Weather Tips

    Science.gov (United States)

    ... the person plenty of water and fruit or vegetable juice even if they say they’re not thirsty. No alcohol, coffee or tea. Seek medical help if you suspect dehydration. Light meals: Avoid hot, heavy meals and don’ ...

  11. China's 'Hot Money' Problems

    National Research Council Canada - National Science Library

    Martin, Michael F; Morrison, Wayne M

    2008-01-01

    .... The recent large inflow of financial capital into China, commonly referred to as "hot money," has led some economists to warn that such flows may have a destabilizing effect on China's economy...

  12. Charmonium propagation through a dense medium

    Directory of Open Access Journals (Sweden)

    Kopeliovich B.Z.

    2015-01-01

    Full Text Available Attenuation of a colourless c̄c dipole propagating with a large momentum through a hot medium originates from two sources, Debye screening (melting, and inelastic collisions with surrounding scattering centres (absorption. The former never terminates completely production of a bound charmonium in heavy ion collisions, even at very high temperatures. The latter, is controlled my the magnitude of the dipole cross section, related to the transport coefficient, which is the rate of transverse momentum broadening in the medium. A novel procedure of Lorentz boosting of the Schrödinger equation is developed, which allows to calculate the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. A novel mechanism of charmonium regeneration in a dense medium is proposed.

  13. Effect of hot pressing additives on the leachability of hot pressed sodium hydrous titanium oxide

    International Nuclear Information System (INIS)

    Valentine, T.M.; Sambell, R.A.J.

    1980-01-01

    Sodium hydrous titanium oxide is an ion exchange resin which can be used for immobilizing medium level waste (MLW) liquors. When hot pressed, it undergoes conversion to a ceramic. Three low melting point materials (borax, bismuth trioxide, and a mixture of PbO/CuO) were added to the (Na)HTiO and the effect that each of these had on aiding densification was assessed. Hot pressing temperature, applied pressure, and percentage addition of hot pressing aid were varied. Percentage open porosity, flexural strength, and leachability were measured. There was a linear relationship between the percentage open porosity and the logarithm of the leach rate for a constant percentage addition of each additive

  14. Saphenous Venous Ablation with Hot Contrast in a Canine Model

    International Nuclear Information System (INIS)

    Prasad, Amit; Qian Zhong; Kirsch, David; Eissa, Marna; Narra, Pavan; Lopera, Jorge; Espinoza, Carmen G.; Castaneda, Wifrido

    2008-01-01

    Purpose. To determine the feasibility, efficacy, and safety of thermal ablation of the saphenous vein with hot contrast medium. Methods. Twelve saphenous veins of 6 dogs were percutaneously ablated with hot contrast medium. In all animals, ablation was performed in the vein of one leg, followed by ablation in the contralateral side 1 month later. An occlusion balloon catheter was placed in the infragenicular segment of the saphenous vein via a jugular access to prevent unwanted thermal effects on the non-target segment of the saphenous vein. After inflation of the balloon, 10 ml of hot contrast medium was injected under fluoroscopic control through a sheath placed in the saphenous vein above the ankle. A second 10 ml injection of hot contrast medium was made after 5 min in each vessel. Venographic follow-up of the ablated veins was performed at 1 month (n = 12) and 2 months (n = 6). Results. Follow-up venograms showed that all ablated venous segments were occluded at 1 month. In 6 veins which were followed up to 2 months, 4 (66%) remained occluded, 1 (16%) was partially patent, and the remaining vein (16%) was completely patent. In these latter 2 cases, an inadequate amount of hot contrast was delivered to the lumen due to a closed balloon catheter downstream which did not allow contrast to displace blood within the vessel. Discussion. Hot contrast medium thermal ablation of the saphenous vein appears feasible, safe, and effective in the canine model, provided an adequate amount of embolization agent is used

  15. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  16. HotRegion: a database of predicted hot spot clusters.

    Science.gov (United States)

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  17. Effect of external hot EGR dilution on combustion, performance and particulate emissions of a GDI engine

    International Nuclear Information System (INIS)

    Xie, Fangxi; Hong, Wei; Su, Yan; Zhang, Miaomiao; Jiang, Beiping

    2017-01-01

    Highlights: • Effect of hot EGR on combustion and PN emission is investigated on a GDI engine. • Appropriate addition of hot EGR can reduce fuel consumption, NO_x and PN emission. • Relationship between BSFC and emissions of hot EGR is better than cooled EGR. • Condition with low-medium speeds and medium loads are more suitable for hot EGR. - Abstract: In this paper, an experimental investigation about the influence of hot EGR addition on the engine combustion, performance and particulate number emission was conducted at a spark-ignition gasoline direct injection (GDI) engine. Meanwhile, the different effects between cooled and hot EGR addition methods were compared and the variations of fuel consumption and particle number emissions under six engine operating conditions with different speeds and loads were analyzed. The research result indicated that increasing hot EGR ratio properly with adjustment of ignition timing could effectively improve the relationship among brake-specific fuel consumption (BSFC), NO_x and particle number emissions. When hot EGR ratio increased to 20%, not only BSFC but also the NO_x and particle number emissions were reduced, which were about 7%, 87% and 36% respectively. Compared with cooled EGR, the flame development and propagation speeds were accelerated, and cycle-by-cycle combustion variation decreased with hot EGR. Meanwhile, using hot EGR made the engine realize a better relationship among fuel consumption, NO_x and particle number emissions. The biggest improvements of BSFC, NO_x and particle number emissions were obtained at low-medium speed and medium load engine conditions by hot EGR addition method. While engine speed increased and load decreased, the improvement of engine fuel consumption and emission reduced with hot EGR method.

  18. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-ray Opacity of the Universe

    Science.gov (United States)

    Stecker, Floyd W.; Malkan, Matthew A.; Scully, Sean T.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to gamma-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  19. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  20. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  1. Utilizing hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Nozik, Arthur J.

    2018-03-01

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  2. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abdel-Rassoul, A.A.

    1983-01-01

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  3. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  4. Software Simulation of Hot Tearing

    DEFF Research Database (Denmark)

    Andersen, S.; Hansen, P.N.; Hattel, Jesper Henri

    1999-01-01

    The brittleness of a solidifying alloy in a temperature range near the solidus temperature has been recognised since the fifties as the mechanism responsible for hot tearing. Due to this brittlenes, the metal will crack under even small amounts of strain in that temperature range. We see these hot...... tears in castings close to hot centres, where the level of strain is often too high.Although the hot tearing mechanism is well understood, until now it has been difficult to do much to reduce the hot tearing tendency in a casting. In the seventies, good hot tearing criteria were developed by considering...... the solidification rate and the strain rate of the hot tear prone areas. But, until recently it was only possible to simulate the solidification rate, so that the criteria could not be used effectively.Today, with new software developments, it is possible to also simulate the strain rate in the hot tear prone areas...

  5. Hot Fuel Examination Facility (HFEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  6. Concept medium programme

    DEFF Research Database (Denmark)

    Bjerrum, Peter

    2005-01-01

    The present essay is an attempt to determine the architectural project of the 21st century in relation to a modern conception of space as the medium of architecture, and of sociality as its program......The present essay is an attempt to determine the architectural project of the 21st century in relation to a modern conception of space as the medium of architecture, and of sociality as its program...

  7. Hot subluminous star: HDE 283048

    International Nuclear Information System (INIS)

    Laget, M.; Vuillemin, A.; Parsons, S.B.; Henize, K.G.; Wray, J.D.

    1978-01-01

    The star HDE 283048, located at α = 3/sup h/50/sup m/.3, delta = +25 0 36', shows a strong ultraviolet continuum. Ground-based observations indicate a hot-dominated composite spectrum. Several lines of evidence suggest that the hot component is a hot subdwarf. 2 figures

  8. The interstellar medium in galaxies

    CERN Document Server

    1997-01-01

    It has been more than five decades ago that Henk van de Hulst predicted the observability of the 21-cm line of neutral hydrogen (HI ). Since then use of the 21-cm line has greatly improved our knowledge in many fields and has been used for galactic structure studies, studies of the interstellar medium (ISM) in the Milky Way and other galaxies, studies of the mass distribution of the Milky Way and other galaxies, studies of spiral struc­ ture, studies of high velocity gas in the Milky Way and other galaxies, for measuring distances using the Tully-Fisher relation etc. Regarding studies of the ISM, there have been a number of instrumen­ tal developments over the past decade: large CCD's became available on optical telescopes, radio synthesis offered sensitive imaging capabilities, not only in the classical 21-cm HI line but also in the mm-transitions of CO and other molecules, and X-ray imaging capabilities became available to measure the hot component of the ISM. These developments meant that Milky Way was n...

  9. Escape of ionizing radiation from star-forming regions in Young galaxies

    DEFF Research Database (Denmark)

    Razoumov, A; Sommer-Larsen, Jesper

    2006-01-01

    Galaxies: Formation, Galaxies: Intergalactic Medium, ISM: H II Regions, Radiative Transfer Udgivelsesdato: Nov. 10......Galaxies: Formation, Galaxies: Intergalactic Medium, ISM: H II Regions, Radiative Transfer Udgivelsesdato: Nov. 10...

  10. Hot chocolate effect

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1982-01-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments

  11. Hot water reticulation

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, S. K.

    1977-10-15

    Hot water reticulation (district heating) is an established method of energy supply within cities in many countries. It is based on the fact that heat can often be obtained cheaply in bulk, and that the resultant savings can, in suitable circumstances, justify the investment in a reticulation network of insulated pipes to distribute the heat to many consumers in the form of hot water or occasionally steam. The heat can be used by domestic, commercial, and industrial consumers for space heating and water heating, and by industries for process heat. The costs of supplying domestic consumers can be determined by considering an average residential area, but industrial and commercial consumers are so varied in their requirements that every proposal must be treated independently. Fixed costs, variable costs, total costs, and demand and resource constraints are discussed.

  12. The hot chocolate effect

    Science.gov (United States)

    Crawford, Frank S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  13. Hot air balloon engine

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd, 12 Lentara Street, Kenmore, Brisbane 4069 (Australia)

    2009-04-15

    This paper describes a solar powered reciprocating engine based on the use of a tethered hot air balloon fuelled by hot air from a glazed collector. The basic theory of the balloon engine is derived and used to predict the performance of engines in the 10 kW to 1 MW range. The engine can operate over several thousand metres altitude with thermal efficiencies higher than 5%. The engine thermal efficiency compares favorably with the efficiency of other engines, such as solar updraft towers, that also utilize the atmospheric temperature gradient but are limited by technical constraints to operate over a much lower altitude range. The increased efficiency allows the use of smaller area glazed collectors. Preliminary cost estimates suggest a lower $/W installation cost than equivalent power output tower engines. (author)

  14. The ''hot'' patella

    International Nuclear Information System (INIS)

    Kipper, M.S.; Alazraki, N.P.; Feiglin, D.H.

    1982-01-01

    Increased patellar uptake on bone scans is seen quite commonly but the possible or probable etiologies of this finding have not been previously well described. A review of 100 consecutive bone scans showed that the incidence of bilateral ''hot'' patellae is 15%. Identified etiologies include osteoarthritic degenerative disease (35%), fracture, possible metastatic disease, bursitis, Paget's disease, and osteomyelitis. The value of careful history, physical examination, and radiographs is stressed

  15. Hot nuclei and fragmentation

    International Nuclear Information System (INIS)

    Guerreau, D.

    1993-01-01

    A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs

  16. 'Hot particle' intercomparison dosimetry

    International Nuclear Information System (INIS)

    Kaurin, D.G.L.; Baum, J.W.; Charles, M.W.; Darley, D.P.J.; Durham, J.S.; Scannell, M.J.; Soares, C.G.

    1996-01-01

    Dosimetry measurements of four 'hot particles' were made at different density thickness values using five different methods. The hot particles had maximum dimensions of 650 μm and maximum beta energies of 0.97, 046, 0.36, and 0.32 MeV. Absorbers were used to obtain the dose at different depths for each dosimeter. Measurements were made using exoelectron dosimeters, an extrapolation chamber, NE Extremity Tape Dosimeters (tm), Eberline RO-2 and RO-2A survey meters, and two sets of GafChromic (tm) dye film with each set read out at a different institution. From these results the dose was calculated averaged over 1 cm 2 of tissue at 18, 70, 125, and 400 μm depth. Comparisons of tissue-dose averaged over 1 cm 2 for 18, 70, and 125 μm depth based on interpolated measured values, were within 30% for the GafChromic (tm) dye film, extrapolation chamber, NE Extremity Tape Dosimeters (tm), and Eberline RO-2 and 2A (tm) survey meters except for the hot particle with 0.46 MeV maximum beta energy. The results for this source showed differences of up to 60%. The extrapolation chamber and NE Extremity Tape dosimeters under-responded for measurements at 400 μm by about a factor of 2 compared with the GafChromic dye films for two hot particles with maximum beta energy of 0.32 and 0.36 MeV which each emitted two 100% 1 MeV photons per disintegration. Tissue doses determined using exoelectron dosimeters were a factor of 2 to 5 less than those determined using other dosimeters, possibly due to failures of the equipment. (author)

  17. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  18. The Interstellar Medium

    CERN Document Server

    Lequeux, James

    2005-01-01

    Describing interstellar matter in our galaxy in all of its various forms, this book also considers the physical and chemical processes that are occurring within this matter. The first seven chapters present the various components making up the interstellar matter and detail the ways that we are able to study them. The following seven chapters are devoted to the physical, chemical and dynamical processes that control the behaviour of interstellar matter. These include the instabilities and cloud collapse processes that lead to the formation of stars. The last chapter summarizes the transformations that can occur between the different phases of the interstellar medium. Emphasizing methods over results, "The Interstellar Medium" is written for graduate students, for young astronomers, and also for any researchers who have developed an interest in the interstellar medium.

  19. Optical recording medium

    International Nuclear Information System (INIS)

    Andriech, A.; Bivol, V.; Tridukh, G.; Tsiuleanu, D.

    2002-01-01

    The invention relates of the micro- and optoelectronics, computer engineering ,in particular, to tjhe optical information media and may be used in hilography. Summary of the invention consists in that the optical image recording medium, containing a dielectric substrates, onto one surface of which there are placed in series a transparent electricity conducting layer, a photo sensitive recording layer of chalcogenic glass and a thin film electrode of aluminium, is provided with an optically transparent protective layer, applied into the thin film electrode. The result of the invention consists in excluding the dependence of chemical processes course into the medium upon environmental conditions

  20. Emerging hot spot analysis

    DEFF Research Database (Denmark)

    Reinau, Kristian Hegner

    Traditionally, focus in the transport field, both politically and scientifically, has been on private cars and public transport. Freight transport has been a neglected topic. Recent years has seen an increased focus upon congestion as a core issue across Europe, resulting in a great need for know...... speed data for freight. Secondly, the analytical methods used, space-time cubes and emerging hot spot analysis, are also new in the freight transport field. The analysis thus estimates precisely how fast freight moves on the roads in Northern Jutland and how this has evolved over time....

  1. Progress in hot pressing

    International Nuclear Information System (INIS)

    Brodhag, C.; Thevenot, F.

    1988-01-01

    An experimental technique is described to study hot pressing of ceramics under conditions of controlled temperature and pressure during both the heating and final sintering stages. This method gives a better control of the final microstructure of the material. Transformation mechanisms can be studied during initial heating stage (impurity degasing, reaction, phase transformation, mechanical behavior of intergranular phase...) using computer control and graphical data representations. Some examples will be given for different systems studied in our laboratory: B (α, β, amorphous), B 12 O 2 (reaction of B + B 2 O 3 ), Si 3 N 4 ( + additives), TiN, Al 2 O 3 + AlON,ZrC

  2. Multipurpose reprocessing hot cell

    International Nuclear Information System (INIS)

    Fletcher, R.D.

    1975-01-01

    A multipurpose hot cell is being designed for use at the Idaho Chemical Processing Plant for handling future scheduled fuels that cannot be adequately handled by the existing facilities and equipment. In addition to providing considerable flexibility to handle a wide variety of fuel sizes up to 2,500 lb in weight the design will provide for remote maintenance or replacement of the in-cell equipment with a minimum of exposure to personnel and also provide process piping connections for custom processing of small quantities of fuel. (auth)

  3. Roentgen contrast medium

    International Nuclear Information System (INIS)

    Tamborski, C.

    1989-01-01

    The patent deals with a roentgen contrast medium containing a perfluorinebrominealkylether of the formula C m F 2m+1 OC n F 2n Br dispersed in water, preferentially in the presence of a non-ionic dispersing agent such as a fluorinated amidoaminoxide. 2 tabs

  4. Radon in geological medium

    Energy Technology Data Exchange (ETDEWEB)

    Hricko, J [GEOCOMPLEX, a.s., Bratislava (Slovakia)

    1996-12-31

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a{sub v} has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km{sup 2}. The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a{sub v} > 50 kBq/m{sup 3}). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs.

  5. Radon in geological medium

    International Nuclear Information System (INIS)

    Hricko, J.

    1995-01-01

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a v has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km 2 . The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a v > 50 kBq/m 3 ). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  6. Residential solar hot water

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    This report examines the feasibility of using solar energy to preheat domestic water coming from the city supply at a temperature of approximately 4{degree}C. Four solar collectors totalling 7 m{sup 2} were installed on a support structure facing south at an angle of 60{degree} from the horizontal. The system worked most efficiently in the spring and early summer when the combination of long hours of sunshine, clean air and clear skies allowed for maximum availability of solar radiation. Performance dropped in late summer and fall mainly due to cloudier weather conditions. The average temperature in the storage tank over the 10 months of operation was 42{degree}C, ranging from a high of 83{degree}C in July to a low of 6{degree}C in November. The system provided a total of 7.1 GJ, which is approximately one-third the annual requirement for domestic hot water heating. At the present time domestic use of solar energy to heat water does not appear to be economically viable. High capital costs are the main problem. As a solar system with present day technology can only be expected to meet half to two-thirds of the hot water energy demand the savings are not sufficient for the system to pay for itself within a few years. 5 figs.

  7. Hot springs in Hokuriku District

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K. (Hot Springs Research Center, Japan)

    1971-01-01

    In the Hokuriku district including Toyama, Ishikawa, and Fukui Prefectures, hot springs of more than 25/sup 0/C were investigated. In the Toyama Prefecture, there are 14 hot springs which are located in an area from the Kurobe River to the Tateyama volcano and in the mountainous area in the southwest. In Ishikawa Prefecture there are 16 hot springs scattered in Hakusan and its vicinity, the Kaga mountains, and in the Noto peninsula. In northern Fukui Prefecture there are seven hot springs. The hot springs in Shirakawa in Gifu Prefecture are characterized as acid springs producing exhalations and H/sub 2/S. These are attributed to the Quaternary volcanoes. The hot springs of Wakura, Katayamazu, and Awara in Ishikawa Prefecture are characterized by a high Cl content which is related to Tertiary andesite. The hot springs of Daishoji, Yamanaka, Yamashiro, Kuritsu, Tatsunokuchi, Yuwaku, and Yunotani are characterized by a low HCO/sub 3/ content. The Ca and SO/sub 4/ content decreases from east to west, and the Na and Cl content increases from west to east. These fluctuations are related to the Tertiary tuff and rhyolite. The hot springs of Kuronagi, Kinshu, and Babadani, located along the Kurobe River are characterized by low levels of dissolved components and high CO/sub 2/ and HCO/sub 3/ content. These trends are related to late Paleozoic granite. Hot springs resources are considered to be connected to geothermal resources. Ten tables, graphs, and maps are provided.

  8. Multifunctional Hot Structure Heat Shield

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is performing preliminary development of a Multifunctional Hot Structure (HOST) heat shield for planetary entry. Results of this development will...

  9. X-ray investigations of the hot ISM

    Science.gov (United States)

    Sanders, W. T.

    1993-01-01

    At energies less than one keV, the intensity of the galactic x-ray background dominates that of the extragalactic background in almost every direction on the sky. Below 1/4 keV, the galactic x-ray background has a galactic stellar component, but the dominant emitter seems to be hot interstellar matter. The origin of the general 3/4 keV x-ray background remains uncertain, but one component must also be the contribution from hot interstellar matter. An overview is given of recent x-ray investigations of the hot interstellar medium using data from the ROSAT X-ray Telescope/Position-Sensitive Proportional Counter (XRT/PSPC) instrument. Several prominent features in the low energy x-ray background that are interpreted as fossil supernova remnants are discussed.

  10. Performance of Recycled Porous Hot Mix Asphalt with Gilsonite Additive

    Directory of Open Access Journals (Sweden)

    Ludfi Djakfar

    2015-01-01

    Full Text Available The objective of the study is to evaluate the performance of porous asphalt using waste recycled concrete material and explore the effect of adding Gilsonite to the mixture. As many as 90 Marshall specimens were prepared with varied asphalt content, percentage of Gilsonite as an additive, and proportioned recycled and virgin coarse aggregate. The test includes permeability capability and Marshall characteristics. The results showed that recycled concrete materials seem to have a potential use as aggregate in the hot mix asphalt, particularly on porous hot mix asphalt. Adding Gilsonite at ranges 8–10% improves the Marshall characteristic of the mix, particularly its stability, without decreasing significantly the permeability capability of the mix. The use of recycled materials tends to increase the asphalt content of the mix at about 1 to 2% higher. With stability reaching 750 kg, the hot mix recycled porous asphalt may be suitable for use in the local roads with medium vehicle load.

  11. Concept medium program

    DEFF Research Database (Denmark)

    Bjerrum, Peter

    2003-01-01

    The present essays is an attempt to dertermine the architecural project of the 21st century in realation to a modern conception of space as the medium of architecture, and of society as its program. This attempt adopts the internal point of view of an architect in describing a modern architectural...... project within the framework: concept - program, these notions being concieved as spatial representations primarily and immediately "given" to architecture....

  12. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  13. Hot cell verification facility update

    International Nuclear Information System (INIS)

    Titzler, P.A.; Moffett, S.D.; Lerch, R.E.

    1985-01-01

    The Hot Cell Verification Facility (HCVF) provides a prototypic hot cell mockup to check equipment for functional and remote operation, and provides actual hands-on training for operators. The facility arrangement is flexible and assists in solving potential problems in a nonradioactive environment. HCVF has been in operation for six years, and the facility is a part of the Hanford Engineering Development Laboratory

  14. Diverse properties of interstellar medium embedding gamma-ray bursts at the epoch of reionization

    International Nuclear Information System (INIS)

    Cen, Renyue; Kimm, Taysun

    2014-01-01

    Analysis is performed on ultra-high-resolution large-scale cosmological radiation-hydrodynamic simulations to quantify, for the first time, the physical environment of long-duration gamma-ray bursts (GRBs) at the epoch of reionization. We find that, on parsec scales, 13% of GRBs remain in high-density (≥10 4 cm –3 ) low-temperature star-forming regions, whereas 87% of GRBs occur in low-density (∼10 –2.5 cm –3 ) high-temperature regions heated by supernovae. More importantly, the spectral properties of GRB afterglows, such as the neutral hydrogen column density, total hydrogen column density, dust column density, gas temperature, and metallicity of intervening absorbers, vary strongly from sight line to sight line. Although our model explains extant limited observationally inferred values with respect to circumburst density, metallicity, column density, and dust properties, a substantially larger sample of high-z GRB afterglows would be required to facilitate a statistically solid test of the model. Our findings indicate that any attempt to infer the physical properties (such as metallicity) of the interstellar medium (ISM) of the host galaxy based on a very small number (usually one) of sight lines would be precarious. Utilizing high-z GRBs to probe the ISM and intergalactic medium should be undertaken properly, taking into consideration the physical diversities of the ISM.

  15. FIREBall-2: Trailblazing observations of the space UV circumgalactic medium (Columbia University, Co-I Proposal)

    Science.gov (United States)

    Schiminovich, David

    Columbia University is a Co-I institution in a collaborative research program with Caltech, the Lead Institution (PI: Christopher Martin). The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3zz 0.7, conduct a targeted search of circumquasar (CQM) media for selected targets, and conduct follow up on likely tar-gets selected via GALEX and a pilot survey conducted by our group. We will also conduct a statistical search for the faint IGM via statistical stacking of our data. The FIREBall-2 team includes two female graduate students in key roles (both of whom are finishing their PhDs in 2016) and is overseen by a female Postdoctoral scholar (supported by NSF AAPF and Caltech Millikan Fellowships, in addition to a recent Roman Technology Fellowship award). Additional funding is necessary to keep this highly qualified balloon team together for a second flight. FIREBall-2 will test key technologies and science strategies for a future space mission to map emission from CGM and IGM baryons. Its flights will continue to provide important training for the next generation of space astrophysicists working in UV and other wavelength instrumentation. Most importantly, FIREBall-2 will detect emission from the CGM of nearby galaxies, providing the first census of the density and kinematics of this material for low z galaxies and open-ing a new field of CGM science.

  16. The Klinger hot gas double axial valve

    International Nuclear Information System (INIS)

    Kruschik, J.; Hiltgen, H.

    1984-01-01

    The Klinger hot gas valve is a medium controlled double axial valve with advanced design features and safety function. It was first proposed by Klinger early in 1976 for the PNP-Project as a containment shut-off for hot helium (918 deg. C and 42 bar), because a market research has shown that such a valve is not state of present techniques. In the first stage of development a feasibility study had to be made by detailed design, calculation and by basic experiments for key components in close collaboration with Interatom/GHT. This was the basis for further design, calculation, construction and experimental work for such a valve prototype within the new development contract. The stage of knowledge to that time revealed the following key priority development areas: Finite element stress analysis for the highly stressed high temperature main components; development of an insulation layout; Detailed experimental tests of functionally important structural components or units of the valve, partly at Klingers (gasstatic bearings, flexible metallic sealing element, aerodynamic and thermohydraulic tests), partly at Interatom (actuator unit and also gasstatic bearings), partly at HRB in Juelich (flexible metallic sealing system, aerodynamic and thermohydraulic tests); Design of a test valve for experimental work in the KVK (test circuit at Interatom) for evaluation of temperature distribution and reliability of operation; Design of a prototype and extensive testing in the KVK

  17. Nonlinear dynamo in the intracluster medium

    Science.gov (United States)

    Beresnyak, Andrey; Miniati, Francesco

    2018-05-01

    Hot plasma in galaxy clusters, the intracluster medium is observed to be magnetized with magnetic fields of around a μG and the correlation scales of tens of kiloparsecs, the largest scales of the magnetic field so far observed in the Universe. Can this magnetic field be used as a test of the primordial magnetic field in the early Universe? In this paper, we argue that if the cluster field was created by the nonlinear dynamo, the process would be insensitive to the value of the initial field. Our model combines state of the art hydrodynamic simulations of galaxy cluster formation in a fully cosmological context with nonlinear dynamo theory. Initial field is not a parameter in this model, yet it predicts magnetic scale and strength compatible with observations.

  18. Hot testing of coke

    Energy Technology Data Exchange (ETDEWEB)

    Balon, I D

    1976-07-01

    Earlier investigations failed to take full account of the factors affecting coke behavior within the blast furnace. An apparatus was accordingly developed for testing coke, based on a cyclone furnace where the sample could be held in a flow of hot oxidizing gases, simulating conditions in the blast furnace hearth. The results are said to be suitable for comprehensive assessment of the coke, including abrasive strength and its rate of gasification in a flow of carbon dioxide. Coke of size 6-10 mm tested at 1,100/sup 0/C in an atmosphere of oxidizing gases close to those obtaining in the blast furnace hearth, indicated that destruction and total gasification of the coke occurs after 5 minutes for a weak coke and 8 minutes for strong coke, depending on the physico-chemical and physico-mechanical properties of the particular coke. When samples were treated for a fixed period (3 minutes), the amount of coke remaining, and the percentage over 6 mm varied between 22 and 40 and between 4 and 7 percent respectively.

  19. Hot Hydrogen Test Facility

    International Nuclear Information System (INIS)

    W. David Swank

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed

  20. DENSE MEDIUM CYCLONE OPTIMIZATON

    Energy Technology Data Exchange (ETDEWEB)

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  1. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-01-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T eff > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  2. Theory of hot particle stability

    International Nuclear Information System (INIS)

    Berk, H.L.; Wong, H.V.; Tsang, K.T.

    1986-10-01

    The investigation of stabilization of hot particle drift reversed systems to low frequency modes has been extended to arbitrary hot beta, β/sub H/ for systems that have unfavorable field line curvature. We consider steep profile equilibria where the thickness of the pressure drop, Δ, is less than plasma radius, r/sub p/. The analysis describes layer modes which have mΔ/r/sub p/ 2/3. When robust stability conditions are fulfilled, the hot particles will have their axial bounce frequency less than their grad-B drift frequency. This allows for a low bounce frequency expansion to describe the axial dependence of the magnetic compressional response

  3. Hot workability of aluminium alloys

    International Nuclear Information System (INIS)

    Yoo, Yeon Chul; Oh, Kyung Jin

    1986-01-01

    Hot Workability of aluminium alloys, 2024, 6061 and 7075, has been studied by hot torsion tests at temperatures from 320 to 515 deg C and at strain rates from 1.26 x 10 -3 to 5.71 x 10 -3 sec -1 . Hot working condition of these aluminium alloys was determined quantitatively from the constitutive equations obtained from flow stress curves in torsion. Experimental data of the logarith of the Zener-Hollomonn parameter showed good linear relationships to the logarith of sinh(ασ-bar)

  4. Computation as Medium

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance

    2017-01-01

    Artists increasingly utilize computational tools to generate art works. Computational approaches to art making open up new ways of thinking about agency in interactive art because they invite participation and allow for unpredictable outcomes. Computational art is closely linked...... to the participatory turn in visual art, wherein spectators physically participate in visual art works. Unlike purely physical methods of interaction, computer assisted interactivity affords artists and spectators more nuanced control of artistic outcomes. Interactive art brings together human bodies, computer code......, and nonliving objects to create emergent art works. Computation is more than just a tool for artists, it is a medium for investigating new aesthetic possibilities for choreography and composition. We illustrate this potential through two artistic projects: an improvisational dance performance between a human...

  5. Spiegel. Medium. Kunst

    DEFF Research Database (Denmark)

    Kacunko, Slavko

    of this kind as the marks of a meta-complex of method out of which new models of the image continually arise. The waxing intangibility of proliferating images be they of the mind, in dreams, through gestures, and the equally rampant growth of microstructuring in allocations of knowledge lay a challenge before...... to research. As a void in the apprehension of the world, the mirror obtained a scholarly perspective and the more so in areas beyond its own qualities as a medium, i.e. in images and metaphor, the paradigms of all research looking to image and text. This investigation sets out to comprehend paradoxes......, and space (albeit no expanse) is there to consider the methodological pros and cons of such a selective approach. Even in this synopsis, it has to be and can be stated that what makes for the affinities between psychological, literary and image-research approaches in research on the mirror is the shared...

  6. The diffuse interstellar medium

    Science.gov (United States)

    Cox, Donald P.

    1990-01-01

    The last 20 years of the efforts to understand the diffuse ISM are reviewed, with recent changes of fundamental aspects being highlighted. Attention is given to the interstellar pressure and its components, the weight of the ISM, the midplane pressure contributions, and pressure contributions at 1 kpc. What velocity dispersions, cosmic ray pressure, and magnetic field pressure that can be expected for a gas in a high magnetic field environment is addressed. The intercloud medium is described, with reference to the work of Cox and Slavin (1989). Various caveats are discussed and a number of areas for future investigation are identified. Steps that could be taken toward a successful phase segregation model are discussed.

  7. Hot interstellar tunnels. I. Simulation of interacting supernova remnants

    International Nuclear Information System (INIS)

    Smith, B.W.

    1977-01-01

    Reexamining a suggestion of Cox and Smith, we find that intersecting supernova remnants can indeed generate and maintain hot interstellar regions with napproximately-less-than10 -2 cm -3 and Tapprox.10 6 K. These regions are likely to occupy at least 30% of the volume of a spiral arm near the midplane of the gaseous disk if the local supernova rate there is greater than 1.5 x 10 -7 Myr -1 pc -3 . Their presence in the interstellar medium is supported by observations of the soft X-ray background. The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected for a variety of assumed conditions in the outer shells of old remnants. Extensive hot cavity regions or tunnels are built and enlarged by supernovae occurring in relatively dense gas which produce connections, but tunnels are kept hot primarily by supernovae occurring within the tunnels. The latter supernovae initiate fast shock waves which apparently reheat tunnels faster than they are destroyed by thermal conduction in a galactic magnetic field or by radiative cooling. However, the dispersal of these rejuvenating shocks over a wide volume is inhibited by motions of cooler interstellar gas in the interval between shocks. These motions disrupt the contiguity of the component cavities of a tunnel and may cause its death.The Monte Carlo simulations indicate that a quasi-equilibrium is reached within 10 7 years of the first supernova in a spiral arm. This equilibrium is characterized by a constant average filling fraction for cavities in the interstellar volume. Aspects of the equilibrium are discussed for a range of supernova rates. Two predictions of Cox and Smith are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities

  8. Hot Hydrogen Heat Source Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a  hot hydrogen heat source that would produce  a high temperature hydrogen flow which would be comparable to that produced...

  9. The decay of hot nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs

  10. Mercury content in Hot Springs

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, R

    1974-01-01

    A method of determination of mercury in hot spring waters by flameless atomic absorption spectrophotometry is described. Further, the mercury content and the chemical behavior of the elementary mercury in hot springs are described. Sulfide and iodide ions interfered with the determination of mercury by the reduction-vapor phase technique. These interferences could, however, be minimized by the addition of potassium permanganate. Waters collected from 55 hot springs were found to contain up to 26.0 ppb mercury. High concentrations of mercury have been found in waters from Shimoburo Springs, Aomori (10.0 ppb), Osorezan Springs, Aomori (1.3 approximately 18.8 ppb), Gosyogake Springs, Akita (26.0 ppb), Manza Springs, Gunma (0.30 approximately 19.5 ppb) and Kusatu Springs, Gunma (1.70 approximately 4.50 ppb). These hot springs were acid waters containing a relatively high quantity of chloride or sulfate.

  11. Do scientists trace hot topics?

    Science.gov (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  12. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    Science.gov (United States)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  13. Focus talk on interactions between jets and medium

    International Nuclear Information System (INIS)

    Ruppert, Joerg

    2006-01-01

    The energy and momentum lost by a hard parton propagating through hot and dense matter has to be redistributed during the nuclear medium evolution. Apart from heating the medium, there is the possibility that collective modes are excited leading to the emergence of Mach cones or Cherenkov radiation. Recent two-particle correlation measurements by STAR [F. Wang [STAR Collaboration], J. Phys. G 30, S1299 (2004) [arXiv:nucl-ex/0404010]; C. Gagliardi, these proceedings] and PHENIX [S. S. Adler et al. [PHENIX Collaboration], arXiv:nucl-ex/0507004; N. Ajitanand, these proceedings] at RHIC indicate that such phenomena may play an important role in understanding the jet-medium interactions. Possible collective modes are discussed and it is demonstrated that Mach cones as created by colorless or colored sound are a possible explanation of the hardronic two-particle correlation data

  14. 16S RRNA Gene Analysis of Chlorate Reducing Thermophilic Bacteria From Local Hot Spring

    OpenAIRE

    Aminin, Agustina L. N; Katulistiwasari, Puri; Mulyani, Nies Suci

    2011-01-01

    Chlorates waste remediation by biological processes has been the object of current research. Strain CR, the chlorate reducing bacteria was isolated from Gedongsongo hot spring using minimal medium broth containing chlorates and acetate at 55oC. The determination of chlorate reduction from medium was carried out using turbidimetric method. CR isolate showed reducing ability 18% after four days of incubation. The phenotypic character of CR isolate including rod-shaped cells, gram-positive bacte...

  15. OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS

    International Nuclear Information System (INIS)

    Wang, Huiyuan; Xing, Feijun; Wang, Tinggui; Zhou, Hongyan; Zhang, Kai; Zhang, Shaohua

    2013-01-01

    Correlations of hot dust emission with outflow properties are investigated, based on a large z ∼ 2 non-broad absorption line quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near-infrared slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from the accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of C IV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, C IV regions are dominated by outflows so the BAI and FWHM (C IV) can reliably reflect the general properties and velocity of outflows, respectively. In low Eddington ratio quasars, on the other hand, C IV lines are primarily emitted by virialized gas so the BAI and FWHM (C IV) become less sensitive to outflows. Therefore, the correlations for the highest Eddington ratio quasars are more likely to represent the true dependence of hot dust emission on outflows and the correlations for the entire sample are significantly diluted by the low Eddington ratio quasars. Our results show that an outflow with a large BAI or velocity can double the hot dust emission on average. We suggest that outflows either contain hot dust in themselves or interact with the dusty interstellar medium or torus

  16. Uncertainty analysis for hot channel

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2006-01-01

    The fulfillment of the safety analysis acceptance criteria is usually evaluated by separate hot channel calculations using the results of neutronic or/and thermo hydraulic system calculations. In case of an ATWS event (inadvertent withdrawal of control assembly), according to the analysis, a number of fuel rods are experiencing DNB for a longer time and must be regarded as failed. Their number must be determined for a further evaluation of the radiological consequences. In the deterministic approach, the global power history must be multiplied by different hot channel factors (kx) taking into account the radial power peaking factors for each fuel pin. If DNB occurs it is necessary to perform a few number of hot channel calculations to determine the limiting kx leading just to DNB and fuel failure (the conservative DNBR limit is 1.33). Knowing the pin power distribution from the core design calculation, the number of failed fuel pins can be calculated. The above procedure can be performed by conservative assumptions (e.g. conservative input parameters in the hot channel calculations), as well. In case of hot channel uncertainty analysis, the relevant input parameters (k x, mass flow, inlet temperature of the coolant, pin average burnup, initial gap size, selection of power history influencing the gap conductance value) of hot channel calculations and the DNBR limit are varied considering the respective uncertainties. An uncertainty analysis methodology was elaborated combining the response surface method with the one sided tolerance limit method of Wilks. The results of deterministic and uncertainty hot channel calculations are compared regarding to the number of failed fuel rods, max. temperature of the clad surface and max. temperature of the fuel (Authors)

  17. Study of the zirconium passive layer in nitric medium, by the means of electrochemical impedance spectrometry

    International Nuclear Information System (INIS)

    Musy, C.

    1996-01-01

    Although zirconium exhibits a very low corrosion rate in nitric medium at 100 C, electrochemical impedance spectrometry enabled the in-situ monitoring of the zirconium oxide growth in theses conditions. The growth curve shows a very clear deceleration of the oxide growth kinetics after the first hundred hours of immersion in hot nitric medium. The initial thickness of the native oxide film is also examined

  18. Statistical hot spot analysis of reactor cores

    International Nuclear Information System (INIS)

    Schaefer, H.

    1974-05-01

    This report is an introduction into statistical hot spot analysis. After the definition of the term 'hot spot' a statistical analysis is outlined. The mathematical method is presented, especially the formula concerning the probability of no hot spots in a reactor core is evaluated. A discussion with the boundary conditions of a statistical hot spot analysis is given (technological limits, nominal situation, uncertainties). The application of the hot spot analysis to the linear power of pellets and the temperature rise in cooling channels is demonstrated with respect to the test zone of KNK II. Basic values, such as probability of no hot spots, hot spot potential, expected hot spot diagram and cumulative distribution function of hot spots, are discussed. It is shown, that the risk of hot channels can be dispersed equally over all subassemblies by an adequate choice of the nominal temperature distribution in the core

  19. Galactic and intergalactic magnetic fields

    CERN Document Server

    Klein, Ulrich

    2014-01-01

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible.In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later c

  20. Hot dry rock heat mining

    International Nuclear Information System (INIS)

    Duchane, D.V.

    1992-01-01

    Geothermal energy utilizing fluids from natural sources is currently exploited on a commercial scale at sites around the world. A much greater geothermal resource exists, however, in the form of hot rock at depth which is essentially dry. This hot dry rock (HDR) resource is found almost everywhere, but the depth at which usefully high temperatures are reached varies from place to place. The technology to mine the thermal energy from HDR has been under development for a number of years. Using techniques adapted from the petroleum industry, water is pumped at high pressure down an injection well to a region of usefully hot rock. The pressure forces open natural joints to form a reservoir consisting of a small amount of water dispensed in a large volume of hot rock. This reservoir is tapped by second well located at some distance from the first, and the heated water is brought to the surface where its thermal energy is extracted. The same water is then recirculated to mine more heat. Economic studies have indicated that it may be possible to produce electricity at competitive prices today in regions where hot rock is found relatively close to the surface

  1. Hot Jupiters around M dwarfs

    Directory of Open Access Journals (Sweden)

    Murgas F.

    2013-04-01

    Full Text Available The WFCAM Transit Survey (WTS is a near-infrared transit survey running on the United Kingdom Infrared Telescope (UKIRT. We conduct Monte Carlo transit injection and detection simulations for short period (<10 day Jupiter-sized planets to characterize the sensitivity of the survey. We investigate the recovery rate as a function of period and magnitude in 2 hypothetical star-planet cases: M0–2 + hot Jupiter, M2–4 + hot Jupiter. We find that the WTS lightcurves are very sensitive to the presence of Jupiter-sized short-period transiting planets around M dwarfs. The non-detection of a hot-Jupiter around an M dwarf by the WFCAM Transit Survey allows us to place a firm upper limit of 1.9 per cent (at 95 per cent confidence on the planet occurrence rate.

  2. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    AM Girbik; PA Dilorenzo

    2006-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  3. Hot-pressing steatite bodies

    International Nuclear Information System (INIS)

    Aparicio Arroyo, E.

    1967-01-01

    Requirements for some special nuclear engineering ceramic shapes are: big size, impervious, dimensional accuracy and good mechanical and dielectric properties. Limitations of te conventional methods and advantages of te hot pressing techniques for the manufacturing of these shapes are discussed. Hot pressing characteristics of a certain steatite powder are studied. Occurrence of an optimum densification temperature just above the tale decomposition range is found. Experimental data show that the height/diameter ratio of the specimen has no effect on the sintering conditions. Increasing darkness from the graphite mould is detected above the optimum temperature. The hot-pressed steatite is compared with a fired dry-pressed sample of the same composition. (Author) 13 refs

  4. Archaeal Nitrification in Hot Springs

    Science.gov (United States)

    Richter, A.; Daims, H.; Reigstad, L.; Wanek, W.; Wagner, M.; Schleper, C.

    2006-12-01

    Biological nitrification, i.e. the aerobic conversion of ammonia to nitrate via nitrite, is a major component of the global nitrogen cycle. Until recently, it was thought that the ability to aerobically oxidize ammonia was confined to bacteria of the phylum Proteobacteria. However, it has recently been shown that Archaea of the phylum Crenarchaeota are also capable of ammonia oxidation. As many Crenarchaeota are thermophilic or hyperthermophilic, and at least some of them are capable of ammonia oxidation we speculated on the existence of (hyper)thermophilic ammonia-oxidizing archaea (AOA). Using PCR primers specifically targeting the archaeal ammonia monooxygenase (amoA) gene, we were indeed able to confirm the presence of such organisms in several hot springs in Reykjadalur, Iceland. These hot springs exhibited temperatures well above 80 °C and pH values ranging from 2.0 to 4.5. To proof that nitrification actually took place under these extreme conditions, we measured gross nitrification rates by the isotope pool dilution method; we added 15N-labelled nitrate to the mud and followed the dilution of the label by nitrate production from ammonium either in situ (incubation in the hot spring) or under controlled conditions in the laboratory (at 80 °C). The nitrification rates in the hot springs ranged from 0.79 to 2.22 mg nitrate-N per L of mud and day. Controls, in which microorganisms were killed before the incubations, demonstrated that the nitrification was of biological origin. Addition of ammonium increased the gross nitrification rate approximately 3-fold, indicating that the nitrification was ammonium limited under the conditions used. Collectively, our study provides evidence that (1) AOA are present in hot springs and (2) that they are actively nitrifying. These findings have major implications for our understanding of nitrogen cycling of hot environments.

  5. Monopole transitions in hot nuclei

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1994-01-01

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs

  6. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  7. Hot atom chemistry of sulphur

    International Nuclear Information System (INIS)

    Todorovski, D. S.; Koleva, D. P.

    1982-01-01

    An attempt to cover all papers dealing with the hot atom chemistry of sulpphur is made. Publications which: a) only touch the problem, b) contain some data, indirectly connected with sulphur hot atom chemistry, c) deal with 35 S-production from a chloride matrix, are included as well. The author's name and literature source are given in the original language, transcribed, when it is necessary, in latine. A number of primery and secondary documents have been used including Chemical Abstracts, INIS Atomindex, the bibliographies of A. Siuda and J.-P. Adloff for 1973 - 77, etc. (authors)

  8. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1981-12-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design hasis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  9. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1980-09-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design basis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  10. Hot-cell verification facility

    International Nuclear Information System (INIS)

    Eschenbaum, R.A.

    1981-01-01

    The Hot Cell Verification Facility (HCVF) was established as the test facility for the Fuels and Materials Examination Facility (FMEF) examination equipment. HCVF provides a prototypic hot cell environment to check the equipment for functional and remote operation. It also provides actual hands-on training for future FMEF Operators. In its two years of operation, HCVF has already provided data to make significant changes in items prior to final fabrication. It will also shorten the startup time in FMEF since the examination equipment will have been debugged and operated in HCVF

  11. Mesons in the nuclear Medium

    CERN Document Server

    Kotulla, M

    2006-01-01

    We discuss recent experimental results on the modification of hadron properties in a nuclear medium. Particular emphasis is placed on an $\\omega$ production experiment performed by the CBELSA/TAPS collaboration at the ELSA accelerator. The data shows a smaller $\\omega$ meson mass together with a significant increase of its width in the nuclear medium.

  12. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  13. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    Bradshaw, F.W.

    1996-01-01

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  14. On unique parameters and unified formal form of hot-wire anemometric sensor model

    International Nuclear Information System (INIS)

    LigePza, P.

    2005-01-01

    This note reviews the extensively adopted equations used as models of hot-wire anemometric sensors. An unified formal form of the mathematical model of a hot-wire anemometric sensor with otherwise defined parameters is proposed. Those parameters, static and dynamic, have simple physical interpretation and can be easily determined. They show directly the range of sensor application. They determine the metrological properties of the given sensor in the actual medium. Hence, the parameters' values might be ascribed to each sensor in the given medium and be quoted in manufacturers' catalogues, supplementing the sensor specifications. Because of their simple physical interpretation, those parameters allow the direct comparison of the fundamental metrological properties of various sensors and selection of the optimal sensor for the given research measurement application. The parameters are also useful in modeling complex hot-wire systems

  15. Turbulence Heating ObserveR - satellite mission proposal

    NARCIS (Netherlands)

    Vaivads, A.; Retinò, A.; J. Soucek; Yu.V. Khotyaintsev; F. Valentini (Francesco); C.P. Escoubet; O. Alexandrova; M. André; S.D. Bale; M. Balikhin; D. Burgess; E. Camporeale (Enrico); D. Caprioli; C.H.K. Chen; E. Clacey; C.M. Cully; J. De Keyser; J.P. Eastwood; A.N. Fazakerley; S. Eriksson; M.L. Goldstein; D.B. Graham; S. Haaland; M. Hoshino; H. Ji; H. Karimabadi; H. Kucharek; B. Lavraud; F. Marcucci; W.H. Matthaeus; T.E. Moore; R. Nakamura; Y. Narita; Z. Nemecek; C. Norgren; H. Opgenoorth; M. Palmroth; D. Perrone; J.-L. Pinçon; P. Rathsman; H. Rothkaehl; F. Sahraoui; S. Servidio; L. Sorriso-Valvo; R. Vainio; Z. Vörös; R.F. Wimmer-Schweingruber

    2016-01-01

    textabstractThe Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth’s magnetosphere, just to mention a few

  16. Techniques in X-ray Astronomy

    Indian Academy of Sciences (India)

    Kulinder Pal Singh is in the Department of. Astronomy and Astro- physics of the Tata. Institute of Fundamental. Research, Mumbai. His primary fields of research are X-ray studies of hot plasmas in stars, super- nova remnants, galaxies, intergalactic medium in clusters of galaxies, active galactic nuclei, cataclys- mic variables ...

  17. Solar heating and hot water system installed at Listerhill, Alabama

    Science.gov (United States)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  18. Nuclear applications for steam and hot water supply

    International Nuclear Information System (INIS)

    1991-07-01

    An increase in the heat energy needs underlined by the potential increase in fossil fuel prices, particularly in oil supplies, and by the necessity for an improvement of the environment worldwide, as signalized by the IAEA Member States, prompted the decision to start a programme leading to this report. This document is intended to help to identify the experience of Member States where nuclear power plants or specialized nuclear heat plants are employed or envisaged to be used for distribution of steam or hot water to industrial or residential consumers, covering low and medium temperature ranges. 25 refs, 33 figs, 15 tabs

  19. Solar Technician Program Blows Hot

    Science.gov (United States)

    Ziegler, Peg Moran

    1977-01-01

    A training program for solar heating technicians was initiated at Sonoma State College's School of Environmental Studies for CETA applicants. Among the projects designed and built were a solar alternative energy center, a solar hot water system, and a solar greenhouse. (MF)

  20. The design of hot laboratories

    International Nuclear Information System (INIS)

    1976-01-01

    The need for specialized laboratories to handle radioactive substances of high activity has increased greatly due to the expansion of the nuclear power industry and the widespread use of radioisotopes in scientific research and technology. Such laboratories, which are called hot laboratories, are specially designed and equipped to handle radioactive materials of high activity, including plutonium and transplutonium elements. The handling of plutonium and transplutonium elements presents special radiation-protection and safety problems because of their high specific activity and high radiotoxicity. Therefore, the planning, design, construction and operation of hot laboratories must meet the stringent safety, containment, ventilation, shielding, criticality control and fire-protection requirements. The IAEA has published two manuals in its Safety Series, one on the safety aspects of design and equipment of hot laboratories (SS No.30) and the other on the safe handling of plutonium (SS No.39). The purpose of the symposium in Otaniemi was to collect information on recent developments in the safety features of hot laboratories and to review the present state of knowledge. A number of new developments have taken place as the result of growing sophistication in the philosophy of radiation protection as given in the ICRP recommendations (Report No.22) and in the Agency's basic safety standards (No.9). The topics discussed were safety features of planning and design, air cleaning, transfer and transport systems, criticality control, fire protection, radiological protection, waste management, administrative arrangements and operating experience

  1. Interfaces in hot gauge theory

    CERN Document Server

    Bronoff, S.

    1996-01-01

    The string tension at low T and the free energy of domain walls at high T can be computed from one and the same observable. We show by explicit calculation that domain walls in hot Z(2) gauge theory have good thermodynamical behaviour. This is due to roughening of the wall, which expresses the restoration of translational symmetry.

  2. Was the big bang hot

    International Nuclear Information System (INIS)

    Wright, E.L.

    1983-01-01

    The author considers experiments to confirm the substantial deviations from a Planck curve in the Woody and Richards spectrum of the microwave background, and search for conducting needles in our galaxy. Spectral deviations and needle-shaped grains are expected for a cold Big Bang, but are not required by a hot Big Bang. (Auth.)

  3. A new hot pressing technique

    International Nuclear Information System (INIS)

    Carcey, J.

    1975-01-01

    An original hot pressing method which may be applied to ceramics, metals, and refractory powders is described. The products obtained are fine grained polycristalline materials, with homogeneous structure, very high density, unstrained and of very large dimensions (several square meters). This process equally applies to composite materials including powders, fibers, etc.. [fr

  4. Hot atom chemistry of carbon

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1975-01-01

    The chemistry of energetic carbon atoms is discussed. The experimental approach to studies that have been carried out is described and the mechanistic framework of hot carbon atom reactions is considered in some detail. Finally, the direction that future work might take is examined, including the relationship of experimental to theoretical work. (author)

  5. [The interaction of soil micromycetes with "hot" particles in a model system].

    Science.gov (United States)

    Zhdanova, N N; Lashko, T N; Redchits, T I; Vasilevskaia, A I; Borisiuk, L G; Siniavskaia, O I; Gavriliuk, V I; Muzalev, P N

    1991-01-01

    A model system which permits observing for a long time and fixing interaction of fungi with a radiation source has been created on the basis of an isolated "hot" particle, deficient mineral medium (saccharose content 60 mg/l) and suspension of fungal conidia. Five species (six strains) of micromycetes isolated from radionuclide-contaminated soils and fifteen "hot" particles have been tested. It has been found out for the first time that Cladosporium cladosporioides and Penicillium roseo-purpureum are able actively overgrow "hot" particles whose radioactivity did not exceed 3.1-1.0(-7) Ci by gamma-spectrum and to destroy them 50-150 days later. Certain changes in morphology of fungi-destructors of "hot" particles are revealed. A problem on ecological significance of the found phenomenon is discussed.

  6. The effects of hot nights on mortality in Barcelona, Spain

    Science.gov (United States)

    Royé, D.

    2017-12-01

    Heat-related effects on mortality have been widely analyzed using maximum and minimum temperatures as exposure variables. Nevertheless, the main focus is usually on the former with the minimum temperature being limited in use as far as human health effects are concerned. Therefore, new thermal indices were used in this research to describe the duration of night hours with air temperatures higher than the 95% percentile of the minimum temperature (hot night hours) and intensity as the summation of these air temperatures in degrees (hot night degrees). An exposure-response relationship between mortality due to natural, respiratory, and cardiovascular causes and summer night temperatures was assessed using data from the Barcelona region between 2003 and 2013. The non-linear relationship between the exposure and response variables was modeled using a distributed lag non-linear model. The estimated associations for both exposure variables and mortality shows a relationship with high and medium values that persist significantly up to a lag of 1-2 days. In mortality due to natural causes, an increase of 1.1% per 10% (CI95% 0.6-1.5) for hot night hours and 5.8% per each 10° (CI95% 3.5-8.2%) for hot night degrees is observed. The effects of hot night hours reach their maximum with 100% and lead to an increase by 9.2% (CI95% 5.3-13.1%). The hourly description of night heat effects reduced to a single indicator in duration and intensity is a new approach and shows a different perspective and significant heat-related effects on human health.

  7. THE SOCIAL MEDIA IMPACT ON SMALL AND MEDIUM SIZED BUSINESSES

    OpenAIRE

    Mihai Alexandru Constantin Logofatu

    2012-01-01

    This paper aims to be a short introduction to social media and discusses on few ways in which small and medium sized businesses in Romania can take advantage of this hot topic. Through the use of social media every company can reach a global audience with less effort, time and money. In a world shaped more and more around social platforms the customer behaviour has completely and forever changed and those leaders and organizations that understand and embrace this new type of communication, co...

  8. Pions in the nuclear medium

    International Nuclear Information System (INIS)

    Chanfray, G.

    1996-07-01

    We discuss various aspects of pion physics in the nuclear medium. We first study s-wave pion-nucleus interaction in connection with chiral symmetry restoration and quark condensate in the nuclear medium. We then address the question of p-wave pion-nucleus interaction and collective pionic modes in nuclei and draw the consequences for in medium ππ correlations especially in the scalar-isoscalar channel. We finally discuss the modification of the rho meson mass spectrum at finite density and/or temperature in connection with relativistic heavy ion collisions

  9. Absorption systems at z ˜ 2 as a probe of the circum galactic medium: a probabilistic approach

    Science.gov (United States)

    Mongardi, C.; Viel, M.; D'Odorico, V.; Kim, T.-S.; Barai, P.; Murante, G.; Monaco, P.

    2018-05-01

    We characterize the properties of the intergalactic medium (IGM) around a sample of galaxies extracted from state-of-the-art hydrodynamical simulations of structure formation in a cosmological volume of 25 Mpc comoving at z ˜ 2. The simulations are based on two different sub-resolution schemes for star formation and supernova feedback: the MUlti-Phase Particle Integrator (MUPPI) scheme and the Effective Model. We develop a quantitative and probabilistic analysis based on the apparent optical depth method of the properties of the absorbers as a function of impact parameter from their nearby galaxies: in such a way we probe different environments from circumgalactic medium (CGM) to low density filaments. Absorbers' properties are then compared with a spectroscopic observational data set obtained from high resolution quasar spectra. Our main focus is on the NCIV - NHI relation around simulated galaxies: the results obtained with MUPPI and the Effective model are remarkably similar, with small differences only confined to regions at impact parameters b = [1 - 3] × rvir. Using {C IV} as a tracer of the metallicity, we obtain evidence that the observed metal absorption systems have the highest probability to be confined in a region of 150-400 kpc around galaxies. Near-filament environments have instead metallicities too low to be probed by present-day telescopes, but could be probed by future spectroscopical studies. Finally we compute {C IV} covering fractions which are in agreement with observational data.

  10. Hot Flashes amd Night Sweats (PDQ)

    Science.gov (United States)

    ... Professionals Questions to Ask about Your Treatment Research Hot Flashes and Night Sweats (PDQ®)–Patient Version Overview ... quality of life in many patients with cancer. Hot flashes and night sweats may be side effects ...

  11. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    Bart, G.; Blanc, J.Y.; Duwe, R.

    2003-01-01

    The European Working Group on ' Hot Laboratories and Remote Handling' is firmly established as the major contact forum for the nuclear R and D facilities at the European scale. The yearly plenary meetings intend to: - Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research; - Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling; - Promote normalization and co-operation, e.g., by looking at mutual complementarities; - Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The 41. plenary meeting was held in CEA Saclay from September 22 to 24, 2003 in the premises and with the technical support of the INSTN (National Institute for Nuclear Science and Technology). The Nuclear Energy Division of CEA sponsored it. The Saclay meeting was divided in three topical oral sessions covering: - Post irradiation examination: new analysis methods and methodologies, small specimen technology, programmes and results; - Hot laboratory infrastructure: decommissioning, refurbishment, waste, safety, nuclear transports; - Prospective research on materials for future applications: innovative fuels (Generation IV, HTR, transmutation, ADS), spallation source materials, and candidate materials for fusion reactor. A poster session was opened to transport companies and laboratory suppliers. The meeting addressed in three sessions the following items: Session 1 - Post Irradiation Examinations. Out of 12 papers (including 1 poster) 7 dealt with surface and solid state micro analysis, another one with an equally complex wet chemical instrumental analytical technique, while the other four papers (including the poster) presented new concepts for digital x-ray image analysis; Session 2 - Hot laboratory infrastructure (including waste theme) which was

  12. X-ray and SZ constraints on the properties of hot CGM

    Science.gov (United States)

    Singh, Priyanka; Majumdar, Subhabrata; Nath, Biman B.; Silk, Joseph

    2018-05-01

    We use observations of stacked X-ray luminosity and Sunyaev-Zel'dovich (SZ) signal from a cosmological sample of ˜80, 000 and 104,000 massive galaxies, respectively, with 1012.6 ≲ M500 ≲ 1013M⊙ and mean redshift, z¯ ˜ 0.1 - 0.14 to constrain the hot Circumgalactic Medium (CGM) density and temperature. The X-ray luminosities constrain the density and hot CGM mass, while the SZ signal helps in breaking the density-temperature degeneracy. We consider a simple power-law density distribution (ne∝r-3β) as well as a hydrostatic hot halo model, with the gas assumed to be isothermal in both cases. The datasets are best described by the mean hot CGM profile ∝r-1.2, which is shallower than an NFW profile. For halo virial mass ˜1012 - 1013M⊙, the hot CGM contains ˜ 20 - 30% of galactic baryonic mass for the power-law model and 4 - 11% for the hydrostatic halo model, within the virial radii. For the power-law model, the hot CGM profile broadly agrees with observations of the Milky Way. The mean hot CGM mass is comparable to or larger than the mass contained in other phases of the CGM for L* galaxies.

  13. Cosmic ray diffusion in a violent interstellar medium

    International Nuclear Information System (INIS)

    Bykov, A.M.; Toptygin, I.N.

    1985-01-01

    A variety of the avaiable observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM

  14. OUT Success Stories: Solar Hot Water Technology

    International Nuclear Information System (INIS)

    Clyne, R.

    2000-01-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building

  15. OUT Success Stories: Solar Hot Water Technology

    Science.gov (United States)

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  16. Medium modifications of vector mesons

    International Nuclear Information System (INIS)

    Pant, L.M.

    2004-01-01

    The omega photoproduction in nuclear medium with the ELSA facility at Bonn and the present status of the HADES collaboration to investigate the in-medium hadron properties in proton, heavy ions and hadron induced reactions at GSI, Darmstadt are presented. Efforts are under way to utilise the electron beam at Indore for experimental hadron physics in order to step into the intermediate energy nuclear physics regime. The skeletal outline of the high energy electron beam now available at CAT, Indore is discussed

  17. Medium effects in direct reactions

    International Nuclear Information System (INIS)

    Karakoc, M; Bertulani, C

    2013-01-01

    We discuss medium corrections of the nucleon-nucleon (NN) cross sections and their influence on direct reactions at intermediate energies ≳50 MeV/nucleon. The results obtained with free NN cross sections are compared with those obtained with a geometrical treatment of Pauli-blocking and Dirac-Bruecker methods. We show that medium corrections may lead to sizable modifications for collisions at intermediate energies and that they are more pronounced in reactions involving weakly bound nuclei.

  18. Medium Deep High Temperature Heat Storage

    Science.gov (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  19. Recent trend of administration on hot springs

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Shigeru [Environment Agency, Tokyo (Japan)

    1989-01-01

    The Environmental Agency exercises jurisdiction over Hot Spring Act, and plans to protect the source of the hot spring and to utilize it appropriately. From the aspect of utilization, hot springs are widely used as a means to remedy chronic diseases and tourist spots besides places for recuperation and repose. Statistics on Japanese hot springs showed that the number of hot spring spots and utilized-fountainhead increased in 1987, compared with the number in 1986. Considering the utilized-headspring, the number of naturally well-out springs has stabilized for 10 years while power-operated springs have increased. This is because the demand of hot springs has grown as the number of users has increased. Another reason is to keep the amount of hot water by setting up the power facility as the welled-out amount has decreased. Major point of recent administration on the hot spring is to permit excavation and utilization of hot springs. Designation of National hot spring health resorts started in 1954 in order to ensure the effective and original use of hot springs and to promote the public use of them, for the purpose of arranging the sound circumstances of hot springs. By 1988, 76 places were designated. 4 figs., 3 tabs.

  20. Hot sample archiving. Revision 3

    International Nuclear Information System (INIS)

    McVey, C.B.

    1995-01-01

    This Engineering Study revision evaluated the alternatives to provide tank waste characterization analytical samples for a time period as recommended by the Tank Waste Remediation Systems Program. The recommendation of storing 40 ml segment samples for a period of approximately 18 months (6 months past the approval date of the Tank Characterization Report) and then composite the core segment material in 125 ml containers for a period of five years. The study considers storage at 222-S facility. It was determined that the critical storage problem was in the hot cell area. The 40 ml sample container has enough material for approximately 3 times the required amount for a complete laboratory re-analysis. The final result is that 222-S can meet the sample archive storage requirements. During the 100% capture rate the capacity is exceeded in the hot cell area, but quick, inexpensive options are available to meet the requirements

  1. An Empirical Determination of the Intergalactic Background Light Using Near-Infrared Deep Galaxy Survey Data Out to 5 Micrometers and the Gamma-Ray Opacity of the Universe

    Science.gov (United States)

    Scully, Sean T.; Malkan, Matthew A.; Stecker, Floyd W.

    2014-01-01

    We extend our previous model-independent determination of the intergalactic background light, based purely on galaxy survey data, out to a wavelength of 5 micrometers. Our approach enables us to constrain the range of photon densities, based on the uncertainties from observationally determined luminosity densities and colors. We further determine a 68% confidence upper and lower limit on the opacity of the universe to gamma-rays up to energies of 1.6/(1 + z) terraelectron volts. A comparison of our lower limit redshift-dependent opacity curves to the opacity limits derived from the results of both ground-based air Cerenkov telescope and Fermi-LAT observations of PKS 1424+240 allows us to place a new upper limit on the redshift of this source, independent of IBL modeling.

  2. Models of hot stellar systems

    International Nuclear Information System (INIS)

    Van Albada, T.S.

    1986-01-01

    Elliptical galaxies consist almost entirely of stars. Sites of recent star formation are rare, and most stars are believed to be several billion years old, perhaps as old as the Universe itself (--10/sup 10/ yrs). Stellar motions in ellipticals show a modest amount of circulation about the center of the system, but most support against the force of gravity is provided by random motions; for this reason ellipticals are called 'hot' stellar systems. Spiral galaxies usually also contain an appreciable amount of gas (--10%, mainly atomic hydrogen) and new stars are continually being formed out of this gas, especially in the spiral arms. In contrast to ellipticals, support against gravity in spiral galaxies comes almost entirely from rotation; random motions of the stars with respect to rotation are small. Consequently, spiral galaxies are called 'cold' stellar systems. Other than in hot systems, in cold systems the collective response of stars to variations in the force field is an essential part of the dynamics. The present overview is limited to mathematical models of hot systems. Computational methods are also discussed

  3. A hot air driven thermoacoustic-Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-09-15

    Significant energy savings can be obtained by implementing a thermally driven heat pump into industrial or domestic applications. Such a thermally driven heat pump uses heat from a high-temperature source to drive the system which upgrades an abundantly available heat source (industrial waste heat, air, water, geothermal). A way to do this is by coupling a thermoacoustic engine with a thermoacoustic heat pump. The engine is driven by a burner and produces acoustic power and heat at the required temperature. The acoustic power is used to pump heat in the heat pump to the required temperature. This system is attractive since it uses a noble gas as working medium and has no moving mechanical parts. This paper deals with the first part of this system: the engine. In this study, hot air is used to simulate the flue gases originating from a gas burner. This is in contrast with a lot of other studies of thermoacoustic engines that use an electrical heater as heat source. Using hot air resembles to a larger extent the real world application. The engine produces about 300W of acoustic power with a performance of 41% of the Carnot efficiency at a hot air temperature of 620C.

  4. ESA uncovers Geminga's `hot spot'

    Science.gov (United States)

    2004-07-01

    16 July 2004 Astronomers using ESA’s X-ray observatory XMM-Newton have detected a small, bright ‘hot spot’ on the surface of the neutron star called Geminga, 500 light-years away. The hot spot is the size of a football field and is caused by the same mechanism producing Geminga’s X-ray tails. This discovery identifies the missing link between the X-ray and gamma-ray emission from Geminga. hi-res Size hi-res: 1284 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot This figure shows the effects of charged particles accelerated in the magnetosphere of Geminga. Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of particles kicked out by Geminga’s strong magnetic field, trail the neutron star as it moves about in space. Panel (b) shows how electrically charged particles interact with Geminga’s magnetic field. For example, if electrons (blue) are kicked out by the star, positrons (in red) hit the star’s magnetic poles like in an ‘own goal’. Panel (c) illustrates the size of Geminga’s magnetic field (blue) compared to that of the star itself at the centre (purple). The magnetic field is tilted with respect to Geminga’s rotation axis (red). Panel (d) shows the magnetic poles of Geminga, where charged particles hit the surface of the star, creating a two-million degrees hot spot, a region much hotter than the surroundings. As the star spins on its rotation axis, the hot spot comes into view and then disappears, causing the periodic colour change seen by XMM-Newton. An animated version of the entire sequence can be found at: Click here for animated GIF [low resolution, animated GIF, 5536 KB] Click here for AVI [high resolution, AVI with DIVX compression, 19128 KB] hi-res Size hi-res: 371 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot, panel (a) Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of

  5. Computational prediction of protein hot spot residues.

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2012-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues.

  6. Computational Prediction of Hot Spot Residues

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2013-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues. PMID:22316154

  7. From supernovae to galaxy clusters : observing the chemical enrichment in the hot intra-cluster medium

    NARCIS (Netherlands)

    Mernier, F.D.M.

    2017-01-01

    Whereas the extreme conditions of the first minutes after the Big Bang have produced nearly all the hydrogen and helium in the Universe, heavier elements - or metals - are synthesised in the core of stars and in supernova explosions. Currently, however, the behaviour of supernovae (and their stellar

  8. Hot nuclei and search for multifragmentation in medium-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Doubre, H.

    1988-01-01

    Some recent determinations of the excitation energies and temperatures of composite systems formed in intermediate-energy heavy-ion collisions are described and the issue of a limiting temperature is discussed. Several examples of experimental investigations of an eventual occurrence of a multifragmentation process are also described

  9. Interaction of clouds with the hot interstellar medium (HIM) and cosmic rays

    International Nuclear Information System (INIS)

    Voelk, H.J.

    1983-01-01

    The modification, by cosmic rays, of the interaction of interstellar clouds with the ambient HIM is considered. Small clouds should still evaporate and thereby exclude cosmic rays if they do so without cosmic rays. The possible mass accretion of massice clouds is reduced by the pressure of the compressed cosmic rays. The consequences for diffuse galactic #betta#-ray emisison are discussed. (orig.)

  10. Investigation on the intense fringe formation phenomenon downstream hot-image plane.

    Science.gov (United States)

    Hu, Yonghua; Li, Guohui; Zhang, Lifu; Huang, Wenti; Chen, Shuming

    2015-11-30

    The propagation of a high-power flat-topped Gaussian beam, which is modulated by three parallel wirelike scatterers, passing through a downstream Kerr medium slab and free spaces is investigated. A new phenomenon is found that a kind of intense fringe with intensity several times that of the incident beam can be formed in a plane downstream the Kerr medium. This kind of intense fringe is another result in the propagation process of nonlinear imaging and it locates scores of centimeters downstream the predicted hot image plane. Moreover, the intensity of this fringe can achieve the magnitude of that of hot image in corresponding single-scatterer case, and this phenomenon can arise only under certain conditions. As for the corresponding hot images, they are also formed but largely suppressed. The cause of the formation of such an intense fringe is analyzed and found related to interference in the free space downstream the Kerr medium. Moreover, the ways it is influenced by some important factors such as the wavelength of incident beam and the properties of scatterers and Kerr medium are discussed, and some important properties and relations are revealed.

  11. Properties of the nuclear medium

    International Nuclear Information System (INIS)

    Baldo, M; Burgio, G F

    2012-01-01

    We review our knowledge on the properties of the nuclear medium that have been studied, over many years, on the basis of many-body theory, laboratory experiments and astrophysical observations. Throughout the presentation particular emphasis is placed on the possible relationship and links between the nuclear medium and the structure of nuclei, including the limitations of such an approach. First we consider the realm of phenomenological laboratory data and astrophysical observations and the hints they can give on the characteristics that the nuclear medium should possess. The analysis is based on phenomenological models, that however have a strong basis on physical intuition and an impressive success. More microscopic models are also considered, and it is shown that they are able to give invaluable information on the nuclear medium, in particular on its equation of state. The interplay between laboratory experiments and astrophysical observations is particularly stressed, and it is shown how their complementarity enormously enriches our insights into the structure of the nuclear medium. We then introduce the nucleon–nucleon interaction and the microscopic many-body theory of nuclear matter, with a critical discussion about the different approaches and their results. The Landau–Fermi liquid theory is introduced and briefly discussed, and it is shown how fruitful it can be in discussing the macroscopic and low-energy properties of the nuclear medium. As an illustrative example, we discuss neutron matter at very low density, and it is shown how it can be treated within the many-body theory. The general bulk properties of the nuclear medium are reviewed to indicate at which stage of our knowledge we stand, taking into account the most recent developments both in theory and experiments. A section is dedicated to the pairing problem. The connection with nuclear structure is then discussed, on the basis of the energy density functional method. The possibility of

  12. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    2007-01-01

    The Opening talk of the workshop 'Hot Laboratories and Remote Handling' was given by Marin Ciocanescu with the communication 'Overview of R and D Program in Romanian Institute for Nuclear Research'. The works of the meeting were structured into three sections addressing the following items: Session 1. Hot cell facilities: Infrastructure, Refurbishment, Decommissioning; Session 2. Waste, transport, safety and remote handling issues; Session 3. Post-Irradiation examination techniques. In the frame of Section 1 the communication 'Overview of hot cell facilities in South Africa' by Wouter Klopper, Willie van Greunen et al, was presented. In the framework of the second session there were given the following four communications: 'The irradiated elements cell at PHENIX' by Laurent Breton et al., 'Development of remote equipment for DUPIC fuel fabrication at KAERI', by Jung Won Lee et al., 'Aspects of working with manipulators and small samples in an αβγ-box, by Robert Zubler et al., and 'The GIOCONDA experience of the Joint Research Centre Ispra: analysis of the experimental assemblies finalized to their safe recovery and dismantling', by Roberto Covini. Finally, in the framework of the third section the following five communications were presented: 'PIE of a CANDU fuel element irradiated for a load following test in the INR TRIGA reactor' by Marcel Parvan et al., 'Adaptation of the pole figure measurement to the irradiated items from zirconium alloys' by Yury Goncharenko et al., 'Fuel rod profilometry with a laser scan micrometer' by Daniel Kuster et al., 'Raman spectroscopy, a new facility at LECI laboratory to investigate neutron damage in irradiated materials' by Lionel Gosmain et al., and 'Analysis of complex nuclear materials with the PSI shielded analytical instruments' by Didier Gavillet. In addition, eleven more presentations were given as posters. Their titles were: 'Presentation of CETAMA activities (CEA analytic group)' by Alain Hanssens et al. 'Analysis of

  13. Hot flashes and sleep in women.

    Science.gov (United States)

    Moe, Karen E

    2004-12-01

    Sleep disturbances during menopause are often attributed to nocturnal hot flashes and 'sweats' associated with changing hormone patterns. This paper is a comprehensive critical review of the research on the relationship between sleep disturbance and hot flashes in women. Numerous studies have found a relationship between self-reported hot flashes and sleep complaints. However, hot flash studies using objective sleep assessment techniques such as polysomnography, actigraphy, or quantitative analysis of the sleep EEG are surprisingly scarce and have yielded somewhat mixed results. Much of this limited evidence suggests that hot flashes are associated with objectively identified sleep disruption in at least some women. At least some of the negative data may be due to methodological issues such as reliance upon problematic self-reports of nocturnal hot flashes and a lack of concurrent measures of hot flashes and sleep. The recent development of a reliable and non-intrusive method for objectively identifying hot flashes during the night should help address the need for substantial additional research in this area. Several areas of clinical relevance are described, including the effects of discontinuing combined hormone therapy (estrogen plus progesterone) or estrogen-only therapy, the possibility of hot flashes continuing for many years after menopause, and the link between hot flashes and depression.

  14. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  15. Hot moons and cool stars

    Directory of Open Access Journals (Sweden)

    Heller René

    2013-04-01

    Full Text Available The exquisite photometric precision of the Kepler space telescope now puts the detection of extrasolar moons at the horizon. Here, we firstly review observational and analytical techniques that have recently been proposed to find exomoons. Secondly, we discuss the prospects of characterizing potentially habitable extrasolar satellites. With moons being much more numerous than planets in the solar system and with most exoplanets found in the stellar habitable zone being gas giants, habitable moons could be as abundant as habitable planets. However, satellites orbiting planets in the habitable zones of cool stars will encounter strong tidal heating and likely appear as hot moons.

  16. 1 Medium Regiment, (SAHA), SAA

    African Journals Online (AJOL)

    Scientia Militaria: South African Journal of Military Studies. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 16, No 4 (1986) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. 1 Medium Regiment, (S.A.H.A.), ...

  17. Hadron photoproduction at medium energy

    International Nuclear Information System (INIS)

    Dainton, J.B.

    1985-04-01

    Results from measurements of multibody photoproduction at medium incident photon energy (2.8 to 4.8 GeV) are presented and discussed. Particular emphasis is placed on topics which are not well understood and which therefore motivate experiments with the upgraded electron accelerator and storage ring ELSA at the University of Bonn, FR Germany. (author)

  18. Animal Locomotion in Different Mediums

    Indian Academy of Sciences (India)

    Wetlands are repositories of unique biodiversity. Wetlandorganisms are well adapted to their habitat, lying at theinterface of aquatic and terrestrial environments. In order tounderstand their adaptations in a better way, it is essential tograsp the basic properties of the medium in which variousorganisms live. This is attempted ...

  19. Hot tearing studies in AA5182

    Science.gov (United States)

    van Haaften, W. M.; Kool, W. H.; Katgerman, L.

    2002-10-01

    One of the major problems during direct chill (DC) casting is hot tearing. These tears initiate during solidification of the alloy and may run through the entire ingot. To study the hot tearing mechanism, tensile tests were carried out in semisolid state and at low strain rates, and crack propagation was studied in situ by scanning electron microscopy (SEM). These experimentally induced cracks were compared with hot tears developed in an AA5182 ingot during a casting trial in an industrial research facility. Similarities in the microstructure of the tensile test specimens and the hot tears indicate that hot tearing can be simulated by performing tensile tests at semisolid temperatures. The experimental data were compared with existing hot tearing models and it was concluded that the latter are restricted to relatively high liquid fractions because they do not take into account the existence of solid bridges in the crack.

  20. Menopausal Hot Flashes and White Matter Hyperintensities

    Science.gov (United States)

    Thurston, Rebecca C.; Aizenstein, Howard J.; Derby, Carol A.; Sejdić, Ervin; Maki, Pauline M.

    2015-01-01

    Objective Hot flashes are the classic menopausal symptom. Emerging data links hot flashes to cardiovascular disease (CVD) risk, yet how hot flashes are related to brain health is poorly understood. We examined the relationship between hot flashes - measured via physiologic monitor and self-report - and white matter hyperintensities (WMH) among midlife women. Methods Twenty midlife women ages 40-60 without clinical CVD, with their uterus and both ovaries, and not taking hormone therapy were recruited. Women underwent 24 hours of ambulatory physiologic and diary hot flash monitoring to quantify hot flashes; magnetic resonance imaging to assess WMH burden; 72 hours of actigraphy and questionnaires to quantify sleep; and a blood draw, questionnaires, and physical measures to quantify demographics and CVD risk factors. Test of a priori hypotheses regarding relations between physiologically-monitored and self-reported wake and sleep hot flashes and WMH were conducted in linear regression models. Results More physiologically-monitored hot flashes during sleep were associated with greater WMH, controlling for age, race, and body mass index [beta(standard error)=.0002 (.0001), p=.03]. Findings persisted controlling for sleep characteristics and additional CVD risk factors. No relations were observed for self-reported hot flashes. Conclusions More physiologically-monitored hot flashes during sleep were associated with greater WMH burden among midlife women free of clinical CVD. Results suggest that relations between hot flashes and CVD risk observed in the periphery may extend to the brain. Future work should consider the unique role of sleep hot flashes in brain health. PMID:26057822

  1. Microplasticity in hot-pressed beryllium

    International Nuclear Information System (INIS)

    Plane, D.C.; Bonfield, W.

    1977-01-01

    Closed hysteresis loops measured in the microstrain region of hot pressed, commercially pure, polycrystalline beryllium are correlated with a dislocation - impurity atom, energy dissipating mechanism. (author)

  2. Line Heat-Source Guarded Hot Plate

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. This facility provides for absolute measurement of thermal...

  3. Sanitary hot water; Eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Cegibat, the information-recommendation agency of Gaz de France for building engineering professionals, has organized this conference meeting on sanitary hot water to present the solutions proposed by Gaz de France to meet its clients requirements in terms of water quality, comfort, energy conservation and respect of the environment: quantitative aspects of the hot water needs, qualitative aspects, presentation of the Dolce Vita offer for residential buildings, gas water heaters and boilers, combined solar-thermal/natural gas solutions, key-specifications of hot water distribution systems, testimony: implementation of a gas hot water reservoir and two accumulation boilers in an apartment building for young workers. (J.S.)

  4. Absorption of X-rays in the interstellar medium

    International Nuclear Information System (INIS)

    Ride, S.K.; Stanford Univ., Calif.; Walker, A.B.C. Jr.; Stanford Univ., Calif.

    1977-01-01

    In order to interpret soft X-ray spectra of cosmic X-ray sources, it is necessary to know the photoabsorption cross-section of the intervening interstellar material. Current models suggest that the interstellar medium contains two phases which make a substantial contribution to the X-ray opacity: cool, relatively dense clouds that exist in pressure equilibrium with hot, tenuous intercloud regions. We have computed the soft X-ray photoabsorption cross-section (per hydrogen atom) of each of these two phases. The calculation are based on a model of the interstellar medium which includes chemical evolution of the galaxy, the formation of molecules and grains, and the ionization structure of each of each phase. These cross-sections of clouds and of intercloud regions can be combined to yield the total soft X-ray photoabsorption cross-section of the interstellar medium. By choosing the appropriate linear combination of cloud and intercloud cross-sections, we can tailor the total cross-section to a particular line-of-sight. This approach, coupled with our interstellar model, enables us to better describe a wide range of interstellar features such as H II regions, dense (molecular) clouds, or the ionized clouds which may surround binary X-ray sources. (orig.) [de

  5. Holographic Renormalization in Dense Medium

    International Nuclear Information System (INIS)

    Park, Chanyong

    2014-01-01

    The holographic renormalization of a charged black brane with or without a dilaton field, whose dual field theory describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space

  6. Medium modifications with recoil polarization

    Energy Technology Data Exchange (ETDEWEB)

    Brand, J.F.J. van den [Nationaal Instituut voor Kernfysica en Hoge Energiefysica, Amsterdam (Netherlands); Ent, R. [CEBAF, Newport News, VA (United States)

    1994-04-01

    The authors show that the virtual Compton scattering process allows for a precise study of the off-shell electron-nucleon vertex. In a separable model, they show the sensitivity to new unconstrained structure functions of the nucleon, beyond the usual Dirac and Pauli form factors. In addition, they show the sensitivity to bound nucleon form factors using the reaction 4He({rvec e},e{prime},{rvec p}){sup 3}H. A nucleon embedded in a nucleus represents a complex system. Firstly, the bound nucleon is necessarily off-shell and in principle a complete understanding of the dynamical structure of the nucleon is required in order to calculate its off-shell electromagnetic interaction. Secondly, one faces the possibility of genuine medium effects, such as for example quark-exchange contributions. Furthermore, the electromagnetic coupling to the bound nucleon is dependent on the nuclear dynamics through the self-energy of the nucleon in the nuclear medium.

  7. Medium modifications with recoil polarization

    International Nuclear Information System (INIS)

    Brand, J.F.J. van den; Ent, R.

    1994-01-01

    The authors show that the virtual Compton scattering process allows for a precise study of the off-shell electron-nucleon vertex. In a separable model, they show the sensitivity to new unconstrained structure functions of the nucleon, beyond the usual Dirac and Pauli form factors. In addition, they show the sensitivity to bound nucleon form factors using the reaction 4He(rvec e,e',rvec p) 3 H. A nucleon embedded in a nucleus represents a complex system. Firstly, the bound nucleon is necessarily off-shell and in principle a complete understanding of the dynamical structure of the nucleon is required in order to calculate its off-shell electromagnetic interaction. Secondly, one faces the possibility of genuine medium effects, such as for example quark-exchange contributions. Furthermore, the electromagnetic coupling to the bound nucleon is dependent on the nuclear dynamics through the self-energy of the nucleon in the nuclear medium

  8. Medium Theory and Social Systems

    DEFF Research Database (Denmark)

    Tække, Jesper

      the  possibility  for  observation both of a social micro and a social macro level from a medium perspective. In the next  section  the paper  frames  the macro  level by  a  tentative  synthesis of  the medium  theory  and  the  sociological systems theory briefly describing a socio......-evolutionary process where new media alter  the societal capacity to handle complexity  in  time and space.  In  this section it becomes probable  that  by  means  of  different  media,  social  systems  give  different  possibilities  for  actual  social  performance.  In a way,  social  systems  themselves can be......  seen as medium  for  formation. Finally  the  paper  takes  the micro  level  perspective  by  applying  the  theory  to  newsgroups,  interpreting  them as self-organizing interactive systems giving a differentiated and diversified scope for social  inclusion.  ...

  9. Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard

    Science.gov (United States)

    Nadir Ayrilimis; Jerrold E. Winandy

    2009-01-01

    A series of commercially manufactured medium density fiberboard (MDF) panels were exposed to a post-manufacture heat-treatment at various temperatures and durations using a hot press and just enough pressure to ensure firm contact between the panel and the press platens. Post-manufacture heat-treatment improved surface roughness of the exterior MDF panels. Panels...

  10. Handbook of hot atom chemistry

    International Nuclear Information System (INIS)

    Adloff, J.P.; Matsuura, Tatsuo; Yoshihara, Kenji

    1992-01-01

    Hot atom chemistry is an increasingly important field, which has contributed significantly to our understanding of many fundamental processes and reactions. Its techniques have become firmly entrenched in numerous disciplines, such as applied physics, biomedical research, and all fields of chemistry. Written by leading experts, this comprehensive handbook encompasses a broad range of topics. Each chapter comprises a collection of stimulating essays, given an in-depth account of the state-of-the-art of the field, and stressing opportunities for future work. An extensive introduction to the whole area, this book provides unique insight into a vast subject, and a clear delineation of its goals, techniques, and recent findings. It also contains detailed discussions of applications in fields as diverse as nuclear medicine, geochemistry, reactor technology, and the chemistry of comets and interstellar grains. (orig.)

  11. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  12. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  13. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  14. Medium energy ion scattering (MEIS)

    International Nuclear Information System (INIS)

    Dittmann, K.; Markwitz, A.

    2009-01-01

    This report gives an overview about the technique and experimental study of medium energy ion scattering (MEIS) as a quantitative technique to determine and analyse the composition and geometrical structure of crystalline surfaces and near surface-layers by measuring the energy and yield of the backscattered ions. The use of a lower energy range of 50 to 500 keV accelerated ions impinging onto the target surface and the application of a high-resolution electrostatic energy analyser (ESA) makes medium energy ion scattering spectroscopy into a high depth resolution and surface-sensitive version of RBS with less resulting damage effects. This report details the first steps of research in that field of measurement technology using medium energetic backscattered ions detected by means of a semiconductor radiation detector instead of an ESA. The study of medium energy ion scattering (MEIS) has been performed using the 40 keV industrial ion implanter established at GNS Sciences remodelled with supplementary high voltage insulation for the ion source in order to apply voltages up to 45 kV, extra apertures installed in the beamline and sample chamber in order to set the beam diameter accurately, and a semiconductor radiation detector. For measurement purposes a beam of positive charged helium ions accelerated to an energy of about 80 keV has been used impinging onto target surfaces of lead implanted into silicon (PbSi), scandium implanted into aluminium (ScAl), aluminium foil (Al) and glassy carbon (C). First results show that it is possible to use the upgraded industrial implanter for medium energy ion scattering. The beam of 4 He 2+ with an energy up to 88 keV has been focussed to 1 mm in diameter. The 5 nA ion beam hit the samples under 2 x 10 -8 mbar. The results using the surface barrier detector show scattering events from the samples. Cooling of the detector to liquid nitrogen temperatures reduced the electronic noise in the backscattering spectrum close to zero. A

  15. THE STRUCTURE OF THE CIRCUMGALACTIC MEDIUM OF GALAXIES: COOL ACCRETION INFLOW AROUND NGC 1097

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, David V.; Jenkins, Edward B. [Princeton University Observatory, Ivy Lane, Princeton, NJ 08544 (United States); Chelouche, Doron [Department of Physics, University of Haifa, Mount Carmel, Haifa 31905 (Israel); Tripp, Todd M. [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Pettini, Max [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0EZ (United Kingdom); York, Donald G. [Department of Astronomy and Astrophysics, University of Chicago, Enrico Fermi Institute, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Frye, Brenda L. [Department of Astronomy/Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-07-20

    We present Hubble Space Telescope far-UV spectra of four QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of ρ = 48–165 kpc. NGC 1097 is a nearby spiral galaxy that has undergone at least two minor merger events, but no apparent major mergers, and is relatively isolated with respect to other nearby bright galaxies. This makes NGC 1097 a good case study for exploring baryons in a paradigmatic bright-galaxy halo. Ly α absorption is detected along all sightlines and Si iii λ 1206 is found along the three sightlines with the smallest ρ ; metal lines of C ii, Si ii, and Si iv are only found with certainty toward the innermost sightline. The kinematics of the absorption lines are best replicated by a model with a disk-like distribution of gas approximately planar to the observed 21 cm H i disk, which is rotating more slowly than the inner disk, and into which gas is infalling from the intergalactic medium. Some part of the absorption toward the innermost sightline may arise either from a small-scale outflow or from tidal debris associated with the minor merger that gives rise to the well known “dog-leg” stellar stream that projects from NGC 1097. When compared to other studies, NGC 1097 appears to be a “typical” absorber, although the large dispersion in absorption line column density and equivalent width in a single halo goes perhaps some way toward explaining the wide range of these values seen in higher- z studies.

  16. First exploration of a single thermal interface between the two dominant phases of the interstellar medium

    Science.gov (United States)

    Gry, Cecile

    2017-08-01

    Two phases of the interstellar medium, the Warm Neutral Medium (WNM) and the Hot Ionized Medium (HIM) occupy most the volume of space in the plane of our Galaxy. Because the boundaries between these phases are important sources of energy loss for the hot gas, they are supposed to play an important role in the thermal structure and evolution of the ISM and of galaxies.Many theorists have created descriptions of the nature of such boundaries and have derived two fundamental concepts: (1) a conductive interface and (2) a turbulent mixing layer.We have yet to observe in detail either kind of boundary. This is achieved by using UV absorption lines of moderately high ionization stages of heavy elements. Yet, over most lines of sight the diagnostics are blurred out by the superposition of different regions with vastly different physical conditions, making them difficult to interpret. To characterize the nature of the physical processes at a boundary one must observe along a sight line that penetrates just one such region. The simplest configuration is the outer boundary of the Local Cloud, the WNM ((T 7000 K) that surrounds the Sun and which is embedded in a very low density, soft X-ray emitting hot medium ( 10^6 K) that fills a cavity ( 200 pc in diameter) called the Local Bubble.We propose to observe an ideal target: a nearby, bright B9V star (i.e. hot enough to provide a high-SNR continuum, but not enough to contaminate it with absorptions from circumstellar high-ionization species), located in a direction where the relative orientation of the magnetic field and the cloud boundary does not quench thermal conduction and thus favors a full extent of the interface.

  17. Hot Blade Cuttings for the Building Industries

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Evgrafov, Anton

    2016-01-01

    . The project aims to reduce the amount of manual labour as well as production time by applying robots to cut expanded polystyrene (EPS) moulds for the concrete to form doubly curved surfaces. The scheme is based upon the so-called Hot Wire or Hot Blade technology where the surfaces are essentially swept out...

  18. "Hot Tub Rash" and "Swimmer's Ear" (Pseudomonas)

    Science.gov (United States)

    Facts About “Hot Tub Rash” and “Swimmer’s Ear” (Pseudomonas) What is Pseudomonas and how can it affect me? Pseudomonas (sue-doh- ... a major cause of infections commonly known as “hot tub rash” and “swimmer’s ear.” This germ is ...

  19. The Hot Hand Belief and Framing Effects

    Science.gov (United States)

    MacMahon, Clare; Köppen, Jörn; Raab, Markus

    2014-01-01

    Purpose: Recent evidence of the hot hand in sport--where success breeds success in a positive recency of successful shots, for instance--indicates that this pattern does not actually exist. Yet the belief persists. We used 2 studies to explore the effects of framing on the hot hand belief in sport. We looked at the effect of sport experience and…

  20. Hot Spot Removal System: System description

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  1. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  2. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  3. Hot Mix Asphalt Recycling : Practices and Principles

    NARCIS (Netherlands)

    Mohajeri, M.

    2015-01-01

    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a

  4. Static and dynamical properties of hot nuclei

    International Nuclear Information System (INIS)

    Suraud, E.

    1990-01-01

    We briefly review our understanding of the formation of excited/hot nuclei in heavy-ion collisions at some tens of MeV/A. We recall the major theoretical frameworks used for describing as well the entrance channel of the reaction as the structure properties of hot nuclei. We finally focus on multifragmentation within insisting upon the theoretical challenge it does represent

  5. Hot Spot Removal System: System description

    International Nuclear Information System (INIS)

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System''s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section

  6. Cold war in hot metal

    International Nuclear Information System (INIS)

    Maher, Peter.

    1991-01-01

    While the world uranium prices has plunged to a 18-year low, Australia's operating mines are manoeuvring to weather the storm. Depressed prices have clouded the medium-term outlook but have done little to dampen expectations that uranium prices will turn around, probably from the mid-'90s. It is expected that the expansion of existing mines and the establishment of new mines in Australia, will become a reality before Soviet Union carved out a slice of Western markets as the Canadian did

  7. 'Hot' cognition in major depressive disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Carvalho, Andre F

    2014-01-01

    Major depressive disorder (MDD) is associated with significant cognitive dysfunction in both 'hot' (i.e. emotion-laden) and 'cold' (non-emotional) domains. Here we review evidence pertaining to 'hot' cognitive changes in MDD. This systematic review searched the PubMed and PsycInfo computerized......-limbic network with hyper-activity in limbic and ventral prefrontal regions paired with hypo-activity of dorsal prefrontal regions subserve these abnormalities. A cross-talk of 'hot' and 'cold' cognition disturbances in MDD occurs. Disturbances in 'hot cognition' may also contribute to the perpetuation......' cognition deficits in healthy relatives of patients with MDD. Taken together, these findings suggest that abnormalities in 'hot' cognition may constitute a candidate neurocognitive endophenotype for depression....

  8. 'Hot' particles in the atmosphere (Vilnius, 1986)

    International Nuclear Information System (INIS)

    Lujanas, V.; Shpirkauskaite, N.

    1992-01-01

    After the Chernobyl accident in the atmosphere above Vilnius the alpha-and beta- 'hot' particles were discovered. The amount of particles and their size were measured by the alpha-radiography. After the exposition of nuclear plates the 'auroras' of the beta hot particles were of the size 0.37-22.2 μm. The change in time of the beta- 'hot' particles amount in the ground level air from the 25th of April to the 9th of May, 1986 was given. The amount of this particles deposited in the adult man respiratory tract was calculated. The energy of the discovered 8 'hot' alpha-particles ranged from 4.2 to 6.6 MeV. All the samples in which alpha- 'hot' particles found were taken in anticyclone conditions. (author). 1 tab., 1 ref

  9. Suppression of sawtooth oscillations due to hot electrons and hot ions

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Berk, H.L.

    1989-01-01

    The theory of m = 1 kink mode stabilization is discussed in the presence of either magnetically trapped hot electrons or hot ions. For instability hot ion requires particles peaked inside the q = 1 surface, while hot electrons require that its pressure profile be increasing at the q = 1 surface. Experimentally observed sawtooth stabilization usually occurs with off-axis heating with ECRH and near axis heating with ICRH. Such heating may produce the magnetically trapped hot particle pressure profiles that are consistent with theory. 17 refs., 2 figs

  10. Thermodynamic instabilities in hot and dense nuclear matter

    Directory of Open Access Journals (Sweden)

    Lavagno A.

    2016-01-01

    Full Text Available We study the presence of thermodynamic instabilities in a hot and dense nuclear medium where a nuclear phase transition can take place. Similarly to the low density nuclear liquid-gas phase transition, we show that such a phase transition is characterized by pure hadronic matter with both mechanical instability (fluctuations on the baryon density that by chemical-diffusive instability (fluctuations on the strangeness concentration. The analysis is performed by requiring the global conservation of baryon number and zero net strangeness in the framework of an effective relativistic mean field theory with the inclusion of the Δ(1232-isobars, hyperons and the lightest pseudoscalar and vector meson degrees of freedom. It turns out that in this situation hadronic phases with different values of strangeness content may coexist, altering significantly meson-antimeson ratios.

  11. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  12. Accretion from an inhomogeneous medium

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.; Koo, M. de; Savonije, G.J.

    1986-01-01

    The problem of accretion by a compact object from an inhomogeneous medium is studied in the general γnot=1 case. The mass accretion rate is found to decrease with increasing γ. The rate of accretion of angular momentum is found to be significantly lower than the rate at which angular momentum is deposited into the Bondi-Hoyle, symmetrical, accretion cylinder. The consequences of the results are studied for the cases of neutron stars accreting from the winds of early-type companions and white dwarfs and main-sequence stars accreting from winds of cool giants. (author)

  13. A Heterogeneous Medium Analytical Benchmark

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1999-01-01

    A benchmark, called benchmark BLUE, has been developed for one-group neutral particle (neutron or photon) transport in a one-dimensional sub-critical heterogeneous plane parallel medium with surface illumination. General anisotropic scattering is accommodated through the Green's Function Method (GFM). Numerical Fourier transform inversion is used to generate the required Green's functions which are kernels to coupled integral equations that give the exiting angular fluxes. The interior scalar flux is then obtained through quadrature. A compound iterative procedure for quadrature order and slab surface source convergence provides highly accurate benchmark qualities (4- to 5- places of accuracy) results

  14. Charmed hadrons in nuclear medium

    International Nuclear Information System (INIS)

    Tolos, L.; Gamermann, D.; Molina, R.; Nieves, J.; Oset, E.; Garcia-Recio, C.; Ramos, A.

    2010-01-01

    We study the properties of charmed hadrons in dense matter within a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner. We analyze the behaviour in this dense environment of dynamically-generated baryonic resonances as well as the open-charm meson spectral functions. We discuss the implications of the in-medium properties of open-charm mesons on the D s0 (2317) and the predicted X(3700) scalar resonances. (authors)

  15. Development of brachytherapy medium doserate

    International Nuclear Information System (INIS)

    Atang Susila; Ari Satmoko; Ahmad Rifai; Kristiyanti

    2010-01-01

    Brachytherapy has proven to be an effective treatment for different types of cancers and it become a common treatment modality in most radiotherapy clinics. PRPN has had experience in development of Low Dose Rate Brachytherapy for cervix cancer treatment. However the treatment process using LDR device needs 5 hours in time that the patient feel uncomfort. Therefore PRPN develops Medium Dose Rate Brachytherapy with radiation activity not more than 5 Currie. The project is divided into two stages. Purchasing of TPS software and TDS design are held in 2010, and the construction will be in 2011. (author)

  16. Effective Field Theories for Hot and Dense Matter

    Directory of Open Access Journals (Sweden)

    Blaschke D.

    2010-10-01

    Full Text Available The lecture is divided in two parts. The first one deals with an introduction to the physics of hot, dense many-particle systems in quantum field theory [1, 2]. The basics of the path integral approach to the partition function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanfield approximation while QCD bound states in the medium are treated in the rainbow-ladder approximation (Gaussian fluctuations. Special emphasis is devoted to the discussion of the Mott effect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the influence of compression and heating of the system. Three examples are given: (1 the QCD model phase diagram with chiral symmetry ¨ restoration and color superconductivity [3], (2 the Schrodinger equation for heavy-quarkonia [4], and (2 Pions [5] as well as Kaons and D-mesons in the finite-temperature Bethe-Salpeter equation [6]. We discuss recent applications of this quantum field theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu–Jona-Lasinio model [9] for thermodynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann–Oakes–Renner relation are generalized to finite temperatures. The effect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is discussed. An outlook is given to effects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanfield description.

  17. Jet evolution in hot and cold QCD matter

    Energy Technology Data Exchange (ETDEWEB)

    Domdey, Svend Oliver

    2010-07-23

    In this thesis, we study the evolution of energetic partons in hot and cold QCD matter. In both cases, interactions with the medium lead to energy loss of the parton and its transverse momentum broadens. The propagation of partons in cold nuclear matter can be investigated experimentally in deep-inelastic scattering (DIS) on nuclei. We use the dipole model to calculate transverse momentum broadening in DIS on nuclei and compare to experimental data from HERMES. In hot matter, the evolution of the parton shower is strongly modified. To calculate this modification, we construct an additional scattering term in the QCD evolution equations which accounts for scattering of partons in the quark-gluon plasma. With this scattering term, we compute the modified gluon distribution in the shower at small momentum fractions. Furthermore, we calculate the modified fragmentation function of gluons into pions. The scattering term causes energy loss of the parton shower which leads to a suppression of hadrons with large transverse momentum. In the third part of this thesis, we study double dijet production in hadron collisions. This process contains information about the transverse parton distribution of hadrons. As main result, we find that double dijet production will allow for a study of the transverse growth of hadronic wave functions at the LHC. (orig.)

  18. Research on thermal insulation for hot gas ducts

    International Nuclear Information System (INIS)

    Broeckerhoff, P.

    1984-01-01

    The inner surfaces of prestressed reactor vessels and hot gas ducts of Gas Cooled High Temperature Reactors need internal thermal insulation to protect the pressure bearing walls from high temperatures. The design parameters of the insulation depend on the reactor type. In a PNP-plant temperature and pressure of the cooling medium helium are proposed to be 950 deg. C and 40 bars, respectively. The experimental work was started at KFA in 1971 for the HHT-project using three test facilities. At first metallic foil insulation and stuffed fibre insulating systems, the hot gas ducting shrouds of which were made of metal, have been tested. Because of the elevated helium temperature in case of PNP and the resulting lower strength of the metallic parts the interest was directed to rigid ceramic materials for the spacers and the inner shrouds. This led to modified structures designed by the INTERATOM company. Tests were performed at KFA. The main object of the investigations was to study the influence of temperature, pressure and axial pressure gradients on the thermal efficiency of the structures. Moreover, the temperatures within the insulation, at the pressure tube, and at the elements which bear the inner shrouds were measured. Thermal fluxes and effective thermal conductivities in axial and circumferential direction of the pressure tube are given, mainly for the INTERATOM-design with spherical spacers. (author)

  19. Rocket and satellite observations of the local interstellar medium

    International Nuclear Information System (INIS)

    Jelinsky, P.N.

    1988-01-01

    The purpose of the study described in this thesis was to obtained new information on the structure of the local interstellar medium (ISM). Two separate experiments using different instruments were used in this study. The first experiment employed a spectrometer with a spectral bandpass from 350-1150 angstrom which was placed at the focus of a 95 cm, f/2.8 normal incidence telescope flown on an Aries sounding rocket. The purpose of this experiment was to measure the interstellar absorption edges, due to neutral helium and neutral hydrogen, in the spectrum of a hot white dwarf. The hot white dwarf G191-B2B was observed for 87 seconds during the flight. Unfortunately, due to high pressure in the rocket, no scientifically useful data was obtained during the flight. The second experiment utilized the high resolution spectrometer on the International Ultraviolet Explorer satellite. The purpose of the experiment was to observe interstellar absorption lines in the spectrum of hot white dwarfs. A new method of determining the equivalent widths of absorption lines and their uncertainties was developed. The neutral hydrogen column density is estimated from the N I, Si II, and C II columns. Unfortunately, the uncertainties in the neutral hydrogen columns are very large, only two are constrained to better than an order of magnitude. High ionization species (N V, Si IV, and C IV) are seen in five of the stars. Upper limits to the temperature of the ISM are determined from the velocity dispersions. The temperature of the low ionization gas toward four of the stars is constrained to be less than 50,000 K

  20. Medium modification of fragmentation functions

    International Nuclear Information System (INIS)

    Nezza, Pasquale Di

    2007-01-01

    Deep Inelastic Scattering is the cleanest process to investigate the space-time evolution of the hadronization. This was studied by the influence of the nuclear medium on lepto-production of hadrons at the Hermes experiment at DESY in semi-inclusive DIS of 27.6 GeV positrons off deuterium, nitrogen, krypton and xenon targets. The differential multiplicity for heavy targets relative to that of deuterium has been measured for the first time for various identified hadrons (φ + , φ - , φ 0 , k + , k - , p and anti-p) as a function of the virtual photon energy ?, the fraction z of this energy transferred to the hadron, and the hadron transverse momentum squared p 2 t . The distribution of the hadron transverse momentum is broadened towards high p 2 t in the nuclear medium, in a manner resembling the Cronin effect observed in collisions of heavy ions and protons with nuclei. The pt -broadening results give also important information about the pre-hadron formation time. Moreover, by studying the hadron attenuation of the leading and sub-leading hadrons, we report, for the first time, the possibility to better understand the hadron absorption and the energy loss contributions to the attenuation mechanism. (Author)

  1. Gravitational lensing in plasmic medium

    Energy Technology Data Exchange (ETDEWEB)

    Bisnovatyi-Kogan, G. S., E-mail: gkogan@iki.rssi.ru; Tsupko, O. Yu., E-mail: tsupko@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2015-07-15

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  2. Unsaturated medium hydrocarbons pollution evaluation

    International Nuclear Information System (INIS)

    Di Luise, G.

    1991-01-01

    When the so called porous unsaturated medium, that's the vertical subsoil section between both the ground and water-table level, is interested by a hydrocarbons spill, the problem to evaluate the pollution becomes difficult: considering, essentially, the natural coexistence in it of two fluids, air and water, and the interactions between them. This paper reports that the problems tend to increase when a third fluid, the pollutant, immiscible with water, is introduced into the medium: a three-phases flow, which presents several analogies with the flow conditions present in an oil-reservoir, will be established. In such a situation, it would be very useful to handle the matter by the commonly used parameters in the oil reservoirs studies such as: residual saturation, relative permeability, phases mobility, to derive a first semiquantitative estimation of the pollution. The subsoil pollution form hydrocarbons agents is one of the worldwide more diffused causes of contamination: such events are generally referable to two main effects: accidental (oil pipeline breakdowns, e.g.), and continuous (underground tanks breaks, industrial plants leakages, e.g.)

  3. Is the intercloud medium pervasive

    International Nuclear Information System (INIS)

    Heiles, C.

    1980-01-01

    We consider the pervasiveness of the ''not strongly absorbing'' (NSA) H I gas, which is the intercloud medium in steady state theories of the interstellar medium. We study the question by analyzing wide emission components in nearby gas, and the absence of absorption components in distant gas. We conclude that the NSA material is deficient in the immediately local solar vicinity. In nearby regions it contains 38% of the interstellar H I; it is generally pervasive and often has internal motions which greatly increase its velocity dispersion above the 5 km s -1 minimum value. It contains large holes, perhaps ranging up to 400 pc diameter, which probably occupy 10--20% of the volume. In distant regions the NSA material seems to be pervasive outside 8 kpc galactic radius. For galactic radii between 8 and 10 kpc its thickness agrees with previous determinations of 370 pc for nearby regions. Outside 10 kpc the thickness increases dramatically. Inside 8 kpc there are no data

  4. Dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel

    International Nuclear Information System (INIS)

    Wei, Hai-lian; Liu, Guo-quan; Xiao, Xiang; Zhang, Ming-he

    2013-01-01

    The dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel was systematically investigated at the temperatures from 900 °C to 1100 °C and strain rates from 0.01 s −1 to 10 s −1 on a Gleeble-1500 thermo-simulation machine. The flow stress constitutive equation of hot deformation for this steel was developed with the activation energy Q being about 273 kJ/mol, which is in reasonable agreement with those reported before. Activation energy analysis showed that vanadium addition in microalloyed steels seemed not to affect the activation energy much. The effect of Zener–Hollomon parameter on the characteristic points of flow curves was studied using the power law relation, and the dependence of critical strain (stress) on peak strain (stress) obeyed a linear equation. Dynamic recrystallization is the most important softening mechanism for the experimental steel during hot compression. The dynamic recrystallization kinetics model of this steel was established based on flow stress and a frequently-used dynamic recrystallization kinetics equation. Dynamic recrystallization microstructure under different deformation conditions was also observed and the dependence of steady-state grain size on the Zener–Hollomon parameter was plotted

  5. Hot Leg Piping Materials Issues

    International Nuclear Information System (INIS)

    V. Munne

    2006-01-01

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP)

  6. Silicon nanowire hot carrier electroluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Plessis, M. du, E-mail: monuko@up.ac.za; Joubert, T.-H.

    2016-08-31

    Avalanche electroluminescence from silicon pn junctions has been known for many years. However, the internal quantum efficiencies of these devices are quite low due to the indirect band gap nature of the semiconductor material. In this study we have used reach-through biasing and SOI (silicon-on-insulator) thin film structures to improve the internal power efficiency and the external light extraction efficiency. Both continuous silicon thin film pn junctions and parallel nanowire pn junctions were manufactured using a custom SOI technology. The pn junctions are operated in the reach-through mode of operation, thus increasing the average electric field within the fully depleted region. Experimental results of the emission spectrum indicate that the most dominant photon generating mechanism is due to intraband hot carrier relaxation processes. It was found that the SOI nanowire light source external power efficiency is at least an order of magnitude better than the comparable bulk CMOS (Complementary Metal Oxide Semiconductor) light source. - Highlights: • We investigate effect of electric field on silicon avalanche electroluminescence. • With reach-through pn junctions the current and carrier densities are kept constant. • Higher electric fields increase short wavelength radiation. • Higher electric fields decrease long wavelength radiation. • The effect of the electric field indicates intraband transitions as main mechanism.

  7. Evolution of hot galactic flows

    International Nuclear Information System (INIS)

    Loewenstein, M.; Mathews, W.G.

    1987-01-01

    The time-dependent equations describing galactic flows, including detailed models for the evolving source terms, are integrated over a Hubble time for two elliptical galaxies with total masses of 3.1 x 10 to the 12th and 8.3 x 10 to the 12th solar masses, 90 percent of which resides in extended, nonluminous halos. The standard supernova rate of Tammann and a rate 4 times smaller are considered for each galaxy model. The combination of the extended gravitational potential of the dark halo and the time-dependent source terms generally lead to the development of massive, quasi-hydrostatic, nearly isothermal distributions of gas at about 10 to the 7th K with cooling inflows inside their galactic cores. For the less massive galaxy with the higher supernova rate, however, a low-luminosity supersonic galactic wind develops. The effects of a lowered metal abundance, thermal conduction, and the absence of a massive halo are explored separately for one of the present models. The X-ray luminosities of the hot gas in the models with dark halos and the lower supernova rate are in good agreement with Einstein observations of early-type galaxies. 42 references

  8. Ionospheric hot spot at high latitudes

    International Nuclear Information System (INIS)

    Schunk, R.W.; Sojka, J.J.

    1982-01-01

    A hot spot (or spots) can occur in the high-latitude ionosphere depending on the plasma convection pattern. The hot spot corresponds to a small magnetic local time-magnetic latitude region of elevated ion temperatures located near the dusk and/or dawn meridians. For asymmetric convection electric field patterns, with enhanced flow in either the dusk or dawn sector of the polar cap, a single hot spot should occur in association with the strong convection cell. However, on geomagnetically disturbed days, two strong convection cells can occur, and hence, two hot spots should exist. The hot spot should be detectable when the electric field in the strong convection cell exceeds about 40 mV m -1 . For electric fields of the order of 100 mV m -1 in the convection cell, the ion temperature in the hot spot is greatest at low altitudes, reaching 4000 0 K at 160 km, and decreases with altitude in the F-region. An ionospheric hot spot (or spots) can be expected at all seasons and for a wide range of solar cycle conditions

  9. 27 CFR 19.914 - Medium plants.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Medium plants. 19.914... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits For Fuel Use Permits § 19.914 Medium plants. Any person wishing to establish a medium plant shall make application for and obtain in...

  10. Mapping of moveout in a TTI medium

    KAUST Repository

    Stovas, A.; Alkhalifah, Tariq Ali

    2012-01-01

    To compute moveout in a transversely isotropic medium with tilted symmetry axis is a very complicated problem. We propose to split this problem into two parts. First, to compute the moveout in a corresponding VTI medium. Second, to map the computed moveout to a TTI medium.

  11. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  12. Cause of Damage. Hot cracking; Schadensursache Heissrissigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Wader, Therese [BENTELER Steel/Tube GmbH, Paderborn (Germany). Vorentwicklung Werkstoffe

    2016-10-15

    Under certain conditions, Nb-containing stainless steels are susceptible to hot cracking. Such conditions include low melting phases on the grain boundaries, a coarse-grained microstructure such as cast structures, microstructure orientations towards the main tensile direction and high processing temperatures. The case of damage was characterized using metallographic and microanalytical methods. In the laboratory, the critical temperature range for the formation of hot cracks could furthermore specifically be localized under mechanical stresses by means of a dilatometer aiming at clearly verifying the cause of the damage, namely ''hot cracks''.

  13. Hot Mix Asphalt Recycling: Practices and Principles

    OpenAIRE

    Mohajeri, M.

    2015-01-01

    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a high RA content are produced in a batch plant to which a parallel drum is attached. In this drum RA is pre-heated to approximately 130°C. Since 2007 another hot mix recycling techniques became availa...

  14. Formation and decay of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1992-09-01

    The mechanisms involved in hot nuclei formation and decay and their eventual connexion with fundamental properties of nuclear matter are discussed, i.e. its equation of state is considered. After a brief review of the reactions in which hot nuclei can be formed, the variables which are used to describe them, the corresponding theoretical descriptions and their limits when extreme states are reached are discussed. Experimental evidences for hot nuclei formation are presented, with the corresponding decay properties used as signatures. (R.P.) 64 refs.; 25 figs.; 2 tabs

  15. Hot nuclei: high temperatures, high angular momenta

    International Nuclear Information System (INIS)

    Guerreau, D.

    1991-01-01

    A review is made of the present status concerning the production of hot nuclei above 5 MeV temperature, concentrating mainly on the possible experimental evidences for the attainment of a critical temperature, on the existence of dynamical limitations to the energy deposition and on the experimental signatures for the formation of hot spinning nuclei. The data strongly suggest a nuclear disassembly in collisions involving very heavy ions at moderate incident velocities. Furthermore, hot nuclei seem to be quite stable against rotation on a short time scale. (author) 26 refs.; 12 figs

  16. A review on hot tearing of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Jiangfeng Song

    2016-09-01

    Full Text Available Hot tearing is often a major casting defect in magnesium alloys and has a significant impact on the quality of their casting products. Hot tearing of magnesium alloys is a complex solidification phenomenon which is still not fully understood, it is of great importance to investigate the hot tearing behaviour of magnesium alloys. This review attempts to summarize the investigations on hot tearing of magnesium alloys over the past decades. The hot tearing criteria including recently developed Kou's criterion are summarized and compared. The numeric simulation and assessing methods of hot tearing, factors influencing hot tearing, and hot tearing susceptibility (HTS of magnesium alloys are discussed.

  17. Ninth international symposium on hot atom chemistry. Abstracts

    International Nuclear Information System (INIS)

    1977-01-01

    Abstracts of the papers presented at the Symposium are compiled. The topics considered were chemical dynamics of high energy reactions, hot atom chemistry in organic compounds of tritium, nitrogen, oxygen, and halogens, theory and chemical dynamics of hot atom reactions as determined by beam studies, solid state reactions of recoil atoms and implanted ions, hot atom chemistry in energy-related research, hot atom chemistry in inorganic compounds of oxygen and tritium, hot positronium chemistry, applied hot atom chemistry in labelling, chemical effects of radioactive decay, decay-induced reactions and excitation labelling, physical methods in hot atom chemistry, and hot atom reactions in radiation and stratospheric chemistry

  18. Medium-size nuclear plants

    International Nuclear Information System (INIS)

    Vogelweith, L.; Lavergne, J.C.; Martinot, G.; Weiss, A.

    1977-01-01

    CEA (TECHNICATOME) has developed a range of pressurized water reactors of the type ''CAS compact'' which are adapted to civil ship propulsion, or to electric power production, combined possibly with heat production, up to outputs equivalent to 125 MWe. Nuclear plants equipped with these reactors are suitable to medium-size electric networks. Among the possible realizations, two types of plants are mentioned as examples: 1) Floating electron-nuclear plants; and 2) Combined electric power and desalting plants. The report describes the design characteristics of the different parts of a 125 MWe unit floating electro-nuclear plant: nuclear steam system CAS 3 G, power generating plant, floating platform for the whole plant. The report gives attention to the different possibilities according to site conditions (the plant can be kept floating, in a natural or artificial basin, it can be put aground, ...) and to safety and environment factors. Such unit can be used in places where there is a growing demand in electric power and fresh water. The report describes how the reactor, the power generating plant and multiflash distillation units of an electric power-desalting plant can be combined: choice of the ratio water output/electric power output, thermal cycle combination, choice of the gain ratio, according to economic considerations, and to desired goal of water output. The report analyses also some technical options, such as: choice of the extraction point of steam used as heat supply of the desalting station (bleeding a condensation turbine, or recovering steam at the exhaust of a backpressure turbine), design making the system safe. Lastly, economic considerations are dealt with: combining the production of fresh water and electric power provides usually a much better energy balance and a lower cost for both products. Examples are given of some types of installations which combine medium-size reactors with fresh water stations yielding from 10000 to 120000 m 3 per day

  19. Xylanases of thermophilic bacteria from Icelandic hot springs

    Energy Technology Data Exchange (ETDEWEB)

    Pertulla, M; Raettoe, M; Viikari, L [VTT, Biotechnical Lab., Espoo (Finland); Kondradsdottir, M [Dept. of Biotechnology, Technological Inst. of Iceland, Reykjavik (Iceland); Kristjansson, J K [Dept. of Biotechnology, Technological Inst. of Iceland, Reykjavik (Iceland) Inst. of Biotechnology, Iceland Univ., Reykjavik (Iceland)

    1993-02-01

    Thermophilic, aerobic bacteria isolated from Icelandic hot springs were screened for xylanase activity. Of 97 strains tested, 14 were found to be xylanase positive. Xylanase activities up to 12 nkat/ml were produced by these strains in shake flasks on xylan medium. The xylanases of the two strains producing the highest activities (ITI 36 and ITI 283) were similar with respect to temperature and pH optima (80deg C and pH 8.0). Xylanase production of strain ITI 36 was found to be induced by xylan and xylose. Xylanase activity of 24 nkat/ml was obtained with this strain in a laboratory-scale-fermentor cultivation on xylose medium. [beta]-Xylosidase activity was also detected in the culture filtrate. The thermal half-life of ITI 36 xylanase was 24 h at 70deg C. The highest production of sugars from hydrolysis of beech xylan was obtained at 70deg C, although xylan depolymerization was detected even up to 90deg C. (orig.).

  20. General reformulation of hot cell complex

    International Nuclear Information System (INIS)

    Almeida, G.L. de; Souza, A.S.F. de; Souza, M.L.M. de; Rautenberg, F.A.

    1986-01-01

    The implantation of an operation philosophy without direct intervention of operator during isotope production process in hot cells of the CV-28 cyclotron is presented. The modifications carried out in equipments, systems and installations are described. (M.C.K.)

  1. Surface-Plasmon-Driven Hot Electron Photochemistry.

    Science.gov (United States)

    Zhang, Yuchao; He, Shuai; Guo, Wenxiao; Hu, Yue; Huang, Jiawei; Mulcahy, Justin R; Wei, Wei David

    2017-11-30

    Visible-light-driven photochemistry has continued to attract heightened interest due to its capacity to efficiently harvest solar energy and its potential to solve the global energy crisis. Plasmonic nanostructures boast broadly tunable optical properties coupled with catalytically active surfaces that offer a unique opportunity for solar photochemistry. Resonant optical excitation of surface plasmons produces energetic hot electrons that can be collected to facilitate chemical reactions. This review sums up recent theoretical and experimental approaches for understanding the underlying photophysical processes in hot electron generation and discusses various electron-transfer models on both plasmonic metal nanostructures and plasmonic metal/semiconductor heterostructures. Following that are highlights of recent examples of plasmon-driven hot electron photochemical reactions within the context of both cases. The review concludes with a discussion about the remaining challenges in the field and future opportunities for addressing the low reaction efficiencies in hot-electron-induced photochemistry.

  2. Design data brochure: Solar hot air heater

    Science.gov (United States)

    1978-01-01

    The design, installation, performance, and application of a solar hot air heater for residential, commercial and industrial use is reported. The system has been installed at the Concho Indian School in El Reno, Oklahoma.

  3. Design data brochure: Solar hot water system

    Science.gov (United States)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  4. Coulomb explosion of “hot spot”

    Energy Technology Data Exchange (ETDEWEB)

    Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation); Oreshkin, E. V. [P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Chaikovsky, S. A. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Institute of Electrophysics, UD, RAS, Ekaterinburg (Russian Federation); Artyomov, A. P. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation)

    2016-09-15

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  5. Diagenetic Changes in Common Hot Spring Microfacies

    Science.gov (United States)

    Hinman, N. W.; Kendall, T. A.; MacKenzie, L. A.; Cady, S. D.

    2016-05-01

    The friable nature of silica hot spring deposits makes them susceptible to mechanical weathering. Rapid diagenesis must take place for these rocks to persist in the geologic record. The properties of two microfacies at two deposits were compared.

  6. Coulomb explosion of “hot spot”

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Oreshkin, E. V.; Chaikovsky, S. A.; Artyomov, A. P.

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  7. The Distinction of Hot Herbal Compress, Hot Compress, and Topical Diclofenac as Myofascial Pain Syndrome Treatment.

    Science.gov (United States)

    Boonruab, Jurairat; Nimpitakpong, Netraya; Damjuti, Watchara

    2018-01-01

    This randomized controlled trial aimed to investigate the distinctness after treatment among hot herbal compress, hot compress, and topical diclofenac. The registrants were equally divided into groups and received the different treatments including hot herbal compress, hot compress, and topical diclofenac group, which served as the control group. After treatment courses, Visual Analog Scale and 36-Item Short Form Health survey were, respectively, used to establish the level of pain intensity and quality of life. In addition, cervical range of motion and pressure pain threshold were also examined to identify the motional effects. All treatments showed significantly decreased level of pain intensity and increased cervical range of motion, while the intervention groups exhibited extraordinary capability compared with the topical diclofenac group in pressure pain threshold and quality of life. In summary, hot herbal compress holds promise to be an efficacious treatment parallel to hot compress and topical diclofenac.

  8. Tattoo: a multifaceted medium of communication

    Directory of Open Access Journals (Sweden)

    Christian Wymann

    2010-11-01

    Full Text Available This article suggests the systems theoretical distinction of form/medium as a useful tool for distinguishing social phenomena that might look as if they stem from the same process. This is shown to be the case for the tattoo and tattooing. The tattoo is conceived as a medium of communication through which different forms of communication emerge. Tattooing is one of these forms of communication that shapes the medium in a particular way. The current article sheds a special light on its intricate, communicational constellation, for which the concept of parallax is suggested. Law, medicine and cosmetics as other forms of communication use the medium of tattoo in their own way as well. The form/medium distinction allows us to grasp these different forms of communication, while it shows that they share the tattoo as medium. The article’s ultimate goal is to illustrate that the tattoo figures as a multifaceted medium of communication.

  9. Time to B. cereus about hot chocolate.

    OpenAIRE

    Nelms, P K; Larson, O; Barnes-Josiah, D

    1997-01-01

    OBJECTIVE: To determine the cause of illnesses experienced by employees of a Minneapolis manufacturing plant after drinking hot chocolate bought from a vending machine and to explore the prevalence of similar vending machine-related illnesses. METHODS: The authors inspected the vending machines at the manufacturing plant where employees reported illnesses and at other locations in the city where hot chocolate beverages were sold in machines. Tests were performed on dry mix, water, and beverag...

  10. X-ray hot plasma diagnostics

    International Nuclear Information System (INIS)

    Cojocaru, E.

    1984-11-01

    X-ray plasma emission study is powerful diagnostic tool of hot plasmas. In this review article the main techniques of X-ray plasma emission measurement are shortly presented: X-ray spectrometry using absorbent filters, crystal and grating spectrometers, imaging techniques using pinhole cameras, X-ray microscopes and Fresnel zone plate cameras, X-ray plasma emission calorimetry. Advances in these techniques with examples for different hot plasma devices are also presentes. (author)

  11. Hot ductility of continuously cast structural steels

    International Nuclear Information System (INIS)

    Pytel, S.M.

    1995-01-01

    The objective of this investigation was to explain the hot ductility of the structural steels characterized by different amount of carbon and morphology of sulfides. Two different rolling processes were simulated under computer controlled, high temperature deformation MTS system. Results of this study show that morphology of sulfides as well as temperature and amount of deformation are responsible for level of hot ductility of the steel tested. (author)

  12. Oxidation And Hot Corrosion Of ODS Alloy

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1993-01-01

    Report reviews oxidation and hot corrosion of oxide-dispersion-strengthened (ODS) alloys, intended for use at high temperatures. Classifies environmental resistances of such alloys by rates of growth of oxides, volatilities of oxides, spalling of oxides, and limitations imposed by hot corrosion. Also discusses environmentally resistant coatings for ODS materials. Concludes ODS NICrAl and FeCrAl alloys highly resistant to oxidation and corrosion and can be used uncoated.

  13. Parton fragmentation in the vacuum and in the medium

    CERN Document Server

    Albino, S.; Arleo, F.; Besson, Dave Z.; Brooks, William K.; Buschbeck, B.; Cacciari, M.; Christova, E.; Corcella, G.; D'Enterria, David G.; Dolejsi, Jiri; Domdey, S.; Estienne, M.; Hamacher, Klaus; Heinz, M.; Hicks, K.; Kettler, D.; Kumano, S.; Moch, S.O.; Muccifora, V.; Pacetti, S.; Perez-Ramos, R.; Pirner, H.J.; Pronko, Alexandre Pavlovich; Radici, M.; Rak, J.; Roland, C.; Rudolph, Gerald; Rurikova, Z.; Salgado, C.A.; Sapeta, S.; Saxon, David H.; Seidl, Ralf-Christian; Seuster, R.; Stratmann, M.; Tannenbaum, Michael J.; Tasevsky, M.; Trainor, T.; Traynor, D.; Werlen, M.; Zhou, C.

    2008-01-01

    We present the mini-proceedings of the workshop on ``Parton fragmentation in the vacuum and in the medium'' held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) in February 2008. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of quark and gluon fragmentation into hadrons at different accelerator facilities (LEP, B-factories, JLab, HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) light-quark and gluon fragmentation in the vacuum including theoretical (global fits analyses and MLLA) and experimental (data from e+e-, p-p, e-p collisions) aspects, (ii) strange and heavy-quark fragmentation, (iii) parton fragmentation in cold QCD matter (nuclear DIS), and (iv) medium-modified fragmentation in hot and dense QCD matter (high-energy nucleus-nucleus collisions). These mini-proceedings consist of an introduction and short summ...

  14. Medium-Based Design: Extending a Medium to Create an Exploratory Learning Environment

    Science.gov (United States)

    Rick, Jochen; Lamberty, K. K.

    2005-01-01

    This article introduces "medium-based" design -- an approach to creating "exploratory learning environments" using the method of "extending a medium". First, the characteristics of exploratory learning environments and medium-based design are described and grounded in related work. Particular attention is given to "extending a medium" --…

  15. Ormen Lange hot tap - a world record

    Energy Technology Data Exchange (ETDEWEB)

    Apeland, Kjell Edvard

    2010-07-01

    For the last 10 years Statoil have been developing a new concept for performing subsea Hot Tap operations remotely controlled. The system was first used offshore in 2008 during a partly diver assisted operation, connecting the Tampen Link pipeline to the Statfjord Intrafield pipeline. In July 2009, the Hot Tap System successfully performed two remotely controlled Hot Taps, on a world record depth of 860 meters on the Ormen Lange field operated by Shell. The Hot Tap technology enables existing pipeline architecture to be modified, without interfering with the current production. Most of the technology is depth independent and the system is currently qualified to 1000 meter depth. Phase II of this project which involves development and construction of a retrofit Tee, thus enabling installation and welding of a Tee on an unprepared pipeline is well underway. This presentation will describe experiences from the development of the Remote Hot Tap system and give an overview of the offshore operations leading to the conclusion of the world's deepest Hot Taps. (Author)

  16. Modeling deflagration waves out of hot spots

    Science.gov (United States)

    Partom, Yehuda

    2017-01-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.

  17. The hot hand belief and framing effects.

    Science.gov (United States)

    MacMahon, Clare; Köppen, Jörn; Raab, Markus

    2014-09-01

    Recent evidence of the hot hand in sport-where success breeds success in a positive recency of successful shots, for instance-indicates that this pattern does not actually exist. Yet the belief persists. We used 2 studies to explore the effects of framing on the hot hand belief in sport. We looked at the effect of sport experience and task on the perception of baseball pitch behavior as well as the hot hand belief and free-throw behavior in basketball. Study 1 asked participants to designate outcomes with different alternation rates as the result of baseball pitches or coin tosses. Study 2 examined basketball free-throw behavior and measured predicted success before each shot as well as general belief in the hot hand pattern. The results of Study 1 illustrate that experience and stimulus alternation rates influence the perception of chance in human performance tasks. Study 2 shows that physically performing an act and making judgments are related. Specifically, beliefs were related to overall performance, with more successful shooters showing greater belief in the hot hand and greater predicted success for upcoming shots. Both of these studies highlight that the hot hand belief is influenced by framing, which leads to instability and situational contingencies. We show the specific effects of framing using accumulated experience of the individual with the sport and knowledge of its structure and specific experience with sport actions (basketball shots) prior to judgments.

  18. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  19. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  20. Urban heat island and bioclimatological conditions in a hot-humid tropical city: the example of Akure, Nigeria

    Directory of Open Access Journals (Sweden)

    Balogun, Ifeoluwa A.

    2014-09-01

    Full Text Available The impact of weather on human health has become an issue of increased significance in recent times, considering the increasing rate of urbanisation and the much associated heat island phenomenon. This study examines the urbanisation influence on human bioclimatic conditions in Akure, a medium sized hot-humid tropical city in Nigeria, utilising data from measurements at urban and rural sites in the city. Differences in the diurnal, monthly and seasonal variation of human bioclimatic characteristics between both environments were evaluated and tested for statistical significance. Higher frequencies of high temperatures observed in the city centre suggest a significant heat stress and health risk in this hot-humid city.

  1. Dreams of a New Medium

    Directory of Open Access Journals (Sweden)

    Aden Evens

    2009-01-01

    Full Text Available Problematic at best, the desire for a transparent interface nevertheless drives much of digital culture and technology. But not the Web; or at least, not Web 1.0. Thoroughly commercialized, comfortably parsed into genres, serving billions of pages of predigested content to passive consumers, the World Wide Web as developed in the '90s unabashedly embraces its role as medium. While so many digital technologies work to hide their mediacy--drawing in the user with a total simulated sensorium, dematerializing the resistances of size and weight, untangling the knots of cables tying user to machine and machine to cubicle, minimizing the interface--Web 1.0 proudly clings to the browser as a glaring reminder of its medial character. While Web 2.0 has not forsaken the browser altogether, it nevertheless seems to offer a different sort of mediation. Arising alongside the atomization of browser functions, the ubiquitization of connectivity, and the coincidence of producer and user, Web 2.0 retains the form of a medium while reaching for the experiential logic of immediacy. This is not the immediacy of the transparent interface; rather, Web 2.0 effects an immediate relationship between the individual and culture. The interface does not disappear, but its mediacy is subsumed under the general form of cultural participation. Focusing on the "version upgrade" from Web 1.0 to 2.0, this essay will explore the implications for mediacy of this transition, noting that the fantasy of immediacy which drives Web 2.0 is layered and complex. The typical account of immediacy proposes to eliminate the interface and so construct a virtual reality (VR. But Web 2.0 mostly sidesteps the virtual, propelled instead by a fantasy of intuition in which the Web already knows what you want because it is you. Crucially, fantasies about the digital are effective: the computer's futurity inhabits our world, finding its expression in politics, advertising, budgeting, strategic planning

  2. Experimental study of mass boiling in a porous medium model

    International Nuclear Information System (INIS)

    Sapin, Paul

    2014-01-01

    This manuscript presents a pore-scale experimental study of convective boiling heat transfer in a two-dimensional porous medium. The purpose is to deepen the understanding of thermohydraulics of porous media saturated with multiple fluid phases, in order to enhance management of severe accidents in nuclear reactors. Indeed, following a long-lasting failure in the cooling system of a pressurized water reactor (PWR) or a boiling water reactor (BWR) and despite the lowering of the control rods that stops the fission reaction, residual power due to radioactive decay keeps heating up the core. This induces water evaporation, which leads to the drying and degradation of the fuel rods. The resulting hot debris bed, comparable to a porous heat-generating medium, can be cooled down by reflooding, provided a water source is available. This process involves intense boiling mechanisms that must be modelled properly. The experimental study of boiling in porous media presented in this thesis focuses on the influence of different pore-scale boiling regimes on local heat transfer. The experimental setup is a model porous medium made of a bundle of heating cylinders randomly placed between two ceramic plates, one of which is transparent. Each cylinder is a resistance temperature detector (RTD) used to give temperature measurements as well as heat generation. Thermal measurements and high-speed image acquisition allow the effective heat exchanges to be characterized according to the observed local boiling regimes. This provides precious indications precious indications for the type of correlations used in the non-equilibrium macroscopic model used to model reflooding process. (author) [fr

  3. Selection of culture medium and conditions for the production of ...

    African Journals Online (AJOL)

    defined medium–A, defined medium-B, synthetic medium, rich medium and industrial medium) showed that the synthetic medium yielded maximum yeast biomass (12.8 g/LDCW) followed by rich medium (11.7 g/L DCW) and defined medium B ...

  4. Studies in medium energy physics

    International Nuclear Information System (INIS)

    Green, A.; Hoffmann, G.W.; McDonough, J.; Purcell, M.J.; Ray, R.L.; Read, D.E.; Worn, S.D.

    1991-12-01

    This document constitutes the (1991--1992) technical progress report and continuation proposal for the ongoing medium energy nuclear physics research program supported by the US Department of Energy through special Research Grant DE-FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF) and the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics; (2) provide unique, first-of-a-kind ''exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics

  5. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  6. THE BORROWER CHARACTERISTICS IN HOT EQUITY MARKETS

    Directory of Open Access Journals (Sweden)

    HALIL DINCER KAYA

    2017-06-01

    Full Text Available In this study, I examine the characteristics of U.S. corporate borrowers (public debt, private placement, and syndicated loan firms in HOT versus COLD equity markets. My main objective is to see the characteristics of firms that choose debt financing even when the equity market is HOT. HOT equity markets are defined as the top twenty percent of the months in terms of the de-trended number of equity offerings. I find that the HOT equity market borrowers generally have higher market-to-book ratios compared to the COLD market borrowers. Also, in HOT equity markets, the public debt firms (i.e. the corporate bond issuers tend to have fewer tangible assets, the private placement firms tend to be smaller and highly levered, and the syndicated loan firms tend to be smaller, more profitable, and less levered compared to the COLD market firms. When I look at the number of transactions in each market, I find that when the equity market is active (i.e. HOT, the syndicated loan market is even more active. During these periods, the public debt market is also active (although not as much as the equity or the syndicated loan markets. When I look at the sizes of the transactions in each market, I find that the private placements tend to be significantly larger in HOT markets compared to COLD markets. I conclude that while the equity, the public debt, and the syndicated loan markets move together in terms of market activity, the equity market and the private placement markets move together in terms of the size of the transaction.

  7. Analysis of Medium-Scale Solar Thermal Systems and Their Potential in Lithuania

    Directory of Open Access Journals (Sweden)

    Rokas Valančius

    2015-06-01

    Full Text Available Medium-scale solar hot water systems with a total solar panel area varying from 60 to 166 m2 have been installed in Lithuania since 2002. However, the performance of these systems varies depending on the type of energy users, equipment and design of the systems, as well as their maintenance. The aim of this paper was to analyse operational SHW systems from the perspective of energy production and economic benefit as well as to outline the differences of their actual performance compared to the numerical simulation results. Three different medium-scale solar thermal systems in Lithuania were selected for the analysis varying in both equipment used (flat type solar collectors, evacuated tube collectors and type of energy user (swimming pool building, domestic hot water heating, district heating. The results of the analysis showed that in the analysed cases the gap between measured and modelled data of heat energy produced by SHW systems was approx. 11%. From the economical perspective, the system with flat type solar collectors used for domestic hot water production was proved to be most efficient. However, calculation of Internal Rate of Return showed that a grant of 35% is required for this project to be fully profitable.

  8. Fiscal 1999 report on result of the model project for waste heat recovery in hot blast stove; 1999 nendo netsufuro hainetsu kaishu model jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purpose of curtailing energy consumption of the steel industry, a heavy energy consuming industry in China, a model project was carried out for waste heat recovery in a hot blast stove, with the fiscal 1999 results reported. In the process of this project, a heat exchanger for recovering heat is installed in the exhaust gas flue of a hot blast stove in ironworks, with sensible heat recovered through a heating medium. The heat exchanger for recovering heat and the preheating heat exchanger, which was installed in the main pipe for blast furnace gas and for combustion air, were connected by pressure piping, with the blast furnace gas and the combustion air preheated. In addition, a heating medium circulating pump for transporting the heating medium is installed, as are an expansion tank for absorbing expansion/contraction due to change in temperature, a heating medium storage tank for accepting the entire heating medium in the system for the maintenance of the equipment, and heating medium feeding pump, for example. This year, on the basis of the 'Agreement Annex', basic designs and detailed designs were performed for each equipment in the waste heat recovering equipment for the hot blast stove. Further, procurement and manufacturing were implemented for various component parts and devices of the waste heat recovering equipment. (NEDO)

  9. Optical illusions induced by rotating medium

    Science.gov (United States)

    Zang, XiaoFei; Huang, PengCheng; Zhu, YiMing

    2018-03-01

    Different from the traditional single-function electromagnetic wave rotators (rotate the electromagnetic wavefronts), we propose that rotating medium can be extended to optical illusions such as breaking the diffraction limit and overlapping illusion. Furthermore, the homogeneous but anisotropic rotating medium is simplified by homogeneous and isotropic positive-index materials according to the effective medium theory, which is helpful for future device fabrication. Finite element simulations for the two-dimensional case are performed to demonstrate these properties.

  10. Lorenz curve and Gini coefficient reveal hot spots and hot moments for nitrous oxide emissions

    Science.gov (United States)

    Identifying hot spots and hot moments of N2O emissions in the landscape is critical for monitoring and mitigating the emission of this powerful greenhouse gas. We propose a novel use of the Lorenz curve and Gini coefficient (G) to quantify the heterogeneous distribution of N2O emissions from a lands...

  11. Investigation of hot air balloon fatalities.

    Science.gov (United States)

    McConnell, T S; Smialek, J E; Capron, R G

    1985-04-01

    The rising popularity of the sport of hot air ballooning has been accompanied by several recent incidents, both in this country and other parts of the world, where mechanical defects and the improper operation of balloons have resulted in several fatalities. A study was conducted to identify the location and frequency of hot air ballooning accidents. Furthermore, the study attempted to identify those accidents that were the result of improper handling on the part of the balloon operators and those that were related to specific defects in the construction of the balloon. This paper presents a background of the sport of hot air ballooning, together with an analysis of the construction of a typical hot air balloon, pointing out the specific areas where defects may occur that could result in a potential fatal balloon crash. Specific attention is given to the two recent balloon crashes that occurred in Albuquerque, N.M., hot air balloon capital of the world, and that resulted in multiple fatalities.

  12. Application of solar energy to the supply of industrial process hot water. Aerotherm final report, 77-235. [Can washing in Campbell Soup plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The objectives of the Solar Industrial Process Hot Water Program are to design, test, and evaluate the application of solar energy to the generation and supply of industrial process hot water, and to provide an assessment of the economic and resource benefits to be gained. Other objectives are to stimulate and give impetus to the use of solar energy for supplying significant amounts of industrial process heat requirements. The plant selected for the design of a solar industrial process hot water system was the Campbell Soup facility in Sacramento, California. The total hot water demand for this plant varies between 500 and 800 gpm during regular production shifts, and hits a peak of over 1,000 gpm for approximately one hour during the cleanup shift. Most of the hot water is heated in the boiler room by a combination of waste heat recovery and low pressure (5 psi) steam-water heat exchangers. The hot water emerges from the boiler room at a temperature between 160/sup 0/F and 180/sup 0/F and is transported to the various process areas. Booster heaters in the process areas then use low pressure (5 psi) or medium pressure (20 psi) steam to raise the temperature of the water to the level required for each process. Hot water is used in several processes at the Campbell Soup plant, but the can washing process was selected to demonstrate the feasibility of a solar hot water system. A detailed design and economic analysis of the system is given. (WHK)

  13. Constraining the Physical State of the Hot Gas Halos in NGC 4649 and NGC 5846

    Science.gov (United States)

    Paggi, Alessandro; Kim, Dong-Woo; Anderson, Craig; Burke, Doug; D'Abrusco, Raffaele; Fabbiano, Giuseppina; Fruscione, Antonella; Gokas, Tara; Lauer, Jen; McCollough, Michael; Morgan, Doug; Mossman, Amy; O'Sullivan, Ewan; Trinchieri, Ginevra; Vrtilek, Saeqa; Pellegrini, Silvia; Romanowsky, Aaron J.; Brodie, Jean

    2017-07-01

    We present results of a joint Chandra/XMM-Newton analysis of the early-type galaxies NGC 4649 and NGC 5846 aimed at investigating differences between mass profiles derived from X-ray data and those from optical data, to probe the state of the hot interstellar medium (ISM) in these galaxies. If the hot ISM is at a given radius in hydrostatic equilibrium (HE), the X-ray data can be used to measure the total enclosed mass of the galaxy. Differences from optically derived mass distributions therefore yield information about departures from HE in the hot halos. The X-ray mass profiles in different angular sectors of NGC 4649 are generally smooth with no significant azimuthal asymmetries within 12 kpc. Extrapolation of these profiles beyond this scale yields results consistent with the optical estimate. However, in the central region (rdisappears in the NW direction, where the emission is smooth and extended. In this sector we find consistent X-ray and optical mass profiles, suggesting that the hot halo is not responding to strong nongravitational forces.

  14. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures.

    Science.gov (United States)

    Wadowsky, R M; Yee, R B; Mezmar, L; Wing, E J; Dowling, J N

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pneumophila serogroups 1, 5, and 6 were recovered from plumbing fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54 degrees C, but not in those maintained at 71 and 77 degrees C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated.

  15. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wadowsky, R.M.; Yee, R.B.; Mezmar, L.; Wing, E.J.; Dowling, J.N.

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions, and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pnenumophila serogroups 1.5, and 6 were recovered from plubming fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54/sup 0/C, but not in those maintained at 71 and 77/sup 0/C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated.

  16. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    Science.gov (United States)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  17. Menggagas Pembelajaran HOTS Pada Anak Usia Sekolah Dasar

    Directory of Open Access Journals (Sweden)

    Usmaedi Usmaedi

    2017-03-01

    Full Text Available "The implementation of the Primary School Curriculum 2013 is done through partial learning towards an integrated learning, with a thematic approach-integrated from Class I to Class VI" (Permendikbud No. 65 and 67 in 2013. Integrated Thematic learning is implemented using the principles of integrated learning. The integration of the thematic order competency materials related to one another, so as to be mutually reinforcing, avoid overlapping and maintain alignment of learning (interdisciplinary and contextual (transdisciplinary. Integrated thematic learning relevant to accommodate differences in qualitative learning environment, and is expected to inspire learners to acquire learning experience. Integrated thematic learning has a qualitatively different with other learning model, because it guides learners achieve higher levels of thinking to optimize multiple thinking skills, an innovative process for the development dimension of attitudes, skills and knowledge. However, the tendency has been teaching in elementary schools put more emphasis on (LOTS Lower Order Thingking Skills are only able to answer factual questions which alternative is only one answer and the answer is usually something that can be found directly in the book or memorizing. Low-level thinking skills is the medium of higher thinking skills. That is why learning patterns that need to be initiated HOTS (Higher Order Thinking Skills. These skills need to be trained since elementary school age to make students familiar with the way of thinking that would be a high level of capital in the next education level. High-level thinking skills also make students able to convey ideas argumentative, logical, and self-confident, whether written, oral, and action..  Kata kunci : Pembelajaran, HOTS, keterampilan berfikir, Anak Usia Sekolah Dasar,  

  18. A FEROS Survey of Hot Subdwarf Stars

    Science.gov (United States)

    Vennes, Stéphane; Németh, Péter; Kawka, Adela

    2018-02-01

    We have completed a survey of twenty-two ultraviolet-selected hot subdwarfs using the Fiber-fed Extended Range Optical Spectrograph (FEROS) and the 2.2-m telescope at La Silla. The sample includes apparently single objects as well as hot subdwarfs paired with a bright, unresolved companion. The sample was extracted from our GALEX catalogue of hot subdwarf stars. We identified three new short-period systems (P = 3.5 hours to 5 days) and determined the orbital parameters of a long-period (P = 62d.66) sdO plus G III system. This particular system should evolve into a close double degenerate system following a second common envelope phase.We also conducted a chemical abundance study of the subdwarfs: Some objects show nitrogen and argon abundance excess with respect to oxygen. We present key results of this programme.

  19. Seeded hot dark matter models with inflation

    Science.gov (United States)

    Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.

    1993-01-01

    We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.

  20. Kepler constraints on planets near hot Jupiters

    Science.gov (United States)

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; Quinn, Samuel N.

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2∶1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history. PMID:22566651

  1. Microbial ecology of hot desert edaphic systems.

    Science.gov (United States)

    Makhalanyane, Thulani P; Valverde, Angel; Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Cowan, Don A

    2015-03-01

    A significant proportion of the Earth's surface is desert or in the process of desertification. The extreme environmental conditions that characterize these areas result in a surface that is essentially barren, with a limited range of higher plants and animals. Microbial communities are probably the dominant drivers of these systems, mediating key ecosystem processes. In this review, we examine the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly. We also assess the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms. We conclude by discussing current gaps in our understanding of the microbiology of hot deserts and suggest fruitful avenues for future research. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Physics of dust grains in hot gas

    International Nuclear Information System (INIS)

    Draine, B.T.; Salpeter, E.E.

    1979-01-01

    Charging of dust grains in hot (10 4 --10 9 K) plasma is studied, including photoelectron and secondary electron emission, field emission, and transmission of electrons and ions through the grain; resulting grain potentials are (for T > or approx. = 10 5 K) considerably smaller in magnitude than found by Burke and Silk. Even so, large electrostatic stresses can cause ion field emission and rapid destruction of small grains in very hot gas. Rapid rotation can also disrupt small grains, but damping (by microwave emission) usually limits the centrifugal stress to acceptable values for plasma densities n/sub H/ -3 . Sputtering rates are estimated for grains in hot gas, based upon a semiempirical fit to experimental data. Predicted sputtering rates for possible grain constituents are similar to estimates by Barlow, but in some cases differ significantly. Useful approximation formulae are given for the drag forces acting on a grain with arbitrary Mach number

  3. Hot interstellar matter in elliptical galaxies

    CERN Document Server

    Kim, Dong-Woo

    2012-01-01

    Based on a number of new discoveries resulting from 10 years of Chandra and XMM-Newton observations and corresponding theoretical works, this is the first book to address significant progress in the research of the Hot Interstellar Matter in Elliptical Galaxies. A fundamental understanding of the physical properties of the hot ISM in elliptical galaxies is critical, because they are directly related to the formation and evolution of elliptical galaxies via star formation episodes, environmental effects such as stripping, infall, and mergers, and the growth of super-massive black holes. Thanks to the outstanding spatial resolution of Chandra and the large collecting area of XMM-Newton, various fine structures of the hot gas have been imaged in detail and key physical quantities have been accurately measured, allowing theoretical interpretations/predictions to be compared and tested against observational results. This book will bring all readers up-to-date on this essential field of research.

  4. Hot carrier degradation in semiconductor devices

    CERN Document Server

    2015-01-01

    This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices.  Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance. • Describes the intricacies of hot carrier degradation in modern semiconductor technologies; • Covers the entire hot carrier degradation phenomenon, including topics such as characterization, carrier transport, carrier-defect interaction, technological impact, circuit impact, etc.; • Enables detailed understanding of carrier transport, interaction of the carrier ensemble with the defect precursors, and an accurate assessment of how the newly created defects imp...

  5. Kepler constraints on planets near hot Jupiters.

    Science.gov (United States)

    Steffen, Jason H; Ragozzine, Darin; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-05-22

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  6. Archaeal diversity in Icelandic hot springs

    DEFF Research Database (Denmark)

    Kvist, Thomas; Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    Whole-cell density gradient extractions from three solfataras (pH 2.5) ranging in temperature from 81 to 90 degrees C and one neutral hot spring (81 degrees C, pH 7) from the thermal active area of Hveragerethi (Iceland) were analysed for genetic diversity and local geographical variation...... of Archaea by analysis of amplified 16S rRNA genes. In addition to the three solfataras and the neutral hot spring, 10 soil samples in transects of the soil adjacent to the solfataras were analysed using terminal restriction fragment length polymorphism (t-RFLP). The sequence data from the clone libraries...... enzymes AluI and BsuRI. The sequenced clones from this solfatara belonged to Sulfolobales, Thermoproteales or were most closest related to sequences from uncultured Archaea. Sequences related to group I.1b were not found in the neutral hot spring or the hyperthermophilic solfatara (90 degrees C)....

  7. On the existence of hot positronium reactions

    International Nuclear Information System (INIS)

    Lazzarini, E.

    1984-01-01

    The existence of hot Ps reactions is nowadays questioned; the controversy arises from the two models (the Ore gap and the spur theories) advanced in order to explain the mechanism of the positronium formation and of its inhibition in liquids by dissolution of certain compounds. The hypothesis of the hot Ps reactions was initially advanced as an additional statement for explaining the inhibition phenomenon within the framework of the Ore gap theory, but it is not considered necessary for the spur theory. The present paper is chiefly intended as a presentation of this particular aspect of Ps chemistry to hot atom chemists unspecialized in the field. The reader is assumed to be familiar with the basic physics and experimental methods used in positronium chemistry. Contents: positrons and positronium formation; inhibition and enhancement of Ps formation in solutions; positronium reactions in gases. (Auth.)

  8. Angular response of hot wire probes

    International Nuclear Information System (INIS)

    Di Mare, L; Jelly, T O; Day, I J

    2017-01-01

    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined. (paper)

  9. Measuring hot flash phenomenonology using ambulatory prospective digital diaries

    Science.gov (United States)

    Fisher, William I.; Thurston, Rebecca C.

    2016-01-01

    Objective This study provides the description, protocol, and results from a novel prospective ambulatory digital hot flash phenomenon diary. Methods This study included 152 midlife women with daily hot flashes who completed an ambulatory electronic hot flash diary continuously for the waking hours of 3 consecutive days. In this diary, women recorded their hot flashes and accompanying characteristics and associations as the hot flashes occurred. Results Self-reported hot flash severity on the digital diaries indicated that the majority of hot flashes were rated as mild (41.3%) or moderate (43.7%). Severe (13.1%) and very severe (1.8%) hot flashes were less common. Hot flash bother ratings were rated as mild (43%), or moderate (33.5%), with fewer hot flashes reported bothersome (17.5%) or very bothersome (6%). The majority of hot flashes were reported as occurring on the on the face (78.9%), neck (74.7%), and chest (61.3%). Prickly skin was reported concurrently with 32% of hot flashes, 7% with anxiety and 5% with nausea. A novel finding, 38% of hot flashes were accompanied by a premonitory aura. Conclusion A prospective electronic digital hot flash diary allows for a more precise quantitation of hot flashes while overcoming many of the limitations of commonly employed retrospective questionnaires and paper diaries. Unique insights into the phenomenology, loci and associated characteristics of hot flashes were obtained using this device. The digital hot flash phenomenology diary is recommended for future ambulatory studies of hot flashes as a prospective measure of the hot flash experience. PMID:27404030

  10. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  11. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  12. Hot water, fresh beer, and salt

    International Nuclear Information System (INIS)

    Crawford, F.S.

    1990-01-01

    In the ''hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO 2 ) provided you first (a) get rid of much of the excess CO 2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ''Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally

  13. Axions as hot and cold dark matter

    International Nuclear Information System (INIS)

    Jeong, Kwang Sik; Kawasaki, Masahiro; Tokyo Univ., Kashiwa; Takahashi, Fuminobu; Tokyo Univ., Kashiwa

    2013-10-01

    The presence of a hot dark matter component has been hinted at 3σ by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu- Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f a 10 ) GeV, if they are produced by the saxion decay and the domain wall annihilation. We also investigate the cases of thermal QCD axions, pseudo Nambu-Goldstone bosons coupled to the standard model sector through the Higgs portal, and axions produced by modulus decay.

  14. Thermal tides on a hot Jupiter

    Directory of Open Access Journals (Sweden)

    Hsieh H.-F.

    2011-07-01

    Full Text Available Following the linear analysis laid out by Gu & Ogilvie 2009 (hereafter GO09, we investigate the dynamical response of a non-synchronized hot Jupiter to stellar irradiation. Besides the internal and Rossby waves considered by GO09, we study the Kelvin waves excited by the diurnal Fourier harmonic of the prograde stellar irradiation. We also present a 2-dimensional plot of internal waves excited by the semi-diurnal component of the stellar irradiation and postulate that thermal bulges may arise in a hot Jupiter. Whether our postulation is valid and is consistent with the recent results from Arras & Socrates (2009b requires further investigation.

  15. The Hot ISM of Normal Galaxies

    Science.gov (United States)

    Fabbiano, Giuseppina

    1999-01-01

    X-ray observations of galaxies have shown the presence of hot ISM and gaseous halos. The most spectacular examples am in early-type galaxies (E and S0), and in galaxies hosting intense starforming regions. This talk will review the observational evidence and highlight the outstanding issues in our understanding of this gaseous component, with emphasis on our present understanding of the chemical composition of these hot halos. It will address how Chandra, XMM, and future X-ray missions can address these studies.

  16. Seismic evaluation of a hot cell structure

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.

    1995-01-01

    The evaluation of the structural capacity of and the seismic demand on an existing hot cell structure in a nuclear facility is described. An ANSYS finite-element model of the cell was constructed, treating the walls as plates and the floor and ceiling as a system of discrete beams. A modal analysis showed that the fundamental frequencies of the cell walls lie far above the earthquake frequency range. An equivalent static analysis of the structure was performed. Based on the analysis it was demonstrated that the hot cell structure, would readily withstand the evaluation basis earthquake

  17. Hot-carrier effects in MOS devices

    CERN Document Server

    Takeda, Eiji; Miura-Hamada, Akemi

    1995-01-01

    The exploding number of uses for ultrafast, ultrasmall integrated circuits has increased the importance of hot-carrier effects in manufacturing as well as for other technological applications. They are rapidly movingout of the research lab and into the real world.This book is derived from Dr. Takedas book in Japanese, Hot-Carrier Effects, (published in 1987 by Nikkei Business Publishers). However, the new book is much more than a translation. Takedas original work was a starting point for developing this much more complete and fundamental text on this increasingly important topic. The new work

  18. Evolution of Hot Gas in Elliptical Galaxies

    Science.gov (United States)

    Mathews, William G.

    2004-01-01

    This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.

  19. Hot Flow Anomaly formation by magnetic deflection

    International Nuclear Information System (INIS)

    Onsager, T.G.; Thomsen, M.F.; Winske, D.

    1990-01-01

    Hot Flow Anomalies (HFAs) are localized plasma structures observed in the solar wind and magnetosheath near the Earth's quasi-parallel bow shock. The authors present 1-D hybrid computer simulations illustrating a formation mechanism for HFAs in which the single, hot, ion population results from a spatial separation of two counterstreaming ion beams. The higher-density, cooler regions are dominated by the background (solar wind) ions, and the lower-density, hotter, internal regions are dominated by the beam ions. The spatial separation of the beam and background is caused by the deflection of the ions in large amplitude magnetic fields which are generated by ion/ion streaming instabilities

  20. Degenerate stars. XII - Recognition of hot nondegenerates

    Science.gov (United States)

    Greenstein, J. L.

    1980-12-01

    Fifty-one newly observed degenerate stars and 14 nondegenerates include 13 faint red stars, most of which do not show any lines except DF, Gr 554. Hot subdwarfs and an X-ray source are discussed along with the problem of low-resolution spectroscopic classification of dense hot stars. The multichannel spectrum of the carbon-rich magnetic star LP 790-29 is examined by fitting the undisturbed parts of the spectrum to a black body of 7625 K by the least squares method; the Swan bands absorb 600 A of the spectrum assuming that the blocked radiation is redistributed in the observed region.

  1. Hot water, fresh beer, and salt

    Science.gov (United States)

    Crawford, Frank S.

    1990-11-01

    In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.

  2. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    Science.gov (United States)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  3. Aspects of the interstellar medium in starburst galaxies

    International Nuclear Information System (INIS)

    Fanelli, M.N.

    1990-01-01

    Researchers are engaged in a multifaceted program to investigate the stellar content and star formation history of actively star-forming galaxies. A large body of stellar spectra have been examined to identify spectral features characteristic of specific stellar types. These spectral diagnostics are then calibrated in terms of temperature (spectral type), gravity (luminosity class) and metallicity. The spectral data is compiled into a stellar library whose members represent specific locations in the HR diagram. Through the use of population synthesis techniques, both optimizing and evolutionary approaches, the stellar luminosity function in composite populations can be determined. Researchers have concentrated on the ultraviolet wavelength region (lambda lambda 1200 to 3200). In the optical, virtually all stars will contribute to the integrated light. In the ultraviolet however, cool stars will produce negligible flux due to their steep ultraviolet-to-visual continua, greatly simplifying the investigation of the hot component in a composite population. The researchers' initial stellar library has been applied to several blue compact galaxies, (BCGs), a class of starburst galaxy which is UV luminous. BCGs possess a complex interstellar medium which affects the emergent stellar continuum in several ways. This presents a challenge to the stellar analysis but affords insight into the properties of the gas and dust from which the massive OB stars have formed. The optimizing synthesis method solves for the stellar luminosity function and extinction simultaneously. This therefore provides an independent measure of the extinction affecting the hot population component. Despite the rise of the reddening law towards the ultraviolet, BCGs are found to be brighter in the ultraviolet than expected

  4. Recordable storage medium with protected data area

    NARCIS (Netherlands)

    2005-01-01

    The invention relates to a method of storing data on a rewritable data storage medium, to a corresponding storage medium, to a corresponding recording apparatus and to a corresponding playback apparatus. Copy-protective measures require that on rewritable storage media some data must be stored which

  5. Electromagnetic Sources in a Moving Conducting Medium

    DEFF Research Database (Denmark)

    Johannsen, Günther

    1971-01-01

    The problem of an arbitrary source distribution in a uniformly moving, homogeneous, isotropic, nondispersive, conducting medium is solved. The technique used is to solve the problem in the rest system of the medium and then write the result in an appropriate four-dimensional, covariant form which...

  6. Kultivasi Scenedesmus SP. Pada Medium Air Limbah

    OpenAIRE

    Kawaroe, Mujizat

    2011-01-01

    Proses fotosintesis pada mikroalga membutuhkan CO2 dan cahaya matahari serta nutrien untuk pertumbuhannya. Kultivasi Scenedesmus sp. pada medium air limbah bertujuan guna mencukupi kebutuhan mikroalga akan nutrien dan mengurangi masukan dari bahan kimia yang terkandung dalam air limbah tersebut ke lingkungan. Kultivasi Scenedesmus sp. dilakukan selama tujuh hari pada medium air limbah industri tanpa penambahan nutri...

  7. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan; Wu, Ying

    2015-01-01

    -dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided

  8. Selective medium for aerobic incubation of Campylobacter

    Science.gov (United States)

    Studies were conducted on the formulation of a selective medium that could be used to isolate Campylobacter from mixed bacterial cultures using aerobic incubation. A non-selective, basal broth medium was prepared and supplemented with Bolton, Cefex, or Skirrow antibiotic mixtures. The ability of pur...

  9. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  10. Non-equilibrium ionization around clouds evaporating in the interstellar medium

    International Nuclear Information System (INIS)

    Ballet, J.; Luciani, J.F.; Mora, P.

    1986-01-01

    It is of prime importance for global models of the interstellar medium to know whether dense clouds do or do not evaporate in the hot coronal gas. The rate of mass exchanges between phases depends very much on that. McKee and Ostriker's model, for instance, assumes that evaporation is important enough to control the expansion of supernova remnants, and that mass loss obeys the law derived by Cowie and McKee. In fact, the geometry of the magnetic field is nearly unknown, and it might totally inhibit evaporation, if the clouds are not regularly connected to the hot gas. Up to now, the only test of the theory is the U.V. observation (by the Copernicus and IUE satellites) of absorption lines of ions such as OVI or NV, that exist at temperatures of a few 100,000 K typical of transition layers around evaporating clouds. Other means of testing the theory are discussed

  11. Glowing Hot Transiting Exoplanet Discovered

    Science.gov (United States)

    2003-04-01

    VLT Spectra Indicate Shortest-Known-Period Planet Orbiting OGLE-TR-3 Summary More than 100 exoplanets in orbit around stars other than the Sun have been found so far. But while their orbital periods and distances from their central stars are well known, their true masses cannot be determined with certainty, only lower limits. This fundamental limitation is inherent in the common observational method to discover exoplanets - the measurements of small and regular changes in the central star's velocity, caused by the planet's gravitational pull as it orbits the star. However, in two cases so far, it has been found that the exoplanet's orbit happens to be positioned in such a way that the planet moves in front of the stellar disk, as seen from the Earth. This "transit" event causes a small and temporary dip in the star's brightness, as the planet covers a small part of its surface, which can be observed. The additional knowledge of the spatial orientation of the planetary orbit then permits a direct determination of the planet's true mass. Now, a group of German astronomers [1] have found a third star in which a planet, somewhat larger than Jupiter, but only half as massive, moves in front of the central star every 28.5 hours . The crucial observation of this solar-type star, designated OGLE-TR-3 [2] was made with the high-dispersion UVES spectrograph on the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). It is the exoplanet with the shortest period found so far and it is very close to the star, only 3.5 million km away. The hemisphere that faces the star must be extremely hot, about 2000 °C and the planet is obviously losing its atmosphere at high rate . PR Photo 10a/03 : The star OGLE-TR-3 . PR Photo 10b/03 : VLT UVES spectrum of OGLE-TR-3. PR Photo 10c/03 : Relation between stellar brightness and velocity (diagram). PR Photo 10d/03 : Observed velocity variation of OGLE-TR-3. PR Photo 10e/03 : Observed brightness variation of OGLE-TR-3. The search

  12. Improvement of tolerance of Saccharomyces cerevisiae to hot-compressed water-treated cellulose by expression of ADH1

    Energy Technology Data Exchange (ETDEWEB)

    Jayakody, Lahiru N.; Horie, Kenta; Kitagaki, Hiroshi [Saga Univ. (Japan). Dept. of Environmental Sciences; Hayashi, Nobuyuki [Saga Univ. (Japan). Dept. of Applied Biochemistry and Food Science

    2012-04-15

    Hot-compressed water treatment of cellulose and hemicellulose for subsequent bioethanol production is a novel, economically feasible, and nonhazardous method for recovering sugars. However, the hot-compressed water-treated cellulose and hemicellulose inhibit subsequent ethanol fermentation by the yeast Saccharomyces cerevisiae. To overcome this problem, we engineered a yeast strain with improved tolerance to hot-compressed water-treated cellulose. We first determined that glycolaldehyde has a greater inhibitory effect than 5-HMF and furfural and a combinational effect with them. On the basis of the hypothesis that the reduction of glycolaldehyde to ethylene glycol should detoxify glycolaldehyde, we developed a strain overexpressing the alcohol dehydrogenase gene ADH1. The ADH1-overexpressing strain exhibits an improved fermentation profile in a glycolaldehyde-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 30 {+-} 1.9% when the control strain is used; this ratio increases to 77 {+-} 3.6% in the case of the ADH1-overexpressing strain. A glycolaldehyde treatment and the overexpression of ADH1 cause changes in the fermentation products so as to balance the metabolic carbon flux and the redox status. Finally, the ADH1-overexpressing strain shows a statistically significantly improved fermentation profile in a hot-compressed water-treated cellulose-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 33 {+-} 0.85% when the control strain is used but increases to 72 {+-} 1.7% in the case of the ADH1-overexpressing strain. These results show that the reduction of glycolaldehyde to ethylene glycol is a promising strategy to decrease the toxicity of hot-compressed water-treated cellulose. This is the first report on the improvement of yeast tolerance to hot-compressed water-treated cellulose and glycolaldehyde.

  13. Micropropagation of Alstroemeria in liquid medium using slow release of medium components

    NARCIS (Netherlands)

    Klerk, de G.J.M.; Brugge, ter J.

    2010-01-01

    Alstroemeria rhizomes were micropropagated on semi-solid medium (AM) and in liquid medium (LM). In LM, growth was much enhanced (ca. 70%). Adequate gas exchange was crucial. This was obtained by agitation and in static medium by a sufficient large contact area of the explant and the gaseous

  14. SHOSPA-MOD, Hot Spot Factors for Fuel and Clad, Hot Channel Factors

    International Nuclear Information System (INIS)

    Amendola, A.

    1982-01-01

    1 - Nature of the physical problem solved: SHOSPA evaluates the hot spot factors for fuel and cladding as well as the hot channel factor as a function of the confidence level. Moreover, it evaluates the probability on n hot subassemblies. The code has been developed with emphasis on sodium cooled fast reactors, but it is applicable to any type of reactors constituted of bundled fuel rods with single phase coolant. An option for plotting is available in this version. 2 - Restrictions on the complexity of the problem: This code is applicable to any type of reactors constituted of fuel rods with single phase coolant

  15. Self-consistent descriptions of vector mesons in hot matter reexamined

    International Nuclear Information System (INIS)

    Riek, Felix; Knoll, Joern

    2010-01-01

    Technical concepts are presented that improve the self-consistent treatment of vector mesons in a hot and dense medium. First applications concern an interacting gas of pions and ρ mesons. As an extension of earlier studies, we thereby include random-phase-approximation-type vertex corrections and further use dispersion relations to calculate the real part of the vector-meson self-energy. An improved projection method preserves the four transversality of the vector-meson polarization tensor throughout the self-consistent calculations, thereby keeping the scheme void of kinematical singularities.

  16. A radioecological survey of eatable organisms for natural radionuclides in hot spring water

    International Nuclear Information System (INIS)

    Zhu, H.; Huang, X.; Song, H.; Li, J.; Zhang, J.

    1993-01-01

    This paper reports a radioecological survey on some aquatic eatable organisms raised in a hot spring water, which is rich in 226 Ra, in Hubei Province; and on agricultural products irrigated with the water. The contents of 226 Ra, 210 Pb and 210 Po in the water, some aquatic organisms, rice, vegetable an some other connected environmental samples were determined. The Concentration Factor (CF) or Transfer Coefficient (TC) from environmental medium into the eatable parts of the organisms for these nuclides as well as relative Distribution Factor (DF) was calculated. (author). 6 refs, 1 fig., 9 tabs

  17. Birth, life and death of hot nuclei

    International Nuclear Information System (INIS)

    Suraud, E.; Tamain, B.; Gregoire, C.

    1989-01-01

    Intermediate energy heavy-ions (10-100 MeV/u) are the most powerful tool to study hot nuclear matter properties. In this paper we give a review of experimental and theoretical works which support this statement. The first challenge is to achieve hot nuclei formation. The second one is to study their properties. The formation step is governed by the relative influence of nucleon-nucleon collisions and mean field effects. Fundamental quantities such as excited matter decay time, thermalization time, relaxation time for collective modes are of major importance and are compared with typical collision times. It appears that semi-classical theories are able to give a reasonable description of the collision and that they are a good guide for defining further experiments. We show how it has been possible to experimentally establish that very hot equilibrated nuclei are really formed. Their decay properties are not basically different from decay properties at lower bombarding energy. However specific channels are open: in that sense, we take stock of the multifragmentation process. Moreover, compression effects may be an important feature of this energy range. Future studies will involve heavier projectiles around 30-50 MeV/u. They will be the best probe for hot and compressed nuclear matter studies

  18. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  19. Nuclear track radiography of 'hot' aerosol particles

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Kievitskaja, A.I.; Kievets, M.K.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Perelygin, V.P.; Petrova, R.; Brandt, R.; Vater, P.

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the α-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (γ,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by 235 U, 239 Pu and 241 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 -6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical image of the SSNTD surface obtained through a video camera and the determination of size and activity of 'hot' particles

  20. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  1. Time to B. cereus about hot chocolate.

    Science.gov (United States)

    Nelms, P K; Larson, O; Barnes-Josiah, D

    1997-01-01

    To determine the cause of illnesses experienced by employees of a Minneapolis manufacturing plant after drinking hot chocolate bought from a vending machine and to explore the prevalence of similar vending machine-related illnesses. The authors inspected the vending machines at the manufacturing plant where employees reported illnesses and at other locations in the city where hot chocolate beverages were sold in machines. Tests were performed on dry mix, water, and beverage samples and on machine parts. Laboratory analyses confirmed the presence of B. cereus in dispensed beverages at a concentration capable of causing illness (170,000 count/gm). In citywide testing of vending machines dispensing hot chocolate, 7 of the 39 licensed machines were found to be contaminated, with two contaminated machines having B. cereus levels capable of causing illness. Hot chocolate sold in vending machines may contain organisms capable of producing toxins that under favorable conditions, can induce illness. Such illnesses are likely to be underreported. Even low concentrations of B. cereus may be dangerous for vulnerable populations such as the aged or immunosuppressed. Periodic testing of vending machines is thus warranted. The relationship between cleaning practices and B. cereus contamination is an issue for further study.

  2. Heat stress protection in abnormally hot environments.

    CSIR Research Space (South Africa)

    Schutte, PC

    1994-11-01

    Full Text Available The present report presents the findings of SIMRAC project GAP 045 entitled ‘Heat stress protection in abnormally hot environments’. It is intended as a reference to develop guidelines which, in turn would assist mine management in establishing safe...

  3. 16 CFR 1505.51 - Hot surfaces.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Hot surfaces. 1505.51 Section 1505.51 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... into any opening in the toy. Unless the probe contacts a surface within 3 inches of the plane of the...

  4. Hot hadronic matter in the early universe

    International Nuclear Information System (INIS)

    Bowers, R.L.; Dykema, P.G.; Gleeson, A.M.

    1977-04-01

    A fully relativistic equation of state for hot baryonic matter was used to investigate the strong interaction contribution to the equation of motion of the Friedmann universe. A pronounced softening of the equation of state is observed near nuclear density. The significance of the results is analyzed in terms of analytic solutions for the Friedmann cosmology

  5. Radiation polymerized hot melt pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Pastor, S.D.; Skoultchi, M.M.

    1977-01-01

    Hot melt pressure sensitive adhesive compositions formed by copolymerizing at least one 3-(chlorinated aryloxy)-2-hydroxypropyl ester of an alpha, beta unsaturated carboxylic acid with acrylate based copolymerizable monomers, are described. The resultant ethylenically saturated prepolymer is heated to a temperature sufficient to render it fluid and flowable. This composition is coated onto a substrate and exposed to ultraviolet radiation

  6. Transport properties of hot gluonic matter

    CERN Document Server

    Bluhm, Marcus

    2012-01-01

    We discuss the temperature dependence of the scaled jet quenching parameter of hot gluonic matter within a quasiparticle approach. A pronounced maximum in the vicinity of the transition temperature is observed, where the ratio of the scaled jet quenching parameter and the inverse specific shear viscosity increases above typical values for weakly coupled systems.

  7. What's Hot: Texas and the Nation

    Science.gov (United States)

    Cassidy, Jack; Ortlieb, Evan; Grote-Garcia, Stephanie

    2016-01-01

    For two decades the International Literacy Association (ILA) has published the "What's Hot, What's Not in Literacy Survey." In the last five years, the hottest topics featured on the lists have largely been connected to the English Language Arts Common Core State Standards (ELA CCSS)--a publication produced by the National Governors…

  8. Remarks on theoretical hot-atom chemistry

    International Nuclear Information System (INIS)

    Inokuti, Mitio

    1993-01-01

    The publication of the 'Handbook of Hot Atom Chemistry', following the earlier volume 'Recent Trend and Application', was a major milestone in physical chemistry. Theoretical treatments of hot atom chemistry must address two classes of problems. The first class concerns the individual collisions of hot atoms with other atoms or molecules. The second class concerns the description of the consequences of the many collisions of hot atoms and their chemical environment. Most of the remarks pertain to the problems of the first class. The central issue is the adiabaticity of nuclear motions versus electronic motions. To be precise, any atomic core motion should be mentioned rather than pure nuclear motion, because tightly bound core electrons are largely irrelevant to the chemistry. When nuclear motions are sufficiently slow, or for other reasons that can be regarded as adiabatic, the collision problem is basically straightforward, therefore, interatomic and intermolecular forces can be assumed, and their consequences for nuclear motions are calculable in principle. In the case of non-adiabaticity being important, much more difficult problems arise, and it is briefly discussed, and the work by Phelps is cited. (K.I.)

  9. Depressurization test on hot gas duct

    International Nuclear Information System (INIS)

    Tanihira, Masanori; Kunitomi; Kazuhiko; Inagaki, Yoshiyuki; Miyamoto, Yoshiaki; Sato, Yutaka.

    1989-05-01

    To study the integrity of internal structures and the characteristics in a hot gas duct under the rapid depressurization accident, depressurization tests have been carried out using a test apparatus installed the hot gas duct with the same size and the same structures as that of the High Temperature Engineering Test Reactor (HTTR). The tests have been performed with three parameters: depressurization rate (0.14-3.08 MPa/s) determined by orifice diameter, area of the open space at the slide joint (11.9-2036 mm 2 ), and initial pressure (1.0-4.0 MPa) filled up in a pressure vessel, by using nitrogen gas and helium gas. The maximum pressure difference applied on the internal structures of the hot gas duct was 2.69 MPa on the liner tube and 0.45 MPa on the separating plate. After all tests were completed, the hot gas duct which was used in the tests was disassembled. Inspection revealed that there were no failure and no deformation on the internal structures such as separating plates, insulation layers, a liner tube and a pressure tube. (author)

  10. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  11. Solar-powered hot-air system

    Science.gov (United States)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  12. HotMobile 2008: Postconference Report

    NARCIS (Netherlands)

    Hong, J.; Lindqvist, J.; Pawar, P.; Stuntebeck, E.

    2008-01-01

    HotMobile 2008 presented a two-day program on mobile computing systems and applications. The authors focuses on the sessions on sensors, modularity, wireless, security, systems, and screens. The mobile device is the most amazing invention in history and that it has had the largest impact on human

  13. Hot-dry-rock geothermal resource 1980

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  14. Cycling the Hot CNO: A Teaching Methodology

    Science.gov (United States)

    Frost-Schenk, J. W.; Diget, C. Aa.; Bentley, M. A.; Tuff, A.

    2018-01-01

    An interactive activity to teach the hot Carbon, Nitrogen and Oxygen (HCNO) cycle is proposed. Justification for why the HCNO cycle is important is included via an example of x-ray bursts. The activity allows teaching and demonstration of half-life, nuclear isotopes, nuclear reactions, protons and a-particles, and catalytic processes. Whilst the…

  15. Collective motion in hot superheavy nuclei

    NARCIS (Netherlands)

    Tveter, TS; Gaardhoje, JJ; Maj, A; Ramsoy, T; Atac, A; Bacelar, J; Bracco, A; Buda, A; Camera, F; Herskind, B; Korten, W; Krolas, W; Menthe, A; Million, B; Nifenecker, H; Pignanelli, M; Pinston, JA; vanderPloeg, H; Schussler, F; Sletten, G

    1996-01-01

    The superheavy nucleus (272)(108)Hs and its evaporation daughters have been produced using the reaction Th-232(Ar-40,gamma xn) with beam energies 10.5 and 15.0 MeV/A. The Giant Dipole Resonance gamma-radiation from the hot conglomerate system prior to fission has been isolated using a differential

  16. Geothermal energy and hot springs in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Koga, T. (Hot Springs Therapeutics Research Institute, Kyushu, Univ., Japan)

    1971-01-01

    The hot springs in Ethiopia are concentrated in two areas: the North Afar depression and adjacent Red Sea shore, and a geothermal field 100 km from northeast to southwest in the central part of Ethiopia. The latter extends not only to the Great Rift Valley but also to the Aden Gulf. In the lake district in the central Great Rift Valley, there are a number of hot springs on the lake shore. These are along NE-SW fault lines, and the water is a sodium bicarbonate-type rich in HCO/sub 3/ and Na but low in C1 and Ca. In Dallol in the North Afar depression, CO/sub 2/-containing hot springs with high temperatures (110/sup 0/C) and a specific gravity of 1.4, were observed. In the South Afar depression, located in the northeastern part of the Rift Valley, there are many active volcanoes and hot springs between the lake district and the Danakil depression. The spring water is a sodium bicarbonate saline type. Nine graphs and maps are included.

  17. Teaching Earth Science Using Hot Air Balloons

    Science.gov (United States)

    Kuhl, James; Shaffer, Karen

    2008-01-01

    Constructing model hot air balloons is an activity that captures the imaginations of students, enabling teachers to present required content to minds that are open to receive it. Additionally, there are few activities that lend themselves to integrating so much content across subject areas. In this article, the authors describe how they have…

  18. Experimental approach to Chernobyl hot particles

    International Nuclear Information System (INIS)

    Tcherkezian, V.; Shkinev, V.; Khitrov, L.; Kolesov, G.

    1994-01-01

    An experimental approach to the investigation of Chernobyl hot particles and some results are presented in this study. Hot particles (HP) were picked out from soil samples collected during the 1986-1990 radiogeochemical expeditions in the contaminated zone (within 30 km of the Nuclear Power Plant). A number of hot particles were studied to estimate their contribution to the total activity, investigate their surface morphology and determine the size distribution. Hot particles contribution to the total activity in the 30 km zone was found to be not less than 65%. Investigation of HP element composition (by neutron activation analysis and EPMA) and radionuclide composition (direct alpha- and gamma-spectrometry, including determination of Pu and Am in Hp) revealed certain peculiarities of HP, collected in the vicinity of the damaged Nuclear Power Plant. Some particles were shown to contain uranium and fission products in proportion to one another, correlating with those in the partially burnt fuel, which proves their 'fuel' origin. Another part of the HP samples has revealed element fractionation as well as the presence of some terrestrial components. (Author)

  19. White noise excitation in a hot plasma

    International Nuclear Information System (INIS)

    Ito, Masataka

    1977-01-01

    In a low frequency range, a property of white noise in a hot plasma is studied experimentally. A frequency component of white noise is observed to propagate with a phase velocity which is equal to the ion accoustic wave velocity. The white noise, which is launched in a plasma, is considered as the sum of ion acoustic waves. (auth.)

  20. Microbial hotspots and hot moments in soil

    Science.gov (United States)

    Kuzyakov, Yakov; Blagodatskaya, Evgenia

    2015-04-01

    Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong

  1. Collaborative Manufacturing for Small-Medium Enterprises

    Science.gov (United States)

    Irianto, D.

    2016-02-01

    Manufacturing systems involve decisions concerning production processes, capacity, planning, and control. In a MTO manufacturing systems, strategic decisions concerning fulfilment of customer requirement, manufacturing cost, and due date of delivery are the most important. In order to accelerate the decision making process, research on decision making structure when receiving order and sequencing activities under limited capacity is required. An effective decision making process is typically required by small-medium components and tools maker as supporting industries to large industries. On one side, metal small-medium enterprises are expected to produce parts, components or tools (i.e. jigs, fixture, mold, and dies) with high precision, low cost, and exact delivery time. On the other side, a metal small- medium enterprise may have weak bargaining position due to aspects such as low production capacity, limited budget for material procurement, and limited high precision machine and equipment. Instead of receiving order exclusively, a small-medium enterprise can collaborate with other small-medium enterprise in order to fulfill requirements high quality, low manufacturing cost, and just in time delivery. Small-medium enterprises can share their best capabilities to form effective supporting industries. Independent body such as community service at university can take a role as a collaboration manager. The Laboratory of Production Systems at Bandung Institute of Technology has implemented shared manufacturing systems for small-medium enterprise collaboration.

  2. BC SEA Solar Hot Water Acceleration project

    Energy Technology Data Exchange (ETDEWEB)

    Harris, N.C. [BC Sustainable Energy Association, Victoria, BC (Canada)

    2005-07-01

    Although solar hot water heating is an environmentally responsible technology that reduces fossil fuel consumption and helps mitigate global climate change, there are many barriers to its widespread use. Each year, domestic water heating contributes nearly 6 million tonnes of carbon dioxide towards Canada's greenhouse gas emissions. The installation of solar water heaters can eliminate up to 2 tonnes of carbon dioxide emissions per household. The BC SEA Solar Hot Water Acceleration project was launched in an effort to demonstrate that the technology has the potential to be widely used in homes and businesses across British Columbia. One of the main barriers to the widespread use of solar hot water heating is the initial cost of the system. Lack of public awareness and understanding of the technology are other barriers. However, other jurisdictions around the world have demonstrated that the use of renewables are the product of conscious policy decisions, including low-cost financing and other subsidies that have created demand for these technologies. To this end, the BC SEA Solar Hot Water Acceleration project will test the potential for the rapid acceleration of solar water heating in pilot communities where barriers are removed. The objective of the project is to install 100 solar water systems in homes and 25 in businesses and institutions in communities in British Columbia by July 2007. The project will explore the financial barriers to the installation of solar hot water systems and produce an action plan to reduce these barriers. In addition to leading by example, the project will help the solar energy marketplace, mitigate climate change and improve energy efficiency.

  3. Hot Embossing for Whole Teflon Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Jie Li

    2018-06-01

    Full Text Available In this paper, we report a simple fabrication process of whole Teflon superhydrophobic surfaces, featuring high-aspect-ratio (>20 nanowire structures, using a hot embossing process. An anodic aluminum oxide (AAO membrane is used as the embossing mold for the fabrication of high-aspect-ratio nanowires directly on a Teflon substrate. First, high-aspect-ratio nanowire structures of Teflon are formed by pressing a fluorinated ethylene propylene (FEP sheet onto a heated AAO membrane at 340 °C, which is above the melting point of FEP. Experimental results show that the heating time and aspect ratios of nanopores in the AAO mold are critical to the fidelity of the hot embossed nanowire structures. It has also been found that during the de-molding step, a large adhesive force between the AAO mold and the molded FEP greatly prolongs the length of nanowires. Contact angle measurements indicate that Teflon nanowires make the surface superhydrophobic. The reliability and robustness of superhydrophobicity is verified by a long-term (~6.5 h underwater turbulent channel flow test. After the first step of hot-embossing the Teflon nanowires, microstructures are further superimposed by repeating the hot embossing process, but this time with microstructured silicon substrates as micromolds and at a temperature lower than the melting temperature of the FEP. The results indicate that the hot embossing process is also an effective way to fabricate hierarchical micro/nanostructures of whole Teflon, which can be useful for applications of Teflon material, such as superhydrophobic surfaces.

  4. Geothermal Exploration in Hot Springs, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Toby McIntosh, Jackola Engineering

    2012-09-26

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250 of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the center of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  5. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. The applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous`s empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing. 6 refs., 8 figs. (Author)

  6. Thermal fluid mixing behavior during medium break LOCA in evaluation of pressurized thermal shock

    International Nuclear Information System (INIS)

    Jung, Jae Won; Bang, Young Seok; Seul, Kwang Won; Kim, Hho Jung

    1998-01-01

    Thermal fluid mixing behavior during a postulated medium-size hot leg break loss of coolant accident is analyzed for the international comparative assessment study on pressurized thermal shock (PTS-ICAS) proposed by OECD-NEA. the applicability of RELAP5 code to analyze the thermal fluid mixing behavior is evaluated through a simple modeling relevant to the problem constraints. Based on the calculation result, the onset of thermal stratification is investigated using Theofanous's empirical correlation. Sensitivity calculations using a fine node model and crossflow model are also performed to evaluate the modeling capability on multi-dimensional characteristics related to thermal fluid mixing

  7. Analysis of Medium-Scale Solar Thermal Systems and Their Potential in Lithuania

    OpenAIRE

    Valančius, Rokas; Jurelionis, Andrius; Jonynas, Rolandas; Katinas, Vladislovas; Perednis, Eugenijus

    2015-01-01

    Medium-scale solar hot water systems with a total solar panel area varying from 60 to 166 m 2 have been installed in Lithuania since 2002. However, the performance of these systems varies depending on the type of energy users, equipment and design of the systems, as well as their maintenance. The aim of this paper was to analyse operational SHW systems from the perspective of energy production and economic benefit as well as to outline the differences of their actual performance compared to t...

  8. CHANDRA observations of the NGC 1550 galaxy group: Implication for the temperature and entropy profiles of 1 keV galaxy groups

    DEFF Research Database (Denmark)

    Sun, M.; Forman, W.; Vikhlinin, A.

    2003-01-01

    is remarkably similar to those of two other 1 keV groups with accurate temperature determination. The temperature begins to decline at 0.07r(vir) - 0.1r(vir), while in hot clusters the decline begins at or beyond 0.2rvir. Thus, there are at least some 1 keV groups that have temperature profiles significantly...... different from those of hot clusters, which may reflect the role of nongravitational processes in intracluster medium/intergalactic medium evolution. NGC 1550 has no isentropic core in its entropy pro. le, in contrast to the predictions of "entropy floor'' simulations. We compare the scaled entropy profiles...

  9. Photonic-resonant left-handed medium

    International Nuclear Information System (INIS)

    Shen Jianqi

    2006-01-01

    A new scheme to realize simultaneously negative permittivity and permeability in a coherent atomic vapor medium (photonic-resonant material) via a coherent driving mechanism is suggested. It is verified that the atomic system coherently driven by a strong optical field will give rise to a negative refractive index in certain probe frequency ranges. One of the most remarkable features of the present scheme is such that a slab fabricated by the left-handed vapor medium is an ideal candidate for designing perfect lenses since the photonic-resonant atomic vapor cannot only exhibit an isotropic negative refractive index, but also provide a good impedance match at the air-medium interfaces

  10. Physical processes in the interstellar medium

    CERN Document Server

    Spitzer, Lyman

    2008-01-01

    Physical Processes in the Interstellar Medium discusses the nature of interstellar matter, with a strong emphasis on basic physical principles, and summarizes the present state of knowledge about the interstellar medium by providing the latest observational data. Physics and chemistry of the interstellar medium are treated, with frequent references to observational results. The overall equilibrium and dynamical state of the interstellar gas are described, with discussions of explosions produced by star birth and star death and the initial phases of cloud collapse leading to star formation.

  11. Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface

    Science.gov (United States)

    Leonard, R. M.; Kettridge, N.; Devito, K. J.; Petrone, R. M.; Mendoza, C. A.; Waddington, J. M.; Krause, S.

    2018-01-01

    Soil-surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short-lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil-surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high-resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber-Optic Distributed Temperature Sensing. Soil-surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.

  12. WESF hot cells waste minimization criteria hot cells window seals evaluation

    International Nuclear Information System (INIS)

    Walterskirchen, K.M.

    1997-01-01

    WESF will decouple from B Plant in the near future. WESF is attempting to minimize the contaminated solid waste in their hot cells and utilize B Plant to receive the waste before decoupling. WESF wishes to determine the minimum amount of contaminated waste that must be removed in order to allow minimum maintenance of the hot cells when they are placed in ''laid-up'' configuration. The remaining waste should not cause unacceptable window seal deterioration for the remaining life of the hot cells. This report investigates and analyzes the seal conditions and hot cell history and concludes that WESF should remove existing point sources, replace cerium window seals in F-Cell and refurbish all leaded windows (except for A-Cell). Work should be accomplished as soon as possible and at least within the next three years

  13. MIS hot electron devices for enhancement of surface reactivity by hot electrons

    DEFF Research Database (Denmark)

    Thomsen, Lasse Bjørchmar

    A Metal-Insulator-Semiconductor (MIS) based device is developed for investigation of hot electron enhanced chemistry. A model of the device is presented explaining the key concepts of the functionality and the character- istics. The MIS hot electron emitter is fabricated using cleanroom technology...... and the process sequence is described. An Ultra High Vacuum (UHV) setup is modified to facilitate experiments with electron emission from the MIS hot electron emitters and hot electron chemistry. Simulations show the importance of keeping tunnel barrier roughness to an absolute minimum. The tunnel oxide...... to be an important energy loss center for the electrons tunneling through the oxide lowering the emission e±ciency of a factor of 10 for a 1 nm Ti layer thickness. Electron emission is observed under ambient pressure conditions and in up to 2 bars of Ar. 2 bar Ar decrease the emission current by an order...

  14. Ferrocyanide Safety Program: Waste tank sludge rheology within a hot spot or during draining

    International Nuclear Information System (INIS)

    Fauske, H.K.; Cash, R.J.

    1993-11-01

    The conditions under which ferrocyanide waste sludge flows as a homogeneous non-Newtonian two-phase (solid precipitate-liquid) mixture rather than as a liquid through a porous medium (of stationary precipitate) are examined theoretically, based on the notion that the preferred rheological behavior of the sludge is the one which imposes the least resistance to the sludge flow. The homogeneous two-phase mixture is modeled as a power-law fluid and simple criteria are derived that show that the homogeneous power-law sludge-flow is a much more likely flow situation than the porous medium model of sludge flow. The implication of this finding is that the formation of a hot spot or the drainage of sludge from a waste tank are not likely to result in the uncovering (drying) and subsequent potential overheating of the reactive-solid component of the sludge

  15. Ayty: a New Line-List for Hot Formaldehyde

    Science.gov (United States)

    Al-Refaie, Ahmed Faris; Yurchenko, Sergei N.; Tennyson, Jonathan; Yachmenev, Andrey

    2015-06-01

    The ExoMol [1] project aims at providing spectroscopic data for key molecules that can be used to characterize the atmospheres of exoplanets and cool stars. Formaldehyde (H2CO) is of growing importance in studying and modelling terrestrial atmospheric chemistry and dynamics. It also has relevance in astrophysical phenomena that include interstellar medium abundance, proto-planetary and cometary ice chemistry and masers from extra-galactic sources. However there gaps in currently available absolute intensities and a lack of higher rotational excitations that makes it unfeasible to accurately model high temperature systems such as hot Jupiters. Here we present AYTY [2], a new line list for formaldehyde applicable to temperatures up to 1500 K. AYTY contains almost 10 million states reaching rotational excitations up to J=70 and over 10 billion transitions at up to 10 000 cm-1. The line list was computed using the variational ro-vibrational solver TROVE with a refined ab-initio potential energy surface and dipole moment surface. J.~Tennyson and S.~N. Yurchenko MNRAS, 425:21--33, 2012. A.~F. Al-Refaie, S.~N. Yurchenko, A.~Yachmenev, and J.~Tennyson MNRAS, 2015.

  16. High rate of destruction of molecular clouds by hot stars

    International Nuclear Information System (INIS)

    Heydari-Malayeri, M.; Lortet, M.C.; Deharveng, L.

    1980-01-01

    Tenorio-Tagle (1979) first proposed the idea of a third dynamical phase, the champagne phase, following the formation and expansion phases of an HII region. The champagne phase begins when the high pressure gas of an HII region formed inside a molecular cloud reaches the edge of the cloud and bursts into the lower pressure, low density, intercloud medium. One important implication of the model is the prediction of an enormous enhancement of the rate of erosion of the molecular cloud by the ionising radiation of hot stars, which begins as soon as the process of the decrease of the gas density between the star and the cloud is started. The proportion of hydrogen molecules eroded by ionising photons may reach about 10 -2 . The mass eroded may exceed the mass of the ionised gas in the case where the ionisation front reaching the edge of the cloud is of D-type. Additional mechanisms (for instance stellar winds), if at work, may even increase the efficiency of the mechanism. (Auth.)

  17. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  18. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... with leaving anyone, especially children in hot, unventilated vehicles during the summer. Children throughout the country die ... result of being left alone in a hot vehicle. “Putting it bluntly, leaving your child in a ...

  19. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... Health Tips » Holiday and Seasonal Children in Hot Cars Result in Fatal Consequences Emergency physicians are warning ... with leaving anyone, especially children in hot, unventilated vehicles during the summer. Children throughout the country die ...

  20. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... of Emergency Phycisians Toggle navigation Emergency 101 Is it an Emergency? Emergency Care or Urgent Care? When ... being left alone in a hot vehicle. “Putting it bluntly, leaving your child in a hot car ...

  1. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... Health Tips » Holiday and Seasonal Children in Hot Cars Result in Fatal Consequences Emergency physicians are warning ... it bluntly, leaving your child in a hot car is like leaving your child in a lit ...

  2. Children in Hot Cars Result in Fatal Consequences

    Science.gov (United States)

    ... Health Tips » Holiday and Seasonal Children in Hot Cars Result in Fatal Consequences Emergency physicians are warning ... it bluntly, leaving your child in a hot car is like leaving your child in a lit ...

  3. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... year as a direct result of being left alone in a hot vehicle. “Putting it bluntly, leaving ... from children. If you see a child left alone in a hot vehicle, call the police. If ...

  4. The rise and fall of a human recombination hot spot.

    Science.gov (United States)

    Jeffreys, Alec J; Neumann, Rita

    2009-05-01

    Human meiotic crossovers mainly cluster into narrow hot spots that profoundly influence patterns of haplotype diversity and that may also affect genome instability and sequence evolution. Hot spots also seem to be ephemeral, but processes of hot-spot activation and their subsequent evolutionary dynamics remain unknown. We now analyze the life cycle of a recombination hot spot. Sperm typing revealed a polymorphic hot spot that was activated in cis by a single base change, providing evidence for a primary sequence determinant necessary, though not sufficient, to activate recombination. This activating mutation occurred roughly 70,000 y ago and has persisted to the present, most likely fortuitously through genetic drift despite its systematic elimination by biased gene conversion. Nonetheless, this self-destructive conversion will eventually lead to hot-spot extinction. These findings define a subclass of highly transient hot spots and highlight the importance of understanding hot-spot turnover and how it influences haplotype diversity.

  5. Hydrogeochemical Characteristics and Evolution of Hot Springs in Eastern Tibetan Plateau Geothermal Belt, Western China: Insight from Multivariate Statistical Analysis

    Directory of Open Access Journals (Sweden)

    Zheming Shi

    2017-01-01

    Full Text Available The eastern Tibetan Plateau geothermal belt is one of the important medium-high temperature geothermal belts in China. However, less work has been done on the hydrochemical characteristic and its geological origin. Understanding the chemical characteristics and the hydrochemical evolution processes is important in evaluating the geothermal energy potential in this area. In the present study, we discussed the hydrochemical properties and their origins of 39 hot springs located in the eastern Tibetan Plateau geothermal belt (Kangding-Litang-Batang geothermal belt. Cluster analysis and factor analysis are employed to character the hydrochemical properties of hot springs in different fault zones and the possible hydrochemical evolution processes of these hot springs. Our study shows that the hot springs can be divided into three groups based on their locations. The hot springs in the first group mainly originate from the volcanic rock and the springs in the second group originate from the metamorphic rock while the springs in the third group originate from the result of mixture of shallow water. Water-rock interaction, cation exchange, and the water environment are the three dominant factors that control the hydrochemical evolution process in the eastern Tibetan Plateau. These results are also in well agreement with the isotopic and chemical analysis.

  6. Effect of Strain Rate on Hot Ductility Behavior of a High Nitrogen Cr-Mn Austenitic Steel

    Science.gov (United States)

    Wang, Zhenhua; Meng, Qing; Qu, Minggui; Zhou, Zean; Wang, Bo; Fu, Wantang

    2016-03-01

    18Mn18Cr0.6N steel specimens were tensile tested between 1173 K and 1473 K (900 °C and 1200 °C) at 9 strain rates ranging from 0.001 to 10 s-1. The tensile strained microstructures were analyzed through electron backscatter diffraction analysis. The strain rate was found to affect hot ductility by influencing the strain distribution, the extent of dynamic recrystallization and the resulting grain size, and dynamic recovery. The crack nucleation sites were primarily located at grain boundaries and were not influenced by the strain rate. At 1473 K (1200 °C), a higher strain rate was beneficial for grain refinement and preventing hot cracking; however, dynamic recovery appreciably occurred at 0.001 s-1 and induced transgranular crack propagation. At 1373 K (1100 °C), a high extent of dynamic recrystallization and fine new grains at medium strain rates led to good hot ductility. The strain gradient from the interior of the grain to the grain boundary increased with decreasing strain rate at 1173 K and 1273 K (900 °C and 1000 °C), which promoted hot cracking. Grain boundary sliding accompanied grain rotation and did not contribute to hot cracking.

  7. Dynamic and Geological-Ecological Spatial Planning Approach in Hot Mud Volcano Affected Area in Porong-Sidoarjo

    Directory of Open Access Journals (Sweden)

    Haryo Sulistyarso

    2010-08-01

    Full Text Available By May 29t h 2006 with an average hot mud volcano volume of 100,000 m3 /per day, disasters on well kick (i.e. Lapindo Brantas Ltd. in Banjar Panji 1 drilling well have deviated the Spatial Planning of Sidoarjo’s Regency for 2003- 2013. Regional Development Concept that is aimed at developing triangle growth pole model on SIBORIAN (SIdoarjo-JaBOn-KRIaAN could not be implemented. This planning cannot be applied due to environmental imbalance to sub district of Porong that was damaged by hot mud volcano. In order to anticipate deviations of the Regional and Spatial Planning of Sidoarjo Regency for 2003-2013, a review on regional planning and dynamic implementation as well as Spatial Planning Concept based on geologicalecological condition are required, especially the regions affected by well kick disaster. The spatial analysis is based on the geological and ecological condition by using an overlay technique using several maps of hot mud volcano affected areas. In this case, dynamic implementation is formulated to the responsiblity plan that can happen at any time because of uncertain ending of the hot mud volcano eruption disaster in Porong. The hot mud volcano affected areas in the Sidoarjo’s Spatial Planning 2009-2029 have been decided as a geologic protected zone. The result of this research is scenarios of spatial planning for the affected area (short term, medium term and long term spatial planning scenarios.

  8. Effect of Water Clustering on the Activity of Candida antarctica Lipase B in Organic Medium

    DEFF Research Database (Denmark)

    Banik, Sindrila Dutta; Nordblad, Mathias; Woodley, John M.

    2017-01-01

    The effect of initial water activity of MTBE (methyl tert-butyl ether) medium on CALB (Candida antarctica lipase B) catalyzed esterification reaction is investigated using experimental methods and classical molecular dynamics (MD) simulations. The experimental kinetic studies show that the initial...... reaction rate of CALB-catalyzed esterification reaction between butyric acid and ethanol decreases with increasing initial water activity of the medium. The highest rate of esterification is observed at the lowest water activity studied. MD simulations were performed to gain a molecular insight...... on the effect of initial water activity on the rate of CALB-catalyzed reaction. Our results show that hydration has an insignificant effect on the structure and flexibility of CALB. Rather, it appears that water molecules bind to certain regions ("hot spots") on the CALB surface and form clusters. The size...

  9. The Effects of Viscous Dissipation on Convection in a Porus Medium

    Directory of Open Access Journals (Sweden)

    T Raja Rani

    2017-05-01

    Full Text Available The aim of this paper is to study of the effects of variable physical properties and viscous dissipation on a free convective flow over a vertical plate with a variable temperature embedded in a porous medium. We study the effects of varying physical properties on heat transfer and on flow when the medium is filled with some commonly used experimental fluids, in particular, Glycerin, Water and Methyl chloride (a commonly refrigerant. A similarity transformation technique is used to reduce the partial differential equations governing the flow. The resulting system of non-linear coupled ordinary differential equations is solved numerically with appropriate boundary conditions using the Runge-Kutta-Gill method coupled with a shooting technique. Using this approach, a study is conducted on both hot and cold plates and results presented using a combination of graphical illustrations and tables of the effect of changing a variety of physical parameters, in particular, the temperature and viscosity of the fluid.

  10. Optimization of medium composition for apple rootstocks

    African Journals Online (AJOL)

    User

    2011-05-02

    May 2, 2011 ... Key words: Apple rootstocks, medium composition, multiplication rate, plant growth regulators (PGRs). ... be extrapolated with the same success for another .... Analysis System (SAS) software program (SAS Institute Inc. 1999).

  11. Jet multiplicity distributions: medium dependence in MLLA

    International Nuclear Information System (INIS)

    Armesto, Nestor; Pajares, Carlos; Quiroga-Arias, Paloma

    2009-01-01

    We study the medium dependence of the multiplicity distributions in the modified leading logarithmic approximation. We focus in the enhancement in the number of branchings as the partons travel trough a dense medium created in a heavy-ion collision. We study the effect of a higher number of splittings in some jet observables by introducing the medium as a constant (f med ) in the splitting functions. Having as our ansatz for the quark and gluon jets mean multiplicities left angle n G right angle =e γy and left angle n Q right angle =r -1 e γy , we study in an analytic approach the dependence with the medium (f med ) of the anomalous dimension (γ), the multiplicity ratio (r), and so the mean multiplicities. We also obtain the higher-order moments of the multiplicity distribution, what allows us to study its dispersion. (orig.)

  12. Optimization of medium composition for thermostable protease ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... Optimization of the fermentation medium for maximization of thermostable neutral protease production by Bacillus sp. ..... Each contour curve represented an infinite number of combinations of two ..... Production in sea-water of.

  13. Fractional diffusion equation for heterogeneous medium

    International Nuclear Information System (INIS)

    Polo L, M. A.; Espinosa M, E. G.; Espinosa P, G.; Del Valle G, E.

    2011-11-01

    The asymptotic diffusion approximation for the Boltzmann (transport) equation was developed in 1950 decade in order to describe the diffusion of a particle in an isotropic medium, considers that the particles have a diffusion infinite velocity. In this work is developed a new approximation where is considered that the particles have a finite velocity, with this model is possible to describe the behavior in an anomalous medium. According with these ideas the model was obtained from the Fick law, where is considered that the temporal term of the current vector is not negligible. As a result the diffusion equation of fractional order which describes the dispersion of particles in a highly heterogeneous or disturbed medium is obtained, i.e., in a general medium. (Author)

  14. Small and medium power reactors 1987

    International Nuclear Information System (INIS)

    1987-12-01

    This TECDOC follows the publication of TECDOC-347 Small and Medium Power Reactors Project Initiation Study - Phase I published in 1985 and TECDOC-376 Small and Medium Power Reactors 1985 published in 1986. It is mainly intended for decision makers in Developing Member States interested in embarking on a nuclear power programme. It consists of two parts: 1) Guidelines for the Introduction of Small and Medium Power Reactors in Developing Countries. These Guidelines were established during the Advisory Group Meeting held in Vienna from 11 to 15 May 1987. Their purpose is to review key aspects relating to the introduction of Small and Medium Power Reactors in developing countries; 2) Up-dated Information on SMPR Concepts Contributed by Supplier Industries. According to the recommendations of the Second Technical Committee Meeting on SMPRs held in Vienna in March 1985, this part contains the up-dated information formerly published in Annex I of the above mentioned TECDOC-347. Figs

  15. Incompatibility of Contrast Medium and Trisodium Citrate

    International Nuclear Information System (INIS)

    Delcour, Christian; Bruninx, Guy

    2013-01-01

    To test the compatibility of trisodium citrate, a catheter lock solution, with iodinated contrast medium. Iohexol, iobitridol, iodixanol, ioxaglate, ioxithalamate, iomeprol, and iopromide were tested. In all tests, 2 ml of contrast medium were mixed with 2 ml of trisodium citrate solution. Iodixanol and ioxaglate provoked a highly viscous gluelike precipitation when mixed with trisodium citrate. A brief transient precipitate was observed with iohexol, iomeprol, and ioxithalamate. Permanent precipitation occurred with iobitridol and iopromide. One must be aware of the potential for precipitation when contrast medium is mixed with trisodium citrate solution. Before trisodium citrate solution is injected, the catheter should be thoroughly flushed with saline if a contrast medium has previously been injected through it.

  16. Study of niobium corrosion in alkaline medium

    International Nuclear Information System (INIS)

    Almeida, S.H. de.

    1987-01-01

    A comparative study of niobium electrochemical behaviour in NaOH and KOH solution, with concentrations between 0,5 and 6,1M is presented. The studies were done through electrochemicals assays, consisting in the corrosion potential and anodic and cathodic polarization curves, complemented by loss of mass experiments. The niobium anodic behaviour in alkaline medium is characterized by passivation occurrence, with a stable film formation. The Na oH solution in alkaline medium are more corrosible to niobium than the KOH solution. The loss of mass assays showed that the corrosion velocit is more dependente of hydroxide concentration in KOH medium than the NaOH medium. (C.G.C.) [pt

  17. Small and Medium Enterprises and Biopharmaceutical Innovations ...

    African Journals Online (AJOL)

    Erah

    Benin City, 300001 Nigeria. All rights ... are challenges facing African Small and Medium Enterprises (SMEs) in biopharmaceutical industry, the ... Network for Drug and Diagnostics recognizes .... functionality is in place, integration into the.

  18. Sharing perspectives on English-medium instruction

    CERN Document Server

    Ackerley, Katherine; Helm, Francesca

    2017-01-01

    This volume gives voice to the views and experiences of researchers, lecturers, administrative staff, teacher trainers and students with regard to the implementation of English-medium instruction in a public university based in the north-east of Italy.

  19. Medium Effects in Reactions with Rare Isotopes

    International Nuclear Information System (INIS)

    Bertulani, C A; Karakoç, M

    2012-01-01

    We discuss medium effects in knockout reactions with rare isotopes of weakly-bound nuclei at intermediate energies. We show that the poorly known corrections may lead to sizable modifications of knockout cross sections and momentum dsitributions.

  20. Effective medium theory principles and applications

    CERN Document Server

    Choy, Tuck C

    2015-01-01

    Effective medium theory dates back to the early days of the theory of electricity. Faraday in 1837 proposed one of the earliest models for a composite metal-insulator dielectric and around 1870 Maxwell and later Garnett (1904) developed models to describe a composite or mixed material medium. The subject has been developed considerably since and while the results are useful for predicting materials performance, the theory can also be used in a wide range of problems in physics and materials engineering. This book develops the topic of effective medium theory by bringing together the essentials of both the static and the dynamical theory. Electromagnetic systems are thoroughly dealt with, as well as related areas such as the CPA theory of alloys, liquids, the density functional theory etc., with applications to ultrasonics, hydrodynamics, superconductors, porous media and others, where the unifying aspects of the effective medium concept are emphasized. In this new second edition two further chapters have been...