WorldWideScience

Sample records for hot hydrogen atoms

  1. The effect of moderators on the reactions of hot hydrogen atoms with methane

    CERN Document Server

    Estrup, Peder J.

    1960-01-01

    The reaction of recoil tritium with methane has been examined in further detail. The previous hypothesis that this system involves a hot displacement reaction of high kinetic energy hydrogen to give CH$_{3}$T, CH$_{2}$T and HT is confirmed. The effect of moderator on this process is studied by the addition of noble gases. As predicted these gases inhibit the hot reaction action, their efficiency in this respect being He > Ne > A > Se. The data are quantitatively in accord with a theory of hot atom kinetics. The mechanism of the hot displacement process is briefly discussed.

  2. Hot hydrogen atoms reactions of interest in molecular evolution and interstellar chemistry

    Science.gov (United States)

    Becker, R. S.; Hong, K.; Hong, J. H.

    1974-01-01

    Hot hydrogen atoms which are photochemically generated initiate reactions among mixtures of methane, ethane, water and ammonia, to produce ethanol, organic amines, organic acids, and amino acids. Both ethanol and ethyl amine can also act as substrates for formation of amino acids. The one carbon substrate methane is sufficient as a carbon source to produce amino acids. Typical quantum yields for formation of amino acids are approximately 0.00002 to 0.00004. In one experiment, 6 protein amino acids were identified and 8 nonprotein amino acids verified utilizing gas chromatography-mass spectroscopy. We propose that hot atoms, especially hydrogen, initiate reactions in the thermodynamic nonequilibrium environment of interstellar space as well as in the atmospheres of planets.

  3. Formation and Transport of Atomic Hydrogen in Hot-Filament Chemical Vapor Deposition Reactors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant ishydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers forheat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phaseheat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature andH concentration distributions between the filament and the substrate. Examination of the relative importance ofhomogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecularhydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociationrates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the liter-ature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociationrates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lowereffective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heattransfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination.

  4. Hot-Wire generated atomic hydrogen and its impact on thermal ALD in $TiCl_4/NH_3$ system

    NARCIS (Netherlands)

    Van Bui, H.; Kovalgin, A.Y.; Aarnink, A.A.I.; Wolters, R.A.M.

    2013-01-01

    We present the generation of atomic hydrogen made by the dissociation of molecular hydrogen upon collision with a tungsten (W) filament kept at a high temperature (T ≈ 1600–1900◦C). We demonstrate the ability to create atomic hydrogen and to introduce it in short pulses in experiments on etching of

  5. Hot Hydrogen Test Facility

    Science.gov (United States)

    Swank, W. David; Carmack, Jon; Werner, James E.; Pink, Robert J.; Haggard, DeLon C.; Johnson, Ryan

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISP. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test low activity uranium containing materials but is also suited for testing cladding and coating materials. In this first installment the facility is described. Automated data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  6. Inside the Hydrogen Atom

    CERN Document Server

    Nowakowski, M; Fierro, D Bedoya; Manjarres, A D Bermudez

    2016-01-01

    We apply the non-linear Euler-Heisenberg theory to calculate the electric field inside the hydrogen atom. We will demonstrate that the electric field calculated in the Euler-Heisenberg theory can be much smaller than the corresponding field emerging from the Maxwellian theory. In the hydrogen atom this happens only at very small distances. This effect reduces the large electric field inside the hydrogen atom calculated from the electromagnetic form-factors via the Maxwell equations. The energy content of the field is below the pair production threshold.

  7. Study of porogen removal by atomic hydrogen generated by hot wire chemical vapor deposition for the fabrication of advanced low-k thin films

    Energy Technology Data Exchange (ETDEWEB)

    Godavarthi, S., E-mail: srinivas@cinvestav.mx [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Fisicas, Av. Universidad, Cuernavaca, Morelos (Mexico); Wang, C.; Verdonck, P. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Matsumoto, Y.; Koudriavtsev, I. [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Dutt, A. [SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Tielens, H.; Baklanov, M.R. [imec, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-30

    In order to obtain low-k dielectric films, a subtractive technique, which removes sacrificial porogens from a hydrogenated silicon oxycarbide (SiOC:H) film, has been used successfully by different groups in the past. In this paper, we report on the porogen removal from porogenated SiOC:H films, using a hot wire chemical vapor deposition (HWCVD) equipment. Molecular hydrogen is dissociated into atomic hydrogen by the hot wires and these atoms may successfully remove the hydrocarbon groups from the porogenated SiOC:H films. The temperature of the HWCVD filaments proved to be a determining factor. By Fourier transform infrared spectroscopy, X-ray reflectivity (XRR), secondary ion mass spectrometry (SIMS), ellipsometric porosimetry and capacitance-voltage analyses, it was possible to determine that for temperatures higher than 1700 °C, efficient porogen removal occurred. For temperatures higher than 1800 °C, the presence of OH groups was detected. The dielectric constant was the lowest, 2.28, for the samples processed at a filament temperature of 1800 °C, although porosity measurements showed higher porosity for the films deposited at the higher temperatures. XRR and SIMS analyses indicated densification and Tungsten (W) incorporation at the top few nanometers of the films.

  8. Sampling the Hydrogen Atom

    Directory of Open Access Journals (Sweden)

    Graves N.

    2013-01-01

    Full Text Available A model is proposed for the hydrogen atom in which the electron is an objectively real particle orbiting at very near to light speed. The model is based on the postulate that certain velocity terms associated with orbiting bodies can be considered as being af- fected by relativity. This leads to a model for the atom in which the stable electron orbits are associated with orbital velocities where Gamma is n /α , leading to the idea that it is Gamma that is quantized and not angular momentum as in the Bohr and other models. The model provides a mechanism which leads to quantization of energy levels within the atom and also provides a simple mechanical explanation for the Fine Struc- ture Constant. The mechanism is closely associated with the Sampling theorem and the related phenomenon of aliasing developed in the mid-20th century by engineers at Bell labs.

  9. Non-thermal hydrogen atoms in the terrestrial upper thermosphere.

    Science.gov (United States)

    Qin, Jianqi; Waldrop, Lara

    2016-12-06

    Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere.

  10. Einstein's Hydrogen Atom

    CERN Document Server

    Kim, Y S

    2011-01-01

    In 1905, Einstein formulated his special relativity for point particles. For those particles, his Lorentz covariance and energy-momentum relation are by now firmly established. How about the hydrogen atom? It is possible to perform Lorentz boosts on the proton assuming that it is a point particle. Then what happens to the electron orbit? The orbit could go through an elliptic deformation, but it is not possible to understand this problem without quantum mechanics, where the orbit is a standing wave leading to a localized probability distribution. Is this concept consistent with Einstein's Lorentz covariance? Dirac, Wigner, and Feynman contributed important building blocks for understanding this problem. The remaining problem is to assemble those blocks to construct a Lorentz-covariant picture of quantum bound states based on standing waves. It is shown possible to assemble those building blocks using harmonic oscillators.

  11. Atomic hydrogen interaction with Ru(1010).

    Science.gov (United States)

    Vesselli, E; Comelli, G; Rosei, R

    2004-05-01

    The interaction of atomic hydrogen with clean and deuterium precovered Ru(1010) was studied by means of temperature-programmed desorption (TPD) spectroscopy. Compared to molecular hydrogen experiments, after exposure of the clean surface to gas-phase atomic hydrogen at 90 K, two additional peaks grow in the desorption spectra at 115 and 150 K. The surface saturation coverage, determined by equilibrium between abstraction and adsorption reactions, is 2.5 monolayers. Preadsorbed deuterium abstraction experiments with gas-phase atomic hydrogen show that a pure Eley-Rideal mechanism is not involved in the process, while a hot atom (HA) kinetics describes well the reaction. By least-squares fitting of the experimental data, a simplified HA kinetic model yields an abstraction cross section value of 0.5 +/- 0.2 angstroms2. The atomic hydrogen interaction with an oxygen precovered surface was also studied by means of both TPD and x-ray photoelectron spectroscopy: oxygen hydrogenation and water production take place already at very low temperature (90 K).

  12. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  13. Precision spectroscopy on atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Parthey, Christian Godehard

    2011-12-15

    This Thesis reports on three measurements involving the 1S-2S transition in atomic hydrogen and deuterium conducted on a 5.8 K atomic beam. The transition is excited Doppler-free via two counter-propagating photons near 243 nm. The H/D isotope shift has been determined as {delta}{integral}{sub exp}=670 994 334 606(15) Hz. Comparing with the theoretical value for the isotope shift, excluding the leading nuclear size effect, {delta}{integral}{sub th}=670 999 566.90(66)(60) kHz we confirm, twice more accurate, the rms charge radius difference of the deuteron and the proton as left angle r{sup 2} right angle {sub d}- left angle r{sup 2} right angle {sub p}=3.82007(65) fm{sup 2} and the deuteron structure radius r{sub str}=1.97507(78) fm. The frequency ratio of the 1S-2S transition in atomic hydrogen to the cesium ground state hyperfine transition provided by the mobile cesium fountain clock FOM is measured to be {integral}{sub 1S-2S}=2 466 061 413 187 035 (10) Hz which presents a fractional frequency uncertainty of 4.2 x 10{sup -15}. The second absolute frequency measurement of the 1S-2S transition in atomic hydrogen presents the first application of a 900 km fiber link between MPQ and Physikalisch- Technische Bundesanstalt (PTB) in Braunschweig which we have used to calibrate the MPQ hydrogen maser with the stationary cesium fountain clock CSF1 at PTB. With the result of {integral}{sub 1S-2S}=2 466 061 413 187 017 (11) Hz we can put a constraint on the electron Lorentz boost violating coefficients 0.95c{sub (TX)}-0.29c{sub (TY)}-0.08 c{sub (TZ)}=(2.2{+-}1.8) x 10{sup -11} within the framework of minimal standard model extensions. We limit a possible drift of the strong coupling constant through the ratio of magnetic moments at a competitive level ({partial_derivative})/({partial_derivative}t)ln ({mu}{sub Cs})/({mu}{sub B})=-(3.0{+-}1.2) x 10{sup -15} yr{sup -1}.

  14. Bose-Einstein condensation of atomic hydrogen

    NARCIS (Netherlands)

    Willmann, L

    1999-01-01

    The recent creation of a Bose-Einstein condensate of atomic hydrogen has added a new system to this exciting field, The differences between hydrogen and the alkali metal atoms require other techniques for the initial trapping and cooling of the atoms and the subsequent detection of the condensate. T

  15. Rydberg blockade in a hot atomic beam

    Science.gov (United States)

    Yoshida, S.; Burgdörfer, J.; Zhang, X.; Dunning, F. B.

    2017-04-01

    The dipole blockade of very-high-n , n ˜300 , strontium 5 s n f 1F3 Rydberg atoms in a hot atomic beam is studied. For such high n , the blockade radius can exceed the linear dimensions of the excitation volume. Rydberg atoms formed inside the excitation volume can, upon leaving the region, continue to suppress excitation until they have moved farther away than the blockade radius. Moreover, the high density of states originating from the many magnetic sublevels associated with the F states results in a small but finite probability of excitation of L =3 n 1F3 atom pairs at small internuclear separations below the blockade radius. We demonstrate that these effects can be distinguished from one another by the distinct features they imprint on the Mandel Q parameter as a function of the duration of the exciting laser.

  16. Benchmarking Attosecond Physics with Atomic Hydrogen

    Science.gov (United States)

    2015-05-25

    Final 3. DATES COVERED (From - To) 12 Mar 12 – 11 Mar 15 4. TITLE AND SUBTITLE Benchmarking attosecond physics with atomic hydrogen 5a...AND SUBTITLE Benchmarking attosecond physics with atomic hydrogen 5a. CONTRACT NUMBER FA2386-12-1-4025 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...attosecond physics with atomic hydrogen ” May 25, 2015 PI information: David Kielpinski, dave.kielpinski@gmail.com Griffith University Centre

  17. Atomic hydrogen storage method and apparatus

    Science.gov (United States)

    Woollam, J. A. (Inventor)

    1980-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compounds maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  18. Interaction of gas phase atomic hydrogen with Pt(111): Direct evidence for the formation of bulk hydrogen species

    Institute of Scientific and Technical Information of China (English)

    JIANG ZhiQuan; HUANG WeiXin; BAO XinHe

    2007-01-01

    Employing hot tungsten filament to thermal dissociate molecular hydrogen, we generated gas phase atomic hydrogen under ultra-high vacuum (UHV) conditions and investigated its interaction with Pt(111) surface. Thermal desorption spectroscopy (TDS) results demonstrate that adsorption of molecular hydrogen on Pt(111) forms surface Had species whereas adsorption of atomic hydrogen forms not only surface Had species but also bulk Had species. Bulk Had species is more thermal-unstable than surface Had species on Pt(111), suggesting that bulk Had species is more energetic. This kind of weakly- adsorbed bulk Had species might be the active hydrogen species in the Pt-catalyzed hydrogenation reactions.

  19. Studies in Composing Hydrogen Atom Wavefunctions

    DEFF Research Database (Denmark)

    Putnam, Lance Jonathan; Kuchera-Morin, JoAnn; Peliti, Luca

    2015-01-01

    We present our studies in composing elementary wavefunctions of a hydrogen-like atom and identify several relationships between physical phenomena and musical composition that helped guide the process. The hydrogen-like atom accurately describes some of the fundamental quantum mechanical phenomen...

  20. Muonium/muonic hydrogen formation in atomic hydrogen

    Indian Academy of Sciences (India)

    V S Kulhar

    2004-09-01

    The muonium/muonic hydrogen atom formation in ± –H collisions is investigated, using a two-state approximation in a time dependent formalism. It is found that muonium cross-section results are similar to the cross-section results obtained for positronium formation in + –H collision. Muonic hydrogen atom formation cross-sections in - –H collision are found to be significant in a narrow range of energy (5 eV–25 eV).

  1. Energy storage possibilities of atomic hydrogen

    Science.gov (United States)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R.

    1976-01-01

    Several recent experiments designed to produce and store macroscopic quantities of atomic hydrogen are discussed. The bulk, ground state properties of atomic hydrogen, deuterium, and tritium systems are calculated assuming that all pair interactions occur via the atomic triplet potential. The conditions required to obtain this system, including inhibition of recombination through the energetically favorable singlet interaction, are discussed. The internal energy, pressure, and compressibility are calculated applying the Monte Carlo technique with a quantum mechanical variational wavefunction. The system studied consisted of 32 atoms in a box with periodic boundary conditions. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K; i.e., the internal energy is positive at all molar volumes considered.

  2. Solid Hydrogen Formed for Atomic Propellants

    Science.gov (United States)

    Palaszewski, Bryan A.

    2000-01-01

    Several experiments on the formation of solid hydrogen particles in liquid helium were recently conducted at the NASA Glenn Research Center at Lewis Field. The solid hydrogen experiments are the first step toward seeing these particles and determining their shape and size. The particles will ultimately store atoms of boron, carbon, or hydrogen, forming an atomic propellant. Atomic propellants will allow rocket vehicles to carry payloads many times heavier than possible with existing rockets or allow them to be much smaller and lighter. Solid hydrogen particles are preferred for storing atoms. Hydrogen is generally an excellent fuel with a low molecular weight. Very low temperature hydrogen particles (T < 4 K) can prevent the atoms from recombining, making it possible for their lifetime to be controlled. Also, particles that are less than 1 mm in diameter are preferred because they can flow easily into a pipe when suspended in liquid helium. The particles and atoms must remain at this low temperature until the fuel is introduced into the engine combustion (or recombination) chamber. Experiments were, therefore, planned to look at the particles and observe their formation and any changes while in liquid helium.

  3. Atomic hydrogen as a launch vehicle propellant

    Energy Technology Data Exchange (ETDEWEB)

    Palaszewski, B.A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I{sub sp}) were 750 and 1500 lb{sub f}/s/lb{sub m}. The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I{sub sp} (greater than 750 lb{sub f}/s/lb{sub m}) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  4. A comparison of two atomic models for the radiative properties of dense hot low Z plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Minguez, E. E-mail: minguez@denim.upm.es; Sauvan, P.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Florido, R.; Martel, P.; Angelo, P.; Schott, R.; Philippe, F.; Leboucher-Dalimier, E.; Mancini, R

    2003-11-01

    In this work, two different atomic models (ANALOP based on parametric potentials and IDEFIX based on the dicenter model) are used to calculate the opacities for bound-bound transitions in hot dense, low Z plasmas, and the results are compared to each other. In addition, the ANALOP code has been used to compute free-bound cross sections for hydrogen-like ions.

  5. On the energy of electric field in hydrogen atom

    OpenAIRE

    Kornyushin, Yuri

    2009-01-01

    It is shown that hydrogen atom is a unique object in physics having negative energy of electric field, which is present in the atom. This refers also to some hydrogen-type atoms: hydrogen anti-atom, atom composed of proton and antiproton, and positronium.

  6. Software for Hydrogenic Atoms and Orbitals Visualization

    Directory of Open Access Journals (Sweden)

    Kowit KITTIWUTTHISAKDI

    2005-06-01

    Full Text Available A program was developed in java for hydrogenic atoms and orbitals visualization. The first 18 atoms in the periodic table were approximated with a hydrogenic wave-function. This simple hydrogenic wave-function allowed quick calculation for real-time interactive visualization. Electron cloud based models were employed and displayed by a ray-tracing technique. One or more orbitals that defined an atom could be selected and displayed. A user could zoom in, zoom out, and rotate the displayed cloud in real time. The approximation method for probability integrals was summation. The intensity of color at each point on the screen directly related to the integrated probability in finding the electron across the viewer%s eye path.

  7. Bose-Einstein Condensation of Atomic Hydrogen

    CERN Document Server

    Kleppner, D; Killian, T C; Fried, D G; Willmann, L; Landhuis, D; Moss, S C; Kleppner, Daniel; Greytak, Thomas J.; Killian, Thomas C.; Fried, Dale G.; Willmann, Lorenz; Landhuis, David; Moss, Stephen C.

    1998-01-01

    We have observed Bose-Einstein condensation (BEC) of trapped atomic hydrogen, and studied it by two-photon spectroscopy of the 1S-2S transition. In these lecture notes we briefly review the history of spin-polarized atomic hydrogen and describe the final steps to BEC. Laser spectroscopy, which probes the difference in mean field energy of the 1S and 2S states, is used to study the condensate, which has a peak density of 4.8e15 cm^-3 and population of 10^9.

  8. Quantum Structures of the Hydrogen Atom

    CERN Document Server

    Jeknic-Dugic, J; Francom, A; Arsenijevic, M

    2012-01-01

    Modern quantum theory introduces quantum structures (decompositions into subsystems) as a new discourse that is not fully comparable with the classical-physics counterpart. To this end, so-called Entanglement Relativity appears as a corollary of the universally valid quantum mechanics that can provide for a deeper and more elaborate description of the composite quantum systems. In this paper we employ this new concept to describe the hydrogen atom. We offer a consistent picture of the hydrogen atom as an open quantum system that naturally answers the following important questions: (a) how do the so called "quantum jumps" in atomic excitation and de-excitation occur? and (b) why does the classically and seemingly artificial "center-of-mass + relative degrees of freedom" structure appear as the primarily operable form in most of the experimental reality of atoms?

  9. Hydrogen Atom Spectrum in Noncommutative Phase Space

    Institute of Scientific and Technical Information of China (English)

    LI Kang; CHAMOUN Nidal

    2006-01-01

    @@ We study the energy levels of the hydrogen atom in the noncommutative phase space with simultaneous spacespace and momentum-momentum noncommutative relations. We find new terms compared to the case that only noncommutative space-space relations are assumed. We also present some comments on a previous paper [Alavi S A hep-th/0501215].

  10. From lattice gauge theories to hydrogen atoms

    Directory of Open Access Journals (Sweden)

    Manu Mathur

    2015-10-01

    Full Text Available We construct canonical transformations to obtain a complete and most economical realization of the physical Hilbert space Hp of pure SU(22+1 lattice gauge theory in terms of Wigner coupled Hilbert spaces of hydrogen atoms. One hydrogen atom is assigned to every plaquette of the lattice. A complete orthonormal description of the Wilson loop basis in Hp is obtained by all possible angular momentum Wigner couplings of hydrogen atom energy eigenstates |n l m〉 describing electric fluxes on the loops. The SU(2 gauge invariance implies that the total angular momenta of all hydrogen atoms vanish. The canonical transformations also enable us to rewrite the Kogut–Susskind Hamiltonian in terms of fundamental Wilson loop operators and their conjugate electric fields. The resulting loop Hamiltonian has a global SU(2 invariance and a simple weak coupling (g2→0 continuum limit. The canonical transformations leading to the loop Hamiltonian are valid for any SU(N. The ideas and techniques can also be extended to higher dimension.

  11. Hydrogen atom kinetics in capacitively coupled plasmas

    Science.gov (United States)

    Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao

    2017-05-01

    Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.

  12. The atomic hydrogen cloud in the saturnian system

    Science.gov (United States)

    Tseng, W.-L.; Johnson, R. E.; Ip, W.-H.

    2013-09-01

    The importance of Titan's H torus shaped by solar radiation pressure and of hydrogen atoms flowing out of Saturn's atmosphere in forming the broad hydrogen cloud in Saturn's magnetosphere is still debated. Since the Saturnian system also contains a water product torus which originates from the Enceladus plumes, the icy ring particles, and the inner icy satellites, as well as Titan's H2 torus, we have carried out a global investigation of the atomic hydrogen cloud taking into account all sources. We show that the velocity and angle distributions of the hot H ejected from Saturn's atmosphere following electron-impact dissociation of H2 are modified by collisions with the ambient atmospheric H2 and H. This in turn affects the morphology of the escaping hydrogen from Saturn, as does the morphology of the ionospheric electron distribution. Although an exact agreement with the Cassini observations is not obtained, our simulations show that H directly escaping from Titan is the dominant contributor in the outer magnetosphere. Of the total number of H observed by Cassini from 1 to 5RS, ∼5.7×1034, our simulations suggest ∼20% is from dissociation in the Enceladus torus, ∼5-10% is from dissociation of H2 in the atmosphere of the main rings, and ∼50% is from Titan's H torus, implying that ∼20% comes from Saturn atmosphere.

  13. Atomic hydrogen behaviour in Heliotron E

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, K.; Uchino, K.; Kajiwara, T.; Matsuo, K.; Honda, C.; Suehiro, Y.; Yano, N.; Takeda, K.; Hagiwara, H.; Akazaki, M. (Kyushu Univ., Fukuoka (Japan). Dept. of Energy Conversion); Maeda, M.; Okada, T. (Kyushu Univ., Fukuoka (Japan). Dept. of Electrical Engineering); Sudo, S.; Kondo, K.; Mizuuchi, T.; Sano, F.; Sato, M.; Zushi, H.; Obiki, T. (Kyoto Univ., Uji (Japan). Plasma Physics Lab.); Matsuura, H. (Osaka Prefectural Univ., Sakai (Japan). Dept. of Mechanical Engineering)

    1990-12-01

    In order to understand atomic hydrogen behaviour and particle confinement properties in Heliotron E plasmas, techniques of laser induced fluorescence (LIF) have been extensively used, combined with measurements of absolute Balmer alpha emissions and density fluctuations. The results revealed that for an average electron density anti n{sub e}>1.5x10{sup 19} m{sup -3}, H{alpha} fluorescence allowed the measurements of atomic hydrogen densities and yielded the recycled Franck-Condon neutrals ({approx equal} 3 eV) to penetrate into core plasmas, whereas for anti n{sub e}<1.0x10{sup 19} m{sup -3}, such measurements were perturbed by dissociative-excitation of H{sub 2} molecules into the n=2 state. Also, the global confinement times showed a clear correlation with electron density fluctuations. (orig.).

  14. Hydrogen atom in a Laser-Plasma

    CERN Document Server

    Falaye, Babatunde James; Liman, Muhammed S; Oyewumi, K J; Dong, Shi-Hai

    2016-01-01

    We scrutinize the behaviour of hydrogen atom's eigenvalues in a quantum plasma as it interacts with electric field directed along $\\theta=\\pi$ and exposed to linearly polarized intense laser field radiation. Using the Kramers-Henneberger (KH) unitary transformation, which is semiclassical counterpart of the Block-Nordsieck transformation in the quantized field formalism, the squared vector potential that appears in the equation of motion is eliminated and the resultant equation is expressed in KH frame. Within this frame, the resulting potential and the corresponding wavefunction have been expanded in Fourier series and using Ehlotzky's approximation, we obtain a laser-dressed potential to simulate intense laser field. By fitting the exponential-cosine-screened Coulomb potential into the laser-dressed potential, and then expanding it in Taylor series up to $\\mathcal{O}(r^4,\\alpha_0^9)$, we obtain the eigensolution (eigenvalues and wavefunction) of hydrogen atom in laser-plasma encircled by electric field, wit...

  15. Moller Polarimetry with Atomic Hydrogen Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chudakov, Eugene [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Luppov, V. [University of Michigan Spin Physics Center, Ann Arbor, MI (United States)

    2012-06-01

    A proposal to use polarized atomic hydrogen gas as the target for electron beam polarimetry based on the Moller scattering is described. Such a gas, stored in an ultra-cold magnetic trap, would provide a target of practically 100\\% polarized electrons. It is conceivable to reach a $\\sim$0.3\\% systematic accuracy of the beam polarimetry with such a target. Feasibility studies for the CEBAF electron beam have been performed.

  16. Solid Hydrogen Experiments for Atomic Propellants

    Science.gov (United States)

    Palaszewski, Bryan

    2001-01-01

    This paper illustrates experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their molecular structure transitions, and their agglomeration times were estimated. article sizes of 1.8 to 4.6 mm (0.07 to 0. 18 in.) were measured. The particle agglomeration times were 0.5 to 11 min, depending on the loading of particles in the dewar. These experiments are the first step toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  17. Semiclassical treatment of laser excitation of the hydrogen atom

    DEFF Research Database (Denmark)

    Billing, Gert D.; Henriksen, Niels Engholm; Leforestier, C.

    1992-01-01

    We present an alternative method for studying excitation of atoms in intense laser fields. In the present paper we focus upon the optical harmonic generation by hydrogen atoms.......We present an alternative method for studying excitation of atoms in intense laser fields. In the present paper we focus upon the optical harmonic generation by hydrogen atoms....

  18. Hot Hydrogen Heat Source Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project technology need is evaluating the potential development to provide a capability that will produce high temperature hydrogen, in excess of 2500...

  19. Classical theory of the hydrogen atom

    CERN Document Server

    Rashkovskiy, Sergey

    2016-01-01

    It is shown that all of the basic properties of the hydrogen atom can be consistently described in terms of classical electrodynamics instead of taking the electron to be a particle; we consider an electrically charged classical wave field, an "electron wave", which is held in a limited region of space by the electrostatic field of the proton. It is shown that quantum mechanics must be considered to be not a theory of particles but a classical field theory in the spirit of classical electrodynamics. In this case, we are not faced with difficulties in interpreting the results of the theory. In the framework of classical electrodynamics, all of the well-known regularities of the spontaneous emission of the hydrogen atom are obtained, which is usually derived in the framework of quantum electrodynamics. It is shown that there are no discrete states and discrete energy levels of the atom: the energy of the atom and its states change continuously. An explanation of the conventional corpuscular-statistical interpre...

  20. Comparison of tungsten films grown by CVD and hot-wire assisted atomic layer deposition in a cold-wall reactor

    NARCIS (Netherlands)

    Yang, Mengdi; Aarnink, Antonius A.I.; Kovalgin, Alexeij Y.; Gravesteijn, Dirk J; Wolters, Robertus A.M.; Schmitz, Jurriaan

    In this work, the authors developed hot-wire assisted atomic layer deposition (HWALD) to deposit tungsten (W) with a tungsten filament heated up to 1700–2000 C. Atomic hydrogen (at-H) was generated by dissociation of molecular hydrogen (H2), which reacted with WF6 at the substrate to deposit W. The

  1. Interaction of gas phase atomic hydrogen with Pt(111):Direct evidence for the formation of bulk hydrogen species

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Employing hot tungsten filament to thermal dissociate molecular hydrogen,we generated gas phase atomic hydrogen under ultra-high vacuum(UHV)conditions and investigated its interaction with Pt(111) surface.Thermal desorption spectroscopy(TDS)results demonstrate that adsorption of molecular hy- drogen on Pt(111)forms surface Had species whereas adsorption of atomic hydrogen forms not only surface Had species but also bulk Had species.Bulk Had species is more thermal-unstable than surface Had species on Pt(111),suggesting that bulk Had species is more energetic.This kind of weakly- adsorbed bulk Had species might be the active hydrogen species in the Pt-catalyzed hydrogenation reactions.

  2. Hot-spring cure of atomic-bomb survivors, 16

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Tamon (Beppu Genbaku Senta (Japan))

    1984-03-01

    Though a cold winter with snowfalls, in the fiscal year 1983, the number of the atomic-bomb sufferers using the Beppu Atomic-bomb Center (a medical hot spring) was large in January and February, 1984; throughout the fiscal year, the total number was about 3,800 persons. The diseases of the sufferers, mostly in locomotion organs, are such as osteoarthritis of spine, lame hip and knee arthropathy. Being the typical diseases for which hot spring treatment is good, the effect is clear, and those desiring to enter the Center twice in a year are increasing. The situation of usage of the Center from April, 1983, to March, 1984, is described.

  3. Ionization in collisions between metastable hydrogen atoms

    Science.gov (United States)

    Bohr, Alex; Blickle, Andrew; Paolini, Stephen; Ohlinger, Luke; Forrey, Robert

    2012-06-01

    Associative and Penning ionization cross sections are calculated for collisions between metastable hydrogen 2s atoms at thermal energies. Cross sections for deuterium 2s collisions are also reported. The associative ionization cross sections behave as E-1 for collision energy E, in agreement with an existing experiment. The Penning ionization cross sections dominate for all energies and are found to follow the E-2/3 behavior that was predicted in previous work for the total ionization cross section. The magnitudes of our theoretical associative ionization cross sections for H(2s)+H(2s) collisions are between two and four times larger than the experimental data.

  4. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Lockman, F. J. [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States); Dickey, J. M. [School of Physics and Mathematics, University of Tasmania, TAS 7001 (Australia); Gaensler, B. M.; Green, A. J., E-mail: naomi.mcclure-griffiths@csiro.au [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2013-06-10

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of {approx}14 km s{sup -1}, and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at {approx}200 km s{sup -1} in a Galactic wind.

  5. Discrete wave mechanics: The hydrogen atom.

    Science.gov (United States)

    Wall, F T

    1986-08-01

    The quantum mechanical problem of the hydrogen atom is treated by use of a finite difference equation in place of Schrödinger's differential equation. The exact solution leads to a wave vector energy expression that is readily converted to the Bohr-Rydberg formula. (The calculations here reported are limited to spherically symmetric states.) The wave vectors reduce to the familiar solutions of Schrödinger's equation as c --> infinity. The internal consistency and limiting behavior provide support for the view that the equations employed could well constitute an approach to a relativistic formulation of wave mechanics.

  6. Isotope effects of hydrogen and atom tunnelling

    Science.gov (United States)

    Buchachenko, A. L.; Pliss, E. M.

    2016-06-01

    The abnormally high mass-dependent isotope effects in liquid-phase hydrogen (deuterium) atom transfer reactions, which are customarily regarded as quantum effects, are actually the products of two classical effects, namely, kinetic and thermodynamic ones. The former is determined by the rate constants for atom transfer and the latter is caused by nonbonded (or noncovalent) isotope effects in the solvation of protiated and deuterated reacting molecules. This product can mimic the large isotope effects that are usually attributed to tunnelling. In enzymatic reactions, tunnelling is of particular interest; its existence characterizes an enzyme as a rigid molecular machine in which the residence time of reactants on the reaction coordinate exceeds the waiting time for the tunnelling event. The magnitude of isotope effect becomes a characteristic parameter of the internal dynamics of the enzyme catalytic site. The bibliography includes 61 references.

  7. Wave mechanics of the hydrogen atom

    CERN Document Server

    Ogilvie, J F

    2016-01-01

    The hydrogen atom is a system amenable to an exact treatment within Schroedinger's formulation of quantum mechanics according to coordinates in four systems -- spherical polar, paraboloidal, ellipsoidal and spheroconical coordinates; the latter solution is reported for the first time. Applications of these solutions include angular momenta, a quantitative calculation of the absorption spectrum and accurate plots of surfaces of amplitude functions. The shape of an amplitude function, and even the quantum numbers in a particular set to specify such an individual function, depend on the coordinates in a particular chosen system, and are therefore artefacts of that particular coordinate representation within wave mechanics. All discussion of atomic or molecular properties based on such shapes or quantum numbers therefore lacks general significance

  8. The Hydrogen Atom in Relativistic Motion

    CERN Document Server

    Jarvinen, M

    2004-01-01

    The Lorentz contraction of bound states in field theory is often appealed to in qualitative descriptions of high energy particle collisions. Surprisingly, the contraction has not been demonstrated explicitly even in simple cases such as the Hydrogen atom. It requires a calculation of wave functions evaluated at equal (ordinary) time for bound states in motion. Such wave functions are not obtained by kinematic boosts from the rest frame. Starting from the exact Bethe-Salpeter equation we derive the equal-time wave function of a fermion-antifermion bound state in QED, i.e., positronium or the Hydrogen atom, in any frame to leading order in alpha. We show explicitly that the bound state energy transforms as the fourth component of a vector and that the wave function of the fermion-antifermion Fock state contracts as expected. Transverse photon exchange contributes at leading order to the binding energy of the bound state in motion. We study the general features of the corresponding fermion-antifermion-photon Foc...

  9. Hydrogen isotope type-curves of very hot crude oils.

    Science.gov (United States)

    Fekete, József; Sajgó, Csanád; Demény, Attila

    2011-01-15

    Several crude oil accumulations in the Pannonian Basin are trapped in uncommonly hot (>170°C) reservoirs. Their maturities range from mature to very mature on the basis of cracking parameters of their biological marker homologous series (ratio of products to reactants). A stable carbon isotopic study of these oils, poor in biological markers commonly used for correlation purposes, did not provide a reliable oil-to-oil correlation. As an alternative tool, the hydrogen isotope compositions of oil fractions separated on the basis of different polarities were measured, and hydrogen isotope type-curves were generated for a set of mature to very mature crude oil samples. This method of presenting hydrogen isotope composition of fractions as type-curves is novel. Nineteen samples (17 crude oils from SE-Hungary, 1 oil condensate and 1 artificial oil) were chosen for the present study. The aim was to examine the applicability of hydrogen isotope type-curves in oil-to-oil correlation and to test the simultaneous application of carbon and hydrogen isotope type-curves in the field of petroleum geochemistry. We have shown that, although the conventionally used co-variation plots proved to be inadequate for the correlation of these hot and mature oils, the simultaneous use of carbon and the newly introduced hydrogen isotope type-curves allows us to group and distinguish oils of different origins.

  10. Atomic hydrogen storage. [cryotrapping and magnetic field strength

    Science.gov (United States)

    Woollam, J. A. (Inventor)

    1980-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  11. Static dipole polarizability of shell-confined hydrogen atom

    Science.gov (United States)

    Sen, K. D.; Garza, Jorge; Vargas, Rubicelia; Aquino, Norberto

    2002-04-01

    Using the Sternheimer perturbation-numerical procedure, calculations of static dipole polarizability are reported for the shell-confined hydrogen atom as defined by two impenetrable concentric spherical walls. Unusually high polarizability states are predicted for the hydrogen atom as the inner sphere radius is increased to larger values inside the outer sphere of a constant radius. Implications of this model in mimicking internal compression leading to the metallic behaviour of the shell-confined hydrogen atoms are discussed.

  12. Atomic properties in hot plasmas from levels to superconfigurations

    CERN Document Server

    Bauche, Jacques; Peyrusse, Olivier

    2015-01-01

    This book is devoted to the calculation of hot-plasma properties which generally requires a huge number of atomic data. It is the first book that combines information on the details of the basic atomic physics and its application to atomic spectroscopy with the use of the relevant statistical approaches. Information like energy levels, radiative rates, collisional and radiative cross-sections, etc., must be included in equilibrium or non-equilibrium models in order to describe both the atomic-population kinetics and the radiative properties. From the very large number of levels and transitions involved in complex ions, some statistical (global) properties emerge. The book presents a coherent set of concepts and compact formulas suitable for tractable and accurate calculations. The topics addressed are: radiative emission and absorption, and a dozen of other collisional and radiative processes; transition arrays between level ensembles (configurations, superconfigurations); effective temperatures of configurat...

  13. Possibility of obtaining atomic metallic hydrogen by electrochemical method

    OpenAIRE

    Galushkin, Nikolay E.; Yazvinskaya, Nataliya N.; Galushkin, Dmitriy N.

    2013-01-01

    In this work we show, that atomic metallic hydrogen (AMH) is formed inside of sintered oxide-nickel electrodes of nickel-cadmium battery over a long period of electrochemical hydrogenation (more than five years). It was established that density AMH is 12 times higher, than the density of liquid molecular hydrogen, the specific energy of hydrogen recombination is 20 times higher than of liquid hydrogen-oxygen fuel. At the room temperature AMH is a good conductor, but not a superconductor.

  14. Hot hydrogen testing of metallic turbo pump materials

    Science.gov (United States)

    Zee, Ralph; Chin, Bryan; Inamdar, Rohit

    1993-01-01

    The objectives of this investigation are to expose heat resistant alloys to hydrogen at elevated temperatures and to use various microstructural and analytical techniques to determine the chemical and rate process involved in degradation of these materials due to hydrogen environment. Inconel 718 and NASA-23 (wrought and cast) are candidate materials. The degradation of these materials in the presence of 1 to 5 atmospheric pressure of hydrogen from 450 C to 1100 C was examined. The hydrogen facility at Auburn University was used for this purpose. Control experiments were also conducted wherein the samples were exposed to vacuum so that a direct comparison of the results would separate the thermal contribution from the hydrogen effects. The samples were analyzed prior to and after exposure. A residual gas collection system was used to determine the gaseous species produced by any chemical reaction that may have occurred during the exposure. Analysis of this gas sample shows only the presence of H2 as expected. Analyses of the samples were conducted using optical microscopy, x-ray diffraction, scanning electron microscopy, and weight change. There appears to be no change in weight of the samples as a result of hydrogen exposure. In addition no visible change on the surface structure was detected. This indicates that the materials of interest do not have strong interaction with hot hydrogen. This is consistent with the microstructure results.

  15. Unparticle physics constraints from the hydrogen atom

    Energy Technology Data Exchange (ETDEWEB)

    Wondrak, Michael Florian; Nicolini, Piero; Bleicher, Marcus [Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main (Germany); Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet Frankfurt am Main, Frankfurt am Main (Germany)

    2016-07-01

    Unparticle stuff has been proposed as an extension of the Standard Model of particle physics by including scale invariant fields. In the framework of effective field theory, it describes the low-energy limit of a so-called Banks-Zaks sector which exhibits scale invariance below an energy scale Λ{sub U}. Unparticle fields are characterized by a non-integer canonical scaling dimension d{sub U}, which leads to unusual properties like resembling a fractional number of (un)particles. The existence of unparticle stuff may be detected experimentally through the interaction with conventional matter. After a review on the unparticle theory and the static potential due to virtual unparticle exchange, we focus on its impact on hydrogen atom energy levels. We obtain the energy shift of the ground state by using Rayleigh-Schroedinger perturbation theory and compare it with experimental data. In this way, bounds on the energy scale Λ{sub U} as a function of d{sub U} are derived. Finally, we offer a comparison with existing constraints in literature like the lepton magnetic anomaly. For some parameter regimes, the hydrogen bound provides competitive results.

  16. Production of vibrationally excited hydrogen molecules by atom recombination on Cu and W materials.

    Science.gov (United States)

    Markelj, Sabina; Čadež, Iztok

    2011-03-28

    We have measured vibrational population of H(2) and D(2) molecules produced by atom (H or D) recombination on tungsten and copper material. The vibrational spectroscopy, based on the properties of dissociative electron attachment to hydrogen molecule, was used. The vibrationally excited molecules were produced by atom recombination in a cell where the studied sample is exposed to hydrogen atoms, from hot tungsten filament. Vibrational populations were obtained for the studied materials, which can be well described by the Boltzmann distribution, with specific vibrational temperatures for each material. The experimentally obtained vibrational populations for copper approximately agree with the theoretical predictions, whereas the experimentally obtained vibrational temperature for tungsten is higher and thus showing a considerable overpopulation of highly excited vibrational states than predicted. We propose that the origin of this higher excitation is related to the existence of high hydrogen surface coverage on tungsten, where hydrogen is occupying binding sites with different desorption energies. In order to obtain an insight into the recombination mechanism with more than one binding site per unit cell, a Monte Carlo simulation was performed, where it was assumed that the main production of molecules proceeds through the hot-atom recombination with an adsorbed atom. The results show that the recombination proceeds mainly through the weak binding sites, once they are occupied.

  17. Scattering of p$\\mu$ muonic atoms in solid hydrogen

    CERN Document Server

    Wozniak, J; Beer, G A; Bystritsky, V M; Filipowicz, M; Fujiwara, M C; Huber, T M; Huot, O; Jacot-Guillarmod, R; Kammel, P; Knowles, P E; Kunselman, A R; Marshall, G M; Mulhauser, F; Olin, A; Petitjean, C; Porcelli, T A; Schaller, L A; Stolupin, V A; Zmeskal, J

    2002-01-01

    We present the results of experimental and theoretical study of the scattering of low energy p$\\mu$ atoms in solid hydrogen cooled to 3 K. The resulting emission of low energy p$\\mu$ atoms from the hydrogen layer into the adjacent vacuum was much higher than that predicted by calculations which ignored the solid nature of the hydrogen. New differential scattering cross sections have been calculated for the collisions of p$\\mu$ atoms on solid hydrogen to acount for its quantum crystalline nature. Analysis of the experimental data performed using such cross sections shows the important role of the coherent scattering in p$\\mu$ atom diffusion. For p$\\mu$ energies lower than the Bragg cutoff limit (2 meV) the elastic Bragg scattering vanishes which makes the total scattering cross section fall by several orders of magnitude, and thus the hydrogen target becomes transparent allowing the emission of cold p$\\mu$ atoms to occur.

  18. Convergent variational calculation of positronium-hydrogen-atom scattering lengths

    CERN Document Server

    Adhikari, S K; Adhikari, Sadhan K.; Mandal, Puspajit

    2001-01-01

    We present a convergent variational basis-set calculational scheme for elastic scattering of positronium atom by hydrogen atom in S wave. Highly correlated trial functions with appropriate symmetry are needed for achieving convergence. We report convergent results for scattering lengths in atomic units for both singlet ($=3.49\\pm 0.20$) and triplet ($=2.46\\pm 0.10$) states.

  19. Hirshfeld atom refinement for modelling strong hydrogen bonds.

    Science.gov (United States)

    Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon

    2014-09-01

    High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.

  20. Effects of hydrogen atoms on surface conductivity of diamond film

    Directory of Open Access Journals (Sweden)

    Fengbin Liu

    2015-04-01

    Full Text Available To investigate the effects of surface chemisorbed hydrogen atoms and hydrogen atoms in the subsurface region of diamond on surface conductivity, models of hydrogen atoms chemisorbed on diamond with (100 orientation and various concentrations of hydrogen atoms in the subsurface layer of the diamond were built. By using the first-principles method based on density functional theory, the equilibrium geometries and densities of states of the models were studied. The results showed that the surface chemisorbed hydrogen alone could not induce high surface conductivity. In addition, isolated hydrogen atoms in the subsurface layer of the diamond prefer to exist at the bond centre site of the C-C bond. However, such a structure would induce deep localized states, which could not improve the surface conductivity. When the hydrogen concentration increases, the C-H-C-H structure and C-3Hbc-C structure in the subsurface region are more stable than other configurations. The former is not beneficial to the increase of the surface conductivity. However, the latter would induce strong surface states near the Fermi level, which would give rise to high surface conductivity. Thus, a high concentration of subsurface hydrogen atoms in diamond would make significant contributions to surface conductivity.

  1. Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    Science.gov (United States)

    Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter

    2007-01-01

    An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.

  2. Stable atomic hydrogen possible application in intense polarized sources

    CERN Document Server

    Niinikoski, T O; Rieubland, Jean Michel

    1982-01-01

    The authors briefly review the status of spin-polarized atomic hydrogen and discuss a possible way of extending the present limit of density. Pulse extraction of stabilized atoms by millimetre wave is proposed as a means of producing polarized atomic beams of uniform velocity and low divergence. It is speculated that these atoms could be used either as jet targets of a conventional type, or as a stored atomic beam target by injecting them into a storage ring intersecting with an accelerator beam. When used in a polarized ion source, the high density of the atomic beam could possibly also improve the ionizer efficiency.

  3. Radial Matrix Elements of Hydrogen Atom and the Correspondence Principle

    Indian Academy of Sciences (India)

    T. N. Chakrabarty

    2004-03-01

    Radial dipole matrix elements having astrophysical importance have been computed for highly excited states of hydrogen atom. Computation is based on Heisenberg’s form of correspondence principle for Coulomb potential. Particular attention has been paid to the choice of classical analogue (c) of principal quantum number (). The computed radial matrix elements are in good agreement with quantum mechanical results. Further, radial matrix elements for few transitions involving high neighboring states of hydrogen atom are presented.

  4. Role of atomic relaxation in hydrogen-induced amorphization

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, M.; Onodera, H. [National Inst. for Materials Science, Tsukuba (Japan). Computational Materials Science Center

    2009-07-01

    This study investigated the microscopic mechanism of hydrogen-induced amorphization (HIA) in an AB{sub 2}C{sub 15} Laves phase compounds. Molecular dynamics were used to investigate the role of size by incorporating hydrogen within various systems. The study showed that in YA{sub 12} systems, hydrogenation increased the volume, while the bulk modulus was reduced as a result of the non-linearity of the interatomic potentials. In CeNi{sub 2} systems, hydrogenation reduced the bulk modulus as a result of the negative increase of the pressure-fluctuation terms in the elastic constant. Increases in pressure fluctuations were caused by the atomic relaxation in the hydrogenation process. Atomic contraction and expansion in the CeNi{sub 2} occurred simultaneously during hydrogenation. It was concluded that the size effect in HIA facilitates elastic instability by increasing pressure fluctuations.

  5. HOT DIPPING ALUMINIZED COATING AS HYDROGEN PERMEATION BARRIER

    Institute of Scientific and Technical Information of China (English)

    Z.Y. Yao; M. Chini; A. Aiello; Benamati

    2001-01-01

    The hydrogen permeation experiment of MANET II with hot dipping aluminized 1oat-ing was performed in temperature range of 573 to 623K, in gas phase and in liquiaPb-17Li phase. The hydrogen permeation reduction factor (PRF) evaluated in gasphase is 620 at 573K and 260 at 623K, and in liquid Pb-17Li phase is 24 45 at 573Kand 12-30 at 623K. The self-healing of coating is obvious and effective above 673K.The pressure dependence of permeation flux indicates strong surface contribution. Theway of filling hydrogen by continuous flow and/or bubble can increase permeation flux.The result of SEM-EDS shows that the microcrack is on the surface of the wetted part,but not on the not wetted part. The crack is superficial and affects only thin outsidelayer not penetrate aluminized layer. The surface elemental analysis shows that Al/Oatomic ratio changes from 2/3 of not wetted part to about 1 of wetted part. Thedamage of coating surface seems to be related to the interaction of outside layer withliquid Pb-17Li and thermal stress during heating sample.

  6. Strain field of interstitial hydrogen atom in body-centered cubic iron and its effect on hydrogen-dislocation interaction

    OpenAIRE

    Wang, Shuai; Takahashi, Keisuke; Hashimoto, Naoyuki; Isobe, Shigehito; Ohnuki, Somei

    2013-01-01

    Effect of hydrogen in body-centered cubic iron is explored by using the density function theory. Hydrogen atoms increase the concentration of free electrons in the simulation cell and have bonding interaction with Fe atom. Caused by anisotropic strain components of hydrogen atoms in the tetrahedral sites, elastic interaction for hydrogen with screw dislocation has been found. The dependence of hydrogen-screw dislocation interaction on hydrogen concentration is confirmed by repeated stress rel...

  7. Excited states of muonium in atomic hydrogen

    Indian Academy of Sciences (India)

    V S Kulhar

    2006-06-01

    Muonium formation in excited states in muon-hydrogen charge-exchange collision is investigated using a method developed in a previous paper. Differential cross-section results are found to resemble positronium formation cross-section results of positron-hydrogen charge-exchange problem. Forward differential and integrated cross-sections are computed for muon energy of 2 keV and higher. Total muonium formation cross-sections are computed using Jackson and Schiff scaling rules. Muonium formation cross-section results obtained from proton-hydrogen charge-exchange cross-section results, using velocity scaling are compared with the results of the present calculation.

  8. Characterization of an atomic hydrogen source for charge exchange experiments

    Science.gov (United States)

    Leutenegger, M. A.; Beiersdorfer, P.; Betancourt-Martinez, G. L.; Brown, G. V.; Hell, N.; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; Porter, F. S.

    2016-11-01

    We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  9. Characterization of an atomic hydrogen source for charge exchange experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leutenegger, M. A. [NASA Goddard Space Flight Center, Code 662, Greenbelt, Maryland 20771 (United States); CRESST/University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 (United States); Beiersdorfer, P.; Brown, G. V.; Magee, E. W. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Betancourt-Martinez, G. L. [NASA Goddard Space Flight Center, Code 662, Greenbelt, Maryland 20771 (United States); University of Maryland College Park, College Park, Maryland 20742 (United States); Hell, N. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Dr. Karl-Remeis-Sternwarte and ECAP, FAU Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg (Germany); Kelley, R. L.; Kilbourne, C. A.; Porter, F. S. [NASA Goddard Space Flight Center, Code 662, Greenbelt, Maryland 20771 (United States)

    2016-11-15

    We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  10. Hydrogenated Nanocrystalline Silicon Thin Films Prepared by Hot-Wire Method with Varied Process Pressure

    Directory of Open Access Journals (Sweden)

    V. S. Waman

    2011-01-01

    Full Text Available Hydrogenated nanocrystalline silicon films were prepared by hot-wire method at low substrate temperature (200∘C without hydrogen dilution of silane (SiH4. A variety of techniques, including Raman spectroscopy, low angle X-ray diffraction (XRD, Fourier transform infrared (FTIR spectroscopy, atomic force microscopy (AFM, and UV-visible (UV-Vis spectroscopy, were used to characterize these films for structural and optical properties. Films are grown at reasonably high deposition rates (>15 Å/s, which are very much appreciated for the fabrication of cost effective devices. Different crystalline fractions (from 2.5% to 63% and crystallite size (3.6–6.0 nm can be achieved by controlling the process pressure. It is observed that with increase in process pressure, the hydrogen bonding in the films shifts from Si–H to Si–H2 and (Si–H2n complexes. The band gaps of the films are found in the range 1.83–2.11 eV, whereas the hydrogen content remains <9 at.% over the entire range of process pressure studied. The ease of depositing films with tunable band gap is useful for fabrication of tandem solar cells. A correlation between structural and optical properties has been found and discussed in detail.

  11. Diffusion mobility of the hydrogen atom with allowance for the anharmonic attenuation of migrating atom state

    Energy Technology Data Exchange (ETDEWEB)

    Kashlev, Y.A., E-mail: yakashlev@yandex.ru

    2017-04-15

    Evolution of vibration relaxation of hydrogen atoms in metals with the close-packed lattice at high and medium temperatures is investigated based on non-equilibrium statistical thermodynamics, in that number on using the retarded two-time Green function method. In accordance with main kinetic equation – the generalized Fokker- Plank- Kolmogorov equation, anharmonism of hydrogen atoms vibration in potential wells does not make any contribution to collision effects. It influences the relaxation processes at the expense of interference of fourth order anharmonism with single-phonon scattering on impurity hydrogen atoms. Therefore, the total relaxation time of vibration energy of system metal-hydrogen is written as a product of two factors: relaxation time of system in harmonic approximation and dimensionless anharmonic attenuation of quantum hydrogen state.

  12. Diffusion mobility of the hydrogen atom with allowance for the anharmonic attenuation of migrating atom state

    Science.gov (United States)

    Kashlev, Y. A.

    2017-04-01

    Evolution of vibration relaxation of hydrogen atoms in metals with the close-packed lattice at high and medium temperatures is investigated based on non-equilibrium statistical thermodynamics, in that number on using the retarded two-time Green function method. In accordance with main kinetic equation - the generalized Fokker- Plank- Kolmogorov equation, anharmonism of hydrogen atoms vibration in potential wells does not make any contribution to collision effects. It influences the relaxation processes at the expense of interference of fourth order anharmonism with single-phonon scattering on impurity hydrogen atoms. Therefore, the total relaxation time of vibration energy of system metal-hydrogen is written as a product of two factors: relaxation time of system in harmonic approximation and dimensionless anharmonic attenuation of quantum hydrogen state.

  13. Photoionization microscopy of hydrogen atom near a metal surface

    Institute of Scientific and Technical Information of China (English)

    Yang Hai-Feng; Wang Lei; Liu Xiao-Jun; Liu Hong-Ping

    2011-01-01

    We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterus of the electron radial distribution are calculated at different scaled energies above the classical saddle point and at various atom-surface distances. We find that different types of trajectories contribute predominantly to different manifolds in a certain interference pattern. As the scaled energy increases, the structure of the interference pattern evolves smoothly and more types of trajectories emerge. As the atom approaches the metal surface closer, there are more types of trajectories contributing to the interference pattern as well. When the Rydberg atom comes very close to the metal surface or the scaled energy approaches the zero field ionization energy,the potential induced by the metal surface will make atomic system chaotic. The results also show that atoms near a metal surface exhibit similar properties like the atoms in the parallel electric and magnetic fields.

  14. Graviton Emission and Absorption by Atomic Hydrogen

    CERN Document Server

    Rothman, S B T

    2006-01-01

    Graviton absorption cross sections and emission rates for hydrogen are calculated by both semi-classical and field theoretic methods. We point out several mistakes in the literature concerning spontaneous emission of gravitons and related phenomena, some of which are due to a subtle issue concerning gauge invariance of the linearized interaction Hamiltonian.

  15. Atomic displacements due to interstitial hydrogen in Cu and Pd

    Indian Academy of Sciences (India)

    Hitesh Sharma; S Prakash

    2007-08-01

    The density functional theory (DFT) is used to study the atomic interactions in transition metal-based interstitial alloys. The strain field is calculated in the discrete lattice model using Kanzaki method. The total energy and hence atomic forces between interstitial hydrogen and transition metal hosts are calculated using DFT. The norm-conserving pseudopotentials for H, Cu and Pd are generated self-consistently. The dynamical matrices are evaluated considering interaction up to first nearest neighbors whereas impurity-induced forces are calculated with M32H shell (where M = Cu and Pd). The atomic displacements produced by interstitial hydrogen at the octahedral site in Cu and Pd show displacements of 7.36% and 4.3% of the first nearest neighbors respectively. Both Cu and Pd lattices show lattice expansion due to the presence of hydrogen and the obtained average lattice expansion / = 0.177 for Cu and 0.145 for Pd.

  16. Measurements of atomic splittings in atomic hydrogen and the proton charge radius

    Science.gov (United States)

    Hessels, E. A.

    2016-09-01

    The proton charge radius can be determined from precise measurements of atomic hydrogen spectroscopy. A review of the relevant measurements will be given, including an update on our measurement of the n=2 Lamb shift. The values obtained from hydrogen will be compared to those obtained from muonic hydrogen and from electron-proton elastic scattering measurements. This work is funded by NSERC, CRC and CFI.

  17. Structural and optical studies on hot wire chemical vapour deposited hydrogenated silicon films at low substrate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, Purabi; Agarwal, Pratima [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam (India)

    2009-02-15

    Thin films of hydrogenated silicon are deposited by hot wire chemical vapour deposition technique, as an alternative of plasma enhanced chemical vapour deposition technique. By varying the hydrogen and silane flow rate, we deposited the films ranging from pure amorphous to nanocrystallite-embedded amorphous in nature. In this paper we report extensively studied structural and optical properties of these films. It is observed that the rms bond angle deviation decreases with increase in hydrogen flow rate, which is an indication of improved order in the films. We discuss this under the light of breaking of weak Si-Si bonds and subsequent formation of strong Si-Si bonds and coverage of the growing surface by atomic hydrogen. (author)

  18. The collision between two hydrogen atoms

    CERN Document Server

    Ray, Hasi

    2013-01-01

    The electron-electron correlation term in two-atomic collision is the most important, most difficult term to obtain the effective interatomic potential. Generally the H and H collision is a four center problem. It is extremely difficult to compute the electron-electron correlation term to include the effect of exchange or antisymmetry between two system electrons exactly. All the two-atomic collision related theoretical data differ from each other due to its difference in approximating the electron-electron correlation term. I invent a trick to evaluate the term exactly. Earlier the positronium (Ps) and H system was easily approximated as a three center problem due to the light mass of Ps. My new code for H-H collision using the ab-initio and exact static-exchange model (SEM) can reproduce exactly the same data of Ps and H system just by using the appropriate atomic parameters. The success of the present trick makes the foundation of a big monument in cold and low energy atomic collision physics. The Feshbach...

  19. Atomic hydrogen distribution. [in Titan atmospheric model

    Science.gov (United States)

    Tabarie, N.

    1974-01-01

    Several possible H2 vertical distributions in Titan's atmosphere are considered with the constraint of 5 km-A a total quantity. Approximative calculations show that hydrogen distribution is quite sensitive to two other parameters of Titan's atmosphere: the temperature and the presence of other constituents. The escape fluxes of H and H2 are also estimated as well as the consequent distributions trapped in the Saturnian system.

  20. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H., E-mail: nakano@nifs.ac.jp; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 5095292 (Japan); Nishiyama, S.; Sasaki, K. [Graduate school of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 0608628 (Japan)

    2015-04-08

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure.

  1. The photon scattering cross-sections of atomic hydrogen

    OpenAIRE

    2016-01-01

    We present a unified view of the frequency dependence of the various scattering processes involved when a neutral hydrogen atom interacts with a monochromatic, linearly-polarized photon. A computational approach is employed of the atom trapped by a finite-sized-box due to a finite basis-set expansion, which generates a set of transition matrix elements between $E0$ pseudostates. We introduce a general computational methodology that enables the computation of the frequency-dependent dipole tra...

  2. Fast metastable hydrogen atoms from H2 molecules: twin atoms

    Directory of Open Access Journals (Sweden)

    Trimèche A.

    2015-01-01

    Full Text Available It is a difficult task to obtain “twin atoms”, i.e. pairs of massive particles such that one can perform experiments in the same fashion that is routinely done with “twin photons”. One possible route to obtain such pairs is by dissociating homonuclear diatomic molecules. We address this possibility by investigating the production of metastable H(2s atoms coming from the dissociation of cold H2 molecules produced in a Campargue nozzle beam crossing an electron beam from a high intensity pulsed electron gun. Dissociation by electron impact was chosen to avoid limitations of target molecular excited states due to selection rules. Detectors placed several centimeters away from the collision center, and aligned with respect to possible common molecular dissociation channel, analyze the neutral fragments as a function of their time-of-flight (TOF through Lyman-α detection. Evidence for the first time observed coincidence of pairs of H(2s atoms obtained this way is presented.

  3. Hydrogen-related contrast in atomic force microscopy

    Science.gov (United States)

    Schmidt, René; Schwarz, Alexander; Wiesendanger, Roland

    2009-07-01

    We study the effect of hydrogen adsorption on gadolinium islands epitaxially grown on W(110) utilizing atomic force microscopy operated in the non-contact regime. In constant force images, gadolinium islands exhibit two height levels, corresponding to hydrogen covered and clean gadolinium areas, respectively. The experimentally measured height differences are strongly bias dependent, showing that the contrast pattern is dominated by electrostatic tip-sample forces. We interpret our experimental findings in terms of a local reduction of the work function and the presence of localized charges on hydrogen covered areas. Both effects lead to a variation of the contact potential difference between tip and surface areas, which are clean or hydrogen covered gadolinium. After clarifying the electrostatic contrast formation, we can unambiguously identify regions of clean gadolinium on the islands. These results are important for further magnetic exchange force microscopy based studies, because hydrogen also alters the magnetic properties locally.

  4. How solvent modulates hydroxyl radical reactivity in hydrogen atom abstractions.

    Science.gov (United States)

    Mitroka, Susan; Zimmeck, Stephanie; Troya, Diego; Tanko, James M

    2010-03-10

    The hydroxyl radical (HO*) is a highly reactive oxygen-centered radical whose bimolecular rate constants for reaction with organic compounds (hydrogen atom abstraction) approach the diffusion-controlled limit in aqueous solution. The results reported herein show that hydroxyl radical is considerably less reactive in dipolar, aprotic solvents such as acetonitrile. This diminished reactivity is explained on the basis of a polarized transition state for hydrogen abstraction, in which the oxygen of the hydroxyl radical becomes highly negative and can serve as a hydrogen bond acceptor. Because acetonitrile cannot participate as a hydrogen bond donor, the transition state cannot be stabilized by hydrogen bonding, and the reaction rate is lower; the opposite is true when water is the solvent. This hypothesis explains hydroxyl radical reactivity both in solution and in the gas phase and may be the basis for a "containment strategy" used by Nature when hydroxyl radical is produced endogenously.

  5. Experimental ionization of atomic hydrogen with few-cycle pulses

    CERN Document Server

    Pullen, M G; Laban, D E; Palmer, A J; Hanne, G F; Grum-Grzhimailo, A N; Abeln, B; Bartschat, K; Weflen, D; Ivanov, I; Kheifets, A; Quiney, H M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2011-01-01

    We present the first experimental data on strong-field ionization of atomic hydrogen by few-cycle laser pulses. We obtain quantitative agreement at the 10% level between the data and an {\\it ab initio} simulation over a wide range of laser intensities and electron energies.

  6. Three-body recombination in spin-polarized atomic hydrogen

    NARCIS (Netherlands)

    Goey, L.P.H. de; Berg, T.H.M. van de; Mulders, N.; Stoof, H.T.C.; Verhaar, B.J.; Glöckle, W.

    1986-01-01

    In view of the failure of the Kagan dipole mechanism to explain the magnetic field dependence of the H+H+H recombination rate in spin-polarized atomic hydrogen, we consider an additional process, the so-called dipole-exchange mechanism. Two simple approaches to estimate its consequences turn out to

  7. Variational Perturbation Treatment of the Confined Hydrogen Atom

    Science.gov (United States)

    Montgomery, H. E., Jr.

    2011-01-01

    The Schrodinger equation for the ground state of a hydrogen atom confined at the centre of an impenetrable cavity is treated using variational perturbation theory. Energies calculated from variational perturbation theory are comparable in accuracy to the results from a direct numerical solution. The goal of this exercise is to introduce the…

  8. The Confined Hydrogen Atom with a Moving Nucleus

    Science.gov (United States)

    Fernandez, Francisco M.

    2010-01-01

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…

  9. Quantum-Classical Connection for Hydrogen Atom-Like Systems

    Science.gov (United States)

    Syam, Debapriyo; Roy, Arup

    2011-01-01

    The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…

  10. On the hydrogen atom via Wigner-Heisenberg algebra

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Universidade Federal de Campina Grande (UFCG), Cuite, PB (Brazil). Unidade Academica de Educacao]. E-mail: rafael@df.ufcg.edu.br; rafaelr@cbpf.br

    2008-07-01

    We extend the usual Kustaanheimo-Stiefel 4D {yields} 3D mapping to study and discuss a constrained super-Wigner oscillator in four dimensions. We show that the physical hydrogen atom is the system that emerges in the bosonic sector of the mapped super 3D system. (author)

  11. Doppler-free two-photon spectroscopy on atomic hydrogen

    CERN Document Server

    Niering, M

    1999-01-01

    In the framework of the present thesis the internal structure of the hydrogen atom is studied by means of optical spectroscopic methods. The main interest is thereby devoted to the transition of the 1S ground-state into the metastable 2S-state.

  12. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    K Chakrabarti

    2001-04-01

    Low energy positron impact ionization of atomic hydrogen is studies theoretically using the hyperspherical partial wave method of Das [1] in constant 12, equal energy sharing geometry. The TDCS reveal considerable differences in physics compared to electron impact ionization under the same geometry.

  13. Hydrogen atom spectrum and the lamb shift in noncommutative QED.

    Science.gov (United States)

    Chaichian, M; Sheikh-Jabbari, M M; Tureanu, A

    2001-03-26

    We have calculated the energy levels of the hydrogen atom as well as the Lamb shift within the noncommutative quantum electrodynamics theory. The results show deviations from the usual QED both on the classical and the quantum levels. On both levels, the deviations depend on the parameter of space/space noncommutativity.

  14. Variational Perturbation Treatment of the Confined Hydrogen Atom

    Science.gov (United States)

    Montgomery, H. E., Jr.

    2011-01-01

    The Schrodinger equation for the ground state of a hydrogen atom confined at the centre of an impenetrable cavity is treated using variational perturbation theory. Energies calculated from variational perturbation theory are comparable in accuracy to the results from a direct numerical solution. The goal of this exercise is to introduce the…

  15. The Confined Hydrogen Atom with a Moving Nucleus

    Science.gov (United States)

    Fernandez, Francisco M.

    2010-01-01

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…

  16. Higher-order Sternheimer shieldings of the hydrogen atom

    Science.gov (United States)

    Fowler, P. W.; Steiner, E.

    Multiple perturbation theory is used to calculate the response of the electric field gradient at the nucleus of the hydrogen atom to external non-uniform fields. The parallel component of the field gradient at the nucleus in an axial field F with gradient F' and second derivative F'' has the perturbation expansion: [Enlarge Image

  17. Force Density Balance inside the Hydrogen Atom

    CERN Document Server

    Himpsel, F J

    2015-01-01

    Motivated by the long-debated question about the internal stability of the electron, the force densities acting on the charge density of the 1s electron in the H atom are investigated. The problem is mapped onto the canonical formalism for a classical Dirac field coupled to the electric field of an external point charge. An explicit calculation shows that the attractive Coulomb force density is balanced exactly at every point in space by the repulsive confinement force density. The latter requires evaluating the divergence of the stress tensor for the 1s solution of the Dirac equation. Such a local force balance goes beyond the global stability criteria that are usually given for the H atom. This concept is extended to the internal stability of any charged particle by investigating the force densities acting on its surrounding vacuum polarization. At large distances one has to consider only the charge density of virtual electrons and positrons, induced by a point charge in the vacuum of quantum electrodynamic...

  18. Relativistic Transitions in the Hydrogenic Atoms

    CERN Document Server

    Boudet, R

    2009-01-01

    When one approaches the study of the quantal relativistic theory of the electron, one may be surprised by the gap which lies between the frame of the experiments, i.e. the real geometry of the space and time, and the abstraction of the complex matrices and spinors formalism employed in the presentation of the theory. This book uses a theory of the electron, introduced by David Hestenes, in which the mathematical language is the same as the one of the geometry of the space and time. Such a language not only allows one to find again the well known results concerning the one-electron atoms theory but furthermore leads easily to the resolution of problems considered for a long time without solution.

  19. Production of Excited Atomic Hydrogen from Methane

    Science.gov (United States)

    Machacek, J. R.; Andrianarijaona, V. M.; Furst, J. E.; Gay, T. J.; Kilcoyne, A. L. D.; Landers, A. L.; McLaughlin, K. W.

    2009-05-01

    We have measured the production of Lyα and Hα fluorescence from atomic H for the photodissociation of CH4 by linearly-polarized photons with energies between 20 and 65 eV. Comparison between our Lyα relative cross section and that previously reported [1] show different peak height ratios. This also occurs in the Hα cross section when compared to previous data [2]. We do not observe as significant a drop in either cross section above 35 eV. Our measurements were taken with pressures two orders of magnitude lower than those used in ref. [1]. We present comparisons between data sets and a discussion of possible systematic effects. [1] H. Fukuzawa et al., J. Phys. B. 38, 565 (2005). [2] M. Kato et al., J. Phys. B. 35, 4383 (2002). Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  20. Collisional excitation of water by hydrogen atoms

    CERN Document Server

    Daniel, F; Dagdigian, P J; Dubernet, M -L; lique, F; forêts, G Pineau des

    2014-01-01

    We present quantum dynamical calculations that describe the rotational excitation of H$_2$O due to collisions with H atoms. We used a recent, high accuracy potential energy surface, and solved the collisional dynamics with the close-coupling formalism, for total energies up to 12 000 cm$^{-1}$. From these calculations, we obtained collisional rate coefficients for the first 45 energy levels of both ortho- and para-H$_2$O and for temperatures in the range T = 5-1500 K. These rate coefficients are subsequently compared to the values previously published for the H$_2$O / He and H$_2$O / H$_2$ collisional systems. It is shown that no simple relation exists between the three systems and that specific calculations are thus mandatory.

  1. Classical-field model of the hydrogen atom

    Science.gov (United States)

    Rashkovskiy, Sergey A.

    2017-02-01

    It is shown that all of the basic properties of the hydrogen atom can be consistently described in terms of classical electrodynamics if instead of considering the electron to be a particle, we consider an electrically charged classical wave field—an "electron wave"—which is held by the electrostatic field of the proton. It is shown that quantum mechanics must be considered not as a theory of particles but as a classical field theory in the spirit of classical electrodynamics. In this case, we are not faced with difficulties in interpreting the results of the theory. In the framework of classical electrodynamics, all of the well-known regularities of the spontaneous emission of the hydrogen atom are obtained, which is usually derived in the framework of quantum electrodynamics. It is shown that there are no discrete states and discrete energy levels of the atom: the energy of the atom and its states change continuously. An explanation of the conventional corpuscular-statistical interpretation of atomic phenomena is given. It is shown that this explanation is only a misinterpretation of continuous deterministic processes. In the framework of classical electrodynamics, the nonlinear Schrödinger equation is obtained, which accounts for the inverse action of self-electromagnetic radiation of the electron wave and completely describes the spontaneous emissions of an atom.

  2. Hydrogen in hot subdwarfs formed by double helium white dwarf mergers

    CERN Document Server

    Hall, Philip D

    2016-01-01

    Isolated hot subdwarfs might be formed by the merging of two helium-core white dwarfs. Before merging, helium-core white dwarfs have hydrogen-rich envelopes and some of this hydrogen may survive the merger. We calculate the mass of hydrogen that is present at the start of such mergers and, with the assumption that hydrogen is mixed throughout the disrupted white dwarf in the merger process, estimate how much can survive. We find a hydrogen mass of up to about $2 \\times 10^{-3}\\,\\mathrm{M}_{\\odot}$ in merger remnants. We make model merger remnants that include the hydrogen mass appropriate to their total mass and compare their atmospheric parameters with a sample of apparently isolated hot subdwarfs, hydrogen-rich sdBs. The majority of these stars can be explained as the remnants of double helium white dwarf mergers.

  3. Hydrogen and muonic-Hydrogen Atomic Spectra in Non-commutative Space-Time

    CERN Document Server

    Haghighat, M

    2014-01-01

    Comparing electronic Hydrogen with muonic Hydrogen shows that the discrepancy in measurement of the Lamb shift in the both systems are relatively of order of $(\\frac{m_\\mu}{m_e})^{4-5}$. We explore the spectrum of Hydrogen atom in noncommutative $QED$ to compare the noncommutative effects on the both bound states. We show that in the Lorentz violating noncommutative QED the ratio of NC-corrections is $(\\frac{m_\\mu}{m_e})^3$ while in the Lorentz conserving NCQED is $(\\frac{m_\\mu}{m_e})^5$. An uncertainty about $1 \\,Hz\\ll 3\\,kHz$ in the Lamb shift of Hydrogen atom leads to an NC correction about $10 \\,MHz$ in the Lorentz violating noncommutative QED and about $400 \\,GHz$ in the Lorentz conserving noncommutative QED.

  4. Cold three-body collisions in hydrogen-hydrogen-alkali atomic system

    CERN Document Server

    Wang, Yujun; Esry, B D

    2010-01-01

    We have studied hydrogen-hydrogen-alkali three-body systems in the adiabatic hyperspherical representation. For the spin-stretched case, there exists a single $X$H molecular state when $X$ is one of the bosonic alkali atoms: $^7$Li, $^{23}$Na, $^{39}$K, $^{87}$Rb and $^{133}$Cs. As a result, the {\\em only} recombination process is the one that leads to formation of $X$H molecules, H+H+$X

  5. Influence of thermo hydrogen treatment on hot deformation behavior of Ti600 alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jing-wei; DING Hua; WANG Yao-qi; HOU Hong-liang

    2009-01-01

    Hot compressive deformation of Ti600 alloy after thermo hydrogen treatment (THT) was carried out within hydrogen content range of 0-0.5%, temperature range of 760-920 ℃ and strain rate range of 0.01-10 s-1. The flow stress of Ti600 alloy after THT was obtained under hot deformation condition, and the influence of hydrogen on work-hardening rate (S*), strain energy density (U*), and deformation activation energy (Q) was analysed. The results show that the flow stress of Ti600 alloy decreases remarkably with the increase of hydrogen when the hydrogen content is less than 0.3%. Both S* and U* decrease with the increase of hydrogen when the hydrogen content is less than 0.3%, and when the hydrogen content is more than 0.3%, S* and U* increase with hydrogen addition. The value of Q decreases with the increase of strain at the same hydrogen content. The addition of small quantity of hydrogen leads to an increase of Q at small strain values, and when the strain reaches 0.6, the value of Q decreases gradually with the increase of hydrogen. When the hydrogen content is within the range of 0.1%-0.3%, the flow stress of Ti600 alloy is decreased when being deformed at the temperature range of 760-920 ℃.

  6. Conductance of hydrogen-incorporated Fe single-atom junction

    Directory of Open Access Journals (Sweden)

    ZHENG Xiaolong

    2015-08-01

    Full Text Available We study the origin of the 1G0 conductance of the Fe atom contact in hydrogen environment using first-principle calculations combined with nonequilibrium Green′s function theory.The Fe point contact with two H atoms adsorbed symmetrically and vertically to the transport direction gives rise to the 1G0 conductance.The spin-up channels is found to give a larger contribution to the conductance than the spin-down channels,which is understood from the transmission spectrum at the zero bias voltage.

  7. A discrete variable representation for electron-hydrogen atom scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gaucher, L.F.

    1994-08-01

    A discrete variable representation (DVR) suitable for treating the quantum scattering of a low energy electron from a hydrogen atom is presented. The benefits of DVR techniques (e.g. the removal of the requirement of calculating multidimensional potential energy matrix elements and the availability of iterative sparse matrix diagonalization/inversion algorithms) have for many years been applied successfully to studies of quantum molecular scattering. Unfortunately, the presence of a Coulomb singularity at the electrically unshielded center of a hydrogen atom requires high radial grid point densities in this region of the scattering coordinate, while the presence of finite kinetic energy in the asymptotic scattering electron also requires a sufficiently large radial grid point density at moderate distances from the nucleus. The constraints imposed by these two length scales have made application of current DVR methods to this scattering event difficult.

  8. Fluorescence Quenching of Benzaldehyde in Water by Hydrogen Atom Abstraction.

    Science.gov (United States)

    Fletcher, Katharyn; Bunz, Uwe H F; Dreuw, Andreas

    2016-09-01

    We computed the mechanism of fluorescence quenching of benzaldehyde in water through relaxed potential energy surface scans. Time-dependent density functional theory calculations along the protonation coordinate from water to benzaldehyde reveal that photoexcitation to the bright ππ* (S3 ) state is immediately followed by ultrafast decay to the nπ* (S1 ) state. Evolving along this state, benzaldehyde (BA) abstracts a hydrogen atom, resulting in a BAH(.) and OH(.) radical pair. Benzaldehyde does not act as photobase in water, but abstracts a hydrogen atom from a nearby solvent molecule. The system finally decays back to the ground state by non-radiative decay and an electron transfers back to the OH(.) radical. Proton transfer from BAH(+) to OH(-) restores the initial situation, BA in water.

  9. Solid Hydrogen Experiments for Atomic Propellants: Image Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2002-01-01

    This paper presents the results of detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their agglomerates, and the total mass of hydrogen particles were estimated. Particle sizes of 1.9 to 8 mm (0.075 to 0.315 in.) were measured. The particle agglomerate sizes and areas were measured, and the total mass of solid hydrogen was computed. A total mass of from 0.22 to 7.9 grams of hydrogen was frozen. Compaction and expansion of the agglomerate implied that the particles remain independent particles, and can be separated and controlled. These experiment image analyses are one of the first steps toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  10. Dynamical localization: Hydrogen atoms in magnetic and microwave fields

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, F.; Casati, G. [Dipartimento di Fisica dellUniversita, Via Castelnuovo 7, 22100 Como (Italy); Shepelyansky, D.L. [Laboratoire de Physique Quantique, UMR C5626 du CNRS, Universite Paul Sabatier, 31062, Toulouse (France)

    1997-03-01

    We show that dynamical localization for excited hydrogen atoms in magnetic and microwave fields takes place at quite low microwave frequency ({omega}n{sup 3}{lt}1). Estimates of the localization length are given for different parameter regimes, showing that the quantum delocalization border drops significantly as compared to the case of zero magnetic field. This opens up broad possibilities for laboratory investigations. {copyright} {ital 1997} {ital The American Physical Society}

  11. Dirac Equation in Noncommutative Space for Hydrogen Atom

    CERN Document Server

    Adorno, T C; Chaichian, M; Gitman, D M; Tureanu, A

    2009-01-01

    We consider the energy levels of a hydrogen-like atom in the framework of $\\theta $-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels $2S_{1/2}, 2P_{1/2}$ and $ 2P_{3/2}$ is lifted completely, such that new transition channels are allowed.

  12. Dirac equation in noncommutative space for hydrogen atom

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C., E-mail: tadorno@nonada.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05508-090 Sao Paulo, SP (Brazil); Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05508-090 Sao Paulo, SP (Brazil); Chaichian, M., E-mail: Masud.Chaichian@helsinki.f [Department of Physics, University of Helsinki and Helsinki Institute of Physics, PO Box 64, FIN-00014 Helsinki (Finland); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05508-090 Sao Paulo, SP (Brazil); Tureanu, A., E-mail: Anca.Tureanu@helsinki.f [Department of Physics, University of Helsinki and Helsinki Institute of Physics, PO Box 64, FIN-00014 Helsinki (Finland)

    2009-11-30

    We consider the energy levels of a hydrogen-like atom in the framework of theta-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels 2S{sub 1/2}, 2P{sub 1/2} and 2P{sub 3/2} is lifted completely, such that new transition channels are allowed.

  13. Ground-state structures of atomic metallic hydrogen.

    Science.gov (United States)

    McMahon, Jeffrey M; Ceperley, David M

    2011-04-22

    Ab initio random structure searching using density functional theory is used to determine the ground-state structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including proton zero-point motion within the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (r(s)=1.23) that remains stable to 1 TPa (r(s)=1.11). At higher pressures, hydrogen stabilizes in an …ABCABC… planar structure that is similar to the ground state of lithium, but with a different stacking sequence. With increasing pressure, this structure compresses to the face-centered cubic lattice near 3.5 TPa (r(s)=0.92).

  14. Alkane desaturation by concerted double hydrogen atom transfer to benzyne.

    Science.gov (United States)

    Niu, Dawen; Willoughby, Patrick H; Woods, Brian P; Baire, Beeraiah; Hoye, Thomas R

    2013-09-26

    The removal of two vicinal hydrogen atoms from an alkane to produce an alkene is a challenge for synthetic chemists. In nature, desaturases and acetylenases are adept at achieving this essential oxidative functionalization reaction, for example during the biosynthesis of unsaturated fatty acids, eicosanoids, gibberellins and carotenoids. Alkane-to-alkene conversion almost always involves one or more chemical intermediates in a multistep reaction pathway; these may be either isolable species (such as alcohols or alkyl halides) or reactive intermediates (such as carbocations, alkyl radicals, or σ-alkyl-metal species). Here we report a desaturation reaction of simple, unactivated alkanes that is mechanistically unique. We show that benzynes are capable of the concerted removal of two vicinal hydrogen atoms from a hydrocarbon. The discovery of this exothermic, net redox process was enabled by the simple thermal generation of reactive benzyne intermediates through the hexadehydro-Diels-Alder cycloisomerization reaction of triyne substrates. We are not aware of any single-step, bimolecular reaction in which two hydrogen atoms are simultaneously transferred from a saturated alkane. Computational studies indicate a preferred geometry with eclipsed vicinal C-H bonds in the alkane donor.

  15. Manufacture and deflagration of an atomic hydrogen propellant

    Science.gov (United States)

    Rosen, G.

    1974-01-01

    It is observed that the use of very low temperatures (in the range from 0.1 to 1.5 K) produced by advanced cryogenic apparatus and the use of very strong magnetic fields (in the range from 50 to 100 kG) produced by superconducting magnets can yield a significant improvement in the atomic hydrogen trapping effectiveness of an H2 matrix. The use of a radioactive beta-ray emiter isotope may yield H-H2 propellants (with a specific impulse of about 740 sec) by secondary electron impact dissociations of H2 in an impregnated matrix maintained below 1 K in a strong magnetic field. Another method for manufacturing an H-H2 propellant involves bombardment of supercooled solid H2 with a cyclotron-produced beam of 10-MeV hydrogen atoms. The matrix-isolated atomic hydrogen must be used directly without prior melting as a solid propellant, and an analysis of the steady deflagration is presented.

  16. Reaction studies of hot silicon, germanium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, P.P.

    1990-11-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs.

  17. Reactions of butadiyne. 1: The reaction with hydrogen atoms

    Science.gov (United States)

    Schwanebeck, W.; Warnatz, J.

    1984-01-01

    The reaction of hydrogen (H) atoms with butadiene (C4H2) was studied at room temperature in a pressure range between w mbar and 10 mbar. The primary step was an addition of H to C4H2 which is in its high pressure range at p 1 mbar. Under these conditions the following addition of a second H atom lies in the transition region between low and high pressure range. Vibrationally excited C4H4 can be deactivated to form buten-(1)-yne-(3)(C4H4) or decomposes into two C2H2 molecules. The rate constant at room temperature for primary step is given. The second order rate constant for the consumption of buten-(1)-yne-(3) is an H atom excess at room temperature is given.

  18. Low conductance of nickel atomic junctions in hydrogen atmosphere

    Science.gov (United States)

    Li, Shuaishuai; Xie, Yi-Qun; Hu, Yibin

    2017-08-01

    The low conductance of nickel atomic junctions in the hydrogen environment is studied using the nonequilibrium Green's function theory combined with first-principles calculations. The Ni junction bridged by a H2 molecule has a conductance of approximately 0.7 G 0. This conductance is contributed by the anti-bonding state of the H2 molecule, which forms a bonding state with the 3 d orbitals of the nearby Ni atoms. In contrast, the Ni junction bridged by the two single H atoms has a conductance of approximately 1 G 0, which is weakly spin-polarized. The spin-up channels were found to contribute mostly to the conductance at a small junction gap, while the spin-down channels play a dominant role at a larger junction gap.

  19. Catalysis by Single Atoms: Water Gas Shift and Ethylene Hydrogenation

    Science.gov (United States)

    2009-04-20

    This adsorbed oxygen reacts with methane leading to combustion or partial oxidation to syngas at lower temperatures than in the existing commercial...600 Energy (eV) 28 To test the accuracy of reported ZrB2 atomic composition, we analyzed a hot-pressed ZrB2 sample supplied by Ceradyne. Fig. 26(a...specimens. 50um Electron Imaae 1 (a) (b) Figure 26. Analysis of boron-enriched ZrB2 sample supplied by Ceradyne: (a) SEM image (b) EDS counts (c

  20. Model study in chemisorption: atomic hydrogen on beryllium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bauschlicher, C.W. Jr.

    1976-08-01

    The interaction between atomic hydrogen and the (0001) surface of Be metal has been studied by ab initio electronic structure theory. Self-consistent-field (SCF) calculations have been performed using minimum, optimized minimum, double zeta and mixed basis sets for clusters as large as 22 Be atoms. The binding energy and equilibrium geometry (the distance to the surface) were determined for 4 sites. Both spatially restricted (the wavefunction was constrained to transform as one of the irreducible representations of the molecular point group) and unrestricted SCF calculations were performed. Using only the optimized minimum basis set, clusters containing as many as 22 beryllium atoms have been investigated. From a variety of considerations, this cluster is seen to be nearly converged within the model used, providing the most reliable results for chemisorption. The site dependence of the frequency is shown to be a geometrical effect depending on the number and angle of the bonds. The diffusion of atomic hydrogen through a perfect beryllium crystal is predicted to be energetically unfavorable. The cohesive energy, the ionization energy and the singlet-triplet separation were computed for the clusters without hydrogen. These quantities can be seen as a measure of the total amount of edge effects. The chemisorptive properties are not related to the total amount of edge effects, but rather the edge effects felt by the adsorbate bonding berylliums. This lack of correlation with the total edge effects illustrates the local nature of the bonding, further strengthening the cluster model for chemisorption. A detailed discussion of the bonding and electronic structure is included. The remaining edge effects for the Be/sub 22/ cluster are discussed.

  1. Absorption spectrum of very low pressure atomic hydrogen

    CERN Document Server

    Moret-Bailly, Jacques

    2015-01-01

    Spectra of quasars result primarily from interactions of natural light with atomic hydrogen. A visible absorption of a sharp and saturated spectral line in a gas requires a low pressure, so a long path without blushing as a cosmological redshift. Burbidge and Karlsson observed that redshifts of quasars result from fundamental redshifts, written 3K and 4K, that cause a shift of absorbed beta and gamma lines of H to alpha gas line. Thus absorbed spectrum is shifted until an absorbed line overlaps with Lyman alpha line of gas: redshift only occurs if an alpha absorption pumps atoms to 2P state. Thus, space is divided into spherical shells centered on the quasar, containing or not 2P atoms. Neglecting collisional de-excitations in absorbing shells, more and more atoms are excited until amplification of a beam having a long path in a shell, thus perpendicular to the observed ray, is large enough for a superradiant flash at alpha frequency. Energy is provided by atoms and observed ray, absorbing a line at local Lym...

  2. Allowed and forbidden transitions in artificial hydrogen and helium atoms.

    Science.gov (United States)

    Fujisawa, Toshimasa; Austing, David Guy; Tokura, Yasuhiro; Hirayama, Yoshiro; Tarucha, Seigo

    2002-09-19

    The strength of radiative transitions in atoms is governed by selection rules that depend on the occupation of atomic orbitals with electrons. Experiments have shown similar electron occupation of the quantized energy levels in semiconductor quantum dots--often described as artificial atoms. But unlike real atoms, the confinement potential of quantum dots is anisotropic, and the electrons can easily couple with phonons of the material. Here we report electrical pump-and-probe experiments that probe the allowed and 'forbidden' transitions between energy levels under phonon emission in quantum dots with one or two electrons (artificial hydrogen and helium atoms). The forbidden transitions are in fact allowed by higher-order processes where electrons flip their spin. We find that the relaxation time is about 200 micro s for forbidden transitions, 4 to 5 orders of magnitude longer than for allowed transitions. This indicates that the spin degree of freedom is well separated from the orbital degree of freedom, and that the total spin in the quantum dots is an excellent quantum number. This is an encouraging result for potential applications of quantum dots as basic entities for spin-based quantum information storage.

  3. Plasma screening effects on the energies of hydrogen atom

    Energy Technology Data Exchange (ETDEWEB)

    Soylu, A. [Department of Physics, Nigde University, 51240 Nigde (Turkey)

    2012-07-15

    A more general exponential cosine screened Coulomb potential is used for the first time to investigate the screening effects on the hydrogen atom in plasmas. This potential is examined for four different cases that correspond to four different type potentials when the different parameters are used in the potential within the framework of the well-known asymptotic iteration method. By solving the corresponding the radial Schroedinger equation with the screened and exponential cosine screened Coulomb potentials and comparing the obtained energy eigenvalues with the results of other studies, the applicability of the method to this kind of plasma physics problem is shown. The energy values of more general exponential cosine screened Coulomb potential are presented for various parameters in the potential. One of the advantages of the present potential is that it exhibits stronger screening effect than that of the exponential cosine screened Coulomb potential and it is also reduced to screened Coulomb and exponential cosine screened Coulomb as well as Coulomb potentials for special values of parameters. The parameters in the potential would be useful to model screening effects which cause an increase or decrease in the energy values of hydrogen atom in both Debye and quantum plasmas and in this manner this potential would be useful for the investigations of the atomic structure and collisions in plasmas.

  4. The EAGLE simulations: atomic hydrogen associated with galaxies

    CERN Document Server

    Crain, Robert A; Lagos, Claudia del P; Rahmati, Alireza; Schaye, Joop; McCarthy, Ian G; Marasco, Antonino; Bower, Richard G; Schaller, Matthieu; Theuns, Tom; van der Hulst, Thijs

    2016-01-01

    We examine the properties of atomic hydrogen (HI) associated with galaxies in the EAGLE simulations of galaxy formation. EAGLE's feedback parameters were calibrated to reproduce the stellar mass function and galaxy sizes at $z=0.1$, and we assess whether this calibration also yields realistic HI properties. We estimate the self-shielding density with a fitting function calibrated using radiation transport simulations, and correct for molecular hydrogen with empirical or theoretical relations. The `standard-resolution' simulations systematically underestimate HI column densities, leading to an HI deficiency in low-mass ($M_\\star < 10^{10}M_\\odot$) galaxies and poor reproduction of the observed HI mass function. These shortcomings are largely absent from EAGLE simulations featuring a factor of 8 (2) better mass (spatial) resolution, within which the HI mass of galaxies evolves more mildly from $z=1$ to $0$ than in the standard-resolution simulations. The largest-volume simulation reproduces the observed clus...

  5. Hot Hydrogen Testing of Refractory Metals and Ceramics

    Science.gov (United States)

    Zee, Ralph; Chin, Bryan; Cohron, Jon

    1993-01-01

    The objective of this investigation is to develop a technique with which refractory metal carbide samples can be exposed to hydrogen containing gases at high temperatures, and to use various microstructural and analytical techniques to determine the chemical and rate processes involved in hydrogen degradation in these materials. Five types of carbides were examined including WC, NbC, HfC, ZrC, and TaC. The ceramics were purchased and were all monolithic in nature. The temperature range investigated was from 850 to 1600 C with a hydrogen pressure of one atmosphere. Control experiments, in vacuum, were also conducted for comparison so that the net effects due to hydrogen could be isolated. The samples were analyzed prior to and after exposure. Gas samples were collected in selected experiments and analyzed using gas chromography. Characterization of the resulting microstructure after exposure to hydrogen was conducted using optical microscopy, x-ray diffraction, scanning electron microscopy, and weight change. The ceramics were purchased and were all monolithic in nature. It was found that all samples lost weight after exposure, both in hydrogen and vacuum. Results from the microstructure analyses show that the degradation processes are different among the five types of ceramics involved. In addition, the apparent activation energy for the degradation process is a function of temperature even within the same material. This indicates that there are more than one mechanism involved in each material, and that the mechanisms are temperature dependent.

  6. Effect of hot-filament annealing in a hydrogen atmosphere on the electrical and structural properties of Nb-doped TiO{sub 2} sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, C.J., E-mail: ctavares@fisica.uminho.pt [Centre of Physics, University of Minho, 4710-057 Braga (Portugal); Castro, M.V.; Marins, E.S.; Samantilleke, A.P.; Ferdov, S.; Rebouta, L.; Benelmekki, M.; Cerqueira, M.F.; Alpuim, P. [Centre of Physics, University of Minho, 4710-057 Braga (Portugal); Xuriguera, E. [Dept. Ciencia dels Materials, Universitat de Barcelona, Barcelona (Spain); Riviere, J.-P.; Eyidi, D.; Beaufort, M.-F. [Institut P' , University of Poitiers, Bat. SP2MI, Bd. Pierre et Marie Curie, BP 30179, 86962 Futuroscope (France); Mendes, A. [Laboratory of Process, Environment and Energy Engineering (LEPAE), Chemical Engineering Department, Faculty of Engineering, University of Porto, 4200-465 Porto (Portugal)

    2012-01-31

    In this work Nb-doped TiO2 thin films were deposited by d.c.-pulsed reactive magnetron sputtering at 500 Degree-Sign C from a composite target with weight fractions of 96% Ti and 4% Nb, using oxygen as reactive gas. In order to enhance the conductive properties, the as-deposited samples were treated in vacuum with atomic hydrogen at a substrate temperature of 500 Degree-Sign C. The atomic hydrogen flow was generated by a hot filament, inside a high-vacuum chemical vapour deposition reactor, at a temperature of 1750 Degree-Sign C. In order to optimise the hydrogen hot-wire treatments, the H{sub 2} pressure was varied between 1.3 and 67 Pa, the treatment time was monitored between 1 and 5 min and the hot-filament current was changed between 12 and 17 A. Dark conductivity was measured as a function of temperature and its value at room temperature was extrapolated and used to assess the effect of the hydrogen annealing on the charge transport properties. A two-order of magnitude increase in dark conductivity was typically observed for optimised hydrogen treatments (10 Pa), when varying the hydrogen pressure, resulting in a minimum resistivity of {approx} 3 Multiplication-Sign 10{sup -3} {Omega} cm at room temperature. The maximum amount of atomic H incorporation in oxygen vacancies was determined to be {approx} 5.7 at.%. Carrier mobility and resistivity were also investigated using Hall effect measurements. Correlations between structural and electrical properties and the hydrogen treatment conditions are discussed. The purpose of these films is to provide a transparent and conductive front contact layer for a-Si based photovoltaics, with a refractive index that better matches that of single and tandem solar cell structures. This can be achieved by an appropriate incorporation of a very small amount of cationic doping (Nb{sup 5+}) into the titanium dioxide lattice.

  7. Wave mechanics in quantum phase space: hydrogen atom

    Institute of Scientific and Technical Information of China (English)

    LU Jun

    2007-01-01

    The rigorous sohutions of the stationary Schr(o)dinger equation for hydrogen atom are solved with the wave-mechanics method within the framework of the quantum phase-space representation established by Torres-Vega and Frederick. The "Fourier-like"projection transformations of wave function from the phase space to position and momentum spaces are extended to three-dimensional systems. The eigenfunctions in general position and momentum spaces could be obtained through the transformations from eigenfunction in the phase space.

  8. Asymptotics of Rydberg states for the hydrogen atom

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, L.E. [Virginia Univ., Charlottesville, VA (United States). Dept. of Mathematics; Villegas-Blas, C. [Universidad Nacional Autonoma de Mexico, Instituto de Matematicas, Unidad Cuernavaca, A. P. 273-3 Admon. 3, Cuernavaca Morelos 62251 (Mexico)

    1997-08-01

    The asymptotics of Rydberg states, i.e., highly excited bound states of the hydrogen atom Hamiltonian, and various expectations involving these states are investigated. We show that suitable linear combinations of these states, appropriately rescaled and regarded as functions either in momentum space or configuration space, are highly concentrated on classical momentum space or configuration space Kepler orbits respectively, for large quantum numbers. Expectations of momentum space or configuration space functions with respect to these states are related to time-averages of these functions over Kepler orbits. (orig.)

  9. Asymmetry of the natural line profile for the hydrogen atom.

    Science.gov (United States)

    Labzowsky, L N; Solovyev, D A; Plunien, G; Soff, G

    2001-10-01

    The asymmetry of the natural line profile for transitions in hydrogenlike atoms is evaluated within a QED framework. For the Lyman- alpha 1s-2p absorption transition in neutral hydrogen this asymmetry results in an additional energy shift of 2.929 856 Hz. For the 2s(1/2)-2p(3/2) transition it amounts to -1.512 674 Hz. As a new feature this correction turns out to be process dependent. The quoted numbers refer to the Compton-scattering process.

  10. Relativistic Ionization of Hydrogen Atoms by Positron Impact

    Directory of Open Access Journals (Sweden)

    Amal Chahboune

    2016-03-01

    Full Text Available Relativistic triple differential cross-sections (TDCS for ionization of hydrogen atoms by positron impact have been calculated in the symmetric coplanar geometry. We have used Dirac wave functions to describe free electron’s and positron’s sates. The relativistic formalism is examined by taking the non relativistic limit. Present results are compared with those for the corresponding electron-impact case. In the first Born approximation, we found that the TDCS for positron impact ionization exceeds that for electron impact for all energies in accordance with the result obtained by several other theories.

  11. Description of the cryogenic and hot-hydrogen test facility being developed for the Space Nuclear Thermal Propulsion (SNTP) program

    Science.gov (United States)

    Thompson, D. A.; Riffle, G. K.; Merdich, Jeff A.

    1993-06-01

    The cryogenic and hot-hydrogen test facility being developed for the USAF Space Nuclear Thermal Propulsion (SNTP) program is described along with the test capabilities, technical approach, and technical status. Particular attention is given to the hydrogen test facility control and data acquisition and the hot hydrogen gas generator (HHGG). The hydrogen test facility will be be ready for operation in conjunction with cryogenic test capability by late 1994.

  12. The photon scattering cross-sections of atomic hydrogen

    CERN Document Server

    Grunefeld, Swaantje J; Cheng, Yongjun

    2016-01-01

    We present a unified view of the frequency dependence of the various scattering processes involved when a neutral hydrogen atom interacts with a monochromatic, linearly-polarized photon. A computational approach is employed of the atom trapped by a finite-sized-box due to a finite basis-set expansion, which generates a set of transition matrix elements between $E0$ pseudostates. We introduce a general computational methodology that enables the computation of the frequency-dependent dipole transition polarizability with one real and two different imaginary contributions. These dipole transition polarizabilities are related to the cross-sections of one-photon photoionization, Rayleigh, Raman, and Compton scattering. Our numerical calculations reveal individual Raman scattering cross-sections above threshold that can rapidly vanish and revive. Furthermore, our numerical Compton cross-sections do not overtly suffer from the infra-red divergence problem, and are three orders-of-magnitude higher than previous analy...

  13. Photo-excited hot carrier dynamics in hydrogenated amorphous silicon imaged by 4D electron microscopy

    Science.gov (United States)

    Liao, Bolin; Najafi, Ebrahim; Li, Heng; Minnich, Austin J.; Zewail, Ahmed H.

    2017-09-01

    Charge carrier dynamics in amorphous semiconductors has been a topic of intense research that has been propelled by modern applications in thin-film solar cells, transistors and optical sensors. Charge transport in these materials differs fundamentally from that in crystalline semiconductors owing to the lack of long-range order and high defect density. Despite the existence of well-established experimental techniques such as photoconductivity time-of-flight and ultrafast optical measurements, many aspects of the dynamics of photo-excited charge carriers in amorphous semiconductors remain poorly understood. Here, we demonstrate direct imaging of carrier dynamics in space and time after photo-excitation in hydrogenated amorphous silicon (a-Si:H) by scanning ultrafast electron microscopy (SUEM). We observe an unexpected regime of fast diffusion immediately after photoexcitation, together with spontaneous electron-hole separation and charge trapping induced by the atomic disorder. Our findings demonstrate the rich dynamics of hot carrier transport in amorphous semiconductors that can be revealed by direct imaging based on SUEM.

  14. Raman spectroscopy of hot hydrogen above 200 GPa.

    Science.gov (United States)

    Howie, Ross T; Dalladay-Simpson, Philip; Gregoryanz, Eugene

    2015-05-01

    It has been theorized that at high pressure the increased energy of the zero-point oscillations in hydrogen would destabilize the lattice and form a ground fluid state at 0 K (ref. 1). Theory has also suggested that this fluid state, representing a new state of matter, might have unusual properties governed by quantum effects, such as superfluidity or superconductivity. Here, by combining Raman spectroscopy and in situ high-temperature, high-pressure techniques, we demonstrate that above 200 GPa a new phase transition occurs as temperature is increased, for example 480 K at 255 GPa. If the transformation is interpreted as melting, it would be the lowest melting temperature of any material at these high pressures. We also find a new triple point between phases I and IV and the new phase, and demonstrate that hydrogen retains its molecular character around this point. These data may require a significant revision of the phase diagram of hydrogen above 200 GPa.

  15. Dynamics of hydrogen-like atom bounded by maximal acceleration

    CERN Document Server

    Friedman, Yaakov

    2012-01-01

    The existence of a maximal acceleration for massive objects was conjectured by Caianiello 30 years ago based on the Heisenberg uncertainty relations. Many consequences of this hypothesis have been studied, but until now, there has been no evidence that boundedness of the acceleration may lead to quantum behavior. In previous research, we predicted the existence of a universal maximal acceleration and developed a new dynamics for which all admissible solutions have an acceleration bounded by the maximal one. Based on W. K\\"{u}ndig's experiment, as reanalyzed by Kholmetskii et al, we estimated its value to be of the order $10^{19}m/s^2$. We present here a solution of our dynamical equation for a classical hydrogen-like atom and show that this dynamics leads to some aspects of quantum behavior. We show that the position of an electron in a hydrogen-like atom can be described only probabilistically. We also show that in this model, the notion of "center of mass" must be modified. This modification supports the no...

  16. Synthesis of FeH5: A layered structure with atomic hydrogen slabs.

    Science.gov (United States)

    Pépin, C M; Geneste, G; Dewaele, A; Mezouar, M; Loubeyre, P

    2017-07-28

    High pressure promotes the formation of polyhydrides with unusually high hydrogen-to-metal ratios. These polyhydrides have complex hydrogenic sublattices. We synthesized iron pentahydride (FeH5) by a direct reaction between iron and H2 above 130 gigapascals in a laser-heated diamond anvil cell. FeH5 exhibits a structure built of atomic hydrogen only. It consists of intercalated layers of quasicubic FeH3 units and four-plane slabs of thin atomic hydrogen. The distribution of the valence electron density indicates a bonding between hydrogen and iron atoms but none between hydrogen atoms, presenting a two-dimensional metallic character. The discovery of FeH5 suggests a low-pressure path to make materials that approach bulk dense atomic hydrogen. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Modeling hydrogen storage in boron-substituted graphene decorated with potassium metal atoms

    CSIR Research Space (South Africa)

    Tokarev, A

    2015-03-01

    Full Text Available Boron-substituted graphene decorated with potassium metal atoms was considered as a novel material for hydrogen storage. Density functional theory calculations were used to model key properties of the material, such as geometry, hydrogen packing...

  18. Propagation of light in low pressure ionised and atomic hydrogen. Application to astrophysics

    CERN Document Server

    Moret-Bailly, J

    2003-01-01

    The "Impulsive Stimulated Raman Scattering" (ISRS) performed using ultrashort laser pulses shifts the light frequencies. Tried using ordinary incoherent light, it keeps its qualitative properties except the nonlinearity due to the power of the laser pulses. The relative frequency shifts of the "Coherent Raman Effect on Incoherent Light" (CREIL) which is obtained do not depend on the intensity and, in a first approximation, on the frequency of the light. As CREIL does not blur the images and the spectra, its shifts may be confused with Doppler shifts. ISRS and CREIL are parametric effects which do not excite the matter, transferring energy from hot beams to cold beams; for CREIL, the cold light is thermal radiation which is heated. CREIL requires low pressure gases acting as catalysts. These gases must have Raman transitions in the radiofrequencies range: for instance H2+ or excited atomic hydrogen in a magnetic field. The spectral lines resulting from a simultaneous absorption (or emission) and CREIL have a w...

  19. Dimeric configurations of atomic hydrogen adsorbed on a monolayer hexagonal boron nitride

    Science.gov (United States)

    Shi, Jianzhang; Hao, Ruirui; Ji, Linan; Feng, Shujian; Sun, Tianye

    2017-10-01

    Atomic hydrogen adsorbed on the two-dimensional monolayer hexagonal boron nitride is systematically discussed based on dispersion-corrected density function theory (DFT-D). Main emphasis has been placed on aggregation states of two hydrogen atoms, including equal or ectopic adsorption with single side, and double-sided adsorption. The hydrogen atoms are chemisorbed on the top of boron sites, while they are physisorbed on the top of nitrogen or honeycomb sites. Furthermore, two adsorbed hydrogen atoms are most likely to keep close to form meta-TB dimer with single side. Besides, a possible stabilizing mechanism related to the adsorbed performance is investigated.

  20. Comment on "Wigner phase-space distribution function for the hydrogen atom"

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Springborg, Michael

    1999-01-01

    We object to the proposal that the mapping of the three-dimensional hydrogen atom into a four-dimensional harmonic oscillator can be readily used to determine the Wigner phase-space distribution function for the hydrogen atom. [S1050-2947(99)07005-5].......We object to the proposal that the mapping of the three-dimensional hydrogen atom into a four-dimensional harmonic oscillator can be readily used to determine the Wigner phase-space distribution function for the hydrogen atom. [S1050-2947(99)07005-5]....

  1. Description of the Space Nuclear Thermal Propulsion (SNTP) cryogenic and hot-hydrogen test facility

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.A.; Riffle, G.K.; Merdich, J.A. (Allied-Signal Aerospace Company, Garrett Fluid Systems Division, 1300 W. Warner Rd. P.O. Box 22200, Tempe, Arizona 85282 (United States))

    1993-01-15

    Cryogenic and high-temperature and high-pressure hydrogen test capabilities are required for component development and qualification for the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program. To effectively support the non-nuclear test needs of the SNTP program, as well as other specialized programs that utilize hydrogen as a working fluid, Allied-Signal Aerospace Company, Garrett Fluid Systems Division (GFSD) is currently developing a hydrogen test facility at our remote San Tan test site. The facility is specifically designed to support turbopump, propellant management valves, instrumentation and general materials evaluation testing with hydrogen at pressures and temperatures representative of actual SNTP engine operating conditions. This paper presents a general description of the SNTP hot-hydrogen test facility including test capabilities, technical approach, and technical status.

  2. Description of the Space Nuclear Thermal Propulsion (SNTP) cryogenic and hot-hydrogen test facility

    Science.gov (United States)

    Thompson, David A.; Riffle, George K.; Merdich, Jeff A.

    1993-01-01

    Cryogenic and high-temperature and high-pressure hydrogen test capabilities are required for component development and qualification for the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program. To effectively support the non-nuclear test needs of the SNTP program, as well as other specialized programs that utilize hydrogen as a working fluid, Allied-Signal Aerospace Company, Garrett Fluid Systems Division (GFSD) is currently developing a hydrogen test facility at our remote San Tan test site. The facility is specifically designed to support turbopump, propellant management valves, instrumentation and general materials evaluation testing with hydrogen at pressures and temperatures representative of actual SNTP engine operating conditions. This paper presents a general description of the SNTP hot-hydrogen test facility including test capabilities, technical approach, and technical status.

  3. Effects of atomic hydrogen and deuterium exposure on high polarization GaAs photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    M. Baylac; P. Adderley; J. Brittian; J. Clark; T. Day; J. Grames; J. Hansknecht; M. Poelker; M. Stutzman; A. T. Wu; A. S. Terekhov

    2005-12-01

    Strained-layer GaAs and strained-superlattice GaAs photocathodes are used at Jefferson Laboratory to create high average current beams of highly spin-polarized electrons. High electron yield, or quantum efficiency (QE), is obtained only when the photocathode surface is atomically clean. For years, exposure to atomic hydrogen or deuterium has been the photocathode cleaning technique employed at Jefferson Laboratory. This work demonstrates that atomic hydrogen cleaning is not necessary when precautions are taken to ensure that clean photocathode material from the vendor is not inadvertently dirtied while samples are prepared for installation inside photoemission guns. Moreover, this work demonstrates that QE and beam polarization can be significantly reduced when clean high-polarization photocathode material is exposed to atomic hydrogen from an rf dissociator-style atomic hydrogen source. Surface analysis provides some insight into the mechanisms that degrade QE and polarization due to atomic hydrogen cleaning.

  4. Dirac equation in very special relativity for hydrogen atom

    CERN Document Server

    Maluf, R V; Cruz, W T; Almeida, C A S

    2014-01-01

    In this work, we study the modified Dirac equation in the framework of very special relativity (VSR). The low-energy regime is accessed and the nonrelativistic Hamiltonian is obtained. It turns out that this Hamiltonian is similar to that achieved from the Standard Model Extension (SME) via coupling of the spinor field to a Lorentz-violating term, but new features arise inherited from the non-local character of the VSR. In addition, the implications of the VSR-modified Lorentz symmetry on the spectrum of a hydrogen atom is determined by calculating the first-order energy corrections in the context of standard quantum mechanics. Among the results, we highlight that the modified Hamiltonian provides non-vanishing corrections which lift the degeneracy of the energy levels and allow us to find an upper bound upon the VSR-parameter.

  5. Dirac equation in very special relativity for hydrogen atom

    Directory of Open Access Journals (Sweden)

    R.V. Maluf

    2014-11-01

    Full Text Available In this work, we study the modified Dirac equation in the framework of very special relativity (VSR. The low-energy regime is accessed and the nonrelativistic Hamiltonian is obtained. It turns out that this Hamiltonian is similar to that achieved from the Standard Model Extension (SME via coupling of the spinor field to a Lorentz-violating term, but new features arise inherited from the non-local character of the VSR. In addition, the implications of the VSR-modified Lorentz symmetry on the spectrum of a hydrogen atom are determined by calculating the first-order energy corrections in the context of standard quantum mechanics. Among the results, we highlight that the modified Hamiltonian provides non-vanishing corrections which lift the degeneracy of the energy levels and allow us to find an upper bound upon the VSR-parameter.

  6. A Luminescence Characterization of Adsorbed Hydrogen Atoms on Plasma Facing Materials

    Energy Technology Data Exchange (ETDEWEB)

    Grankin, V.P. [Azov Sea State Technical Univ., Mariupol (Ukraine). Computer Science Dept.; Styrov, V.V. [Azov Sea State Technical Univ., Mariupol (Ukraine). Phisics Dept.

    2004-06-01

    An atomic probe technique for characterization of hydrogen atoms on fusion related materials is described. The technique for determining surface coverage by hydrogen atoms or isotopes under both non-steady-state and stationary conditions is based on detection of heterogeneous chemiluminescence (HCL) excited in the interaction between adsorbed atoms and the pulsed normalized probing atomic flow. The recombination of hydrogen atoms from the gas phase was found to occur in general case via both collision Rideal-Eley (RE) and diffusion Langmuir-Hinshelwood (LH) mechanisms. The instantaneous optical response allows extracting the contributions of these two mechanisms to the overall reaction rate for various experimental conditions. The HCL method is also applicable for quick measurement of the reactivity of adatoms (in terms of the recombination coefficient {gamma}) for all the materials including metals. The spectra and kinetics of HCL are useful for estimation of heats of adsorption for hydrogen atoms or isotopes.

  7. Transient absorption spectra of the laser-dressed hydrogen atom

    Science.gov (United States)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  8. Test of quantum chemistry in vibrationally-hot hydrogen molecules

    CERN Document Server

    Niu, M L; Ubachs, W

    2015-01-01

    Precision measurements are performed on highly excited vibrational quantum states of molecular hydrogen. The $v=12, J=0-3$ rovibrational levels of H$_2$ ($X^1\\Sigma_g^+$), lying only $2000$ cm$^{-1}$ below the first dissociation limit, were populated by photodissociation of H$_2$S and their level energies were accurately determined by two-photon Doppler-free spectroscopy. A comparison between the experimental results on $v=12$ level energies with the best \\textit{ab initio} calculations shows good agreement, where the present experimental accuracy of $3.5 \\times10^{-3}$ cm$^{-1}$ is more precise than theory, hence providing a gateway to further test theoretical advances in this benchmark quantum system.

  9. Quantum dynamics of hydrogen atoms on graphene. II. Sticking

    Energy Technology Data Exchange (ETDEWEB)

    Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Jackson, Bret [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany); Martinazzo, Rocco, E-mail: rocco.martinazzo@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Richerche, v. Golgi 19, 20133 Milano (Italy)

    2015-09-28

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  10. Opacity of Hot and Dense Plasmas of a Mixture using an Average-Atom Approach

    Institute of Scientific and Technical Information of China (English)

    袁建民

    2002-01-01

    An average-atom model is proposed to calculate the opacities of hot and dense plasmas of a mixture. A self-consistent scheme is used to reach the requirements of the same temperature and chemical potential for all kinds ofatoms in the mixtures, the same electron density at the boundaries between the atoms, and the electrical neutralitywithin each atomic sphere. The orbital energies and wavefunctions for the bound electrons are calculated withthe Dirac-Slater equations. The occupation numbers at each orbital of each kind of atom are determined by theFermi-Dirac distribution with the same chemical potential for all kinds of atoms. As an example, the opacity ofthe mixture of Au and Cd is calculated at a few temperatures and densities.

  11. Hot wire deposited hydrogenated amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  12. Schrodinger Equation Solutions that Lead to the Solution for the Hydrogen Atom

    Science.gov (United States)

    Newhouse, Paul F.; McGill, K.C.

    2004-01-01

    Two exercises that would provide beginning quantum theory students with an introduction to more advanced quantum mechanical treatments, especially the hydrogen atom are given. The exercises are stepwise in difficulty, leading naturally to the full hydrogen atom development and greatly extend the pedagogy of most multidimensional Cartesian systems…

  13. Photo-Ionization of Hydrogen Atom in a Circularly Polarized Standing Electromagnetic Wave

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang-Tao; ZHANG Qi-Ren; WANG Wan-Zhang

    2004-01-01

    Applying time-independent non-perturbative formalism to the photo-ionization of hydrogen atom immersed in a strong circularly polarized standing electromagnetic wave, we calculate the shift of energy levels and the distortion of wave functions for the hydrogen atom, the ionization cross section induced by the standing wave, and the angular distribution of photoelectrons and obtain some interesting results.

  14. Explicit expressions and recurrence formulas of radial average value for N-dimensional hydrogen atom

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, two recurrence formulas for radial average values of N-dimensional hydrogen atom are derived. Explicit results can be applied to discuss average value of centrifugal potential energy and other physical quantities. The relevant results of the usual hydrogen atom are contained in more general conclusion of this paper as special cases.

  15. Which hydrogen atom of toluene protonates PAH molecules in (+)-mode APPI MS analysis?

    Science.gov (United States)

    Ahmed, Arif; Ghosh, Manik Kumer; Choi, Myung Chul; Choi, Cheol Ho; Kim, Sunghwan

    2013-03-01

    A previous study (Ahmed, A. et al., Anal. Chem. 84, 1146-1151( 2012) reported that toluene used as a solvent was the proton source for polyaromatic hydrocarbon compounds (PAHs) that were subjected to (+)-mode atmospheric-pressure photoionization. In the current study, the exact position of the hydrogen atom in the toluene molecule (either a methyl hydrogen or an aromatic ring hydrogen) involved in the formation of protonated PAH ions was investigated. Experimental analyses of benzene and anisole demonstrated that although the aromatic hydrogen atom of toluene did not contribute to the formation of protonated anthracene, it did contribute to the formation of protonated acridine. Thermochemical data and quantum mechanical calculations showed that the protonation of anthracene by an aromatic ring hydrogen atom of toluene is endothermic, while protonation by a methyl hydrogen atom is exothermic. However, protonation of acridine by either an aromatic ring hydrogen or a methyl hydrogen atom of toluene is exothermic. The different behavior of acridine and anthracene was attributed to differences in gas-phase basicity. It was concluded that both types of hydrogen in toluene can be used for protonation of PAH compounds, but a methyl hydrogen atom is preferred, especially for non-basic compounds.

  16. Signatures of Hot Molecular Hydrogen Absorption from Protoplanetary Disks. I. Non-thermal Populations

    Science.gov (United States)

    Hoadley, Keri; France, Kevin; Arulanantham, Nicole; Parke Loyd, R. O.; Kruczek, Nicholas

    2017-09-01

    The environment around protoplanetary disks (PPDs) regulates processes that drive the chemical and structural evolution of circumstellar material. We perform a detailed empirical survey of warm molecular hydrogen (H2) absorption observed against H i-Lyα (Lyα: λ1215.67) emission profiles for 22 PPDs, using archival Hubble Space Telescope ultraviolet (UV) spectra to identify H2 absorption signatures and quantify the column densities of H2 ground states in each sightline. We compare thermal equilibrium models of H2 to the observed H2 rovibrational level distributions. We find that, for the majority of targets, there is a clear deviation in high-energy states (T exc ≳ 20,000 K) away from thermal equilibrium populations (T(H2) ≳ 3500 K). We create a metric to estimate the total column density of non-thermal H2 (N(H2)nLTE) and find that the total column densities of thermal (N(H2)) and N(H2)nLTE correlate for transition disks and targets with detectable C iv-pumped H2 fluorescence. We compare N(H2) and N(H2)nLTE to circumstellar observables and find that N(H2)nLTE correlates with X-ray and far-UV luminosities, but no correlations are observed with the luminosities of discrete emission features (e.g., Lyα, C iv). Additionally, N(H2) and N(H2)nLTE are too low to account for the H2 fluorescence observed in PPDs, so we speculate that this H2 may instead be associated with a diffuse, hot, atomic halo surrounding the planet-forming disk. We create a simple photon-pumping model for each target to test this hypothesis and find that Lyα efficiently pumps H2 levels with T exc ≥ 10,000 K out of thermal equilibrium.

  17. Symmetry-resolved spectroscopy by detection of a metastable hydrogen atom for investigating the doubly excited states of molecular hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Odagiri, Takeshi; Kumagai, Yoshiaki; Tanabe, Takehiko; Nakano, Motoyoshi; Kouchi, Noriyuki [Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Suzuki, Isao H, E-mail: joe@chem.titech.ac.j [Photon Factory, IMSS, KEK, Tsukuba, Ibaraki 305-0801 (Japan)

    2009-11-01

    Symmetry-resolved spectroscopy for investigating the doubly excited states of molecular hydrogen has been newly developed, where a metastable hydrogen atom dissociating in a direction parallel and perpendicular to the electric vector of the linearly polarized incident light is detected.

  18. "Atomic Force Masking" Induced Formation of Effective Hot Spots along Grain Boundaries of Metal Thin Films.

    Science.gov (United States)

    Kim, Kwang Hyun; Chae, Soo Sang; Jang, Seunghun; Choi, Won Jin; Chang, Hyunju; Lee, Jeong-O; Lee, Tae Il

    2016-11-30

    We present an interesting phenomenon, "atomic force masking", which is the deposition of a few-nanometer-thick gold film on ultrathin low-molecular-weight (LMW) polydimethylsiloxane (PDMS) engineered on a polycrystalline gold thin film, and demonstrated the formation of hot spot based on SERS. The essential principle of this atomic force masking phenomenon is that an LMW PDMS layer on a single crystalline grain of gold thin film would repel gold atoms approaching this region during a second cycle of evaporation, whereas new nucleation and growth of gold atoms would occur on LMW PDMS deposited on grain boundary regions. The nanostructure formed by the atomic force masking, denoted here as "hot spots on grain boundaries" (HOGs), which is consistent with finite-difference time-domain (FDTD) simulation, and the mechanism of atomic force masking were investigated by carrying out systematic experiments, and density functional theory (DFT) calculations were made to carefully explain the related fundamental physics. Also, to highlight the manufacturing advantages of the proposed method, we demonstrated the simple synthesis of a flexible HOG SERS, and we used this substrate in a swabbing test to detect a common pesticide placed on the surface of an apple.

  19. Exchange of carbon-bound hydrogen atoms ortho to the hydroxyl group in tyrosine.

    Science.gov (United States)

    Martin, R B; Morlino, V J

    1965-10-22

    The carbon-bound hydrogen atoms of tyrosine that exchange with solvent protons in strongly acid solutions at about 100 degrees C are not the methylene hydrogen atoms but a pair on the aromatic ring. Of the two pairs of protons on the aromatic ring, observed in the proton magnetic resonance spectra, the pair at higher field undergoes exchange in 2.4N DCI at 100 degrees C. Other hydrogen atoms, attached either to aliphatic or aromatic carbon atoms, exhibit no noticeable exchange under the same conditions. From a chemicalshift analysis the exchanging protons are assigned as those ortho to the hydroxyl group on the aromatic ring.

  20. Temporal intensity correlation of light scattered by a hot atomic vapor

    CERN Document Server

    Dussaux, A; Guerin, W; Alibart, O; Tanzilli, S; Vakili, F; Kaiser, R

    2016-01-01

    We present temporal intensity correlation measurements of light scattered by a hot atomic vapor. Clear evidence of photon bunching is shown at very short time-scales (ns) imposed by the Doppler broadening of the hot vapor. Moreover, we demonstrate that some relevant information about the scattering process, such as the ratio of single to multiple scattering, can be deduced from the measured intensity correlation function. These measurements confirm the interest of temporal intensity correlation measurements to access non-trivial spectral features, with potential applications in astrophysics.

  1. Fast automated placement of polar hydrogen atoms in protein-ligand complexes

    Directory of Open Access Journals (Sweden)

    Lippert Tobias

    2009-08-01

    Full Text Available Abstract Background Hydrogen bonds play a major role in the stabilization of protein-ligand complexes. The ability of a functional group to form them depends on the position of its hydrogen atoms. An accurate knowledge of the positions of hydrogen atoms in proteins is therefore important to correctly identify hydrogen bonds and their properties. The high mobility of hydrogen atoms introduces several degrees of freedom: Tautomeric states, where a hydrogen atom alters its binding partner, torsional changes where the position of the hydrogen atom is rotated around the last heavy-atom bond in a residue, and protonation states, where the number of hydrogen atoms at a functional group may change. Also, side-chain flips in glutamine and asparagine and histidine residues, which are common crystallographic ambiguities must be identified before structure-based calculations can be conducted. Results We have implemented a method to determine the most probable hydrogen atom positions in a given protein-ligand complex. Optimality of hydrogen bond geometries is determined by an empirical scoring function which is used in molecular docking. This allows to evaluate protein-ligand interactions with an established model. Also, our method allows to resolve common crystallographic ambiguities such as as flipped amide groups and histidine residues. To ensure high speed, we make use of a dynamic programming approach. Conclusion Our results were checked against selected high-resolution structures from an external dataset, for which the positions of the hydrogen atoms have been validated manually. The quality of our results is comparable to that of other programs, with the advantage of being fast enough to be applied on-the-fly for interactive usage or during score evaluation.

  2. Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    Science.gov (United States)

    Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter

    2006-01-01

    A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.

  3. Metal-Free Hydrogen Atom Transfer from Water: Expeditious Hydrogenation of N-Heterocycles Mediated by Diboronic Acid.

    Science.gov (United States)

    Xia, Yun-Tao; Sun, Xiao-Tao; Zhang, Ling; Luo, Kai; Wu, Lei

    2016-11-21

    A hydrogenation of N-heterocycles mediated by diboronic acid with water as the hydrogen atom source is reported. A variety of N-heterocycles can be hydrogenated with medium to excellent yields within 10 min. Complete deuterium incorporation from stoichiometric D2 O onto substrates further exemplifies the H/D atom sources. Mechanism studies reveal that the reduction proceeds with initial 1,2-addition, in which diboronic acid synergistically activates substrates and water via a six-membered ring transition state.

  4. Use of Hydrogen from Renewable Energy Source for Powering Hot-Mix Asphalt Plant

    Directory of Open Access Journals (Sweden)

    Kasthurirangan Gopalakrishnan

    2012-03-01

    Full Text Available A significant portion of paved roads and highways are surfaced with Hot-Mix Asphalt. Environmental Life-Cycle Assessment studies have shown that, in the production of Hot-Mix Asphalt pavements, major consumption of energy takes place during asphalt mixing and drying of aggregates, more than what is consumed during the extraction of crude oil and the distillation of bitumen. Currently, natural gas is the primarily source of fossil fuel used to produce 70 to 90 percent of the Hot-Mix Asphalt in the USA, while the remainder of the Hot-Mix Asphalt is produced using oil, propane, waste oil, or other fuels. Energy-related CO2 emissions resulting from the use of fossil fuels in various industry and transportation sectors represent a significant portion of human-made greenhouse gas emissions. This study investigates the technical feasibility of using a hybrid wind energy system as a clean source of energy for operating an entire Hot-Mix Asphalt production facility. Since wind blows intermittently, the extracted wind energy will be stored in the form of hydrogen which is considered a lightweight, compact energy carrier, for later use, thus creating a ready source of electricity for the Hot-Mix Asphalt plant when wind is not present or when electricity demand is high.

  5. The EAGLE simulations: atomic hydrogen associated with galaxies

    Science.gov (United States)

    Crain, Robert A.; Bahé, Yannick M.; Lagos, Claudia del P.; Rahmati, Alireza; Schaye, Joop; McCarthy, Ian G.; Marasco, Antonino; Bower, Richard G.; Schaller, Matthieu; Theuns, Tom; van der Hulst, Thijs

    2017-02-01

    We examine the properties of atomic hydrogen (H I) associated with galaxies in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations of galaxy formation. EAGLE's feedback parameters were calibrated to reproduce the stellar mass function and galaxy sizes at z = 0.1, and we assess whether this calibration also yields realistic H I properties. We estimate the self-shielding density with a fitting function calibrated using radiation transport simulations, and correct for molecular hydrogen with empirical or theoretical relations. The `standard-resolution' simulations systematically underestimate H I column densities, leading to an H I deficiency in low-mass (M⋆ standard-resolution simulations. The largest volume simulation reproduces the observed clustering of H I systems, and its dependence on H I richness. At fixed M⋆, galaxies acquire more H I in simulations with stronger feedback, as they become associated with more massive haloes and higher infall rates. They acquire less H I in simulations with a greater star formation efficiency, since the star formation and feedback necessary to balance the infall rate is produced by smaller gas reservoirs. The simulations indicate that the H I of present-day galaxies was acquired primarily by the smooth accretion of ionized, intergalactic gas at z ≃ 1, which later self-shields, and that only a small fraction is contributed by the reincorporation of gas previously heated strongly by feedback. H I reservoirs are highly dynamic: over 40 per cent of H I associated with z = 0.1 galaxies is converted to stars or ejected by z = 0.

  6. Emission of fast non-Maxwellian hydrogen atoms in low-density laboratory plasma

    Science.gov (United States)

    Brandt, Christian; Marchuk, Oleksandr; Pospieszczyk, Albrecht; Dickheuer, Sven

    2017-03-01

    The source of strong and broad emission of the Balmer-α line in mixed plasmas of hydrogen (or deuterium) and noble gases in front of metallic surfaces is a subject of controversial discussion of many plasma types. In this work the excitation source of the Balmer lines is investigated by means of optical emission spectroscopy in the plasma device PSI-2. Neutral fast non-Maxwellian hydrogen atoms are produced by acceleration of hydrogen ions towards an electrode immersed into the plasma. By variation of the electrode potential the energy of ions and in turn of reflected fast atoms can be varied in the range of 40-300 eV. The fast atoms in front of the electrode are observed simultaneously by an Echelle spectrometer (0.001 nm/channel) and by an imaging spectrometer (0.01 nm/channel) up to few cm in the plasma. Intense excitation channels of the Balmer lines are observed when hydrogen is mixed with argon or with krypton. Especially in Ar-H and Ar-D mixed plasmas the emission of fast hydrogen atoms is very strong. Intermixing hydrogen with other noble gases (He, Ne or Xe) one observes the same effect however the emission is one order of magnitude less compared to Kr-H or Kr-D plasmas. It is shown, that the key process, impacting this emission, is the binary collision between the fast neutral hydrogen atom and the noble gas atom. Two possible sources of excitation are discussed in details: one is the excitation of hydrogen atoms by argon atoms in the ground state and the second one is the process of the so-called excitation transfer between the metastable states of noble gases and hydrogen. In the latter case the atomic data for excitation of Balmer lines are still not available in literature. Further experimental investigations are required to conclude on the source process of fast atom emission.

  7. Two-color ghost interference with photon pairs generated in hot atoms

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Ding

    2012-09-01

    Full Text Available We report on an experimental observation of a two-photon ghost interference experiment. A distinguishing feature of our experiment is that the photons are generated via a non-degenerated spontaneous four-wave mixing process in a hot atomic ensemble; therefore the photon has narrow bandwidth. Besides, there is a large difference in frequency between two photons in a pair. Our works may be important to achieve more secure, large transmission capacity long-distance quantum communication.

  8. Novel hot-melting hyperbranched poly(ester-amine) bearing self-complementary quadruple hydrogen bonding units

    Institute of Scientific and Technical Information of China (English)

    Yi Peng Qiu; Li Ming Tang; Yu Wang; Shi You Guan

    2008-01-01

    Hyperbranched poly(amine-ester)s bearing serf-complementary quadruple hydrogen bonding units display excellent mechanical and temperature-dependent melt rheological properties,which make them suitable as novel hot-melting materials.

  9. General model of depolarization and transfer of polarization of singly ionized atoms by collisions with hydrogen atoms

    CERN Document Server

    Derouich, Moncef

    2016-01-01

    Simulations of the generation of the atomic polarization is necessary for interpreting the second solar spectrum. For this purpose, it is important to rigorously determine the effects of the isotropic collisions with neutral hydrogen on the atomic polarization of the neutral atoms, ionized atoms and molecules. Our aim is to treat in generality the problem of depolarizing isotropic collisions between singly ionized atoms and neutral hydrogen in its ground state. Using our numerical code, we computed the collisional depolarization rates of the $p$-levels of ions for large number of values of the effective principal quantum number $n^{*}$ and the Uns\\"old energy $E_p$. Then, genetic programming has been utilized to fit the available depolarization rates. As a result, strongly non-linear relationships between the collisional depolarization rates, $n^{*}$ and $E_p$ are obtained, and are shown to reproduce the original data with accuracy clearly better than 10\\%. These relationships allow quick calculations of the ...

  10. Time-of-flight spectroscopy of muonic hydrogen atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.C. [Dept. of Physics and Astronomy, Univ. of British Columbia, Vancouver, BC (Canada)]|[Dept. of Physics, Faculty of Science, Univ. of Tokyo (Japan); Adamczak, A. [Inst. of Nuclear Physics, Krakow (Poland); Bailey, J.M. [Chester Technology, Chester (United Kingdom); Beer, G.A.; Mason, G.R. [Dept. of Physics and Astronomy, Univ. of Victoria, BC (Canada); Beveridge, J.L.; Marshall, G.M.; Olin, A. [TRIUMF, Vancouver, BC (Canada); Faifman, M.P. [Russian Research Center, Kurchatov Inst., Moscow (Russian Federation); Huber, T.M. [Dept. of Physics, Gustavus Adolphus Coll., St. Peter, MN (United States); Kammel, P. [Dept. of Physics and Lawrence Berkeley National Lab., Univ. of California, Berkeley, CA (United States); Kim, S.K. [Dept. of Physics, Jeonbuk National Univ., Jeonju City (Korea); Knowles, P.E.; Mulhauser, F. [Inst. of Physics, Univ. of Fribourg (Switzerland); Kunselman, A.R. [Dept. of Physics and Astronomy, Univ. of Wyoming, Laramie, WY (United States); Markushin, V.E.; Petitjean, C. [Paul Scherrer Inst., Villigen (Switzerland); Porcelli, T.A. [Dept. of Physics, Univ. of Northern British Columbia, Prince George, BC (Canada); Zmeskal, J. [Inst. for Medium Energy Physics, Austrian Academy of Sciences, Vienna (Austria)

    2001-07-01

    Studies of muonic hydrogen atoms and molecules have been performed traditionally in bulk targets of gas, liquid or solid. At TRIUMF, Canada's meson facility, we have developed a new type of target system using multilayer thin films of solid hydrogen, which provides a beam of muonic hydrogen atoms in vacuum. Using the time-of-flight of the muonic atoms, the energy-dependent information of muonic reactions are obtained in direct manner.We discuss some unique measurements enabled by the new technique, with emphasis on processes relevant to muon catalyzed fusion.

  11. Time-of-Flight Spectroscopy of Muonic Hydrogen Atoms and Molecules

    CERN Document Server

    Fujiwara, M C; Bailey, J M; Beer, G A; Beveridge, J L; Faifman, M P; Huber, T M; Kammel, P; Kim, S K; Knowles, P E; Kunselman, A R; Markushin, V E; Marshall, G M; Mason, G R; Mulhauser, F; Olin, A; Petitjean, C; Porcelli, T A; Zmeskal, J

    2001-01-01

    Studies of muonic hydrogen atoms and molecules have been performed traditionally in bulk targets of gas, liquid or solid. At TRIUMF, Canada's meson facility, we have developed a new type of target system using multilayer thin films of solid hydrogen, which provides a beam of muonic hydrogen atoms in vacuum. Using the time-of-flight of the muonic atoms, the energy-dependent information of muonic reactions are obtained in direct manner. We discuss some unique measurements enabled by the new technique, with emphasis on processes relevant to muon catalyzed fusion.

  12. Reactions of hot deuterium atoms with OCS in the gas phase and in OCS-DI complexes

    Science.gov (United States)

    Böhmer, E.; Mikhaylichenko, K.; Wittig, C.

    1993-11-01

    Reactions of photolytically prepared hot deuterium atoms with OCS have been investigated: (i) under gas phase, single collision, arrested relaxation (i.e., bulk) conditions; and (ii) by photoinitiating reactions within weakly bound OCS-DI complexes. Nascent SD(X 2Π, v=0) rotational, spin-orbit, and Λ-doublet populations were obtained for the photolysis wavelengths 250, 225, and 223 nm by using A 2Σ←X 2Π laser induced fluorescence (LIF). The reason for using deuterium is strictly experimental: A 2Σ predissociation rates are considerably smaller for SD than for SH. The SD (v=0) rotational distribution was found to be very cold and essentially the same for both bulk and complexed conditions; the most probable rotational energy is ˜180 cm-1. No bias in Λ-doublet populations was detected. Spin-orbit excitation for bulk conditions was estimated to be [2Π1/2]/[2Π3/2]˜0.25, where 2Π1/2 is the upper spin-orbit component. This ratio could not be obtained with complexes because of limited S/N. The complete set of present and past experimental findings, combined with recent theoretical results of Rice, Cartland, and Chabalowski suggest a mechanism in which SD derives from a very short lived HSCO precursor. This can result from direct hydrogen attack at the sulfur and/or the transfer of hydrogen from carbon to sulfur via the HCOS intermediate.

  13. Tunable Adsorption and Desorption of Hydrogen Atoms on Single-Walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    赵明文; 夏日源; 马玉臣; 英敏菊; 刘向东; 梅良模

    2002-01-01

    Chemical adsorption and desorption of hydrogen atoms on single-walled carbon nanotubes (SWNTs) are investi-gated by using molecular dynamics simulations. It is found that the adsorption and desorption energy of hydrogenatoms depend on the hydrogen coverage and the diameter of the SWNTs. Hydrogen-adsorption geometry at thecoverage of 1.0 is more energetically stable. The adsorption energy decreases with the increasing diameter ofthe armchair tubes. The adsorption and desorption energy of hydrogen atoms can be modified reversibly byexternally radial deformation. The averaged C-H bond energy on the high curvature sites of the deformed tubeincreases with increasing radial deformation, while that on the low curvature sites decreases.

  14. Highly excited hydrogen in strong d. c. electric fields: atomic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.

    1988-03-01

    We excite atomic hydrogen from the ground state via a three-photon process to high-lying excited states in the presence of strong d.c. electric fields. The external field is used to manipulate, control, and design specific atomic structures. We can construct nearly 'one-dimensional' atoms whose electronic distributions are highly extended along the field, and which may have enormous electric dipole moments ('giant-dipole atoms').

  15. On-board hydrogen generation for transport applications: the HotSpot™ methanol processor

    Science.gov (United States)

    Edwards, Neil; Ellis, Suzanne R.; Frost, Jonathan C.; Golunski, Stanislaw E.; van Keulen, Arjan N. J.; Lindewald, Nicklas G.; Reinkingh, Jessica G.

    In the absence of a hydrogen infrastructure, development of effective on-board fuel processors is likely to be critical to the commercialisation of fuel-cell cars. The HotSpot™ reactor converts methanol, water and air in a single compact catalyst bed into a reformate containing mainly CO2 and hydrogen (and unreacted nitrogen). The process occurs by a combination of exothermic partial oxidation and endothermic steam reforming of methanol, to produce 750 l of hydrogen per hour from a 245-cm3 reactor. The relative contribution of each reaction can be tuned to match the system requirements at a given time. Scale-up is achieved by the parallel combination of the required number of individual HotSpot reactors, which are fed from a central manifold. Using this modular design, the start-up and transient characteristics of a large fuel-processor are identical to that of a single reactor. When vaporised liquid feed and air are introduced into cold reactors, 100% output is achieved in 50 s; subsequent changes in throughput result in instantaneous changes in output. Surplus energy within the fuel-cell powertrain can be directed to the manifold, where it can be used to vaporise the liquid feeds and so promote steam reforming, resulting in high system efficiency. The small amount of CO that is produced by the HotSpot reactions is attenuated to <10 ppm by a catalytic clean-up unit. The HotSpot concept and CO clean-up strategy are not limited to the processing of methanol, but are being applied to other organic fuels.

  16. The role of final-state correlations in recombination of atomic hydrogen

    NARCIS (Netherlands)

    Stoof, H.T.C.; Goey, L.P.H. de; Verhaar, B.J.; Glöckle, W.

    1987-01-01

    We calculate the rate-constant for recombination in the bulk of a spin-polarized atomic hydrogen gas. We use an exact initial state and include the most essential collision aspects of the final state, except for rearrangement.

  17. Schwinger variational calculation of ionization of hydrogen atoms for large momentum transfers

    Indian Academy of Sciences (India)

    K Chakrabarti

    2002-03-01

    Schwinger variational principle is used here to study large momentum transfer cases of electron and positron impact ionization of atomic hydrogen from the ground state at intermediate and moderately high energies. The results appear somewhat better compared to other theories.

  18. Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state

    CERN Document Server

    Amour, Laurent

    2011-01-01

    We consider a free hydrogen atom composed of a spin-1/2 nucleus and a spin-1/2 electron in the standard model of non-relativistic QED. We study the Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum. For small enough values of the fine-structure constant, we prove that the ground state is unique. This result reflects the hyperfine structure of the hydrogen atom ground state.

  19. Bubble growth from clustered hydrogen and helium atoms in tungsten under a fusion environment

    Science.gov (United States)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Chen, J. L.; Luo, G.-N.

    2017-01-01

    Bubbles seriously degrade the mechanical properties of tungsten and thus threaten the safety of nuclear fusion devices, however, the underlying atomic mechanism of bubble growth from clustered hydrogen and helium atoms is still mysterious. In this work, first-principles calculations are therefore carried out to assess the stability of tungsten atoms around both hydrogen and helium clusters. We find that the closest vacancy-formation energies of interstitial hydrogen and helium clusters are substantially decreased. The first-nearest and second-nearest vacancy-formation energies close to vacancy-hydrogen clusters decrease in a step-like way to  ˜0, while those close to vacancy-helium clusters are reduced almost linearly to  ˜-5.46 eV when atom number reaches 10. The vacancy-formation energies closest to helium clusters are more significantly reduced than those nearest to hydrogen clusters, whatever the clusters are embedded at interstitial sites or vacancies. The reduction of vacancy-formation energies results in instability and thus emission of tungsten atoms close to interstitial helium and vacancy-helium clusters, which illustrates the experimental results, that the tungsten atoms can be emitted from the vicinity of vacancy-helium clusters. In addition, the emission of unstable tungsten atoms close to hydrogen clusters may become possible once they are disturbed by the environment. The emission of tungsten atoms facilitates the growth and evolution of hydrogen and helium clusters and ultimately the bubble formation. The results also explain the bubble formation even if no displacement damage is produced in tungsten exposed to low-energy hydrogen and helium plasma.

  20. Does God Play Dice with Universe The Hydrogen Atomic Model of Bohr and de Broglie

    CERN Document Server

    Kamenov, P S

    1999-01-01

    In this paper it is shown that if one accept assumption of de Broglie that "unitary wave-particle" exists simultaneously and this coexistence is real, then one can find the mean life time of the hydrogen atom of Bohr (intensities). Something more, the acceptance of de Broglie's ideas show that a single excited hydrogen atom decays at exactly predictable moment (after excitation). The natural width of excited hydrogen atoms are found using the Bohr's model of this atom and de Broglie's ideas. The mean life time of the excited states is a characteristic only of a statistical ensemble of many atoms and coincide exactly with experimental data and can be used for analytical applications. It is shown also that resonant Mossbauer absorption in time domain provides a qualitative evidence of the existence of "own lifetime" for first excited states of the nuclei.

  1. Atomic-Scale Mechanism for Hydrogenation of o-Cresol on Pt Catalysis

    Science.gov (United States)

    Li, Yaping; Liu, Zhimin; Xue, Wenhua; Crossley, Steven; Jentoft, Friederike; Wang, Sanwu

    Biofuels derived from lignocellulosic biomass have received significant attention lately due to increasing environmental concerns. With first-principles density-functional theory and ab initio molecular dynamic simulations, we investigated the atomic-scale mechanism of o-cresol hydrogenation on the Pt(111) surface. The formation of 2-methyl-cyclohexanone (the intermediate product) was found to involve two steps. The first step is the dehydrogenation, that is, the H atom in the hydroxyl group moves to the Pt surface. The second step is the hydrogenation, that is, the H atoms on Pt react with the carbon atoms in the aromatic ring. The first step involves a smaller barrier, suggesting that dehydrogenation occurs first, followed by hydrogenation of the ring. In particular, tautomerization is found to occur via a two-step process over the catalyst. On the other hand, 2-methyl-cyclohexanol (the final product) is produced through two paths. One is direct hydrogenation of the aromatic ring. Another pathway includes partial hydrogenation of the ring, dehydrogenation of -OH group, finally hydrogenation of remaining C atoms and the O atom. Our theoretical results agree well with the experimental observations. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of NERSC, XSEDE, TACC.

  2. Fluorescence (TALIF) measurement of atomic hydrogen concentration in a coplanar surface dielectric barrier discharge

    Science.gov (United States)

    Mrkvičková, M.; Ráheľ, J.; Dvořák, P.; Trunec, D.; Morávek, T.

    2016-10-01

    Spatially and temporally resolved measurements of atomic hydrogen concentration above the dielectric of coplanar barrier discharge are presented for atmospheric pressure in 2.2% H2/Ar. The measurements were carried out in the afterglow phase by means of two-photon absorption laser-induced fluorescence (TALIF). The difficulties of employing the TALIF technique in close proximity to the dielectric surface wall were successfully addressed by taking measurements on a suitable convexly curved dielectric barrier, and by proper mathematical treatment of parasitic signals from laser-surface interactions. It was found that the maximum atomic hydrogen concentration is situated closest to the dielectric wall from which it gradually decays. The maximum absolute concentration was more than 1022 m-3. In the afterglow phase, the concentration of atomic hydrogen above the dielectric surface stays constant for a considerable time (10 μs-1 ms), with longer times for areas situated farther from the dielectric surface. The existence of such a temporal plateau was explained by the presented 1D model: the recombination losses of atomic hydrogen farther from the dielectric surface are compensated by the diffusion of atomic hydrogen from regions close to the dielectric surface. The fact that a temporal plateau exists even closest to the dielectric surface suggests that the dielectric surface acts as a source of atomic hydrogen in the afterglow phase.

  3. Comparison of tungsten films grown by CVD and hot-wire assisted atomic layer deposition in a cold-wall reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mengdi, E-mail: M.Yang@utwente.nl; Aarnink, Antonius A. I.; Kovalgin, Alexey Y.; Gravesteijn, Dirk J.; Wolters, Rob A. M.; Schmitz, Jurriaan [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2016-01-15

    In this work, the authors developed hot-wire assisted atomic layer deposition (HWALD) to deposit tungsten (W) with a tungsten filament heated up to 1700–2000 °C. Atomic hydrogen (at-H) was generated by dissociation of molecular hydrogen (H{sub 2}), which reacted with WF{sub 6} at the substrate to deposit W. The growth behavior was monitored in real time by an in situ spectroscopic ellipsometer. In this work, the authors compare samples with tungsten grown by either HWALD or chemical vapor deposition (CVD) in terms of growth kinetics and properties. For CVD, the samples were made in a mixture of WF{sub 6} and molecular or atomic hydrogen. Resistivity of the WF{sub 6}-H{sub 2} CVD layers was 20 μΩ·cm, whereas for the WF{sub 6}-at-H-CVD layers, it was 28 μΩ·cm. Interestingly, the resistivity was as high as 100 μΩ·cm for the HWALD films, although the tungsten films were 99% pure according to x-ray photoelectron spectroscopy. X-ray diffraction reveals that the HWALD W was crystallized as β-W, whereas both CVD films were in the α-W phase.

  4. Atomic Hydrogen Gas in Dark-Matter Minihalos and the Compact High Velocity Clouds

    CERN Document Server

    Sternberg, A; Wolfire, M G

    2002-01-01

    We calculate the coupled hydrostatic and ionization structures of pressure-supported gas clouds that are confined by gravitationally dominant dark-matter (DM) mini-halos and by an external bounding pressure provided by a hot medium. We focus on clouds that are photoionized and heated by the present-day background metagalactic field and determine the conditions for the formation of warm (WNM), and multi-phased (CNM/WNM) neutral atomic hydrogen (HI) cores in the DM-dominated clouds. We consider LCDM dark-matter halos, and we compute models for a wide range of halo masses, total cloud gas masses, and external bounding pressures. We present models for the pressure-supported HI structures observed in the Local Group dwarf galaxies Leo A and Sag DIG. We then construct minihalo models for the multi-phased (and low-metallicity) compact high-velocity HI clouds (CHVCs). If the CHVCs are drawn from the same family of halos that successfully reproduce the dwarf galaxy observations, then the CHVCs must be "circumgalactic ...

  5. Measuring the Fundamental Parameters of Hot Hydrogen-Rich White Dwarfs

    Institute of Scientific and Technical Information of China (English)

    M. A. Barstow

    2003-01-01

    This review considers the observations of hot, hydrogen-rich white dwarfstars, with particular reference to measurements of temperature, surface gravity andcomposition. Spectroscopic data from a variety of wavelength ranges are required forthis work and, in particular, the important contributions from optical, ultravioletand extreme ultraviolet studies are discussed. Using the values of Teff and log gdetermined for an individual white dwarf, estimates of mass and radius might bederived from the theoretical mass-radius relation. The issue of the accuracy of thetheoretical mass-radius calculations and the prospects for making empirical testsusing observational data are outlined.

  6. Fracture mechanism of TiAl intermetallics caused by hydride and atomic hydrogen

    Institute of Scientific and Technical Information of China (English)

    高克玮; 王燕斌; 林志; 乔利杰; 褚武扬

    1999-01-01

    Hydrogen embrittlement (HE) of TiAl intermetallics was studied at room temperature. The results showed that there were two forms of HE in TiAl intermetallics, i.e. hydride HE and atomic HE. Most of hydrogen in TiAl intermetallics was transformed into hydrides at room temperature. The hydride exists as (TiAl)Hx for a low hydrogen concentration while it exists in several forms for a higher hydrogen concentration. Stress intensity factor KIC decreased with increase in hydride concentration. KIC decreased further when TiAl intermetallics were charged cathodically with hydrogen in 1 mol/L H2SO4 solution. Stress intensity factor during hydrogen charging KIH was about 50% KIC. 20% of the decrease was caused by hydrides while 30% was caused by atomic hydrogen. Mechanism of HE caused hydrides was the same as any other second phase in nature. Delayed fracture caused by atomic hydrogen resulted from hydrogen induced local plastic deformation.

  7. Hot-atom synthesis of tritium-labeled mixed methyl-phenyl phosphonium derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Nefedov, V.D.; Toropova, M.A.; Shchepina, N.E.; Avrorin, V.V.; Shchepin, V.V.; Zhuravlev, V.E.

    1987-11-01

    The hot-atom method has been used with tritiated phenyl cations and organic phosphines to synthesize tritiated mixed methyl-phenyl onium derivatives of phosphorus. The replacement of phenyl groups by various numbers of methyl ones in the initial phosphines and correspondingly in the phosphonium compounds has provided a means of examining the effects of stearic and electronic factors on the formation of organic onium phosphorus derivatives. The yields are given for the phosphonium derivatives produced by heterolytic decomposition of labeled diphenyl; the relative reactivities of the phosphines have been determined together with the stabilities of the substituted phosphonium cations.

  8. Hydrogen atoms can be located accurately and precisely by x-ray crystallography.

    Science.gov (United States)

    Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M; Woźniak, Krzysztof; Jayatilaka, Dylan

    2016-05-01

    Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A-H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A-H bond lengths with those from neutron measurements for A-H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors.

  9. Resonant Scattering of Muonic Hydrogen Atoms and Dynamics of Muonic Molecular Complex

    CERN Document Server

    Fujiwara, M C; Bailey, J M; Beer, G A; Beveridge, J L; Faifman, M P; Huber, T M; Kammel, P; Kim, S K; Knowles, P E; Kunselman, A R; Maier, M; Markushin, V E; Marshall, G M; Martoff, C J; Mason, G R; Mulhauser, F; Olin, A; Petitjean, C; Porcelli, T A; Wozniak, J; Zmeskal, J

    2001-01-01

    Resonant scattering of muonic hydrogen atoms via back decay of molecular complex, a key process in the understanding of epithermal muonic molecular formation, is analyzed. The limitations of the effective rate approximation are discussed and the importance of the explicit treatment of the back decay is stressed. An expression of the energy distribution for the back-decayed atoms is given.

  10. Hydrogen-Atom Attack on Methyl Viologen in Aqueous Solution Studied by Pulse Radiolysis

    DEFF Research Database (Denmark)

    Solar, S.; Solar, W.; Getoff, N.;

    1984-01-01

    Using hydrogen at high pressures of up to 150 bar (0.12 mol dm–3 H2) as an OH scavenger in aqueous MV2+ solutions (pH 1) it is possible to differentiate between two kinds of transient formed simultaneously by H-atom attack on methyl viologen. One of them is assigned to an H adduct on the N atom, ...

  11. Adsorption Sites of Hydrogen Atom on Pure and Mg-Doped Multi-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    A. A. Al-Ghamdi

    2012-01-01

    Full Text Available Hydrogen adsorption sites on pure multiwalled carbon nanotube (MWCNT and Mg-doped MWCNTs material system have been investigated using molecular dynamics (MD simulations as well as quantum chemical calculations. Through combining MWCNTs with Mg, the hydrogen adsorption sites energy on this Mg-MWCNTs system is found to be larger than that of the pure MWCNTs. Additionally, it was found that, through Mg-doping, new adsorption sites for hydrogen molecules are created in comparison with undoped nanotubes. It is also found that H atom is preferably adsorbed at every place near magnesium atom.

  12. Trapping of hydrogen atoms inside small beryllium clusters and their ions

    Science.gov (United States)

    Naumkin, F. Y.; Wales, D. J.

    2016-08-01

    Structure, stability and electronic properties are evaluated computationally for small Ben (n = 5-9) cluster cages accommodating atomic H inside and forming core-shell species. These parameters are predicted to vary significantly upon insertion of H, for ionic derivatives, and with the system size. In particular, the energy barrier for H-atom exit from the cage changes significantly for ions compared to the neutral counterparts. The corresponding effects predicted for cage assemblies suggest the possibility of efficient charge-control of hydrogen release. This, together with a high capacity for storing hydrogen in extended such assemblies might indicate a possible way towards feasible hydrogen-storage solutions.

  13. Transverse azimuthal dephasing of vortex spin wave in a hot atomic gas

    CERN Document Server

    Shi, Shuai; Zhang, Wei; Zhou, Zhi-Yuan; Dong, Ming-Xin; Liu, Shi-Long; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Optical fields with orbital angular momentum (OAM) interact with medium have many remarkable properties with its unique azimuthal phase, showing many potential applications in high capacity information processing, high precision measurement etc. The dephasing mechanics of optical fields with OAM in an interface between light and matter plays a vital role in many areas of physics. In this work, we study the transverse azimuthal dephasing of OAM spin wave in a hot atomic gas via OAM storage. The transverse azimuthal phase difference between the control and probe beams is mapped onto the spin wave, which essentially results in dephasing of atomic spin wave. The dephasing of OAM spin wave can be controlled by the parameters of OAM topological charge and beam waist. Our results are helpful for studying OAM light interaction with matter, maybe hold a promise in OAM-based quantum information processing.

  14. Physics of quantum fluids new trends and hot topics in atomic and polariton condensates

    CERN Document Server

    Modugno, Michele

    2013-01-01

    The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.

  15. Preparation of hydrogenated microcrystalline silicon films with hot-wire-assisted MWECR-CVD system

    Institute of Scientific and Technical Information of China (English)

    He Bin; Chen Guang-Hua; Zhu Xiu-Hong; Zhang Wen-Li; Ding Yi; Ma Zhan-Jie; Gao Zhi-Hua; Song Xue-Mei; Deng Jin-Xiang

    2006-01-01

    Intrinsic hydrogenated microcrystalline silicon (μc-Si:H) films have been prepared by hot-wire-assisted microwave electron-cyclotron-resonance chemical vapour deposition (Hw-MwECR-CVD) under different deposition conditions.Fourier-transform infrared spectra and Raman spectra were measured.Optical band gap WaS determined by Tauc plots,and experiments of photo-induced degradation were performed.It was observed that hydrogen dilution plays a more essential role than substrate temperature in microcrystalline transformation at low temperatures. Crystalline volume fraction and mean grain size in the films increase with the dilution ratio (R=H2/(H2+SiH4)).With the rise of crystallinity in the films,the optical band gap tends to become narrower while the hydrogen content and photo-induced degradation decrease dramatically.The samples,were identified as μc-Si:H films,by calculating the optical band gap.It is considered that hydrogen dilution has an effect on reducing the crystallization activation energy of the material,which promotes the heterogeneous solid-state phase transition characterized by the Johnson-Mehl-Avrami (JMA) equation.The films with the needed structure can be prepared by balancing deposition and crystaUization through controlling process parameters.

  16. Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Amaran, Saieswari; Kosloff, Ronnie [Fritz Haber Research Centre and The Department of Physical Chemistry, Hebrew University, Jerusalem 91904 (Israel); Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Rybak, Leonid; Levin, Liat; Amitay, Zohar [The Shirlee Jacobs Femtosecond Laser Research Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P. [Theoretische Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel (Germany)

    2013-10-28

    Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.

  17. Signatures of Quantum-Tunneling Diffusion of Hydrogen Atoms on Water Ice at 10 K

    OpenAIRE

    2015-01-01

    Reported here is the first observation of the tunneling surface diffusion of a hydrogen (H) atom on water ice. Photostimulated desorption and resonance-enhanced multiphoton ionization methods were used to determine the diffusion rates at 10 Kon amorphous solid water and polycrystalline ice. H-atom diffusion on polycrystalline ice was 2 orders of magnitude faster than that of deuterium atoms, indicating the occurrence of tunneling diffusion. Whether diffusion is by tunneling or thermal hopping...

  18. Effect of atomic ordering on environmental embrittlement of (Co, Fe)3V alloy in gaseous hydrogen

    Institute of Scientific and Technical Information of China (English)

    程晓英; 万晓景

    2002-01-01

    The diffusible hydrogen contents in precharged (Co,Fe)3V alloy were measured. It is found that atomic ordering can not promote hydrogen penetration in the (Co,Fe)3V alloy. The ultimate tensile strength (UTS) and ductilities in various condition were also investigated. The results show that the UTS and elongation of disordered alloy are higher than that of ordered one with fixed diffusible hydrogen content and (Co,Fe)3V alloy with ordered structure is highly susceptible to the embrittlement in hydrogen gas. The factor which may affect the susceptibility to the embrittlement of (Co,Fe)3V alloy in h ydrogen gas is mainly due to that the atomic ordering may accelerate the kinetics of the catalytic reaction for the dissociation of molecular hydrogen into atomic hydrogen. However, it can not be roled out that atomic ordering intensifies planar slip and restricts cross-slip at the grain boundaries and enhances the susceptibility of the alloy to hydrogen embrittlement.

  19. Quantification of the atomic hydrogen flux as a function of filament temperature and H2 flow rate

    NARCIS (Netherlands)

    Ugur, D.; Storm, A.J.; Verberk, R.; Brouwer, J.C.; Sloof, W.G.

    2012-01-01

    An isothermal sensor is developed to quantify the atomic hydrogen flux on a surface, which can be located at any distance from the molecular hydrogen cracking unit. This flux is determined from the measured heat effect due to recombination of atomic hydrogen at the sensor surface. The temperature of

  20. Modeling of hydrogen atom diffusion and response behavior of hydrogen sensors in Pd–Y alloy nanofilm

    Science.gov (United States)

    Liu, Yi; Li, Yanli; Huang, Pengcheng; Song, Han; Zhang, Gang

    2016-11-01

    To detect hydrogen gas leakage rapidly, many types of hydrogen sensors containing palladium alloy film have been proposed and fabricated to date. However, the mechanisms and factors that determine the response rate of such hydrogen sensor have not been established theoretically. The manners in which response time is forecasted and sensitive film is designed are key issues in developing hydrogen sensors with nanometer film. In this paper, a unilateral diffusion model of hydrogen atoms in Pd alloy based on Fick’s second law is proposed to describe the Pd–H reaction process. Model simulation shows that the hydrogen sensor response time with Pd alloy film is dominated by two factors (film thickness and hydrogen diffusion coefficient). Finally, a series of response rate experiments with varying thicknesses of Pd–Y (yttrium) alloy film are implemented to verify model validity. Our proposed model can help researchers in the precise optimization of film thickness to realize a simultaneously speedy and sensitive hydrogen sensor. This study also aids in evaluating the influence of manufacturing errors on performances and comparing the performances of sensors with different thicknesses.

  1. Modeling of hydrogen atom diffusion and response behavior of hydrogen sensors in Pd-Y alloy nanofilm.

    Science.gov (United States)

    Liu, Yi; Li, Yanli; Huang, Pengcheng; Song, Han; Zhang, Gang

    2016-11-15

    To detect hydrogen gas leakage rapidly, many types of hydrogen sensors containing palladium alloy film have been proposed and fabricated to date. However, the mechanisms and factors that determine the response rate of such hydrogen sensor have not been established theoretically. The manners in which response time is forecasted and sensitive film is designed are key issues in developing hydrogen sensors with nanometer film. In this paper, a unilateral diffusion model of hydrogen atoms in Pd alloy based on Fick's second law is proposed to describe the Pd-H reaction process. Model simulation shows that the hydrogen sensor response time with Pd alloy film is dominated by two factors (film thickness and hydrogen diffusion coefficient). Finally, a series of response rate experiments with varying thicknesses of Pd-Y (yttrium) alloy film are implemented to verify model validity. Our proposed model can help researchers in the precise optimization of film thickness to realize a simultaneously speedy and sensitive hydrogen sensor. This study also aids in evaluating the influence of manufacturing errors on performances and comparing the performances of sensors with different thicknesses.

  2. Insights into the Hydrogen-Atom Transfer of the Blue Aroxyl.

    Science.gov (United States)

    Bächle, Josua; Marković, Marijana; Kelterer, Anne-Marie; Grampp, Günter

    2017-07-26

    An experimental and theoretical study on hydrogen-atom transfer dynamics in the hydrogen-bonded substituted phenol/phenoxyl complex of the blue aroxyl (2,4,6-tri-tert-butylphenoxyl) is presented. The experimental exchange dynamics is determined in different organic solvents from the temperature-dependent alternating line-width effect in the continuous-wave ESR spectrum. From bent Arrhenius plots, effective tunnelling contributions with parallel heavy-atom motion are concluded. To clarify the transfer mechanism, reaction paths for different conformers of the substituted phenol/phenoxyl complex are modelled theoretically. Various DFT and post-Hartree-Fock methods including multireference methods are applied. From the comparison of experimental and theoretical data it is concluded that the system favours concerted hydrogen-atom transfer along a parabolic reaction path caused by heavy-atom motion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cosmologically Strengthening Hydrogen Atom in Black Hole Universe

    National Research Council Canada - National Science Library

    U. V. S. SESHAVATHARAM; S. LAKSHMINARAYANA

    2016-01-01

    ... ‘strengthening hydrogen atom’. In this proposed model, characteristic cosmic mass, characteristic nuclear charge radius, Avogadro number and possible quantum states of electron seem to play a major role...

  4. The signature of hot hydrogen in the atmosphere of the extrasolar planet HD 209458b.

    Science.gov (United States)

    Ballester, Gilda E; Sing, David K; Herbert, Floyd

    2007-02-01

    About ten per cent of the known extrasolar planets are gas giants that orbit very close to their parent stars. The atmospheres of these 'hot Jupiters' are heated by the immense stellar irradiation. In the case of the planet HD 209458b, this energy deposition results in a hydrodynamic state in the upper atmosphere, allowing for sizeable expansion and escape of neutral hydrogen gas. HD 209458b was the first extrasolar planet discovered that transits in front of its parent star. The size of the planet can be measured using the total optical obscuration of the stellar disk during an observed transit, and the structure and composition of the planetary atmosphere can be studied using additional planetary absorption signatures in the stellar spectrum. Here we report the detection of absorption by hot hydrogen in the atmosphere of HD 209458b. Previously, the lower atmosphere and the full extended upper atmosphere of HD 209458b have been observed, whereas here we probe a layer where the escaping gas forms in the upper atmosphere of HD 209458b.

  5. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis

    Science.gov (United States)

    Fan, Lili; Liu, Peng Fei; Yan, Xuecheng; Gu, Lin; Yang, Zhen Zhong; Yang, Hua Gui; Qiu, Shilun; Yao, Xiangdong

    2016-02-01

    Hydrogen production through electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells. Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains as a great challenge. Here we synthesize a nickel-carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution. This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance with high exchange current density of 1.2 mA cm-2 and impressive durability. This work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis.

  6. Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Guangjie, E-mail: ygjhzh@dpe.mm.t.u-tokyo.ac.jp; Shimizu, Hideharu; Momose, Takeshi; Shimogaki, Yukihiro [Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-01-15

    High-purity Ni films were deposited using hot-wire-assisted atomic layer deposition (HW-ALD) at deposition temperatures of 175, 250, and 350 °C. Negligible amount of nitrogen or carbon contamination was detected, even though the authors used NH{sub 2} radical as the reducing agent and nickelocene as the precursor. NH{sub 2} radicals were generated by the thermal decomposition of NH{sub 3} with the assist of HW and used to reduce the adsorbed metal growth precursors. To understand and improve the deposition process, the kinetics of HW-ALD were analyzed using a Langmuir-type model. Unlike remote-plasma-enhanced atomic layer deposition, HW-ALD does not lead to plasma-induced damage. This is a significant advantage, because the authors can supply sufficient NH{sub 2} radicals to deposit high-purity metallic films by adjusting the distance between the hot wire and the substrate. NH{sub 2} radicals have a short lifetime, and it was important to use a short distance between the radical generation site and substrate. Furthermore, the impurity content of the nickel films was independent of the deposition temperature, which is evidence of the temperature-independent nature of the NH{sub 2} radical flux and the reactivity of the NH{sub 2} radicals.

  7. Formation of Cu, Ag and Au nanofiims under the influence of hydrogen atoms

    Directory of Open Access Journals (Sweden)

    Zhavzharov E. L.

    2015-12-01

    Full Text Available Due to their electrical properties, thin metallic films are widely used in modern micro- and nanoelectronics. These properties allow solving fundamental problems of surface and solid state physics. Up-to-date methods of producing thin films involve high vacuum or multi-stage processes, which calls for complicated equipment. The authors propose an alternative method of producing thin metallic films using atomic hydrogen. Exothermal reaction of atoms recombination in a molecule (about 4.5 eV / recombination act initiated on the solid surface by atomic hydrogen may stimulate local heating, spraying and surface atoms transfer. We investigated the process of atomic hydrogen treatment of Cu, Ag and Au metal films, obtained by thermal vacuum evaporation. There are two methods of obtaining nanofilms using atomic hydrogen treatment: sputtering and vapor-phase epitaxy. In the first method, a film is formed by reducing the thickness of the starting film. This method allows obtaining a film as thick as the monolayer. In the second method, a nanofilm is formed by deposition of metal atoms from the vapor phase. This method allows obtaining a film thickness from monolayer to ~10 nm. These methods allow creating nanofilms with controlled parameters and metal thickness. Such films would be technologically pure and have good adhesion.

  8. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral atoms: Theory, comparisons, and application to Ca

    CERN Document Server

    Barklem, Paul S

    2016-01-01

    A theoretical method for the estimation of cross sections and rates for excitation and charge transfer processes in low-energy hydrogen atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in the neutral atom-hydrogen atom system, is presented. The calculation of potentials and non-adiabatic radial couplings using the method is demonstrated. The potentials are used together with the multi-channel Landau-Zener model to calculate cross sections and rate coefficients. The main feature of the method is that it employs asymptotically exact atomic wavefunctions, which can be determined from known atomic parameters. The method is applied to Li+H, Na+H, and Mg+H collisions, and the results compare well with existing detailed full-quantum calculations. The method is applied to the astrophysically important problem of Ca+H collisions, and rate coefficients are calculated for temperatures in the range 1000-20000 K.

  9. Basic study on hot-wire flow meter in forced flow of liquid hydrogen

    Science.gov (United States)

    Oura, Y.; Shirai, Y.; Shiotsu, M.; Murakami, K.; Tatsumoto, H.; Naruo, Y.; Nonaka, S.; Kobayashi, H.; Inatani, Y.; Narita, N.

    2014-01-01

    Liquid hydrogen (LH2) is a key issue in a carbon-free energy infrastructure at the energy storage and transportation stage. The typical features of LH2 are low viscosity, large latent heat and small density, compared with other general liquids. It is necessary to measure a mass flow of liquid hydrogen with a simple and compact method, especially in a two phase separate flow condition. We have proposed applying a hot-wire type flow meter, which is usually used a for gas flow meter, to LH2 flow due to the quite low viscosity and density. A test model of a compact LH2 hot-wire flow meter to measure local flow velocities near and around an inside perimeter of a horizontal tube by resistance thermometry was designed and made. The model flow meter consists of two thin heater wires made of manganin fixed in a 10 mm-diameter and 40 mm-length tube flow path made of GFRP. Each rigid heater wire was set twisted by 90 degrees from the inlet to the outlet along the inner wall. In other words, the wires were aslant with regard to the LH2 stream line. The heated wire was cooled by flowing LH2, and the flow velocity was obtained by means of the difference of the cooling characteristic in response to the flow velocity. In this report, we show results on the basic experiments with the model LH2 hot-wire flow meter. First, the heat transfer characteristics of the two heater wires for several LH2 flow velocities were measured. Second, the heating current was controlled to keep the wire temperature constant for various flow velocities. The relations between the flow velocity and the heating current were measured. The feasibility of the proposed model was confirmed.

  10. Origin of the smaller conductances of Rh, Pb, and Co atomic junctions in hydrogen environment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Chen, Mingyan; Ye, Xiang; Xie, Yi-qun, E-mail: yqxie@shnu.edu.cn [Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai 200232 (China); Ke, San-huang, E-mail: shke@tongji.edu.cn [MOE Key Laboratory of Advanced Microstructured Materials, School of Physics Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2015-02-14

    We study theoretically the structural and electronic origins of the smaller conductances (one conductance quantum, G{sub 0}, and smaller) of Rh, Pb, and Co metal atomic junctions (MAJs) in a hydrogen environment, as were measured in recent experiments. For the Rh MAJs, the 1G{sub 0} conductance is attributed to a stable contact bridged by a single hydrogen molecule whose antibonding state provides a single transport channel. For the Pb and Co MAJs the 1G{sub 0} conductance is, however, ascribed to a linear atomic chain adsorbing two dissociated H atoms, which largely reduces the density of states at the Fermi energy with respect to the pure ones. On the other hand, the small conductances of 0.3G{sub 0} (Rh) and 0.2G{sub 0} (Co) are due to H-decorated atomic chains connected to electrodes by a H atom.

  11. Adsorption and migration behavior of Si atoms on the hydrogen-terminated diamond (001) surface: A first principles study

    Science.gov (United States)

    Liu, Xuejie; Qiao, Haimao; Kang, Congjie; Ren, Yuan; Tan, Xin; Sun, Shiyang

    2017-10-01

    The adsorption and migration activation energies of a silicon (Si) atom on a hydrogen-terminated diamond (001) surface were calculated using first principles methods based on density functional theory. On the fully hydrogen-terminated surface, the surface carbon atoms possess saturated bonds. The Si atom cannot bond with the surface carbon atoms; thus, the adsorption energy of the Si atom is low. However, on the hydrogen-terminated surface with one or two open radical sites (ORS), the adsorption energy of a Si atom increases to 3.1 eV and even up to 4.7 eV, thereby forming a stable configuration. Along the three ORS in the direction of dimer row or chain, a Si atom can migrate between two deep basins with migration activation energies at 1.5 or 1.3 eV. Given the relatively large energy barrier at approximately 3.8 or 4.7 eV, escaping from the deep basin is difficult for the Si atom. This investigation showed that the number and distribution of ORS, namely, the adsorption site of hydrogen atoms and the removal site of surface hydrogen atoms, can affect the adsorption and migration of Si atoms on the hydrogen-terminated diamond surface. Electron structure analysis further reveals that the reactivity of the surface C atoms and the charge transfer amount between the Si and surface C atoms affect the adsorption and migration of Si atoms.

  12. STM observation of the chemical reaction of atomic hydrogen on the N-adsorbed Cu(001) surface

    Science.gov (United States)

    Hattori, Takuma; Yamada, Masamichi; Komori, Fumio

    2017-01-01

    Chemical reaction of atomic hydrogen with the N-adsorbed Cu(001) surfaces was investigated at room temperature by scanning tunnel microscopy. At the low exposure of atomic hydrogen, it reacted with the N atoms and turned to be the NH species on the surface. The reaction rate is proportional to the amount of the unreacted N atoms. By increasing the exposure of atomic hydrogen from this condition, the amount of nitrogen species on the surface decreased. This is attributed to the formation of ammonia and its desorption from the surface. The NH species on the surface turn to NH3 through the surface NH2 species by atomic hydrogen. Coexistence of the clean Cu surface enhances the rate of ammonia formation owing to atomic hydrogen migrating on the clean surface.

  13. Physics of quantum fluids. New trends and hot topics in atomic and polariton condensates

    Energy Technology Data Exchange (ETDEWEB)

    Bramati, Alberto [Paris Univ. (France). Laboratoire Kastler Brossel; Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Modugno, Michele (eds.) [IKERBASQUE, Bilbao (Spain); Univ. del Pais Vasco, Bilbao (Spain). Dept. de Fisica Teorica e Historia de la Ciencia

    2013-10-01

    Provides an overview of the field of quantum fluids. Presents analogies and differences between polariton and atomic quantum fluids. With contributions from the major actors in the field. Explains a new type of quantum fluid with specific characteristics. The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.

  14. General model of depolarization and transfer of polarization of singly ionized atoms by collisions with hydrogen atoms

    Science.gov (United States)

    Derouich, M.

    2017-02-01

    Simulations of the generation of the atomic polarization is necessary for interpreting the second solar spectrum. For this purpose, it is important to rigorously determine the effects of the isotropic collisions with neutral hydrogen on the atomic polarization of the neutral atoms, ionized atoms and molecules. Our aim is to treat in generality the problem of depolarizing isotropic collisions between singly ionized atoms and neutral hydrogen in its ground state. Using our numerical code, we computed the collisional depolarization rates of the p-levels of ions for large number of values of the effective principal quantum number n* and the Unsöld energy Ep. Then, genetic programming has been utilized to fit the available depolarization rates. As a result, strongly non-linear relationships between the collisional depolarization rates, n* and Ep are obtained, and are shown to reproduce the original data with accuracy clearly better than 10%. These relationships allow quick calculations of the depolarizing collisional rates of any simple ion which is very useful for the solar physics community. In addition, the depolarization rates associated to the complex ions and to the hyperfine levels can be easily derived from our results. In this work we have shown that by using powerful numerical approach and our collisional method, general model giving the depolarization of the ions can be obtained to be exploited for solar applications.

  15. The hydrogen atom confined by one and two hard cones

    Science.gov (United States)

    Sarsa, A.; Alcaraz-Pelegrina, J. M.; Le Sech, C.

    2017-02-01

    The bound states of the H atom in a semi-infinite space limited by one or two conical boundaries are studied. The exact solution when the nucleus is located at the apex of the conical boundaries is obtained. A rapid increase of the energy when the cone angle opens and tends to π / 2 is found. A second situation with the atom separated from the summit of the cone is considered. The changes on the energy and the electronic structure are analyzed. The quantum force is evaluated by calculating the energy derivative versus the distance to the cone vertex. One of the forces exerted on the tip of an Atomic Force Microscope can be modelized by a hard cone probing the electron cloud in the contact mode. Our numerical results show that the quantum force present an important dependence with the cone angle and it vanishes rapidly as the distance increases.

  16. Semiclassical Szego limit of resonance clusters for the hydrogen atom Stark Hamiltonian

    CERN Document Server

    Hislop, Peter D

    2011-01-01

    We study the weighted averages of resonance clusters for the hydrogen atom with a Stark electric field in the weak field limit. We prove a semiclassical Szego-type theorem for resonance clusters showing that the limiting distribution of the resonance shifts concentrates on the classical energy surface corresponding to a rescaled eigenvalue of the hydrogen atom Hamiltonian. This result extends Szego-type results on eigenvalue clusters to resonance clusters. There are two new features in this work: first, the study of resonance clusters requires the use of non self-adjoint operators, and second, the Stark perturbation is unbounded so control of the perturbation is achieved using localization properties of coherent states corresponding to hydrogen atom eigenvalues.

  17. Hydrogen atom wave function and eigen energy in the Rindler space

    CERN Document Server

    Dai, De-Chang

    2016-01-01

    We study the hydrogen atom eigenstate energy and wave function in the Rindler space. The probability distribution is tilted because the electric field of the nucleus is no longer spherically symmetric. The hydrogen atom therefore cannot be treated exactly in the same way as what it is in an inertial frame. We also find that if the external force accelerates only the nucleus and then the nucleus accelerates its surrounding electrons through electromagnetic force, the electrons can tunnel through the local energy gap and split the hydrogen atom into an ion. This is similar to what one expects from the Stark effect. However, the critical acceleration is about $3\\times 10^{22} m/s^2$. It is well beyond the gravitational acceleration on a regular star surface.

  18. Quantum mechanical study of atomic hydrogen interaction with a fluorinated boron-substituted coronene radical.

    Science.gov (United States)

    Zhang, Hong; Smith, Sean C; Nanbu, Shinkoh; Nakamura, Hiroki

    2009-04-08

    In this work we study the transmission of atomic hydrogen across a fluorinated boron-substituted coronene radical (C(19)H(12)BF(6)) as a model for partially fluorinated and boron-doped nanotubes or fullerenes. Complete active space self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) methods are employed to calculate the potential energy surfaces for both ground and excited electronic states, and one-dimensional R-matrix propagation is utilized to investigate the transmission/reflection dynamics of atomic hydrogen, through the central six-member ring of the fluorinated boron-substituted coronene radical. The quantum scattering includes resonance effects as well as non-adiabatic transitions between the ground and excited electronic states. Within the sudden approximation, both centre and off-centre approach trajectories have been investigated. Implications for atomic hydrogen encapsulation by carbon nanotube and fullerene are discussed.

  19. Experimental investigations of electron capture from atomic hydrogen and deuterium by alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Gay, T.J.; Park, J.T.

    1992-01-01

    We report progress made during the period 15 September 1991--14 September 1992 on the project Experimental Investigations of Electron Capture from Atomic Hydrogen and Deuterium by Alpha Particles''. In the past year we have developed reliable, narrow energy spread, high-current sources of He[sup ++] based on direct-current magentron and electron-cyclotron resonance discharges. These sources have been proven on our test bench accelerator which has been upgraded to also allow us to test atomic hydrogen effusive targets. We have thus made substantial progress toward our goal of studying single electron capture from atomic hydrogen by doubly-ionized helium. A research plan for the upcoming year is also presented.

  20. Hydrogen atom wave function and eigen energy in the Rindler space

    Science.gov (United States)

    Dai, De-Chang

    2016-10-01

    We study the hydrogen atom eigenstate energy and wave function in the Rindler space. The probability distribution is tilted because the electric field of the nucleus is no longer spherically symmetric. The hydrogen atom therefore cannot be treated exactly in the same way as what it is in an inertial frame. We also find that if the external force accelerates only the nucleus and then the nucleus accelerates its surrounding electrons through electromagnetic force, the electrons can tunnel through the local energy gap and split the hydrogen atom into an ion. This is similar to what one expects from the Stark effect. However, the critical acceleration is about 3 ×1022 m /s2. It is well beyond the gravitational acceleration on a regular star surface.

  1. Al13H-: Hydrogen atom site selectivity and the shell model

    Science.gov (United States)

    Grubisic, A.; Li, X.; Stokes, S. T.; Vetter, K.; Ganteför, G. F.; Bowen, K. H.; Jena, P.; Kiran, B.; Burgert, R.; Schnöckel, H.

    2009-09-01

    Using a combination of anion photoelectron spectroscopy and density functional theory calculations, we explored the influence of the shell model on H atom site selectivity in Al13H-. Photoelectron spectra revealed that Al13H- has two anionic isomers and for both of them provided vertical detachment energies (VDEs). Theoretical calculations found that the structures of these anionic isomers differ by the position of the hydrogen atom. In one, the hydrogen atom is radially bonded, while in the other, hydrogen caps a triangular face. VDEs for both anionic isomers as well as other energetic relationships were also calculated. Comparison of the measured versus calculated VDE values permitted the structure of each isomer to be confirmed and correlated with its observed photoelectron spectrum. Shell model, electron-counting considerations correctly predicted the relative stabilities of the anionic isomers and identified the stable structure of neutral Al13H.

  2. Lewis acid-water/alcohol complexes as hydrogen atom donors in radical reactions.

    Science.gov (United States)

    Povie, Guillaume; Renaud, Philippe

    2013-01-01

    Water or low molecular weight alcohols are, due to their availability, low price and low toxicity ideal reagents for organic synthesis. Recently, it was reported that, despite the very strong BDE of the O-H bond, they can be used as hydrogen atom donors in place of expensive and/or toxic group 14 metal hydrides when boron and titanium(III) Lewis acids are present. This finding represents a considerable innovation and uncovers a new perspective on the paradigm of hydrogen atom transfers to radicals. We discuss here the influence of complex formation and other association processes on the efficacy of the hydrogen transfer step. A delicate balance between activation by complex formation and deactivation by further hydrogen bonding is operative.

  3. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel

    Science.gov (United States)

    Chen, Y.-S.; Haley, D.; Gerstl, S. S. A.; London, A. J.; Sweeney, F.; Wepf, R. A.; Rainforth, W. M.; Bagot, P. A. J.; Moody, M. P.

    2017-03-01

    The design of atomic-scale microstructural traps to limit the diffusion of hydrogen is one key strategy in the development of hydrogen-embrittlement-resistant materials. In the case of bearing steels, an effective trapping mechanism may be the incorporation of finely dispersed V-Mo-Nb carbides in a ferrite matrix. First, we charged a ferritic steel with deuterium by means of electrolytic loading to achieve a high hydrogen concentration. We then immobilized it in the microstructure with a cryogenic transfer protocol before atom probe tomography (APT) analysis. Using APT, we show trapping of hydrogen within the core of these carbides with quantitative composition profiles. Furthermore, with this method the experiment can be feasibly replicated in any APT-equipped laboratory by using a simple cold chain.

  4. Two-photon ionization of atomic hydrogen with elliptically polarized light

    Science.gov (United States)

    Kassaee, A.; Rustgi, M. L.; Long, S. A. T.

    1988-01-01

    The theory of two-photon ionization of a hydrogenic state in the nonrelativistic dipole approximation is generalized for elliptically polarized light. An application to the metastable 2S state of atomic hydrogen is made. Significant differences in the angular distribution of the outgoing electrons are found depending upon the polarization of the photons. It is claimed that two-photon ionization employing elliptically polarized photons from lasers may provide an additional test for the theories of multiphoton ionization.

  5. Classical stabilization of the hydrogen atom in a monochromatic field

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, F.; Casati, G. (Dipartimento di Fisica dell' Universita, Via Castelnuovo 7, 22100 Como (Italy)); Shepelyansky, D.L. (Laboratoire de Physique Quantique, Universite Paul Sabatier, 31062, Toulouse (France))

    1993-02-01

    We report the results of analytical and numerical investigations on the ionization of a classical atom in a strong, linearly polarized, monochromatic field. We show that the ionization probability decreases with increasing field intensity at field amplitudes much larger than the classical chaos border. This effect should be observable in real laboratory experiments.

  6. Conformer-specific hydrogen atom tunnelling in trifluoromethylhydroxycarbene

    Science.gov (United States)

    Mardyukov, Artur; Quanz, Henrik; Schreiner, Peter R.

    2017-01-01

    Conformational control of organic reactions is at the heart of the biomolecular sciences. To achieve a particular reactivity, one of many conformers may be selected, for instance, by a (bio)catalyst, as the geometrically most suited and appropriately reactive species. The equilibration of energetically close-lying conformers is typically assumed to be facile and less energetically taxing than the reaction under consideration itself: this is termed the 'Curtin-Hammett principle'. Here, we show that the trans conformer of trifluoromethylhydroxycarbene preferentially rearranges through a facile quantum-mechanical hydrogen tunnelling pathway, while its cis conformer is entirely unreactive. Hence, this presents the first example of a conformer-specific hydrogen tunnelling reaction. The Curtin-Hammett principle is not applicable, due to the high barrier between the two conformers.

  7. Nucleon Polarizabilities: from Compton Scattering to Hydrogen Atom

    CERN Document Server

    Hagelstein, Franziska; Pascalutsa, Vladimir

    2015-01-01

    We review the current state of knowledge of the nucleon polarizabilities and of their role in nucleon Compton scattering and in hydrogen spectrum. We discuss the basic concepts, the recent lattice QCD calculations and advances in chiral effective-field theory. On the experimental side, we review the ongoing programs aimed to measure the nucleon (scalar and spin) polarizabilities via the Compton scattering processes, with real and virtual photons. A great part of the review is devoted to the general constraints based on unitarity, causality, discrete and continuous symmetries, which result in model-independent relations involving nucleon polarizabilities. We (re-)derive a variety of such relations and discuss their empirical value. The proton polarizability effects are presently the major sources of uncertainty in the assessment of the muonic hydrogen Lamb shift and hyperfine structure. Recent calculations of these effects are reviewed here in the context of the "proton-radius puzzle". We conclude with summary...

  8. Optical limiting using spatial self-phase modulation in hot atomic sample

    Science.gov (United States)

    Zhang, Qian; Cheng, Xuemei; Zhang, Ying; Yin, Xunli; Jiang, Man; Chen, Haowei; Bai, Jintao

    2017-02-01

    In this work, we characterized the performance of optical limiting by self-phase modulation (SPM) in hot atomic vapor cell. The results indicated that the performance of the optical limiter is closely related to the position of the sample cell, which is determined by the Rayleigh lenght of beam. The lowest limiting threshold and clamp output were obtained at the sample position at -10 mm from the coordinate origin (the beam waist). The phenomenon was explained well by the theory of SPM and z-scan, which are caused by both Kerr effect and the thermal optical nonlinear effect. This useful information obtained in the meaning of this work is determining the optimal position of the sample cell in the optical limiter and other applications of SPM.

  9. Semirelativistic $1s-2s$ excitation of atomic hydrogen by electron impact

    CERN Document Server

    Taj, S; Oufni, L

    2012-01-01

    In the framework of the first Born approximation, we present a semirelativistic theoretical study of the inelastic excitation ($1s_{1/2}\\longrightarrow 2s_{1/2}$) of hydrogen atom by electronic impact. The incident and scattered electrons are described by a free Dirac spinor and the hydrogen atom target is described by the Darwin wave function. Relativistic and spin effects are examined in the relativistic regime. A detailed study has been devoted to the nonrelativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamic behavior of the DCS in the relativistic regime have been addressed.

  10. Reduction of uranium hexafluoride to tetrafluoride by using the hydrogen atoms

    Science.gov (United States)

    Aleksandrov, B. P.; Gordon, E. B.; Ivanov, A. V.; Kotov, A. A.; Smirnov, V. E.

    2016-09-01

    We consider the reduction of UF6 to UF4 by chemical reaction with hydrogen atoms originated in the powerful chemical generator. The principal design of such a chemical convertor is described. The results of the mathematical modeling of the thermodynamics and kinetics of the UF6 to UF4 reduction process are analyzed. The few options for the hydrogen atom generator design are proposed. A layout of the experimental setup with the chemical reactor is presented. The high efficiency together with the ability of the process scaling without loss of its efficiency makes this approach to the uranium hexafluoride depletion into tetrafluoride promising for its application in the industry.

  11. Quantum spacetime fluctuations: Lamb Shift and hyperfine structure of the hydrogen atom

    CERN Document Server

    Rivas, Juan Israel; Goeklue, Ertan

    2011-01-01

    We consider the consequences of the presence of metric fluctuations upon the properties of a hydrogen atom. Particularly, we introduce these metric fluctuations in the corresponding effective Schroedinger equation and deduce the modifications that they entail upon the hyperfine structure related to a hydrogen atom. We will find the change that these effects imply for the ground state energy of the system and obtain a bound for its size comparing our theoretical predictions against the experimental uncertainty reported in the literature. In addition, we analyze the corresponding Lamb shift effect emerging from these fluctuations of spacetime. Once again, we will set a bound to these oscillations resorting to the current experimental outcomes

  12. Existence of a ground state for the confined hydrogen atom in non-relativistic QED

    DEFF Research Database (Denmark)

    Amour, Laurent; Faupin, Jeremy

    2008-01-01

    We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review of the literat......We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review...

  13. Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex via Initial Hydrogen-Atom Abstraction.

    Science.gov (United States)

    Barman, Prasenjit; Upadhyay, Pranav; Faponle, Abayomi S; Kumar, Jitendra; Nag, Sayanta Sekhar; Kumar, Devesh; Sastri, Chivukula V; de Visser, Sam P

    2016-09-05

    Metal-peroxo intermediates are key species in the catalytic cycles of nonheme metalloenzymes, but their chemical properties and reactivity patterns are still poorly understood. The synthesis and characterization of a manganese(III)-peroxo complex with a pentadentate bispidine ligand system and its reactivity with aldehydes was studied. Manganese(III)-peroxo can react through hydrogen-atom abstraction reactions instead of the commonly proposed nucleophilic addition reaction. Evidence of the mechanism comes from experiments which identify a primary kinetic isotope effect of 5.4 for the deformylation reaction. Computational modeling supports the established mechanism and identifies the origin of the reactivity preference of hydrogen-atom abstraction over nucleophilic addition.

  14. A tale of two condensates: the odd "Bose - Einstein" condensation of atomic Hydrogen

    OpenAIRE

    1998-01-01

    The recent report of the observation of Bose-Einstein condensation in atomic Hydrogen, characterized by an "anomalous" density spectrum, is shown to be in agreement with the prediction of the existence of two condensates for temperatures lower than a well defined temperature (which for Hydrogen is $ 105~ \\mu K $), based on the QED coherent interaction in a gas of ultracold atoms at a density $n > n_0 (n_0=(1/\\lambda)^3, \\lambda$ being the wave-length of the e.m. modes resonantly coupled to th...

  15. LAMB SHIFT IN HYDROGEN-LIKE ATOM INDUCED FROM NON-COMMUTATIVE QUANTUM SPACE-TIME

    Directory of Open Access Journals (Sweden)

    S Zaim

    2015-06-01

    Full Text Available In this work we present an important contribution to the non-commutative approach to the hydrogen atom to deal with lamb shift corrections. This can be done by studying the Klein-Gordon equation in a non-commutative space-time as applied to the Hydrogen atom to extract the energy levels, by considering the second-order corrections in the non commutativity parameter and by comparing with the result of the current experimental results on the Lamb shift of the 2P level to extract a bound on the parameter of non-commutativity. Phenomenologically we show that the non-commutativity effects induce lamb shift corrections.

  16. Surface Magnetism of Cobalt Nanoislands Controlled by Atomic Hydrogen.

    Science.gov (United States)

    Park, Jewook; Park, Changwon; Yoon, Mina; Li, An-Ping

    2017-01-11

    Controlling the spin states of the surface and interface is key to spintronic applications of magnetic materials. Here, we report the evolution of surface magnetism of Co nanoislands on Cu(111) upon hydrogen adsorption and desorption with the hope of realizing reversible control of spin-dependent tunneling. Spin-polarized scanning tunneling microscopy reveals three types of hydrogen-induced surface superstructures, 1H-(2 × 2), 2H-(2 × 2), and 6H-(3 × 3), with increasing H coverage. The prominent magnetic surface states of Co, while being preserved at low H coverage, become suppressed as the H coverage level increases, which can then be recovered by H desorption. First-principles calculations reveal the origin of the observed magnetic surface states by capturing the asymmetry between the spin-polarized surface states and identify the role of hydrogen in controlling the magnetic states. Our study offers new insights into the chemical control of magnetism in low-dimensional systems.

  17. Adsorption of hydrogen atoms onto the exterior wall of carbon nanotubes and their thermodynamics properties

    Energy Technology Data Exchange (ETDEWEB)

    Ng, T.Y.; Ren, Y.X. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Liew, K.M. [Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon (China)

    2010-05-15

    In the present work, we present a systematic analysis of the chemisorption process pathway of hydrogen atoms onto the exterior wall of (5,5) carbon nanotubes using the ONIOM2 (B3LYP(6-31+G(d,p):UFF)) scheme, and we avoid the gross assumption of fixing any of the carbon atoms during the simulation. It is shown that the adsorption of hydrogen atoms onto the sidewall of CNTs are energetically favorable and the most stable state is to form two H-C {sigma}-bonds while the original {sigma}-bond between the carbon atoms is totally severed. In particular, we examined the molecular thermodynamics properties for the reaction at a range of temperatures from 77 K to 1000 K, and the results suggests that the reaction is possible at ambient temperature, but it is less favorable than that at lower temperatures. (author)

  18. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    Science.gov (United States)

    Tachikawa, Hiroto

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4-37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2-7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8-28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  19. Optical hydrogen absorption consistent with a thin bow shock leading the hot Jupiter HD 189733b

    CERN Document Server

    Cauley, P Wilson; Jensen, Adam G; Barman, Travis; Endl, Michael; Cochran, William D

    2015-01-01

    Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit, absorption signature around the hot Jupiter exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the time series absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric H-alpha detection although the absorption depth measured here is ~50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the ...

  20. Atomic hydrogen adsorption and incipient hydrogenation of the Mg(0001) surface: a density-functional theory study.

    Science.gov (United States)

    Li, Yanfang; Zhang, Ping; Sun, Bo; Yang, Yu; Wei, Yinghui

    2009-07-21

    We investigate the atomic hydrogen adsorption on Mg(0001) by using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics is systematically studied for a wide range of coverage Theta [from 0.11 to 2.0 monolayers (ML)] and adsorption sites. In the coverage range 0 atomic hydrogen as well as the activation barriers for hydrogen penetration from the on-surface to the subsurface sites are also presented at low coverage. At high coverage of 1.0 < Theta < or = 2.0, it is found that the coadsorption configuration with 1.0 monolayer of H residing on the surface fcc sites and the remaining (Theta-1.0) monolayer of H occupying the subsurface tetra-I sites is most energetically favorable. The resultant H-Mg-H sandwich structure for this most stable coadsorption configuration displays similar spectral features to the bulk hydride MgH(2) in the density of states. The other properties of the H/Mg(0001) system including the charge distribution, the lattice relaxation, the work function, and the electronic density of states are also studied and discussed in detail. It is pointed out that the H-Mg chemical bonding during surface hydrogenation displays a mixed ionic/covalent character.

  1. Stability of the hydrogen atom of classical electrodynamics

    CERN Document Server

    De Luca, J

    2004-01-01

    We study the stability of the circular orbits of the electromagnetic two-body problem of classical electrodynamics. We introduce the concept of resonant dissipation, i.e. a motion that radiates the center-of-mass energy while the interparticle distance performs bounded oscillations about a metastable orbit. The stability mechanism is established by the existence of a quartic resonant constant generated by the stiff eigenvalues of the linear stability problem. This constant bounds the particles together during the radiative recoil. The condition of resonant dissipation predicts angular momenta for the metastable orbits in reasonable agreement with the Bohr atom. The principal result is that the emission lines agree with the predictions of quantum electrodynamics (QED) with 1 percent average error even up to the $40^{th}$ line. Our angular momenta depend logarithmically on the mass of the heavy body, such that the deuterium and the muonium atoms have essentially the same angular momenta, in agreement with QED. ...

  2. Production and consumption of hydrogen in hot spring microbial mats dominated by a filamentous anoxygenic photosynthetic bacterium.

    Science.gov (United States)

    Otaki, Hiroyo; Everroad, R Craig; Matsuura, Katsumi; Haruta, Shin

    2012-01-01

    Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for microbial sulfide production at Nakabusa remains to be identified. In order to determine this electron donor and its source, ex situ experimental incubation of mats was explored. In the presence of molybdate, which inhibits biological sulfate reduction, hydrogen gas was released from mat samples, indicating that this hydrogen is normally consumed as an electron donor by sulfate-reducing bacteria. Hydrogen production decreased under illumination, indicating that C. aggregans also functions as a hydrogen consumer. Small amounts of hydrogen may have also been consumed for sulfur reduction. Clone library analysis of 16S rRNA genes amplified from the mats indicated the existence of several species of hydrogen-producing fermentative bacteria. Among them, the most dominant fermenter, Fervidobacterium sp., was successfully isolated. This isolate produced hydrogen through the fermentation of organic carbon. Dispersion of microbial cells in the mats resulted in hydrogen production without the addition of molybdate, suggesting that simultaneous production and consumption of hydrogen in the mats requires dense packing of cells. We propose a cyclic electron flow within the microbial mats, i.e., electron flow occurs through three elements: S (elemental sulfur, sulfide, sulfate), C (carbon dioxide, organic carbon) and H (di-hydrogen, protons).

  3. Removal of SU-8 resists using hydrogen radicals generated by tungsten hot-wire catalyzer

    Science.gov (United States)

    Kono, Akihiko; Arai, Yu; Goto, Yousuke; Horibe, Hideo

    2012-03-01

    We investigated removal of chemically amplified negative-tone i-line resist SU-8 using hydrogen radicals, which was generated by the catalytic decomposition of H2/N2 mixed gas (H2:N2 = 10:90vol.%) using tungsten hot-wire catalyzer. SU-8 with exposure dose from 7 (Dg100×0.5) to 280mJ/cm2 (Dg100×20) were removed by hydrogen radicals without a residual layer. When the distance between the catalyzer and the substrate was 100mm, the catalyzer temperature was 2400°C, and the initial substrate temperature was 50°C, removal rate of SU-8 was 0.17μm/min independent of exposure dose to the SU-8. Finally, we obtained high removal rate for SU-8 (exposure dose = 14mJ/cm2 (Dg100)) of approximately 4μm/min when the distance between the catalyzer and the substrate was 20mm, the catalyzer temperature was 2400°C, and the initial substrate temperature was 165°C.

  4. Multiphysics Thermal-Fluid Design Analysis of a Non-Nuclear Tester for Hot-Hydrogen Materials and Component Development

    Science.gov (United States)

    Wang, Ten-See; Foote, John; Litchford, Ron

    2006-01-01

    The objective of this effort is to perform design analyses for a non-nuclear hot-hydrogen materials tester, as a first step towards developing efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber design and analysis. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective, and thermal radiative heat transfers. The goals of the design analyses are to maintain maximum hot-hydrogen jet impingement energy and to minimize chamber wall heating. The results of analyses on three test fixture configurations and the rationale for final selection are presented. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.

  5. Interference Dynamics of Hydrogen Atoms in High-Frequency Dichromatic Laser Fields

    Science.gov (United States)

    Cheng, Tai-Wang; Li, Xiao-Feng; Fu, Pan-Ming; Chen, Shi-Gang

    2002-08-01

    We investigate the ionization and high-order harmonic generation of a hydrogen atom in high-frequency (several atomic units) super strong (up to several tens of atomic units) dichromatic laser fields. An effective iterative method in the framework of high-frequency Floquet theory is used in the calculations. We have considered two kinds of dichromatic laser field, i.e. 1ω-2ω and 1ω-3ω. We find that, in both the cases, the ionization and high-order harmonic generation show evident dependence on the relative phase and strength of the additional harmonic field. The dynamical origin of these interference effects is also discussed.

  6. Interference Dynamics of Hydrogen Atoms in High-Frequency Dichromatic Laser Fields

    Institute of Scientific and Technical Information of China (English)

    程太旺; 李晓峰; 傅盘铭; 陈式刚

    2002-01-01

    We investigate the ionization and high-order harmonic generation of a hydrogen atom in high-frequency (several atomic units) super strong (up to several tens of atomic units) dichromatic laser fields. An effective iterative method in the framework of high-frequency Floquet theory is used in the calculations. We have considered two kinds of dichromatic laser field, i.e. 1ω - 2ω and lω - 3ω. We find that, in both the cases, the ionization and high-order harmonic generation show evident dependence on the relative phase and strength of the additional harmonic field. The dynamical origin of these interference effects is also discussed.

  7. Bose-Einstein Condensation of Atomic Hydrogen observation for the thesis

    CERN Document Server

    Fried, D G; Willmann, L; Landhuis, D; Moss, S C; Kleppner, D; Greytak, T J; Fried, Dale G.; Killian, Thomas C.; Willmann, Lorenz; Landhuis, David; Moss, Stephen C.; Kleppner, Daniel; Greytak, Thomas J.

    1998-01-01

    We report observation of Bose-Einstein condensation of a trapped, dilute gas of atomic hydrogen. The condensate and normal gas are studied by two-photon spectroscopy of the 1S-2S transition. Interactions among the atoms produce a shift of the resonance frequency proportional to density. The condensate is clearly distinguished by its large frequency shift. The peak condensate density is 4.8 +/- 1.1 \\times 10^{15} cm^{-3}, corresponding to a condensate population of 10^9 atoms. The BEC transition occurs at about T=50 uK and n=1.8 \\times 10^{14} cm^{-3}.

  8. Entanglement harvesting from the electromagnetic vacuum with hydrogen-like atoms

    CERN Document Server

    Pozas-Kerstjens, Alejandro

    2016-01-01

    We study how two fully-featured hydrogen-like atoms harvest entanglement from the electromagnetic field vacuum, even when the atoms are spacelike separated. We compare the electromagnetic case ---qualitatively and quantitatively--- with previous results that used scalar fields and featureless, idealized atomic models. Our study reveals the new traits that emerge when we relax these idealizations, such as anisotropies in entanglement harvesting and the effect of exchange of angular momentum. We show that, under certain circumstances, relaxing previous idealizations makes vacuum entanglement harvesting more efficient.

  9. Real-time crystallization study of poly(ε-caprolactone) by hot-stage atomic force microscopy

    NARCIS (Netherlands)

    Beekmans, L.G.M.; Vancso, G.J.

    2000-01-01

    The morphological development and lamellar growth kinetics of poly(ε-caprolactone) (PCL) were investigated in real-time by hot-stage atomic force microscopy (AFM). The morphology of PCL crystals grown in the melt was studied to obtain insight into the mechanism, which controls the lateral shape of t

  10. High-magnetic-field-assisted scattering of electrons with atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Ajoy [Laban Hrad Vidyapith, AD-369, Salt Lake City, Kolkata 700064 (India)

    2007-04-28

    We have investigated quantum mechanically the scattering of electrons off atomic hydrogen in a strong magnetic field. Elastic, inelastic, backward and total scattering cross sections are reported. Near-resonance behaviour of the system is analysed. Results are presented after evaluating and summing all-order Born series under suitable physical conditions.

  11. Continuous vs. discrete models for the quantum harmonic oscillator and the hydrogen atom

    CERN Document Server

    Lorente, M

    2001-01-01

    The Kravchuk and Meixner polynomials of discrete variable are introduced for the discrete models of the harmonic oscillator and hydrogen atom. Starting from Rodrigues formula we construct raising and lowering operators, commutation and anticommutation relations. The physical properties of discrete models are figured out through the equivalence with the continuous models obtained by limit process.

  12. Continuous vs. discrete models for the quantum harmonic oscillator and the hydrogen atom

    Science.gov (United States)

    Lorente, Miguel

    2001-07-01

    The Kravchuk and Meixner polynomials of discrete variable are introduced for the discrete models of the harmonic oscillator and hydrogen atom. Starting from Rodrigues formula we construct raising and lowering operators, commutation and anticommutation relations. The physical properties of discrete models are figured out through the equivalence with the continuous models obtained by limit process.

  13. Triple differential cross sections for the ionization of atomic hydrogen by fast electrons

    Science.gov (United States)

    Byron, F. W.; Joachain, C. J.; Piraux, B.

    1983-12-01

    The triple differential cross section for the ionization of atomic hydrogen by fast electrons is analyzed in the case of a coplanar, asymmetric geometry by using the eikonal Born series theory. Our calculations are in good agreement with recent measurements performed at an incident electron energy of 250 eV.

  14. Moøller polarimetry with polarized atomic hydrogen at MESA

    Energy Technology Data Exchange (ETDEWEB)

    Bartolomé, P. Aguar; Aulenbacher, K.; Tyukin, V. [Institut für Kernphysik, Johannes Gutenberg-University, D-55099 Mainz (Germany)

    2013-11-07

    A new generation of parity violation (PV) electron scattering experiments are planned to be carried out at the Institut für Kernphysik in Mainz. These experiments will be performed at low energies of 100-200 MeV using the new accelerator MESA (Mainz Energy recovering Superconducting Accelerator). One of the main challenges of such experiments is to achieve an accuracy in beam polarization measurements that must be below 0.5%. This very high accuracy can be reached using polarized atomic hydrogen gas, stored in an ultra-cold magnetic trap, as the target for electron beam polarimetry based on Mo/ller scattering. Electron spin-polarized atomic hydrogen can be stored at high densities of 10{sup 16} cm{sup −2}, over relatively long time periods, in a high magnetic field (8T) and at low temperatures (0.3K). The gradient force splits the ground state of the hydrogen into four states with different energies. Atoms in the low energy states are trapped in the strong magnetic field region whereas the high energy states are repelled and pumped away. The physics of ultra-cold atomic hydrogen in magnetic traps and the status of the Mainz Hydro-Mo/ller project will be presented.

  15. Atomic and molecular hydrogen in the circumstellar envelopes of late-type stars

    Science.gov (United States)

    Glassgold, A. E.; Huggins, P. J.

    1983-01-01

    The distribution of atomic and molecular hydrogen in the expanding circumstellar envelopes of cool evolved stars is discussed. The main concern is to evaluate the effects of photodestruction of H2 by galactic UV radiation, including shielding of the radiation by H2 itself and by dust in the envelope. One of the most important parameters is the H/H2 ratio which is frozen out in the upper atmosphere of the star. For stars with photospheric temperatures greater than about 2500 K, atmospheric models suggest that the outflowing hydrogen is mainly atomic, whereas cooler stars should be substantially molecular. In the latter case, photodissociation of H2 and heavy molecules contribute to the atomic hydrogen content of the outer envelope. The presented estimates indicate that atomic hydrogen is almost at the limit of detection in the C-rich star IRC + 10216, and may be detectable in warmer stars. Failure to detect it would have important implications for the general understanding of circumstellar envelopes.

  16. Continuous vs. discrete models for the quantum harmonic oscillator and the hydrogen atom

    OpenAIRE

    Lorente, M.

    2004-01-01

    The Kravchuk and Meixner polynomials of discrete variable are introduced for the discrete models of the harmonic oscillator and hydrogen atom. Starting from Rodrigues formula we construct raising and lowering operators, commutation and anticommutation relations. The physical properties of discrete models are figured out through the equivalence with the continuous models obtained by limit process.

  17. Determination of the Relative Atomic Masses of Metals by Liberation of Molecular Hydrogen

    Science.gov (United States)

    Waghorne, W. Earle; Rous, Andrew J.

    2009-01-01

    Students determine the relative atomic masses of calcium, magnesium, and aluminum by reaction with hydrochloric acid and measurement of the volume of hydrogen gas liberated. The experiment demonstrates stoichiometry and illustrates clearly that mass of the reagent is not the determinant of the amounts in chemical reactions. The experiment is…

  18. The selectivity of charged phenyl radicals in hydrogen atom abstraction reactions with isopropanol.

    Science.gov (United States)

    Jing, Linhong; Guler, Leonard P; Pates, George; Kenttämaa, Hilkka I

    2008-10-09

    The vertical electron affinity is demonstrated to be a key factor in controlling the selectivity of charged phenyl radicals in hydrogen atom abstraction from isopropanol in the gas phase. The measurement of the total reaction efficiencies (hydrogen and/or deuterium atom abstraction) for unlabeled and partially deuterium-labeled isopropanol, and the branching ratios of hydrogen and deuterium atom abstraction, by using a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, allowed the determination of the selectivity for each site in the unlabeled isopropanol. Examination of hydrogen atom abstraction from isopropanol by eight structurally different radicals revealed that the preferred site is the CH group. The selectivity of the charged phenyl radicals correlates with the radical's vertical electron affinity and the reaction efficiency. The smaller the vertical electron affinity of a radical, the lower its reactivity, and the greater the preference for the thermodynamically favored CH group over the CH3 group or the OH group. As the vertical electron affinity increases from 4.87 to 6.28 eV, the primary kinetic isotope effects decrease from 2.9 to 1.3 for the CD group, and the mixture of primary and alpha-secondary kinetic isotopes decreases from 6.0 to 2.4 for the CD3 group.

  19. Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies

    Science.gov (United States)

    Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.

    2002-01-01

    We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.

  20. Direct Microscopic Study of Doubly Polarized Atomic-Hydrogen by Electron-Spin Resonance

    NARCIS (Netherlands)

    van Yperen, G.H.; Silvera, I.F.; Walraven, J.T.M.; Berkhout, J.; Brisson, J.G.

    1983-01-01

    By means of ESR in a high magnetic field the hyperfine states of a gas of spin-polarized atomic hydrogen are directly probed. This allows a direct determination of the spin-state populations and nuclear polarization. The unusual ESR line shape is attributed to field inhomogeneities. The temperature

  1. SPIRAL STRUCTURE OF M-83 - DISTRIBUTION AND KINEMATICS OF THE ATOMIC AND IONIZED HYDROGEN

    NARCIS (Netherlands)

    TILANUS, RPJ; ALLEN, RJ

    1993-01-01

    We present high-resolution observations of the atomic hydrogen (H I) and Hbeta emission lines in the southern grand-design spiral galaxy M 83. Contrary to the case of M51, we have not detected streaming motions of a magnitude of 60-90 km s-1 (in the plane of the disk) across the spiral arms of M 83

  2. SPIRAL STRUCTURE OF M51 - DISTRIBUTION AND KINEMATICS OF THE ATOMIC AND IONIZED HYDROGEN

    NARCIS (Netherlands)

    TILANUS, RPJ; ALLEN, RJ

    1991-01-01

    The atomic hydrogen (H I) and the H-alpha emission lines in the grand-design spiral galaxy M51 have been observed with the Westerbork Synthesis Radio Telescope and the TAURUS Fabry-Perot imaging spectrometer, respectively. Across the inner spiral arms significant tangential and radial velocity gradi

  3. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Jackson, Bret [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany); Martinazzo, Rocco, E-mail: rocco.martinazzo@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Richerche, v. Golgi 19, 20133 Milano (Italy)

    2015-09-28

    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.

  4. Schiff theorem and the electric dipole moments of hydrogen-like atoms

    NARCIS (Netherlands)

    Liu, C. -P.; Haxton, W. C.; Ramsey-Musolf, M. J.; Timmermans, R. G. E.; Dieperink, A. E. L.; Barnes, PD; Cooper, MD; Eisenstein, RA; VanHecke, H; Stephenson, GJ

    2006-01-01

    The Schiff theorem is revisited in this work and the residual P- and T-odd electron-nucleus interaction, after the shielding takes effect, is completely specified. An application is made to the electric dipole moments of hydrogen-like atoms, whose qualitative features and systematics have important

  5. Effect of vacuum polarization on the excitation of hydrogen atom by electron impact

    Directory of Open Access Journals (Sweden)

    Sujata Bhattacharyya

    1981-01-01

    for 1S−2S excitation of the hydrogen atom by electron impact. The excitation amplitude calculated field theoretically is found to be lowered by 0.47t2/(t2+93 where t2=4|P−Q|2, P and Q being the momenta of the incident and scattered electrons respectively.

  6. Resonant three-photon ionization of hydrogenic atoms by a non-monochromatic laser field

    NARCIS (Netherlands)

    Yakhontov, V.; Santra, R.; Jungmann, K.

    1999-01-01

    We present ionization probability and lineshape calculations for the two-step three- photon ionization process, 1S (2(h)over-bar-omega)under-right-arrow, 2S ((h)over-bar-omega)under-right-arrow epsilon P, of the ground state of hydrogenic atoms in a non-monochromatic laser field with a time-dependen

  7. Resonant three-photon ionization of hydrogenic atoms by a non-monochromatic laser field

    NARCIS (Netherlands)

    Yakhontov, V.; Santra, R.; Jungmann, K.

    1999-01-01

    We present ionization probability and lineshape calculations for a specifed two-step three-photon ionization process of the ground state of hydrogenic atoms in a non-monochromatic laser field with a time-dependent amplitude. Within the framework of a three-level model, the AC Stark shifts and non-ze

  8. Pregalactic black hole formation with an atomic hydrogen equation of state

    NARCIS (Netherlands)

    Spaans, Marco; Silk, Joseph

    2006-01-01

    The polytropic equation of state of an atomic hydrogen gas is examined for primordial halos with baryonic masses of M-h similar to 10(7)-10(9) M-circle dot. For roughly isothermal collapse around 10(4) K, we find that line trapping of Ly alpha (H I and He II) photons causes the polytropic exponent t

  9. Determination of the Relative Atomic Masses of Metals by Liberation of Molecular Hydrogen

    Science.gov (United States)

    Waghorne, W. Earle; Rous, Andrew J.

    2009-01-01

    Students determine the relative atomic masses of calcium, magnesium, and aluminum by reaction with hydrochloric acid and measurement of the volume of hydrogen gas liberated. The experiment demonstrates stoichiometry and illustrates clearly that mass of the reagent is not the determinant of the amounts in chemical reactions. The experiment is…

  10. Most Typical 12 Resonant Perturbation of the Hydrogen Atom by Weak Electric and Magnetic Fields

    NARCIS (Netherlands)

    Efstathiou, K.; Lukina, O. V.; Sadovskii, D. A.

    2008-01-01

    We study a perturbation of the hydrogen atom by small homogeneous static electric and magnetic fields in a specific mutual alignment with angle approximately pi/3 which results in the 12 resonance of the linearized Keplerian n-shell approximation. The bifurcation diagram of the classical integrable

  11. Relativistic Approach to the Hydrogen Atom in a Minimal Length Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Ronald Oliveira; Oakes, Thiago Luiz Antonacci; Fabris, Julio Cesar; Nogueira, Jose Alexandre, E-mail: jose.nogueira@ufes.br [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Departamento de Fisica

    2014-07-01

    We show that relativistic contributions to the ground-state energy of the hydrogen atom from a minimal length introduced by a Lorentz-covariant algebra are more important than non-relativistic contributions; the nonrelativistic approach is therefore unsuitable. We compare our result with experimental data to estimate an upper bound of the order 10{sup -20}m for the minimal length. (author)

  12. Learning about Regiochemistry from a Hydrogen-Atom Abstraction Reaction in Water

    Science.gov (United States)

    Sears-Dundes, Christopher; Huon, Yoeup; Hotz, Richard P.; Pinhas, Allan R.

    2011-01-01

    An experiment has been developed in which the hydrogen-atom abstraction and the coupling of propionitrile, using Fenton's reagent, are investigated. Students learn about the regiochemistry of radical formation, the stereochemistry of product formation, and the interpretation of GC-MS data, in a safe reaction that can be easily completed in one…

  13. Quantum states of hydrogen atom on Pd(1 1 0) surface

    Science.gov (United States)

    Padama, Allan Abraham B.; Nakanishi, Hiroshi; Kasai, Hideaki

    2015-12-01

    The quantum states of adsorbed hydrogen atom on Pd(1 1 0) surface are investigated in this work. From the calculated potential energy surface (PES) of hydrogen atom on Pd(1 1 0), the wave functions and eigenenergies in the ground and few excited states of protium (H) and deuterium (D) are calculated. Localized wave functions of hydrogen atom exist on pseudo-threefold and long bridge sites of Pd(1 1 0). The short bridge site is a local minimum from the result of PES, however, quantum behavior of hydrogen revealed that its vibration would allow it to hop to other pseudo-threefold site (that crosses the short bridge site) than to stay on the short bridge site. Exchange of ordering of the wave functions between H and D is attributed to the difference in their masses. The calculated eigenenergies are found to be in fair agreement with experimental data based from the identified vibrations of hydrogen with component perpendicular to the surface. The activation barriers measured from the eigenenergies are in better agreement with experimental findings in comparison to the data gathered from PES.

  14. Four kinds of raising and lowering operators of n-dimensional hydrogen atom and isotropic harmonic oscillator

    Institute of Scientific and Technical Information of China (English)

    刘宇峰; 曾谨言

    1997-01-01

    The factorization of the radial Schrodinger equation of n-dimensional (n≥2) hydrogen atoms and isotropic harmonic oscillators was investigated and four kinds of raising and lowering operators were derived.The relation between n -dimensional (n≥2) and one-dimensional hydrogen atoms and harmonic oscillators was discussed.

  15. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    Science.gov (United States)

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-05

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species.

  16. Infrared absorption on a complex comprising three equivalent hydrogen atoms in ZnO

    Science.gov (United States)

    Herklotz, F.; Hupfer, A.; Johansen, K. M.; Svensson, B. G.; Koch, S. G.; Lavrov, E. V.

    2015-10-01

    A hydrogen-related defect in ZnO which causes two broad IR absorption bands at 3303 and 3321 cm-1 is studied by means of infrared absorption spectroscopy and first-principles theory. In deuterated samples, the defect reveals two sharp absorption lines at 2466 and 2488 cm-1 accompanied by weaker sidebands at 2462 and 2480 cm-1. Isotope substitution experiments with varying concentrations of H and D together with polarization-sensitive measurements strongly suggest that these IR absorption lines are due to stretch local vibrational modes of a defect comprising three equivalent hydrogen atoms. The zinc vacancy decorated by three hydrogen atoms, VZnH3 , and ammonia trapped at the zinc vacancy, (NH3)Zn, are discussed as a possible origin for the complex.

  17. Spontaneous absorption of an accelerated hydrogen atom near a conducting plane in vacuum

    CERN Document Server

    Yu, H; Yu, Hongwei; Zhu, Zhiying

    2006-01-01

    We study, in the multipolar coupling scheme, a uniformly accelerated multilevel hydrogen atom in interaction with the quantum electromagnetic field near a conducting boundary and separately calculate the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy. It is found that the perfect balance between the contributions of vacuum fluctuations and radiation reaction that ensures the stability of ground-state atoms is disturbed, making spontaneous transition of ground-state atoms to excited states possible in vacuum with a conducting boundary. The boundary-induced contribution is effectively a nonthermal correction, which enhances or weakens the nonthermal effect already present in the unbounded case, thus possibly making the effect easier to observe. An interesting feature worth being noted is that the nonthermal corrections may vanish for atoms on some particular trajectories.

  18. Electrochemical removal of hydrogen atoms in Mg-doped GaN epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, June Key, E-mail: junekey@jnu.ac.kr, E-mail: hskim7@jbnu.ac.kr; Hyeon, Gil Yong; Tawfik, Wael Z.; Choi, Hee Seok [Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Ryu, Sang-Wan [Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Jeong, Tak [Korea Photonics Technology Institute, Gwangju 500-460 (Korea, Republic of); Jung, Eunjin; Kim, Hyunsoo, E-mail: junekey@jnu.ac.kr, E-mail: hskim7@jbnu.ac.kr [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2015-05-14

    Hydrogen atoms inside of an Mg-doped GaN epitaxial layer were effectively removed by the electrochemical potentiostatic activation (EPA) method. The role of hydrogen was investigated in terms of the device performance of light-emitting diodes (LEDs). The effect of the main process parameters for EPA such as solution type, voltage, and time was studied and optimized for application to LED fabrication. In optimized conditions, the light output of 385-nm LEDs was improved by about 26% at 30 mA, which was caused by the reduction of the hydrogen concentration by ∼35%. Further removal of hydrogen seems to be involved in the breaking of Ga-H bonds that passivate the nitrogen vacancies. An EPA process with high voltage breaks not only Mg-H bonds that generate hole carriers but also Ga-H bonds that generate electron carriers, thus causing compensation that impedes the practical increase of hole concentration, regardless of the drastic removal of hydrogen atoms. A decrease in hydrogen concentration affects the current-voltage characteristics, reducing the reverse current by about one order and altering the forward current behavior in the low voltage region.

  19. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage.

    Science.gov (United States)

    Cho, Eun Seon; Ruminski, Anne M; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J

    2016-02-23

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.

  20. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage

    Science.gov (United States)

    Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J.

    2016-02-01

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.

  1. Reaction rate of H atoms with N2O in hot water

    Science.gov (United States)

    Sargent, Leanne; Sterniczuk, Marcin; Bartels, David M.

    2017-06-01

    The rate constant of H• atoms with N2O in water has been measured by a competition method up to 300 °C. Radiolysis with 2.5 MeV electrons generated H• atoms, and the HD product from their reaction with deuterated tetrahydrofuran (THF-d8) was measured with mass spectroscopy. The concentration of THF-d8 was changed by an order of magnitude in the presence of 25 mM N2O to obtain the ratio of rate constants. To determine the rate constant of H• with THF-d8, a similar competition vs. 0.2 mM OH- ion was also measured. The reaction rate of H• with OH- has been accurately determined vs. temperature in previous work, allowing the two unknown rate constants to be deduced. Rate constant of H• with THF-d8 follows the Arrhenius law ln(k/M-1s-1)=27.33 - (32.30 kJ/mol)/RT. Rate constant of H• with N2O follows the Arrhenius law ln(k/M-1s-1)=24.50 - (30.42 kJ/mol)/RT. In all likelihood, the N2O reaction proceeds via cis-HNNO• radical intermediate as in the gas phase, but with participation of a bridging water molecule in the 1,3 hydrogen shift to form N2 and •OH products.

  2. Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity.

    Science.gov (United States)

    Zhang, Bin; Asakura, Hiroyuki; Zhang, Jia; Zhang, Jiaguang; De, Sudipta; Yan, Ning

    2016-07-11

    In coordination chemistry, catalytically active metal complexes in a zero- or low-valent state often adopt four-coordinate square-planar or tetrahedral geometry. By applying this principle, we have developed a stable Pt1 single-atom catalyst with a high Pt loading (close to 1 wt %) on phosphomolybdic acid(PMA)-modified active carbon. This was achieved by anchoring Pt on the four-fold hollow sites on PMA. Each Pt atom is stabilized by four oxygen atoms in a distorted square-planar geometry, with Pt slightly protruding from the oxygen planar surface. Pt is positively charged, absorbs hydrogen easily, and exhibits excellent performance in the hydrogenation of nitrobenzene and cyclohexanone. It is likely that the system described here can be extended to a number of stable SACs with superior catalytic activities.

  3. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water.

    Science.gov (United States)

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-08-19

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry.

  4. Production of Excited Atomic Hydrogen and Deuterium from HD Photodissociation

    Science.gov (United States)

    Machacek, J. R.; Bozek, J. D.; Furst, J. E.; Gay, T. J.; Gould, H.; Kilcoyne, A. L. D.; McLaughlin, K. W.

    2008-05-01

    We have measured the production of Lyα, Hα, and Hβ fluorescence from atomic H and D for the photodissociation of HD by linearly-polarized photons with energies between 20 and 66 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Theoretical calculation are not yet available for HD, but comparison between the relative cross sections for H2, D2 and HD targets and the available theory for H2 and D2 [1] allow for an estimate of the relative strength of each dissociation channel in this energy range. [1] J. D. Bozek et al., J. Phys. B 39, 4871 (2006). Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  5. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation, Imaging, Observations, and Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2005-01-01

    This report presents particle formation observations and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Hydrogen was frozen into particles in liquid helium, and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. These newly analyzed data are from the test series held on February 28, 2001. Particle sizes from previous testing in 1999 and the testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed: microparticles and delayed particle formation. These experiment image analyses are some of the first steps toward visually characterizing these particles, and they allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  6. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation Energy and Imaging Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2002-01-01

    This paper presents particle formation energy balances and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium during the Phase II testing in 2001. Solid particles of hydrogen were frozen in liquid helium and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. The particle formation efficiency is also estimated. Particle sizes from the Phase I testing in 1999 and the Phase II testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed. These experiment image analyses are one of the first steps toward visually characterizing these particles and it allows designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  7. Temperature and relative density of atomic hydrogen in a multicusp H sup minus volume source

    Energy Technology Data Exchange (ETDEWEB)

    Bruneteau, A.M.; Hollos, G.; Bacal, M. (Laboratoire de Physique des Milieux Ionises, Laboratoire du Centre National de la Recherche Scientifique, Ecole Polytechnique, 91128 Palaiseau Cedex, (France)); Bretagne, J. (Laboratoire de Physique des Gaz et des Plasmas, LA73 du Centre National de la Recherche Scientifique, Universite de Paris-Sud, 91405 Orsay (France))

    1990-06-15

    The Balmer {beta} and {gamma} line shapes have been analyzed to determine the relative density and the temperature of hydrogen atoms in magnetic multicusp plasma generators. Results for a 90-V, 4--40-mTorr, 1--18-A conventional multicusp plasma generator and a 50-V, 4-mTorr, 1--15-A hybrid multicusp plasma generator are presented. The relative number density of hydrogen atoms increased smoothly with pressure and discharge current but never exceeded 10%. The absolute atomic number density in a 90-V 10-A discharge varied in proportion with pressure. The atomic temperature (in the 0.1--0.4-eV range) decreased with pressure and slowly increased with the discharge current. The role of atoms in the processes determining the H{sup {minus}} temperature and the H{sub 2} vibrational and rotational temperatures is discussed. The results confirm that in multicusp negative-ion sources collisional excitation of ground state atoms and molecules by energetic electrons is the dominant process in Balmer-{beta} and -{gamma} light emission.

  8. Controlling residual hydrogen gas in mass spectra during pulsed laser atom probe tomography.

    Science.gov (United States)

    Kolli, R Prakash

    2017-01-01

    Residual hydrogen (H2) gas in the analysis chamber of an atom probe instrument limits the ability to measure H concentration in metals and alloys. Measuring H concentration would permit quantification of important physical phenomena, such as hydrogen embrittlement, corrosion, hydrogen trapping, and grain boundary segregation. Increased insight into the behavior of residual H2 gas on the specimen tip surface in atom probe instruments could help reduce these limitations. The influence of user-selected experimental parameters on the field adsorption and desorption of residual H2 gas on nominally pure copper (Cu) was studied during ultraviolet pulsed laser atom probe tomography. The results indicate that the total residual hydrogen concentration, HTOT, in the mass spectra exhibits a generally decreasing trend with increasing laser pulse energy and increasing laser pulse frequency. Second-order interaction effects are also important. The pulse energy has the greatest influence on the quantity HTOT, which is consistently less than 0.1 at.% at a value of 80 pJ.

  9. Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization

    Science.gov (United States)

    Derycke, Vincent; Soukiassian, Patrick G.; Amy, Fabrice; Chabal, Yves J.; D'Angelo, Marie D.; Enriquez, Hanna B.; Silly, Mathieu G.

    2003-04-01

    Passivation of semiconductor surfaces against chemical attack can be achieved by terminating the surface-dangling bonds with a monovalent atom such as hydrogen. Such passivation invariably leads to the removal of all surface states in the bandgap, and thus to the termination of non-metallic surfaces. Here we report the first observation of semiconductor surface metallization induced by atomic hydrogen. This result, established by using photo-electron and photo-absorption spectroscopies and scanning tunnelling techniques, is achieved on a Si-terminated cubic silicon carbide (SiC) surface. It results from competition between hydrogen termination of surface-dangling bonds and hydrogen-generated steric hindrance below the surface. Understanding the ingredient for hydrogen-stabilized metallization directly impacts the ability to eliminate electronic defects at semiconductor interfaces critical for microelectronics, provides a means to develop electrical contacts on high-bandgap chemically passive materials, particularly for interfacing with biological systems, and gives control of surfaces for lubrication, for example of nanomechanical devices.

  10. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    Science.gov (United States)

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  11. Adsorption and Diffusion of Hydrogen Atom on Low-index Ag Planes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The 5-parameter Morse potential (5-MP) of the interaction between H atom and Ag surfaces has been constructed. The adsorption and diffusion of H on Ag low-index surfaces are investigated with 5-MP in detail. The characteristics of critical points are obtained. The theoretical results show that H atom can only adsorb at the three-fold site on Ag(111); the quasi-3-fold site and long-bridge site are stable adsorption sites on Ag(110) surface for the H atom, and at low coverage hydrogen predominantly occupies the quasi-3-fold site. This work predicts that the four-fold hollow site is the most stable adsorption state for H atom on Ag(100). The results of this work are approved by the experimental and theoretical results.

  12. Tensorial depolarization of alkali atoms by isotropic collisions with neutral hydrogen

    CERN Document Server

    Derouich, Moncef

    2012-01-01

    Results. We consider the problem of isotropic collisions between an alkali atom and neutral hydrogen. We calculate the collisional tensorial components of general p and s-states, characterized by their effective principal quantum number $n^{*}$. It is found that the behaviour of the tensorial components obey simple power laws allowing quick calculations of the depolarizing collisional rates. As application, our results should allow a rigorous treatment of the atomic polarization profiles of the D1 -D2 lines of alkali atoms. Conclusions. Close coupling treatments of atomic collisions are needed to decipher the information encoded in the polarized radiation from the Sun. Important problems remain unresolved like the role of collisions in the Paschen-Back conditions.

  13. Hot-wire substoichiometric tungsten oxide films deposited in hydrogen environment with n-type conductivity

    Science.gov (United States)

    Kostis, I.; Michalas, L.; Vasilopoulou, M.; Konofaos, N.; Papaioannou, G.; Iliadis, A. A.; Kennou, S.; Giannakopoulos, K.; Papadimitropoulos, G.; Davazoglou, D.

    2012-11-01

    Substoichiometric tungsten oxide nanostructured films were synthesized by a hot-wire deposition technique in hydrogen-rich environment and characterized for their structural and electrical properties. A semiconducting behaviour was identified, allowing n-type conductivity even at room temperature which is an important result since it is well known that fully stoichiometric tungsten trioxide is nearly an insulator. Current-voltage characteristics for various temperatures were measured for tungsten oxide/Si heterostructures and analysed using proper modelling. As a result, the conduction mechanism inside the films was identified and found to be of a dual nature, with variable range hopping being dominant at near room temperatures. The saturation current was found to be thermally activated and the activation energy was calculated at 0.40 eV and the grain boundaries barrier at 150 meV. From Hall measurements it was also revealed that the dominant carriers are electrons and a carrier concentration of about 1014 cm-3 was estimated.

  14. Relativistic spectrum of hydrogen atom in the space-time non-commutativity

    Energy Technology Data Exchange (ETDEWEB)

    Moumni, Mustafa; BenSlama, Achour; Zaim, Slimane [Matter Sciences Department, Faculty of SE and SNV, University of Biskra (Algeria); Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria); Matter Sciences Department, Faculty of Sciences, University of Batna (Algeria)

    2012-06-27

    We study space-time non-commutativity applied to the hydrogen atom and its phenomenological effects. We find that it modifies the Coulomb potential in the Hamiltonian and add an r{sup -3} part. By calculating the energies from Dirac equation using perturbation theory, we study the modifications to the hydrogen spectrum. We find that it removes the degeneracy with respect to the total angular momentum quantum number and acts like a Lamb shift. Comparing the results with experimental values from spectroscopy, we get a new bound for the space-time non-commutative parameter.

  15. Adiabatic Floquet Picture for Hydrogen Atom in an Intense Laser Field

    CERN Document Server

    Wang, Yujun; Esry, B D

    2010-01-01

    We develop an adiabatic Floquet picture in the length gauge to describe the dynamics of a hydrogen atom in an intense laser field. In this picture, we discuss the roles played by frequency and intensity in terms of adiabatic potentials and the couplings between them, which gives a physical and intuitive picture for quantum systems exposed to a laser field. For simplicity, analyze hydrogen and give the adiabatic potential curves as well as some physical quantities that can be readily calculated for the ground state. Both linearly and circularly polarized laser fields are discussed.

  16. Dynamics of a Rydberg hydrogen atom near a metal surface in the electron-extraction scheme

    Energy Technology Data Exchange (ETDEWEB)

    Iñarrea, Manuel [Área de Física Aplicada, Universidad de La Rioja, Logroño (Spain); Lanchares, Víctor [Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, La Rioja (Spain); Palacián, Jesús [Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, Pamplona (Spain); Pascual, Ana I. [Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, La Rioja (Spain); Salas, J. Pablo, E-mail: josepablo.salas@unirioja.es [Área de Física Aplicada, Universidad de La Rioja, Logroño (Spain); Yanguas, Patricia [Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, Pamplona (Spain)

    2015-01-23

    We study the classical dynamics of a Rydberg hydrogen atom near a metal surface in the presence of a constant electric field in the electron-extraction situation [1], e.g., when the field attracts the electron to the vacuum. From a dynamical point of view, this field configuration provides a dynamics richer than in the usual ion-extraction scheme, because, depending on the values of field and the atom–surface distance, the atom can be ionized only towards the metal surface, only to the vacuum or to the both sides. The evolution of the phase space structure as a function of the atom–surface distance is explored in the bound regime of the atom. In the high energy regime, the ionization mechanism is also investigated. We find that the classical results of this work are in good agreement with the results obtained in the wave-packet propagation study carried out by So et al. [1]. - Highlights: • We study a classical hydrogen atom near a metal surface plus a electric field. • We explore the phase space structure as a function of the field strength. • We find most of the electronic orbits are oriented along the field direction. • We study the ionization of the atom for several atom–surface distances. • This classical study is in good agreement with the quantum results.

  17. The dynamical properties of Rydberg hydrogen atom near a metal surface

    Institute of Scientific and Technical Information of China (English)

    GE Meihua; ZHANG Yanhui; WANG Dehua; DU Mengli; LIN Shenglu

    2005-01-01

    The dynamical properties of Rydberg hydrogen atom near a metal surface are presented by using the methods of phase space analysis and closed orbit theory. Transforming the coordinates of the Hamiltonian, we find that the phase space of the system is divided into vibrational and rotational region. Both the Poincaré surface of section and the closed orbit theory verify the same conclusion clearly. In this paper we choose the atomic principal quantum number as n = 20. The dynamical character of the exited hydrogen atom depends sensitively on the atom-surface distance d. When d is sufficiently large, the atom-surface potential can be expressed by the traditional van der Waals force and the system is integrable. When d becomes smaller, there exists a critical value dc. For d > dc, the system is near-integrable and the motion is regular. While chaotic motion appears for d < dc, and the system tends to be non-integrable. The trajectories become unstable and the electron might be captured onto the metal surface.

  18. Electronic and optical properties of BxNyCz monolayers with adsorption of hydrogen atoms

    Science.gov (United States)

    Leite, L.; Azevedo, S.; de Lima Bernardo, B.

    2017-03-01

    We apply first-principles calculations, using density functional theory, to analyze the electronic and optical properties of monolayers of graphene with a nanodomain of 2D hexagonal boron nitrite (h-BN). It also investigated the effects of the adsorption of hydrogen atoms in different atoms at the edge of the h-BN nanodomain. We calculate the electronic band structure, the complex dielectric function and the optical conductivity. For such systems, the calculations demonstrate that the compounds exhibit a prominent excitement in the visible and near-infrared regions. In this form, the present study provides physical basis for potential applications of the considered materials in optoelectronic devices at the nanoscale.

  19. Computation for High Excited Stark Levels of hydrogen Atoms in Uniform Electric Fields

    Institute of Scientific and Technical Information of China (English)

    田人和

    2003-01-01

    We present a new method for the numerical calculation of exact complex eigenvalues of Schrodinger equations for a hydrogen atom in a uniform electric field. This method allows a direct calculation for complex eigenvalues without using any auxiliary treatment, such as the Breit-Wigner parametrization and the complex scale transformation,etc. The characteristics of high excited atoms in electric field have attracted extensive interest in experimental aspect, however, the existing theoretical calculation is only up to n = 40. Here we present the computation results ranging from n = 1 to 100. The data for n(<,_ ) 40 are in agreement with the results of other researchers.

  20. Angular momentum in non-relativistic QED and photon contribution to spin of hydrogen atom

    Energy Technology Data Exchange (ETDEWEB)

    Chen Panying, E-mail: pychen@umd.ed [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Ji Xiangdong [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute of Particle Physics and Cosmology, Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 (China); Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China); Xu Yang [Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China); Zhang Yue [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China)

    2010-04-26

    We study angular momentum in non-relativistic quantum electrodynamics (NRQED). We construct the effective total angular momentum operator by applying Noether's theorem to the NRQED lagrangian. We calculate the NRQED matching for the individual components of the QED angular momentum up to one loop. We illustrate an application of our results by the first calculation of the angular momentum of the ground state hydrogen atom carried in radiative photons, alpha{sub em}{sup 3}/18pi, which might be measurable in future atomic experiments.

  1. Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space

    CERN Document Server

    Wieser, Martin; Futaana, Yoshifumi; Holmström, Mats; Bhardwaj, Anil; Sridharan, R; Dhanya, MB; Wurz, Peter; Schaufelberger, Audrey; Asamura, Kazushi; 10.1016/j.pss.2009.09.012

    2010-01-01

    We report on measurements of extremely high reflection rates of solar wind particles from regolith-covered lunar surfaces. Measurements by the Sub-keV Atom Reflecting Analyzer (SARA) instrument on the Indian Chandrayaan-1 spacecraft in orbit around the Moon show that up to 20% of the impinging solar wind protons are reflected from the lunar surface back to space as neutral hydrogen atoms. This finding, generally applicable to regolith-covered atmosphereless bodies, invalidates the widely accepted assumption that regolith almost completely absorbs the impinging solar wind.

  2. The reaction of hydrogen atoms with hydrogen peroxide as a function of temperature

    DEFF Research Database (Denmark)

    Lundström, T.; Christensen, H.; Sehested, K.

    2001-01-01

    The temperature dependence for the reaction of H atoms with H2O2 at pH 1 has been determined using pulse radiolysis technique. The reaction was studied in the temperature range 10-120 degreesC. The rate constant at 25 degreesC was found to be 5.1 +/- 0.5 x 10(7) dm(3) mol(-1) s(-1) and the activa...

  3. $K$-series X-rays yield measurement of kaonic hydrogen atoms in gaseous target

    CERN Document Server

    Bazzi, M; Bellotti, G; Berucci, C; Bragadireanu, A M; Bosnar, D; Cargnelli, M; Curceanu, C; Butt, A D; d'Uffizi, A; Fiorini, C; Ghio, F; Guaraldo, C; Hayanao, R S; Iliescu, M; Ishiwatari, T; Iwasaki, M; Sandri, P Levi; Marton, J; Okada, S; Pietreanu, D; Piscicchia, K; Vidal, A Romero; Sbardella, E; Scordo, A; Shi, H; Sirghi, D L; Sirghi, F; Tatsuno, H; Doce, O Vazquez; Widmann, E; Zmeskal, J

    2016-01-01

    We measured the $K$-series X-rays of the $K^{-}p$ exotic atom in the SIDDHARTA experiment with a gaseous hydrogen target of 1.3 g/l, which is about 15 times the $\\rho_{\\rm STP}$ of hydrogen gas. At this density, the absolute yields of kaonic X-rays, when a negatively charged kaon stopped inside the target, were determined to be 0.012$^{+0.004}_{-0.003}$ for $K_{\\alpha}$ and 0.043$^{+0.012}_{-0.011}$ for all the $K$-series transitions $K_{tot}$. These results, together with the KEK E228 experiment results, confirm for the first time a target density dependence of the yield predicted by the cascade models, and provide valuable information to refine the parameters used in the cascade models for the kaonic atoms.

  4. Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss' law

    CERN Document Server

    Bureš, Martin

    2014-01-01

    We investigate the consequences of one extra spatial dimension for the stability and energy spectrum of the non-relativistic hydrogen atom with a potential defined by Gauss' law, i.e. proportional to $1/|x|^2$. The additional spatial dimension is considered to be either infinite or curled-up in a circle of radius $R$. In both cases, the energy spectrum is bounded from below for charges smaller than the same critical value and unbounded from below otherwise. As a consequence of compactification, negative energy eigenstates appear: if $R$ is smaller than a quarter of the Bohr radius, the corresponding Hamiltonian possesses an infinite number of bound states with minimal energy extending at least to the ground state of the hydrogen atom.

  5. Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss' law

    Science.gov (United States)

    Bureš, Martin; Siegl, Petr

    2015-03-01

    We investigate the consequences of one extra spatial dimension for the stability and energy spectrum of the non-relativistic hydrogen atom with a potential defined by Gauss' law, i.e. proportional to 1 /| x | 2. The additional spatial dimension is considered to be either infinite or curled-up in a circle of radius R. In both cases, the energy spectrum is bounded from below for charges smaller than the same critical value and unbounded from below otherwise. As a consequence of compactification, negative energy eigenstates appear: if R is smaller than a quarter of the Bohr radius, the corresponding Hamiltonian possesses an infinite number of bound states with minimal energy extending at least to the ground state of the hydrogen atom.

  6. Hydrogen mimicking the properties of coinage metal atoms in Cu and Ag monohydride clusters.

    Science.gov (United States)

    Vetter, Karsten; Proch, Sebastian; Ganteför, Gerd F; Behera, Swayamprabha; Jena, Puru

    2013-12-28

    A systematic study of the electronic structure and equilibrium geometries of Cun, Cun-1H, Agn, and Agn-1H; n = 2-5 clusters is carried out using photoelectron spectroscopy (PES) experiments and density functional theory based calculations. Our objective is to see if the substitution of a coinage metal atom by hydrogen would retain the electronic structure of the parent metal cluster since both systems are isoelectronic. For clusters with n ≥ 3, we find that the measured PES and vertical detachment energies (VDEs) (i.e. energies necessary to remove an electron from the anionic Mn(-) (M = Cu, Ag) clusters without changing their geometries) are close to those of Mn-1H(-) clusters, suggesting that substitution of a metal atom with hydrogen does not perturb the electronic structure of the parent cluster anion significantly. Calculated VDEs agree very well with experiment validating the theoretical methods used as well as the geometries of the neutral and anionic clusters.

  7. Absolute measurements of electron capture cross sections of C3+ from atomic and molecular hydrogen

    Science.gov (United States)

    Sant'Anna, M. M.; Melo, W. S.; Santos, A. C. F.; Shah, M. B.; Sigaud, G. M.; Montenegro, E. C.

    2000-02-01

    Absolute measurements of single- and double-electron-capture cross sections by C3+ projectiles on atomic and molecular hydrogen targets were performed for projectile energies between 1.0 and 3.5 MeV for the single- and 1.0 and 2.0 MeV for the double-capture processes. The icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> H /icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> H2 cross section ratios were measured using an absolutely calibrated tungsten-tube furnace for the production of atomic hydrogen. The single-capture data are compared with calculations based on the boundary-corrected first Born approximation, the eikonal approximation and a semiclassical model, presenting a good overall agreement. Calculations for the double capture using an analytical expression, obtained within the independent electron approximation and based on the same semiclassical model, give a reasonable qualitative description of the data.

  8. Uniform Atomic Layer Deposition of Al2O3 on Graphene by Reversible Hydrogen Plasma Functionalization

    Science.gov (United States)

    2017-01-01

    A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 films down to 8 nm in thickness. Hall measurements and Raman spectroscopy reveal that the hydrogen plasma functionalization is reversible upon Al2O3 ALD and subsequent annealing at 400 °C and in this way does not deteriorate the graphene’s charge carrier mobility. This is in contrast with oxygen plasma functionalization, which can lead to a uniform 5 nm thick closed film, but which is not reversible and leads to a reduction of the charge carrier mobility. Density functional theory (DFT) calculations attribute the uniform growth on both H2 and O2 plasma functionalized graphene to the enhanced adsorption of trimethylaluminum (TMA) on these surfaces. A DFT analysis of the possible reaction pathways for TMA precursor adsorption on hydrogenated graphene predicts a binding mechanism that cleans off the hydrogen functionalities from the surface, which explains the observed reversibility of the hydrogen plasma functionalization upon Al2O3 ALD.

  9. Hydrogen-Like Atom Description in the Framework of Quantum Mechanics with Consequently Probabilistic Interpretation

    CERN Document Server

    Zhidkov, E P

    2000-01-01

    In the paper a research of spectrum of the energy operator of the hydrogen-like atom in quantum mechanics with non-negative quantum function of distribution (QFD) is carried out. As a principle spectral property of the Hamiltonian its essential spectrum has been established. We have not got the theoretical response on questions of the evaluation of numbers and quantities of eigenvalues, which do not belong the essential spectrum. A method of numerical searching to answer these questions has been proposed.

  10. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH SOME OR ALL HYDROGEN ATOMS REMOVED

    Energy Technology Data Exchange (ETDEWEB)

    Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ricca, Alessandra, E-mail: Charles.W.Bauschlicher@nasa.gov, E-mail: Alessandra.Ricca-1@nasa.gov [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States)

    2013-10-20

    The loss of one hydrogen from C{sub 96}H{sub 24} does not significantly affect the infrared spectra of the neutral, cation, or anion. Excluding a very weak C-C stretching band at 5.1 μm, the loss of two adjacent duo hydrogens does not significantly affect the spectra compared with the parent. Removing all of the hydrogen atoms significantly increases the intensity of the new C-C stretching band, and, for the cation, shifts it to a longer (5.2 μm) wavelength. Observations show a feature near 5.25 μm, which has been attributed to overtone and combination bands from polycyclic aromatic hydrocarbons (PAHs). This current work suggests that dehydrogenated PAHs might also contribute to this band, but its weakness implies that fully dehydrogenated cationic or dicationic species are very rare.

  11. Nuclear recoil effect in the Lamb shift of light hydrogen-like atoms

    CERN Document Server

    Yerokhin, V A

    2015-01-01

    We report high-precision calculations of the nuclear recoil effect to the Lamb shift of hydrogen-like atoms to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter $Z\\alpha$. The results are in excellent agreement with the known terms of the $Z\\alpha$ expansion and allow an accurate identification of the nonperturbative higher-order remainder. For hydrogen, the higher-order remainder was found to be much larger than anticipated. This result resolves the long-standing disagreement between the numerical all-order and the analytical $Z\\alpha$-expansion approaches to the recoil effect and completely removes the second-largest theoretical uncertainty in the hydrogen Lamb shift of the $1S$ and $2S$ states.

  12. Chemisorption of hydrogen atoms and hydroxyl groups on stretched graphene: A coupled QM/QM study

    Science.gov (United States)

    Katin, Konstantin P.; Prudkovskiy, Vladimir S.; Maslov, Mikhail M.

    2017-09-01

    Using the density functional theory coupled with the nonorthogonal tight-binding model, we analyze the chemisorption of hydrogen atoms and hydroxyl groups on the unstrained and stretched graphene sheets. Drawback of finite cluster model of graphene for the chemisorption energy calculation in comparison with the QM/QM approach applied is discussed. It is shown that the chemisorption energy for the hydroxyl group is sufficiently lower than for hydrogen at stretching up to 7.5%. The simultaneous paired chemisorption of hydrogen and hydroxyl groups on the same hexagon has also been examined. Adsorption of two radicals in ortho and para positions is found to be more energetically favorable than those in meta position at any stretching considered. In addition the energy difference between adsorbent pairs in ortho and para positions decreases as the stretching rises. It could be concluded that the graphene stretching leads to the loss of preferred mutual arrangement of two radicals on its surface.

  13. Hydrogen atom in strong magnetic field: a high accurate calculation in spheroidal coordinates

    Institute of Scientific and Technical Information of China (English)

    LIU Qiang; KANG Shuai; ZHANG Xian-zhou; SHI Ting-yun

    2006-01-01

    A B-spline-type basis set method for the calculation of hydrogen atom in strong magnetic fields in the frame of spheroidal coordinates has been introduced.High accurate energy levels of hydrogen in the magnetic field,with strength ranging from 0 to 1000 a.u.,have been obtained.For the ground state,ls0,energies with at least 11 significant digits have been obtained.For the low-lying excited state,2p-1,energies with at least 9 significant digits are obtained.The method has also been applied to the calculation of hydrogen Rydberg states in laboratory magnetic fields.Energy spectra with at least 10 significant digits are presented.A comparison with other results in the literatures has been performed.Our results are comparable to the most accurate one up to date.A possible extension to the cases of parallel and crossed electric and magnetic fields have been discussed.

  14. Polarization dependence in inelastic scattering of electrons by hydrogen atoms in a circularly polarized laser field

    Science.gov (United States)

    Buică, Gabriela

    2017-01-01

    We theoretically study the influence of laser polarization in inelastic scattering of electrons by hydrogen atoms in the presence of a circularly polarized laser field in the domain of field strengths below 107 V/cm and high projectile energies. A semi-perturbative approach is used in which the interaction of the projectile electrons with the laser field is described by Gordon-Volkov wave functions, while the interaction of the hydrogen atom with the laser field is described by first-order time-dependent perturbation theory. A closed analytical solution is derived in laser-assisted inelastic electron-hydrogen scattering for the 1 s → nl excitation cross section which is valid for both circular and linear polarizations. For the excitation of the n=2 levels simple analytical expressions of differential cross section are derived for laser-assisted inelastic scattering in the perturbative domain, and the differential cross sections by the circularly and linearly polarized laser fields and their ratios for one- and two-photon absorption are calculated as a function of the scattering angle. Detailed numerical results for the angular dependence and the resonance structure of the differential cross sections are discussed for the 1 s → 4 l excitations of hydrogen in a circularly polarized laser field.

  15. The distribution of atomic hydrogen in EAGLE galaxies: morphologies, profiles, and HI holes

    CERN Document Server

    Bahe, Yannick M; Kauffmann, Guinevere; Bower, Richard G; Schaye, Joop; Furlong, Michelle; Lagos, Claudia; Schaller, Matthieu; Trayford, James W; Vecchia, Claudio Dalla; Theuns, Tom

    2015-01-01

    We compare the mass and internal distribution of atomic hydrogen (HI) in 2200 present-day central galaxies with M_star > 10^10 M_Sun from the 100 Mpc EAGLE Reference simulation to observational data. Atomic hydrogen fractions are corrected for self-shielding using a fitting formula from radiative transfer simulations and for the presence of molecular hydrogen using an empirical or a theoretical prescription from the literature. The resulting neutral hydrogen fractions, M_(HI+H2)/M_star, agree with observations to better than 0.1 dex for galaxies with M_star between 10^10 and 10^11 M_Sun. Our fiducial, empirical H2 model based on gas pressure results in galactic HI mass fractions, M_HI/M_star, that agree with observations from the GASS survey to better than 0.3 dex, but the alternative theoretical H2 formula leads to a negative offset in M_HI/M_star of up to 0.5 dex. Visual inspection reveals that most HI disks in simulated HI-rich galaxies are vertically disturbed, plausibly due to recent accretion events. Ma...

  16. Muon transfer from muonic hydrogen to heavier atoms; Transfert de charge muonique

    Energy Technology Data Exchange (ETDEWEB)

    Dupays, A

    2004-06-01

    This work concerns muon transfer from muonic hydrogen to heavier atoms. Recently, a method of measurement of the hyperfine structure of ground-state muonic hydrogen based on the collision energy dependence of the muon transfer rate to oxygen has been proposed. This proposal is based on measurements which where performed at the Paul Scherrer Institute in the early nineties which indicate that the muon transfer from muonic hydrogen to oxygen increases by a factor of 4 going from thermal to 0.12 eV energies. The motivation of our calculations was to confirm this behaviour. To study the collision energy dependence of the muon transfer rate, we have used a time-independent close-coupling method. We have set up an hyperspherical elliptic formalism valid for nonzero total angular momentum which allows accurate computations of state-to-state reactive and charge exchange processes. We have applied this formalism to muon-transfer process to oxygen and neon. The comparison with experimental results is in both cases excellent. Finally, the neon transfer rate dependence with energy suggests to use neon instead of oxygen to perform a measurement of the hyperfine structure of muonic hydrogen. The results of accurate calculations of the muon transfer rates from muonic protium and deuterium atoms to nitrogen, oxygen and neon are also reported. Very good agreement with measured rates is obtained and for the three systems, the isotopic effect is perfectly reproduced. (author)

  17. Excitation of hydrogen atoms in collisions with helium atoms: the role of electron–electron interaction

    Science.gov (United States)

    Frémont, F.; Belyaev, A. K.

    2017-02-01

    Cross sections for producing H(nl) excited state atoms in H(1s) + He(1s2) collisions are calculated using the CTMC method, at impact energies ranging from 20 eV to 100 keV. The role of the electron correlation is studied. In the first step, the interactions between each pair of the three electrons are neglected. This leads to disagreement of the calculated total cross section for producing H(2l) atoms with previous experimental and theoretical results. In a second step, the electron–electron interaction is taken into account in a rigorous way, that is, in the form of the pure Coulomb potential. To make sure that the He target is stable before the collision, phenomenological potentials for the electron–helium-nucleus interactions that simulate the Heisenberg principle are included in addition to the Coulomb potential. The excitation cross section calculated in the frame of this model is in remarkable agreement with previous data in the range between 200 eV and 5 keV. At other energies, discrepancies are revealed, but only by a factor of less than 2 at high energies. The present results show the decisive role of the electron–electron interaction during collisions. In addition, they demonstrate the ability of classical mechanics to take into account the effects of the electron correlation.

  18. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Borodi, Gheorghe

    2008-12-09

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO{sub 2}{sup +} with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H{sub 2} densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH{sup +}, CH{sub 2}{sup +}, and CH{sub 4}{sup +} have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  19. Improvement of hydrogen uptake in iron and vanadium matrices by doping with 3d atomic impurities

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, N.B. [Laboratoire de Magnetisme de Bretagne, EA 4522 Universite de Bretagne Occidentale, 6 avenue Victor Le Gorgeu, 29285 Brest Cedex (France); Lebon, A., E-mail: alexandre.lebon@univ-brest.fr [Laboratoire de Magnetisme de Bretagne, EA 4522 Universite de Bretagne Occidentale, 6 avenue Victor Le Gorgeu, 29285 Brest Cedex (France); Vega, A. [Laboratoire de Magnetisme de Bretagne, EA 4522 Universite de Bretagne Occidentale, 6 avenue Victor Le Gorgeu, 29285 Brest Cedex (France); Mokrani, A. [Institut des Materiaux Jean Rouxel, UMR CNRS 6502, Universite de Nantes, 2 rue de la Houssiniere, B.P. 44322 Nantes (France)

    2012-12-25

    Highlights: Black-Right-Pointing-Pointer H trapping is easier in V matrix than in Fe matrix whatever the 3d TM impurity. Black-Right-Pointing-Pointer Sc and Ti are the best impurities to trap atomic H in V matrix. Black-Right-Pointing-Pointer Fe or Mn doping in V enhance the density of H storage. - Abstract: The insertion of hydrogen in V and Fe has been investigated by means of pseudopotential DFT calculations with localized basis sets. In Fe and V matrices we have replaced the central atom by a transition metal impurity X = Sc, Ti, Cr, Mn, Fe, Co and Ni to study the capacity of the environment to trap hydrogen. The dissolution energy and structural rearrangement upon H uptake at the different sites close to the doping impurity are calculated. Optimal electronic environments for H trapping are also determined through the calculation of the Fukui function. In the V matrix, the insertion of hydrogen is promoted by doping with the two impurities located at the left of V in the Periodical Table, that is, Ti and Sc. In the iron matrix, among the elements at its left in the Periodic Table, only Mn improves the H uptake, whereas doping with V and Ti worsen the capability of absorbing hydrogen. Finally, the H-H interaction is found to be strongly dependent upon the metal-hydrogen interaction. Elements like Mn or Fe which shorten the H-X distance, exhibit a strong 3d TM state-1s hydrogen state hybridization that seems to wash out the repulsive H-H Coulomb interaction below the 2.0 Angstrom-Sign limit. Addition of a small percentage of Fe or Mn in binary bcc alloys (V-Ti) is suggested to locally enhance the H storage capacity.

  20. Surface Modification of AB2. and AB5 Hydrogen Storage Alloy Electrodes by the Hot-Charging Treatment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of the hot-charging treatment on the performance ofAB2 and AB5 hydrogen storage alloy electrodes was investigated. The result showed that the treatment can markedly improve the voltage plateau ratio (VPR), the high rate discharge ability (HRDA), the diffusion coefficient of hydrogen DH and the discharge capacity of the AB2 hydrogen storage alloy electrode. The SEM analysis showed that the hot-charging treatment brings about a Ni-rich surface due to the dissolution of Zr oxides. It is also very helpful for the improvement of the kinetic properties of AB2 hydrogen storage alloy electrode because the microcracking o.f the surface results in fresh surface. This can be the basic modification treatment for NiMH battery used in electric vehicles (EVs) in the future. But for AB5 type alloys, the treatment has the disadvantage of impairing the comprehensive electrochemical properties, because the surface of the alloy may be corroded during the treatment. The mechanism of the surface modification of the electrode is also proposed.

  1. High removal rate of cross-linked SU-8 resist using hydrogen radicals generated by tungsten hot-wire catalyzer

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Akihiko, E-mail: a.kono@neptune.kanazawa-it.ac.jp [Kanazawa Institute of Technology, 7-1 Ougigaoka, Nonoichi, Ishikawa 921-8501 (Japan); Arai, Yu; Maruoka, Takeshi; Yamamoto, Masashi; Goto, Yousuke; Takahashi, Seiji; Nishiyama, Takashi [Kanazawa Institute of Technology, 7-1 Ougigaoka, Nonoichi, Ishikawa 921-8501 (Japan); Horibe, Hideo [Osaka City University, Sugimoto, Sumiyoshiku, Osaka 558-8585 (Japan)

    2014-07-01

    This paper discusses the removal of chemically amplified negative-tone i-line resist SU-8 using hydrogen radicals generated by the catalytic decomposition of H{sub 2} molecules in H{sub 2}/N{sub 2} mixed gas (H{sub 2}:N{sub 2} = 10:90 vol.%) using a tungsten hot-wire catalyzer. SU-8 resists with exposure doses from 7 to 280 mJ/cm{sup 2} were removed by hydrogen radicals, although the SU-8 removal rate was independent of the exposure dose. The SU-8 removal rate increased with both substrate and catalyzer temperature, in addition to a decrease in the distance between the catalyzer and substrate. A high removal rate for cross-linked SU-8 with an exposure dose of 14 mJ/cm{sup 2} of approximately 4 μm/min was achieved with a catalyzer to substrate distance of 20 mm, and catalyzer and initial substrate temperatures of 2400 and 165 °C, respectively. - Highlights: • Chemically amplified negative-tone i-line resist SU-8 removed by hydrogen radicals • Hydrogen radicals generated by catalytic H{sub 2} decomposition using hot-wire catalyzer • The cross-linked SU-8 resist was removed at a rate of approximately 4 μm/min.

  2. Resonances of a hydrogen atom in strong parallel electric and magnetic fields using B-spline basis sets

    Institute of Scientific and Technical Information of China (English)

    Zhang Yue-Xia; Meng Hui-Yan; Shi Ting-Yun

    2008-01-01

    The B-spline basis set plus complex scaling method is applied to the numerical calculation of the exact resonance parameters Er and I/2 of a hydrogen atom in parallel electric and magnetic fields.The method can calculate the ground and higher excited resonances accurately and efficiently.The resonance parameters with accuracies of 10-9 - 10-12 for hydrogen atom in parallel fields with different field strengths and symmetries are presented and compared with previous ones.Extension to the calculation of Rydberg atom in crossed electric and magnetic fields and of atomic double excited states in external electric fields is discussed.

  3. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring.

    Science.gov (United States)

    Koskinen, Perttu E P; Lay, Chyi-How; Puhakka, Jaakko A; Lin, Ping-Jei; Wu, Shu-Yii; Orlygsson, Jóhann; Lin, Chiu-Yue

    2008-11-01

    Dark fermentative hydrogen production from glucose by a thermophilic culture (33HL), enriched from an Icelandic hot spring sediment sample, was studied in two continuous-flow, completely stirred tank reactors (CSTR1, CSTR2) and in one semi-continuous, anaerobic sequencing batch reactor (ASBR) at 58 degrees C. The 33HL produced H2 yield (HY) of up to 3.2 mol-H2/mol-glucose along with acetate in batch assay. In the CSTR1 with 33HL inoculum, H2 production was unstable. In the ASBR, maintained with 33HL, the H2 production enhanced after the addition of 6 mg/L of FeSO4 x H2O resulting in HY up to 2.51 mol-H2/mol-glucose (H2 production rate (HPR) of 7.85 mmol/h/L). The H2 production increase was associated with an increase in butyrate production. In the CSTR2, with ASBR inoculum and FeSO4 supplementation, stable, high-rate H2 production was obtained with HPR up to 45.8 mmol/h/L (1.1 L/h/L) and HY of 1.54 mol-H2/mol-glucose. The 33HL batch enrichment was dominated by bacterial strains closely affiliated with Thermobrachium celere (99.8-100%). T. celere affiliated strains, however, did not thrive in the three open system bioreactors. Instead, Thermoanaerobacterium aotearoense (98.5-99.6%) affiliated strains, producing H2 along with butyrate and acetate, dominated the reactor cultures. This culture had higher H2 production efficiency (HY and specific HPR) than reported for mesophilic mixed cultures. Further, the thermophilic culture readily formed granules in CSTR and ASBR systems. In summary, the thermophilic culture as characterized by high H2 production efficiency and ready granulation is considered very promising for H2 fermentation from carbohydrates.

  4. A molecular dynamics simulation of hydrogen atoms collisions on an H-preadsorbed silica surface

    Science.gov (United States)

    Rutigliano, M.; Gamallo, P.; Sayós, R.; Orlandini, S.; Cacciatore, M.

    2014-08-01

    The interaction of hydrogen atoms and molecules with a silica surface is relevant for many research and technological areas. Here, the dynamics of hydrogen atoms colliding with an H-preadsorbed β-cristobalite (0 0 1) surface has been studied using a semiclassical collisional method in conjunction with a recently developed analytical potential energy surface based on density functional theory (DFT) calculations. The atomic recombination probability via an Eley-Rideal (E-R) mechanism, as well as the probabilities for other competitive surface processes, have been determined in a broad range of collision energies (0.04-3.0 eV) for off-normal (θv = 45°) and normal (θv = 0°) incidence and for two different surface temperatures (TS = 300 and 1000 K). H2,gas molecules form in roto-vibrational excited levels while the energy transferred to the solid surface is below 10% for all simulated conditions. Finally, the global atomic recombination coefficient (γE-R) and vibrational state resolved recombination coefficients (γ(v)) were calculated and compared with the available experimental values. The calculated collisional data are of interest in chemical kinetics studies and fluid dynamics simulations of silica surface processes in H-based low-temperature, low-pressure plasmas.

  5. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhuoling; Wang, Hao [Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Sanvito, Stefano [School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2 (Ireland); Hou, Shimin, E-mail: smhou@pku.edu.cn [Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Beida Information Research (BIR), Tianjin 300457 (China)

    2015-12-21

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green’s function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4p{sub z} atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices.

  6. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface.

    Science.gov (United States)

    Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2015-12-21

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4pz atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices.

  7. High-Multipole Excitations of Hydrogen-Like Atoms by Twisted Photons near Phase Singularity

    CERN Document Server

    Afanasev, Andrei; Mukherjee, Asmita

    2016-01-01

    We calculate transition amplitudes and cross sections for excitation of hydrogen-like atoms by the twisted photon states, or photon states with angular momentum projection on the direction of propagation exceeding $\\hbar$. If the target atom is located at distances of the order of atomic size near the phase singularity in the vortex center, the transitions rates into the states with orbital angular momentum $l_f>1$ become comparable with the rates for electric dipole transitions. It is shown that when the transition rates are normalized to the local photon flux, the resulting cross sections for $l_f>1$ are singular near the optical vortex center. Relation to the "quantum core" concept introduced by Berry and Dennis is discussed.

  8. Semiclassical Calculation of Recurrence Spectra of Rydberg Hydrogen Atom Near a Metal Surface

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua

    2009-01-01

    Using closed orbit theory, we give a clear physical picture description of the Rydberg hydrogen atom near a metal surface and calculate the Fourier transformed recurrence spectra of this system at different scaled energies below ionization threshold.The results show that with the increase of the scaled energy, the number of the closed orbit increases greatly.Some of the orbits are created by the bifurcation of the perpendicular orbit.This case is quite similar to the Rydberg atom in an electric field.When the scaled energy increases furthermore, chaotic orbits appear.This study provides a different perspective on the dynamical behavior of the Rydberg atom near a metal surface.

  9. Atoms and Nanoparticles of Transition Metals as Catalysts for Hydrogen Desorption from Magnesium Hydride

    Directory of Open Access Journals (Sweden)

    N. Bazzanella

    2011-01-01

    Full Text Available The hydrogen desorption kinetics of composite materials made of magnesium hydride with transition metal additives (TM: Nb, Fe, and Zr was studied by several experimental techniques showing that (i a few TM at.% concentrations catalyse the H2 desorption process, (ii the H2 desorption kinetics results stabilized after a few H2 sorption cycles when TM atoms aggregate by forming nanoclusters; (iii the catalytic process occurs also at TM concentration as low as 0.06 at.% when TM atoms clustering is negligible, and (iv mixed Fe and Zr additives produce faster H2 desorption kinetics than single additive. The improved H2 desorption kinetics of the composite materials can be explained by assuming that the interfaces between the MgH2 matrix and the TM nanoclusters act as heterogeneous sites for the nucleation of the Mg phase in the MgH2 matrix and promote the formation of fast diffusion channels for H migrating atoms.

  10. Measurement of atomic and molecular hydrogen in a tandem magnetic multicusp H sup minus ion source by VUV spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Young, A.T.; Stutzin, G.C.; Chen, P.; Kunkel, W.B.; Leung, K.N. (Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States))

    1992-04-01

    The populations of ground electronic state atomic hydrogen and ground electronic state, vibrationally--rotationally excited hydrogen molecule in a negative hydrogen ion source discharge have been measured using vacuum ultraviolet (VUV) laser absorption spectroscopy. These populations have been measured under a variety of discharge conditions in two different regions of a tandem chamber ion source. Preliminary results of the measurements in the driver region and filter region are given. It is observed that the atomic hydrogen density decreases as one goes from the driver to the filter region. This indicates that the surfaces directly adjacent to the filter region are net sinks for hydrogen atoms. In contrast, the molecular vibrational population distribution shows only a small difference between the two regions, indicating that these surfaces are not net sinks for the excited molecules.

  11. Three-dimensional simulation on explosions of hydrogen atomic clusters irradiated by an intense femtosecond laser pulse

    Institute of Scientific and Technical Information of China (English)

    Xia Yong; Liu Jian-Sheng; Ni Guo-Quan; Xu Zhi-Zhan

    2004-01-01

    Using classic particle dynamics simulations, the interaction process between an intense femtosecond laser pulse and icosahedral hydrogen atomic clusters H13, H55 and H147 has been studied. It is revealed that with increasing number of atoms in the cluster, the kinetic energy of ions generated in the Coulomb explosion of the ionized hydrogen clusters increases. The expansion process of the clusters after laser irradiation has also been examined, showing that the expansion scale decreases with increasing cluster size.

  12. Experimental test of higher-order electron-capture processes in collisions of fast protons with atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, H.; Schuch, R.; Justiniano, E.; Schulz, M.; Schwab, W.

    1986-11-03

    We present measurements of the angular distribution of fast hydrogen atoms formed by electron capture of 2.8- and 5.0-MeV protons in atomic hydrogen. In the angular region of the Thomas peak (0.47 mrad) the experimental results obtained with this pure three-body collision system are in reasonable agreement with a strong potential Born calculation and the impulse approximation, but not with other higher-order theories.

  13. Nanosecond pulsed humid Ar plasma jet in air: shielding, discharge characteristics and atomic hydrogen production

    Science.gov (United States)

    Yatom, Shurik; Luo, Yuchen; Xiong, Qing; Bruggeman, Peter J.

    2017-10-01

    Gas phase non-equilibrium plasmas jets containing water vapor are of growing interest for many applications. In this manuscript, we report a detailed study of an atmospheric pressure nanosecond pulsed Ar  +  0.26% H2O plasma jet. The plasma jet operates in an atmospheric pressure air surrounding but is shielded with a coaxial argon flow to limit the air diffusion into the jet effluent core. The jet impinges on a metal plate electrode and produces a stable plasma filament (transient spark) between the needle electrode in the jet and the metal plate. The stable plasma filament is characterized by spatially and time resolved electrical and optical diagnostics. This includes Rayleigh scattering, Stark broadening of the hydrogen Balmer lines and two-photon absorption laser induced fluorescence (TaLIF) to obtain the gas temperature, the electron density and the atomic hydrogen density respectively. Electron densities and atomic hydrogen densities up to 5 × 1022 m-3 and 2 × 1022 m-3 have been measured. This shows that atomic hydrogen is one of the main species in high density Ar-H2O plasmas. The gas temperature does not exceed 550 K in the core of the plasma. To enable in situ calibration of the H TaLIF at atmospheric pressure a previously published O density calibration scheme is extended to include a correction for the line profiles by including overlap integrals as required by H TaLIF. The line width of H TaLIF, due to collision broadening has the same trend as the neutral density obtained by Rayleigh scattering. This suggests the possibility to use this technique to in situ probe neutral gas densities.

  14. The role of hydrogen atoms in interactions involving imidazolium-based ionic liquids

    Science.gov (United States)

    Kempter, V.; Kirchner, B.

    2010-05-01

    In the first part of this report experimental results are discussed which focus onto the importance of hydrogen atoms in the interaction of imidazolium-based ionic liquids. These include examples for the cation-anion interaction in neat ionic liquids as well as the interactions between ionic liquids and their molecular environment, water in particular. Most of the studies emphasize the importance of the C(2)-H group of the imidazolium ring for the intra- and intermolecular interactions; commonly, the interactions of the type C-H … X (X =: O, halide) are attributed to "hydrogen bonding". In the second part it is analyzed whether these interactions and their consequences fulfill the criteria set by standard definitions of hydrogen bonding. Two cation-anion co-conformations at the C(2)-H group are found. One co-conformer (in-plane) often resembles a hydrogen bond while the other one (on-top) points to a non-hydrogen bonding behavior. Furthermore, the degree of hydrogen bonding for the in-plane structure is very dependent on the anion. Spatial distribution functions show that, in general, both co-conformations are occupied. However, the question of how long a particular co-conformer is populated in the liquid state has yet to be answered. Therefore, it is concluded that the term "hydrogen bond" should, at present, be treated with care to characterize the cation-anion contacts, because of the above-mentioned difficulties. Once more it must be stressed that oversimplifications and generalizations, even for this subclass of ionic liquids have to be avoided, because these liquids are more complicated than it appears from first sight.

  15. A Guided-Inquiry Lab for the Analysis of the Balmer Series of the Hydrogen Atomic Spectrum

    Science.gov (United States)

    Bopegedera, A. M. R. P.

    2011-01-01

    A guided-inquiry lab was developed to analyze the Balmer series of the hydrogen atomic spectrum. The emission spectrum of hydrogen was recorded with a homemade benchtop spectrophotometer. By drawing graphs and a trial-and-error approach, students discover the linear relationship presented in the Rydberg formula and connect it with the Bohr model…

  16. The constitution of the atmospheric layers and the extreme ultraviolet spectrum of hot hydrogen-rich white dwarfs

    Science.gov (United States)

    Vennes, Stephane

    1992-01-01

    An analysis is presented of the atmospheric properties of hot, H-rich, DA white dwarfs that is based on optical, UV, and X-ray observations aimed at predicting detailed spectral properties of these stars in the range 80-800 A. The divergences between observations from a sample of 15 hot DA white dwarfs emitting in the EUV/soft X-ray range and pure H synthetic spectra calculated from a grid of model atmospheres characterized by Teff and g are examined. Seven out of 15 DA stars are found to consistently exhibit pure hydrogen atmospheres, the remaining seven stars showing inconsistency between FUV and EUV/soft X-ray data that can be explained by the presence of trace EUV/soft X-ray absorbers. Synthetic data are computed assuming two other possible chemical structures: photospheric traces of radiatively levitated heavy elements and a stratified hydrogen/helium distribution. Predictions about forthcoming medium-resolution observations of the EUV spectrum of selected hot H-rich white dwarfs are made.

  17. Simulation of the Cosmic Evolution of Atomic and Molecular Hydrogen in Galaxies

    CERN Document Server

    Obreschkow, D; De Lucia, G; Khochfar, S; Rawlings, S

    2009-01-01

    We present a simulation of the cosmic evolution of the atomic and molecular phases of the cold hydrogen gas in about 3e7 galaxies, obtained by post-processing the virtual galaxy catalog produced by (De Lucia et al. 2007) on the Millennium Simulation of cosmic structure (Springel et al. 2005). Our method uses a set of physical prescriptions to assign neutral atomic hydrogen (HI) and molecular hydrogen (H2) to galaxies, based on their total cold gas masses and a few additional galaxy properties. These prescriptions are specially designed for large cosmological simulations, where, given current computational limitations, individual galaxies can only be represented by simplistic model-objects with a few global properties. Our recipes allow us to (i) split total cold gas masses between HI, H2, and Helium, (ii) assign realistic sizes to both the HI- and H2-disks, and (iii) evaluate the corresponding velocity profiles and shapes of the characteristic radio emission lines. The results presented in this paper include ...

  18. Density functional study of manganese atom adsorption on hydrogen-terminated armchair boron nitride nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Abdullahi, Yusuf Zuntu [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Physics, Faculty of Science, Kaduna State University, P.M.B. 2339, Kaduna State (Nigeria); Rahman, Md. Mahmudur, E-mail: mahmudur@upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Shuaibu, Alhassan [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Physics, Faculty of Science, Nigerian Defence Academy, P.M.B 2109 Kaduna (Nigeria); Abubakar, Shamsu [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Physics, Faculty of Science, Yobe State University, P.M.B. 1144, Yobe State (Nigeria); Zainuddin, Hishamuddin [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Muhida, Rifki [Department of Physics-Energy Engineering, Surya University, Gedung 01 Scientia Business Park, Jl. Boulevard Gading Serpong Blok O/1, Summarecon Serpong, Tangerang 15810, Banten (Indonesia); Setiyanto, Henry [Analytical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132 (Indonesia)

    2014-08-15

    In this paper, we have investigated stable structural, electric and magnetic properties of manganese (Mn) atom adsorption on armchair hydrogen edge-terminated boron nitride nanoribbon (A-BNNRs) using first principles method based on density-functional theory with the generalized gradient approximation. Calculation shows that Mn atom situated on the ribbons of A-BNNRs is the most stable configuration, where the bonding is more pronounced. The projected density of states (PDOS) of the favored configuration has also been computed. It has been found that the covalent bonding of boron (B), nitrogen (N) and Mn is mainly contributed by s, d like-orbitals of Mn and partially occupied by the 2p like-orbital of N. The difference in energy between the inner and the edge adsorption sites of A-BNNRs shows that Mn atoms prefer to concentrate at the edge sites. The electronic structures of the various configurations are wide, narrow-gap semiconducting and half-metallic, and the magnetic moment of Mn atoms are well preserved in all considered configurations. This has shown that the boron nitride (BN) sheet covered with Mn atoms demonstrates additional information on its usefulness in future spintronics, molecular magnet and nanoelectronics devices.

  19. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy.

    Science.gov (United States)

    Wang, Jiankang; Farrell, James

    2003-09-01

    Metallic iron filings are commonly employed as reducing agents in permeable barriers used for remediating groundwater contaminated by chlorinated solvents. Reactions of trichloroethylene (TCE) and tetrachloroethylene (PCE) with zerovalent iron were investigated to determine the role of atomic hydrogen in their reductive dechlorination. Experiments simultaneously measuring dechlorination and iron corrosion rates were performed to determine the fractions of the total current going toward dechlorination and hydrogen evolution. Corrosion rates were determined using Tafel analysis, and dechlorination rates were determined from rates of byproduct generation. Electrochemical impedance spectroscopy (EIS) was used to determine the number of reactions that controlled the observed rates of chlorocarbon disappearance, as well as the role of atomic hydrogen in TCE and PCE reduction. Comparison of iron corrosion rates with those for TCE reaction showed that TCE reduction occurred almost exclusively via atomic hydrogen at low pH values and via atomic hydrogen and direct electron transfer at neutral pH values. In contrast, reduction of PCE occurred primarily via direct electron transfer at both low and neutral pH values. At low pH values and micromolar concentrations, TCE reaction rates were faster than those for PCE due to more rapid reduction of TCE by atomic hydrogen. At neutral pH values and millimolar concentrations, PCE reaction rates were faster than those for TCE. This shift in relative reaction rates was attributed to a decreasing contribution of the atomic hydrogen reaction mechanism with increasing halocarbon concentrations and pH values. The EIS data showed that all the rate limitations for TCE and PCE dechlorination occurred during the transfer of the first two electrons. Results from this study show that differences in relative reaction rates of TCE and PCE with iron are dependent on the significance of the reduction pathway involving atomic hydrogen.

  20. Hydrogen atom transfer reactions in thiophenol: photogeneration of two new thione isomers.

    Science.gov (United States)

    Reva, Igor; Nowak, Maciej J; Lapinski, Leszek; Fausto, Rui

    2015-02-21

    Photoisomerization reactions of monomeric thiophenol have been investigated for the compound isolated in low-temperature argon matrices. The initial thiophenol population consists exclusively of the thermodynamically most stable thiol form. Phototransformations were induced by irradiation of the matrices with narrowband tunable UV light. Irradiation at λ > 290 nm did not induce any changes in isolated thiophenol molecules. Upon irradiation at 290-285 nm, the initial thiol form of thiophenol converted into its thione isomer, cyclohexa-2,4-diene-1-thione. This conversion occurs by transfer of an H atom from the SH group to a carbon atom at the ortho position of the ring. Subsequent irradiation at longer wavelengths (300-427 nm) demonstrated that this UV-induced hydrogen-atom transfer is photoreversible. Moreover, upon irradiation at 400-425 nm, the cyclohexa-2,4-diene-1-thione product converts, by transfer of a hydrogen atom from the ortho to para position, into another thione isomer, cyclohexa-2,5-diene-1-thione. The latter thione isomer is also photoreactive and is consumed if irradiated at λ atom-transfer isomerization reactions dominate the unimolecular photochemistry of thiophenol confined in a solid argon matrix. A set of low-intensity infrared bands, observed in the spectra of UV irradiated thiophenol, indicates the presence of a phenylthiyl radical with an H- atom detached from the SH group. Alongside the H-atom-transfer and H-atom-detachment processes, the ring-opening photoreaction occurred in cyclohexa-2,4-diene-1-thione by the cleavage of the C-C bond at the alpha position with respect to the thiocarbonyl C[double bond, length as m-dash]S group. The resulting open-ring conjugated thioketene adopts several isomeric forms, differing by orientations around single and double bonds. The species photogenerated upon UV irradiation of thiophenol were identified by comparison of their experimental infrared spectra with the spectra theoretically calculated for

  1. Rate constants for 1,5- and 1,6-hydrogen atom transfer reactions of mono-, di-, and tri-aryl-substituted donors, models for hydrogen atom transfers in polyunsaturated fatty acid radicals.

    Science.gov (United States)

    DeZutter, Christopher B; Horner, John H; Newcomb, Martin

    2008-03-06

    Rate constants for 1,5- and 1,6-hydrogen atom transfer reactions in models of polyunsaturated fatty acid radicals were measured via laser flash photolysis methods. Photolyses of PTOC (pyridine-2-thioneoxycarbonyl) ester derivatives of carboxylic acids gave primary alkyl radicals that reacted by 1,5-hydrogen transfer from mono-, di-, and tri-aryl-substituted positions or 1,6-hydrogen transfer from di- and tri-aryl-substituted positions to give UV-detectable products. Rate constants for reactions in acetonitrile at room temperature ranged from 1 x 10(4) to 4 x 10(6) s(-1). The activation energies for a matched pair of 1,5- and 1,6-hydrogen atom transfers giving tri-aryl-substituted radicals were approximately equal, as were the primary kinetic isotope effects, but the 1,5-hydrogen atom transfer reaction was 1 order of magnitude faster at room temperature than the 1,6-hydrogen atom transfer reaction due to a less favorable entropy of activation for the 1,6-transfer reaction. Solvent effects on the rate constants for the 1,5-hydrogen atom transfer reaction of the 2-[2-(diphenylmethyl)phenyl]ethyl radical at ambient temperature were as large as a factor of 2 with the reaction increasing in rate in lower polarity solvents. Hybrid density functional theory computations for the 1,5- and 1,6-hydrogen atom transfers of the tri-aryl-substituted donors were in qualitative agreement with the experimental results.

  2. Hot cell renovation in the spent fuel conditioning process facility at the Korea Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Nam; Lee, Jong Kwang; Park, Byung Suk; Cho, Il Je; Kim, Ki Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The advanced spent fuel conditioning process facility (ACPF) of the irradiated materials examination facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI) has been renovated to implement a lab scale electrolytic reduction process for pyroprocessing. The interior and exterior structures of the ACPF hot cell have been modified under the current renovation project for the experimentation of the electrolytic reduction process using spent nuclear fuel. The most important aspect of this renovation was the installation of the argon compartment within the hot cell. For the design and system implementation of the argon compartment system, a full-scale mock-up test and a three-dimensional (3D) simulation test were conducted in advance. The remodeling and repairing of the process cell (M8a), the maintenance cell (M8b), the isolation room, and their utilities were also planned through this simulation to accommodate the designed argon compartment system. Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

  3. Strategy to eliminate catalyst hot-spots in the partial oxidation of methane: enhancing its activity for direct hydrogen production by reducing the reactivity of lattice oxygen.

    Science.gov (United States)

    Wen, Cun; Liu, Yi; Guo, Yun; Wang, Yanqin; Lu, Guanzhong

    2010-02-14

    Hydrogen can be produced over Er(2)O(3) in methane oxidation (oxygen/methane = 26). The reactivity of lattice oxygen in the catalyst plays a main role in the conversion of surface hydroxyl species to hydrogen or water. Adding a rare earth element into a catalyst can reduce the reactivity of lattice oxygen, resulting in increased hydrogen production, to eliminate catalyst hot-spots.

  4. Relativistic Spectrum of Hydrogen Atom in Space-Time Non-Commutativity

    CERN Document Server

    Moumni, Mustafa; Zaim, Slimane; 10.1063/1.4715429

    2012-01-01

    We study space-time non-commutativity applied to the hydrogen atom via the Seiberg-Witten map and its phenomenological effects. We find that it modifies the Coulomb potential in the Hamiltonian and add an r-3 part. By calculating the energies from Dirac equation using perturbation theory, we study the modifications to the hydrogen spectrum. We find that it removes the degeneracy with respect to the total angular momentum quantum number and acts like a Lamb shift. Comparing the results with experimental values from spectroscopy, we get a new bound for the space-time non-commutative parameter. N.B: In precedent works (arXiv:0907.1904, arXiv:1003.5732 and arXiv:1006.4590), we have used the Bopp Shift formulation of non-commutativity but here use it \\`a la Seiberg-Witten in the Relativistic case.

  5. Multiply Confined Nickel Nanocatalysts Produced by Atomic Layer Deposition for Hydrogenation Reactions.

    Science.gov (United States)

    Gao, Zhe; Dong, Mei; Wang, Guizhen; Sheng, Pei; Wu, Zhiwei; Yang, Huimin; Zhang, Bin; Wang, Guofu; Wang, Jianguo; Qin, Yong

    2015-07-27

    To design highly efficient catalysts, new concepts for optimizing the metal-support interactions are desirable. Here we introduce a facile and general template approach assisted by atomic layer deposition (ALD), to fabricate a multiply confined Ni-based nanocatalyst. The Ni nanoparticles are not only confined in Al2 O3 nanotubes, but also embedded in the cavities of Al2 O3 interior wall. The cavities create more Ni-Al2 O3 interfacial sites, which facilitate hydrogenation reactions. The nanotubes inhibit the leaching and detachment of Ni nanoparticles. Compared with the Ni-based catalyst supported on the outer surface of Al2 O3 nanotubes, the multiply confined catalyst shows a striking improvement of catalytic activity and stability in hydrogenation reactions. Our ALD-assisted template method is general and can be extended for other multiply confined nanoreactors, which may have potential applications in many heterogeneous reactions.

  6. Significantly Enhanced Hydrogen Evolution Activity of Freestanding Pd-Ru Distorted Icosahedral Clusters with less than 600 Atoms.

    Science.gov (United States)

    Dai, Zhihui; Liu, Suli; Zhang, Qinghua; Bao, Jianchun; Li, Yafei; Gu, Lin

    2017-07-24

    Freestanding metal nanoclusters can tune, precisely and effectively, the Gibbs free energy (ΔGH) of atomic hydrogen on the surface of materials. This enables the enhancement of hydrogen evolution activity. In this paper, we report a study of freestanding Pd-Ru distorted icosahedral clusters (ico-clusters) with less than 600 atoms using a simple one-pot synthesis method. This Pd-Ru ico-cluster can be used as an efficient electrocatalyst for the hydrogen evolution reaction (HER) in acidic water, which is a promising alternative to Pt. The experimental and theoretical results suggest that the fcc freestanding Pd-Ru distorted ico-clusters with less than 600 atoms ensure increased active edges and distorted defect sites that reduce the coordination number for the atoms on the catalyst surface. Furthermore, Ru is a more effective hydrogen dissociation source, while Pd has a better hydrogen storage function. Pd-Ru can tune the ΔGH of atomic hydrogen adsorbed on a catalyst and reach an optimal equilibrium state that improves the HER performance. Our studies represent a robust approach towards the development of freestanding Pd-Ru distorted ico-clusters and advanced catalysts with non-Pt content for HER and many other heterogeneous reactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Atomic and ionic spectrum lines below 2000A: hydrogen through argon

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.L.

    1982-10-01

    A critical tabulation of observed spectral lines below 2000 angstroms has been prepared from the published literature up to July 1978. It is intended principally as an aid to those physicists and astronomers who deal with the spectra of highly stripped atoms. This report includes the first 18 elements, from hydrogen (including deuterium) through argon. The tabulation is divided into two main sections: the spectrum lines by spectrum, and a finding list. The entries for each element give the ionization species, ground state term, and ionization potential, as well as the best values of vacuum wavelength, intensity, and classification. A list of the pertinent references is appended at the end.

  8. The Hydrogen Atom: a Review on the Birth of Modern Quantum Mechanics

    CERN Document Server

    Nanni, Luca

    2015-01-01

    The purpose of this work is to retrace the steps that were made by scientists of XIX century, like Bohr, Schrodinger, Heisenberg, Pauli, Dirac, for the formulation of what today represents the modern quantum mechanics and that, within two decades, put in question the classical physics. In this context, the study of the electronic structure of hydrogen atom has been the main starting point for the formulation of the theory and, till now, remains the only real case for which the quantum equation of motion can be solved exactly. The results obtained by each theory will be discussed critically, highlighting limits and potentials that allowed the further development of the quantum theory.

  9. On the theory of (e, 2e) reactions in atomic hydrogen and helium

    Science.gov (United States)

    Byron, F. W.; Joachain, C. J.; Piraux, B.

    1984-12-01

    We compare the results of eikonal-Born series calculations which we have performed for the (e, 2e) reaction in atomic hydrogen with recent absolute measurements of triple differential cross sections for that process, carried out in the asymmetric coplanar geometry. We find that second-order effects play a crucial role in understanding both the angular positions and the magnitudes of the binary and recoil peaks. The implications of our analysis for the case of (e, 2e) reactions in helium are also discussed.

  10. Interbasis expansion and SO(3) symmetry in the two-dimensional hydrogen atom.

    Energy Technology Data Exchange (ETDEWEB)

    Torres del Castillo, G.F.; Lopez Villanueva, A. [Universidad Autonoma de Puebla, Puebla (Mexico)

    2001-04-01

    Making use of the SO(3) symmetry of the two-dimensional hydrogen atom, each of the bases for the bound states formed by the separable solutions of the Schroedinger equation in polar and parabolic coordinates are expressed in terms of the other. [Spanish] Usando la simetria SO(3) del atomo de hidrogeno en dos dimensiones, cada una de las bases para los estados ligados formadas por las soluciones separables de la ecuacion de Schroedinger en coordenadas polares y parabolicas se expresan en terminos de la otra.

  11. Rayleigh Scattering Cross Section Redward of Ly$\\alpha$ by Atomic Hydrogen

    OpenAIRE

    Lee, Hee-Won; Kim, Hee Il

    2004-01-01

    We present a low energy expansion of the Kramers-Heisenberg formula for atomic hydrogen in terms of $(\\omega/\\omega_l)$, where $\\omega_l$ and $\\omega$ are the angular frequencies corresponding to the Lyman limit and the incident radiation, respectively. The leading term is proportional to $(\\omega/\\omega_l)^4$, which admits a well-known classical interpretation. With higher order terms we achieve accuracy with errors less than 4 % of the scattering cross sections in the region $\\omega/\\omega_...

  12. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Science.gov (United States)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  13. Exposure of epitaxial graphene on SiC(0001) to atomic hydrogen.

    Science.gov (United States)

    Guisinger, Nathan P; Rutter, Gregory M; Crain, Jason N; First, Phillip N; Stroscio, Joseph A

    2009-04-01

    Graphene films on SiC exhibit coherent transport properties that suggest the potential for novel carbon-based nanoelectronics applications. Recent studies suggest that the role of the interface between single layer graphene and silicon-terminated SiC can strongly influence the electronic properties of the graphene overlayer. In this study, we have exposed the graphitized SiC to atomic hydrogen in an effort to passivate dangling bonds at the interface, while investigating the results utilizing room temperature scanning tunneling microscopy.

  14. Quantum Spectra of Hydrogen Atoms in Various Magnetic Fields with the Closed Orbit Theory

    Institute of Scientific and Technical Information of China (English)

    彭良友; 张现周; 饶建国

    2002-01-01

    The quantum spectra of hydrogen atoms in various magnetic fields have been calculated with the closed orbit theory. The magnitude of the magnetic field decreases from 5.96 T to 0.56 T with a step of 0. 6 T. We demonstrate schematically that the closed orbits disappear with the decrease of the magnitude of the magnetic field when the corresponding finite resolution of experiment is fixed. This may give us a good way to control the shape and the number of the closed orbits in the system, and thus to control where a peak should exist in the Fourier transformation of the quantum spectra.

  15. Traces of Lorentz symmetry breaking in a Hydrogen atom at ground state

    CERN Document Server

    Borges, Luiz Henrique de Campos

    2016-01-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the Hydrogen atom are investigated. It is used standard Rayleigh-Schr\\"odinger perturbation theory in order to obtain the corrections to the the ground state energy and wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in reference Eur. Phys. J. C {\\bf 74}, 2937 (2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  16. Interaction of atomic hydrogen with anthracene and polyacene from density functional theory

    Science.gov (United States)

    Ferullo, Ricardo M.; Castellani, Norberto J.; Belelli, Patricia G.

    2016-03-01

    The interaction of atomic hydrogen with two linear polycyclic aromatic hydrocarbons (PAHs), anthracene and polyacene (the polymer of benzene), was studied within the density functional theory (DFT). Using a proper dispersion-corrected method (DFT-D) the preferential physisorption sites were explored. The activation barrier for the bond formation between a peripheral C and the incoming H was calculated to be 58.5 and 34.1 meV with pure DFT on anthracene and polyacene at its antiferromagnetic ground state, respectively. DFT-D, although improves the description of the physisorbed state, tends to underestimate the chemisorption barriers due an artifact arising from the dispersion correction.

  17. Multiphoton resonant ionization of hydrogen atom exposed to two-colour laser pulses

    Institute of Scientific and Technical Information of China (English)

    Wang Pei-Jie; Fang Yan

    2008-01-01

    This paper studies the multiphoton resonant ionization by two-colour laser pulses in the hydrogen atom by solving the time-dependent Schr(o)dinger equation.By fixing the parameters of fundamental laser field and scanning the frequency of second laser field,it finds that the ionization probability shows several resonance peaks and is also much larger than the linear superposition of probabilities by applying two lasers separately.The enhancement of the ionization happens when the system is resonantly pumped to the excited states by absorbing two or more colour photons non-sequentially.

  18. Variational treatment of the confined hydrogen atom with a moving nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Francisco M, E-mail: fernande@quimica.unlp.edu.a [INIFTA (UNLP, CCT La Plata-CONICET), Division Quimica Teorica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2010-05-15

    We solve the Schroedinger equation for a hydrogen atom within a spherical box approximately by means of the variational method. We propose two simple trial functions for the case in which both the nucleus and the electron move within the box. Present results are sufficiently accurate for all values of the box radius and therefore an improvement on an earlier calculation based on perturbation theory. We compare the energies of three alternative approaches for the moving-nucleus model with that of the nucleus clamped at origin. We also outline some physical applications of the model.

  19. Hydrogen Atom Abstraction from Hydrocarbons by a Copper(III)-Hydroxide Complex

    OpenAIRE

    Dhar, Debanjan; Tolman, William B.

    2015-01-01

    With the aim of understanding the basis for the high rate of hydrogen atom abstraction (HAT) from dihydroanthracene (DHA) by the complex LCuOH (1; L = N,N′-bis(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamide), the bond dissociation enthalpy of the reaction product LCu(H2O) (2) was determined through measurement of its pK a and E 1/2 in THF solution. In so doing, an equilibrium between 2 and LCu(THF) was characterized by UV–vis and EPR spectroscopy and cyclic voltammetry (CV). A high pK a of ...

  20. Resonant electron transfer in slow collisions of protons with Rydberg hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K.; Joachain, C.J.; Nedeljkovic, N.N.

    1984-05-01

    The resonant charge-transfer reaction of protons on highly excited hydrogen atoms is considered by taking into account both the tunneling (under-barrier) and the over-barrier (classically allowed) electron transitions. It is demonstrated that in a wide range of variation of the reduced ve- locity v = vn, the classical transition mechanism is predominant. Cross-section calculations for principal quantum numbers n between 10 and 50 are presented. The results for 45< or =n< or =50 are compared with the available experimental data and with other theoretical calculations.

  1. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)

    2016-02-15

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  2. Pulsed Sisyphus scheme for laser cooling of atomic (anti)hydrogen.

    Science.gov (United States)

    Wu, Saijun; Brown, Roger C; Phillips, William D; Porto, J V

    2011-05-27

    We propose a laser cooling technique in which atoms are selectively excited to a dressed metastable state whose light shift and decay rate are spatially correlated for Sisyphus cooling. The case of cooling magnetically trapped (anti)hydrogen with the 1S-2S-3P transitions by using pulsed ultraviolet and continuous-wave visible lasers is numerically simulated. We find a number of appealing features including rapid three-dimensional cooling from ∼1 K to recoil-limited, millikelvin temperatures, as well as suppressed spin-flip loss and manageable photoionization loss. © 2011 American Physical Society

  3. Spectral line shapes using the dicenter approach for dense hot plasmas: hydrogen and helium-like lines.

    Science.gov (United States)

    Sauvan, P.; Leboucher-Dalimier, E.; Angelo, P.; Derfoul, H.; Ceccotti, T.; Poquerusse, A.; Calisti, A.; Talin, B.

    2000-05-01

    This paper reports on the spectral line shape of hydrogen and helium-like lines relevant to the quasi-static dicenter model. This treatment is justified for hot dense, moderate Z plasmas. The code IDEFIX developed for the quasi-static dicenter model involves a self-consistent description of the interactions and of the radiative properties. Strong dependence of the transition energies and of the dipole moments on the interionic separation are pointed out and novel density-dependent spectroscopic features such as asymmetries, satellite-like features, molecular transitions are exhibited. The theoretical spectra presented are discussed in connection with experimental results where these exist.

  4. Long-Range Atom--Wall Interactions and Mixing Terms: Metastable Hydrogen

    CERN Document Server

    Jentschura, U D

    2015-01-01

    We investigate the interaction of metastable 2S hydrogen atoms with a perfectly conducting wall, including parity-breaking S-P mixing terms (with full account of retardation). The neighboring 2P_1/2 and 2P_3/2 levels are found to have a profound effect on the transition from the short-range, nonrelativistic regime, to the retarded form of the Casimir-Polder interaction. The corresponding P state admixtures to the metastable 2S state are calculated. We find the long-range asymptotics of the retarded Casimir-Polder potentials and mixing amplitudes, for general excited states, including a fully quantum electrodynamic treatment of the dipole-quadrupole mixing term. The decay width of the metastable 2S state is roughly doubled even at a comparatively large distance of 918 atomic units (Bohr radii) from the perfect conductor. The magnitude of the calculated effects is compared to the unexplained Sokolov effect.

  5. A unified numerical model of collisional depolarization and broadening rates due to hydrogen atom collisions

    CERN Document Server

    Derouich, M; Barklem, P S

    2015-01-01

    Interpretation of solar polarization spectra accounting for partial or complete frequency redistribution requires data on various collisional processes. Data for depolarization and polarization transfer are needed but often missing, while data for collisional broadening are usually more readily available. Recent work by Sahal-Br\\'echot and Bommier concluded that despite underlying similarities in the physics of collisional broadening and depolarization processes, relationships between them are not possible to derive purely analytically. We aim to derive accurate numerical relationships between the collisional broadening rates and the collisional depolarization and polarization transfer rates due to hydrogen atom collisions. Such relationships would enable accurate and efficient estimation of collisional data for solar applications. Using earlier results for broadening and depolarization processes based on general (i.e. not specific to a given atom), semi-classical calculations employing interaction potentials...

  6. Non-dipole effects in multiphoton ionization of hydrogen atom in short superintense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Jobunga, Eric O. [AG Moderne Optik, Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Department of Mathematics and Physics, Technical University of Mombasa, P. O. Box 90420-80100, Mombasa (Kenya); Saenz, Alejandro [AG Moderne Optik, Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)

    2014-07-01

    The development of novel light sources has enabled the realization of high-precision experiments investigating various non-linear processes in the dynamics of atomic, molecular, and ionic systems interacting with high intense laser pulses. At high intensities or short wavelengths, the analysis of these experiments would definitely require a reliable non-perturbative solution of the time-dependent Schroedinger or Dirac equation. These solutions should consider both the temporal and the spatial intensity variations of the laser pulse.We have solved the non-relativistic time dependent Schroedinger equation for a ground state hydrogen atom interacting with short intense spatially and temporally resolved laser fields corresponding to the multiphoton ATI regime for a monochromatic source with λ= 800 nm. We shall analyse the effects of the A{sup 2} term and the corresponding orders of the multipolar expansion of the transition matrix.

  7. Hidden momentum in a hydrogen atom and the Lorentz-force law

    Science.gov (United States)

    Filho, J. S. Oliveira; Saldanha, Pablo L.

    2015-11-01

    By using perturbation theory, we show that a hydrogen atom with magnetic moment due to the orbital angular momentum of the electron has so-called hidden momentum in the presence of an external electric field. This means that the atomic electronic cloud has a nonzero linear momentum in its center-of-mass rest frame due to a relativistic effect. This is completely analogous to the hidden momentum that a classical current loop has in the presence of an external electric field. We discuss how this effect is essential for the validity of the Lorentz-force law in quantum systems. We also connect our results to the long-standing Abraham-Minkowski debate about the momentum of light in material media.

  8. Hidden momentum in a hydrogen atom and the Lorentz force law

    CERN Document Server

    Filho, J S Oliveira

    2015-01-01

    By using perturbation theory, we show that an hydrogen atom with magnetic moment due to the orbital angular momentum of the electron has hidden momentum in the presence of an external electric field. This means that the atomic electronic cloud has a nonzero linear momentum in its center of mass rest frame due to a relativistic effect. This is completely analogous to the hidden momentum that a classical current loop has in the presence of an external electric field. We discuss that this effect is essential for the validity of the Lorentz force law in quantum systems. We also connect our results to the secular Abraham-Minkowski debate about the momentum of light in material media.

  9. Controlling the spin of co atoms on pt(111) by hydrogen adsorption.

    Science.gov (United States)

    Dubout, Q; Donati, F; Wäckerlin, C; Calleja, F; Etzkorn, M; Lehnert, A; Claude, L; Gambardella, P; Brune, H

    2015-03-13

    We investigate the effect of H adsorption on the magnetic properties of individual Co atoms on Pt(111) with scanning tunneling microscopy. For pristine Co atoms, we detect no inelastic features in the tunnel spectra. Conversely, CoH and CoH2 show a number of low-energy vibrational features in their differential conductance identified by isotope substitution. Only the fcc-adsorbed species present conductance steps of magnetic origin, with a field splitting identifying their effective spin as Seff=2 for CoH and 3/2 for CoH2. The exposure to H2 and desorption through tunnel electrons allow the reversible control of the spin in half-integer steps. Because of the presence of the surface, the hydrogen-induced spin increase is opposite to the spin sequence of CoHn molecules in the gas phase.

  10. On the role of atomic metastability in the production of Balmer line radiation from ‘cold’ atomic hydrogen, deuterium and hydrogenic ion impurities in fusion edge plasmas

    Science.gov (United States)

    Hey, J. D.

    2012-03-01

    Published arguments, which assign an important role to atomic metastability in the production of ‘narrow’ Zeeman component radiation from the boundary region of fusion plasmas, are examined critically in relation to l-redistribution by proton and electron collisions, and mixing of unperturbed atomic states by the ion microfield and microfield gradient. It is concluded that these important processes indeed severely constrain the contribution from ‘metastable’ states to the generation of the hydrogen Balmer spectra, for electron concentrations above 1012 cm-3, as pointed out before by the present author (Hey et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3555). The analysis of collision-induced l-redistribution represents an extension of that used previously (Hey et al 1996 Contrib. Plasma Phys. 36 583), applicable up to higher electron densities. For comparison purposes, we also consider the question of metastability of ionized helium in a low-temperature plasma, and that of some common hydrogenic impurities (C5+ and Ne9+) in a hydrogen (deuterium) fusion plasma. While for low nuclear charge Z the metastability of 2s1/2 levels is quenched by the plasma environment, it is much reduced in high-Z ions owing to the rapid increase with Z of the two-photon electric dipole (2E1) and magnetic dipole (M1) spontaneous transition rates to the ground state, whereas the role of the plasma in these cases is less important. The main new principle elaborated in this work is the sensitivity of atomic line strengths, and hence collision strengths, to perturbation by the plasma environment for transitions between fine-structure sublevels of the same principal quantum number. As the plasma microfield strength grows, ‘allowed’ transitions diminish in strength, while ‘forbidden’ transitions grow. However, owing to violation of the parity selection rule, there is an overall loss of collision strength available to transitions, resulting from the appearance of significant

  11. Hydrogen atom abstraction reactions from tertiary amines by benzyloxyl and cumyloxyl radicals: influence of structure on the rate-determining formation of a hydrogen-bonded prereaction complex.

    Science.gov (United States)

    Salamone, Michela; DiLabio, Gino A; Bietti, Massimo

    2011-08-05

    A time-resolved kinetic study on the hydrogen atom abstraction reactions from a series of tertiary amines by the cumyloxyl (CumO(•)) and benzyloxyl (BnO(•)) radicals was carried out. With the sterically hindered triisobutylamine, comparable hydrogen atom abstraction rate constants (k(H)) were measured for the two radicals (k(H)(BnO(•))/k(H)(CumO(•)) = 2.8), and the reactions were described as direct hydrogen atom abstractions. With the other amines, increases in k(H)(BnO(•))/k(H)(CumO(•)) ratios of 13 to 2027 times were observed. k(H) approaches the diffusion limit in the reactions between BnO(•) and unhindered cyclic and bicyiclic amines, whereas a decrease in reactivity is observed with acyclic amines and with the hindered cyclic amine 1,2,2,6,6-pentamethylpiperidine. These results provide additional support to our hypothesis that the reaction proceeds through the rate-determining formation of a C-H/N hydrogen-bonded prereaction complex between the benzyloxyl α-C-H and the nitrogen lone pair wherein hydrogen atom abstraction occurs, and demonstrate the important role of amine structure on the overall reaction mechanism. Additional mechanistic information in support of this picture is obtained from the study of the reactions of the amines with a deuterated benzyloxyl radical (PhCD(2)O(•), BnO(•)-d(2)) and the 3,5-di-tert-butylbenzyloxyl radical.

  12. Quantitative analysis of hydrogen in SiO2/SiN/SiO2 stacks using atom probe tomography

    Directory of Open Access Journals (Sweden)

    Yorinobu Kunimune

    2016-04-01

    Full Text Available We have demonstrated that it is possible to reproducibly quantify hydrogen concentration in the SiN layer of a SiO2/SiN/SiO2 (ONO stack structure using ultraviolet laser-assisted atom probe tomography (APT. The concentration of hydrogen atoms detected using APT increased gradually during the analysis, which could be explained by the effect of hydrogen adsorption from residual gas in the vacuum chamber onto the specimen surface. The amount of adsorbed hydrogen in the SiN layer was estimated by analyzing another SiN layer with an extremely low hydrogen concentration (<0.2 at. %. Thus, by subtracting the concentration of adsorbed hydrogen, the actual hydrogen concentration in the SiN layer was quantified as approximately 1.0 at. %. This result was consistent with that obtained by elastic recoil detection analysis (ERDA, which confirmed the accuracy of the APT quantification. The present results indicate that APT enables the imaging of the three-dimensional distribution of hydrogen atoms in actual devices at a sub-nanometer scale.

  13. Ring opening reaction dynamics in the reaction of hydrogen atoms with ethylene oxide

    Science.gov (United States)

    Shin, S. K.; Jarek, R. L.; Böhmer, E.; Wittig, C.

    1994-10-01

    Ethylene oxide, C2H4O, is a three-membered ring with a single oxygen atom bridging the two carbons. Reactions of H and D atoms with ethylene oxide have been studied in the gas phase to provide insight into the dynamics of three-membered ring opening. H atoms were produced by photolyzing HI in the wavelength range 240-266 nm. The channel leading to OH+C2H4 was monitored via laser-induced fluorescence (LIF) of the OH A 2Σ←X 2Π system. The D atom reaction yields OD with no hydrogen scrambling. With an available energy of 23 000 cm-1, the average OH D rotational energy is ˜350 cm-1 for OH(v=0) and OD(v=0) and ˜250 cm-1 for OD(v=1). OH(v=1) was not observed, while the OD(v=1) population was about one-tenth that of OD(v=0). There was no apparent bias in populations between Λ doublets in each of the spin-orbit states for both OH and OD. Doppler broadening of OH(v=0) rotational lines was measured to evaluate the average center-of-mass (c.m.) translational energy, which was found to be ˜2300 cm-1. On average, the ring opening process deposits ˜10% of the available energy into c.m. translation, ˜2% into OH rotation, and ˜88% into ethylene internal energy. Comparison with CH2CH2OH unimolecular dissociation dynamics and theoretical transition state calculations leads to a likely mechanism in which hydrogen abstracts oxygen via sequential C-O bond fission without involving a long-lived CH2CH2OH intermediate.

  14. Dynamic Nuclear Polarization and Relaxation of H and D Atoms in Solid Mixtures of Hydrogen Isotopes

    Science.gov (United States)

    Sheludiakov, S.; Ahokas, J.; Järvinen, J.; Vainio, O.; Lehtonen, L.; Vasiliev, S.; Lee, D. M.; Khmelenko, V. V.

    2016-12-01

    We report on a study of dynamic nuclear polarization and electron and nuclear spin relaxation of atomic hydrogen and deuterium in solid molecular matrices of H2, D2 , and HD mixtures. The electron and nuclear spin relaxation times (T_{1e} and T_{1N} ) were measured within the temperature range 0.15-2.5 K in a magnetic field of 4.6 T, conditions which ensure a high polarization of electron spins. We found that T_{1e} is nearly temperature independent in this temperature range, while T_{1N} decreased by two orders of magnitude upon raising temperature. Such strong temperature dependence is typical for the nuclear Orbach mechanism of relaxation via the electron spins. We found that the nuclear spins of H atoms in solid D2 and D2{:}HD can be efficiently polarized by the Overhauser effect. Pumping the forbidden transitions of H atoms also leads to DNP, with the efficiency strongly dependent on the concentration of D atoms. This behavior indicates the cross effect mechanism of the DNP and nuclear relaxation, which turns out to be well resolved in the conditions of our experiments. Efficient DNP of H atoms was also observed when pumping the middle D line located in the center of the ESR spectrum. This phenomenon can be explained in terms of clusters or pairs of H atoms with a strong exchange interaction. These clusters have partially allowed transitions in the center of the ESR spectrum, and DNP may be created via the resolved cross effect.

  15. Quantum Diffusion-Controlled Chemistry: Reactions of Atomic Hydrogen with Nitric Oxide in Solid Parahydrogen.

    Science.gov (United States)

    Ruzi, Mahmut; Anderson, David T

    2015-12-17

    Our group has been working to develop parahydrogen (pH2) matrix isolation spectroscopy as a method to study low-temperature condensed-phase reactions of atomic hydrogen with various reaction partners. Guided by the well-defined studies of cold atom chemistry in rare-gas solids, the special properties of quantum hosts such as solid pH2 afford new opportunities to study the analogous chemical reactions under quantum diffusion conditions in hopes of discovering new types of chemical reaction mechanisms. In this study, we present Fourier transform infrared spectroscopic studies of the 193 nm photoinduced chemistry of nitric oxide (NO) isolated in solid pH2 over the 1.8 to 4.3 K temperature range. Upon short-term in situ irradiation the NO readily undergoes photolysis to yield HNO, NOH, NH, NH3, H2O, and H atoms. We map the postphotolysis reactions of mobile H atoms with NO and document first-order growth in HNO and NOH reaction products for up to 5 h after photolysis. We perform three experiments at 4.3 K and one at 1.8 K to permit the temperature dependence of the reaction kinetics to be quantified. We observe Arrhenius-type behavior with a pre-exponential factor of A = 0.036(2) min(-1) and Ea = 2.39(1) cm(-1). This is in sharp contrast to previous H atom reactions we have studied in solid pH2 that display definitively non-Arrhenius behavior. The contrasting temperature dependence measured for the H + NO reaction is likely related to the details of H atom quantum diffusion in solid pH2 and deserves further study.

  16. Dynamic nuclear polarization and relaxation of H and D atoms in solid mixtures of hydrogen isotopes

    CERN Document Server

    Sheludiakov, S; Järvinen, J; Vainio, O; Lehtonen, L; Vasiliev, S; Lee, D M; Khmelenko, V V

    2016-01-01

    We report on a study of Dynamic Nuclear Polarization and electron and nuclear spin relaxation of atomic hydrogen and deuterium in solid molecular matrices of H$_{2}$, D$_{2}$, and HD mixtures. The electron and nuclear spin relaxation times ($T_{1e}$ and $T_{1N}$) were measured within the temperature range 0.15-2.5$\\,$K in a magnetic field of 4.6 T, conditions which ensure a high polarization of electron spins. We found that $T_{1e}$ is nearly temperature independent in this temperature range, while $T_{1N}$ decreased by 2 orders of magnitude. Such strong temperature dependence is typical for the nuclear Orbach mechanism of relaxation via the electron spins. We found that the nuclear spins of H atoms in solid D$_{2}$ and D$_{2}:$HD can be efficiently polarized by the Overhauser effect. Pumping the forbidden transitions of H atoms also leads to DNP, with the efficiency strongly dependent on the concentration of D atoms. This behaviour indicates the Cross effect mechanism of the DNP and nuclear relaxation, which...

  17. A probable vacuum state containing a large number of hydrogen atom of excited state or ground state K, Rb or Cs atom

    CERN Document Server

    You, Pei-Lin

    2008-01-01

    The linear Stark effect shows that the first excited state of hydrogen atom has large permanent electric dipole moment (EDM), d(H)=3eao (ao is Bohr radius). Using special capacitors our experiments discovered that the ground state K, Rb or Cs atom is polar atom with a large EDM of the order of eao as hydrogen atom of excited state. Their capacitance(C) at different voltage (V) was measured. The C-V curve shows that the saturation polarization of K, Rb or Cs vapor has be observed when the field E more than ten to the fifth power V/m. When the saturation polarization appeared, nearly all K, Rb or Cs atoms(more than 98 percent) turned toward the direction of the field, and C is approximately equal to Co (Co is vacuum capacitance) or their dielectric constant is nearly the same as vacuum! K, Rb or Cs vapor just exist in the lowest energy state, so we see the vacuum state containing a large number of atoms! Due to the saturation polarization of hydrogen vapor of excited state is easily appears, we conjecture that ...

  18. Hot bubbles of planetary nebulae with hydrogen-deficient winds I. Heat conduction in a chemically stratified plasma

    CERN Document Server

    Sandin, Christer; Schönberner, Detlef; Rühling, Ute

    2016-01-01

    Heat conduction has been found a plausible solution to explain discrepancies between expected and measured temperatures in hot bubbles of planetary nebulae (PNe). While the heat conduction process depends on the chemical composition, to date it has been exclusively studied for pure hydrogen plasmas in PNe. A smaller population of PNe show hydrogen-deficient and helium- and carbon-enriched surfaces surrounded by bubbles of the same composition; considerable differences are expected in physical properties of these objects in comparison to the pure hydrogen case. The aim of this study is to explore how a chemistry-dependent formulation of the heat conduction affects physical properties and how it affects the X-ray emission from PN bubbles of hydrogen-deficient stars. We extend the description of heat conduction in our radiation hydrodynamics code to work with any chemical composition. We then compare the bubble-formation process with a representative PN model using both the new and the old descriptions. We also ...

  19. Effect of hydrogen on low temperature epitaxial growth of polycrystalline silicon by hot wire chemical vapor deposition

    Science.gov (United States)

    Yong, Cao; Hailong, Zhang; Fengzhen, Liu; Meifang, Zhu; Gangqiang, Dong

    2015-02-01

    Polycrystalline silicon (poly-Si) films were prepared by hot-wire chemical vapor deposition (HWCVD) at a low substrate temperature of 525 °C. The influence of hydrogen on the epitaxial growth of ploy-Si films was investigated. Raman spectra show that the poly-Si films are fully crystallized at 525 °C with a different hydrogen dilution ratio (50%-91.7%). X-ray diffraction, grazing incidence X-ray diffraction and SEM images show that the poly-Si thin films present (100) preferred orientation on (100) c-Si substrate in the high hydrogen dilution condition. The P-type poly-Si film prepared with a hydrogen dilution ratio of 91.7% shows a hall mobility of 8.78 cm2/(V·s) with a carrier concentration of 1.3 × 1020 cm-3, which indicates that the epitaxial poly-Si film prepared by HWCVD has the possibility to be used in photovoltaic and TFT devices.

  20. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Chohan, Urslaan K.; Jimenez-Melero, Enrique [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Dalton Cumbrian Facility, The University of Manchester, Moor Row CA24 3HA (United Kingdom); Koehler, Sven P.K., E-mail: sven.koehler@manchester.ac.uk [Dalton Cumbrian Facility, The University of Manchester, Moor Row CA24 3HA (United Kingdom); School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-11-30

    Highlights: • Potential energy surfaces for H diffusion on Fe(110) calculated. • Full vibrational analysis of surface modes performed. • Vibrational analysis establishes lb site as a transition state to the 3f site. • Pronounced buckling observed in the Fe surface layer. - Abstract: We have computed adsorption energies, vibrational frequencies, surface relaxation and buckling for hydrogen adsorbed on a body-centred-cubic Fe(110) surface as a function of the degree of H coverage. This adsorption system is important in a variety of technological processes such as the hydrogen embrittlement in ferritic steels, which motivated this work, and the Haber–Bosch process. We employed spin-polarised density functional theory to optimise geometries of a six-layer Fe slab, followed by frozen mode finite displacement phonon calculations to compute Fe–H vibrational frequencies. We have found that the quasi-threefold (3f) site is the most stable adsorption site, with adsorption energies of ∼3.0 eV/H for all coverages studied. The long-bridge (lb) site, which is close in energy to the 3f site, is actually a transition state leading to the stable 3f site. The calculated harmonic vibrational frequencies collectively span from 730 to 1220 cm{sup −1}, for a range of coverages. The increased first-to-second layer spacing in the presence of adsorbed hydrogen, and the pronounced buckling observed in the Fe surface layer, may facilitate the diffusion of hydrogen atoms into the bulk, and therefore impact the early stages of hydrogen embrittlement in steels.

  1. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by (3)O2; Implications for Combustion Modeling and Simulation.

    Science.gov (United States)

    Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J

    2017-03-09

    Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants

  2. Laser-Assisted Semi Relativistic Excitation of Atomic Hydrogen by Electronic Impact

    CERN Document Server

    Taj, S; Idrissi, M El; Oufni, L

    2012-01-01

    The excitation of H ($1s-2s$) by electron impact in the presence and in the absence of the laser field is studied in the framework of the first Born approximation. The angular variation of the laser-assisted differential cross section (DCS) for atomic hydrogen by electronic impact is presented at various kinetic energies for the incident electron. The use of Darwin wave function as a semirelativistic state to represent the atomic hydrogen gives interesting results when the condition $z/c\\ll1$ is fulfilled. A comparison with the non relativistic theory and experimental data gives good agreement. It was observed that beyond (2700 $eV$) which represents the limit between the two approaches, the non relativistic theory does not yield close agreement with our theory and that, over certain ranges of energy, it can be in error by several orders of magnitude. The sum rule given by Bunkin and Fedorov and by Kroll and Watson \\cite{22} has been verified in both nonrelativistic and relativistic regimes.

  3. Time-resolved Absorption Spectra of the Laser-dressed Hydrogen Atom

    Science.gov (United States)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-05-01

    A theoretical study of the transient absorption spectra for the laser-dressed hydrogen atom based on the accurate numerical solution of the time-dependent Schrödinger equation is presented. The timing of absorption is controlled by the time delay between an isolated extreme ultraviolet (XUV) pulse and a dressing infrared (IR) field. We identify two different kinds of physical processes in the spectra. One is the formation of dressed states, signified by the appearance of sidebands between the XUV absorption lines separated by one IR-photon energy. We show that their population is maximized when the XUV pulse coincides with the zero-crossing of the IR field, and that their energy can be manipulated by using a chirped IR field. The other process is the dynamical AC Stark shift induced by the IR field and probed by the XUV pulse. Our calculations indicate that the accidental degeneracy of the hydrogen atom leads to the multiple splittings of each XUV absorption line whose separations change in response to a slowly-varying IR envelope. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 states using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional 3-level model that neglects the dynamical AC Stark effects.

  4. Observations and Interpretations of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Barghouty, A. f.; Cohen, C. M. S.; Cummings, A. c.; Labrador, A. W.; vonRosenvinge, T. T.

    2009-01-01

    We discuss recently reported observations of energetic neutral hydrogen atoms (ENAs) from an X9 solar flare/coronal mass ejection event on 5 December 2006, located at E79. The observations were made by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. Taking into account ENA losses, we find that the observed ENAs must have been produced in the high corona at heliocentric distances > or equal to 2 solar radii. Although there are no CME images from this event, it is shown that CME-shock-accelerated protons can, in principle, produce a time-history consistent with the observations.

  5. STEREO Observations of Energetic Neutral Hydrogen Atoms during the 5 December 2006 Solar Flare

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We report the discovery of energetic neutral hydrogen atoms emitted during the X9 solar event of December 5, 2006. Beginning 1 hour following the onset of this E79 flare, the Low Energy Telescopes (LETs) on both the STEREO A and B spacecraft observed a sudden burst of 1.6 to 15 MeV protons beginning hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within 10 of the Sun, consistent with the measurement resolution. The derived emission profile at the Sun had onset and peak times remarkably similar to the GOES soft X-ray profile and continued for more than an hour. The observed arrival directions and energy spectrum argue strongly that the particle events less than 5 MeV were due to energetic neutral hydrogen atoms (ENAs). To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. Possible origins for the production of ENAs in a large solar event are considered. We conclude that the observed ENAs were most likely produced in the high corona and that charge-transfer reactions between accelerated protons and partially-stripped coronal ions are an important source of ENAs in solar events.

  6. The Transition from Atomic to Molecular Hydrogen in Interstellar Clouds: 21cm Signature of the Evolution of Cold Atomic Hydrogen in Dense Clouds

    CERN Document Server

    Goldsmith, P F; Krco, M; Goldsmith, Paul F.; Li, Di; Krco, Marko

    2006-01-01

    We have investigated the time scale for formation of molecular clouds by examining the conversion of HI to H2 using a time-dependent model. H2 formation on dust grains and cosmic ray and photo destruction are included in one-dimensional model slab clouds which incorporate time-independent density and temperature distributions. We calculate 21cm spectral line profiles seen in absorption against a background provided by general Galactic HI emission, and compare the model spectra with HI Narrow Self-Absorption, or HINSA, profiles absorbed in a number of nearby molecular clouds. The time evolution of the HI and H2 densities is dramatic, with the atomic hydrogen disappearing in a wave propagating from the central, denser regions which have a shorter H2 formation time scale, to the edges, where the density is lower and the time scale for H2 formation longer. The model 21cm spectra are characterized by very strong absorption at early times, when the HI column density through the model clouds is extremely large. The ...

  7. Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    OpenAIRE

    Provornikova, E. A.; Izmodenov, V. V.; Lallement, R.

    2011-01-01

    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma...

  8. Excitation of heavy hydrogen-like ions by light atoms in relativistic collisions with large momentum transfers

    CERN Document Server

    Najjari, B

    2012-01-01

    We present a theory for excitation of heavy hydrogen-like projectile-ions by light target-atoms in collisions where the momentum transfers to the atom are very large on the atomic scale. It is shown that in this process the electrons and the nucleus of the atom behave as (quasi-) free particles with respect to each other and that their motion is governed by the field of the nucleus of the ion. The effect of this field on the atomic particles can be crucial for the contribution to the excitation of the ion caused by the electrons of the atom. Due to comparatively very large nuclear mass, however, this field can be neglected in the calculation of the contribution to the excitation due to the nucleus of the atom.

  9. Emission of hydrogen energetic neutral atoms from the Martian subsolar magnetosheath

    Science.gov (United States)

    Wang, X.-D.; Alho, M.; Jarvinen, R.; Kallio, E.; Barabash, S.; Futaana, Y.

    2016-01-01

    We have simulated the hydrogen energetic neutral atom (ENA) emissions from the subsolar magnetosheath of Mars using a hybrid model of the proton plasma charge exchanging with the Martian exosphere to study statistical features revealed from the observations of the Neutral Particle Detectors on Mars Express. The simulations reproduce well the observed enhancement of the hydrogen ENA emissions from the dayside magnetosheath in directions perpendicular to the Sun-Mars line. Our results show that the neutralized protons from the shocked solar wind are the dominant ENA population rather than those originating from the pickup planetary ions. The simulation also suggests that the observed stronger ENA emissions in the direction opposite to the solar wind convective electric field result from a stronger proton flux in the same direction at the lower magnetosheath; i.e., the proton fluxes in the magnetosheath are not cylindrically symmetric. We also confirm the observed increasing of the ENA fluxes with the solar wind dynamical pressure in the simulations. This feature is associated with a low altitude of the induced magnetic boundary when the dynamic pressure is high and the magnetosheath protons can reach to a denser exosphere, and thus, the charge exchange rate becomes higher. Overall, the analysis suggests that kinetic effects play an important and pronounced role in the morphology of the hydrogen ENA distribution and the plasma environment at Mars, in general.

  10. Coupled cluster and density functional theory calculations of atomic hydrogen chemisorption on pyrene and coronene as model systems for graphene hydrogenation.

    Science.gov (United States)

    Wang, Ying; Qian, Hu-Jun; Morokuma, Keiji; Irle, Stephan

    2012-07-05

    Ab initio coupled cluster and density functional theory studies of atomic hydrogen addition to the central region of pyrene and coronene as molecular models for graphene hydrogenation were performed. Fully relaxed potential energy curves (PECs) were computed at the spin-unrestricted B3LYP/cc-pVDZ level of theory for the atomic hydrogen attack of a center carbon atom (site A), the midpoint of a neighboring carbon bond (site B), and the center of a central hexagon (site C). Using the B3LYP/cc-pVDZ PEC geometries, we evaluated energies at the PBE density functional, as well as ab initio restricted open-shell ROMP2, ROCCSD, and ROCCSD(T) levels of theory, employing cc-pVDZ and cc-pVTZ basis sets, and performed a G2MS extrapolation to the ROCCSD(T)/cc-pVTZ level of theory. In agreement with earlier studies, we find that only site A attack leads to chemisorption. The G2MS entrance channel barrier heights, binding energies, and PEC profiles are found to agree well with a recent ab initio multireference wave function theory study (Bonfanti et al. J. Chem. Phys.2011, 135, 164701), indicating that single-reference open-shell methods including B3LYP are sufficient for the theoretical treatment of the interaction of graphene with a single hydrogen atom.

  11. Massive stars formed in atomic hydrogen reservoirs: HI observations of gamma-ray burst host galaxies

    CERN Document Server

    Michałowski, Michał J; Hjorth, J; Krumholz, M R; Tanvir, N R; Kamphuis, P; Burlon, D; Baes, M; Basa, S; Berta, S; Ceron, J M Castro; Crosby, D; D'Elia, V; Elliott, J; Greiner, J; Hunt, L K; Klose, S; Koprowski, M P; Floc'h, E Le; Malesani, D; Murphy, T; Guelbenzu, A Nicuesa; Palazzi, E; Rasmussen, J; Rossi, A; Savaglio, S; Schady, P; Sollerman, J; Postigo, A de Ugarte; Watson, D; van der Werf, P; Vergani, S D; Xu, D

    2015-01-01

    Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed to be the fuel of star formation. Moreover, optical spectroscopy of GRB afterglows implies that the molecular phase constitutes only a small fraction of the gas along the GRB line-of-sight. Here we report the first ever 21 cm line observations of GRB host galaxies, using the Australia Telescope Compact Array, implying high levels of atomic hydrogen (HI), which suggests that the connection between atomic gas and star formation is stronger than previously thought, with star formation being potentially directly fuelled by atomic gas (or with very efficient HI-to-H2 conversion and rapid exhaustion of molecular gas), as has been theoretically shown to be possible. This can happen in low metallicity gas near the onset of star forma...

  12. Interaction of atomic hydrogen with pico- and femtosecond laser pulses. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Parker, J.S.

    1989-12-01

    This thesis presents a theoretical study of the interaction of atomic hydrogen with coherent laser pulses in the 5 femtosecond to 10 picosecond range, in the weak-field limit, and in intense fields. We approach the problem in the weak-field limit by studying the relationship between the Fourier relation of the laser pulse (Delta omega Delta t) and the (Delta E Delta t) relation of the atomic Rydberg wave packet generated by the laser pulse. A derivation of the wave packet based on the WKB approximation is given, permitting the quantity Delta t to be derived for the quantum state, with the conclusion that under certain circumstances a transform-limited laser pulse (satisfying Delta omega Delta t = 1/2) can generate a transform-limited electron (satisfying Delta E Delta t/h = 1/2). A population-trapping effect is found numerically and modeled theoretically. Despite the high field intensities, population representing the excited electron is recaptured from the ionization continuum by bound states during the excitation. Population returns to the atom with just the right phase to strongly inhibit ionization. A theory is presented that models this effect for a variety of laser pulse shapes, with and without the rotating-wave approximation. The numerical integration reveals that a certain amount of above-threshold ionization (ATI) occurs.

  13. Changes in the morphology of interstellar ice analogues after hydrogen atom exposure

    CERN Document Server

    Accolla, Mario; Dulieu, François; Manicò, Giulio; Chaabouni, Henda; Matar, Elie; Mokrane, Hakima; Lemaire, Jean Louis; Pirronello, Valerio

    2010-01-01

    The morphology of water ice in the interstellar medium is still an open question. Although accretion of gaseous water could not be the only possible origin of the observed icy mantles covering dust grains in cold molecular clouds, it is well known that water accreted from the gas phase on surfaces kept at 10 K forms ice films that exhibit a very high porosity. It is also known that in the dark clouds H2 formation occurs on the icy surface of dust grains and that part of the energy (4.48 eV) released when adsorbed atoms react to form H2 is deposited in the ice. The experimental study described in the present work focuses on how relevant changes of the ice morphology result from atomic hydrogen exposure and subsequent recombination. Using the temperature-programmed desorption (TPD) technique and a method of inversion analysis of TPD spectra, we show that there is an exponential decrease in the porosity of the amorphous water ice sample following D-atom irradiation. This decrease is inversely proportional to the...

  14. Nanostructured Hydrogenated Silicon Films by Hot-Wire Chemical Vapor Deposition: the Influence of Substrate Temperature on Material Properties

    Directory of Open Access Journals (Sweden)

    V.S. Waman

    2011-01-01

    Full Text Available Thin films of hydrogenated nanocrystalline silicon are prepared at reasonably higher deposition rates (9-13 Å/s by indigenously fabricated hot-wire chemical vapor deposition system at various substrate temperatures (Ts. In this paper we report extensively studied structural, optical and electrical properties of these films by Fourier transform infrared (FTIR spectroscopy, low angle X-ray diffraction (low angle XRD, micro-Raman spectroscopy and UV-Visible spectroscopy. The low angle XRD and micro-Raman spectroscopy analysis indicate amorphous-to-nanocrystalline transition occurred at Ts = 300 °C. It is observed that volume fraction of crystallites and its size increases with increase in Ts. The low angle XRD study also shows nc-Si:H films with well-identified lattice planes of (111 orientation. In addition, it is observed from the FTIR spectroscopy that the hydrogen is incorporated in the film mainly in Si-H2 and (Si-H2n complexes. The nc-Si:H films with low hydrogen content (< 4 at. % and wide band gap (1.83-1.89 eV and low refractive index (< 3 is useful for various device applications.

  15. In Situ Hydrogen Dynamics in a Hot Spring Microbial Mat during a Diel Cycle

    DEFF Research Database (Denmark)

    Revsbech, Niels Peter; Trampe, Erik Christian Løvbjerg; Lichtenberg, Mads

    2016-01-01

    in a hot spring microbial mat, where various ecotypes of unicellular cyanobacteria (Synechococcus sp.) are the only oxygenic phototrophs. In the evening, H2 accumulated rapidly after the onset of darkness, reaching peak values of up to 30 mol H2 liter1 at about 1-mm depth below the mat surface, slowly...

  16. Low temperature removal of surface oxides and hydrocarbons from Ge(100) using atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M., E-mail: m.walker@warwick.ac.uk; Tedder, M.S.; Palmer, J.D.; Mudd, J.J.; McConville, C.F.

    2016-08-30

    Highlights: • Preparation of a clean, well-ordered Ge(100) surface with atomic hydrogen. • Surface oxide layers removed by AHC at room temperature, but not hydrocarbons. • Increasing surface temperature during AHC dramatically improves efficiency. • AHC with the surface heated to 250 °C led to a near complete removal of contaminants. • (2 × 1) LEED pattern from IBA and AHC indicates asymmetric dimer reconstruction. - Abstract: Germanium is a group IV semiconductor with many current and potential applications in the modern semiconductor industry. Key to expanding the use of Ge is a reliable method for the removal of surface contamination, including oxides which are naturally formed during the exposure of Ge thin films to atmospheric conditions. A process for achieving this task at lower temperatures would be highly advantageous, where the underlying device architecture will not diffuse through the Ge film while also avoiding electronic damage induced by ion irradiation. Atomic hydrogen cleaning (AHC) offers a low-temperature, damage-free alternative to the common ion bombardment and annealing (IBA) technique which is widely employed. In this work, we demonstrate with X-ray photoelectron spectroscopy (XPS) that the AHC method is effective in removing surface oxides and hydrocarbons, yielding an almost completely clean surface when the AHC is conducted at a temperature of 250 °C. We compare the post-AHC cleanliness and (2 × 1) low energy electron diffraction (LEED) pattern to that obtained via IBA, where the sample is annealed at 600 °C. We also demonstrate that the combination of a sample temperature of 250 °C and atomic H dosing is required to clean the surface. Lower temperatures prove less effective in removal of the oxide layer and hydrocarbons, whilst annealing in ultra-high vacuum conditions only removes weakly bound hydrocarbons. Finally, we examine the subsequent H-termination of an IBA-cleaned sample using XPS, LEED and ultraviolet

  17. Effect of hydrogen atoms on the structures of trinuclear metal carbonyl clusters: trinuclear manganese carbonyl hydrides.

    Science.gov (United States)

    Liu, Xian-mei; Wang, Chao-yang; Li, Qian-shu; Xie, Yaoming; King, R Bruce; Schaefer, Henry F

    2009-05-18

    The structures of the trinuclear manganese carbonyl hydrides H(3)Mn(3)(CO)(n) (n = 12, 11, 10, 9) have been investigated by density functional theory (DFT). Optimization of H(3)Mn(3)(CO)(12) gives the experimentally known structure in which all carbonyl groups are terminal and each edge of a central Mn(3) equilateral triangle is bridged by a single hydrogen atom. This structure establishes the canonical distance 3.11 A for the Mn-Mn single bond satisfying the 18-electron rule. The central triangular (mu-H)(3)Mn(3) unit is retained in the lowest energy structure of H(3)Mn(3)(CO)(11), which may thus be derived from the H(3)Mn(3)(CO)(12) structure by removal of a carbonyl group with concurrent conversion of one of the remaining carbonyl groups into a semibridging carbonyl group to fill the resulting hole. The potential energy surface of H(3)Mn(3)(CO)(10) is relatively complicated with six singlet and five triplet structures. One of the lower energy H(3)Mn(3)(CO)(10) structures has one of the hydrogen atoms bridging the entire Mn(3) triangle and the other two hydrogen atoms bridging Mn-Mn edges. This H(3)Mn(3)(CO)(10) structure achieves the favored 18-electron configuration with a very short MnMn triple bond of 2.36 A. The other low energy H(3)Mn(3)(CO)(10) structure retains the (mu-H)(3)Mn(3) core of H(3)Mn(3)(CO)(12) but has a unique six-electron donor eta(2)-mu(3) carbonyl group bridging the entire Mn(3) triangle similar to the unique carbonyl group in the known compound Cp(3)Nb(3)(CO)(6)(eta(2)-mu(3)-CO). For H(3)Mn(3)(CO)(9) a structure with a central (mu(3)-H)(2)Mn(3) trigonal bipyramid lies >20 kcal/mol below any of the other structures. Triplet structures were found for the unsaturated H(3)Mn(3)(CO)(n) (n = 11, 10, 9) systems but at significantly higher energies than the lowest lying singlet structures.

  18. The distribution of atomic hydrogen in EAGLE galaxies: morphologies, profiles, and H I holes

    Science.gov (United States)

    Bahé, Yannick M.; Crain, Robert A.; Kauffmann, Guinevere; Bower, Richard G.; Schaye, Joop; Furlong, Michelle; Lagos, Claudia; Schaller, Matthieu; Trayford, James W.; Dalla Vecchia, Claudio; Theuns, Tom

    2016-02-01

    We compare the mass and internal distribution of atomic hydrogen (H I) in 2200 present-day central galaxies with Mstar > 1010 M⊙ from the 100 Mpc EAGLE `Reference' simulation to observational data. Atomic hydrogen fractions are corrected for self-shielding using a fitting formula from radiative transfer simulations and for the presence of molecular hydrogen using an empirical or a theoretical prescription from the literature. The resulting neutral hydrogen fractions, M_{H_I+H_2} / M_star, agree with observations to better than 0.1 dex for galaxies with Mstar between 1010 and 1011 M⊙. Our fiducial, empirical H2 model based on gas pressure results in galactic H I mass fractions, M_{H I/ M_star, that agree with observations from the GASS survey to better than 0.3 dex, but the alternative theoretical H2 formula from high-resolution simulations leads to a negative offset in M_{H I}/ M_star of up to 0.5 dex. Visual inspection of mock H I images reveals that most H I discs in simulated H I-rich galaxies are vertically disturbed, plausibly due to recent accretion events. Many galaxies (up to 80 per cent) contain spuriously large H I holes, which are likely formed as a consequence of the feedback implementation in EAGLE. The H I mass-size relation of all simulated galaxies is close to (but 16 per cent steeper than) observed, and when only galaxies without large holes in the H I disc are considered, the agreement becomes excellent (better than 0.1 dex). The presence of large H I holes also makes the radial H I surface density profiles somewhat too low in the centre, at Σ _{H I} > 1 M_{⊙} pc^{-2} (by a factor of ≲ 2 compared to data from the Bluedisk survey). In the outer region (Σ _{H I} 10^{9.8} M_{⊙}) and control galaxies (10^{9.1} M_{⊙}> M_{H I} > 10^{9.8} M_{⊙}) follow each other closely, as observed.

  19. Effect of Unsaturated Sn Atoms on Gas-Sensing Property in Hydrogenated SnO2 Nanocrystals and Sensing Mechanism.

    Science.gov (United States)

    Yuan, Y; Wang, Y; Wang, M; Liu, J; Pei, C; Liu, B; Zhao, H; Liu, S; Yang, H

    2017-04-27

    Sensing reaction mechanism is crucial for enhancing the sensing performance of semiconductor-based sensing materials. Here we show a new strategy to enhancing sensing performance of SnO2 nanocrystals by increasing the density of unsaturated Sn atoms with dangling bonds at the SnO2 surface through hydrogenation. A concept of the surface unsaturated Sn atoms serving as active sites for the sensing reaction is proposed, and the sensing mechanism is described in detail at atomic and molecule level for the first time. Sensing properties of other metal oxide sensors and catalytic activity of other catalysts may be improved by using the hydrogenation strategy. The concept of the surface unsaturated metal atoms serving as active sites may be very useful for understanding the sensing and catalytic reaction mechanisms and designing advanced sensing sensors, catalysts and photoelectronic devices.

  20. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    Science.gov (United States)

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  1. Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell.

    Science.gov (United States)

    Shu, Chi; Chen, Peng; Chow, Tsz Kiu Aaron; Zhu, Lingbang; Xiao, Yanhong; Loy, M M T; Du, Shengwang

    2016-09-23

    Entangled photon pairs, termed as biphotons, have been the benchmark tool for experimental quantum optics. The quantum-network protocols based on photon-atom interfaces have stimulated a great demand for single photons with bandwidth comparable to or narrower than the atomic natural linewidth. In the past decade, laser-cooled atoms have often been used for producing such biphotons, but the apparatus is too large and complicated for engineering. Here we report the generation of subnatural-linewidth (coherence time (47-94 ns). Our backward phase-matching scheme with spatially separated optical pumping is the key to suppress uncorrelated photons from resonance fluorescence. The result may lead towards miniature narrowband biphoton sources.

  2. The hydrogen atom in strong electric fields summation of the weak field series expansion

    CERN Document Server

    Ohshima, Y; Ohshima, Yoshihisa; Suzuki, Hiroshi

    1995-01-01

    The order dependent mapping method, its convergence has recently been proven for the energy eigenvalue of the anharmonic oscillator, is applied to re-sum the standard perturbation series for Stark effect of the hydrogen atom. We perform a numerical experiment up to the fiftieth order of the perturbation expansion. A simple mapping suggested by the analytic structure and the strong field behavior gives an excellent agreement with the exact value for an intermediate range of the electric field, 0.03\\leq E\\leq0.25. The imaginary part of the energy (the decay width) as well as the real part of the energy is reproduced from the standard perturbation series.

  3. Hydrogen bonding in acetylacetaldehyde: Theoretical insights from the theory of atoms in molecules

    Science.gov (United States)

    Nowroozi, A.; Jalbout, A. F.; Roohi, H.; Khalilinia, E.; Sadeghi, M.; de Leon, A.; Raissi, H.

    All the possible conformations of tautomeric structures (keto and enol) of acetylacetaldehyde (AAD) were fully optimized at HF, B3LYP, and MP2 levels with 6-31G(d,p) and 6-311++G(d,p) basis sets to determine the conformational equilibrium. Theoretical results show that two chelated enol forms have extra stability with respect to the other conformers, but identification of global minimum is very difficult. The high level ab initio calculations G2(MP2) and CBS-QB3) also support the HF conclusion. It seems that the chelated enol forms have equal stability, and the energy gap between them is probably lies in the computational error range. Finally, the analysis of hydrogen bond in these molecules by quantum theory of atoms in molecules (AIM) and natural bond orbital (NBO) methods fairly support the ab initio results.

  4. The Quantum Black Hole as a Hydrogen Atom: Microstates Without Strings Attached

    CERN Document Server

    Hooft, Gerard t

    2016-01-01

    Applying an expansion in spherical harmonics, turns the black hole with its microstates into something about as transparent as the hydrogen atom was in the early days of quantum mechanics. It enables us to present a concise description of the evolution laws of these microstates, linking them to perturbative quantum field theory, in the background of the Schwarzschild metric. Three pieces of insight are obtained: One, we learn how the gravitational back reaction, whose dominant component can be calculated exactly, turns particles entering the hole, into particles leaving it, by exchanging the momentum- and position operators; two, we find out how this effect removes firewalls, both on the future and the past event horizon, and three, we discover that the presence of region II in the Penrose diagram forces a topological twist in the background metric, culminating in antipodal identification. Although a cut-off is required that effectively replaces the transverse coordinates by a lattice, the effect of such a cu...

  5. Monolithic Laser Scribed Graphene Scaffold with Atomic Layer Deposited Platinum for Hydrogen Evolution Reaction

    KAUST Repository

    Nayak, Pranati

    2017-09-01

    The use of three-dimensional (3D) electrode architectures as scaffolds for conformal deposition of catalysts is an emerging research area with significant potential for electrocatalytic applications. In this study, we report the fabrication of monolithic, self-standing, 3D graphitic carbon scaffold with conformally deposited Pt by atomic layer deposition (ALD) as a hydrogen evolution reaction catalyst. Laser scribing is employed to transform polyimide into 3D porous graphitic carbon, which possesses good electronic conductivity and numerous edge plane sites. This laser scribed graphene (LSG) architecture makes it possible to fabricate monolithic electrocatalyst support without any binders or conductive additives. The synergistic effect between ALD of Pt on 3D network of LSG provides an avenue for minimal yet effective Pt usage, leading to an enhanced HER activity. This strategy establish a general approach for inexpensive and large scale HER device fabrication with minimum catalyst cost.

  6. Formation of ground and excited hydrogen atoms in proton–potassium inelastic scattering

    Indian Academy of Sciences (India)

    S A ELKILANY

    2016-11-01

    The inelastic scattering of proton with a potassium atom is treated for the first time as a three channel problem within the framework of the improved coupled static approximation by assuming that the ground (1s state) and the excited (2s state) hydrogen formation channels are open for seven values of total angularmomentum, $l (0 \\leq l \\leq 6)$ at energies between 50 and 500 keV. The Lipmann–Swinger equation and the Green’s function iterative numerical method are used to calculate iterative partial and total cross-sections. This can be doneby calculating the reactance matrix at different values of the considered incident energies to obtain the transition matrix that gives partial and total cross-sections. Present results are in reasonable agreement with previous results.

  7. Tracing the Spiral Structure of the Outer Milky Way with Dense Atomic Hydrogen Gas

    Science.gov (United States)

    Koo, Bon-Chul; Park, Geumsook; Kim, Woong-Tae; Lee, Myung Gyoon; Balser, Dana S.; Wenger, Trey V.

    2017-09-01

    We present a new face-on map of dense neutral atomic hydrogen ({{H}} i) gas in the outer Galaxy. Our map has been produced from the Leiden/Argentine/Bonn {{H}} i 21 cm line all-sky survey by finding intensity maxima along every line of sight and then by projecting them on the Galactic plane. The resulting face-on map strikingly reveals the complex spiral structure beyond the solar circle, which is characterized by a mixture of distinct long arcs of {{H}} i concentrations and numerous “interarm” features. The comparison with more conventional spiral tracers confirms the nature of those long arc structures as spiral arms. Our map shows that the {{H}} i spiral structure in the outer Galaxy is well described by a four-arm spiral model (pitch angle of 12^\\circ ) with some deviations, and gives a new insight into identifying {{H}} i features associated with individual arms.

  8. Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Yuan Lin; Zhao Yun-Hui; Xu Jun; Zhou Ben-Hu; Hai Wen-Hua

    2012-01-01

    A variational-integral perturbation method (VIPM) is established by combining the variational perturbation with the integral perturbation.The first-order corrected wave functions are constructed,and the second-order energy corrections for the ground state and several lower excited states are calculated by applying the VIPM to the hydrogen atom in a strong uniform magnetic field.Our calculations demonstrated that the energy calculated by the VIPM only shows a negative value,which indicates that the VIPM method is more accurate than the other methods.Our study indicated that the VIPM can not only increase the accuracy of the results but also keep the convergence of the wave functions.

  9. Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact

    CERN Document Server

    Attaourti, Y

    2004-01-01

    Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the $(e,2e)$ reaction and in the presence of a circularly polarized laser field, we introduce as a first step the DVRPWBA1 (Dirac-Volkov Plane Wave Born Approximation1) where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the DVRPWBA2 (Dirac-Volkov Plane Wave Born Approximation2) where we take totally into account the relativistic dressing of the incident, scattered and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the non relativistic and the relativistic regime.

  10. Positron-impact ionisation of atomic hydrogen in the presence of a bichromatic laser field

    Institute of Scientific and Technical Information of China (English)

    Lou Jun; Li Shu-Min

    2010-01-01

    The positron impact-ionisation of atomic hydrogen in the presence of a linearly polarised bichromatic field is investigated in the first Born approximation.The field is composed of a fundamental frequency and its second harmonic.The state of positron in the field is described by the Volkov wavefunction,and the continuum state of the ejected electron is described by the Coulomb-Volkov wavefunction.The dressed ground state of target is a first order time-dependent perturbative wavefunction.The triple differential cross sections and their dependencies on laser field parameters are discussed and compared with the results modified by a monochromatic field.Numerical results show that the coherent phase control is significant and the laser-assisted ionisation cross sections caused by positron and electron are different.

  11. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    Science.gov (United States)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  12. Dirac equation, hydrogen atom spectrum and the Lamb shift in dynamical non-commutative spaces

    Indian Academy of Sciences (India)

    S A ALAVI; N REZAEI

    2017-05-01

    We derive the relativistic Hamiltonian of hydrogen atom in dynamical non-commutative spaces (DNCS or $\\tau$ -space). Using this Hamiltonian we calculate the energy shift of the ground state as well the $2P_{1/2}$, $2S_{1/2}$levels. In all the cases, the energy shift depends on the dynamical non-commutative parameter $\\tau$. Using the accuracy of the energy measurement, we obtain an upper bound for $\\tau$. We also study the Lamb shift in DNCS. Both $2P_{1/2}$ and $2S_{1/2}$ levels receive corrections due to dynamical non-commutativity of space which is in contrast with the non-dynamical non-commutative spaces (NDNCS or $\\theta$-space) in which the $2S_{1/2}$ level receives no correction.

  13. Low temperature removal of surface oxides and hydrocarbons from Ge(100) using atomic hydrogen

    Science.gov (United States)

    Walker, M.; Tedder, M. S.; Palmer, J. D.; Mudd, J. J.; McConville, C. F.

    2016-08-01

    Germanium is a group IV semiconductor with many current and potential applications in the modern semiconductor industry. Key to expanding the use of Ge is a reliable method for the removal of surface contamination, including oxides which are naturally formed during the exposure of Ge thin films to atmospheric conditions. A process for achieving this task at lower temperatures would be highly advantageous, where the underlying device architecture will not diffuse through the Ge film while also avoiding electronic damage induced by ion irradiation. Atomic hydrogen cleaning (AHC) offers a low-temperature, damage-free alternative to the common ion bombardment and annealing (IBA) technique which is widely employed. In this work, we demonstrate with X-ray photoelectron spectroscopy (XPS) that the AHC method is effective in removing surface oxides and hydrocarbons, yielding an almost completely clean surface when the AHC is conducted at a temperature of 250 °C. We compare the post-AHC cleanliness and (2 × 1) low energy electron diffraction (LEED) pattern to that obtained via IBA, where the sample is annealed at 600 °C. We also demonstrate that the combination of a sample temperature of 250 °C and atomic H dosing is required to clean the surface. Lower temperatures prove less effective in removal of the oxide layer and hydrocarbons, whilst annealing in ultra-high vacuum conditions only removes weakly bound hydrocarbons. Finally, we examine the subsequent H-termination of an IBA-cleaned sample using XPS, LEED and ultraviolet photoelectron spectroscopy (UPS) in order to examine changes in the work function of Ge(100) upon hydrogenation.

  14. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA`s hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R&D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required.

  15. Formation of hydrogen atom in 2s state in proton-sodium inelastic scattering

    Science.gov (United States)

    Sabbah, A. Elkilany

    2015-03-01

    The inelastic collision of protons with sodium atoms are treated for the first time within the framework of the coupled-static and frozen core approximations. The method is used for calculating partial and total cross-sections with the assumption that only two channels (elastic and hydrogen formation in 2s state) are open. In each case, the calculations are carried out for seven values of the total angular momentum ℓ(0 ≤ ℓ ≤ 6). The target is described using the Clementi Roetti wave functions within the framework of the one valence electron model. We use Lipmann-Swinger equation to solve the derived equations of the problem, then apply an iterative numerical method to obtain the code of computer to calculate iterative partial cross-sections. This can be done through calculating the reactance matrix at different values of considered energies to obtain the transition matrix that gives partial and total cross sections. The present results for total hydrogen (2s state) formation cross sections are in agreement with results of other available ones in wide range of incident energy.

  16. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, M. A.; Solanki, K. N., E-mail: kiran.solanki@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Groh, S. [Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg 09556 (Germany)

    2014-08-14

    In this study, we present atomistic mechanisms of 1/2 [111](11{sup ¯}0) edge dislocation interactions with point defects (hydrogen and vacancies) and hydrogen solute atmospheres in body centered cubic (bcc) iron. In metals such as iron, increases in hydrogen concentration can increase dislocation mobility and/or cleavage-type decohesion. Here, we first investigate the dislocation mobility in the presence of various point defects, i.e., change in the frictional stress as the edge dislocation interacts with (a) vacancy, (b) substitutional hydrogen, (c) one substitutional and one interstitial hydrogen, (d) interstitial hydrogen, (e) vacancy and interstitial hydrogen, and (f) two interstitial hydrogen. Second, we examine the role of a hydrogen-solute atmosphere on the rate of local dislocation velocity. The edge dislocation simulation with a vacancy in the compression side of the dislocation and an interstitial hydrogen atom at the tension side exhibit the strongest mechanical response, suggesting a higher potential barrier and hence, the higher frictional stress (i.e., ∼83% higher than the pure iron Peierls stress). In the case of a dislocation interacting with a vacancy on the compressive side, the vacancy binds with the edge dislocation, resulting in an increase in the friction stress of about 28% when compared with the Peierls stress of an edge dislocation in pure iron. Furthermore, as the applied strain increases, the vacancy migrates through a dislocation transportation mechanism by attaining a velocity of the same order as the dislocation velocity. For the case of the edge dislocation interacting with interstitial hydrogen on the tension side, the hydrogen atom jumps through one layer perpendicular to the glide plane during the pinning-unpinning process. Finally, our simulation of dislocation interactions with hydrogen show first an increase in the local dislocation velocity followed by a pinning of the dislocation core in the atmosphere, resulting in

  17. Experimental and Simulation Analysis of Hot Isostatic Pressing of Gas Atomized Stainless Steel 316L Powder Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dongguo; Park, Seong Jin [Pohang University of Science and Technology, Pohang (Korea, Republic of); Ha, Sangyul [Samsung Electro-Mechanics, Suwon (Korea, Republic of); Shin, Youngho [Doosan Heavy Industries and Construction Co., Ltd., Changwon (Korea, Republic of); Park, Dong Yong [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Chung, Sung Taek [CetaTech Inc., Sacheon (Korea, Republic of); Bollina, Ravi [Bahadurpally Jeedimetla, Hyderabad (India); See, Seongkyu [POSCO, Pohang (Korea, Republic of)

    2016-10-15

    In this work, both experimental and numerical studies were conducted to investigate the densification behavior of stainless steel 316L (STS 316L) powders during hot isostatic pressing (HIP), and to characterize the mechanical properties of HIPed specimens. The HIP experiments were conducted with gas atomized STS 316L powders with spherical particle shapes under controlled pressure and temperature conditions. The mechanical properties of HIPed samples were determined based on a series of tensile tests, and the results were compared to a reference STS 316L sample prepared by the conventional process, i.e., extrusion and annealing process. Corresponding microstructures before and after tensile tests were observed using scanning electron microscopy and their relationships to the mechanical properties were addressed. Furthermore, a finite element simulation based on the power-law creep model was carried out to predict the density distribution and overall shape change of the STS316L powder compact during HIP process, which agreed well with the experimental results.

  18. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    Science.gov (United States)

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  19. Photoionization Broadening of the 1S-2S Transition in a Beam of Atomic Hydrogen

    CERN Document Server

    Kolachevsky, N; Fischer, M; Haas, M; Herrmann, M; Holzwarth, R; Hänsch, T W; Jentschura, U D; Keitel, C H; Udem, T; Udem, Th.

    2006-01-01

    We consider the excitation dynamics of the two-photon \\sts transition in a beam of atomic hydrogen by 243 nm laser radiation. Specifically, we study the impact of ionization damping on the transition line shape, caused by the possibility of ionization of the $2S$ level by the same laser field. Using a Monte-Carlo simulation, we calculate the line shape of the \\sts transition for the experimental geometry used in the two latest absolute frequency measurements (M. Niering {\\it et al.}, PRL 84, 5496 (2000) and M. Fischer {\\it et al.}, PRL 92, 230802 (2004)). The calculated line shift and line width are in excellent agreement with the experimentally observed values. From this comparison we can verify the values of the dynamic Stark shift coefficient for the \\sts transition for the first time on a level of 15%. We show that the ionization modifies the velocity distribution of the metastable atoms, the line shape of the \\sts transition, and has an influence on the derivation of its absolute frequency.

  20. Do Spin State and Spin Density Affect Hydrogen Atom Transfer Reactivity?

    Science.gov (United States)

    Saouma, Caroline T; Mayer, James M

    2014-01-01

    The prevalence of hydrogen atom transfer (HAT) reactions in chemical and biological systems has prompted much interest in establishing and understanding the underlying factors that enable this reactivity. Arguments have been advanced that the electronic spin state of the abstractor and/or the spin-density at the abstracting atom are critical for HAT reactivity. This is consistent with the intuition derived from introductory organic chemistry courses. Herein we present an alternative view on the role of spin state and spin-density in HAT reactions. After a brief introduction, the second section introduces a new and simple fundamental kinetic analysis, which shows that unpaired spin cannot be the dominant effect. The third section examines published computational studies of HAT reactions, which indicates that the spin state affects these reactions indirectly, primarily via changes in driving force. The essay concludes with a broader view of HAT reactivity, including indirect effects of spin and other properties on reactivity. It is suggested that some of the controversy in this area may arise from the diversity of HAT reactions and their overlap with proton-coupled electron transfer (PCET) reactions.

  1. Photoionization microscopy of Rydberg hydrogen atom in a non-uniform electrical field

    Science.gov (United States)

    Shao-Hao, Cheng; De-Hua, Wang; Zhao-Hang, Chen; Qiang, Chen

    2016-06-01

    In this paper, we investigate the photoionization microscopy of the Rydberg hydrogen atom in a gradient electric field for the first time. The observed oscillatory patterns in the photoionization microscopy are explained within the framework of the semiclassical theory, which can be considered as a manifestation of interference between various electron trajectories arriving at a given point on the detector plane. In contrast with the photoionization microscopy in the uniform electric field, the trajectories of the ionized electron in the gradient electric field will become chaotic. An infinite set of different electron trajectories can arrive at a given point on the detector plane, which makes the interference pattern of the electron probability density distribution extremely complicated. Our calculation results suggest that the oscillatory pattern in the electron probability density distribution depends sensitively on the electric field gradient, the scaled energy and the position of the detector plane. Through our research, we predict that the interference pattern in the electron probability density distribution can be observed in an actual photoionization microscopy experiment once the external electric field strength and the position of the electron detector plane are reasonable. This study provides some references for the future experimental research on the photoionization microscopy of the Rydberg atom in the non-uniform external fields. Project supported by the National Natural Science Foundation of China (Grant No. 11374133) and the Project of Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J13LJ04).

  2. Excited states of two-dimensional hydrogen atom in tilted magnetic field: Quantum chaos

    Science.gov (United States)

    Koval, Eugene A.; Koval, Oksana A.

    2017-09-01

    The aim of the current work is the research of the influence of a tilted magnetic field direction on the spectrum and the energy level spacing distribution of a two-dimensional (2D) hydrogen atom and of an exciton in GaAs/Al0.33Ga0.67As quantum well. It was discovered that the quantum chaos (QC) is initiated with an increasing angle α between the magnetic field direction and the normal to the atomic plane. It is characterized by the repulsion of levels leading to the eliminating of the shell structure and by changing the spectrum statistical properties. The statement about the initiation of chaos and its dominance over regular motion with increasing angle α is confirmed by the results of our calculations of the classical dynamics presented in this paper. The evolution of the spatial distribution of the square of the absolute value of the wave function at an increasing angle α was observed. The differences of calculated dependencies of energies for various excited states on the tilt angle at a wide range of the magnetic field strength were described.

  3. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Flare

    Science.gov (United States)

    Barghouty, A. F.; Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Cohen, C. M. S.; Cummings, A. C.; Labrador, A. W.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We discuss observations of energetic neutral hydrogen atoms (ENAs) from a solar flare/coronal mass ejection event reported by Mewaldt et al. (2009). The observations were made during the 5 December 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV particles arriving from the Sun. The derived solar emission profile, arrival directions, and energy spectrum all show that the atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. CME-driven shock acceleration is also considered. Taking into account ENA losses, we conclude that the observed ENAs must have been produced in the high corona at heliocentric distances .2 solar radii.

  4. The influence hydrogen atom addition has on charge switching during motion of the metal atom in endohedral Ca@C60H4 isomers.

    Science.gov (United States)

    Raggi, G; Besley, E; Stace, A J

    2016-09-13

    Density functional theory has been applied in a study of charge transfer between an endohedral calcium atom and the fullerene cage in Ca@C60H4 and [Ca@C60H4](+) isomers. Previous calculations on Ca@C60 have shown that the motion of calcium within a fullerene is accompanied by large changes in electron density on the carbon cage. Based on this observation, it has been proposed that a tethered endohedral fullerene might form the bases of a nanoswitch. Through the addition of hydrogen atoms to one hemisphere of the cage it is shown that, when compared with Ca@C60, asymmetric and significantly reduced energy barriers can be generated with respect to motion of the calcium atom. It is proposed that hydrogen atom addition to a fullerene might offer a route for creating a bi-stable nanoswitch that can be fine-tuned through the selection of an appropriate isomer and number of atoms attached to the cage of an endohedral fullerene.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.

  5. Numerical study of a jet-in-hot-coflow burner with hydrogen-addition using the Flamelet Generated Manifolds technique

    Science.gov (United States)

    Abtahizadeh, Seyed Ebrahim; van Oijen, Jeroen; de Goey, Philip

    2012-11-01

    Recently Mild combustion is subjected to intensive research because of its unique ability to provide high efficiency and low pollutant combustion simultaneously in industrial heating processes. In most practical Mild combustion applications, a fuel jet is ignited due to recirculation of hot burned gases. The impact of burned gases on autoignition and flame stabilization has been studied in a laboratory jet-in-hot-coflow (JHC) burner. Results of this study help us to understand recent experimental observations of the Delft group (DJHC burner) in which Dutch Natural Gas (DNG) is mixed with various amounts of H2. The main focus is on the modeling of autoignition in the DJHC burner by using the Flamelet Generated Manifolds (FGM) technique. In this technique, kinetic information is tabulated with a few controlling variables which results in a significant decrease in simulation time. The FGM tabulation has been performed using igniting laminar counterflow diffusion flames. Since H2 is present in the fuel composition, it is essential to include preferential diffusion effects in the table due to the high diffusivity of H2. Based on results, the FGM table is capable to reproduce the autoignition of hydrogen containing fuel predicted by detailed chemistry in 1D counterflow flames. The Authors gratefully acknowledge financial support of the Dutch Technology Foundation STW.

  6. Bifurcations in the hydrogen atom in the presence of a circularly polarized microwave field and a static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Lanchares, V. [Departamento de Matematicas y Computacion, Universidad de La Rioja, 26004 Logrono (Spain); Inarrea, M.; Salas, J.P. [Area de Fisica Aplicada, Universidad de La Rioja, 26004 Logrono (Spain)

    1997-09-01

    In a classical model, the dynamics of the hydrogen atom subjected to a circularly polarized microwave field and a magnetic field is shown to belong to the family of so-called biparametric quadratic Hamiltonians. The energy-level structure is studied in terms of the parametric bifurcations. {copyright} {ital 1997} {ital The American Physical Society}

  7. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    Science.gov (United States)

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  8. Effects of delocalization on intrinsic barriers for H-atom transfer: Implications for the radical hydrogen transfer reaction

    Energy Technology Data Exchange (ETDEWEB)

    Camaioni, D.M.; Autrey, S.T.; Ferris, K.F.; Franz, J.A.

    1992-08-01

    PM3 calculations of transition states (TS) for both normal H-atom transfer and radical hydrogen transfer (RHT) reactions of a a wide-variety of hydrocarbon structures have enabled development of quantitative structure-reactivity relationships. Results indicate that activation barriers for RHT reactions are large enough that thermoneutral and endothermic reactions should not compete with alternative multistep pathways.

  9. Single crystal to single crystal transformation and hydrogen-atom transfer upon oxidation of a cerium coordination compound.

    Science.gov (United States)

    Williams, Ursula J; Mahoney, Brian D; Lewis, Andrew J; DeGregorio, Patrick T; Carroll, Patrick J; Schelter, Eric J

    2013-04-15

    Trivalent and tetravalent cerium compounds of the octamethyltetraazaannulene (H2omtaa) ligand have been synthesized. Electrochemical analysis shows a strong thermodynamic preference for the formal cerium(IV) oxidation state. Oxidation of the cerium(III) congener Ce(Homtaa)(omtaa) occurs by hydrogen-atom transfer that includes a single crystal to single crystal transformation upon exposure to an ambient atmosphere.

  10. Visualization of a Large Set of Hydrogen Atomic Orbital Contours Using New and Expanded Sets of Parametric Equations

    Science.gov (United States)

    Rhile, Ian J.

    2014-01-01

    Atomic orbitals are a theme throughout the undergraduate chemistry curriculum, and visualizing them has been a theme in this journal. Contour plots as isosurfaces or contour lines in a plane are the most familiar representations of the hydrogen wave functions. In these representations, a surface of a fixed value of the wave function ? is plotted…

  11. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    Science.gov (United States)

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  12. Corrigendum: "Extracting Closed Classical Orbits from Quantum Recurrence Spectra of a Non-Hydrogenic Atom in Parallel Electric and Magnetic Fields"

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua

    2010-01-01

    @@ In a paper published by us,[1] we studied how to extract the closed orbit of the non-hydrogenic atom in parallel electric and magnetic fields. However, there was another paper published in 1996 by Courtney,[2] which studied the initial conditions of closed classical orbits from quantum spectra of hydrogen atom in magnetic field.

  13. Abundances in the hot DZ star CBS 127 - How efficient is hydrogen screening

    Energy Technology Data Exchange (ETDEWEB)

    Sion, E.M.; Hammond, G.L.; Wagner, R.M.; Starrfield, S.G.; Liebert, J. (Villanova Univ., PA (USA) South Florida Univ., Tampa, FL (USA) Ohio State Univ., Columbus (USA) Arizona State Univ., Tempe (USA) Steward Observatory, Tucson, AZ (USA))

    1990-10-01

    A revised and updated grid of cool helium-rich model atmospheres which includes the effect of varying hydrogen abundance is used to analyze the temperature and abundance of the DZ white dwarf CBS 127. Comparisons of the star to several other DZ white dwarfs with similar T(e)s show that CBS 137 is the hottest DZ star and lies near the boundary temperature above which it has been proposed that hydrogen accretion may be prevented. Based on the results, a specifically defined single lower boundary temperature for screening is rejected, and it is demonstrated that the propeller must operate over a very broad range of T(eff), down to T(eff) as low as 5800 K, with highly variable efficiency. 39 refs.

  14. Influence of silicon on hot-dip aluminizing process and subsequent oxidation for preparing hydrogen/tritium permeation barrier

    Energy Technology Data Exchange (ETDEWEB)

    Han, Shilei; Li, Hualing; Wang, Shumao; Jiang, Lijun; Liu, Xiaopeng [Energy Materials and Technology Research Institute, General Research Institute for Nonferrous Metals, Beijing 100088 (China)

    2010-04-15

    The development of the International Thermonuclear Experimental Reactor (ITER) requires the production of a material capable of acting as a hydrogen/tritium permeation barrier on low activation steel. It is well known that thin alumina layer can reduce the hydrogen permeation rate by several orders of magnitude. A technology is introduced here to form a ductile Fe/Al intermetallic layer on the steel with an alumina over-layer. This technology, consisting of two main steps, hot-dip aluminizing (HDA) and subsequent oxidation behavior, seems to be a promising coating method to fulfill the required goals. According to the experiments that have been done in pure Al, the coatings were inhomogeneous and too thick. Additionally, a large number of cracks and porous band could be observed. In order to solve these problems, the element silicon was added to the aluminum melt with a nominal composition. The influence of silicon on the aluminizing and following oxidation process was investigated. With the addition of silicon into the aluminum melt, the coating became thinner and more homogeneous. The effort of the silicon on the oxidation behavior was observed as well concerning the suppression of porous band and cracks. (author)

  15. Determination of vanadium in urine by electrothermal atomic absorption spectrometry using hot injection and preconcentration into the graphite tube

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Kelly G.; Nobrega, Joaquim A. [Sao Carlos Univ., SP (Brazil). Dept. de Quimica; Nogueira, Ana Rita A. [Embrapa Pecuaria Sudeste, Sao Carlos, SP (Brazil)]. E-mail: anarita@cppse.embrapa.br; Gomes Neto, Jose A. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica

    2004-10-01

    In this work it was developed a procedure for the determination of vanadium in urine samples by electrothermal atomic absorption spectrometry using successive injections for preconcentration into a preheated graphite tube. Three 60 {mu}L volumes were sequentially injected into the atomizer preheated to a temperature of 110 deg C. Drying and pyrolysis steps were carried out after each injection. A chemical modifier, barium difluoride (100 mg L{sup -1}), and a surfactant, Triton X-100 (0.3% v v{sup -1}), were added to the urine sample. When injecting into a hot graphite tube, the sample flow-rate was 0.5 {mu} s{sup -1}. The limits of detection and quantification were 0.54 and 1.82 without preconcentration, and 0.11 and 0.37 {mu}g L{sup -1} with preconcentration, respectively. The accuracy of the procedure was evaluated by an addition-recovery experiment employing urine samples. Recoveries varied from 96.0 to 103% for additions ranging from 0.8 to 3.5 {mu}g L{sup -1} V. The developed procedure allows the determination of vanadium in urine without any sample pretreatment and with minimal dilution of the sample. (author)

  16. Greatly enhanced intensity-difference squeezing via energy-level modulations in hot atomic media

    CERN Document Server

    Zhang, Da; Zhang, Zhaoyang; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2016-01-01

    Narrow-band intensity-difference squeezing (IDS) beams have important applications in quantum metrology and quantum information. The best way to generate narrow-band IDS is to employ parametrically-amplified (PA) four-wave mixing (FWM) process in high-gain atomic media. Such IDS can be further enhanced by cascading multiple PA-FWM processes in separate atomic media. The complicated experimental setup, added losses and mechanical stability can limit the wide uses of such scheme in practical applications. Here, we show that by modulating/dressing the internal energy level(s) with additional laser(s), the degree of original IDS can be substantially increased. With an initial IDS of $-4.0\\pm0.1$ dB using PA-non-degenerate-FWM process in a three-level $\\Lambda$-type configuration, the degree of IDS can be enhanced to $-7.0\\pm0.1$ dB/$-8.1\\pm0.1$ dB when we use one/two laser beam(s) to modulate the involved ground/excited state(s). Our results show a low-loss, robust and efficient way to produce high degree of IDS ...

  17. NMR study of the FH⋯F hydrogen bond. Relation between hydrogen atom position and FH⋯F bond length

    Science.gov (United States)

    Panich, A. M.

    1995-07-01

    1H and 19F NMR study of (NH 4) 3BiBr 6NH 4Br·2NH 4HF 2 shows the bifluoride ion in this compound to be asymmetric with distances r( HF) = 1.042 ± 0.002 and R( FF) = 2.373 ± 0.008 Å. Existing NMR and neutron diffraction data for the FH⋯F hydrogen bond in solids have been studied to find a relation between the position of the hydrogen atom and FH⋯F bond length. Such a relation has been established and explained in the framework of the two-dimensional dynamic model of the hydrogen bond. The dependencies of r(AH) on R(AB) for the OH⋯O and FH⋯F bonds are shown to be similar.

  18. 原子氢推进剂研究进展%Research Progress of Atomic Hydrogen Propellant

    Institute of Scientific and Technical Information of China (English)

    齐琳琳; 孟洪波; 岳广涛

    2013-01-01

      Compared with the usual hydrogen-oxygen engine, the atomic propellant engine can improve specific impulse for hundreds of seconds. In this article, the prospect of launch vehicle with atomic hydrogen propellant was analyzed, the take-off mass and dry weight of atomic propellant launch vehicle were estimated,and an optimal solution of the atomic propellant hydrogen rocket was put forward. Also, the rocket engine performance was estimated in a wide range of mixing ratio, atomic state content of solid hydrogen particles, and content of liquid helium carrier. As a monopropellant, atomic hydrogen propellant can realize a lowest rocket take-off mass when the mixing ratio is zero. Atomic hydrogen propellants may bring a revolutionary leap to launch vehicle, but issue the challenge in cryogenic technology.%  与通常的氢氧发动机相比,采用原子氢推进剂可以使比冲提高几百秒。通过介绍运载火箭采用原子氢推进剂的发展前景、原子氢推进剂火箭的起飞质量和干重,以及原子氢推进剂火箭设计的最佳方案,在比较宽的混合比范围、固氢颗粒中原子态含量范围、液氦载体含量范围估算火箭发动机性能,可以得到混合比为0时,作为单元推进剂的火箭起飞质量最低。原子氢推进剂以其优良的比冲性能给航天运载器带来质的飞跃,但对低温技术提出挑战。

  19. High Galactic latitude interstellar neutral hydrogen (HI) structure and associated acoustic-scale WMAP hot spots

    CERN Document Server

    Verschuur, Gerrit L

    2007-01-01

    Associations have been found between interstellar neutral hydrogen (HI) emission morphology and small-scale structure observed by the Wilkinson Microwave Anisotropy Probe (WMAP) in a Target Area bounded by l = 60 deg & 180 deg, b = 30 deg & 70 deg. This area is marked by the presence of highly disturbed local HI and a preponderance of intermediate- and high-velocity gas and it remains to be determined whether the claimed associations are a hallmark of the presence of the anomalous velocity gas. The HI distribution toward the 33 brightest WMAP peaks in the Target Area is examined and it is demonstrated that the associations do not appear to be the result of chance coincidence. Furthermore, several important properties of diffuse interstellar neutral hydrogen structure have been identified that might otherwise have been overlooked if it were not for the fact that the continuum data focused attention on certain areas of the HI sky. Some of the most dramatic associations are illustrated. It is suggested t...

  20. New experimental results on the interference of the states of the hydrogen atom due to long-range interaction with the metal surface

    NARCIS (Netherlands)

    Kucheryaev, YA; Pal'chikov, VG; Pchelin, YA; Sokolov, YL; Yakovlev, VP

    2005-01-01

    The interference of the 2P state of the hydrogen atom due to unknown long-range interaction with the metal surface (Sokolov effect) has been studied by an atomic interferometer. In contrast to previous experiments, where an atomic beam passed through slits in metal plates, a beam in the presented ex

  1. New algorithm for computing the ablation of hydrogenic pellets in hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Milora, S.L.

    1983-04-01

    A method is presented for calculating the evaporation rate of hydrogenic pellets immersed in an unmagnetized plasma with a suprathermal particle component of arbitrary distribution function. The computational procedure is based on hydrodynamic solutions for the expansion of the gaseous cloud, obtained in a previous treatment that considered the effects of thermal particles only. The appropriate heat source terms, derived from the stopping power of the gaseous shield, are worked out for energetic ions produced by neutral beam injection heating. The model predicts 27-cm penetration in a Poloidal Divertor Experiment (PDX) plasma, compared with experimentally measured values in the range of 29 to 32 cm. An application to the Tokamak Fusion Test Reactor (TFTR) gives an estimated 21-cm penetration for a 2.5-mm-diam tritium pellet injection at 2000 m/s into a 55-cm-bore plasma heated to a central electron temperature of 4 keV by 34 MW of neutral injection.

  2. ExoMol line lists XV: A new hot line list for hydrogen peroxide

    CERN Document Server

    Al-Refaie, Ahmed F; Ovsyannikov, Roman I; Tennyson, Jonathan; Yurchenko, Sergei N

    2016-01-01

    A computed line list for hydrogen peroxide, H$_2{}^{16}$O$_2$, applicable to temperatures up to $T=1250$~K is presented. A semi-empirical high accuracy potential energy surface is constructed and used with an {\\it ab initio} dipole moment surface as input TROVE to compute 7.5 million rotational-vibrational states and around 20 billion transitions with associated Einstein-$A$ coefficients for rotational excitations up to $J=85$. The resulting APTY line list is complete for wavenumbers below 6~000 cm$^{-1}$ ($\\lambda < 1.67$~$\\mu$m) and temperatures up to 1250~K. Room-temperature spectra are compared with laboratory measurements and data currently available in the HITRAN database and literature. Our rms with line positions from the literature is 0.152 \\cm\\ and our absolute intensities agree better than 10\\%. The full line list is available from the CDS databas

  3. Significant change of local atomic configurations at surface of reduced activation Eurofer steels induced by hydrogenation treatments

    Science.gov (United States)

    Greculeasa, S. G.; Palade, P.; Schinteie, G.; Kuncser, A.; Stanciu, A.; Lungu, G. A.; Porosnicu, C.; Lungu, C. P.; Kuncser, V.

    2017-04-01

    Reduced-activation steels such as Eurofer alloys are candidates for supporting plasma facing components in tokamak-like nuclear fusion reactors. In order to investigate the impact of hydrogen/deuterium insertion in their crystalline lattice, annealing treatments in hydrogen atmosphere have been applied on Eurofer slabs. The resulting samples have been analyzed with respect to local structure and atomic configuration both before and after successive annealing treatments, by X-ray diffractometry (XRD), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and conversion electron Mössbauer spectroscopy (CEMS). The corroborated data point out for a bcc type structure of the non-hydrogenated alloy, with an average alloy composition approaching Fe0.9Cr0.1 along a depth of about 100 nm. EDS elemental maps do not indicate surface inhomogeneities in concentration whereas the Mössbauer spectra prove significant deviations from a homogeneous alloying. The hydrogenation increases the expulsion of the Cr atoms toward the surface layer and decreases their oxidation, with considerable influence on the surface properties of the steel. The hydrogenation treatment is therefore proposed as a potential alternative for a convenient engineering of the surface of different Fe-Cr based alloys.

  4. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  5. Massive stars formed in atomic hydrogen reservoirs: H i observations of gamma-ray burst host galaxies

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Gentile, G.; Hjorth, J.

    2015-01-01

    , implying high levels of atomic hydrogen (HI), which suggests that the connection between atomic gas and star formation is stronger than previously thought. In this case, it is possible that star formation is directly fuelled by atomic gas (or that the H1-to-H2 conversion is very efficient, which rapidly...... exhaust molecular gas), as has been theoretically shown to be possible. This can happen in low-metallicity gas near the onset of star formation because cooling of gas (necessary for star formation) is faster than the H1-to-H2 conversion. Indeed, large atomic gas reservoirs, together with low molecular gas...... masses, stellar, and dust masses are consistent with GRB hosts being preferentially galaxies which have very recently started a star formation episode after accreting metal-poor gas from the intergalactic medium. This provides a natural route for forming GRBs in low-metallicity environments. The gas...

  6. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures

    Science.gov (United States)

    Chen, Hailong; Wen, Xiewen; Zhang, Jing; Wu, Tianmin; Gong, Yongji; Zhang, Xiang; Yuan, Jiangtan; Yi, Chongyue; Lou, Jun; Ajayan, Pulickel M.; Zhuang, Wei; Zhang, Guangyu; Zheng, Junrong

    2016-08-01

    Van der Waals heterostructures composed of two-dimensional transition-metal dichalcogenides layers have recently emerged as a new family of materials, with great potential for atomically thin opto-electronic and photovoltaic applications. It is puzzling, however, that the photocurrent is yielded so efficiently in these structures, despite the apparent momentum mismatch between the intralayer/interlayer excitons during the charge transfer, as well as the tightly bound nature of the excitons in 2D geometry. Using the energy-state-resolved ultrafast visible/infrared microspectroscopy, we herein obtain unambiguous experimental evidence of the charge transfer intermediate state with excess energy, during the transition from an intralayer exciton to an interlayer exciton at the interface of a WS2/MoS2 heterostructure, and free carriers moving across the interface much faster than recombining into the intralayer excitons. The observations therefore explain how the remarkable charge transfer rate and photocurrent generation are achieved even with the aforementioned momentum mismatch and excitonic localization in 2D heterostructures and devices.

  7. Rate parameters for the reaction of atomic hydrogen with dimethyl ether and dimethyl sulfide

    Science.gov (United States)

    Lee, J. H.; Machen, R. C.; Nava, D. F.; Stief, L. J.

    1981-03-01

    Absolute rate constants for the reaction of atomic hydrogen with dimethyl ether (DME) and dimethyl sulfide (DMS) were obtained using the flash photolysis-resonance fluorescence technique. Under conditions where secondary reactions are avoided, rate constants for the H+DME reaction over the temperature range 273-426 K are well represented by the Arrhenius expression k1=(4.38±0.59)×10-12 exp(-1956±43/T) cm3 molecule-1 s-1. The corresponding Arrhenius expression for the H+DMS reaction over the temperature range 212-500 K is k2=(1.30±0.43)×10-11exp(-1118±81/T) cm3 molecule-1 s-1. The Arrhenius plot for k2 shows signs of curvature, however, and separate Arrhenius expressions are derived for the data above and below room temperature. These results are discussed and comparisons are made with previous determinations which employed flow discharge and product analysis techniques.

  8. A "Missing" Supernova Remnant revealed by the 21-cm Line of Atomic Hydrogen

    CERN Document Server

    Koo, B C; Salter, C J

    2006-01-01

    Although some 20--30,000 supernova remnants (SNRs) are expected to exist in the Milky Way, only about 230 are presently known. This implies that most SNRs are ``missing''. Recently, we proposed that small ($\\simlt 1^\\circ$), faint, high-velocity features seen in large-scale 21-cm line surveys of atomic hydrogen ({\\sc Hi}) in the Galactic plane could be examples of such {\\it missing} old SNRs. Here we report on high-resolution \\schi observations of one such candidate, FVW 190.2+1.1, which is revealed to be a rapidly expanding ($\\sim 80$ \\kms) shell. The parameters of this shell seem only consistent with FVW 190.2+1.1 being the remnant of a SN explosion that occurred in the outermost fringes of the Galaxy some $\\sim 3\\times 10^5$ yr ago. This shell is not seen in any other wave band suggesting that it represents the oldest type of SNR, that which is essentially invisible except via its \\schi line emission. FVW 190.2+1.1 is one of a hundred "forbidden-velocity wings" (FVWs) recently identified in the Galactic pl...

  9. Performance of and atomic hydrogen cleaning for semiconductor-photocathodes at the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Kurichiyanil, Neeraj; Eckardt, Christian; Enders, Joachim; Espig, Martin; Fritzsche, Yuliya; Wagner, Markus [Institute for Nuclear Physics, TU Darmstadt (Germany); Aulenbacher, Kurt [Institute for Nuclear Physics, University of Mainz (Germany)

    2012-07-01

    We report on the performance of semiconductor photocathodes at the source of polarized electrons at the Darmstadt superconducting electron linear accelerator S-DALINAC. Vacuum lifetimes of above 1000 hours and charge lifetimes of 54 C have been achieved between repeated activation cycles. A standalone photocathode-rejuvenating system using atomic hydrogen is being designed for use at the S-DALINAC. In the present two-chamber design cleaning and activation of the cathodes will be carried out in a single chamber and a high-voltage (<10 kV) electrode in the second chamber will be used to test the cathodes. Inclusion of a transport vessel to the system enables fast transfer of cleaned photocathodes to main source of the accelerator. A beam of up to 10 keV polarized electrons will be available for performing quantum efficiency measurements and additional experiments. Improvement of vacuum and charge lifetimes of the cathode through systematic study of the factors causing cathode-deterioration is one of the objectives. Cathode performance is crucial for future applications of high-brightness polarized beams such as energy-recovery accelerator schemes or polarized electron targets.

  10. Penning ionization electron spectroscopy of hydrogen sulfide by metastable helium and neon atoms.

    Science.gov (United States)

    Falcinelli, Stefano; Candori, Pietro; Bettoni, Marta; Pirani, Fernando; Vecchiocattivi, Franco

    2014-08-21

    The dynamics of the Penning ionization of hydrogen sulfide molecules by collision with helium and metastable neon atoms, occurring in the thermal energy range, has been studied by analyzing the energy spectra of the emitted electrons obtained in our laboratory in a crossed beam experiment. These spectra are compared with the photoelectron spectra measured by using He(I) and Ne(I) photons under the same experimental conditions. In this way we obtained the negative energy shifts for the formation of H2S(+) ions in the first three accessible electronic states by He*(2(3,1)S1,0) and Ne*((3)P2,0) Penning ionization collisions: the 2b1 (X̃(2)B1) fundamental one, the first 5a1 (Ã(2)A1), and the second 2b2 (B̃(2)B2) excited states, respectively. The recorded energy shifts indicate that in the case of He* and Ne*-H2S the autoionization dynamics depends on the features of the collision complex and is mainly driven by an effective global attraction that comes from a balance among several non covalent intermolecular interaction components. This suggests that the Penning ionization should take place, in a specific range of intermolecular distances, as we have already observed in the case of Penning ionization of water molecules [Brunetti, B. G.; Candori, P.; Falcinelli, S.; Pirani, F.; Vecchiocattivi, F. J. Chem. Phys. 2013, 139, 164305-1-164305-8].

  11. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering.

    Science.gov (United States)

    Li, Jie; Zhan, Guangming; Yu, Ying; Zhang, Lizhi

    2016-05-09

    Although photocatalytic hydrogen evolution (PHE) is ideal for solar-to-fuel conversion, it remains challenging to construct a highly efficient PHE system by steering the charge flow in a precise manner. Here we tackle this challenge by assembling 1T MoS2 monolayers selectively and chemically onto (Bi12O17) end-faces of Bi12O17Cl2 monolayers to craft two-dimensional (2D) Janus (Cl2)-(Bi12O17)-(MoS2) bilayer junctions, a new 2D motif different from van der Waals heterostructure. Electrons and holes from visible light-irradiated Bi12O17Cl2 are directionally separated by the internal electric field to (Bi12O17) and (Cl2) end-faces, respectively. The separated electrons can further migrate to MoS2 via Bi-S bonds formed between (Bi12O17) and MoS2 monolayers. This atomic-level directional charge separation endows the Janus bilayers with ultralong carrier lifetime of 3,446 ns and hence a superior visible-light PHE rate of 33 mmol h(-1) g(-1). Our delineated Janus bilayer junctions on the basis of the oriented assembly of monolayers presents a new design concept to effectively steer the charge flow for PHE.

  12. Spatial and Kinematical Lopsidedness of Atomic Hydrogen in the Ursa Major Group of Galaxies

    CERN Document Server

    Angiras, R A; Dwarakanath, K S; Verheijen, M A W

    2007-01-01

    We have carried out the harmonic analysis of the atomic hydrogen (HI) surface density maps and the velocity fields for 11 galaxies belonging to the Ursa Major group, over a radial range of 4-6 disc scalelengths in each galaxy. This analysis gives the radial variation of spatial lopsidedness, quantified by the Fourier amplitude A$_1$ of the m=1 component normalised to the average value. The kinematical analysis gives a value for the elongation of the potential to be $\\sim 10 % $. The mean amplitude of spatial lopsidedness is found to be $\\sim 0.14$ in the inner disc, similar to the field galaxies, and is smaller by a factor of $\\sim 2$ compared to the Eridanus group galaxies. It is also shown that the the average value of A$_1$ does not increase with the Hubble type, contrary to what is seen in field galaxies. We argue that the physical origin of lopsidedness in the Ursa Major group of galaxies is tidal interactions, albeit weaker and less frequent than in Eridanus. Thus systematic studies of lopsidedness in g...

  13. Local atomic structural investigations of precursory phenomenon of the hydrogen release from LiAlD4

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toyoto [ORNL; Tomiyasu, Dr. Keisuke [Tohoku University, Japan; Ikeda, Kazutaka [High Energy Accelerator Research Organization, KEK; Otomo, Toshiya [ORNL; Feygenson, Mikhail [ORNL; Neuefeind, Joerg C [ORNL; Yamada, Kazuyoshi [Institute for Materials Research, Tohoku University, Sendai, Japan; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai, Japan

    2013-01-01

    Local atomic structural investigations of LiAlD4, which is composed of Li+ and [AlD4], at 40 300 K were studied by total neutron scattering combined with pair distribution function (PDF) analysis for understanding of hydrogen release from LiAlD4. The results showed that the Al D pair distribution almost unchanged, while the Li D pair distribution clearly started to broaden and shrink above 200 250 K. The shrinking of the Li D pair distribution might lead to the local generation of LiD, which was speculated as the precursory phenomenon for the hydrogen release from LiAlD4.

  14. Stability of Titanium Nitride and Titanium Carbide When Exposed to Hydrogen Atoms from 298 to 1950 K

    Science.gov (United States)

    Philipp, Warren H.

    1961-01-01

    Titanium nitride and titanium carbide deposited on tungsten wires were exposed to hydrogen atoms (10(exp -4) atm pressure) produced by the action of microwave radiation on molecular hydrogen. The results of these experiments in the temperature range 298 to 1950 K indicate that no appreciable reaction takes place between atomic hydrogen and TiN or TiC. The formation of reaction products (NH3, CH4, C2H2) should be favored at lower temperatures. However, because of the high catalytic activity of Ti for H atom recombination, the rate of such reactions with H atoms is controlled by the rate of evaporation of Ti from the surface, this rate being low at temperatures below 1200 K. In order to interpret the stability of TiN and TiC in H atoms more fully, the stability of TiN and TiC in vacuum and H2 gas was also studied. The thermodynamic computations conform in order of magnitude to the experimentally found rates of decomposition of TiN and TiC in vacuum and are also consistent with the fact that no appreciable reaction is found with these compounds in molecular H2 at a pressure of 10(exp -3) atmosphere in the temperature range 2980 to 2060 K. When TiN or TiC was heated in atomic H or molecular H2, no reaction products other than those obtained from the simple decomposition of the nitride and carbide were observed. The gaseous products were analyzed in a mass spectrometer.

  15. Toroidal configuration of the orbit of the electron of the hydrogen atom under strong external magnetic fields

    OpenAIRE

    Aringazin, A. K.

    2002-01-01

    In this paper we overview some results on the hydrogen atom in external static uniform magnetic fields. We focus on the case of very strong magnetic field, B>>B_0=2.3x10^9 Gauss, use various approximate models and, particularly, in the adiabatic approximation have calculated exactly the integral defining the effective potential. This potential appears to be finite at z=0. Our consideration of the problem of highly magnetized atoms and molecules is motivated by the recently developed MagneGas ...

  16. Electron-stimulated reactions in layered CO/H{sub 2}O films: Hydrogen atom diffusion and the sequential hydrogenation of CO to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, Nikolay G.; Kimmel, Greg A., E-mail: gregory.kimmel@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, MSIN K8-88, P.O. Box 999, Richland, Washington 99352 (United States); Monckton, Rhiannon J.; Koehler, Sven P. K. [School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); UK Dalton Cumbrian Facility, The University of Manchester, Moor Row, Whitehaven CA24 3HA (United Kingdom)

    2014-05-28

    Low-energy (100 eV) electron-stimulated reactions in layered H{sub 2}O/CO/H{sub 2}O ices are investigated. For CO layers buried in amorphous solid water (ASW) films at depths of 50 monolayers (ML) or less from the vacuum interface, both oxidation and reduction reactions are observed. However, for CO buried more deeply in ASW films, only the reduction of CO to methanol is observed. Experiments with layered films of H{sub 2}O and D{sub 2}O show that the hydrogen atoms participating in the reduction of the buried CO originate in the region that is 10–50 ML below the surface of the ASW films and subsequently diffuse through the film. For deeply buried CO layers, the CO reduction reactions quickly increase with temperature above ∼60 K. We present a simple chemical kinetic model that treats the diffusion of hydrogen atoms in the ASW and sequential hydrogenation of the CO to methanol to account for the observations.

  17. Resonant charge transfer of hydrogen Rydberg atoms incident at a Cu(100) projected band-gap surface

    CERN Document Server

    Gibbard, J A; Kohlhoff, M; Rennick, C J; So, E; Ford, M; Softley, T P

    2015-01-01

    The charge transfer (ionization) of hydrogen Rydberg atoms (principal quantum number $n=25-34$) incident at a Cu(100) surface is investigated. Unlike fully metallic surfaces, where the Rydberg electron energy is degenerate with the conduction band of the metal, the Cu(100) surface has a projected bandgap at these energies, and only discrete image states are available through which charge transfer can take place. Resonant enhancement of charge transfer is observed at hydrogen principal quantum numbers for which the Rydberg energy matches the energy of one of the image states. The integrated surface ionization signals show clear periodicity as the energies of states with increasing $n$ come in and out of resonance with the image states. The velocity dependence of the surface ionization dynamics is also investigated. Decreased velocity of the incident H atom leads to a greater mean distance of ionization and a lower field required to extract the ion. The surface-ionization profiles (signal versus applied field) ...

  18. Formation of the bismuth-bilayer film at BiTeCl surface by atomic hydrogen deposition

    Science.gov (United States)

    Shvets, I. A.; Eremeev, S. V.; Chulkov, E. V.

    2017-07-01

    On the base of density functional theory calculations we investigate the atomic hydrogen adsorption on Cl- and Te-terminations of giant Rashba-split semiconductor BiTeCl and show that it leads to removal of the halogen and chalcogen top layer atoms by means of desorption of HCl and H2Te molecules. This mechanism accompanied by swapping of next Bi and deeper Te(Cl) layers with subsequent hydrogen-induced removal of Te(Cl) layer results in formation of Bi2 layer covering BiTeCl. The electronic structure of the formed Bi2@BiTeCl[Cl-term] and Bi2@BiTeCl[Te-term] interfaces shows a strong hybridization between Bi2-derived spin-split bands and BiTeCl interface states.

  19. Elastic, charge transfer, and related transport cross sections for proton impact of atomic hydrogen for astrophysical and laboratory plasma modeling

    Science.gov (United States)

    Schultz, D. R.; Ovchinnikov, S. Yu; Stancil, P. C.; Zaman, T.

    2016-04-01

    Updating and extending previous work (Krstić and Schultz 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3458 and other references) comprehensive calculations were performed for elastic scattering and charge transfer in proton—atomic hydrogen collisions. The results, obtained for 1301 collision energies in the center-of-mass energy range of 10-4-104 eV, are provided for integral and differential cross sections relevant to transport modeling in astrophysical and other plasma environments, and are made available through a website. Use of the data is demonstrated through a Monte Carlo transport simulation of solar wind proton propagation through atomic hydrogen gas representing a simple model of the solar wind interaction with heliospheric neutrals.

  20. The closed-orbit and the photoabsorption spectra of the Rydberg hydrogen atom between two parallel metallic surfaces

    Institute of Scientific and Technical Information of China (English)

    Wang De-Hua

    2007-01-01

    Using the closed orbit theory,we study the classical motion and calculate the photoabsorption spectra of Rydberg hydrogen atom between two parallel metallic surfaces.The results show that the metallic surfaces have a significant effect on the photoabsorption process.When the distances between the hydrogen atom and the two metallic surfaces are close to a critical value dc,the number of the closed orbits is the greatest.When the distance larger or smaller than dc,the number of the closed orbits decreases and the absorption spectra are shown to exhibit a damping oscillation.This work is an interesting new application of closed-orbit theory and is of potential experimental interest.

  1. Hydrogen atom in a quantum plasma environment under the influence of Aharonov-Bohm flux and electric and magnetic fields

    CERN Document Server

    Falaye, Babatunde James; Silva-Ortigoza, Ramón; Dong, Shi-Hai

    2016-01-01

    This study presents the confinement influences of Aharonov-Bohm-flux (AB-flux), electric and magnetic fields directed along $z$-axis and encircled by quantum plasmas, on the hydrogen atom. The all-inclusive effects result to a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We find that, the combined effect of the fields is stronger than solitary effect and consequently, there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for hydrogen atom in quantum plasmas, strong electric field and weak magnetic field are required, where AB-flux field can be used as a regulator. The application of perturbation technique utilized in this paper is not restricted to plasma physics, it can also be applied in molecular physics.

  2. Temperature-dependent kinetics of charge transfer, hydrogen-atom transfer, and hydrogen-atom expulsion in the reaction of CO+ with CH4 and CD4.

    Science.gov (United States)

    Melko, Joshua J; Ard, Shaun G; Johnson, Ryan S; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2014-09-18

    We have determined the rate constants and branching ratios for the reactions of CO(+) with CH4 and CD4 in a variable-temperature selected ion flow tube. We find that the rate constants are collisional for all temperatures measured (193-700 K for CH4 and 193-500 K for CD4). For the CH4 reaction, three product channels are identified, which include charge transfer (CH4(+) + CO), H-atom transfer (HCO(+) + CH3), and H-atom expulsion (CH3CO(+) + H). H-atom transfer is slightly preferred to charge transfer at low temperature, with the charge-transfer product increasing in contribution as the temperature is increased (H-atom expulsion is a minor product for all temperatures). Analogous products are identified for the CD4 reaction. Density functional calculations on the CO(+) + CH4 reaction were also conducted, revealing that the relative temperature dependences of the charge-transfer and H-atom transfer pathways are consistent with an initial charge transfer followed by proton transfer.

  3. Reactions of hot deuterium atoms with OCS in the gas phase and in OCS--DI complexes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, E.; Mikhaylichenko, K.; Wittig, C. (University of Southern California, Department of Chemistry, Los Angeles, California 90089-0482 (United States))

    1993-11-01

    Reactions of photolytically prepared hot deuterium atoms with OCS have been investigated: (i) under gas phase, single collision, arrested relaxation (i.e., bulk) conditions; and (ii) by photoinitiating reactions within weakly bound OCS--DI complexes. Nascent SD([ital X] [sup 2][Pi], [ital v]=0) rotational, spin--orbit, and [Lambda]-doublet populations were obtained for the photolysis wavelengths 250, 225, and 223 nm by using [ital A] [sup 2][Sigma][l arrow][ital X] [sup 2][Pi] laser induced fluorescence (LIF). The reason for using deuterium is strictly experimental: [ital A] [sup 2][Sigma] predissociation rates are considerably smaller for SD than for SH. The SD ([ital v]=0) rotational distribution was found to be very cold and essentially the same for both bulk and complexed conditions; the most probable rotational energy is [similar to]180 cm[sup [minus]1]. No bias in [Lambda]-doublet populations was detected. Spin--orbit excitation for bulk conditions was estimated to be [[sup 2][Pi][sub 1/2

  4. The H + OCS hot atom reaction - CO state distributions and translational energy from time-resolved infrared absorption spectroscopy

    Science.gov (United States)

    Nickolaisen, Scott L.; Cartland, Harry E.

    1993-01-01

    Time-resolved infrared diode laser spectroscopy has been used to probe CO internal and translational excitation from the reaction of hot H atoms with OCS. Product distributions should be strongly biased toward the maximum 1.4 eV collision energy obtained from 278 nm pulsed photolysis of HI. Rotations and vibrations are both colder than predicted by statistical density of states theory, as evidenced by large positive surprisal parameters. The bias against rotation is stronger than that against vibration, with measurable population as high as v = 4. The average CO internal excitation is 1920/cm, accounting for only 13 percent of the available energy. Of the energy balance, time-resolved sub-Doppler line shape measurements show that more than 38 percent appears as relative translation of the separating CO and SH fragments. Studies of the relaxation kinetics indicate that some rotational energy transfer occurs on the time scale of our measurements, but the distributions do not relax sufficiently to alter our conclusions. Vibrational distributions are nascent, though vibrational relaxation of excited CO is unusually fast in the OCS bath, with rates approaching 3 percent of gas kinetic for v = 1.

  5. Assessing Mixing Quality of a Copovidone-TPGS Hot Melt Extrusion Process with Atomic Force Microscopy and Differential Scanning Calorimetry.

    Science.gov (United States)

    Lamm, Matthew S; DiNunzio, James; Khawaja, Nazia N; Crocker, Louis S; Pecora, Anthony

    2016-02-01

    Atomic force microscopy (AFM) and modulated differential scanning calorimetry (mDSC) were used to evaluate the extent of mixing of a hot melt extrusion process for producing solid dispersions of copovidone and D-α-tocopherol polyethylene glycol 1000 succinate (TPGS 1000). In addition to composition, extrusion process parameters of screw speed and thermal quench rate were varied. The data indicated that for 10% TPGS and 300 rpm screw speed, the mixing was insufficient to yield a single-phase amorphous material. AFM images of the extrudate cross section for air-cooled material indicate round domains 200 to 700 nm in diameter without any observed alignment resulting from the extrusion whereas domains in extrudate subjected to chilled rolls were elliptical in shape with uniform orientation. Thermal analysis indicated that the domains were predominantly semi-crystalline TPGS. For 10% TPGS and 600 rpm screw speed, AFM and mDSC data were consistent with that of a single-phase amorphous material for both thermal quench rates examined. When the TPGS concentration was reduced to 5%, a single-phase amorphous material was achieved for all conditions even the slowest screw speed studied (150 rpm).

  6. Iron abundance in hot hydrogen-deficient central stars and white dwarfs from FUSE, HST, and IUE spectroscopy

    CERN Document Server

    Miksa, S; Dreizler, S; Kruk, J W; Rauch, T; Werner, K

    2002-01-01

    We present a first systematic investigation of the iron abundance in very hot (Teff>50,000K) hydrogen-deficient post-AGB stars. Our sample comprises 16 PG1159 stars and four DO white dwarfs. We use recent FUSE observations as well as HST and IUE archival data to perform spectral analyses with line blanketed NLTE model atmospheres. Iron is not detected in any PG1159 star. In most cases this is compatible with a solar iron abundance due to limited quality of HST and IUE data, although the tendency to an iron underabundance may be recognized. However, the absence of iron lines in excellent FUSE spectra suggests an underabundance by at least 1 dex in two objects (K1-16 NGC 7094). A similar result has been reported recently in the [WC]-PG1159 transition object Abell 78 (Werner et al. 2002). We discuss dust fractionation and s-process neutron-captures as possible origins. We also announce the first identification of sulfur in PG1159 stars.

  7. Lamb Shift of n = 1 and n = 2 States of Hydrogen-like Atoms, 1 ≤ Z ≤ 110

    Energy Technology Data Exchange (ETDEWEB)

    Yerokhin, V. A. [Center for Advanced Studies, Peter the Great St. Petersburg Polytechnic University, Polytekhnicheskaya 29, St. Petersburg 195251 (Russian Federation); Shabaev, V. M. [Department of Physics, St. Petersburg State University, Ulianovskaya 1, Petrodvorets, St. Petersburg 198504 (Russian Federation)

    2015-09-15

    Theoretical energy levels of the n = 1 and n = 2 states of hydrogen-like atoms with the nuclear charge numbers 1 ≤ Z ≤ 110 are tabulated. The tabulation is based on ab initio quantum electrodynamics calculations performed to all orders in the nuclear binding strength parameter Zα, where α is the fine structure constant. Theoretical errors due to various effects are critically examined and estimated.

  8. Kinetics of reduction of a RuO2(110) film on Ru by atomic hydrogen

    NARCIS (Netherlands)

    Ugur, D.; Storm, A.J.; Verberk, R.; Brouwer, J.C.; Sloof, W.G.

    2013-01-01

    The kinetics and the mechanism of reduction of a RuO2(110) film, grown thermally on a Ru(0001) surface, has been studied in the temperature range of 60-200 °C by using an atomic hydrogen flux of 2 × 1019 at. H m-2 s-1. The reduction kinetics is dominated by the creation of oxygen vacancies at the su

  9. Measuring laser carrier-envelope phase effects in the noble gases with an atomic hydrogen calibration standard

    CERN Document Server

    Khurmi, Champak; U, Satya Sainadh; Ivanov, I A; Kheifets, A S; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-01-01

    We present accurate measurements of carrier-envelope phase effects on ionisation of the noble gases with few-cycle laser pulses. The experimental apparatus is calibrated by using atomic hydrogen data to remove any systematic offsets and thereby obtain accurate CEP data on other generally used noble gases such as Ar, Kr and Xe. Experimental results for H are well supported by exact TDSE theoretical simulations however significant differences are observed in case of noble gases.

  10. Analytic solution of a relativistic two-dimensional hydrogen-like atom in a constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, V.M. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Fisica; Pino, R. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Fisica]|[Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apdo 21827, Caracas 1020-A (Venezuela)

    1998-01-26

    We obtain exact solutions of the Klein-Gordon and Pauli-Schroedinger equations for a two-dimensional hydrogen-like atom in the presence of a constant magnetic field. Analytic solutions for the energy spectrum are obtained for particular values of the magnetic field strength. The results are compared to those obtained in the non-relativistic and spinless case. We obtain that the relativistic spectrum does not present s states. (orig.). 7 refs.

  11. Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air

    Science.gov (United States)

    Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, Kyoung Hui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken

    2007-01-01

    A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H+(H2O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed.

  12. Theoretical investigation of hydrogen bonding between water and platinum(II): an atom in molecule (AIM) study

    Science.gov (United States)

    Li, Yan; Zhang, Guiqiu; Chen, Dezhan

    2012-02-01

    Recently, Rizzato et al. [Angew. Chem. Int. Ed. 49, 7440 (2010)] [1] reported a hydrogen-bonding-like interaction between a water molecule and a d8 metal ion (PtII) based on neutron diffraction, and provided the first crystallographic evidence for this interaction. We studied the hydrogen bonding of the O-H ... Pt interaction theoretically using atoms in molecule (AIM) and natural bond orbital analysis (NBO) in the crystallographic geometries. The method used density functional theory (DFT) with the hybrid B3LYP function. For platinum atoms, we used the Los Alamos National Laboratory 2-Double-Zeta (LANL2DZ) basis set, and for the other atoms we used 6-311++G(d,p) basis sets. Criteria based on a topological analysis of the electron density were used in order to characterize the nature of interactions in the complexes. The main purpose of the present work is to provide an answer to the following questions: Why can a filled d orbital of square-planar d8 metal ions such as platinum(II) also act as hydrogen-bond acceptors? Can a study based on the electron charge density answer this question? A good correlation between the density at the intermolecular bond critical point and the energy interaction was found. The interaction is mainly closed-shell and there is some charge transfer in this system.

  13. Single and double hydrogen atom migrations in substituted alkyl benzoates: a study on the substituent effect using MIKE spectrometry

    Science.gov (United States)

    Tobita, Seiji; Tajima, Susumu; Ishihara, Yasuko; Kojima, Masahiro; Shigihara, Atsushi

    1994-03-01

    The substituent effect on the single and double hydrogen atom migrations is ionized ortho-, meta-, and para-substituted isobutyl (XC6H4COOC4H9) and isopropyl (XC6H4COOC3H7) benzoates is investigated by mass-analyzed ion kinetic energy spectrometry. The observed product ion ratios [XC6H4COOH]+/[XC6H4COOH2]+ show a general tendency: the compounds with an electron-donating substituent favour the formation of [XC6H4COOH]+ by single hydrogen atom migration (McLafferty rearrangement), while those with an electron-withdrawing substituent produce preferentially [XC6H4COOH2]+ through double hydrogen atom migration (McLaffery + 1 rearrangement). The thermochemical considerations combined with MO calculations show that the substituent effects observed are rationalized by the effects of substituent on the ionization energy (IE) and proton affinity (PA) of XC6H4COOH, i.e. the product ratios are determined by the difference of the product thermochemical stabilities which can be evaluated as IE(XC6H4COOH) + PA(XC6H4COOH).

  14. Chemical Reactivity Dynamics and Quantum Chaos in Highly Excited Hydrogen Atoms in an External Field: A Quantum Potential Approach

    Directory of Open Access Journals (Sweden)

    B. Maiti

    2002-04-01

    Full Text Available Abstract: Dynamical behavior of chemical reactivity indices like electronegativity, hardness, polarizability, electrophilicity and nucleophilicity indices is studied within a quantum fluid density functional framework for the interactions of a hydrogen atom in its ground electronic state (n = 1 and an excited electronic state (n = 20 with monochromatic and bichromatic laser pulses. Time dependent analogues of various electronic structure principles like the principles of electronegativity equalization, maximum hardness, minimum polarizability and maximum entropy have been found to be operative. Insights into the variation of intensities of the generated higher order harmonics on the color of the external laser field are obtained. The quantum signature of chaos in hydrogen atom has been studied using a quantum theory of motion and quantum fluid dynamics. A hydrogen atom in the electronic ground state (n = 1 and in an excited electronic state ( n = 20 behaves differently when placed in external oscillating monochromatic and bichromatic electric fields. Temporal evolutions of Shannon entropy, quantum Lyapunov exponent and Kolmogorov – Sinai entropy defined in terms of the distance between two initially close Bohmian trajectories for these two cases show marked differences. It appears that a larger uncertainty product and a smaller hardness value signal a chaotic behavior.

  15. Wave-function Visualization of Core-induced Interaction of Non-hydrogenic Rydberg Atom in Electric Field

    CERN Document Server

    Gao, W; Cheng, H; Zhang, S S; Liu, H P

    2015-01-01

    We have investigated the wave-function feature of Rydberg sodium in a uniform electric field and found that the core-induced interaction of non-hydrogenic atom in electric field can be directly visualized in the wave-function. As is well known, the hydrogen atom in electric field can be separated in parabolic coordinates (\\eta, \\xi), whose eigen-function can show a clear pattern towards negative and positive directions corresponding to the so-called red and blue states without ambiguity, respectively. It can be served as a complete orthogonal basis set to study the core-induced interaction of non-hydrogenic atom in electric field. Owing to complete different patterns of the probability distribution for red and blue states, the interaction can be visualized in the wave-function directly via superposition. Moreover, the constructive and destructive interferences between red and blue states are also observed in the wave-function, explicitly explaining the experimental measurement for the spectral oscillator stre...

  16. Stimulated Raman scattering of an ultrashort XUV radiation pulse by a hydrogen atom

    Science.gov (United States)

    Dondera, Mihai; Florescu, Viorica; Bachau, Henri

    2017-02-01

    We consider the hydrogen atom H (1 s ) exposed to an ultrashort laser pulse with a central frequency ω0 ranging from several hundreds of eV to 1.5 keV (≈55 a.u.) and a peak intensity of 3.51 ×1016W /cm2 . We study the excitation of the atom by stimulated Raman scattering, a process involving pairs of frequencies (ω1,ω2 ). These frequencies are non-negligible components of the pulse Fourier transform and they satisfy the condition Eg+ℏ ω1=Eb+ℏ ω2,Eg and Eb≡En being the ground-state and the excited-state energy, respectively. The numerical results obtained by integrating the time-dependent Schrödinger equation (TDSE) are compared with calculations in lowest order perturbation theory (LOPT). In LOPT we consider, in the second order of PT, the contribution of the term A .P in the dipole approximation and, in first order of PT, the expression of A2 taken for first-order retardation effects. (A denotes the vector potential of the field and P is the momentum operator.) We focus on the Raman excitation of bound states with principal quantum numbers n up to n =13 . The evaluation in perturbation theory of the A .P contribution to 1 s -n s and 1 s -n d transition probabilities uses analytic expressions of the corresponding Kramers-Heisenberg matrix elements. At fixed pulse duration τ =6 π a.u. (≈0.48 fs), we find that the retardation effects play an important role at high frequencies: they progressively diminish as the frequency decreases until the contribution of A .P dominates over the A2 contribution for ω0 values of a few a.u. We also study the dependence of the Raman process on the pulse duration for several values of ω0. In the case ω0=13 a .u .(≈354 eV ) where dipole and nondipole contributions are of the same order of magnitude, we present the Raman excitation probability as a function of the pulse duration for excited n s ,n p , and n d states.

  17. Hydrogen-atom transfer reactions from ortho-alkoxy-substituted phenols: an experimental approach.

    Science.gov (United States)

    Amorati, Riccardo; Menichetti, Stefano; Mileo, Elisabetta; Pedulli, Gian Franco; Viglianisi, Caterina

    2009-01-01

    The role of intramolecular hydrogen bonding (HB) on the bond-dissociation enthalpy (BDE) of the phenolic O-H and on the kinetics of H-atom transfer to peroxyl radicals (k(inh)) of several 2-alkoxyphenols was experimentally quantified by the EPR equilibration technique and by inhibited autoxidation studies. These compounds can be regarded as useful models for studying the H-atom abstraction from 2-OR phenols, such as many lignans, reduced coenzyme Q and curcumin. The effects of the various substituents on the BDE(O-H) of 2-methoxy, 2-methoxy-4-methyl, 2,4-dimethoxyphenols versus phenol were measured in benzene solution as -1.8; -3.7; -5.4 kcal mol(-1), respectively. In the case of polymethoxyphenols, significant deviations from the BDE(O-H) values predicted by the additive effects of the substituents were found. The logarithms of the k(inh) constants in cumene were inversely related to the BDE(O-H) values, obeying a linear Evans-Polanyi plot with the same slope of other substituted phenols and a y-axis intercept slightly smaller than that of 2,6-dimethyl phenols. In the cases of phenols having the 2-OR substituent included in a five-membered condensed ring (i.e, compounds 9-11), both conformational isomers in which the OH group points toward or away from the oxygen in position 2 were detected by FTIR spectroscopy and the intramolecular HB strength was thus estimated. The contribution to the BDE(O-H) of the ortho-OR substituent in 9, corrected for intramolecular HB formation, was calculated as -5.6 kcal mol(-1). The similar behaviour of cyclic and non-cyclic ortho-alkoxy derivatives clearly showed that the preferred conformation of the OMe group in ortho-methoxyphenoxyl radicals is that in which the methyl group points away from the phenoxyl oxygen, in contrast to the geometries predicted by DFT calculations.

  18. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetonitrile.

    Science.gov (United States)

    Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing

    2015-06-14

    32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme.

  19. Hydrogen atom abstraction from hydrocarbons by a copper(III)-hydroxide complex.

    Science.gov (United States)

    Dhar, Debanjan; Tolman, William B

    2015-01-28

    With the aim of understanding the basis for the high rate of hydrogen atom abstraction (HAT) from dihydroanthracene (DHA) by the complex LCuOH (1; L = N,N'-bis(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamide), the bond dissociation enthalpy of the reaction product LCu(H2O) (2) was determined through measurement of its pK(a) and E(1/2) in THF solution. In so doing, an equilibrium between 2 and LCu(THF) was characterized by UV-vis and EPR spectroscopy and cyclic voltammetry (CV). A high pK(a) of 18.8 ± 1.8 and a low E(1/2) of -0.074 V vs Fc/Fc(+) in THF combined to yield an O-H BDE for 2 of 90 ± 3 kcal mol(-1) that is large relative to values for most transition metal oxo/hydroxo complexes. By taking advantage of the increased stability of 1 observed in 1,2-difluorobenzene (DFB) solvent, the kinetics of the reactions of 1 with a range of substrates with varying BDE values for their C-H bonds were measured. The oxidizing power of 1 was revealed through the accelerated decay of 1 in the presence of the substrates, including THF (BDE = 92 kcal mol(-1)) and cyclohexane (BDE = 99 kcal mol(-1)). CV experiments in THF solvent showed that 1 reacted with THF via rate-determining attack at the THF C-H(D) bonds with a kinetic isotope effect of 10.2. Analysis of the kinetic and thermodynamic data provides new insights into the basis for the high reactivity of 1 and the possible involvement of species like 1 in oxidation catalysis.

  20. An atomic force microscopy study of the crystal growth interface of solution grown potassium hydrogen phthalate

    Energy Technology Data Exchange (ETDEWEB)

    Ester, G.R

    1999-07-01

    Atomic force microscopy (AFM) has been used to study the (010) face of potassium hydrogen phthalate (KAP) crystals grown from aqueous solution. In order to achieve the necessary level of surface protection during removal from solution a novel protection method was developed. The surface was withdrawn from solution through a jet of compressed air. In order to be able to make the link between the defect structure of the crystal and the growth interface a detailed X-ray topographical analysis was performed. This showed the crystals to be of very low defect density. Furthermore the only dislocation observed in the (010) sector able to produce a step on the surface was characterised as having the <110> Burgers vector. Two growth mechanisms were observed to operate on the (010) face of KAP crystals studied using AFM. On most crystals, a spiral growth mechanism was observed. On a minority of crystals a two dimensional nucleation and growth mechanism occurred at the higher range of supersaturations (above 15%). In the case of a spiral mechanism it was generally noted that growth hillocks were dominated by a small number of non co-operating spiral sources. The spirals were all observed to be anisotropic and polygonised. The degree of polygonisation was found to vary as a function of supersaturation. The step spacing was found to have an inverse relation with the supersaturation, as predicted theoretically. From an inverse plot of step spacing against supersaturation it was possible to calculate the step edge free energies of both the fast and slower moving steps. These were 40 erg/cm{sup 2} and 8 erg/cm{sup 2} respectively. (author)

  1. ESR study of atomic hydrogen and tritium in solid T$_{2}$ and T$_{2}$:H$_{2}$ matrices below 1K

    CERN Document Server

    Sheludiakov, S; Järvinen, J; Vainio, O; Lehtonen, L; Zvezdov, D; Vasiliev, S; Lee, D M; Khmelenko, V V

    2016-01-01

    We report on the first ESR study of atomic hydrogen and tritium stabilized in a solid T$_{2}$ and T$_{2}$:H$_{2}$ matrices down to 70$\\,$mK. The concentrations of T atoms in pure T$_{2}$ approached $2\\times10^{20}$cm$^{-3}$ and record-high concentrations of H atoms $\\sim1\\times10^{20}$cm$^{-3}$ were reached in T$_{2}$:H$_{2}$ solid mixtures where a fraction of T atoms became converted into H due to the isotopic exchange reaction T+H$_2\\rightarrow$TH+H. The maximum concentrations of unpaired T and H atoms was limited by their recombination which becomes enforced by efficient atomic diffusion due to a presence of a large number of vacancies and phonons generated in the matrices by $\\beta$-particles. Recombination also appeared in an explosive manner both being stimulated and spontaneously in thick films where sample cooling was insufficient. We suggest that the main mechanism for H and T migration is physical diffusion related to tunneling or hopping to vacant sites in contrast to isotopic chemical reactions wh...

  2. Magnetic resonance studies of atomic hydrogen at zero field and low temperature. Recombination and binding on liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Jochemsen, R.; Morrow, M.; Berlinsky, A.J.; Hardy, W.N. (British Columbia Univ., Vancouver (Canada). Dept. of Physics)

    1982-07-01

    Magnetic resonance studies at zero field are reported for atomic hydrogen gas confined in a closed glass bulb with helium-coated walls for T<1 K in a dilution refrigerator. Low-energy r.f. discharge pulses have been used to produce H atoms at temperatures as low as T=0.06 K. The atom density nsub(H) (10/sup 9/..H/sub 2/+wall. From the temperature dependence of the rate constant K we have determined the binding energy of H on liquid /sup 4/He and /sup 3/He, and also the cross section for recombination on the surface.

  3. Benchmark Calculation of Radial Expectation Value \\varvec{< r^{-2} \\rangle } for Confined Hydrogen-Like Atoms and Isotropic Harmonic Oscillators

    Science.gov (United States)

    Yu, Rong Mei; Zan, Li Rong; Jiao, Li Guang; Ho, Yew Kam

    2017-09-01

    Spatially confined atoms have been extensively investigated to model atomic systems in extreme pressures. For the simplest hydrogen-like atoms and isotropic harmonic oscillators, numerous physical quantities have been established with very high accuracy. However, the expectation value of employed the basis expansion method with cut-off Slater-type orbitals to investigate these two confined systems. Accurate values for several low-lying bound states were obtained by carefully examining the convergence with respect to the size of basis. A scaling law for < rn \\rangle was derived and it is used to verify the accuracy of numerical results. Comparison with other calculations show that the present results establish benchmark values for this quantity, which may be useful in future studies.

  4. Numerical and experimental study on shear coaxial injectors with hot hydrogen-rich gas/oxygen-rich gas and GH2/GO2

    Science.gov (United States)

    Jin, Ping; Li, Mao; Cai, Guo-Biao

    2013-04-01

    The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally. The injector parameters, including the ratio of the oxidizer pressure drop to the combustor pressure (DP), the velocity ratio of fuel to oxidizer (RV), the thickness (WO), and the recess (HO) of the oxidizer injector post tip, the temperature of the hydrogen-rich gas (TH) and the oxygen-rich gas (TO), are integrated by the orthogonal experimental design method to investigate the performance of the shear coaxial injector. The gaseous hydrogen/oxygen at ambient temperature (GH2/GO2), and the hot hydrogen-rich gas/oxygen-rich gas are used here. The length of the combustion (LC), the average temperatures of the combustor wall (TW), and the faceplate (TF) are selected as the indicators. The tendencies of the influences of injector parameters on the combustion performance and the heat load of the combustor for the GH2/GO2 case are similar to those in the hot propellants case. However, the combustion performance in the hot propellant case is better than that in the GH2/GO2 case, and the heat load of the combustor is also larger than that in the latter case.

  5. Numerical and experimental study on shear coaxial injectors with hot hydrogen-rich gas/oxygen-rich gas and GH2/GO2

    Institute of Scientific and Technical Information of China (English)

    Jin Ping; Li Mao; Cai Guo-Biao

    2013-01-01

    The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally.The injector parameters,including the ratio of the oxidizer pressure drop to the combustor pressure (Dp),the velocity ratio of fuel to oxidizer (Rv),the thickness (Wo),and the recess (Ho) of the oxidizer injector post tip,the temperature of the hydrogen-rich gas (TH) and the oxygen-rich gas (To),are integrated by the orthogonal experimental design method to investigate the performance of the shear coaxial injector.The gaseous hydrogen/oxygen at ambient temperature (GH2/GO2),and the hot hydrogen-rich gas/oxygen-rich gas are used here.The length of the combustion (Lc),the average temperatures of the combustor wall (Tw),and the faceplate (TF) are selected as the indicators.The tendencies of the influences of injector parameters on the combustion performance and the heat load of the combustor for the GH2/GO2 case are similar to those in the hot propellants case.However,the combustion performancein the hot propellant case is better than that in the GH2/GO2 case,and the heat load of the combustor is also larger than that in the latter case.

  6. Inner hydrogen atom transfer in benzo-fused low symmetrical metal-free tetraazaporphyrin and phthalocyanine analogues: density functional theory studies.

    Science.gov (United States)

    Qi, Dongdong; Zhang, Yuexing; Cai, Xue; Jiang, Jianzhuang; Bai, Ming

    2009-02-01

    Density functional theory (DFT) calculations were carried out to study the inner hydrogen atom transfer in low symmetrical metal-free tetrapyrrole analogues ranging from tetraazaporphyrin H(2)TAP (A(0)B(0)C(0)D(0)) to naphthalocyanine H(2)Nc (A(2)B(2)C(2)D(2)) via phthalocyanine H(2)Pc (A(1)B(1)C(1)D(1)). All the transition paths of sixteen different compounds (A(0)B(0)C(0)D(0)-A(2)B(2)C(2)D(2) and A(0)B(0)C(m)D(n), m rings onto the TAP skeleton have significant effect on the potential energy barrier of the inner hydrogen atom transfer. Introducing fused benzene rings onto the hydrogen-releasing pyrrole rings can increase the transitivity of inner hydrogen atom and thus lower the transfer barrier of this inner hydrogen atom while fusing benzene rings onto the hydrogen-accepting pyrrole rings will increase the hydrogen transfer barrier to this pyrrole ring. The transient cis-isomer intermediate with hydrogen atoms joined to the two adjacent pyrrole rings with less fused benzene rings is much stable than the others. It is also found that the benzene rings fused directly onto pyrrole rings have more effect on the inner hydrogen atom transfer than the outer benzene rings fused onto the periphery of isoindole rings. The present work, representing the first effort towards systematically understanding the effect of ring enlargement through asymmetrical peripheral fusion of benzene ring(s) onto the TAP skeleton on the inner hydrogen transfer of tetrapyrrole derivatives, will be helpful in clarifying the N-H tautomerization phenomenon and detecting the cis-porphyrin isomer in bio-systems.

  7. Hydrogen in diffuse molecular clouds in the Milky Way. Atomic column densities and molecular fraction along prominent lines of sight

    Science.gov (United States)

    Winkel, B.; Wiesemeyer, H.; Menten, K. M.; Sato, M.; Brunthaler, A.; Wyrowski, F.; Neufeld, D.; Gerin, M.; Indriolo, N.

    2017-03-01

    Context. Recent submillimeter and far-infrared wavelength observations of absorption in the rotational ground-state lines of various simple molecules against distant Galactic continuum sources have opened the possibility of studying the chemistry of diffuse molecular clouds throughout the Milky Way. In order to calculate abundances, the column densities of molecular and atomic hydrogen, H i, must be known. Aims: We aim at determining the atomic hydrogen column densities for diffuse clouds located on the sight lines toward a sample of prominent high-mass star-forming regions that were intensely studied with the HIFI instrument onboard Herschel. Methods: Based on Jansky Very Large Array data, we employ the 21 cm H i absorption-line technique to construct profiles of the H i opacity versus radial velocity toward our target sources. These profiles are combined with lower resolution archival data of extended H i emission to calculate the H i column densities of the individual clouds along the sight lines. We employ Bayesian inference to estimate the uncertainties of the derived quantities. Results: Our study delivers reliable estimates of the atomic hydrogen column density for a large number of diffuse molecular clouds at various Galactocentric distances. Together with column densities of molecular hydrogen derived from its surrogates observed with HIFI, the measurements can be used to characterize the clouds and investigate the dependence of their chemistry on the molecular fraction, for example. The data sets are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A2

  8. Catalysis of atomic hydrogen to novel hydrogen species H{sup -}(1/4) and H{sub 2}(1/4) as a new power source

    Energy Technology Data Exchange (ETDEWEB)

    Mills, R.; He, J.; Chang, Z.; Good, W.; Lu, Y.; Dhandapani, B. [BlackLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512 (United States)

    2007-09-15

    The data from a broad spectrum of investigational techniques strongly and consistently indicate that hydrogen can exist in lower-energy states than previously thought possible. The predicted reaction involves a resonant, nonradiative energy transfer from otherwise stable atomic hydrogen to a catalyst capable of accepting the energy. The product is H(1/p), fractional Rydberg states of atomic hydrogen wherein n={l_brace}1/2{r_brace},{l_brace}1/3{r_brace},{l_brace}1/4{r_brace},..,1/p (p{<=}137 is an integer) replaces the well-known parameter n=integer in the Rydberg equation for hydrogen excited states. He{sup +}, Ar{sup +}, and K are predicted to serve as catalysts since they meet the catalyst criterion - a chemical or physical process with an enthalpy change equal to an integer multiple of the potential energy of atomic hydrogen, 27.2 eV. Specific predictions based on closed-form equations for energy levels were tested. For example, two H(1/p) may react to form H{sub 2}(1/p) that have vibrational and rotational energies that are p{sup 2} times those of H{sub 2} comprising uncatalyzed atomic hydrogen. Rotational lines were observed in the 145-300 nm region from atmospheric pressure electron-beam-excited argon-hydrogen plasmas. The unprecedented energy spacing of 4{sup 2} times that of hydrogen established the internuclear distance as 1/4 that of H{sub 2} and identified H{sub 2}(1/4). The predicted products of alkali catalyst K are H{sup -}(1/4) which form KH{sup *}X, a novel alkali halido (X) hydride compound, and H{sub 2}(1/4) which may be trapped in the crystal. The {sup 1}H MAS NMR spectrum of novel compound KH{sup *}Cl relative to external tetramethylsilane (TMS) showed a large distinct upfield resonance at -4.4ppm corresponding to an absolute resonance shift of -35.9ppm that matched the theoretical prediction of H(1/4) with p=4. The predicted frequencies of ortho- and para-H{sub 2}(1/4) were observed at 1943 and 2012cm{sup -1} in the high-resolution FTIR

  9. Vii. New Kr IV - VII Oscillator Strengths and an Improved Spectral Analysis of the Hot, Hydrogen-deficient Do-type White Dwarf RE 0503-289

    Science.gov (United States)

    Rauch, T.; Quinet, P.; Hoyer, D.; Werner, K.; Richter, P.; Kruk, J. W.; Demleitner, M.

    2016-01-01

    For the spectral analysis of high-resolution and high signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims. New Krivvii oscillator strengths for a large number of lines enable us to construct more detailed model atoms for our NLTEmodel-atmosphere calculations. This enables us to search for additional Kr lines in observed spectra and to improve Kr abundance determinations. Methods. We calculated Krivvii oscillator strengths to consider radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Kr lines that are exhibited in high-resolution and high SN ultraviolet (UV)observations of the hot white dwarf RE 0503.

  10. Facile synthesis of titania nanowires via a hot filament method and conductometric measurement of their response to hydrogen sulfide gas.

    Science.gov (United States)

    Munz, Martin; Langridge, Mark T; Devarepally, Kishore K; Cox, David C; Patel, Pravin; Martin, Nicholas A; Vargha, Gergely; Stolojan, Vlad; White, Sam; Curry, Richard J

    2013-02-01

    Titania nanostructures are of increasing interest for a variety of applications, including photovoltaics, water splitting, and chemical sensing. Because of the photocatalytical properties of TiO₂, chemical processes that occur at its surface can be exploited for highly efficient nanodevices. A facile and fast synthesis route has been explored that is free of catalysts or templates. An environmental scanning electron microscopy (ESEM) system was employed to grow titania nanowires (NWs) in a water vapor atmosphere (∼1 mbar) and to monitor the growth in situ. In addition, the growth process was also demonstrated using a simple vacuum chamber. In both processes, a titanium filament was heated via the Joule effect and NWs were found to grow on its surface, as a result of thermal oxidation processes. A variety of nanostructures were observed across the filament, with morphologies changing with the wire temperature from the center to the end points. The longest NWs were obtained for temperatures between ∼730 °C and 810 °C. Typically, they have an approximate thickness of ∼300 nm and lengths of up to a few micrometers. Cross sections prepared by focused-ion-beam milling revealed the presence of a porous layer beneath the NW clusters. This indicates that the growth of NWs is driven by oxidation-induced stresses in the subsurface region of the Ti filament and by enhanced diffusion along grain boundaries. To demonstrate the potential of titania NWs grown via the hot filament method, single NW devices were fabricated and used for conductometric sensing of hydrogen sulfide (H₂S) gas. The NW electric resistance was found to decrease in the presence of H₂S. Its variation can be explained in terms of the surface depletion model.

  11. High-energy tail of the linear momentum distribution in the ground state of hydrogen atoms or hydrogen-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Oks, E. [Physics Department, Auburn University, Auburn, AL (United States)

    2001-06-14

    A long-standing dispute concerning the high-energy tail of the linear momentum distribution (HTMD) in the ground state of hydrogen atoms/hydrogen-like ions (GSHA) has been unresolved up to now. A possible resolution of the above dispute might be connected to the problem of the role of singular solutions of quantal equations, which is a fundamental problem in its own right. The paradigm is that, even allowing for finite nuclear sizes, singular solutions of the Dirac equation for the Coulomb problem should be rejected for nuclear charges Z<1/{alpha}{approx}137. In this paper we break this paradigm. First, we derive a general condition for matching a regular interior solution with a singular exterior solution of the Dirac equation for arbitrary interior and exterior potentials. Then we find explicit forms of several classes of potentials that allow such a match. Finally, we show that, as an outcome, the HTMD for the GSHA acquires terms falling off much slower than the 1/p{sup 6}-law prescribed by the previously adopted quantal result. Our results open up a unique way to test intimate details of the nuclear structure by performing atomic (rather than nuclear) experiments and calculations. (author)

  12. Collisions of electrons with hydrogen atoms I. Package outline and high energy code

    Science.gov (United States)

    Benda, Jakub; Houfek, Karel

    2014-11-01

    Being motivated by the applied researchers’ persisting need for accurate scattering data for the collisions of electrons with hydrogen atoms, we developed a computer package-Hex-that is designed to provide trustworthy results for all basic discrete and continuous processes within non-relativistic framework. The package consists of several computational modules that implement different methods, valid for specific energy regimes. Results of the modules are kept in a common database in the unified form of low-level scattering data (partial-wave T-matrices) and accessed by an interface program which is able to produce various derived quantities like e.g. differential and integral cross sections. This article is the first one of a series of articles that are concerned with the implementation and testing of the modules. Here we give an overview of their structure and present (a) the command-line interface program hex-db that can be also easily compiled into a derived code or used as a backend for a web-page form and (b) simple illustrative module specialized for high energies, hex-dwba, that implements distorted and plane wave Born approximation. Catalogue identifier: AETH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETH_v1_0.html Program obtainable from: CPC Program library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data etc.: 30367 No. of bytes in distributed program, including test data etc.: 232032 Distribution format: tar.gz Programming language: C++11 Operating system: Any system with a C++11 compiler (e.g. GCC 4.8.1; tested on OpenSUSE 13.1 and Windows 8). RAM: Test run 3 MiB. CPC Library Classification: 2.4 Electron scattering External libraries:GSL [49], FFTW3[52], SQLite3 [46]. All of the libraries are open-source and maintained. Nature of problem: Extraction of derived (observable) quantities from partial

  13. Electrical and mechanical controlling of the kinetic and magnetic properties of hydrogen atoms on free-standing silicene

    Science.gov (United States)

    Podsiadły-Paszkowska, Agata; Krawiec, Mariusz

    2016-07-01

    Effects of strain, charge doping and external electric field on kinetic and magnetic properties of hydrogen atoms on a free-standing silicene layer are investigated by first-principles density functional theory. It was found that the charge doping and strain are the most effective ways of changing the hydrogen-silicene binding energy, but they can only raise its value. The perpendicular external electric field can also lower it albeit in a narrower range. The strain has also the strongest impact on diffusion processes, and the diffusion barrier can be modified up to 50% of its unstrained value. The adsorption of hydrogen atoms results in a locally antiferromagnetic ground state with the effective exchange constant of approximately 1 eV. The system can easily be driven into a nonmagnetic phase by the charge doping and strain. The obtained results are very promising in view of the silicene functionalization and potential applications of silicene in fields of modern nanoelectronics and spintronics.

  14. Synthesis of SnO{sub 2} hollow microspheres from ultrasonic atomization and their role in hydrogen sensing

    Energy Technology Data Exchange (ETDEWEB)

    Patil, L.A., E-mail: plalchand_phy_aml@yahoo.co.in [Nanomaterials Research Lab., Department of Physics, Pratap College, Amalner 425401, Maharashtra (India); Shinde, M.D.; Bari, A.R.; Deo, V.V. [Nanomaterials Research Lab., Department of Physics, Pratap College, Amalner 425401, Maharashtra (India)

    2011-04-25

    Nanostructured SnO{sub 2} hollow microspheres were synthesized using ultrasonic atomization technique. It is interesting that hollow microspheres could be prepared from ultrasonic atomization technique without any aid of template and surfactant. X-ray powder diffraction (XRD) confirmed the material to be SnO{sub 2} having tetragonal structure. Average crystallite size calculated from X-ray diffractogram using Scherer's equation was found to be 8.45 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the microscopic study of fine powder particles. Powder consists of hollow microspheres of average diameter of 0.58 {mu}m as well as nanoparticles of average diameter of 6 nm. The sensors fabricated from such powder show high hydrogen (1000 ppm) response (S = 2379) under the optimized experimental conditions. Sensor performance merits, such as, high hydrogen response, high hydrogen selectivity, short response time (2 s) and quick recovery time (15 s) may be due to both nanocrystallites and hollow microspheres associated in SnO{sub 2} sensing material. The dramatic change in gas response was explained by the rapid diffusion of the target gas through the nano-porous structure of SnO{sub 2} hollow microspheres.

  15. Determination of thermodynamic affinities of various polar olefins as hydride, hydrogen atom, and electron acceptors in acetonitrile.

    Science.gov (United States)

    Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing

    2013-07-19

    A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.

  16. Neighboring Hetero-Atom Assistance of Sacrificial Amines to Hydrogen Evolution Using Pt-Loaded TiO2-Photocatalyst

    Directory of Open Access Journals (Sweden)

    Masahide Yasuda

    2014-05-01

    Full Text Available Photocatalytic H2 evolution was examined using Pt-loaded TiO2-photocatalyst in the presence of amines as sacrificial agents. In the case of amines with all of the carbon attached to the hetero-atom such as 2-aminoethanol, 1,2-diamonoethane, 2-amino-1,3-propanediol, and 3-amino-1,2-propanediol, they were completely decomposed into CO2 and water to quantitatively evolve H2. On the other hand, the amines with both hetero-atoms and one methyl group at the β-positions (neighboring carbons of amino group such as 2-amino-1-propanol and 1,2-diaminopropane were partially decomposed. Also, the photocatalytic H2 evolution using amines without the hetero-atoms at the β-positions such as ethylamine, propylamine, 1-butylamine, 1,3-diaminopropane, 2-propylamine, and 2-butylamine was inefficient. Thus, it was found that the neighboring hetero-atom strongly assisted the degradation of sacrificial amines. Moreover, rate constants for H2 evolution were compared among amines. In conclusion, the neighboring hetero-atom did not affect the rate constants but enhanced the yield of hydrogen evolution.

  17. The stereochemistry and dynamics of the introduction of hydrogen atoms onto FeMo-co, the active site of nitrogenase.

    Science.gov (United States)

    Dance, Ian

    2013-11-18

    The catalyzed hydrogenations effected at the active site FeMo-co of nitrogenase have been proposed to involve serial supply of the required multiple protons along a proton wire terminating at sulfur atom S3B of FeMo-co. In conjunction with serial electron transfer to FeMo-co, these protons become H atoms, and then are able to migrate from S3B to other Fe and S atoms of FeMo-co, and to transfer to bound substrate and intermediates. This general model, which can account for all reactions of nitrogenase, involves a preparatory stage in which each incoming H atom is required to move from the proton delivery side of S3B to the opposite migration side of S3B. This report examines the mechanism of this reconfiguration of S3B-H, finding four stable configurations in which S3B-H has pyramidal-trigonal coordination, with one elongated Fe-S3B interaction. The transition states and energies for reconfiguration are described. Pseudotetrahedral four coordination and planar-trigonal coordination for S3B-H are less stable than pyramidal-trigonal coordination. Results are presented for FeMo-co with one, two, three, and four H atoms (the E1H1, E2H2, E3H3, and E4H4 Thorneley-Lowe stages), and the general principles are defined, for application in the various chemical mechanisms of nitrogenase.

  18. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation

    KAUST Repository

    Zhang, Zailei

    2017-07-27

    Single-atom metal catalysts offer a promising way to utilize precious noble metal elements more effectively, provided that they are catalytically active and sufficiently stable. Herein, we report a synthetic strategy for Pt single-atom catalysts with outstanding stability in several reactions under demanding conditions. The Pt atoms are firmly anchored in the internal surface of mesoporous Al2O3, likely stabilized by coordinatively unsaturated pentahedral Al3+ centres. The catalyst keeps its structural integrity and excellent performance for the selective hydrogenation of 1,3-butadiene after exposure to a reductive atmosphere at 200 °C for 24 h. Compared to commercial Pt nanoparticle catalyst on Al2O3 and control samples, this system exhibits significantly enhanced stability and performance for n-hexane hydro-reforming at 550 °C for 48 h, although agglomeration of Pt single-atoms into clusters is observed after reaction. In CO oxidation, the Pt single-atom identity was fully maintained after 60 cycles between 100 and 400 °C over a one-month period.

  19. Methane Formation by Flame-Generated Hydrogen Atoms in the Flame Ionization Detector

    DEFF Research Database (Denmark)

    Holm, Torkil; Madsen, Jørgen Øgaard

    1996-01-01

    The precombustion degradation of organic compounds in the flame ionization detector has been studied (1) by heating the additives in hydrogen in a quartz capillary and analyzing the reaction products by GC and (2) by following the degradation of the additives in a hydrogen flame, by means of a th...

  20. Kinetic solvent effects on the reactions of the cumyloxyl radical with tertiary amides. Control over the hydrogen atom transfer reactivity and selectivity through solvent polarity and hydrogen bonding.

    Science.gov (United States)

    Salamone, Michela; Mangiacapra, Livia; Bietti, Massimo

    2015-01-16

    A laser flash photolysis study on the role of solvent effects on hydrogen atom transfer (HAT) from the C-H bonds of N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), N-formylpyrrolidine (FPRD), and N-acetylpyrrolidine (APRD) to the cumyloxyl radical (CumO(•)) was carried out. From large to very large increases in the HAT rate constant (kH) were measured on going from MeOH and TFE to isooctane (kH(isooctane)/kH(MeOH) = 5-12; kH(isooctane)/kH(TFE) > 80). This behavior was explained in terms of the increase in the extent of charge separation in the amides determined by polar solvents through solvent-amide dipole-dipole interactions and hydrogen bonding, where the latter interactions appear to play a major role with strong HBD solvents such as TFE. These interactions increase the electron deficiency of the amide C-H bonds, deactivating these bonds toward HAT to an electrophilic radical such as CumO(•), indicating that changes in solvent polarity and hydrogen bonding can provide a convenient method for deactivation of the C-H bond of amides toward HAT. With DMF, a solvent-induced change in HAT selectivity was observed, suggesting that solvent effects can be successfully employed to control the reaction selectivity in HAT-based procedures for the functionalization of C-H bonds.