WorldWideScience

Sample records for hot humid climates

  1. Investigating atrium in hot and humid climate and providing ...

    African Journals Online (AJOL)

    Atrium has thermal comfort space since the old time by two methods of greenhouse effect and chimney effect. Now these questions are raised: What impact does atrium have in terms of performance in reducing energy consumption in buildings and how is the performance of atrium in the hot and humid climate, and how it ...

  2. Compact Buried Ducts in a Hot-Humid Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, Dave [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-07

    "9A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences; 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs; 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  3. Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Withers, Jr., Charles R. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-12-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split on seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.

  4. Sealed Attics Exposed to Two Years of Weathering in a Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Railkar, Sudhir [GAF; Shiao, Ming C [ORNL; Desjarlais, Andre Omer [ORNL

    2016-01-01

    Field studies in a hot, humid climate were conducted to investigate the thermal and hygrothermal performance of ventilated attics and non-ventilated semi-conditioned attics sealed with open-cell and with closed-cell spray polyurethane foam insulation. Moisture pin measurements made in the sheathing and absolute humidity sensor data from inside the foam and from the attic air show that moisture is being stored in the foam. The moisture in the foam diffuses to and from the sheathing dependent on the pressure gradient at the foam-sheathing interface which is driven by the irradiance and night-sky radiation. Ventilated attics in the same hot, humid climate showed less moisture movement in the sheathing than those sealed with either open- or closed-cell spray foam. In the ventilated attics the relative humidity drops as the attic air warms; however, the opposite was observed in the sealed attics. Peaks in measured relative humidity in excess of 80 90% and occasionally near saturation (i.e., 100%) were observed from solar noon till about 8 PM on hot, humid days. The conditioned space of the test facility is heated and cooled by an air-to-air heat pump. Therefore the partial pressure of the indoor air during peak irradiance is almost always less than that observed in the sealed attics. Field data will be presented to bring to light the critical humidity control issues in sealed attics exposed to hot, humid climates.

  5. Potential of district cooling in hot and humid climates

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Rashid, K. A. Bin Abdul; Romagnoli, A.

    2017-01-01

    Efficiently utilizing energy that is currently being wasted can significantly increase energy efficiency of the system, as well as reduce the carbon footprint. In hot climates with large cooling demands, excess waste heat can be utilized via absorption chillers to generate cold. Moreover, cold from...... liquefied natural gas gasification process can further provide energy source for meeting the cold demand. In order to connect the large sources of waste heat and cold energy with customers demanding the cold, a significant investment in district cooling grid is a necessity. In order to deal...

  6. Energy analysis of the personalized ventilation system in hot and humid climates

    DEFF Research Database (Denmark)

    Schiavon, S.; Melikov, Arsen Krikor; Sekhar, C.

    2010-01-01

    , inhaled air quality, thermal comfort, and self-estimated productivity. Little is known about its energy performance. In this study, the energy consumption of a personalized ventilation system introduced in an office building located in a hot and humid climate (Singapore) has been investigated by means...... effectiveness of PV; (b) increasing the maximum allowed room air temperature due to PV capacity to control the microclimate; (c) supplying the outdoor air only when the occupant is at the desk. The strategy to control the supply air temperature does not affect the energy consumption in a hot and humid climate....

  7. Performance Evaluation of a Hot-Humid Climate Community

    Energy Technology Data Exchange (ETDEWEB)

    Osser, R.; Kerrigan, P.

    2012-02-01

    Project Home Again is a development in New Orleans, LA created to provide new homes to victims of Hurricane Katrina. Building Science Corporation acted as a consultant for the project, advocating design strategies for durability, flood resistance, occupant comfort, and low energy use while maintaining cost effectiveness. These techniques include the use of high density spray foam insulation, LoE3 glazing, and supplemental dehumidification to maintain comfortable humidity levels without unnecessary cooling.

  8. Controlling indoor climate. Passive cooling of residential buildings in hot-humid climates in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhiwu, Wang

    1996-10-01

    Overheating is a paramount problem in residential buildings in hot and humid climates in China during summer. This study aims to deal with the overheating problem and the problem of poor air quality in dwellings. The main objective is to improve indoor thermal conditions by passive cooling approaches, climatisation techniques in buildings without auxiliary cooling from air conditioning equipment. This thesis focuses on the study of cross-ventilation in apartments, which is one of the most effective ways of natural cooling in a hot humid climate, but is also one of the least understood parts in controlling indoor climate. The Computational Fluid Dynamics (CFD) technique is used, which is a new approach, since cross-ventilation studies have been conventionally made by wind tunnel tests. The validations of the CFD technique are examined by a comparison between wind tunnel tests and computer simulations. The factors influencing indoor air movement are investigated for a single room. Cross-ventilation in two apartments is studied, and the air change efficiency in a Chinese kitchen is calculated with CFD techniques. The thermal performance of ventilated roofs, a simple and widely used type of roof in the region, is specially addressed by means of a full-scale measurement, wind tunnel tests and computer simulations. An integrated study of passive cooling approaches and factors affecting indoor thermal comfort is carried out through a case study in a southern Chinese city, Guangzhou. This thesis demonstrates that passive cooling measure have a high potential in significantly improving indoor thermal conditions during summer. This study also gives discussions and conclusions on the evaluation of indoor thermal environment; effects influencing cross-ventilation in apartments; design guidelines for ventilated roofs and an integrated study of passive cooling. 111 refs, 83 figs, 65 tabs

  9. Building America Case Study: Energy Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates, Cocoa, Florida

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split on seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.

  10. Compact Buried Ducts in a Hot-Humid Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval.

  11. Energy and Economic Evaluation of Green Roofs for Residential Buildings in Hot-Humid Climates

    OpenAIRE

    Abubakar S. Mahmoud; Muhammad Asif; Mohammad A. Hassanain; Mohammad O. Babsail; Muizz O. Sanni-Anibire

    2017-01-01

    Green roofs may be considered a passive energy saving technology that also offer benefits like environmental friendliness and enhancement of aesthetic and architectural qualities of buildings. This paper examines the energy and economic viability of the green roof technology in the hot humid climate of Saudi Arabia by considering a modern four bedroom residential building in the city of Dhahran as a case study. The base case and green roof modelling of the selected building has been developed...

  12. 40% Whole-House Energy Savings in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  13. Energy Retrofit Field Study and Best Practices in a Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    McIvaine, J.; Sutherland, K.; Martin, E.

    2013-03-01

    Energy efficiency improvement as a component of comprehensive renovation was investigated under U.S. Department of Energy (DOE) funding of the Building America Partnership for Improved Residential Construction (BA-PIRC). Researchers at the Florida Solar Energy Center (FSEC) worked with affordable housing partners renovating foreclosed homes built from the 1950's through the 2000's in the hot-humid climate (within the Southern census region), primarily in Florida. Researchers targeted a 30% improvement in whole-house energy efficiency along with the health and safety, durability, and comfort guidelines outlined in DOE's Builders Challenge Program (Version 1) Quality Criteria.

  14. Comfort in High-Performance Homes in a Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, A. [IBACOS, Inc., Pittsburgh, PA (United States); Beach, R. [IBACOS, Inc., Pittsburgh, PA (United States)

    2016-01-01

    IBACOS monitored 37 homes during the late summer and early fall of 2014 in a hot and humid climate to better understand indoor comfort conditions. These homes were constructed in the last several years by four home builders that offered a comfort and performance guarantee for the homes. The homes were located in one of four cities: Tampa, Florida; Orlando, Florida; Houston, Texas; and San Antonio, Texas. Temperature and humidity data were collected from the thermostat and each room of the house using small, battery-powered data loggers. To understand system runtime and its impact on comfort, supply air temperature also was measured on a 1-minute interval. Overall, the group of homes only exceeded a room-to-room temperature difference of 6 degrees Fahrenheit for 5% of the time.

  15. Approaches to 30% Energy Savings at the Community Scale in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Thomas-Rees, S.; Beal, D.; Martin, E.; Fonorow, K.

    2013-03-01

    BA-PIRC has worked with several community-scale builders within the hot humid climate zone to improve performance of production, or community scale, housing. Tommy Williams Homes (Gainesville, FL), Lifestyle Homes (Melbourne, FL), and Habitat for Humanity (various locations, FL) have all been continuous partners of the BA Program and are the subjects of this report to document achievement of the Building America goal of 30% whole house energy savings packages adopted at the community scale. The scope of this report is to demonstrate achievement of these goals though the documentation of production-scale homes built cost-effectively at the community scale, and modeled to reduce whole-house energy use by 30% in the Hot Humid climate region. Key aspects of this research include determining how to evolve existing energy efficiency packages to produce replicable target savings, identifying what builders' technical assistance needs are for implementation and working with them to create sustainable quality assurance mechanisms, and documenting the commercial viability through neutral cost analysis and market acceptance. This report documents certain barriers builders overcame and the approaches they implemented in order to accomplish Building America (BA) Program goals that have not already been documented in previous reports.

  16. Assessment of monitored energy use and thermal comfort conditions in mosques in hot-humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Homoud, Mohammad S.; Abdou, Adel A.; Budaiwi, Ismail M. [Architectural Engineering Department, KFUPM, Dhahran 31261 (Saudi Arabia)

    2009-06-15

    In harsh climatic regions, buildings require air-conditioning in order to provide an acceptable level of thermal comfort. In many situations buildings are over cooled or the HVAC system is kept running for a much longer time than needed. In some other situations thermal comfort is not achieved due to improper operation practices coupled with poor maintenance and even lack it, and consequently inefficient air-conditioning systems. Mosques represent one type of building that is characterized by their unique intermittent operating schedule determined by prayer times, which vary continuously according to the local solar time. This paper presents the results of a study designed to monitor energy use and thermal comfort conditions of a number of mosques in a hot-humid climate so that both energy efficiency and the quality of thermal comfort conditions especially during occupancy periods in such intermittently operated buildings can be assessed accurately. (author)

  17. Should Workers Avoid Consumption of Chilled Fluids in a Hot and Humid Climate?

    Directory of Open Access Journals (Sweden)

    Matt B. Brearley

    2017-12-01

    Full Text Available Despite provision of drinking water as the most common method of occupational heat stress prevention, there remains confusion in hydration messaging to workers. During work site interactions in a hot and humid climate, workers commonly report being informed to consume tepid fluids to accelerate rehydration. When questioned on the evidence supporting such advice, workers typically cite that fluid absorption is delayed by ingestion of chilled beverages. Presumably, delayed absorption would be a product of fluid delivery from the gut to the intestines, otherwise known as gastric emptying. Regulation of gastric emptying is multifactorial, with gastric volume and beverage energy density the primary factors. If gastric emptying is temperature dependent, the impact of cooling is modest in both magnitude and duration (≤ 5 minutes due to the warming of fluids upon ingestion, particularly where workers have elevated core temperature. Given that chilled beverages are most preferred by workers, and result in greater consumption than warm fluids during and following physical activity, the resultant increased consumption of chilled fluids would promote gastric emptying through superior gastric volume. Hence, advising workers to avoid cool/cold fluids during rehydration appears to be a misinterpretation of the research. More appropriate messaging to workers would include the thermal benefits of cool/cold fluid consumption in hot and humid conditions, thereby promoting autonomy to trial chilled beverages and determine personal preference. In doing so, temperature-based palatability would be maximized and increase the likelihood of workers maintaining or restoring hydration status during and after their work shift. Keywords: Fluid consumption, gastric emptying, hot and humid conditions, hydration, occupational

  18. Approaches to 30 Percent Energy Savings at the Community Scale in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Thomas-Rees, S. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Beal, D. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, E. [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2013-03-01

    BA-PIRC has worked with several community-scale builders within the hot humid climate zone to improve performance of production, or community scale, housing. Tommy Williams Homes (Gainesville, FL), Lifestyle Homes (Melbourne, FL), and Habitat for Humanity (various locations, FL) have all been continuous partners of the Building America program and are the subjects of this report to document achievement of the Building America goal of 30% whole house energy savings packages adopted at the community scale. Key aspects of this research include determining how to evolve existing energy efficiency packages to produce replicable target savings, identifying what builders' technical assistance needs are for implementation and working with them to create sustainable quality assurance mechanisms, and documenting the commercial viability through neutral cost analysis and market acceptance. This report documents certain barriers builders overcame and the approaches they implemented in order to accomplish Building America (BA) Program goals that have not already been documented in previous reports.

  19. Comfort in High-Performance Homes in a Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, A. [IBACOS, Inc., Pittsburgh, PA (United States); Beach, R. [IBACOS, Inc., Pittsburgh, PA (United States)

    2016-01-22

    "9IBACOS monitored 37 homes during the late summer and early fall of 2014 in a hot and humid climate to better understand indoor comfort conditions. These homes were constructed in the last several years by four home builders that offered a comfort and performance guarantee for the homes. The homes were located in one of four cities: Tampa, Florida; Orlando, Florida; Houston, Texas; and San Antonio, Texas. Temperature and humidity data were collected from the thermostat and each room of the house using small, battery-powered data loggers. To understand system runtime and its impact on comfort, supply air temperature also was measured on a 1-minute interval. Overall, the group of homes only exceeded a room-to-room temperature difference of 6 degrees F for 5% of the time. For 80% of the time, the rooms in each house were within 4 degrees F of each other. Additionally, the impact of system runtime on comfort is discussed. Finally, measurements made at the thermostat were used to better understand the occupant operation of each cooling system's thermostat setpoint. Builders were questioned on their perceived impact of offering a comfort and performance guarantee. Their feedback, which generally indicates a positive perception, has been summarized in the report.

  20. New Whole-House Solutions Case Study: Compact Buried Ducts in a Hot-Humid Climate House

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-18

    With U.S. Department of Energy Building America Program support, Home Innovation Research Labs partnered with K. Hovnanian Homes to demonstrate a new buried-duct design that is durable, energy efficient, and cost-effective in a hot-humid climate.

  1. Methodology for the preliminary design of high performance schools in hot and humid climates

    Science.gov (United States)

    Im, Piljae

    A methodology to develop an easy-to-use toolkit for the preliminary design of high performance schools in hot and humid climates was presented. The toolkit proposed in this research will allow decision makers without simulation knowledge easily to evaluate accurately energy efficient measures for K-5 schools, which would contribute to the accelerated dissemination of energy efficient design. For the development of the toolkit, first, a survey was performed to identify high performance measures available today being implemented in new K-5 school buildings. Then an existing case-study school building in a hot and humid climate was selected and analyzed to understand the energy use pattern in a school building and to be used in developing a calibrated simulation. Based on the information from the previous step, an as-built and calibrated simulation was then developed. To accomplish this, five calibration steps were performed to match the simulation results with the measured energy use. The five steps include: (1) Using an actual 2006 weather file with measured solar radiation, (2) Modifying lighting & equipment schedule using ASHRAE's RP-1093 methods, (3) Using actual equipment performance curves (i.e., scroll chiller), (4) Using the Winkelmann's method for the underground floor heat transfer, and (5) Modifying the HVAC and room setpoint temperature based on the measured field data. Next, the calibrated simulation of the case-study K-5 school was compared to an ASHRAE Standard 90.1-1999 code-compliant school. In the next step, the energy savings potentials from the application of several high performance measures to an equivalent ASHRAE Standard 90.1-1999 code-compliant school. The high performance measures applied included the recommendations from the ASHRAE Advanced Energy Design Guides (AEDG) for K-12 and other high performance measures from the literature review as well as a daylighting strategy and solar PV and thermal systems. The results show that the net

  2. Short-Term Test Results. Transitional Housing Energy Efficiency Retrofit in the Hot Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, K. [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Martin, Eric [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States)

    2013-02-01

    This project evaluates the renovation of a 5,800 ft2, multi-use facility located in St. Petersburg, on the west coast of central Florida, in the hot humid climate. An optimal package of retrofit measures was designed to deliver 30%-40% annual energy cost savings for this building with annual utility bills exceeding $16,000 and high base load consumption. Researchers projected energy cost savings for potential retrofit measures based on pre-retrofit findings and disaggregated, weather normalized utility bills as a basis for simulation true-up. A cost-benefit analysis was conducted for the seven retrofit measures implemented; adding attic insulation and sealing soffits, tinting windows, improving whole building air-tightness, upgrading heating and cooling systems and retrofitting the air distribution system, replacing water heating systems, retrofitting lighting, and replacing laundry equipment. The projected energy cost savings for the full retrofit package based on a post-retrofit audit is 35%. The building's architectural characteristics, vintage, and residential and commercial uses presented challenges for both economic projections and retrofit measure construction.

  3. Short-Term Test Results: Transitional Housing Energy Efficiency Retrofit in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, K.; Martin, E.

    2013-02-01

    This project evaluates the renovation of a 5,800 ft2, multi-use facility located in St. Petersburg, on the west coast of central Florida, in the hot humid climate. An optimal package of retrofit measures was designed to deliver 30-40% annual energy cost savings for this building with annual utility bills exceeding $16,000 and high base load consumption. Researchers projected energy cost savings for potential retrofit measures based on pre-retrofit findings and disaggregated, weather normalized utility bills as a basis for simulation true-up. A cost-benefit analysis was conducted for the seven retrofit measures implemented; adding attic insulation and sealing soffits, tinting windows, improving whole building air-tightness, upgrading heating and cooling systems and retrofitting the air distribution system, replacing water heating systems, retrofitting lighting, and replacing laundry equipment. The projected energy cost savings for the full retrofit package based on a post-retrofit audit is 35%. The building's architectural characteristics, vintage, and residential and commercial uses presented challenges for both economic projections and retrofit measure construction.

  4. Energy and Economic Evaluation of Green Roofs for Residential Buildings in Hot-Humid Climates

    Directory of Open Access Journals (Sweden)

    Abubakar S. Mahmoud

    2017-03-01

    Full Text Available Green roofs may be considered a passive energy saving technology that also offer benefits like environmental friendliness and enhancement of aesthetic and architectural qualities of buildings. This paper examines the energy and economic viability of the green roof technology in the hot humid climate of Saudi Arabia by considering a modern four bedroom residential building in the city of Dhahran as a case study. The base case and green roof modelling of the selected building has been developed with the help of DesignBuilder software. The base case model has been validated with the help of 3-month measured data about the energy consumption without a green roof installed. The result shows that the energy consumption for the base case is 169 kWh/m2 while the energy consumption due to the application of a green roof on the entire roof surface is 110 kWh/m2. For the three investigated green roof options, energy saving is found to be in the range of 24% to 35%. The economic evaluation based on the net present value (NPV approach for 40 years with consideration to other environmental advantages indicates that the benefits of the green roof technology are realized towards the end of the life cycle of the building.

  5. Specifying residential retrofit packages for 30 % reductions in energy consumption in hot-humid climate zones

    Energy Technology Data Exchange (ETDEWEB)

    Burgett, J.M.; Chini, A.R.; Oppenheim, P. [University of Florida, 573 Rinker Hall, Newell Drive, Gainesville, FL 32611 (United States)

    2013-08-15

    The purpose of this research was to demonstrate the application of energy simulation as an effective tool for specifying cost-effective residential retrofit packages that will reduce energy consumption by 30 %. Single-family homes in the hot-humid climate type of the Southeastern USA were used to demonstrate the application. US census data from both state and federal studies were used to create 12 computer simulation homes representing the most common characteristics of single-family houses specific to this area. Well-recognized energy efficiency measures (EEMs) were simulated to determine their cumulative energy reduction potential. Detailed cost estimates were created for cost-to-benefit analysis. For each of the 12 simulated homes, 4 packages of EEMs were created. The four packages provided home owners options for reducing their energy by 30 % along with the estimated up-front cost and simple payback periods. The simple payback period was used to determine how cost-effective a measure was. The packages are specific to a geographic area to provide a higher degree of confidence in the projected cost and energy savings. The study provides a generic methodology to create a similar 30 % energy reduction packages for other locations and a detailed description of a case study to serve as an example. The study also highlights the value that computer simulation models can have to develop energy efficiency packages cost-effectively and specific to home owner's location and housing type.

  6. Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate

    Directory of Open Access Journals (Sweden)

    Halil Alibaba

    2016-02-01

    Full Text Available Heat loss and gain through windows has a very high impact on the thermal comfort of offices. This paper analyzes a standard low energy consumption university office that has a standard envelope. Dynamic thermal simulations with EDSL Tas software, a predicted mean vote (PMV, and a predicted percentage of dissatisfied (PPD with all local discomfort as stated in ASHRAE, ISO 7730: 2005, EN 15251: 2007 were used for thermal sensation, in order to optimize the best window to external wall proportion in a hot and humid climate that exists in the Famagusta case study. A simulated office building is oriented east to west in order to take advantage of the wind direction. In May 45% (PPD < 6%–0.7% open window, 93% (PPD < 10–0.2 open window, and 97% (PPD < 15%–0.1% open window thermal comfort scores are obtained when the window to external wall ratio (WWR is 10%. In October 43% (PPD < 6%–0.7% open window, 86% (PPD < 10–0.2 open window, and 92% (PPD < 15%–0.1% open window thermal comfort scores are obtained when the WWR is 10%. In September 49% (PPD < 10% full open window and 51% (PPD < 15%–0.1% open window thermal comfort scores are obtained when the WWR is 10%.

  7. Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Kerrigan, P.; Norton, P.

    2014-10-01

    This report, Evaluation of the Performance of Houses with and without Supplemental Dehumidification in a Hot-Humid Climate, describes a research study that that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance, homes in a Hot-Humid climate. The purpose of this research project was to observe and compare the humidity control performance of new, single family, low energy, and high performance, homes. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses, homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were ten single-family new construction homes in New Orleans, LA.Data logging equipment was installed at each home in 2012. Interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space. However, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.

  8. Building Material Preferences in Warm-Humid and Hot-Dry Climates ...

    African Journals Online (AJOL)

    dry climates in Ghana. Using a combination of closed and open-ended questionnaires, a total of 1281 participants (473 adults and 808 youth) were recruited in Ghana in a two-month survey in Kumasi and Tamale representing the warm-humid ...

  9. A tool for design decision making - zero energy residential buildings in hot humid climates

    NARCIS (Netherlands)

    Attia, S.G.

    2012-01-01

    In this thesis, the development and evaluation of a simulation-based decision aid for Net Zero Energy Buildings (NZEBs) design, ZEBO, was explored. The thesis investigates the ability to achieve informed decision making for NZEB design, in hot climate. Four main questions were posed. Firstly, how to

  10. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    Science.gov (United States)

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Reducing Thermal Losses and Gains With Buried and Encapsulated Ducts in Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Magee, A.; Zoeller, W.

    2013-02-01

    The Consortium for Advanced Residential Buildings (CARB) monitored three houses in Jacksonville, FL, to investigate the effectiveness of encapsulated and encapsulated/buried ducts in reducing thermal losses and gains from ductwork in unconditioned attics. Burying ductwork beneath loose-fill insulation has been identified as an effective method of reducing thermal losses and gains from ductwork in dry climates, but it is not applicable in humid climates where condensation may occur on the outside of the duct jacket. By encapsulating the ductwork in closed cell polyurethane foam (ccSPF) before burial beneath loose-fill mineral fiber insulation, the condensation potential may be reduced while increasing the R-value of the ductwork.

  12. Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Kerrigan, P. [Building Science Corporation, Westford, MA (United States)

    2014-10-01

    This report describes a research study that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance homes in a hot-humid climate. The purpose of this research project was to observe and compare the humidity control performance. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses; homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were 10 single-family, new construction homes in New Orleans, LA.

  13. Effects of acute supplementation of caffeine on cardiorespiratory responses during endurance running in a hot & humid climate.

    Science.gov (United States)

    Ping, Wong Chee; Keong, Chen Chee; Bandyopadhyay, Amit

    2010-07-01

    Athletes in Malaysia need to perform in a hot and humid climate. Chronic supplementation of caffeine on endurance performance have been studied extensively in different populations. However, concurrent research on the effects of acute supplementation of caffeine on cardiorespiratory responses during endurance exercise in the Malaysian context especially in a hot and humid environment is unavailable. Nine heat adapted recreational Malaysian male runners (aged: 25.4+/-6.9 yr) who were nonusers of caffeine (23.7+/-12.6 mg per day) were recruited in this placebo--controlled double--blind randomized study. Caffeine (5 mg per kg of body weight) or placebo was ingested in the form of a capsule one hour prior to the running exercise trial at 70 per cent of VO2max on a motorised treadmill in a heat-controlled laboratory (31 degrees C, 70% relative humidity). Subjects drank 3 ml of cool water per kg of body weight every 20 min during the running trials to avoid the adverse effects of dehydration. Heart rate, core body temperature and rate of perceived exertion (RPE) were recorded at intervals of 10 min, while oxygen consumption was measured at intervals of 20 min. Running time to exhaustion was significantly (Pexercise from their respective resting values in both trials (P<0.001). Our study showed that ingestion of 5 mg of caffeine per kg of body weight improved the endurance running performance but did not impose any significant effect on other individual cardiorespiratory parameters of heat-acclimated recreational runners in hot and humid conditions.

  14. Occupants’ Utilization of Natural Ventilation: A Study of Selected Terrace House Designs in Hot-humid Climate

    Directory of Open Access Journals (Sweden)

    Ibiyeye AI

    2015-05-01

    Full Text Available With increased time spent indoors and demand for enhanced comfort levels, energy consumption in homes is rising mostly for cooling, particularly in hot-humid regions. Natural ventilation is seen as an alternative to mechanical cooling as it is totally independent on energy and has been reported to be of high potential. However, little information is available on the utilization of natural ventilation in individual living spaces in different house designs. Therefore, this paper aims to investigate occupants’ utilization of natural ventilation in living spaces under different terrace house designs in hot-humid climate and also the relationship between the openings and occupants’ satisfaction with natural ventilation. Five (5 different terrace house types in Putrajaya, Malaysia with different opening design characteristics were selected for the study. A total of 298 households from these house types were surveyed and results show that occupants mostly open their windows during the daytime to capture breeze from outside despite the fact that they owned air-conditioners. In terms of occupants’ level of satisfaction with indoor ventilation when utilizing natural ventilation, majority rated neither satisfied nor unsatisfied. Further regression analysis reveals that this level of satisfaction is significantly related to opening sizes that are in accordance with the law, duration of opening windows and AC ownership. Findings from this study will shed more light on behavioural pattern of occupants of residential buildings towards natural ventilation provisions and highlight the importance of conforming to the law governing them.

  15. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    Science.gov (United States)

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Enhancement of stack ventilation in hot and humid climate using a combination of roof solar collector and vertical stack

    Energy Technology Data Exchange (ETDEWEB)

    Yusoff, Wardah Fatimah Mohammad; Salleh, Elias [Department of Architecture, Faculty of Design and Architecture, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Adam, Nor Mariah [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sapian, Abdul Razak [Department of Architecture, Kulliyyah of Architecture and Environmental Design, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur (Malaysia); Yusof Sulaiman, Mohamad [Solar Energy Research Institute, 3rd Floor, Tun Sri Lanang Library Building, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2010-10-15

    In the hot and humid climate, stack ventilation is inefficient due to small temperature difference between the inside and outside of naturally ventilated buildings. Hence, solar induced ventilation is a feasible alternative in enhancing the stack ventilation. This paper aims to investigate the effectiveness of a proposed solar induced ventilation strategy, which combines a roof solar collector and a vertical stack, in enhancing the stack ventilation performance in the hot and humid climate. The methodology selected for the investigation is physical experimental modelling which was carried out in the actual environment. The results are presented and discussed in terms of two performance variables: air temperature and air velocity. The findings indicate that the proposed strategy is able to enhance the stack ventilation, both in semi-clear sky and overcast sky conditions. The highest air temperature difference between the air inside the stack and the ambient air (T{sub i}-T{sub o}) is achieved in the semi-clear sky condition, which is about 9.9 C (45.8 C-35.9 C). Meanwhile, in the overcast sky condition, the highest air temperature difference (T{sub i}-T{sub o}) is 6.2 C (39.3 C-33.1 C). The experimental results also indicate good agreement with the theoretical results for the glass temperature, the air temperature in the roof solar collector's channel and the absorber temperature. The findings also show that wind has significant effect to the induced air velocity by the proposed strategy. (author)

  17. Potential of indirect evaporative passive cooling with embedded tubes in a humid tropical climate : applications in a typical hot humid climate

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Chavez, J.R. [Univ. Autonoma Metropolitana-Azcapotzalco, Mexico City (Mexico). Dept. de Medio Ambiente, Laboratorio de Investigaciones en Arquitectura Bioclimatica; Givoni, B. [California Univ., Los Angeles, CA (United States); BGU, Beer Sheva (Israel); Viveros, O. [Cristobal Colon Univ., Veracruz (Mexico)

    2009-07-01

    The use of passive cooling techniques in buildings in hot and humid regions can reduce energy consumption while increasing thermal comfort for occupants. A study was conducted in the City of Veracruz, Mexico to investigate the performance of tubes embedded in the roof of the Gulf Meteorological Prevision Centre. Two identical insulated experimental cells were used, one serving as the control and the other one as the test unit, where the technique of embedded tubes in the roof was implemented and investigated during a typical overheating season. Results showed that this indirect evaporative cooling system is an effective strategy to reduce indoor temperatures without increasing the indoor humidity in buildings. The indoor maximum temperature was lowered by 2.72 K in the experimental test cell relative to the control unit. In addition, the resulting reduction of radiant temperatures in the test unit improved the thermal comfort of the occupants. It is expected that the implementation of this passive cooling technique will eventually contribute to reduced energy consumption and less use of air-conditioning systems in buildings, and thereby prevent emission of greenhouse gases to the atmosphere. 9 refs., 1 tab., 6 figs.

  18. Can thermal perception in a building be predicted by the perceived spatial openness of a building in a hot and humid climate?

    NARCIS (Netherlands)

    Du, X.; Bokel, R.M.J.; van den Dobbelsteen, A.A.J.F.; Brotas, Luisa; Roaf, Susan; Nicol, Fergus

    2017-01-01

    The authors wanted to prove that there is a large correlation between the concepts spatial openness and comfort (visual, wind speed and thermal) perception in people’s minds in a hot and humid climate in summer in order to be able to use spatial configuration parameters such as openness,

  19. Building America Best Practices Series: Volume 1; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-12-01

    This Building America Best Practices guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the hot and humid climate.

  20. Human thermal comfort conditions and urban planning in hot-humid climates-The case of Cuba.

    Science.gov (United States)

    Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas

    2016-08-01

    Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.

  1. Overheating risk assessment of naturally ventilated classroom under the influence of climate change in hot and humid region

    Science.gov (United States)

    Huang, Kuo-Tsang

    2013-04-01

    Natural ventilation (NV) is considered one of the passive building strategies used for reducing cooling energy demand. The utilization of nature wind for cooling down indoor thermal environment to reach thermal comfort requires knowledge of adequately positioning the building fenestrations, designing inlet-outlet related opening ratios, planning unobstructed cross ventilation paths, and, the most important, assessing the utilization feasibility base on local climatic variables. Furthermore, factors that influence the indoor thermal condition include building envelope heat gain, indoor air velocity, indoor heat gain (e.g. heat discharges from occupant's body, lighting fixture, electrical appliances), and outdoor climate. Among the above, the indoor thermal performance of NV building is significantly dependent to outdoor climate conditions. In hot and humid Taiwan, under college school classrooms are usually operated in natural ventilation mode and are more vulnerable to climate change in regard to maintain indoor thermal comfort. As climate changes in progress, NV classrooms would expect to encounter more events of overheating in the near future, which result in more severe heat stress, and would risk the utilization of natural ventilation. To evaluate the overheating risk under the influence of recent climate change, an actual top floor elementary school classroom with 30 students located at north Taiwan was modeled. Long-term local hourly meteorological data were gathered and further constructed into EnergyPlus Weather Files (EPWs) format for building thermal dynamic simulation to discuss the indoor thermal environmental variation during the period of 1998 to 2012 by retrospective simulation. As indoor thermal environment is an overall condition resulting from a series combination of various factors, sub-hourly building simulation tool, EnergyPlus, coupled with the above fifteen years' EPWs was adopted to predict hourly indoor parameters of mean radiant

  2. Building America Best Practices Series Volume 15: 40% Whole-House Energy Savings in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Adams, Karen; Noonan, Christine F.

    2011-09-01

    This best practices guide is the 15th in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

  3. Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Yong X. Tao; Yimin Zhu

    2012-04-26

    It has been widely recognized that the energy saving benefits of GSHP systems are best realized in the northern and central regions where heating needs are dominant or both heating and cooling loads are comparable. For hot and humid climate such as in the states of FL, LA, TX, southern AL, MS, GA, NC and SC, buildings have much larger cooling needs than heating needs. The Hybrid GSHP (HGSHP) systems therefore have been developed and installed in some locations of those states, which use additional heat sinks (such as cooling tower, domestic water heating systems) to reject excess heat. Despite the development of HGSHP the comprehensive analysis of their benefits and barriers for wide application has been limited and often yields non-conclusive results. In general, GSHP/HGSHP systems often have higher initial costs than conventional systems making short-term economics unattractive. Addressing these technical and financial barriers call for additional evaluation of innovative utility programs, incentives and delivery approaches. From scientific and technical point of view, the potential for wide applications of GSHP especially HGSHP in hot and humid climate is significant, especially towards building zero energy homes where the combined energy efficient GSHP and abundant solar energy production in hot climate can be an optimal solution. To address these challenges, this report presents gathering and analyzing data on the costs and benefits of GSHP/HGSHP systems utilized in southern states using a representative sample of building applications. The report outlines the detailed analysis to conclude that the application of GSHP in Florida (and hot and humid climate in general) shows a good potential.

  4. Low-cost personal cooling in hot humid offices

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Santos, A.

    This report presents a low cost solution to avoid heat stress in a hot and humid environment based on a solar powered drying of supply air. The air drying facilities and a validation of the benefits through comprehensive human exposure studies are described. The study represents an example...... of applied participative research performed in a developing country. The report may be used as a background for the improvement of the indoor climate in poor, hot and humid regions without increased use of electricity....

  5. Building America Case Study: Compact Buried Ducts in a Hot-Humid Climate House, Lady's Island, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    A system of compact, buried ducts provides a high-performance and cost-effective solution for delivering conditioned air throughout the building. This report outlines research activities that are expected to facilitate adoption of compact buried duct systems by builders. The results of this research would be scalable to many new house designs in most climates and markets, leading to wider industry acceptance and building code and energy program approval. The primary research question with buried ducts is potential condensation at the outer jacket of the duct insulation in humid climates during the cooling season. Current best practices for buried ducts rely on encapsulating the insulated ducts with closed-cell spray polyurethane foam insulation to control condensation and improve air sealing. The encapsulated buried duct concept has been analyzed and shown to be effective in hot-humid climates. The purpose of this project is to develop an alternative buried duct system that performs effectively as ducts in conditioned space - durable, energy efficient, and cost-effective - in a hot-humid climate (IECC warm-humid climate zone 3A) with three goals that distinguish this project: 1) Evaluation of design criteria for buried ducts that use common materials and do not rely on encapsulation using spray foam or disrupt traditional work sequences, 2) Establishing design criteria for compact ducts and incorporate those with the buried duct criteria to further reduce energy losses and control installed costs, and 3) Developing HVAC design guidance for performing accurate heating and cooling load calculations for compact buried ducts.

  6. Performance evaluation of an indirect pre-cooling evaporative heat exchanger operating in hot and humid climate

    International Nuclear Information System (INIS)

    Cui, X.; Chua, K.J.; Islam, M.R.; Ng, K.C.

    2015-01-01

    Highlights: • An IEHX is introduced as a pre-cooling unit for humid tropical climate. • A computational model is developed to investigate the performance of IEHX. • The air treatment process with condensation from the product air is studied. • The hybrid system shows an appreciable energy saving potential. - Abstract: A hybrid system, that combines an indirect evaporative heat exchanger (IEHX) and a vapor compression system, is introduced for humid tropical climate application. The chief purpose of the IEHX is to pre-cool the incoming air for vapor compression system. In the IEHX unit, the outdoor humid air in the product channel may potentially condense when heat is exchanged with the room exhaust air. A computational model has been developed to theoretically investigate the performance of an IEHX with condensation from the product air by employing the room exhaust air as the working air. We validated the model by comparing its temperature distribution and predicted heat flux against experimental data acquired from literature sources. The numerical model showed good agreement with the experimental findings with maximum average discrepancy of 9.7%. The validated model was employed to investigate the performance of two types of IEHX in terms of the air treatment process, temperature and humidity distribution, cooling effectiveness, cooling capacity, and energy consumption. Simulation results have indicated that the IEHX unit is able to fulfill 47% of the cooling load for the outdoor humid air while incurring a small amount of fan power. Consequently, the hybrid system is able to realize significant energy savings

  7. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    Science.gov (United States)

    Chen, Rong; Sung, Wen-Pei; Chang, Hung-Chang; Chi, Yi-Rou

    2013-01-01

    A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1) measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2) implementing questionnaire survey analysis to explore people's environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3) constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV), two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C) indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1 ~ 0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement. PMID:24311976

  8. Applying Outdoor Environment to Develop Health, Comfort, and Energy Saving in the Office in Hot-Humid Climate

    Directory of Open Access Journals (Sweden)

    Rong Chen

    2013-01-01

    Full Text Available A human life demand set to emerge in the future is the achievement of sustainability by maintaining a comfortable indoor environment without excessive reliance on energy-consuming air conditioners. The major research processes in this study are: (1 measuring indoor air quality and thermal comfort to evaluate the comfort of an indoor environment; (2 implementing questionnaire survey analysis to explore people’s environmental self-perceptions and conducting a meta-analysis of the measurement results for air quality and physical aspects; and (3 constructing an indoor monitoring and management system. The experimental and analysis results of this research reveal that most of the office occupants preferred a cooler environment with a lower temperature. Additionally, because the summers in Taiwan are humid and hot, the occupants of an indoor space tend to feel uncomfortable because of the high humidity and poor indoor air quality. Therefore, Variable Air Volume (VAV, two air intakes, and exhaust plant are installed to improve indoor environment. After improvement, a lower temperature (approximately 21.2–23.9°C indirectly reduces humidity, thereby making the occupants comfortable. Increasing air velocity to 0.1~0.15 m/s, the carbon dioxide concentrations decrease below the requirement of the WHO. Ninety-five percent of the workers corresponded to the standard comfort zone after this improvement.

  9. Importance of body-water circulation for body-heat dissipation in hot-humid climates: a distinctive body-water circulation in swamp buffaloes

    Directory of Open Access Journals (Sweden)

    S. Chanpongsang

    2010-02-01

    Full Text Available Thermo-regulation in swamp buffaloes has been investigated as an adaptive system to hot-humid climates, and several distinctive physiological responses were noted. When rectal temperature increased in hot conditions, blood volume, blood flow to the skin surface and skin temperature markedly increased in buffaloes relatively to cattle. On the other hand, the correlation between blood volume and plasma concentration of arginine vasopressin (AVP was compared between buffaloes and cattle under dehydration. Although plasma AVP in cattle increased immediately for reducing urine volume against a decrease in blood volume as well as the response observed in most animal species, the increase in plasma AVP was delayed in buffaloes, even after a large decrease in blood volume. In buffaloes, a marked increase in blood volume facilitated the dissipation of excess heat from the skin surface during wallowing. In addition, the change in plasma AVP observed in buffaloes was consistent with that of other animals living in habitats with the high availability of water. These results suggest that the thermo-regulatory system in buffaloes accelerates body-water circulation internally and externally. This system may be adaptive for heat dissipation in hot-humid climates, where an abundance of water is common.

  10. Building America Best Practices Series: Volume 1; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M. C.; Love, P. M.

    2004-11-01

    This Building America Best Practices guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the hot and humid climate. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builder's team. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

  11. A modelling study of the event-based retention performance of green roof under the hot-humid tropical climate in Kuching.

    Science.gov (United States)

    Chai, C T; Putuhena, F J; Selaman, O S

    2017-12-01

    The influences of climate on the retention capability of green roof have been widely discussed in existing literature. However, knowledge on how the retention capability of green roof is affected by the tropical climate is limited. This paper highlights the retention performance of the green roof situated in Kuching under hot-humid tropical climatic conditions. Using the green roof water balance modelling approach, this study simulated the hourly runoff generated from a virtual green roof from November 2012 to October 2013 based on past meteorological data. The result showed that the overall retention performance was satisfactory with a mean retention rate of 72.5% from 380 analysed rainfall events but reduced to 12.0% only for the events that potentially trigger the occurrence of flash flood. By performing the Spearman rank's correlation analysis, it was found that the rainfall depth and mean rainfall intensity, individually, had a strong negative correlation with event retention rate, suggesting that the retention rate increases with decreased rainfall depth. The expected direct relationship between retention rate and antecedent dry weather period was found to be event size dependent.

  12. Influence of Courtyard Ventilation on Thermal Performance of Office Building in Hot-Humid Climate: A Case Study

    Science.gov (United States)

    Abbaas, Esra'a. Sh.; Saif, Ala'eddin A.; Munaaim, MAC; Azree Othuman Mydin, Md.

    2018-03-01

    The influence of courtyard on the thermal performance of Development Department office building in University Malaysia Perlis (UniMAP, Pauh Putra campus) is investigated through simulation study for the effect of ventilation on indoor air temperature and relative humidity of the building. The study is carried out using EnergyPlus simulator interface within OpenStudio and SketchUp plug in software to measure both of air temperature and relative humidity hourly on 21 April 2017 as a design day. The results show that the ventilation through the windows facing the courtyard has sufficient effect on reducing the air temperature compared to the ventilation through external windows since natural ventilation is highly effective on driving the indoor warm air out to courtyard. In addition, the relative humidity is reduced due to ventilation since the courtyard has high ability to remove or dilute indoor airborne pollutants coming from indoor sources. This indicates that the presence of courtyard is highly influential on thermal performance of the building.

  13. Experimental performance evaluation of solid concrete and dry insulation materials for passive buildings in hot and humid climatic conditions

    International Nuclear Information System (INIS)

    Rehman, Hassam Ur

    2017-01-01

    average of 22–75% at south wall during summer. Similarly, free floating analysis was done during winter and the measurements showed the behaviour of the heat flux flow and the variations in room temperature due to the variation of thermal mass caused by the difference in heat capacities of the façade with and without insulation. Heat flux and temperature variations were minimal in cases of insulated buildings when compared against a reference building in the winter free flow tests. The temperature variation is limited to 2 °C in case of insulated buildings compared to 6 °C in the reference case caused by high thermal inertia. Thus, insulation is essential in summer as well as in winter for the buildings in Middle East and North Africa (MENA). Overall, this paper provides a novel view on the most significant contributors to the thermal behaviour of the structure, and presents a methodology on the outdoor tests with various materials, that can significantly improve the thermal behaviour of the buildings in the extremely hot climate.

  14. Climate change, humidity, and mortality in the United States

    Science.gov (United States)

    Barreca, Alan I.

    2014-01-01

    This paper estimates the effects of humidity and temperature on mortality rates in the United States (c. 1973–2002) in order to provide an insight into the potential health impacts of climate change. I find that humidity, like temperature, is an important determinant of mortality. Coupled with Hadley CM3 climate-change predictions, I project that mortality rates are likely to change little on the aggregate for the United States. However, distributional impacts matter: mortality rates are likely to decline in cold and dry areas, but increase in hot and humid areas. Further, accounting for humidity has important implications for evaluating these distributional effects. PMID:25328254

  15. Long-term perceptions of outdoor thermal environments in an elementary school in a hot-humid climate

    Science.gov (United States)

    Shih, Wen-Mei; Lin, Tzu-Ping; Tan, Ning-Xin; Liu, Mu-Hsien

    2017-09-01

    Previous studies on thermal comfort in school environments have focused more on indoor thermal environments than outdoor ones, thus providing a limited understanding of occupants' long-term thermal perceptions. Taiwan is located in a subtropical region, where it can be stiflingly hot outside in summer. This highlights the need to ensure proper thermal comfort on campus. In the present study, thermal environment parameters were measured and collected in several outdoor spaces of an elementary school in southern Taiwan. In addition, a questionnaire was used to explore occupants' long-term thermal perceptions of these spaces. During summer months, the physiological equivalent temperature (PET) of these outdoor spaces in over 60% of the daytime in summer between 10 a.m. and 4 p.m. was higher than 38 °C PET, indicating high heat stress. The results of occupants' long-term perceptions of the thermal comfort of these spaces suggested that dissatisfaction with thermal comfort was associated more with solar radiation than with wind speed. Finally, this study simulated a campus environment where more trees are planted and compared the thermal comfort indices before and after the simulation. The results indicated that this solution contributed to a decrease in the PET of these environments, thereby alleviating high heat stress. This study can inform the improvement of microclimates and thermal comfort during campus layout planning. Planting trees judiciously across a campus increases outdoor shades and creates outdoor spaces that are more comfortable and adaptable to hot weather conditions, thereby ensuring frequent use of these spaces.

  16. A Systematic Review Of Thermal And Moisture Performance Of Straw-Bale Houses In Hot And Humid Climates

    Directory of Open Access Journals (Sweden)

    Ikenna Stephen Ezennia

    2017-01-01

    Full Text Available As architects and home-owners look for innovative ways to help reduce their carbon footprint in the campaign against climate change straw bale could become a new tool in the building industrys armory. In order to bring this form of building into the mainstream sector as well as benefit from its inherent low carbon and high insulation characteristics it is necessary to guarantee the long-term durability of the straw. Sources of data included extensive literature search of relevant English language articles and the results of literature search of Elsevier Science Direct ISI Web of Knowledge ProQuest Central Scopus and Google. This study strives to make an exhaustive review of straw-bale performance in different climates and respective improvements from an energy efficiency perspective. This research revealed that when straw-bale buildings are constructed using the correct and specific technique moisture and thermal intrusion did not seem to be detrimental to the health of the building regardless of the climate. Furthermore building with straw can lead to low thermal transfer relatively high thermal inertia and high moisture regulation capacity. The study concluded that at a time when the importance of building sustainably is widely accepted it would seem imperative that the potential of building systems like this that use renewable resources readily available and have low embodied energy is further studied.

  17. NUTRITIVE QUALITY OF TEN GRASSES DURING THE RAINY SEASON IN A HOT-HUMID CLIMATE AND ULTISOL SOIL

    Directory of Open Access Journals (Sweden)

    Rodrigo Ortega-Gómez

    2011-11-01

    Full Text Available The nutritive quality of ten grasses harvested at 3, 6, 9 and 12 weeks of regrowth was assessed during the rainy season (August-October 2008, in the humid tropics of Veracruz, Mexico. Grasses tested included four Brachiaria spp.: “insurgente”–B. brizantha, “signal”–B. decumbens, Chetumal–B. humidicola, “mulato I”–B. brizantha x B. ruziziensis; three Panicum maximum: Mombasa, “privilegio”, Tanzania; and three Pennisetum spp.: Taiwán, and the hybrids P. purpureum x P. glaucum “Cuban” king grass and “purple” king grass. Means for crude protein by grass group were: Pennisetum spp. (9.9 % = P. maximum (8.7 % > Brachiaria spp. (7.6 %, whereas means for in situ dry matter disappearance (ISD were: Pennisetum spp. (69.7 % > Brachiaria spp. (65.1 % > P. maximum (59.7 %. Crude protein and ISD significantly decreased by 0.42 % and 1.50 % per week. Neutral detergent fiber was not affected by model effects (mean 71.4 %. Means for acid detergent fiber (ADF by grass group were: P. maximum (47.6 % = Pennisetum spp. (44.0 % > Brachiaria spp. (42.8 %, whereas means for lignin (LIG were: P. maximum (8.5 % > Pennisetum spp. (7.6 % > Brachiaria spp. (6.7 %. The ADF and LIG significantly increased by 1.21 % and 0.19 % per week. Pennisetum spp. had the highest nutritive value at all regrowth ages.

  18. On the Humidity Sensitivity of Hot-Wire Measurements

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Busch, N. E.

    1980-01-01

    The influence of humidity changes on hot-wire measurements is discussed. Indications are that the humidity sensitivity parameters obtained by the authors in an earlier paper should be changed. This means, however, that the agreement between predicted and measured sensitivities ceases to exist...

  19. First stages of zinc runoff in humid tropical climate

    International Nuclear Information System (INIS)

    Meraz, E.; Veleva, L.; Acosta, M.

    2007-01-01

    Frequently used metals in building application are Zinc and hot dip galvanized steel. The zinc has a relatively good atmospheric resistance, due to its oxidation in air and formation of protective layer. However, some of the zinc corrosion products can be dissolved by pluvial precipitations and water condensed on the metal surface. This process is called metal runoff. In order to estimate el zinc runoff in humid tropical climate, since its firs stages, samples of pure zinc and hot dip galvanized steel have been exposed during 2 years in outdoor atmosphere (rural and urban). The data reveal high annual values of zinc runoff (8,20-12,40±0.30 g/m''2 ano), being this process 80% of total mass loss of corroded zinc. The runoff and corrosion processes are more accelerated for zinc, than that of galvanized steel. The principal factors that control the runoff process are discussed. (Author) 48 refs

  20. A literature review on the improvement strategies of passive design for the roofing system of the modern house in a hot and humid climate region

    Directory of Open Access Journals (Sweden)

    Qairuniza Roslan

    2016-03-01

    Full Text Available Increase of indoor temperature compared with outdoor temperature is a major concern in modern house design. Occupants suffer from this uncomfortable condition because of overheating indoor temperature. Poor passive design causes heat to be trapped, which influences the rise in indoor temperature. The upper part, which covers the area of the roof, is the most critical part of the house that is exposed to heat caused by high solar radiation and high emissivity levels. During daytime, the roof accumulates heat, which increases the indoor temperature and affects the comfort level of the occupants. To maintain the indoor temperature within the comfort level, most house designs usually depend on mechanical means by using fans or air conditioning systems. The dependence on a mechanical ventilation system could lead to additional costs for its installation, operation, and maintenance. Thus, this study concentrates on reviews on passive design and suggests recommendations for future developments. New proposals or strategies are proposed to improve the current passive design through ventilated and cool roof systems. It is possible to achieve the comfort level inside a house throughout the day by reducing the transmitted heat into the indoor environment and eliminating the internal hot air. These recommendations could become attractive strategies in providing a comfortable indoor temperature to the occupants as well as in minimizing energy consumption.

  1. [Capacity of extensive green roof to retain rainwater runoff in hot and humid region.

    Science.gov (United States)

    Liu, Ming Xin; Dai, Se Ping; Zhou, Tian Yang; Ruan, Lin; Zhang, Qiao Song

    2017-02-01

    The water logging has become the environmental problem of major cities with the sharp increase of impermeable urban pavement as the contributing cause. Abroad, the green roof has been widely used as a practical measure to intercept rainwater, yet the capacity of green roof to retain rainwater varies with climate conditions. As the hot and humid climate zone features high temperature, humidity and precipitation, it is meaningful to study the capacity of green roof to retain rainwater under such climatic condition. In this research, 3 plat forms were set up in Guangzhou in rainy and hot summer to test the capability of simple green roof to retain rainwater runoff, and the efficiency of green roof to retain rainwater under local climate conditions was worked out based on the meteorological observation and data measurement during the 13-month test period. The results showed that the simple green roof with a substrate thickness of 30, 50 and 70 mm could retain 27.2%, 30.9% and 32.1% of precipitation and reduce the average peak value by 18.9%, 26.2% and 27.7%, respectively. Given an urban built-up area of 1035.01 km 2 in Guangzhou and a roof area percentage of approximately 37.3% and assuming the green roofs with 30 mm-thick substrate were applied within the area, the light, medium and heavy rain could be delayed at 72.8%, 22.6% and 17.4%, respectively. Accordingly, the rainwater retained could reach up to 14317×10 4 m 3 . It suggested the great potential of the simple green roof in retaining rainwater. The research could serve as reference for the hot and humid climate zone to alleviate water logging and visualize sponge city construction.

  2. Post-exercise cooling techniques in hot, humid conditions.

    Science.gov (United States)

    Barwood, Martin James; Davey, Sarah; House, James R; Tipton, Michael J

    2009-11-01

    Major sporting events are often held in hot and humid environmental conditions. Cooling techniques have been used to reduce the risk of heat illness following exercise. This study compared the efficacy of five cooling techniques, hand immersion (HI), whole body fanning (WBF), an air cooled garment (ACG), a liquid cooled garment (LCG) and a phase change garment (PCG), against a natural cooling control condition (CON) over two periods between and following exercise bouts in 31 degrees C, 70%RH air. Nine males [age 22 (3) years; height 1.80 (0.04) m; mass 69.80 (7.10) kg] exercised on a treadmill at a maximal sustainable work intensity until rectal temperature (T (re)) reached 38.5 degrees C following which they underwent a resting recovery (0-15 min; COOL 1). They then recommenced exercise until T (re) again reached 38.5 degrees C and then undertook 30 min of cooling with (0-15 min; COOL 2A), and without face fanning (15-30 min; COOL 2B). Based on mean body temperature changes (COOL 1), WBF was most effective in extracting heat: CON 99 W; WBF: 235 W; PCG: 141 W; HI: 162 W; ACG: 101 W; LCG: 49 W) as a consequence of evaporating more sweat. Therefore, WBF represents a cheap and practical means of post-exercise cooling in hot, humid conditions in a sporting setting.

  3. Comparative analysis of the heat transfer rates in constant (CAV) and variable (VAV) volumes type multi zone acclimation system operating in hot and humid climate; Analise comparativa das taxas transferencia de calor em sistemas de climatizacao do tipo volume de ar constante (CAV) e volume de ar variavel (VAV) multizona operando em clima quente e umido

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Cesar A.G.; Correa, Jorge E. [Para Univ., Belem (Brazil). Centro Tecnologico. Dept. de Engenharia Mecanica]. E-mails: gsantos@ufpa.br; jecorrea@amazon.com.br

    2000-07-01

    This work performs a comparative analysis among the constant and variable air volume multi zones acclimation systems, used for provide the thermal comfort in buildings. The work used the simulation HVAC2KIT computer program. The results of sensible and latent heats transfer rates on the cooling and dehumidification, inflating fan capacity, and heat transfer on the final heating condenser were obtained and analysed for the climate conditions of the Brazilian city of Belem from Para State, presenting hot and humid climate during all the year.

  4. Absolute humidity and the human nose: A reanalysis of climate zones and their influence on nasal form and function.

    Science.gov (United States)

    Maddux, Scott D; Yokley, Todd R; Svoma, Bohumil M; Franciscus, Robert G

    2016-10-01

    Investigations into the selective role of climate on human nasal variation commonly divide climates into four broad adaptive zones (hot-dry, hot-wet, cold-dry, and cold-wet) based on temperature and relative humidity. Yet, absolute humidity-not relative humidity-is physiologically more important during respiration. Here, we investigate the global distribution of absolute humidity to better clarify ecogeographic demands on nasal physiology. We use monthly observations from the Climatic Research Unit Timeseries 3 (CRU TS3) database to construct global maps of average annual temperature, relative humidity and absolute humidity. Further, using data collected by Thomson and Buxton (1923) for over 15,000 globally-distributed individuals, we calculate the actual amount of heat and water that must be transferred to inspired air in different climatic regimes to maintain homeostasis, and investigate the influence of these factors on the nasal index. Our results show that absolute humidity, like temperature, generally decreases with latitude. Furthermore, our results demonstrate that environments typically characterized as "cold-wet" actually exhibit low absolute humidities, with values virtually identical to cold-dry environments and significantly lower than hot-wet and even hot-dry environments. Our results also indicate that strong associations between the nasal index and absolute humidity are, potentially erroneously, predicated on individuals from hot-dry environments possessing intermediate (mesorrhine) nasal indices. We suggest that differentially allocating populations to cold-dry or cold-wet climates is unlikely to reflect different selective pressures on respiratory physiology and nasal morphology-it is cold-dry, and to a lesser degree hot-dry environments, that stress respiratory function. Our study also supports assertions that demands for inspiratory modification are reduced in hot-wet environments, and that expiratory heat elimination for thermoregulation is a

  5. Diurnal Thermal Behavior of Pavements, Vegetation, and Water Pond in a Hot-Humid City

    Directory of Open Access Journals (Sweden)

    Xiaoshan Yang

    2015-12-01

    Full Text Available This study investigated the diurnal thermal behavior of several urban surfaces and landscape components, including pavements, vegetation, and a water pond. The field experiment was conducted in a university campus of Guangzhou, South China, which is characterized by a hot and humid summer. The temperature of ground surface and grass leaves and the air temperature and humidity from 0.1 to 1.5 m heights were measured for a period of 24 h under hot summer conditions. The results showed that the concrete and granite slab pavements elevated the temperature of the air above them throughout the day. In contrast, the trees and the pond lowered the air temperature near ground during the daytime but produced a slight warming effect during the nighttime. The influence of vegetation on air temperature and humidity is affected by the configurations of greenery. Compared to the open lawn, the grass shaded by trees was more effective in cooling and the mixture of shrub and grass created a stronger cooling effect during the nighttime. The knowledge of thermal behavior of various urban surfaces and landscape components is an important tool for planners and designers. If utilized properly, it can lead to climatic rehabilitation in urban areas and an improvement of the outdoor thermal environment.

  6. Development of Smart Ventilation Control Algorithms for Humidity Control in High-Performance Homes in Humid U.S. Climates

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ticci, Sara [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    , Orlando, Houston, Charleston, Memphis and Baltimore). The control options were compared to a baseline system that supplies outdoor air to a central forced air cooling (and heating) system (CFIS) that is often used in hot humid climates. Simulations were performed with CFIS ventilation systems operating on a 33% duty-cycle, consistent with 62.2-2013. The CFIS outside airflow rates were set to 0%, 50% and 100% of 62.2-2013 requirements to explore effects of ventilation rate on indoor high humidity. These simulations were performed with and without a dehumidifier in the model. Ten control algorithms were developed and tested. Analysis of outdoor humidity patterns facilitated smart control development. It was found that outdoor humidity varies most strongly seasonally—by month of the year—and that all locations follow the similar pattern of much higher humidity during summer. Daily and hourly variations in outdoor humidity were found to be progressively smaller than the monthly seasonal variation. Patterns in hourly humidity are driven by diurnal daily patterns, so they were predictable but small, and were unlikely to provide much control benefit. Variation in outdoor humidity between days was larger, but unpredictable, except by much more complex climate models. We determined that no-sensor strategies might be able to take advantage of seasonal patterns in humidity, but that real-time smart controls were required to capture variation between days. Sensor-based approaches are also required to respond dynamically to indoor conditions and variations not considered in our analysis. All smart controls face trade-offs between sensor accuracy, cost, complexity and robustness.

  7. Radon prevention coating in hot and humid environment

    International Nuclear Information System (INIS)

    Yang Yushan; Dong Faqin; Deng Yuequan; Qu Ruixue

    2013-01-01

    The radon prevention performance of a new self-made radon prevention coating was researched in the radon contamination provided by the releasing radon modules. With coating thickness of 0.8 mm, the radon mitigation efficiency in 1 # radon module concentration is optimal when the addition of defoaming agent is 0.3% (mass fraction). The radon mitigation efficiency increases with the coating thickness when the defoaming agent of 0.3% is added, but the radon mitigation efficiency tends to be stable as the coating thickness is more than 2.0 mm. The radon mitigation efficiency of radon prevention coating appended precipitated barium sulphate decreases obviously, and the addition of ash calcium, white cement and gesso don't decrease radon mitigation efficiency. The addition of white cement and gesso addition affects the radon prevention stability, while radon mitigation efficiency of radon prevention coating with ash calcium keeps a good performance. Under the hot and humid environment, the radon prevention coating still has good radon mitigation efficiency in 2 # radon module concentration. (authors)

  8. Low-cost personal cooling in hot humid offices. Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsen, L [Danish Building Research Inst., (Denmark); Santos, A [Univ. of the Philippines, Diliman (Philippines)

    1997-05-01

    A solution, based on low-cost solar-powered air drying, to heat stress in buildings located in developing countries with a hot and humid climate is presented. The air-drying facilities are described and a validation of the ensuing benefits through comprehensive human exposure studies is given. A prototype of a solar powered supply system for dried air was constructed and supply air was led to six personal units for ventilation and cooling placed in cubicles simulating office workplaces. 123 heat-acclimatized people were exposed for one hour in each of the cubicles. It is concluded that drying indoor air reduces heat stress among heat-adapted people in hot and humid offices and that the low-cost solar powered air drying system functioned satisfactorily , although some improvements are recommended. The drying power of the sun can be stored in recovered silica gel beads and used for other purposes. It is suggested that further research could explore the possibility of desiccant drying of agricultural products during the rainy season. (ARW) 30 refs.

  9. Effects of acute supplementation of Panax ginseng on endurance running in a hot & humid environment

    Science.gov (United States)

    Ping, Fadzel Wong Chee; Keong, Chen Chee; Bandyopadhyay, Amit

    2011-01-01

    Background & objectives: Athletes in Malaysia need to perform in a hot and humid environment due to the climatic nature of the country. c0 hronic supplementation of Panax ginseng (PG) (a deciduous perennial plant belonging to the Araliaceae family) enhances physical performance. As the ergogenic effect of acute supplementation of PG on endurance performance has not been explored in the Malaysian population especially in a hot and humid condition this study was taken up. Methods: Nine heat adapted recreational runners (age : 25.4 ± 6.9 yr, body mass : 57.6 ± 8.4 kg; body height : 168.3 ± 7.6 cm) were recruited in this placebo-controlled double-blind randomized study. Subjects ingested 200 mg of PG one hour before the exercise test on treadmill at 70 per cent of their VO2max in a laboratory environment of 31 °C and 70 per cent relative humidity. They drank 3 ml/kg body weight of cool water every 20 min during the exercise to prevent adverse effects of dehydration. Blood samples were drawn every 20 min for the analysis of glucose, lactate, insulin and free fatty acids. Oxygen uptake was determined every 20 min while heart rate, body and skin temperatures, and ratings of perceived exertion (RPE) were recorded every 10 min during the trials. Results: Endurance running time to exhaustion did not differ between PG and placebo trials. Heart rate, skin temperature, core body temperature, oxygen uptake, RPE, plasma insulin, glucose, free fatty acid and lactate levels during the endurance exercise did not show any significant differences between the trials. Interpretation & conclusions: We conclude that acute supplementation of 200 mg of PG did not affect the endurance running performance of the heat-adapted male recreational runners in the heat. PMID:21321426

  10. Improved running performance in hot humid conditions following whole body precooling.

    Science.gov (United States)

    Booth, J; Marino, F; Ward, J J

    1997-07-01

    On two separate occasions, eight subjects controlled speed to run the greatest distance possible in 30 min in a hot, humid environment (ambient temperature 32 degrees C, relative humidity 60%). For the experimental test (precooling), exercise was preceeded by cold-water immersion. Precooling increased the distance run by 304 +/- 166 m (P body temperature decreased from 36.5 +/- 0.1 degrees C to 33.8 +/- 0.2 degrees C following precooling (P body sweating are not different between tests. In conclusion, water immersion precooling increased exercise endurance in hot, humid conditions with an enhanced rate of heat storage and decreased thermoregulatory strain.

  11. Heat strain evaluation of overt and covert body armour in a hot and humid environment.

    Science.gov (United States)

    Pyke, Andrew J; Costello, Joseph T; Stewart, Ian B

    2015-03-01

    The aim of this study was to elucidate the thermophysiological effects of wearing lightweight non-military overt and covert personal body armour (PBA) in a hot and humid environment. Eight healthy males walked on a treadmill for 120 min at 22% of their heart rate reserve in a climate chamber simulating 31 °C (60%RH) wearing either no armour (control), overt or covert PBA in addition to a security guard uniform, in a randomised controlled crossover design. No significant difference between conditions at the end of each trial was observed in core temperature, heart rate or skin temperature (P > 0.05). Covert PBA produced a significantly greater amount of body mass change (-1.81 ± 0.44%) compared to control (-1.07 ± 0.38%, P = 0.009) and overt conditions (-1.27 ± 0.44%, P = 0.025). Although a greater change in body mass was observed after the covert PBA trial; based on the physiological outcome measures recorded, the heat strain encountered while wearing lightweight, non-military overt or covert PBA was negligible compared to no PBA. The wearing of bullet proof vests or body armour is a requirement of personnel engaged in a wide range of occupations including police, security, customs and even journalists in theatres of war. This randomised controlled crossover study is the first to examine the thermophysiological effects of wearing lightweight non-military overt and covert personal body armour (PBA) in a hot and humid environment. We conclude that the heat strain encountered while wearing both overt and covert lightweight, non-military PBA was negligible compared to no PBA. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Cropping Systems and Climate Change in Humid Subtropical Environments

    Directory of Open Access Journals (Sweden)

    Ixchel M. Hernandez-Ochoa

    2018-02-01

    Full Text Available In the future, climate change will challenge food security by threatening crop production. Humid subtropical regions play an important role in global food security, with crop rotations often including wheat (winter crop and soybean and maize (summer crops. Over the last 30 years, the humid subtropics in the Northern Hemisphere have experienced a stronger warming trend than in the Southern Hemisphere, and the trend is projected to continue throughout the mid- and end of century. Past rainfall trends range, from increases up to 4% per decade in Southeast China to −3% decadal decline in East Australia; a similar trend is projected in the future. Climate change impact studies suggest that by the middle and end of the century, wheat yields may not change, or they will increase up to 17%. Soybean yields will increase between 3% and 41%, while maize yields will increase by 30% or decline by −40%. These wide-ranging climate change impacts are partly due to the region-specific projections, but also due to different global climate models, climate change scenarios, single-model uncertainties, and cropping system assumptions, making it difficult to make conclusions from these impact studies and develop adaptation strategies. Additionally, most of the crop models used in these studies do not include major common stresses in this environment, such as heat, frost, excess water, pests, and diseases. Standard protocols and impact assessments across the humid subtropical regions are needed to understand climate change impacts and prepare for adaptation strategies.

  13. Impacts of Present and Future Climate Variability On Agriculture and Forestry in the Humid and Sub-Humid Tropics

    International Nuclear Information System (INIS)

    Zhao, Y.; Wang, C.; Wang, S.; Tibig, Lourdes V.

    2005-01-01

    Although there are different results from different studies, most assessments indicate that climate variability would have negative effects on agriculture and forestry in the humid and sub-humid tropics. Cereal crop yields would decrease generally with even minimal increases in temperature. For commercial crops, extreme events such as cyclones, droughts and floods lead to larger damages than only changes of mean climate. Impacts of climate variability on livestock mainly include two aspects; impacts on animals such as increase of heat and disease stress-related death, and impacts on pasture. As to forestry, climate variability would have negative as well as some positive impacts on forests of humid and sub-humid tropics. However, in most tropical regions, the impacts of human activities such as deforestation will be more important than climate variability and climate change in determining natural forest cover

  14. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review

    Science.gov (United States)

    Fournel, Sébastien; Ouellet, Véronique; Charbonneau, Édith

    2017-01-01

    Simple Summary The severity of heat stress issues on dairy cows will increase as global warming progresses. Fortunately, major advances in environmental management, including fans, misters, sprinklers, and cooled waterbeds, can attenuate the effects of thermal stress on cow health, production, and reproduction. These cooling systems were, however, tested in subtropical areas and their efficiency in northern regions is uncertain. This article assesses the potential of existing technologies to cool cows in humid continental climates through calculation of heat stress indices. Abstract Heat stress negatively affects the health and performance of dairy cows, resulting in considerable economic losses for the industry. In future years, climate change will exacerbate these losses by making the climate warmer. Physical modification of the environment is considered to be the primary means of reducing adverse effects of hot weather conditions. At present, to reduce stressful heat exposure and to cool cows, dairy farms rely on shade screens and various forms of forced convection and evaporative cooling that may include fans and misters, feed-line sprinklers, and tunnel- or cross-ventilated buildings. However, these systems have been mainly tested in subtropical areas and thus their efficiency in humid continental climates, such as in the province of Québec, Canada, is unclear. Therefore, this study reviewed the available cooling applications and assessed their potential for northern regions. Thermal stress indices such as the temperature-humidity index (THI) were used to evaluate the different cooling strategies. PMID:28468329

  15. Thermal Effectiveness of Wall Indoor Fountain in Warm Humid Climate

    Science.gov (United States)

    Seputra, J. A. P.

    2018-03-01

    Nowadays, many buildings wield indoor water features such as waterfalls, fountains, and water curtains to improve their aesthetical value. Despite the provision of air cooling due to water evaporation, this feature also has adverse effect if applied in warm humid climate since evaporation might increase air humidity beyond the comfort level. Yet, there are no specific researches intended to measure water feature’s effect upon its thermal condition. In response, this research examines the influence of evaporative cooling on indoor wall fountain toward occupant’s thermal comfort in warm humid climate. To achieve this goal, case study is established in Waroeng Steak Restaurant’s dining room in Surakarta-Indonesia. In addition, SNI 03-6572-2001 with comfort range of 20.5–27.1°C and 40-60% of relative humidity is utilized as thermal criterion. Furthermore, Computational Fluid Dynamics (CFD) is employed to process the data and derive conclusions. Research variables are; feature’s height, obstructions, and fan types. As results, Two Bumps Model (ToB) is appropriate when employs natural ventilation. However, if the room is mechanically ventilated, Three Bumps Model (TeB) becomes the best choice. Moreover, application of adaptive ventilation is required to maintain thermal balance.

  16. Hygroscopical behaviour of basic electrodes in a tropical humid climate

    International Nuclear Information System (INIS)

    Valencia, E.; Galeano, N.J.

    1993-01-01

    The study of the wetting kynetics of basic electrodes in a tropical humid climate is very important since the water contained in them is the main source for the atomic hydrogen absorbed by the fused metal during electric arc welding. It is also the origin of multiple defects in the added metal. A calculating method is established for evaluating the kynetics of wetness incorporation to the coating of basic electrodes exposed to a humid tropical climate. The method is based on the Fick's diffusion equation for both adequate system geometry and boundary conditions, which allows the evaluation of the effective diffusion coefficient and critical times of exposure to the different environments, along with the packing and storage conditions of electrodes. (Author)

  17. Investigation of Comfort Temperature and Occupant Behavior in Japanese Houses during the Hot and Humid Season

    Directory of Open Access Journals (Sweden)

    Hom B. Rijal

    2014-08-01

    Full Text Available In order to clarify the comfort temperature and to investigate the behavioral adaptation in Japanese houses, we have conducted a thermal comfort survey and occupant behavior survey in 30 living rooms during the hot and humid season in the Kanto region of Japan. We collected 3991 votes from 52 subjects. The comfort temperature was predicted by Griffiths’ method. They are analyzed according to humidity levels and compared with the adaptive model. The logistic regression analysis was conducted in order to understand occupant behavior. The mean comfort temperature in naturally ventilated mode is 27.6 °C which is within the acceptable zone of the adaptive model. The comfort temperature is related with skin moisture sensation. The results showed that the residents adapt to the hot and humid environments by increasing the air movement using behavioral adaptation such as window opening and fan use.

  18. The potential of a modified physiologically equivalent temperature (mPET) based on local thermal comfort perception in hot and humid regions

    Science.gov (United States)

    Lin, Tzu-Ping; Yang, Shing-Ru; Chen, Yung-Chang; Matzarakis, Andreas

    2018-02-01

    Physiologically equivalent temperature (PET) is a thermal index that is widely used in the field of human biometeorology and urban bioclimate. However, it has several limitations, including its poor ability to predict thermo-physiological parameters and its weak response to both clothing insulation and humid conditions. A modified PET (mPET) was therefore developed to address these shortcomings. To determine whether the application of mPET in hot-humid regions is more appropriate than the PET, an analysis of a thermal comfort survey database, containing 2071 questionnaires collected from participants in hot-humid Taiwan, was conducted. The results indicate that the thermal comfort range is similar (26-30 °C) when the mPET and PET are applied as thermal indices to the database. The sensitivity test for vapor pressure and clothing insulation also show that the mPET responds well to the behavior and perceptions of local people in a subtropical climate.

  19. Evaluation of the ENVI-Met Vegetation Model of Four Common Tree Species in a Subtropical Hot-Humid Area

    Directory of Open Access Journals (Sweden)

    Zhixin Liu

    2018-05-01

    Full Text Available Urban trees can significantly improve the outdoor thermal environment, especially in subtropical zones. However, due to the lack of fundamental evaluations of numerical simulation models, design and modification strategies for optimizing the thermal environment in subtropical hot-humid climate zones cannot be proposed accurately. To resolve this issue, this study investigated the physiological parameters (leaf surface temperature and vapor flux and thermal effects (solar radiation, air temperature, and humidity of four common tree species (Michelia alba, Mangifera indica, Ficus microcarpa, and Bauhinia blakeana in both spring and summer in Guangzhou, China. A comprehensive comparison of the observed and modeled data from ENVI-met (v4.2 Science, a three-dimensional microclimate model was performed. The results show that the most fundamental weakness of ENVI-met is the limitation of input solar radiation, which cannot be input hourly in the current version and may impact the thermal environment in simulation. For the tree model, the discrepancy between modeled and observed microclimate parameters was acceptable. However, for the physiological parameters, ENVI-met tended to overestimate the leaf surface temperature and underestimate the vapor flux, especially at midday in summer. The simplified calculation of the tree model may be one of the main reasons. Furthermore, the thermal effect of trees, meaning the differences between nearby treeless sites and shaded areas, were all underestimated in ENVI-met for each microclimate variable. This study shows that the tree model is suitable in subtropical hot-humid climates, but also needs some improvement.

  20. Migration of heavy natural radionuclides in a humid climatic zone

    International Nuclear Information System (INIS)

    Titaeva, N.A.; Alexakhin, R.M.; Taskaev, A.I.; Maslov, V.I.

    1980-01-01

    Regularities and biochemical peculiarities of the migrations of heavy natural radionuclides in the environment are examined, with special reference to two regions in a humid climatic zone representing natural patterns of radionuclide distribution and to four plots artificially contaminated with high levels of natural radioactivity more than 20 years previously. It was determined that the migration of thorium, uranium, and radium isotopes through the rock-water-soil-plant system is dependent on many physiochemical properties of these radionuclides, their compounds, and the local environment. Isotopic activity ratios provide a useful tool for studying the direction of radionuclide migration and its influence on observed distribution patterns

  1. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    Energy Technology Data Exchange (ETDEWEB)

    Kerrigan, P. [Building Science Corporation, Somerville, MA (United States)

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  2. Effect of hot-humid exposure on static strength of adhesive-bonded aluminum alloys

    Directory of Open Access Journals (Sweden)

    Rui Zheng

    2015-09-01

    Full Text Available The effect of hot-humid exposure (i.e., 40 °C and 98% R.H. on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.

  3. Precooling leg muscle improves intermittent sprint exercise performance in hot, humid conditions.

    Science.gov (United States)

    Castle, Paul C; Macdonald, Adam L; Philp, Andrew; Webborn, Anthony; Watt, Peter W; Maxwell, Neil S

    2006-04-01

    We used three techniques of precooling to test the hypothesis that heat strain would be alleviated, muscle temperature (Tmu) would be reduced, and as a result there would be delayed decrements in peak power output (PPO) during exercise in hot, humid conditions. Twelve male team-sport players completed four cycling intermittent sprint protocols (CISP). Each CISP consisted of twenty 2-min periods, each including 10 s of passive rest, 5 s of maximal sprint against a resistance of 7.5% body mass, and 105 s of active recovery. The CISP, preceded by 20 min of no cooling (Control), precooling via an ice vest (Vest), cold water immersion (Water), and ice packs covering the upper legs (Packs), was performed in hot, humid conditions (mean +/- SE; 33.7 +/- 0.3 degrees C, 51.6 +/- 2.2% relative humidity) in a randomized order. The rate of heat strain increase during the CISP was faster in Control than Water and Packs (P body or whole body cooling.

  4. Mouth rinsing improves cycling endurance performance during Ramadan fasting in a hot humid environment.

    Science.gov (United States)

    Che Muhamed, Ahmad Munir; Mohamed, Nazirah Gulam; Ismail, Norjana; Aziz, Abdul Rashid; Singh, Rabindarjeet

    2014-04-01

    This study examined the effect of mouth rinsing during endurance cycling in a hot humid environment (32 °C and 75% relative humidity) on athletes in the Ramadan fasted state. Nine trained adolescent male cyclists completed 3 trials that consisted of a carbohydrate mouth-rinse (CMR), a placebo mouth-rinse (PMR), and a no-rinse (NOR) trial during the last 2 weeks of Ramadan. Each trial consisted of a preloading cycle at 65% peak rate of oxygen consumption for 30 min followed by a 10-km time trial (TT10 km) under hot humid condition. During the CMR and PMR trials, each cyclist rinsed his mouth with 25 mL of the solution for 5 s before expectorating the solution pre-exercise, after 5, 15, and 25 min of the preloading cycle, and 15 s prior to the start of TT10 km. Time to complete the TT10 km was significantly faster in the CMR and PMR trials compared with the NOR trial (12.9 ± 1.7 and 12.6 ± 1.7 vs. 16.8 ± 1.6 min, respectively; p benefits compared with a no-rinse condition on TT10 km performance in acute Ramadan fasted subjects during endurance cycling in a heat stress environment.

  5. Comparison of techniques for the measurement of skin temperature during exercise in a hot, humid environment

    Directory of Open Access Journals (Sweden)

    Brian K McFarlin

    2014-10-01

    Full Text Available Exercising or working in a hot, humid environment can results in the onset of heat-related illness when an individual’s temperature is not carefully monitored. The purpose of the present study was to compare three techniques (data loggers, thermal imaging, and wired electrodes for the measurement of peripheral (bicep and central (abdominal skin temperature. Young men and women (N=30 were recruited to complete the present study. The three skin temperature measurements were made at 0 and every 10-min during 40-min (60% VO 2 max of cycling in a hot (39±2°C, humid (45±5% RH environment. Data was statistically analyzed using the Bland-Altman method and correlation analysis. For abdominal skin temperature, the Bland-Altman limits of agreement indicated that data loggers (1.5 were a better index of wired than was thermal imaging (3.5, For the bicep skin temperature the limits of agreement was similar between data loggers (1.9 and thermal (1.9, suggesting the both were suitable measurements. We also found that when skin temperature exceeded 35ºC, we observed progressively better prediction between data loggers, thermal imaging, and wired skin sensors. This report describes the potential for the use of data loggers and thermal imaging to be used as alternative measures of skin temperature in exercising, human subjects

  6. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    Energy Technology Data Exchange (ETDEWEB)

    Kerrigan, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  7. Responses of broiler chickens under hot humid tropical climate as ...

    African Journals Online (AJOL)

    NLP) on the growth, haematology and serum biochemistry parameters of broiler chicks. Two hundred and forty day-old broiler chicks were randomly assigned to four treatments which contained 0, 5, 10 and 15g/Kg diets in a Completely ...

  8. Performance Evaluation of a Hot-Humid Climate Community

    Energy Technology Data Exchange (ETDEWEB)

    Osser, R. [Building Science Corporation, Somerville, MA (United States); Kerrigan, P. [Building Science Corporation, Somerville, MA (United States)

    2012-02-01

    This report describes the Project Home Again community in New Orleans, a new development for high-performance, affordable homes for residents who lost their homes to Hurricane Katrina. Building Science Corporation acted as a consultant for the project, advocating design strategies for durability, flood resistance, occupant comfort, and low energy use while maintaining cost effectiveness.

  9. Urban heat island and bioclimatological conditions in a hot-humid tropical city: the example of Akure, Nigeria

    Directory of Open Access Journals (Sweden)

    Balogun, Ifeoluwa A.

    2014-09-01

    Full Text Available The impact of weather on human health has become an issue of increased significance in recent times, considering the increasing rate of urbanisation and the much associated heat island phenomenon. This study examines the urbanisation influence on human bioclimatic conditions in Akure, a medium sized hot-humid tropical city in Nigeria, utilising data from measurements at urban and rural sites in the city. Differences in the diurnal, monthly and seasonal variation of human bioclimatic characteristics between both environments were evaluated and tested for statistical significance. Higher frequencies of high temperatures observed in the city centre suggest a significant heat stress and health risk in this hot-humid city.

  10. Climate risk assessment in museums : degradation risks determined from temperature and relative humidity data

    NARCIS (Netherlands)

    Martens, M.H.J.

    2012-01-01

    The main subject of this thesis is the determination of climate risks to objects in museums on the basis of measured and/or simulated temperature and relative humidity data. The focus is on the quantification of climate related risks for the preservation quality of indoor climate in Dutch museums.

  11. Decoupling dehumidification and cooling for energy saving and desirable space air conditions in hot and humid Hong Kong

    International Nuclear Information System (INIS)

    Lee, W.L.; Chen Hua; Leung, Y.C.; Zhang, Y.

    2012-01-01

    Highlights: ► The combined use of dedicated ventilation and dry cooling (DCDV) system was investigated. ► Investigations were based actual equipment performance data and realistic building and system characteristics. ► DCDV system could save 54% of the annual energy use for air-conditioning. ► DCDV system could better achieve the desired space air conditions. ► DCDV system could decouple dehumidification and cooling. - Abstract: The combined use of dedicated outdoor air ventilation (DV) and dry cooling (DC) air-conditioning system to decouple sensible and latent cooling for desirable space air conditions, better indoor air quality, and energy efficiency is proposed for hot and humid climates like Hong Kong. In this study, the performance and energy saving potential of DCDV system in comparison to conventional systems (constant air volume (CAV) system with and without reheat) for air conditioning of a typical office building in Hong Kong are evaluated. Through hour-by-hour simulations, using actual equipment performance data and realistic building and system characteristics, the cooling load profile, resultant indoor air conditions, condensation at the DC coil, and energy consumptions are calculated and analyzed. The results indicate that with the use of DCDV system, the desirable indoor conditions could be achieved and the annual energy use could be reduced by 54% over CAV system with reheat. The condensate-free characteristic at the DC coil to reduce risk of catching disease could also be realized.

  12. The development of anti-heat stress clothing for construction workers in hot and humid weather.

    Science.gov (United States)

    Chan, Albert P C; Guo, Y P; Wong, Francis K W; Li, Y; Sun, S; Han, X

    2016-04-01

    The purpose of this study was to develop anti-heat stress clothing for construction workers in hot and humid weather. Following DeJonge's functional clothing design process, the design situation was explored, including clothing fabric heat/moisture transporting properties and UV protection and the aspects of clothing ergonomic design (mobility, convenience, and safety). The problem structure was derived from the results of the surveys in three local construction sites, which agreed well with the task requirements and observations. Specifications were consequently described and 30 commercially available fabrics were identified and tested. Fabric testing data and design considerations were inputted in S-smart system to predict the thermal functional performance of the clothing. A new uniform prototype was developed and evaluated. The results of all measurements suggest that the new uniform which incorporated fabrics with superior heat/moisture transporting properties and loose-fitting design could reduce the workers' heat stress and improve their comfort and work performance. Practitioner Summary: The construction workers' uniform currently used in Hong Kong during summer was unsatisfactory. Following DeJonge's functional clothing design process, an anti-heat stress uniform was developed by testing 30 fabrics and predicting clothing thermal functional performance using S-smart system. The new uniform could reduce the workers' heat stress and improve their comfort and work performance.

  13. Study on simulation methods of atrium building cooling load in hot and humid regions

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yiqun; Li, Yuming; Huang, Zhizhong [Institute of Building Performance and Technology, Sino-German College of Applied Sciences, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Wu, Gang [Weldtech Technology (Shanghai) Co. Ltd. (China)

    2010-10-15

    In recent years, highly glazed atria are popular because of their architectural aesthetics and advantage of introducing daylight into inside. However, cooling load estimation of such atrium buildings is difficult due to complex thermal phenomena that occur in the atrium space. The study aims to find out a simplified method of estimating cooling loads through simulations for various types of atria in hot and humid regions. Atrium buildings are divided into different types. For every type of atrium buildings, both CFD and energy models are developed. A standard method versus the simplified one is proposed to simulate cooling load of atria in EnergyPlus based on different room air temperature patterns as a result from CFD simulation. It incorporates CFD results as input into non-dimensional height room air models in EnergyPlus, and the simulation results are defined as a baseline model in order to compare with the results from the simplified method for every category of atrium buildings. In order to further validate the simplified method an actual atrium office building is tested on site in a typical summer day and measured results are compared with simulation results using the simplified methods. Finally, appropriate methods of simulating different types of atrium buildings are proposed. (author)

  14. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  15. Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates

    International Nuclear Information System (INIS)

    Xu, J.; Li, Y.; Wang, R.Z.; Liu, W.; Zhou, P.

    2015-01-01

    Highlights: • Experimental performance of evaporative cooling in humid climate is investigated. • 5 working modes are studied in the greenhouse. • Vertical and horizontal temperature and relative humidity variations are analysed. • Indoor temperature can be kept in required level by proper working modes. - Abstract: To solve the overheating problem caused by the solar radiation and to keep the indoor temperature and humidity at a proper level for plants or crops, cooling technologies play vital role in greenhouse industry, and among which evaporative cooling is one of the most commonly-used methods. However, the main challenge of the evaporative cooling is its suitability to local climatic and agronomic condition. In this study, the performance of evaporative cooling pads was investigated experimentally in a 2304-m 2 glass multi-span greenhouse in Shanghai in the southeast of China. Temperature and humidity distributions were measured and reported for different working modes, including the use of evaporative cooling alone and the use of evaporative cooling with shading or ventilation. These experiments were conducted in humid subtropical climates where were considered unfavourable for evaporative cooling pad systems. Quantified analyses from the energy perspective are also made based on the experimental results and the evaporative cooling fan–pad system is demonstrated to be an effective option for greenhouse cooling even in the humid climate. Suggestions and possible solutions for further improving the performance of the system are proposed. The results of this work will be useful for the optimisation of the energy management of greenhouses in humid climates and for the validation of the mathematical model in future work

  16. Indoor climate and moisture durability performances of houses with unvented attic roof constructions in a mixed-humid climate.

    Energy Technology Data Exchange (ETDEWEB)

    Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boudreaux, Philip R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-10-01

    A sealed or unvented attic is an energy-efficient envelope component that can reduce the amount of energy a house consumes for space conditioning if the air handler and/or ducts are located in the attic. The attic is typically sealed by using spray foam on the underside of the roof deck and covering the soffit, ridge and gable vents to minimize air leakage from the attic to the outside. This approach can save up to 10% in space-conditioning energy when ducts are located in the attic (DOE 2013). Past research done by ORNL and Florida Solar Energy Center suggests that in more hot, humid climates, an unvented attic could potentially create a more humid, uncomfortable living environment than a vented attic (Colon 2011, Boudreaux, Pallin et al. 2013). Research showed that controlling the higher indoor humidity could reduce the energy savings from the sealed, unvented attic, which in turn would decrease the energy savings payback. Research also showed that the roof assembly (5.5 inches of open-cell foam, 1inch of closed-cell foam, OSB, felt paper, and asphalt shingles) stored moisture, thus acting as a moisture buffer. During the fall and winter, the roof assembly stored moisture and during the spring and summer it released moisture. This phenomenon is not seen in a vented attic, in which the air exchange rate to the outside is greater and, in the winter, helps to dehumidify the attic air. It was also seen that in a vented attic, the direction of water vapor diffusion is on average from the attic to the interior of the house. Air leakage from the attic to the interior also occurs during more of the year in a house with an unvented attic than in one with a vented attic. These discoveries show that the moisture dynamics in a house with an unvented attic are much different from those in a house with a vented attic. This study reports on a series of computer model investigations completed to determine the key variables impacting indoor comfort and the durability of roof

  17. Outdoor thermal comfort characteristics in the hot and humid region from a gender perspective.

    Science.gov (United States)

    Tung, Chien-Hung; Chen, Chen-Peng; Tsai, Kang-Ting; Kántor, Noémi; Hwang, Ruey-Lung; Matzarakis, Andreas; Lin, Tzu-Ping

    2014-11-01

    Thermal comfort is a subjective psychological perception of people based also on physiological thermoregulation mechanisms when the human body is exposed to a combination of various environmental factors including air temperature, air humidity, wind speed, and radiation conditions. Due to the importance of gender in the issue of outdoor thermal comfort, this study compared and examined the thermal comfort-related differences between male and female subjects using previous data from Taiwanese questionnaire survey. Compared with males, the results indicated that females in Taiwan are less tolerant to hot conditions and intensely protect themselves from sun exposure. Our analytical results are inconsistent with the findings of previous physiological studies concerning thermal comfort indicating that females have superior thermal physiological tolerance than males. On the contrary, our findings can be interpreted on psychological level. Environmental behavioral learning theory was adopted in this study to elucidate this observed contradiction between the autonomic thermal physiological and psychological-behavioral aspects. Women might desire for a light skin tone through social learning processes, such as observation and education, which is subsequently reflected in their psychological perceptions (fears of heat and sun exposure) and behavioral adjustments (carrying umbrellas or searching for shade). Hence, these unique psychological and behavioral phenomena cannot be directly explained by autonomic physiological thermoregulation mechanisms. The findings of this study serve as a reference for designing spaces that accommodates gender-specific thermal comfort characteristics. Recommendations include providing additional suitable sheltered areas in open areas, such as city squares and parks, to satisfy the thermal comfort needs of females.

  18. Geographical distribution of hot flash frequencies: considering climatic influences.

    Science.gov (United States)

    Sievert, Lynnette Leidy; Flanagan, Erin K

    2005-10-01

    Laboratory studies suggest that hot flashes are triggered by small elevations in core body temperature acting within a reduced thermoneutral zone, i.e., the temperature range in which a woman neither shivers nor sweats. In the present study, it was hypothesized that women in different populations develop climate-specific thermoneutral zones, and ultimately, population-specific frequencies of hot flashes at menopause. Correlations were predicted between hot flash frequencies and latitude, elevation, and annual temperatures. Data on hot flash frequencies were drawn from 54 studies. Pearson correlation analyses and simple linear regressions were applied, first using all studies, and second using a subset of studies that included participants only to age 60 (n = 36). Regressions were repeated with all studies, controlling for method of hot flash assessment. When analyses were restricted to studies that included women up to age 60, average temperature of the coldest month was a significant predictor of hot flash frequency (P hottest and coldest temperatures was also a significant predictor (P coldest month, difference between hottest and coldest temperatures, and mean annual temperature were significant predictors of hot flash frequency. Women reported fewer hot flashes in warmer temperatures, and more hot flashes with increasing seasonality. These results suggest that acclimatization to coldest temperatures or sensitivity to seasonality may explain part of the population variation in hot flash frequency.

  19. Thermal Adaptation Methods of Urban Plaza Users in Asia's Hot-Humid Regions: A Taiwan Case Study.

    Science.gov (United States)

    Wu, Chen-Fa; Hsieh, Yen-Fen; Ou, Sheng-Jung

    2015-10-27

    Thermal adaptation studies provide researchers great insight to help understand how people respond to thermal discomfort. This research aims to assess outdoor urban plaza conditions in hot and humid regions of Asia by conducting an evaluation of thermal adaptation. We also propose that questionnaire items are appropriate for determining thermal adaptation strategies adopted by urban plaza users. A literature review was conducted and first hand data collected by field observations and interviews used to collect information on thermal adaptation strategies. Item analysis--Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA)--were applied to refine the questionnaire items and determine the reliability of the questionnaire evaluation procedure. The reliability and validity of items and constructing process were also analyzed. Then, researchers facilitated an evaluation procedure for assessing the thermal adaptation strategies of urban plaza users in hot and humid regions of Asia and formulated a questionnaire survey that was distributed in Taichung's Municipal Plaza in Taiwan. Results showed that most users responded with behavioral adaptation when experiencing thermal discomfort. However, if the thermal discomfort could not be alleviated, they then adopted psychological strategies. In conclusion, the evaluation procedure for assessing thermal adaptation strategies and the questionnaire developed in this study can be applied to future research on thermal adaptation strategies adopted by urban plaza users in hot and humid regions of Asia.

  20. Thermal perceptions, general adaptation methods and occupant's idea about the trade-off between thermal comfort and energy saving in hot-humid regions

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ruey-Lung [Department of Occupational Safety and Health, China Medical University, 91 Huseh-Shin Road, Taichung 404 (China); Cheng, Ming-Jen [Department of Architecture, Feng Chia University, 100 Wen-Hwa Road, Seatwen, Taichung 407 (China); Lin, Tzu-Ping [Department of Leisure Planning, National Formosa University, 64 Wen-Hua Road, Huwei, Yunlin 632 (China); Ho, Ming-Chin [Architecture and Building Research Institute, Ministry of the Interior, 13F, No. 200, Sec. 3, Bei-sin Road, Sindian City, Taipei County 231 (China)

    2009-06-15

    A field study conducted in workplaces and residences in Taiwan is carried out to clarify two questions in detail: (1) do people in the tropical climate regions demonstrate a correlation between thermal sensation and thermal dissatisfaction the same as the PMV-PPD formula in the ISO 7730; and (2) does the difference in opportunities to choose from a variety of methods to achieve thermal comfort affects thermal perceptions of occupants? A new predicted formula of percentage of dissatisfied (PD) relating to mean thermal sensation votes (TSVs) is proposed for hot and humid regions. Besides an increase in minimum rate of dissatisfied from 5% to 9%, a shift of the TSV with minimum PD to the cool side of sensation scale is suggested by the new proposed formula. It also reveals that the limits of TSV corresponding to 80% acceptability for hot and humid regions are -1.45 and +0.65 rather than -0.85 and +0.85 suggested by ISO 7730. It is revealed in the findings that the effectiveness, availability and cost of a thermal adaptation method can affect the interviewees' thermal adaptation behaviour. According to the discussion of interviewees' idea about the trade-off between thermal comfort and energy saving, it is found that an energy-saving approach at the cost of sacrificing occupant's thermal comfort is difficult to set into action, but those ensure the occupant's comfort are more acceptable and can be easily popularized. (author)

  1. Terrain Analysis Procedural Guide for Climate,

    Science.gov (United States)

    1980-09-01

    days a year at many locations. D. HUMID MICROTHERMAL CLIMATES. The humid microthermal climate occurs in the Northern Hemisphere northward from the...subarctic are the principal types of microthermal climate. 71 1. Humid Continental Climates. These climates border the marine west coast climatic regions...frequently occur during summer in prairie regions. Regions on the southern margin of microthermal climates have long, hot and humid summers lasting from

  2. Research on trend of warm-humid climate in Central Asia

    Science.gov (United States)

    Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng

    2017-07-01

    Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the warm-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of warm and humid conditions. Finally, using the model to analyzed the distribution of warm-dry trend, the warm-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were warm-humid and warm-dry trends, but only a small number of regions showed warm-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper

  3. Integrated and Optimized Energy-Efficient Construction Package for a Community of Production Homes in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Wiehagen, J. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Del Bianco, M. [Partnership for Home Innovation, Upper Marlboro, MD (United States)

    2014-10-01

    This research high performance home analyzes how a set of advanced technologies can be integrated into a durable and energy-efficient house in the mixed-humid climate while remaining affordable to homeowners. The technical solutions documented in this report are the cornerstone of the builder's entire business model based on delivering high-performance homes on a production basis as a standard product offering to all price segments of the residential market. Home Innovation Research Labs partnered with production builder Nexus EnergyHomes (CZ 4) and they plan to adopt the successful components of the energy solution package for all 55 homes in the community. The research objective was to optimize the builder's energy solution package based on energy performance and construction costs. All of the major construction features, including envelope upgrades, space conditioning system, hot water system, and solar electric system were analyzed.

  4. Climatic Reliability of Electronics: Early Prediction and Control of Contamination and humidity effects

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas

    were to a significant extent guided by the climatic reliability issues the electronic companies are currently facing. The research in this thesis is focused on the synergistic effects of process related contamination, humidity, potential bias, and PCBA design related aspects, while various tests...... assuming parasitic circuit due to water layer formation on the PCBA surface. The chapters 2-5 review the factors influencing the climatic reliability of electronics namely humidity interaction with materials and ionic contamination on the PCBA surface, common types and sources of ionic contamination...... in electronics, the test methods and techniques, and failure mechanisms related to climate and contamination. Chapter 6 summarizes the materials and experimental methods employed in this thesis. The results of various investigations are presented as individual research papers as published or in the draft form...

  5. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Science.gov (United States)

    Tran Trong, Than; Riera, Florence; Rinaldi, Kévin; Briki, Walid; Hue, Olivier

    2015-01-01

    A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions. Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol) beverage at three temperatures: Neutral (ambient temperature) (28.7°C±0. 5°C), Cold (3.1°C±0.6°C) or Ice-slurry (0.17°C±0.07°C). Trial time, core temperature (Tco), heart rate (HR), rate of perceived exertion (RPE), thermal sensation (TS) and thermal comfort (TC) were assessed. Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol. A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone). Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE) between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  6. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Directory of Open Access Journals (Sweden)

    Than Tran Trong

    Full Text Available A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions.Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol beverage at three temperatures: Neutral (ambient temperature (28.7°C±0. 5°C, Cold (3.1°C±0.6°C or Ice-slurry (0.17°C±0.07°C. Trial time, core temperature (Tco, heart rate (HR, rate of perceived exertion (RPE, thermal sensation (TS and thermal comfort (TC were assessed.Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol.A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone. Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  7. Passive cooling systems in buildings: Some useful experiences from ancient architecture for natural cooling in a hot and humid region

    International Nuclear Information System (INIS)

    Hatamipour, M.S.; Abedi, A.

    2008-01-01

    This article presents useful ancient energy technologies that have been used many years for natural cooling of buildings during summer in a hot and humid province in the South of Iran. By use of these technologies, people were able to live in comfort without any electrical air conditioning system. These technologies include use of color glazed windows, wooden windows frames, light colored walls and roofs, insulated walls, wooden roofs covered with leaves and mud. In addition, these technologies made use of terraces, use of louvers, constructing the lanes as narrow as possible and shading the buildings with the nearby buildings, all of which are now the modern experienced technologies

  8. Thermal Comfort: An Index for Hot, Humid Asia. Educational Building Digest 12.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    The sensation of thermal comfort is determined by a combination of air temperature, humidity of the air, rate of movement of the air, and radiant heat. This digest is intended to assist architects to design educational facilities that are as thermally comfortable as is possible without recourse to mechanical air conditioning. A nomogram is…

  9. Glutamine and glutamic acid supplementation enhances performance of broiler chickens under the hot and humid tropical condition

    Directory of Open Access Journals (Sweden)

    Joshua O. Olubodun

    2015-02-01

    Full Text Available Day-old (day 1 commercial broiler chickens were fed i basal diet (control, ii basal diet +0.5% AminoGut (AG, or iii basal diet +1% AG from 1 to 42 d of age under the hot and humid tropical environment. AminoGut is a commercial dietary supplement containing a mixture of L-glutamine (Gln and L-glutamic (Glu acid. Weight gain and feed conversion ratio during the starter (1 to 21 d and overall (1 to 42 d periods improved linearly and quadratically with AG supplementation when compared to control. Supplementing birds with AG significantly reduced overall mortality rate. At 21 and 42 d of age, intestinal (duodenum and ileum villi height and crypt depth showed both linear and quadratic positive responses to AG supplementation. Intestinal amylase activity increased linearly and quadratically on d 21, and linearly only on d 42. In conclusion, Gln and Glu supplementation was beneficial in improving the growth performance and survivability of broiler chickens under the hot and humid tropical environment.

  10. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.

    Science.gov (United States)

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-08-01

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  11. The Effect of Body Weight on Heat Strain Indices in Hot and Dry Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Habibi

    2016-03-01

    Full Text Available Background Being overweight is a characteristic that may influence a person’s heat exchange. Objectives The purpose of this study was to assess the effect of body weight on heat strain indices in hot and dry climatic conditions. Materials and Methods This study was completed with a sample of 30 participants with normal weights, as well as 25 participants who were overweight. The participants were physically inactive for a period of 120 minutes in a climatic chamber with hot and dry conditions (22 - 32°C and with 40% relative humidity (RH.The physiological strain index (PSI and heat strain score index (HSSI questionnaires were used. Simultaneous measurements were completed during heat exposure for periods of five minutes. The resting periods acted as the initial measurements for 15 minutes. Results In both groups, oral temperature, heart rate, and thermal perceptual responses increased during heat exposure. The means and standard deviations of heart rate and oral temperature were gathered when participants were in hot and dry climatic conditions and were not physically active. The heart rates and oral temperatures were 79.21 ± 5.93 bpm and 36.70 ± 0.45°C, respectively, for those with normal weights. For overweight individuals, the measurements for heart rate and oral temperature reached 82.21 ± 8.9 bpm and 37.84 ± 0.37°C, respectively. Conclusions The results showed that, compared to participants with normal weights, physiological and thermal perceptual responses were higher in overweight participants. Therefore, overweight individuals should avoid hot/dry weather conditions to decrease the amount of heat strain.

  12. 40% Whole-House Energy Savings in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilbride, T. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hefty, M. G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cole, P. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adams, K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butner, R. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ortiz, S. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Love, Pat M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-09-01

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for consumers.

  13. Effect of climate on the seminal characteristics of boars in a region of humid tropical forest

    International Nuclear Information System (INIS)

    Henao Restrepo, Guillermo; Trujillo Aramburo, Luis Emilio; Buritica Henao, Maria Elizabet; Sierra Perez, Carlos Ignacio; Correa Londono, Guillermo; Gonzalez Boto, Oscar Domingo

    2004-01-01

    In a region of humid tropical forest, ten boars of from 12 to 24 months of age were selected to evaluate the effect of climatic variables measured on the day of semen collection and for each of preceding 45 days. On seminal characteristics, the variability of each characteristic was separated into an intra individual component and an interindividual component, using maximum likelihood estimators (PROC VARCOMP of SAS). In order to relate the seminal characteristics with the climatic variables, morphological abnormalities were grouped according to the affected spermatic region, into head. Midsection and main section abnormalities; the other characteristics were evaluated without any modification. Possible correlations between seminal characteristics and climatic variables were evaluated. In a total of 298 ejaculates collected weekly during a period of 30 weeks, except for total volume and morphological abnormalities. The seminal characteristics presented low or moderate intra and interindividual variation and were similar to those found in other latitudes, with a tendency to present greater seminal volumes and concentrations maximum temperature minimum temperature. Range among temperatures. Relative humidity and precipitation of the day of the semen collection and on each of the preceding 45 days had low effects on the seminal characteristics. It is possible that the boars in warm humid tropical areas develop a high level of adaptation that permits an adequate testicular thermoregulation that favors the spermatogenic function of the seminiferous tubules in a way that does not perceptibly affect production the seminal quality

  14. Moisture Performance of Energy-Efficient and Conventional Wood-Frame Wall Assemblies in a Mixed-Humid Climate

    Science.gov (United States)

    Samuel Glass; Vladimir Kochkin; S. Drumheller; Lance Barta

    2015-01-01

    Long-term moisture performance is a critical consideration for design and construction of building envelopes in energy-efficient buildings, yet field measurements of moisture characteristics for highly insulated wood-frame walls in mixed-humid climates are lacking. Temperature, relative humidity, and moisture content of wood framing and oriented strand board (OSB)...

  15. Validating the Heat Stress Indices for Using In Heavy Work Activities in Hot and Dry Climates.

    Science.gov (United States)

    Hajizadeh, Roohalah; Golbabaei, Farideh; Farhang Dehghan, Somayeh; Beheshti, Mohammad Hossein; Jafari, Sayed Mohammad; Taheri, Fereshteh

    2016-01-01

    Necessity of evaluating heat stress in the workplace, require validation of indices and selection optimal index. The present study aimed to assess the precision and validity of some heat stress indices and select the optimum index for using in heavy work activities in hot and dry climates. It carried out on 184 workers from 40 brick kilns workshops in the city of Qom, central Iran (as representative hot and dry climates). After reviewing the working process and evaluation the activity of workers and the type of work, environmental and physiological parameters according to standards recommended by International Organization for Standardization (ISO) including ISO 7243 and ISO 9886 were measured and indices were calculated. Workers engaged in indoor kiln experienced the highest values of natural wet temperature, dry temperature, globe temperature and relative humidity among studied sections (Pstress index (HSI) indices had the highest correlation with other physiological parameters among the other heat stress indices. Relationship between WBGT index and carotid artery temperature (r=0.49), skin temperature (r=0.319), and oral temperature (r=0.203) was statistically significant (P=0.006). Since WBGT index, as the most applicable index for evaluating heat stress in workplaces is approved by ISO, and due to the positive features of WBGT such as ease of measurement and calculation, and with respect to some limitation in application of HSI; WBGT can be introduced as the most valid empirical index of heat stress in the brick workshops.

  16. Decline in temperature and humidity increases the occurrence of influenza in cold climate

    Science.gov (United States)

    2014-01-01

    Background Both temperature and humidity may independently or jointly contribute to the risk of influenza infections. We examined the relations between the level and decrease of temperature, humidity and the risk of influenza A and B virus infections in a subarctic climate. Methods We conducted a case-crossover study among military conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training period and identified 66 influenza A and B cases by PCR or serology. Meteorological data such as measures of average and decline in ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods, prior and after the onset were obtained. Results The average temperature preceding the influenza onset was −6.8 ± 5.6°C and AH 3.1 ± 1.3 g/m3. A decrease in both temperature and AH during the hazard period increased the occurrence of influenza so that a 1°C decrease in temperature and 0.5 g decrease per m3 in AH increased the estimated risk by 11% [OR 1.11 (1.03 to 1.20)] and 58% [OR 1.58 (1.28 to 1.96)], respectively. The occurrence of influenza infections was positively associated with both the average temperature [OR 1.10 per 1°C (95% confidence interval 1.02 to 1.19)] and AH [OR 1.25 per g/m3 (1.05 to 1.49)] during the hazard period prior to onset. Conclusion Our results demonstrate that a decrease rather than low temperature and humidity per se during the preceding three days increase the risk of influenza episodes in a cold climate. PMID:24678699

  17. County-Level Climate Uncertainty for Risk Assessments: Volume 12 Appendix K - Historical Rel. Humidity.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  18. Climate change scenarios of extreme temperatures and atmospheric humidity for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda-Martinez, A. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)]. E-mail: atejeda@uv.mx; Conde-Alvarez, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Valencia-Treviso, L.E. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)

    2008-10-15

    The following study explores climatic change scenarios of extreme temperature and atmospheric humidity for the 2020 and 2050 decades. They were created for Mexico through the GFDLR30, ECHAM4 and HadCM2 general circulation models. Base scenario conditions were associated with the normal climatological conditions for the period 1961-1990, with a database of 50 surface observatories. It was necessary to empirically estimate the missing data in approximately half of the pressure measurements. For the period 1961-1990, statistical models of the monthly means of maximum and minimum temperatures and atmospheric humidity (relative and specific) were obtained from the observed data of temperature, solar radiation and precipitation. Based on the simulations of the GFDLR30, ECHAM4 and HADCM2 models, a future scenario of monthly means of maximum and minimum temperatures and humidity in climatic change conditions was created. The results shown are for the representative months of winter (January) and summer (July). [Spanish] En este articulo se presentan escenarios de cambio climatico referidos a temperaturas extremas y humedad atmosferica para las decadas de 2020 y 2050. Fueron generados para Mexico a partir de los modelos de circulacion general GFDLR30, ECHAM4 y HADCM2. El escenario base corresponde a las normales climatologicas del periodo 1961-1990 para 50 observatorios de superficie. Para la mitad de ellos fue necesario estimar empiricamente la presion atmosferica a partir de la altitud y para la totalidad se obtuvieron modelos estadisticos de los promedios mensuales de temperaturas maxima y minima asi como de humedad atmosferica (relativa y especifica). Esos modelos estadisticos, combinados con las salidas de los modelos de circulacion general mencionados, produjeron escenarios futuros de medias mensuales de temperaturas extremas y de humedad bajo condiciones de cambio climatico. Se mostraran los resultados para un mes representativo del invierno (enero) y otro del verano

  19. Preventing heat illness in the anticipated hot climate of the Tokyo 2020 Summer Olympic Games.

    Science.gov (United States)

    Kakamu, Takeyasu; Wada, Koji; Smith, Derek R; Endo, Shota; Fukushima, Tetsuhito

    2017-09-19

    Amid the effects of global warming, Tokyo has become an increasingly hot city, especially during the summertime. To prepare for the upcoming 2020 Summer Olympics and Paralympics in Tokyo, all participants, including the athletes, staff, and spectators, will need to familiarize themselves with Tokyo's hot and humid summer conditions. This paper uses the wet-bulb globe temperature (WBGT) index, which estimates the risk of heat illness, to compare climate conditions of sports events in Tokyo with the conditions of the past three Summer Olympics (held in Rio de Janeiro, London, and Beijing) and to subsequently detail the need for establishing appropriate countermeasures. We compared WBGT results from the past three Summer Olympics with the same time periods in Tokyo during 2016. There was almost no time zone where a low risk of heat illness could be expected during the time frame of the upcoming 2020 Tokyo Olympics. We also found that Tokyo had a higher WBGT than any of those previous host cities and is poorly suited for outdoor sporting events. Combined efforts by the official organizers, government, various related organizations, and the participants will be necessary to deal with these challenging conditions and to allow athletes to perform their best, as well as to prevent heat illnesses among staff and spectators. The sporting committees, as well as the Olympic organizing committee, should consider WBGT measurements in determining the venues and timing of the events to better avoid heat illness and facilitate maximum athletic performance.

  20. Integrated and Optimized Energy-Efficient Construction Package for a Community of Production Homes in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D.; Wiehagen, J.; Del Bianco, M.

    2014-10-01

    Selection and integration of high performance home features are two sides of the same coin in energy efficient sustainable construction. Many advanced technologies are available for selection, but it is in the integration of these technologies into an affordable set of features that can be used on a production basis by builders, that ensures whole-house performance meets expectations. This research high performance home analyzes how a set of advanced technologies can be integrated into a durable and energy efficient house in the mixed-humid climate while remaining affordable to homeowners. The technical solutions documented in this report are the cornerstone of the builder's entire business model based on delivering high-performance homes on a production basis as a standard product offering to all price segments of the residential market. Home Innovation Research Labs partnered with production builder Nexus EnergyHomes (CZ 4). The builder plans to adopt the successful components of the energy solution package for all 55 homes in the community. The research objective was to optimize the builder's energy solution package based on energy performance and construction costs. All of the major construction features, including envelope upgrades, space conditioning system, hot water system, and solar electric system were analyzed. The information in this report can be used by builders and designers to evaluate options, and the integration of options, for increasing the efficiency of home designs in climate zone 4. The data also provide a point of reference for evaluating estimates of energy savings and costs for specific features.

  1. Challenges of using air conditioning in an increasingly hot climate

    Science.gov (United States)

    Lundgren-Kownacki, Karin; Hornyanszky, Elisabeth Dalholm; Chu, Tuan Anh; Olsson, Johanna Alkan; Becker, Per

    2018-03-01

    At present, air conditioning (AC) is the most effective means for the cooling of indoor space. However, its increased global use is problematic for various reasons. This paper explores the challenges linked to increased AC use and discusses more sustainable alternatives. A literature review was conducted applying a transdisciplinary approach. It was further complemented by examples from cities in hot climates. To analyse the findings, an analytical framework was developed which considers four societal levels—individual, community, city, and national. The main challenges identified from the literature review are as follows: environmental, organisational, socio-economical, biophysical and behavioural. The paper also identifies several measures that could be taken to reduce the fast growth of AC use. However, due to the complex nature of the problem, there is no single solution to provide sustainable cooling. Alternative solutions were categorised in three broad categories: climate-sensitive urban planning and building design, alternative cooling technologies, and climate-sensitive attitudes and behaviour. The main findings concern the problems arising from leaving the responsibility to come up with cooling solutions entirely to the individual, and how different societal levels can work towards more sustainable cooling options. It is concluded that there is a need for a more holistic view both when it comes to combining various solutions as well as involving various levels in society.

  2. The role of groundwater in streamflow in a headwater catchment with sub-humid climate

    Science.gov (United States)

    Liu, Yaping; Tian, Fuqiang; Hu, Hongchang; Tie, Qiang

    2015-04-01

    Recent studies have suggested that bedrock groundwater can exert considerable influence on streamflow in headwater catchments under humid climate. However, study of the role of bedrock groundwater is still challenged due to limited direct observation data. In this study, by utilizing observed hydrometric and hydrochemical data, we aimed at characterize the bedrock groundwater's response to rainfall at hillslope and catchment scales in a small headwater catchment with sub-humid climate. We selected Xitaizi catchment with area of 6.7 km in the earth-rock mountain region, which located in the north of Beijing, China, as study area. The catchment bedrock is mainly consist of fractured granite. Four weather stations were installed to observe the weather condition and soil volumetric water content (VWC) at depth of 10-60 cm with 10-minute interval. Five wells with depth of 10 m were drilled in two slopes to monitor the bedrock water table by pneumatic water gauge. At slope 1, the soil VWC at depth of 10-80 cm were also observed by soil moisture sensors, and surface/subsurface hillslope runoff at three different layers (0-20cm, 20-80cm, 80-300cm) was observed by three recording buckets. Field works were conducted from July 2013 to November 2014. During the period, precipitation, river, spring and groundwater were sampled nearly monthly. Water temperature, electrical conductivity (EC) and pH were measured in site with portable instruments. In addition, the precipitation, river and groundwater were also sampled intensively during two storm events. All the samples were subjected to stable isotope analysis, the samples taken monthly during the period from July 2013 to July 2014 were subjected to hydrochemistry analysis. Our results show that: (1) the bedrock groundwater is the dominant component of streamflow in the headwater catchment with sub-humid climate; (2) stream is recharged by groundwater sourcing from different mountains with different hydrochemistry characteristics

  3. Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere

    Science.gov (United States)

    Li, Dong-liang; Fu, Gui-qin; Zhu, Miao-yong; Li, Qing; Yin, Cheng-xiang

    2018-03-01

    The corrosion resistance of weathering bridge steels containing conventional contents of Ni (0.20wt%, 0.42wt%, 1.50wt%) and a higher content of Ni (3.55wt%) in a simulated hot and humid coastal-industrial atmosphere was investigated by corrosion depth loss, scanning electron microscopy-energy-dispersive X-ray spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical methods. The results showed that, with increasing Ni content, the mechanical properties of the bridge steel were markedly improved, the welding parameters were satisfactory at room temperature, and the corrosion resistance was enhanced. When the Ni content was low (≤0.42wt%), the crystallization process of the corrosion products was substantially promoted, enhancing the stability of the rust layer. When the Ni content was higher ( 3.55wt%), the corrosion reaction of the steel quickly reached a balance, because the initial rapid corrosion induced the formation of a protective rust layer in the early stage. Simultaneously, NiO and NiFe2O2 were generated in large quantities; they not only formed a stable, compact, and continuous oxide protective layer, but also strongly inhibited the transformation process of the corrosion products. This inhibition reduced the structural changes in the rust layer, thereby enhancing the protection. However, when the Ni content ranged from 0.42wt% to 1.50wt%, the corrosion resistance of the bridge steel increased only slightly.

  4. The Impact of Climate Change in Rainfall Erosivity Index on Humid Mudstone Area

    Science.gov (United States)

    Yang, Ci-Jian; Lin, Jiun-Chuan

    2017-04-01

    It has been quite often pointed out in many relevant studies that climate change may result in negative impacts on soil erosion. Then, humid mudstone area is highly susceptible to climate change. Taiwan has extreme erosion in badland area, with annual precipitation over 2000 mm/y which is a considerably 3 times higher than other badland areas around the world, and with around 9-13 cm/y in denudation rate. This is the reason why the Erren River, a badland dominated basin has the highest mean sediment yield in the world, over 105 t km2 y. This study aims to know how the climate change would affect soil erosion from the source in the Erren River catchment. Firstly, the data of hourly precipitation from 1992 to 2016 are used to establish the regression between rainfall erosivity index (R, one of component for USLE) and precipitation. Secondly, using the 10 climate change models (provide form IPCC AR5) simulates the changes of monthly precipitation in different scenario from 2017 to 2216, and then over 200 years prediction R values can be use to describe the tendency of soil erosion in the future. The results show that (1) the relationship between rainfall erosion index and precipitation has high correction (>0.85) during 1992-2016. (2) From 2017 to 2216, 7 scenarios show that annual rainfall erosion index will increase over 2-18%. In contrast, the others will decrease over 7-14%. Overall, the variations of annual rainfall erosion index fall in the range of -14 to 18%, but it is important to pay attention to the variation of annual rainfall erosion index in extreme years. These fall in the range of -34 to 239%. This explains the extremity of soil erosion will occur easily in the future. Keywords: Climate Change, Mudstone, Rainfall Erosivity Index, IPCC AR5

  5. Crop coefficients for winter wheat in a sub-humid climate regime

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Plauborg, Finn; Mollerup, Mikkel

    2008-01-01

    Estimations of evapotranspiration (ET) from natural surfaces are used in a large number of applications such as agricultural water management and water resources planning. Lack of reliable, cheap and easy-to-use instruments, associated with the chaotic and varying nature of the meteorological...... coefficients for a winter wheat crop growing under standard conditions, i.e. not short of water and growing under optimal agronomic conditions, were estimated for a cold sub-humid climate regime. One of the two methods used to estimate ET from a reference crop required net radiation (Rn) as input. Two sets...... of coefficients were used for calculating Rn. Weather data from a meteorological station was used to estimate Rn and ET from the reference crop. The winter wheat ET was measured using an eddy covariance system during the main parts of the growing seasons 2004 and 2005. The meteorological data and field...

  6. Investigating the impact of different thermal comfort models for zero energy buildings in hot climates

    NARCIS (Netherlands)

    Attia, S.G.; Hensen, J.L.M.

    2014-01-01

    The selection of a thermal comfort model has a major impact on energy consumption of Net Zero Energy Buildings (NZEBs) in hot climates. The objective of this paper is to compare the influence of using different comfort models for zero energy buildings in hot climates. The paper compares the impact

  7. Cultural adaptations to the differential threats posed by hot versus cold climates.

    Science.gov (United States)

    Murray, Damian R

    2013-10-01

    Hot and cold climates have posed differential threats to human survival throughout history. Cold temperatures can pose direct threats to survival in themselves, whereas hot temperatures may pose threats indirectly through higher prevalence of infectious disease. These differential threats yield convergent predictions for the relationship between more demanding climates and freedom of expression, but divergent predictions for freedom from discrimination.

  8. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions.

    Science.gov (United States)

    Nguyen, Jennifer L; Dockery, Douglas W

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  9. A newly developed tool for intra-tracheal temperature and humidity assessment in laryngectomized individuals: the Airway Climate Explorer (ACE)

    NARCIS (Netherlands)

    Zuur, J.K.; Muller, S.H.; Jongh, F.H.C.; Horst, M.J. van der; Shehata, M.; Leeuwen, J. van; Sinaasappel, M.; Hilgers, F.J.M.

    2007-01-01

    The aim of this study is to develop a postlaryngectomy airway climate explorer (ACE) for assessment of intratracheal temperature and humidity and of influence of heat and moisture exchangers (HMEs). Engineering goals were within-device condensation prevention and fast response time characteristics.

  10. Assessment of tracheal temperature and humidity in laryngectomized individuals and the influence of heat and moisture exchangers on tracheal climate

    NARCIS (Netherlands)

    Zuur, J.K.; Muller, S.H.; Vincent, A.; Sinaasappel, M.; de Jongh, F.H.C.; Hilgers, F.J.M.

    2008-01-01

    Background The beneficial function of heat and moisture exchangers (HMEs) is undisputed, but knowledge of their effects on intra-airway temperature and humidity is scarce. The aim of this study was to evaluate the clinical applicability of a new airway climate explorer (ACE) and to assess the HME's

  11. Performance evaluation of Iranian cooling vest on the physiological indices in hot climatic chamber.

    Science.gov (United States)

    Dehghan, Habibollah; Gharehbaei, Somayeh; Mahaki, Behzad

    2016-01-01

    Heat stress is a threat to those who work in high temperatures. The purpose in this study was an examination of the cooling ability of Iranian phase change material (PCM) cold vest in hot and dry conditions in a climatic chamber. This experimental study was implemented on 12 male students (age 23.7 ± 2.8 years, weight 66.1 ± 11.4 kg, and VO2 max 2.53 L/min) in 2013. The heat strain score index (HSSI), skin temperature and oral temperature, and heartbeat in two phases with and without cooling vest was measured during 30 min in a climatic chamber (temperature 38.8 ± 1.3°C humidity ratio 32.9 ± 2.3%) and in two activity intensity of 2.4 and 4.8 km/h speed on the treadmill, and the data differences between groups "with" and "without" vest were tested by t-test and repeated measurement. The level of significance was considered as 0.05. The change in heartbeat at two activities, the oral temperature and heat strain score at 4.8 km/h, did not differ significantly between groups (with and without vest), as expected (P > 0.05). However, the change in skin temperature at two activities, oral temperature and heat strain score at 2.4 km/h, was significant between groups, as expected (P climate can affect the reduction of skin temperature, oral temperature, and HSSI in light activities.

  12. Developments of Thermal Environment Techniques of Animal Housing in Hot Climate

    DEFF Research Database (Denmark)

    Zhang, Guoqiang; Bjerg, Bjarne Schmidt

    It is a challenge to create the satisfied indoor climate of farm animal housing in hot climate conditions by ventilation design and control. Facing to the global warming tendency, the challenge become event great. To overcome this challenge, an optimal indoor climate control system should be able...

  13. Role of Biotechnology in Animal Production Systems in Hot Climates

    Directory of Open Access Journals (Sweden)

    P. J. Hansen

    1996-01-01

    Full Text Available Developments in the biological sciences in the last three decades have revolutionized mankind's ability to manipulate the genetics, cell biology and physiology of biological organisms. These techniques, collectively termed biotechnology, create the opportunity for modifying domestic animals in ways that markedly increase the efficiency of production. Among the procedures being developed for animal production systems are marker-assisted selection of specific alleles of a gene that are associated with high production, production of transgenic animals , super ovulation and embryo transfer, in vitro fertilization, embryo sexing and cloning, production of large amounts of previously-rare proteins through use of genetically -engineered bacteria or other cells, and identification of new biologically-active molecules as potential regulators of animal function. To date, most uses of biotechnology have concentrated on problems of general relevance to animal agriculture rather than specific problems related to livestock production in hot climates. However, it is likely that biotechnology will be used for this latter purpose also. Strategies to increase disease resistance using marker-assisted selection, production of transgenic animals expressing viral proteins, and recombinant cytokines to enhance immune function should prove useful to reducing the incidence and seventy of various tropical diseases. Additionally, there are methods to reduce effects of heat stress on oestrus detection and establishment of pregnancy. These include remote sensing of oestrus, ovulation synchronization systems and embryo transfer. More research regarding the physiological processes determining heat tolerance and of the pathways through which heat stress alters physiological function will be required before molecular biology techniques can be used to reduce the adverse effects of heat stress on animal production.

  14. Plants for passive cooling. A preliminary investigation of the use of plants for passive cooling in temperate humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Spirn, A W; Santos, A N; Johnson, D A; Harder, L B; Rios, M W

    1981-04-01

    The potential of vegetation for cooling small, detached residential and commercial structures in temperate, humid climates is discussed. The results of the research are documented, a critical review of the literature is given, and a brief review of energy transfer processes is presented. A checklist of design objectives for passive cooling, a demonstration of design applications, and a palette of selected plant species suitable for passive cooling are included.

  15. Evaluation of wet bulb globe temperature index for estimation of heat strain in hot/humid conditions in the Persian Gulf

    OpenAIRE

    Habibolah Dehghan; Seyed Bagher Mortazavi; Mohammad J Jafari; Mohammad R Maracy

    2012-01-01

    Background: Heat exposure among construction workers in the Persian Gulf region is a serious hazard for health. The aim of this study was to evaluate the performance of wet bulb globe temperature (WBGT) Index for estimation of heat strain in hot/humid conditions by the use of Physiological Strain Index (PSI) as the gold standard. Material and Methods : This cross-sectional study was carried out on 71 workers of two Petrochemical Companies in South of Iran in 2010 summer. The WBGT index, heart...

  16. Humid Heat Waves at different warming levels

    Science.gov (United States)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  17. Analyses of phase change materials’ efficiency in warm-summer humid continental climate conditions

    Science.gov (United States)

    Ratnieks, J.; Gendelis, S.; Jakovics, A.; Bajare, D.

    2017-10-01

    The usage of phase change materials (PCMs) is a way to store excess energy produced during the hot time of the day and release it during the night thereby reducing the overheating problem. While, in Latvian climate conditions overheating is not a big issue in traditional buildings since it happens only a couple of weeks per year air conditioners must still be installed to maintain thermal comfort. The need for cooling in recently built office buildings with large window area can increase significantly. It is therefore of great interest if the thermal comfort conditions can be maintained by PCMs alone or with reduced maximum power of installed cooling systems. Our initial studies show that if the test building is well-insulated (necessary to reduce heat loss in winter), phase change material is not able to solidify fast enough during the relatively short night time. To further investigate the problem various experimental setups with two different phase change materials were installed in test buildings. Experimental results are compared with numerical modelling made in software COMSOL Multiphysics. The effectiveness of PCM using different situations is widely analysed.

  18. building material preferences in warm-humid and hot-dry climates

    African Journals Online (AJOL)

    User

    2Department of Building Technology, College of Architecture and Planning, KNUST, Kumasi,. Ghana. ABSTRACT ..... DHPR to benefit research, teaching and the development of the ..... “Integration Management for Green Business to achieve ...

  19. GLASS AND PERFORATED METAL DOUBLE SKIN FAÇADE PERFORMANCE IN HOT HUMID CLIMATE

    Directory of Open Access Journals (Sweden)

    Nissa Aulia Ardiani

    2017-12-01

    Full Text Available The construction of a sustainable building in Indonesia has increased in recent years. Middle- to high-rise buildings are encouraged to enhance its performance to reduce energy demands. With maximum temperature 34°C, most of the buildings in Indonesia utilize mechanical air conditioning to achieve indoor thermal comfort. In this research, the performance of campus building with Double Skin Façade (DSF in Indonesia would be quantitatively assessed and simulated by utilizing Autodesk Revit and Green Building Studio. In respect to façade material, actual cavity width, inner and outer layer façade type, and also weather condition, these simulations are expected to produce comparison result between four DSF material configurations which are perforated metal, single glazing, double glazing, and triple glazing. From the simulation, the results show that perforated metal DSF could consume 5%-23.16% more energy for space cooling compared to building with glass DSF.

  20. K2 Urbancorp, LLC.: Hot, Humid Climate Region 40+% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-08-13

    This case study describes a community of historically inspired energy efficient homes that met the 40% whole-house source energy savings by focusing primarily on tightening the building envelope and sealing ductwork.

  1. building material preferences in warm-humid and hot-dry climates

    African Journals Online (AJOL)

    User

    more pressure on urban land for various uses over the entire .... the use of plain sheet glass louvre blades in ..... parametric test c2 (Chi-squared) was run to ..... Boamah, N. A., Gyimah, C. and Nelson, J. K. ... Hangen, J. and Dye, J. (1974).

  2. Achieving Challenge Home in Affordable Housing in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Beal, D. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); McIlvaine, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Winter, B. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Allnutt, R. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2014-08-01

    The Building America Partnership for Improved Residential Construction (BA-PIRC), one of the Building America research team leads, has partnered with two builders as they work through the Challenge Home certification process (now Zero Energy Ready Home) in one test home each. The builder partners participating in this cost-shared research are Southeast Volusia County Habitat for Humanity near Daytona, Florida and Manatee County Habitat for Humanity near Tampa, Florida. Both are affiliates of Habitat for Humanity International, a non-profit affordable housing organization. This research serves to identify viable technical pathways to meeting the CH criteria for other builders in the region. A further objective of this research is to identify gaps and barriers in the marketplace related to product availability, labor force capability, code issues, cost effectiveness, and business case issues that hinder or prevent broader adoption on a production scale.

  3. Comparative Performance of Two Ventilation Strategies in a Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Eric [Building America Partnership for Improved Residential Construction, FL (United States); Chasar, Dave [Building America Partnership for Improved Residential Construction, FL (United States); McIIvaine, Janet [Building America Partnership for Improved Residential Construction, FL (United States); Fonorow, Bryan [Building America Partnership for Improved Residential Construction, FL (United States); Fonorow, Ken [Florida HERO, Newberry, FL (United States)

    2017-02-01

    In fiscal year 2013, Pacific Northwest National Laboratory (PNNL), Florida Solar Energy Center (FSEC), and Florida Home Energy and Resources Organization (Florida HERO) began a collaborative effort to evaluate the impact of ventilation rate on interior comfort conditions, space-conditioning energy use, and indoor air contaminant concentrations. Relevant parameters were measured in 10 homes in Gainesville, Florida, along with corresponding outdoor conditions, to characterize the impact of differing ventilation rates. This report provides information about the data collection method and results from more than 1 year of data collection during a period from summer 2013 through summer 2014. Indoor air quality was sampled in three discrete periods with the first occurring in August/September 2013, the second occurring in March/April 2014, and the third occurring in August 2014.

  4. Achieving Challenge Home in Affordable Housing in the Hot-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Beal, D.; McIlvaine, J.; Winter, B.; Allnutt, R.

    2014-08-01

    The Building America Partnership for Improved Residential Construction (BA-PIRC), one of the Building America research team leads, has partnered with two builders as they work through the Challenge Home certification process in one test home each. The builder partners participating in this cost-shared research are Southeast Volusia County Habitat for Humanity near Daytona, Florida and Manatee County Habitat for Humanity near Tampa, Florida. Both are affiliates of Habitat for Humanity International, a non-profit affordable housing organization. This research serves to identify viable technical pathways to meeting the CH criteria for other builders in the region. A further objective of this research is to identify gaps and barriers in the marketplace related to product availability, labor force capability, code issues, cost effectiveness, and business case issues that hinder or prevent broader adoption on a production scale.

  5. Energy Design Guidelines for High Performance Schools: Hot and Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs. These savings can be redirected to educational needs such as additional teachers, instructional materials, or new computers. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school. By incorporating these principles, you can create and exemplary building that is both energy and resource efficient.

  6. Energy Design Guidelines for High Performance Schools: Hot and Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-06-01

    School districts around the country are finding that the smart energy choices can help them save money and provide healthier, more effective learning environments. By incorporating energy improvements into their construction or renovation plans,

  7. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [Building Science Corporation, Westford, MA (United States); Lstiburek, Joseph W. [Building Science Corporation, Westford, MA (United States)

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  8. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lstiburek, Joseph W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  9. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eastment, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jalalzadeh-Azar, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-12-01

    This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  10. Building America Best Practices Series: Volume 4; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    This guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the mixed-humid climate region.

  11. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The ameliorative effect of ascorbic acid on the oxidative status, live weight and recovery rate in road transport stressed goats in a hot humid tropical environment.

    Science.gov (United States)

    Nwunuji, Tanko Polycarp; Mayowa, Opeyemi Onilude; Yusoff, Sabri Mohd; Bejo, Siti-Khairani; Salisi, Shahrom; Mohd, Effendy Abd Wahid

    2014-05-01

    The ameliorative effect of ascorbic acid (AA) on live weight following transportation is vital in animal husbandry. This study investigated the influence of AA on live weight, rectal temperature (rt), and oxidative status of transport stressed goats in a hot humid tropical environment. Twenty-four goats were divided into four groups, A, B, C and D of six animals each. Group A were administered AA 100 mg/kg intramuscularly 30 min prior to 3.5 h transportation. Group B was administered AA following transportation. Group C were transported but not administered AA as positive controls while group D were not transported but were administered normal saline as negative controls. Live weight, rt and blood samples were collected before, immediately post-transport (pt), 24 h, 3 days, 7 days and 10 days pt. Plasma was used for malondialdehyde (MDA) analysis while hemolysates were used for superoxide dismutase (SOD) analysis. There was minimal live weight loss in group A compared to groups B and C. Group A recorded reduced MDA activities and increased SOD activities compared to groups B and C which recorded significantly high MDA activities. This study revealed that AA administration ameliorated the stress responses induced by transportation in animals in hot humid tropical environments. The administration of AA to goats prior to transportation could ameliorate stress and enhance productivity. © 2014 Japanese Society of Animal Science.

  13. Medical Services at an International Summer Camp Event Under Hot and Humid Conditions: Experiences From the 23rd World Scout Jamboree, Japan.

    Science.gov (United States)

    Watanabe, Takemasa; Mizutani, Keiji; Iwai, Toshiyasu; Nakashima, Hiroshi

    2018-06-01

    The 23rd World Scout Jamboree (WSJ) was a 10-day summer camp held in Japan in 2015 under hot and humid conditions. The attendees comprised 33,628 people from 155 countries and territories. The aim of this study was to examine the provision of medical services under such conditions and to identify preventive factors for major diseases among long-term campers. Data were obtained from WSJ medical center records and examined to clarify the effects of age, sex, and period on visit frequencies and rates. Medical records from 3215 patients were examined. Daytime temperatures were 31.5±3.2°C and relative humidity was 61±13% (mean±SD). The initial visit rates among scouts and adults were 72.2 and 77.2 per 1000 persons, respectively. No significant age difference was observed in the initial visit rate; however, it was significantly higher among female patients than male patients. Significant differences were also seen in the adjusted odds ratios by age, sex, and period for disease distributions of initial visit frequencies. In addition, a higher initial visit frequency for heat strain-related diseases was seen among the scouts. Initial visit frequencies for heatstroke and/or dehydration increased just after opening day and persisted until closing day. Our findings suggest the importance of taking effective countermeasures against heat strain, fatigue, and unsanitary conditions at the WSJ. Medical services staff should take attendees' age, sex, and period into consideration to prevent heat strain-related diseases during such camps under hot and humid conditions. Copyright © 2018 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  14. Impact of Climate Change on Outdoor Thermal Comfort and Health in Tropical Wet and Hot Zone (Douala, Cameroon

    Directory of Open Access Journals (Sweden)

    Modeste Kameni Nematchoua

    2014-04-01

    Full Text Available Abstract Background and purpose:Climate change has an important role on the health and productivity of the occupant of the building. The objective of this study is to estimate the effects of climate change on thermal comfort in hot and wet areas, as in the case of the city of Douala. Materials and Methods:The general circulation model (CSMK3 Model, Scenario B1 was adopted for this purpose.Outdoor daily parameters of temperature, sunshine, and precipitation of last 40 years were analyzed and allowed us to make forecast on this area. The past (1990-2000, the present (2001-2011, and the future (2012-2022 were considered in the hypotheses. Results:It has been found that Douala like some large cities of Africa is already and will be severely hit of advantage by climate change if anything is not going to slow. By 2033, it is expected to have an increase of more than 0.21° C of temperature thus, a decrease of precipitation. Conclusion:In 2023, total discomfort will reign in the dry season, especially in January where humidex could reach 42.9. On the other hand, in the rainy season, humidex will increase of 0.91 compared to year 2013. This effect will have an increase of temperature. When we maintain relative humidity, and we increase temperature, humidex varies enormously and displays a maximum value, with maximum temperature.

  15. The role of clothing in thermal comfort: how people dress in a temperate and humid climate in Brazil

    Directory of Open Access Journals (Sweden)

    Renata De Vecchi

    Full Text Available Abstract Thermal insulation from clothing is one of the most important input variables used to predict the thermal comfort of a building's occupants. This paper investigates the clothing pattern in buildings with different configurations located in a temperate and humid climate in Brazil. Occupants of two kinds of buildings (three offices and two university classrooms assessed their thermal environment through 'right-here-right-now' questionnaires, while at the same time indoor climatic measurements were carried out in situ (air temperature and radiant temperature, air speed and humidity. A total of 5,036 votes from 1,161 occupants were collected. Results suggest that the clothing values adopted by occupants inside buildings were influenced by: 1 climate and seasons of the year; 2 different configurations and indoor thermal conditions; and 3 occupants' age and gender. Significant intergenerational and gender differences were found, which might be explained by differences in metabolic rates and fashion. The results also indicate that there is a great opportunity to exceed the clothing interval of the thermal comfort zones proposed by international standards such as ASHRAE 55 (2013 - 0.5 to 1.0 clo - and thereby save energy from cooling and heating systems, without compromising the occupants' indoor thermal comfort.

  16. Building a 40% Energy Saving House in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Jeffrey E [ORNL; Bonar, Jacob [ORNL

    2011-10-01

    This report describes a home that uses 40% less energy than the energy-efficient Building America standard - a giant step in the pursuit of affordable near-zero-energy housing through the evolution of five near-zero-energy research houses. This four-bedroom, two-bath, 1232-ft2 house has a Home Energy Rating System (HERS) index of 35 (a HERS rating of 0 is a zero-energy house, a conventional new house would have a HERS rating of 100), which qualifies it for federal energy efficiency and solar incentives. The house is leading to the planned construction of a similar home in Greensburg, Kansas, and 21 staff houses in the Walden Reserve, a 7000-unit "deep green" community in Cookville, Tennessee. Discussions are underway for construction of similar houses in Charleston, South Carolina, Seattle, Washington, Knoxville and Oak Ridge, Tennessee, and upstate New York. This house should lead to a 40% and 50% Gate-3, Mixed-Humid-Climate Joule for the DOE Building America Program. The house is constructed with structurally-insulated-panel walls and roof, raised metal-seam roof with infrared reflective coating, airtight envelope (1.65 air changes per hour at 50 Pascal), supply mechanical ventilation, ducts inside the conditioned space, extensive moisture control package, foundation geothermal space heating and cooling system, ZEHcor wall, solar water heater, and a 2.2 kWp grid-connected photovoltaic (PV) system. The detailed specifications for the envelope and the equipment used in ZEH5 compared to all the houses in this series are shown in Tables 1 and 2. Based on a validated computer simulation of ZEH5 with typical occupancy patterns and energy services for four occupants, energy for this all-electric house is predicted to cost only $0.66/day ($0.86/day counting the hookup charges). By contrast, the benchmark house would require $3.56/day, including hookup charges (these costs are based on a 2006 residential rates of $0.07/kWh and solar buyback at $0.15/kWh). The solar

  17. Moisture Performance of Energy-Efficient and Conventional Wood-Frame Wall Assemblies in a Mixed-Humid Climate

    Directory of Open Access Journals (Sweden)

    Samuel V. Glass

    2015-07-01

    Full Text Available Long-term moisture performance is a critical consideration for design and construction of building envelopes in energy-efficient buildings, yet field measurements of moisture characteristics for highly insulated wood-frame walls in mixed-humid climates are lacking. Temperature, relative humidity, and moisture content of wood framing and oriented strand board (OSB structural panel sheathing were measured over a period from mid-November 2011 through March 2013 in both north- and south-facing orientations in test structures near Washington, DC, USA. Wall configurations varied in exterior cladding, water-resistive barrier, level of cavity insulation, presence of exterior continuous insulation, and interior vapor retarder. The combination of high interior humidity and high vapor permeance of painted gypsum board led to significant moisture accumulation in OSB sheathing during winter in walls without a vapor retarder. In contrast, wintertime moisture accumulation was not significant with an interior kraft vapor retarder. Extruded polystyrene exterior insulation had a predictable effect on wall cavity temperature but a marginal impact on OSB moisture content in walls with vinyl siding and interior kraft vapor retarder. Hygrothermal simulations approximately captured the timing of seasonal changes in OSB moisture content, differences between north- and south-facing walls, and differences between walls with and without an interior kraft vapor retarder.

  18. Climate hot spots: Generating knowledge for an uncertain future ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-10-26

    Oct 26, 2016 ... Climate change is felt globally, but particularly in developing countries. ... The project addresses the conditions for economic growth and ... Investing in Internet access boosts incomes, concludes Latin American study.

  19. Biomimicry as an approach for sustainable architecture case of arid regions with hot and dry climate

    Science.gov (United States)

    Bouabdallah, Nabila; M'sellem, Houda; Alkama, Djamel

    2016-07-01

    This paper aims to study the problem of thermal comfort inside buildings located in hot and arid climates. The principal idea behind this research is using concepts based on the potential of nature as an instrument that helps creating appropriate facades with the environment "building skin". The biomimetic architecture imitates nature through the study of form, function, behaviour and ecosystems of biological organisms. This research aims to clarify the possibilities that can be offered by biomimicry architecture to develop architectural bio-inspired building's design that can help to enhance indoor thermal ambiance in buildings located in hot and dry climate which helps to achieve thermal comfort for users.

  20. Assessment of Humidity Conditions and Trends Based on Standardized Precipitation Evapotranspiration Index (SEPI Over Different Climatic Regions of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Ghabaei S

    2017-01-01

    Full Text Available Introduction: Drought is a recurrent feature of climate that caused by deficiency of precipitation over time. Due to the rise in water demand and alarming climate change, recent year’s observer much focus on drought and drought conditions. A multiple types of deficits and relevant temporal scales can be achieved through the construction of a joint indicator that draws on information from multiple sources and will therefore enable better assessment of drought characteristics including return period, persistent and severity. The Standardized Precipitation Evapotranspiration Index (SPEI combines information from precipitation and temperature in the form of water surplus or deficit according to Standardized Precipitation Index (SPI. Rainfall over some regions of Iran during some resent year was below average while mean and maximum temperatures were very high during this period, as was evaporation. This would suggest that drought conditions were worse than in previous recent periods with similarly low rainfall. The main objective of this study is to assess the influences of humidity on the SPEI index and investigate its relation with SPI and Reconnaissance Drought Index (RDI over six different climatic regions in Iran. Materials and Methods: Iran has different climatic conditions which vary from desert in central part to costal wet near the Caspian Sea. In this study the selection of stations was done based on Alijani et al (2008 climatic classification. We chose 11 synoptic stations from six different climatic classes including costal wet (Rasht and Babolsar, semi mountains (Mashhad and Tabriz, mountains (Shiraz and Khoram Abad, semi-arid (Tehran and Semnan, arid (Kerman and Yazd and costal desert (Bandar Abas. The Meteorological datasets for the aforementioned stations were obtained from the Iran Meteorological Organization (IRIMO for the period 1960-2010. The compiled data included average monthly values of precipitation, minimum and maximum air

  1. Hydrological drought and wildfire in the humid tropics

    NARCIS (Netherlands)

    Taufik, Muh

    2017-01-01

    Drought is a recurrent hazard, which has happened throughout human history, and it is anticipated to become more severe in multiple regions across the world. Drought occurs in all climate regimes from humid to dry and from hot to cold. Drought is often viewed through its impact on environment and

  2. Evaluation of wet bulb globe temperature index for estimation of heat strain in hot/humid conditions in the Persian Gulf.

    Science.gov (United States)

    Dehghan, Habibolah; Mortazavi, Seyed Bagher; Jafari, Mohammad J; Maracy, Mohammad R

    2012-12-01

    Heat exposure among construction workers in the Persian Gulf region is a serious hazard for health. The aim of this study was to evaluate the performance of wet bulb globe temperature (WBGT) Index for estimation of heat strain in hot/humid conditions by the use of Physiological Strain Index (PSI) as the gold standard. This cross-sectional study was carried out on 71 workers of two Petrochemical Companies in South of Iran in 2010 summer. The WBGT index, heart rate, and aural temperature were measured by Heat Stress Monitor (Casella Microtherm WBGT), Heart Rate Monitor (Polar RS100), and Personal Heat Strain Monitor (Questemp II), respectively. The obtained data were analyzed with descriptive statistics and Pearson correlation analysis. The mean (SD) of WBGT values was 33.1 (2.7). The WBGT values exceed from American Conference of Governmental Industrial Hygienists (ACGIH) standard (30°C) in 96% work stations, whereas the PSI values were more than 5.0 (moderate strain) in 11% of workstations. The correlation between WBGT and PSI values was 0.61 (P = 0.001). When WBGT values were less and more than 34°C, the mean of PSI was 2.6 (low strain) and 5.2 (moderate strain), respectively. In the Persian Gulf weather, especially hot and humid in the summer months, due to the WBGT values exceeding 30°C (in 96% of cases) and weak correlation between WBGT and PSI, the work/rest cycles of WBGT Index is not suitable for heat stress management. Therefore, in Persian Gulf weather, heat stress evaluation based on physiologic variables may have higher validity than WBGT index.

  3. Evaluation of wet bulb globe temperature index for estimation of heat strain in hot/humid conditions in the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Habibolah Dehghan

    2012-01-01

    Full Text Available Background: Heat exposure among construction workers in the Persian Gulf region is a serious hazard for health. The aim of this study was to evaluate the performance of wet bulb globe temperature (WBGT Index for estimation of heat strain in hot/humid conditions by the use of Physiological Strain Index (PSI as the gold standard. Material and Methods : This cross-sectional study was carried out on 71 workers of two Petrochemical Companies in South of Iran in 2010 summer. The WBGT index, heart rate, and aural temperature were measured by Heat Stress Monitor (Casella Microtherm WBGT, Heart Rate Monitor (Polar RS100, and Personal Heat Strain Monitor (Questemp II, respectively. The obtained data were analyzed with descriptive statistics and Pearson correlation analysis. Results: The mean (SD of WBGT values was 33.1 (2.7. The WBGT values exceed from American Conference of Governmental Industrial Hygienists (ACGIH standard (30°C in 96% work stations, whereas the PSI values were more than 5.0 (moderate strain in 11% of workstations. The correlation between WBGT and PSI values was 0.61 ( P = 0.001. When WBGT values were less and more than 34°C, the mean of PSI was 2.6 (low strain and 5.2 (moderate strain, respectively. Conclusion: In the Persian Gulf weather, especially hot and humid in the summer months, due to the WBGT values exceeding 30°C (in 96% of cases and weak correlation between WBGT and PSI, the work/rest cycles of WBGT Index is not suitable for heat stress management. Therefore, in Persian Gulf weather, heat stress evaluation based on physiologic variables may have higher validity than WBGT index.

  4. Validity and reliability of a field technique for sweat Na+ and K+ analysis during exercise in a hot-humid environment.

    Science.gov (United States)

    Baker, Lindsay B; Ungaro, Corey T; Barnes, Kelly A; Nuccio, Ryan P; Reimel, Adam J; Stofan, John R

    2014-01-01

    Abstract This study compared a field versus reference laboratory technique for extracting (syringe vs. centrifuge) and analyzing sweat [Na(+)] and [K(+)] (compact Horiba B-722 and B-731, HORIBA vs. ion chromatography, HPLC) collected with regional absorbent patches during exercise in a hot-humid environment. Sweat samples were collected from seven anatomical sites on 30 athletes during 1-h cycling in a heat chamber (33°C, 67% rh). Ten minutes into exercise, skin was cleaned/dried and two sweat patches were applied per anatomical site. After removal, one patch per site was centrifuged and sweat was analyzed with HORIBA in the heat chamber (CENTRIFUGE HORIBA) versus HPLC (CENTRIFUGE HPLC). Sweat from the second patch per site was extracted using a 5-mL syringe and analyzed with HORIBA in the heat chamber (SYRINGE HORIBA) versus HPLC (SYRINGE HPLC). CENTRIFUGE HORIBA, SYRINGE HPLC, and SYRINGE HORIBA were highly related to CENTRIFUGE HPLC ([Na(+)]: ICC = 0.96, 0.94, and 0.93, respectively; [K(+)]: ICC = 0.87, 0.92, and 0.84, respectively), while mean differences from CENTRIFUGE HPLC were small but usually significant ([Na(+)]: 4.7 ± 7.9 mEql/L, -2.5 ± 9.3 mEq/L, 4.0 ± 10.9 mEq/L (all P CENTRIFUGE HPLC 95% of the time. The field (SYRINGE HORIBA) method of extracting and analyzing sweat from regional absorbent patches may be useful in obtaining sweat [Na(+)] when rapid estimates in a hot-humid field setting are needed.

  5. Designing of zero energy office buildings in hot arid climate

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gwad, Mohamed

    2011-07-01

    The designing of office buildings by using large glass areas to have a transparent building is an attractive approach in the modern office building architecture. This attitude increases the energy demand for cooling specially in the hot arid region which has long sun duration time, while the use of small glazing areas increases the energy demand for lighting. The use of uncontrolled natural ventilation increases the rate of hot ambient air flow which increases the building energy demand for cooling. At the same time, the use of mechanical ventilation to control the air change rate may increase the energy demand for fans. Some ideas such as low energy design concept are introduced for improving the building energy performance and different rating systems have been developed such as LEED, BREEAM and DGNB for evaluating building energy performance system. One of the new ideas for decreasing the dependence on fossil fuels and improving the use of renewable energy is the net zero-energy building concept in which the building generates enough renewable energy on site to equal or exceed its annual energy use. This work depends on using the potentials of mixing different energy strategies such as hybrid ventilation strategy, passive night cooling, passive chilled ceiling side by side with the integrating of photovoltaic modules into the building facade to produce energy and enrich the architectural aesthetics and finally reaching the Net Zero Energy Building. There are different definitions for zero energy buildings, however in this work the use of building-integrated Photovoltaic (BIPV) to provide the building with its annual energy needs is adopted, in order to reach to a Grid-Connected Net-Zero Energy Office Building in the hot arid desert zone represented by Cairo, Egypt. (orig.)

  6. Lower prevalence and greater severity of asthma in hot and dry climate

    Directory of Open Access Journals (Sweden)

    Marco Aurélio de Valois Correia Junior

    2017-03-01

    Conclusion: Asthma prevalence in this low‐humidity environment was lower, but more severe than those reported in other Brazilian cities. The dry climate might hamper disease control and this may have contributed to the higher school absenteeism observed. The association of asthma with allergic rhinitis and atopic dermatitis as well as a history of asthma in parents suggests that atopy is an important risk factor for asthma in this population.

  7. Challenges in Selecting an Appropriate Heat Stress Index to Protect Workers in Hot and Humid Underground Mines

    Directory of Open Access Journals (Sweden)

    Pedram Roghanchi

    2018-03-01

    Full Text Available Background: A detailed evaluation of the underground mine climate requires extensive measurements to be performed coupled to climatic modeling work. This can be labor-intensive and time-consuming, and consequently impractical for daily work comfort assessments. Therefore, a simple indicator like a heat stress index is needed to enable a quick, valid, and acceptable evaluation of underground climatic conditions on a regular basis. This can be explained by the unending quest to develop a “universal index,” which has led to the proliferation of many proposed heat stress indices. Methods: The aim of this research study is to discuss the challenges in identifying and selecting an appropriate heat stress index for thermal planning and management purposes in underground mines. A method is proposed coupled to a defined strategy for selecting and recommending heat stress indices to be used in underground metal mines in the United States and worldwide based on a thermal comfort model. Results: The performance of current heat stress indices used in underground mines varies based on the climatic conditions and the level of activities. Therefore, carefully selecting or establishing an appropriate heat stress index is of paramount importance to ensure the safety, health, and increasing productivity of the underground workers. Conclusion: This method presents an important tool to assess and select the most appropriate index for certain climatic conditions to protect the underground workers from heat-related illnesses. Although complex, the method presents results that are easy to interpret and understand than any of the currently available evaluation methods. Keywords: climatic conditions, heat stress index, thermal comfort, underground mining

  8. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate.

    Science.gov (United States)

    Johnston, James D; Tuttle, Steven C; Nelson, Morgan C; Bradshaw, Rebecca K; Hoybjerg, Taylor G; Johnson, Julene B; Kruman, Bryce A; Orton, Taylor S; Cook, Ryan B; Eggett, Dennis L; Weber, K Scott

    2016-01-01

    Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan-Apr) and summer (July-Sept), 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction.

  9. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate.

    Directory of Open Access Journals (Sweden)

    James D Johnston

    Full Text Available Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan-Apr and summer (July-Sept, 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction.

  10. A review of hot climate concreting, and the appropriate procedures for ordinary jobsites in developing countries

    Directory of Open Access Journals (Sweden)

    Bella Nabil

    2017-01-01

    Full Text Available Hot weather concreting involves some procedures to reduce negative effects caused principally by excessive water evaporation from the concrete surface. Potential problems for fresh concrete are: increased demand for water, increased the tendency the rate of slump loss corresponding to add water on job-site, an increased in execution rate, increased tendency for plastic shrinkage cracking and increased difficulty in controlling occluded air. Potential problems for hardened concrete may include: reduction of resistance at 28 days and long-term resulting of higher water demand and/or higher temperature of concrete, decreased durability resulting from cracking. Most developing countries have hot climate, ordinary jobsites in developing countries are characterised by reduced of human resources, equipment and infrastructures. This paper briefly reviews hot climate concreting procedures, especially the latest research in developing countries, and discusses the most appropriate in developing countries.

  11. Hot house global climate change and the human condition

    CERN Document Server

    Strom, Robert G

    2007-01-01

    Global warming is addressed by almost all sciences including many aspects of geosciences, atmospheric, the biological sciences, and even astronomy. It has recently become the concern of other diverse disciplines such as economics, agriculture, demographics and population statistics, medicine, engineering, and political science. This book addresses these complex interactions, integrates them, and derives meaningful conclusions and possible solutions. The text provides an easy-to-read explanation of past and present global climate change, causes and possible solutions to the problem, including t

  12. A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate

    Science.gov (United States)

    El Dallal, Norhan; Visser, Florentine

    2017-09-01

    In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.

  13. Evaluation of skill at simulating heatwave and heat-humidity indices in Global and Regional Climate Models

    Science.gov (United States)

    Goldie, J. K.; Alexander, L. V.; Lewis, S. C.; Sherwood, S. C.

    2017-12-01

    A wide body of literature now establishes the harm of extreme heat on human health, and work is now emerging on the projection of future health impacts. However, heat-health relationships vary across different populations (Gasparrini et al. 2015), so accurate simulation of regional climate is an important component of joint health impact projection. Here, we evaluate the ability of nine Global Climate Models (GCMs) from CMIP5 and the NARCliM Regional Climate Model to reproduce a selection of 15 health-relevant heatwave and heat-humidity indices over the historical period (1990-2005) using the Perkins skill score (Perkins et al. 2007) in five Australian cities. We explore the reasons for poor model skill, comparing these modelled distributions to both weather station observations and gridded reanalysis data. Finally, we show changes in the modelled distributions from the highest-performing models under RCP4.5 and RCP8.5 greenhouse gas scenarios and discuss the implications of simulated heat stress for future climate change adaptation. ReferencesGasparrini, Antonio, Yuming Guo, Masahiro Hashizume, Eric Lavigne, Antonella Zanobetti, Joel Schwartz, Aurelio Tobias, et al. "Mortality Risk Attributable to High and Low Ambient Temperature: A Multicountry Observational Study." The Lancet 386, no. 9991 (July 31, 2015): 369-75. doi:10.1016/S0140-6736(14)62114-0. Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. McAneney. "Evaluation of the AR4 Climate Models' Simulated Daily Maximum Temperature, Minimum Temperature, and Precipitation over Australia Using Probability Density Functions." Journal of Climate 20, no. 17 (September 1, 2007): 4356-76. doi:10.1175/JCLI4253.1.

  14. HadISDH: an updateable land surface specific humidity product for climate monitoring

    Directory of Open Access Journals (Sweden)

    K. M. Willett

    2013-03-01

    Full Text Available HadISDH is a near-global land surface specific humidity monitoring product providing monthly means from 1973 onwards over large-scale grids. Presented herein to 2012, annual updates are anticipated. HadISDH is an update to the land component of HadCRUH, utilising the global high-resolution land surface station product HadISD as a basis. HadISD, in turn, uses an updated version of NOAA's Integrated Surface Database. Intensive automated quality control has been undertaken at the individual observation level, as part of HadISD processing. The data have been subsequently run through the pairwise homogenisation algorithm developed for NCDC's US Historical Climatology Network monthly temperature product. For the first time, uncertainty estimates are provided at the grid-box spatial scale and monthly timescale. HadISDH is in good agreement with existing land surface humidity products in periods of overlap, and with both land air and sea surface temperature estimates. Widespread moistening is shown over the 1973–2012 period. The largest moistening signals are over the tropics with drying over the subtropics, supporting other evidence of an intensified hydrological cycle over recent years. Moistening is detectable with high (95% confidence over large-scale averages for the globe, Northern Hemisphere and tropics, with trends of 0.089 (0.080 to 0.098 g kg−1 per decade, 0.086 (0.075 to 0.097 g kg−1 per decade and 0.133 (0.119 to 0.148 g kg−1 per decade, respectively. These changes are outside the uncertainty range for the large-scale average which is dominated by the spatial coverage component; station and grid-box sampling uncertainty is essentially negligible on large scales. A very small moistening (0.013 (−0.005 to 0.031 g kg−1 per decade is found in the Southern Hemisphere, but it is not significantly different from zero and uncertainty is large. When globally averaged, 1998 is the moistest year since monitoring began in 1973, closely

  15. Irrigation water consumption modelling of a soilless cucumber crop under specific greenhouse conditions in a humid tropical climate

    Directory of Open Access Journals (Sweden)

    Galo Alberto Salcedo

    Full Text Available ABSTRACT: The irrigation water consumption of a soilless cucumber crop under greenhouse conditions in a humid tropical climate has been evaluated in this paper in order to improve the irrigation water and fertilizers management in these specific conditions. For this purpose, a field experiment was conducted. Two trials were carried out during the years 2011 and 2014 in an experimental farm located in Vinces (Ecuador. In each trial, the complete growing cycle of a cucumber crop grown under a greenhouse was evaluated. Crop development was monitored and a good fit to a sigmoidal Gompertz type growth function was reported. The daily water uptake of the crop was measured and related to the most relevant indoor climate variables. Two different combination methods, namely the Penman-Monteith equation and the Baille equation, were applied. However, the results obtained with these combination methods were not satisfactory due to the poor correlation between the climatic variables, especially the incoming radiation, and the crop's water uptake (WU. On contrary, a good correlation was reported between the crop's water uptake and the leaf area index (LAI, especially in the initial crop stages. However, when the crop is fully developed, the WU stabilizes and becomes independent from the LAI. A preliminary model to simulate the water uptake of the crop was adjusted using the data obtained in the first experiment and then validated with the data of the second experiment.

  16. Composition and fate of mine- and smelter-derived particles in soils of humid subtropical and hot semi-arid areas

    Energy Technology Data Exchange (ETDEWEB)

    Ettler, Vojtěch, E-mail: ettler@natur.cuni.cz [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha 2 (Czech Republic); Johan, Zdenek [BRGM, Avenue Claude Guillemin, 45082 Orléans Cedex 2 (France); Kříbek, Bohdan; Veselovský, František [Czech Geological Survey, Geologická 6, 152 00 Praha 5 (Czech Republic); Mihaljevič, Martin [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha 2 (Czech Republic); Vaněk, Aleš; Penížek, Vít [Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6 (Czech Republic); Majer, Vladimír [Czech Geological Survey, Geologická 6, 152 00 Praha 5 (Czech Republic); Sracek, Ondra [Department of Geology, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Mapani, Ben; Kamona, Fred [Department of Geology, Faculty of Science, University of Namibia, Private Bag 13301, Windhoek (Namibia); Nyambe, Imasiku [University of Zambia, School of Mines, P. O. Box 32 379, Lusaka (Zambia)

    2016-09-01

    We studied the heavy mineral fraction, separated from mining- and smelter-affected topsoils, from both a humid subtropical area (Mufulira, Zambian Copperbelt) and a hot semi-arid area (Tsumeb, Namibia). High concentrations of metal(loid)s were detected in the studied soils: up to 1450 mg As kg{sup −1}, 8980 mg Cu kg{sup −1}, 4640 mg Pb kg{sup −1}, 2620 mg Zn kg{sup −1}. A combination of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS), and electron probe microanalysis (EPMA) helped to identify the phases forming individual metal(loid)-bearing particles. Whereas spherical particles originate from the smelting and flue gas cleaning processes, angular particles have either geogenic origins or they are windblown from the mining operations and mine waste disposal sites. Sulphides from ores and mine tailings often exhibit weathering rims in contrast to smelter-derived high-temperature sulphides (chalcocite [Cu{sub 2}S], digenite [Cu{sub 9}S{sub 5}], covellite [CuS], non-stoichiometric quenched Cu–Fe–S phases). Soils from humid subtropical areas exhibit higher available concentrations of metal(loids), and higher frequencies of weathering features (especially for copper-bearing oxides such as delafossite [Cu{sup 1+} Fe{sup 3+} O{sub 2}]) are observed. In contrast, metal(loid)s are efficiently retained in semi-arid soils, where a high proportion of non-weathered smelter slag particles and low-solubility Ca–Cu–Pb arsenates occur. Our results indicate that compared to semi-arid areas (where inorganic contaminants were rather immobile in soils despite their high concentrations) a higher potential risk exists for agriculture in mine- and smelter-affected humid subtropical areas (where metal(loid) contaminants can be highly available for the uptake by crops). - Highlights: • Mining- and smelter-derived particles identified in subtropical and semi-arid soils • Sulphides, oxides, and metal-bearing arsenates most frequently encountered

  17. Simulation of the Holocene climate evolution in Nothern Africa: the termination of the African Humid Period.

    NARCIS (Netherlands)

    Renssen, H.; Brovkin, V.; Fichefet, T.; Goosse, H.

    2006-01-01

    The Holocene climate evolution in Northern Africa is studied in a 9000-yr-long transient simulation with a coupled atmosphere-ocean-vegetation model forced by changes in insolation and atmospheric greenhouse gas concentrations. The model simulates in the monsoonal domains a significant decrease in

  18. Cold-Climate Solar Domestic Hot Water Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Salasovich, J.; Hillman, T.

    2005-11-01

    The Solar Heating and Lighting Sub-program has set the key goal to reduce the cost of saved energy [Csav, defined as (total cost, $)/(total discounted savings, kWh_thermal)] for solar domestic water heaters (SDWH) by at least 50%. To determine if this goal is attainable and prioritize R&D for cold-climate SDWH, life-cycle analyses were done with hypothetical lower-cost components in glycol, drainback, and thermosiphon systems. Balance-of-system (BOS, everything but the collector) measures included replacing metal components with polymeric versions and system simplification. With all BOS measures in place, Csav could be reduced more than 50% with a low-cost, selectively-coated, glazed polymeric collector, and slightly less than 50% with either a conventional selective metal-glass or a non-selective glazed polymer collector. The largest percent reduction in Csav comes from replacing conventional pressurized solar storage tanks and metal heat exchangers with un-pressurized polymer tanks with immersed polymer heat exchangers, which could be developed with relatively low-risk R&D.

  19. Climate-based statistical regression models for crop yield forecasting of coffee in humid tropical Kerala, India

    Science.gov (United States)

    Jayakumar, M.; Rajavel, M.; Surendran, U.

    2016-12-01

    A study on the variability of coffee yield of both Coffea arabica and Coffea canephora as influenced by climate parameters (rainfall (RF), maximum temperature (Tmax), minimum temperature (Tmin), and mean relative humidity (RH)) was undertaken at Regional Coffee Research Station, Chundale, Wayanad, Kerala State, India. The result on the coffee yield data of 30 years (1980 to 2009) revealed that the yield of coffee is fluctuating with the variations in climatic parameters. Among the species, productivity was higher for C. canephora coffee than C. arabica in most of the years. Maximum yield of C. canephora (2040 kg ha-1) was recorded in 2003-2004 and there was declining trend of yield noticed in the recent years. Similarly, the maximum yield of C. arabica (1745 kg ha-1) was recorded in 1988-1989 and decreased yield was noticed in the subsequent years till 1997-1998 due to year to year variability in climate. The highest correlation coefficient was found between the yield of C. arabica coffee and maximum temperature during January (0.7) and between C. arabica coffee yield and RH during July (0.4). Yield of C. canephora coffee had highest correlation with maximum temperature, RH and rainfall during February. Statistical regression model between selected climatic parameters and yield of C. arabica and C. canephora coffee was developed to forecast the yield of coffee in Wayanad district in Kerala. The model was validated for years 2010, 2011, and 2012 with the coffee yield data obtained during the years and the prediction was found to be good.

  20. Interior shadings for office indoor visual comfort in humid climate region

    Science.gov (United States)

    Dinapradipta, Asri; Sudarma, Erwin; Defiana, Ima; Erwindi, Collinthia

    2018-03-01

    As part of the fenestration system, the interior shadings have also a role to control the indoor environment to maintain indoor visual comfort. As the occupants have personal access to control these, their control behavior then, might enhance or even worsen indoor comfort performance. The controlling behavior might not only influence indoor comfort performance but can also indicate the success or failure of interior shading as a control device element. This paper is intended to report control behavior patterns, as represented by the variety of the slats’ openings of two types of interior shading i.e. Venetian and Vertical blinds and to analyze these on the concurrent impacts to indoor office building’s indoor illuminance and luminance distribution. The purpose of this research is to figure out the shading control patterns as well as to examine the effectiveness of these two types of interior shadings to control indoor visual environment. This study is a quantitative research using experimentation on the slats’ opening of two types of shadings at two identical office rooms. The research results suggested that both types of blinds seem unsuitable for gaining proper illumination values at work planes in humid tropics area. However, these shadings demonstrate good performance for luminance distribution except for that of the closed Venetian blinds.

  1. Optimizing cloud removal from satellite remotely sensed data for monitoring vegetation dynamics in humid tropical climate

    International Nuclear Information System (INIS)

    Hashim, M; Pour, A B; Onn, C H

    2014-01-01

    Remote sensing technology is an important tool to analyze vegetation dynamics, quantifying vegetation fraction of Earth's agricultural and natural vegetation. In optical remote sensing analysis removing atmospheric interferences, particularly distribution of cloud contaminations, are always a critical task in the tropical climate. This paper suggests a fast and alternative approach to remove cloud and shadow contaminations for Landsat Enhanced Thematic Mapper + (ETM + ) multi temporal datasets. Band 3 and Band 4 from all the Landsat ETM + dataset are two main spectral bands that are very crucial in this study for cloud removal technique. The Normalise difference vegetation index (NDVI) and the normalised difference soil index (NDSI) are two main derivatives derived from the datasets. Change vector analysis is used in this study to seek the vegetation dynamics. The approach developed in this study for cloud optimizing can be broadly applicable for optical remote sensing satellite data, which are seriously obscured with heavy cloud contamination in the tropical climate

  2. Conceptual differences between the bioclimatic urbanism for Europe and for the tropical humid climate

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, O.D.; Magalhaes, M.A.A.A. [Faculdade de Arquitetura e Urbanismo, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2008-05-15

    This article makes part of a series of conceptual papers to continue the discussion about how architecture and urbanism interact with climate, in tropical regions. Students engaged in normal courses of architecture in tropical regions, particularly in South America, develop their knowledge based on concepts generated in the developed countries - usually related to cold environments. Consequently, these students acquire wrong ideas about urban design of open spaces. Integrating urbanism and climate in tropical countries is still very incipient as an approach and many lecturers reject it, since they prefer to continue with a more formal one, dictated by most of the dominant countries. The herein paper underlines several different concepts and perspectives that separate the two conceptions, leading to a reflection about the subject. (author)

  3. Impacts of climate change on cropping patterns in a tropical, sub-humid watershed

    Science.gov (United States)

    Zwart, Sander J.; Hein, Lars

    2018-01-01

    In recent decades, there have been substantial increases in crop production in sub-Saharan Africa (SSA) as a result of higher yields, increased cropping intensity, expansion of irrigated cropping systems, and rainfed cropland expansion. Yet, to date much of the research focus of the impact of climate change on crop production in the coming decades has been on crop yield responses. In this study, we analyse the impact of climate change on the potential for increasing rainfed cropping intensity through sequential cropping and irrigation expansion in central Benin. Our approach combines hydrological modelling and scenario analysis involving two Representative Concentration Pathways (RCPs), two water-use scenarios for the watershed based on the Shared Socioeconomic Pathways (SSPs), and environmental water requirements leading to sustained streamflow. Our analyses show that in Benin, warmer temperatures will severely limit crop production increases achieved through the expansion of sequential cropping. Depending on the climate change scenario, between 50% and 95% of cultivated areas that can currently support sequential cropping or will need to revert to single cropping. The results also show that the irrigation potential of the watershed will be at least halved by mid-century in all scenario combinations. Given the urgent need to increase crop production to meet the demands of a growing population in SSA, our study outlines challenges and the need for planned development that need to be overcome to improve food security in the coming decades. PMID:29513753

  4. A comparison of the lactate Pro, Accusport, Analox GM7 and Kodak Ektachem lactate analysers in normal, hot and humid conditions.

    Science.gov (United States)

    Mc Naughton, L R; Thompson, D; Philips, G; Backx, K; Crickmore, L

    2002-02-01

    This study aimed to compare the performance of a new portable lactate analyser against other standard laboratory methods in three conditions, normal (20 +/- 1.3 degrees C; 40 +/- 5 % RH), hot (40 +/- 2.5 degrees C; 40 +/- 5 % RH), and humid (20 +/- 1.1 degrees C; 82 +/- 6 % RH) conditions. Seven healthy males, ([Mean +/- SE]: age, 26.3 +/- 1.3 yr; height, 177.7 +/- 1.6 cm; weight, 77.4 +/- 0.9 kg, .VO(2)max, 56.1 +/- 1.9 ml x kg x min(-1)) undertook a maximal cycle ergometry test to exhaustion in the three conditions. Blood was taken every 3 min at the end of each stage and was analysed using the Lactate Pro LT-1710, the Accusport, the Analox GM7 and the Kodak Ektachem systems. The MANOVA (Analyser Type x Condition x Workload) indicated no interaction effect (F(42,660), = 0.45, p > 0.99, Power = 0.53). The data across all workloads indicated that the machines measured significantly differently to each other (F(4,743) = 14.652, p < 0.0001, Power = 1.00). The data were moderately to highly correlated. We conclude that the Lactate Pro is a simple and effective measurement device for taking blood lactate in a field or laboratory setting. However, we would caution against using this machine to compare data from other machines.

  5. Assessment of tracheal temperature and humidity in laryngectomized individuals and the influence of a heat and moisture exchanger on tracheal climate

    NARCIS (Netherlands)

    Zuur, J. Karel; Muller, Saar H.; Vincent, Andrew; Sinaasappel, Michiel; de Jongh, Frans H. C.; Hilgers, Frans J. M.

    2008-01-01

    The beneficial function of heat and moisture exchangers (HMEs) is undisputed, but knowledge of their effects on intra-airway temperature and humidity is scarce. The aim of this study was to evaluate the clinical applicability of a new airway climate explorer (ACE) and to assess the HME's influence

  6. Relationship between alpine tourism demand and hot summer air temperatures associated with climate change

    Science.gov (United States)

    Rebetez, M.; Serquet, G.

    2010-09-01

    We quantified the impacts of hot summer air temperatures on tourism in the Swiss Alps by analyzing the relationship between temperature and overnight stays in 40 Alpine resorts. Several temperature and insolation thresholds were tested to detect their relationship to summer tourism. Our results reveal significant correlations between the number of nights spent in mountain resorts and hot temperatures at lower elevations. Alpine resorts nearest to cities are most sensitive to hot temperatures. This is probably because reactions to hot episodes take place on a short-term basis as heat waves remain relatively rare. The correlation in June is stronger compared to the other months, probably because school holidays and the peak domestic tourist demand in summer usually takes place in July and August. Our results suggest that alpine tourist resorts could benefit from hotter temperatures at lower elevations under future climates. Tourists already react on a short-term basis to hot days and spend more nights in hotels in mountain resorts. If heat waves become more regular, it seems likely that tourists choose to stay at alpine resorts more frequently and for longer periods.

  7. Vegetation Responses to Climate Variability in the Northern Arid to Sub-Humid Zones of Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Khaldoun Rishmawi

    2016-11-01

    Full Text Available In water limited environments precipitation is often considered the key factor influencing vegetation growth and rates of development. However; other climate variables including temperature; humidity; the frequency and intensity of precipitation events are also known to affect productivity; either directly by changing photosynthesis and transpiration rates or indirectly by influencing water availability and plant physiology. The aim here is to quantify the spatiotemporal patterns of vegetation responses to precipitation and to additional; relevant; meteorological variables. First; an empirical; statistical analysis of the relationship between precipitation and the additional meteorological variables and a proxy of vegetation productivity (the Normalized Difference Vegetation Index; NDVI is reported and; second; a process-oriented modeling approach to explore the hydrologic and biophysical mechanisms to which the significant empirical relationships might be attributed. The analysis was conducted in Sub-Saharan Africa; between 5 and 18°N; for a 25-year period 1982–2006; and used a new quasi-daily Advanced Very High Resolution Radiometer (AVHRR dataset. The results suggest that vegetation; particularly in the wetter areas; does not always respond directly and proportionately to precipitation variation; either because of the non-linearity of soil moisture recharge in response to increases in precipitation; or because variations in temperature and humidity attenuate the vegetation responses to changes in water availability. We also find that productivity; independent of changes in total precipitation; is responsive to intra-annual precipitation variation. A significant consequence is that the degree of correlation of all the meteorological variables with productivity varies geographically; so no one formulation is adequate for the entire region. Put together; these results demonstrate that vegetation responses to meteorological variation are more

  8. Quantifying wetland–aquifer interactions in a humid subtropical climate region: An integrated approach

    Science.gov (United States)

    Mendoza-Sanchez, Itza; Phanikumar, Mantha S.; Niu, Jie; Masoner, Jason R.; Cozzarelli, Isabelle M.; McGuire, Jennifer T.

    2013-01-01

    Wetlands are widely recognized as sentinels of global climate change. Long-term monitoring data combined with process-based modeling has the potential to shed light on key processes and how they change over time. This paper reports the development and application of a simple water balance model based on long-term climate, soil, vegetation and hydrological dynamics to quantify groundwater–surface water (GW–SW) interactions at the Norman landfill research site in Oklahoma, USA. Our integrated approach involved model evaluation by means of the following independent measurements: (a) groundwater inflow calculation using stable isotopes of oxygen and hydrogen (16O, 18O, 1H, 2H); (b) seepage flux measurements in the wetland hyporheic sediment; and (c) pan evaporation measurements on land and in the wetland. The integrated approach was useful for identifying the dominant hydrological processes at the site, including recharge and subsurface flows. Simulated recharge compared well with estimates obtained using isotope methods from previous studies and allowed us to identify specific annual signatures of this important process during the period of study (1997–2007). Similarly, observations of groundwater inflow and outflow rates to and from the wetland using seepage meters and isotope methods were found to be in good agreement with simulation results. Results indicate that subsurface flow components in the system are seasonal and readily respond to rainfall events. The wetland water balance is dominated by local groundwater inputs and regional groundwater flow contributes little to the overall water balance.

  9. Late Pliocene diversity and distribution of Drynaria (Polypodiaceae in western Yunnan explained by forest vegetation and humid climates

    Directory of Open Access Journals (Sweden)

    Yong-Jiang Huang

    2016-08-01

    Full Text Available The palaeodiversity of flowering plants in Yunnan has been extensively interpreted from both a molecular and fossil perspective. However, for cryptogamic plants such as ferns, the palaeodiversity remains poorly known. In this study, we describe a new ferny fossil taxon, Drynaria lanpingensis sp. nov. Huang, Su et Zhou (Polypodiaceae, from the late Pliocene of northwestern Yunnan based on fragmentary frond and pinna with in situ spores. The frond is pinnatifid and the pinnae are entirely margined. The sori are arranged in one row on each side of the primary vein. The spores have a semicircular to bean-shaped equatorial view and a tuberculate surface. Taken together with previously described fossils, there are now representatives of three known fossil taxa of Drynaria from the late Pliocene of western Yunnan. These finds suggest that Drynaria diversity was considerable in the region at that time. As Drynaria is a shade-tolerant plant, growing preferably in wet conditions in the understory of forests, its extensive existence may indicate forest vegetation and humid climates in western Yunnan during the late Pliocene. This is in line with results from floristic investigations and palaeoclimatic reconstructions based on fossil floras.

  10. Performance Verification of Production-Scalable Energy-Efficient Solutions: Winchester/Camberley Homes Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Wiehagen, J. [Partnership for Home Innovation, Upper Marlboro, MD (United States)

    2014-07-01

    Winchester/Camberley Homes collaborated with the Building America team Partnership for Home Innovation to develop a new set of high performance home designs that could be applicable on a production scale. The new home designs are to be constructed in the mixed humid climate zone and could eventually apply to all of the builder's home designs to meet or exceed future energy codes or performance-based programs. However, the builder recognized that the combination of new wall framing designs and materials, higher levels of insulation in the wall cavity, and more detailed air sealing to achieve lower infiltration rates changes the moisture characteristics of the wall system. In order to ensure long term durability and repeatable successful implementation with few call-backs, the project team demonstrated through measured data that the wall system functions as a dynamic system, responding to changing interior and outdoor environmental conditions within recognized limits of the materials that make up the wall system. A similar investigation was made with respect to the complete redesign of the HVAC systems to significantly improve efficiency while maintaining indoor comfort. Recognizing the need to demonstrate the benefits of these efficiency features, the builder offered a new house model to serve as a test case to develop framing designs, evaluate material selections and installation requirements, changes to work scopes and contractor learning curves, as well as to compare theoretical performance characteristics with measured results.

  11. Performance Verification of Production-Scalable Energy-Efficient Solutions: Winchester/Camberley Homes Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D.; Wiehagen, J.

    2014-07-01

    Winchester/Camberley Homes with the Building America program and its NAHB Research Center Industry Partnership collaborated to develop a new set of high performance home designs that could be applicable on a production scale. The new home designs are to be constructed in the mixed humid climate zone four and could eventually apply to all of the builder's home designs to meet or exceed future energy codes or performance-based programs. However, the builder recognized that the combination of new wall framing designs and materials, higher levels of insulation in the wall cavity, and more detailed air sealing to achieve lower infiltration rates changes the moisture characteristics of the wall system. In order to ensure long term durability and repeatable successful implementation with few call-backs, this report demonstrates through measured data that the wall system functions as a dynamic system, responding to changing interior and outdoor environmental conditions within recognized limits of the materials that make up the wall system. A similar investigation was made with respect to the complete redesign of the heating, cooling, air distribution, and ventilation systems intended to optimize the equipment size and configuration to significantly improve efficiency while maintaining indoor comfort. Recognizing the need to demonstrate the benefits of these efficiency features, the builder offered a new house model to serve as a test case to develop framing designs, evaluate material selections and installation requirements, changes to work scopes and contractor learning curves, as well as to compare theoretical performance characteristics with measured results.

  12. Effects of oral rehydration and external cooling on physiology, perception, and performance in hot, dry climates.

    Science.gov (United States)

    Muñoz, C X; Carney, K R; Schick, M K; Coburn, J W; Becker, A J; Judelson, D A

    2012-12-01

    Only limited research evaluates possible benefits of combined drinking and external cooling (by pouring cold water over the body) during exercise. Therefore, this study examined cold water drinking and external cooling on physiological, perceptual, and performance variables in hot, dry environments. Ten male runners completed four trials of walking 90 min at 30% VO(2max) followed by running a 5-km time trial in 33 ± 1 °C and 30 ± 4% relative humidity. Trials examined no intervention (CON), oral rehydration (OR), external cooling (EC), and oral rehydration plus external cooling (OR + EC). Investigators measured rectal temperature, skin temperatures, heart rate, thirst, thermal sensation, and ratings of perceived exertion (RPE). Oral rehydration (OR and OR + EC) significantly lowered heart rate (P External cooling (EC and OR + EC) significantly reduced chest and thigh temperature (P external cooling (CON and OR) during low-intensity exercise. Performance exhibited no differences (CON = 23.86 ± 4.57 min, OR = 22.74 ± 3.20 min, EC = 22.96 ± 3.11 min, OR + EC = 22.64 ± 3.73 min, P = 0.379). Independent of OR, pouring cold water on the body benefited skin temperature, thermal sensation, and RPE during low-intensity exercise in hot, dry conditions but failed to influence high-intensity performance. © 2012 John Wiley & Sons A/S.

  13. Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seitzler, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-01

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.

  14. Low Humidity Characteristics of Polymer-Based Capacitive Humidity Sensors

    OpenAIRE

    Majewski Jacek

    2017-01-01

    Polymer-based capacitive humidity sensors emerged around 40 years ago; nevertheless, they currently constitute large part of sensors’ market within a range of medium (climatic and industrial) humidity 20−80%RH due to their linearity, stability and cost-effectiveness. However, for low humidity values (0−20%RH) that type of sensor exhibits increasingly nonlinear characteristics with decreasing of humidity values. This paper presents the results of some experimental trials of CMOS polymer-based ...

  15. The triple oxygen isotope composition of phytoliths as a proxy of continental atmospheric humidity: insights from climate chamber and climate transect calibrations

    Directory of Open Access Journals (Sweden)

    A. Alexandre

    2018-05-01

    Full Text Available Continental atmospheric relative humidity (RH is a key climate parameter. Combined with atmospheric temperature, it allows us to estimate the concentration of atmospheric water vapor, which is one of the main components of the global water cycle and the most important gas contributing to the natural greenhouse effect. However, there is a lack of proxies suitable for reconstructing, in a quantitative way, past changes of continental atmospheric humidity. This reduces the possibility of making model–data comparisons necessary for the implementation of climate models. Over the past 10 years, analytical developments have enabled a few laboratories to reach sufficient precision for measuring the triple oxygen isotopes, expressed by the 17O-excess (17O-excess  =  ln (δ17O + 1 – 0.528  ×  ln (δ18O + 1, in water, water vapor and minerals. The 17O-excess represents an alternative to deuterium-excess for investigating relative humidity conditions that prevail during water evaporation. Phytoliths are micrometric amorphous silica particles that form continuously in living plants. Phytolith morphological assemblages from soils and sediments are commonly used as past vegetation and hydrous stress indicators. In the present study, we examine whether changes in atmospheric RH imprint the 17O-excess of phytoliths in a measurable way and whether this imprint offers a potential for reconstructing past RH. For that purpose, we first monitored the 17O-excess evolution of soil water, grass leaf water and grass phytoliths in response to changes in RH (from 40 to 100 % in a growth chamber experiment where transpiration reached a steady state. Decreasing RH from 80 to 40 % decreases the 17O-excess of phytoliths by 4.1 per meg/% as a result of kinetic fractionation of the leaf water subject to evaporation. In order to model with accuracy the triple oxygen isotope fractionation in play in plant water and in phytoliths we recommend direct and

  16. Initial stages of indoor atmospheric corrosion of electronics contact metals in humid tropical climate: tin and nickel

    Directory of Open Access Journals (Sweden)

    Veleva, L.

    2007-04-01

    Full Text Available Samples of electrolytic tin and nickel have been exposed for 1 to 12 m in indoor environment, inside a box (rain sheltered cabinet, placed in tropical humid marine-urban climate, as a part of Gulf of Mexico. The corrosion aggressiveness of box has been classified as a very high corrosive, based on the monitored chlorides and SO2 deposition rates, and the Temperature/Relative Humidity air daily complex. The annual mass increasing of nickel is approximately twice higher than its values of mass loss (C. The relation between nickel mass loss or increasing and time of wetness (t of metal surface is linear and does not obey the power equation C = A tn, which has be found for tin. The SEM images reveal a localized corrosion on nickel and tin surfaces. XRD detects the formation of SnCl2.H2O as a corrosion product. Within the time on the tin surface appear black spots, considered as organic material.

    Muestras de estaño y níquel electrolíticos han sido expuestas de 1 a 12 m en ambiente interno (indoor, en una caseta (gabinete protegido de lluvia, colocada en clima tropical húmedo marino-urbano del Golfo de México. La agresividad de la caseta ha sido clasificada como muy altamente corrosiva, basada al registro de la velocidad de deposición de cloruros y SO2, y en el complejo diario de temperatura/humedad relativa del aire. El incremento de masa anual de níquel es, aproximadamente, dos veces mayor que del valor de su pérdida de masa (C. La relación entre la pérdida de masa de Ni o su incremento, y el tiempo de humectación (t de la superficie metálica y lineal y no obedece la ley de potencia C = A tn , que ha sido encontrada para el estaño. Las imágenes del SEM revelan una corrosión localizada en las superficie de níquel y estaño. El análisis de rayos-X detecta la formación de SnCl2.H2O como producto de corrosión. Con el tiempo

  17. Hygroscopical behaviour of basic electrodes in a tropical humid climate. Comportamiento microscopico de ciertos electrodos revistidos de caracter basico en clima tropical humedo

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, E.; Galeano, N.J.

    1993-01-01

    The study of the wetting kynetics of basic electrodes in a tropical humid climate is very important since the water contained in them is the main source for the atomic hydrogen absorbed by the fused metal during electric arc welding. It is also the origin of multiple defects in the added metal. A calculating method is established for evaluating the kynetics of wetness incorporation to the coating of basic electrodes exposed to a humid tropical climate. The method is based on the Fick's diffusion equation for both adequate system geometry and boundary conditions, which allows the evaluation of the effective diffusion coefficient and critical times of exposure to the different environments, along with the packing and storage conditions of electrodes. (Author)

  18. Hygroscopical behaviour of basic electrodes in a tropical humid climate. Comportamiento microscopico de ciertos electrodos revistidos de caracter basico en clima tropical humedo

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, E; Galeano, N J

    1993-01-01

    The study of the wetting kynetics of basic electrodes in a tropical humid climate is very important since the water contained in them is the main source for the atomic hydrogen absorbed by the fused metal during electric arc welding. It is also the origin of multiple defects in the added metal. A calculating method is established for evaluating the kynetics of wetness incorporation to the coating of basic electrodes exposed to a humid tropical climate. The method is based on the Fick's diffusion equation for both adequate system geometry and boundary conditions, which allows the evaluation of the effective diffusion coefficient and critical times of exposure to the different environments, along with the packing and storage conditions of electrodes. (Author)

  19. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    Science.gov (United States)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  20. Prediction of spatial patterns of collapsed pipes in loess-derived soils in a temperate humid climate using logistic regression

    Science.gov (United States)

    Verachtert, E.; Den Eeckhaut, M. Van; Poesen, J.; Govers, G.; Deckers, J.

    2011-07-01

    Soil piping (tunnel erosion) has been recognised as an important erosion process in collapsible loess-derived soils of temperate humid climates, which can cause collapse of the topsoil and formation of discontinuous gullies. Information about the spatial patterns of collapsed pipes and regional models describing these patterns is still limited. Therefore, this study aims at better understanding the factors controlling the spatial distribution and predicting pipe collapse. A dataset with parcels suffering from collapsed pipes (n = 560) and parcels without collapsed pipes was obtained through a regional survey in a 236 km² study area in the Flemish Ardennes (Belgium). Logistic regression was applied to find the best model describing the relationship between the presence/absence of a collapsed pipe and a set of independent explanatory variables (i.e. slope gradient, drainage area, distance-to-thalweg, curvature, aspect, soil type and lithology). Special attention was paid to the selection procedure of the grid cells without collapsed pipes. Apart from the first piping susceptibility map created by logistic regression modelling, a second map was made based on topographical thresholds of slope gradient and upslope drainage area. The logistic regression model allowed identification of the most important factors controlling pipe collapse. Pipes are much more likely to occur when a topographical threshold depending on both slope gradient and upslope area is exceeded in zones with a sufficient water supply (due to topographical convergence and/or the presence of a clay-rich lithology). On the other hand, the use of slope-area thresholds only results in reasonable predictions of piping susceptibility, with minimum information.

  1. Building America Best Practices Series Volume 16: 40% Whole-House Energy Savings in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Adams, Karen; Butner, Ryan S.; Ortiz, Sallie J.

    2011-09-01

    This best practices guide is the 16th in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

  2. Solar electricity: An effective asset to supply urban loads in hot climates

    Science.gov (United States)

    Robert, Fabien Chidanand; Gopalan, Sundararaman

    2018-04-01

    While human population has been multiplied by four in the last hundred years, the world energy consumption was multiplied by ten. The common method of using fossil fuels to provide energy and electricity has dangerously disturbed nature's and climate's balance. It has become urgent and crucial to find sustainable and eco-friendly alternatives to preserve a livable environment with unpolluted air and water. Renewable energy is the unique eco-friendly opportunity known today. The main challenge of using renewable energy is to ensure the constant balance of electricity demand and generation on the electrical grid. This paper investigates whether the solar electricity generation is correlated with the urban electricity consumption in hot climates. The solar generation and total consumption have been compared for three cities in Florida. The hourly solar generation has been found to be highly correlated with the consumption that occurs 6 h later, while the monthly solar generation is correlated with the monthly energy consumption. Producing 30% of the electricity using solar energy has been found to compensate partly for the monthly variation in the urban electricity demand. In addition, if 30% of the world electricity is produced using solar, global CO2 emissions would be reduced by 11.7% (14.6% for India). Thus, generating 30% solar electricity represents a valuable asset for urban areas situated in hot climates, reducing the need for electrical operating reserve, providing local supply with minimal transmission losses, but above all reducing the need for fossil fuel electricity and reducing global CO2 emission.

  3. Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication

    Science.gov (United States)

    Wang, Junhong; Carlson, David J.; Parsons, David B.; Hock, Terrence F.; Lauritsen, Dean; Cole, Harold L.; Beierle, Kathryn; Chamberlain, Edward

    2003-08-01

    This study evaluates performance of humidity sensors in two widely used operational radiosondes, Vaisala and Sippican (formally VIZ), in comparison with a research quality, and potentially more accurate, chilled mirror dew-point hygrometer named ``Snow White''. A research radiosonde system carrying the Snow White (SW) hygrometer was deployed in the Oklahoma panhandle and at Dodge City, KS during the International H2O Project (IHOP_2002). A total of sixteen sondes were launched with either Vaisala RS80 or Sippican VIZ-B2 radiosondes on the same balloons. Comparisons of humidity data from the SW with Vaisala and Sippican data show that (a) Vaisala RS80-H agrees with the SW very well in the middle and lower troposphere, but has dry biases in the upper troposphere (UT), (b) Sippican carbon hygristor (CH) has time-lag errors throughout the troposphere and fails to respond to humidity changes in the UT, sometimes even in the middle troposphere, and (c) the SW can detect cirrus clouds near the tropopause and possibly estimate their ice water content (IWC). The failure of CH in the UT results in significant and artificial humidity shifts in radiosonde climate records at stations where a transition from VIZ to Vaisala radiosondes has occurred.

  4. Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk, indoor climate and energy consumption

    DEFF Research Database (Denmark)

    Masaru, Abuku; Janssen, Hans; Roels, Staf

    2009-01-01

    This paper gives an onset to whole building hygrothermal modelling in which the interaction between interior and exterior climates via building enclosures is simulated under a moderately cold and humid climate. The focus is particularly on the impact of wind-driven rain (WDR) oil the hygrothermal...... response, mould growth at interior wall surfaces, indoor climate and energy consumption. First the WDR load oil the facades of a 4 m x 4 m x 10 m tower is determined. Then the hygrothermal behaviour of the brick walls is analysed oil a horizontal slice through the tower. The simulations demonstrate...

  5. Trends in the mortality effects of hot spells in central Europe: adaptation to climate change?

    Science.gov (United States)

    Kysely, J.; Plavcova, E.

    2013-12-01

    Europe has recently been affected by several long-lasting and severe heat waves, particularly in July-August 2003 (western Europe), June-July 2006 (central Europe), July 2007 (southeastern Europe) and July 2010 (western Russia). The heat waves influenced many sectors of human activities, with enormous socio-economic and environmental impacts. With estimated death tolls exceeding 50,000, the 2003 and 2010 heat waves were the worst natural disasters in Europe over the last 50 years, yielding an example of how seriously may also high-income societies be affected by climate change. The present study examines temporal changes in mortality associated with spells of large positive temperature anomalies (hot spells) in the population of the Czech Republic (around 10 million inhabitants, central Europe). Declining trends in the mortality impacts since 1986 are found, in spite of rising temperature trends. The findings remain unchanged if possible confounding effects of within-season acclimatization to heat and the mortality displacement effect are taken into account, and they are similar for all-cause mortality and mortality due to cardiovascular diseases. Recent positive socio-economic development, following the collapse of communism in central and eastern Europe in 1989, and better public awareness of heat-related risks are likely the primary causes of the declining vulnerability in the examined population (Kyselý and Plavcová, 2012). The results are also consistent with those reported for other developed regions of the world (the US, western Europe, Australia) and suggest that climate change may have relatively little influence on heat-related deaths, since changes in other factors that affect vulnerability of the population are dominant instead of temperature trends. It is essential to better understand the observed non-stationarity of the temperature-mortality relationship and the role of adaptation and its limits, both physiological and technological, and to address

  6. Temperature and Humidity Effects on Hospital Morbidity in Darwin, Australia.

    Science.gov (United States)

    Goldie, James; Sherwood, Steven C; Green, Donna; Alexander, Lisa

    2015-01-01

    Many studies have explored the relationship between temperature and health in the context of a changing climate, but few have considered the effects of humidity, particularly in tropical locations, on human health and well-being. To investigate this potential relationship, this study assessed the main and interacting effects of daily temperature and humidity on hospital admission rates for selected heat-relevant diagnoses in Darwin, Australia. Univariate and bivariate Poisson generalized linear models were used to find statistically significant predictors and the admission rates within bins of predictors were compared to explore nonlinear effects. The analysis indicated that nighttime humidity was the most statistically significant predictor (P < 0.001), followed by daytime temperature and average daily humidity (P < 0.05). There was no evidence of a significant interaction between them or other predictors. The nighttime humidity effect appeared to be strongly nonlinear: Hot days appeared to have higher admission rates when they were preceded by high nighttime humidity. From this analysis, we suggest that heat-health policies in tropical regions similar to Darwin need to accommodate the effects of temperature and humidity at different times of day. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Seasonal variation in AF-related admissions to a coronary care unit in a "hot" climate: fact or fiction?

    Science.gov (United States)

    Kiu, Andrew; Horowitz, John D; Stewart, Simon

    2004-01-01

    Seasonal variations in atrial fibrillation (AF)-related morbidity and mortality have been demonstrated in "cold" northern European climates, but there are few data describing such a phenomenon in a "hot" climate. To examine the pattern of AF-related admissions to a coronary care unit (CCU) in South Australia operating within a Mediterranean climate, and to determine potential differences according to mean daily temperatures. PATIENT COHORT AND METHODS: A total of 144 admissions to the CCU during the 30 hottest and coldest days (60 days in total) during the calendar year 2001 were analyzed in respect to the absolute number of admissions and the profile of those admitted during "hot" and "cold" days. Overall, there were significantly more admissions to the CCU on "cold" as opposed to "hot" days (90 vs 54 patients in 30 days, P < or = .001). Of the 24 patients found to be in AF on presentation to hospital, 18 (75%) were admitted on cold days (P < .05). Alternatively, during "hot" days, patients were more likely to be diagnosed with unstable angina rather than acute myocardial infarction (46% vs 30%, P = .07) with proportionately fewer patients in AF at the time (11% vs 20%, P = NS). These preliminary data suggest that the phenomenon of seasonal variations in AF-related morbidity extend beyond colder climates to hotter climates with sufficiently large relative (as opposed to absolute) changes in ambient temperatures during the year.

  8. Lower prevalence and greater severity of asthma in hot and dry climate

    Directory of Open Access Journals (Sweden)

    Marco Aurélio de Valois Correia Junior

    Full Text Available Abstract Objective: To estimate asthma prevalence, severity, and associated factors in adolescents who live in a low relative humidity environment. Methods: In this cross-sectional study, adolescents aged 13-14 years from the city of Petrolina located in the Brazilian semiarid region answered the International Study of Asthma and Allergies in Childhood (ISAAC questionnaire. The possible explanatory variables of the study were gender, family income, mother's education, smokers in the household, parental history of asthma, personal history of allergic rhinitis or atopic dermatitis, and physical activity level. Poisson regression analysis was used to assess the association between asthma and the explanatory variables. Results: A total of 1591 adolescents participated in the study, of whom 49.7% were male. The prevalence of active asthma, severe asthma, and physician-diagnosed asthma were 14.0%, 10.4%, and 17.8%, respectively. Adolescents with asthma missed more school days than their peers (33 vs. 22 days/year; p < 0.03. Associated factors that remained significant after adjustment were history of asthma in parents (PR = 2.65, p < 0.001 and personal diagnosis of allergic rhinitis (PR = 1.96, p < 0.001 and/or atopic dermatitis (PR = 2.18, p < 0.001. Conclusion: Asthma prevalence in this low-humidity environment was lower, but more severe than those reported in other Brazilian cities. The dry climate might hamper disease control and this may have contributed to the higher school absenteeism observed. The association of asthma with allergic rhinitis and atopic dermatitis as well as a history of asthma in parents suggests that atopy is an important risk factor for asthma in this population.

  9. Multivariate analysis of effects of diurnal temperature and seasonal humidity variations by tropical savanna climate on the emissions of anthropogenic volatile organic compounds.

    Science.gov (United States)

    Liu, Chih-Chung; Chen, Wei-Hsiang; Yuan, Chung-Shin; Lin, Chitsan

    2014-02-01

    Volatile organic compounds (VOCs), particularly those from anthropogenic sources, have been of substantial concern. In this study, the influences of diurnal temperature and seasonal humidity variations by tropical savanna climate on the distributions of VOCs from stationary industrial sources were investigated by analyzing the concentrations during the daytime and nighttime in the dry and wet seasons and assessing the results by principal component analysis (PCA) and cluster analysis. Kaohsiung City in Southern Taiwan, known for its severe VOC pollution, was chosen as the location to be examined. In the results, the VOC concentrations were lower during the daytime and in the wet season, possibly attributed to the stronger photochemical reactions and increasing inhibition of VOC emissions and transports by elevating humidity levels. Certain compounds became appreciably more important at higher humidity, as these compounds were saturated hydrocarbons with relatively low molecular weights. The influence of diurnal temperature variation on VOC distribution behaviors seemed to be less important than and interacted with that of seasonal humidity variation. Heavier aromatic hydrocarbons with more complex structures and some aliphatic compounds were found to be the main species accounting for the maximum variances of the data observed at high humidity, and the distinct grouping of compounds implied a pronounced inherent characteristic of each cluster in the observed VOC distributions. Under the influence of diurnal temperature variation, selected VOCs that may have stronger photochemical resistances and/or longer lifetimes in the atmosphere were clustered with each other in the cluster analysis, whereas the other groups might consist of compounds with different levels of vulnerability to sunlight or high temperatures. These findings prove the complications in the current knowledge regarding the VOC contaminations and providing insight for managing the adverse impacts of

  10. Strategies for Reducing Energy Consumption in a Student Cafeteria in a Hot-Humid Climate: A Case Study

    Directory of Open Access Journals (Sweden)

    Mohammed Alhaji Mohammed

    2013-03-01

    Full Text Available Increasing attention is being given to energy consumption and potential for energy savings in public buildings in order to improve energy performance. Due to their size and functional requirements, public buildings especially cafeteria facilities tend to consume a significant amount of energy. Furthermore, due to their operational characteristics and construction pattern, unnecessary energy is likely to be used for maintaining acceptable indoor environmental quality. In this study, a student cafeteria at King Fahd University of Petroleum and Minerals, Saudi Arabia, was selected for the assessment of its energy performance and potential energy conservation opportunities. Energy simulation software Visual DOE 4.1 was used to develop an energy performance model for assessing various energy conservation measures pertinent to the building envelope and HVAC system design. Data required for setting up the model were gathered through simple energy audits. The architectural and mechanical drawings and the history of electrical consumption were collected. Various energy conservation strategies were then implemented including standards, single and combined energy conservation measures. These measures resulted in a combined design saving of 27.4%, the HVAC system saving 10.6%, implementation of standards saving about 16.7%, lighting 6.6%, equipment 2.6%, insulation 2.5% and glazing 1.4%. Based on these results, it is apparent that there is a significant potential for improving energy performance and justification to employ the suggested measures for achieving substantial energy savings and minimize energy consumption.

  11. Computational Analysis of Natural Ventilation Flows in Geodesic Dome Building in Hot Climates

    Directory of Open Access Journals (Sweden)

    Zohreh Soleimani

    2016-08-01

    Full Text Available For centuries, dome roofs were used in traditional houses in hot regions such as the Middle East and Mediterranean basin due to its thermal advantages, structural benefits and availability of construction materials. This article presents the computational modelling of the wind- and buoyancy-induced ventilation in a geodesic dome building in a hot climate. The airflow and temperature distributions and ventilation flow rates were predicted using Computational Fluid Dynamics (CFD. The three-dimensional Reynolds-Averaged Navier-Stokes (RANS equations were solved using the CFD tool ANSYS FLUENT15. The standard k-epsilon was used as turbulence model. The modelling was verified using grid sensitivity and flux balance analysis. In order to validate the modelling method used in the current study, additional simulation of a similar domed-roof building was conducted for comparison. For wind-induced ventilation, the dome building was modelled with upper roof vents. For buoyancy-induced ventilation, the geometry was modelled with roof vents and also with two windows open in the lower level. The results showed that using the upper roof openings as a natural ventilation strategy during winter periods is advantageous and could reduce the indoor temperature and also introduce fresh air. The results also revealed that natural ventilation using roof vents cannot satisfy thermal requirements during hot summer periods and complementary cooling solutions should be considered. The analysis showed that buoyancy-induced ventilation model can still generate air movement inside the building during periods with no or very low wind.

  12. Energy savings due to daylight and artificial lighting integration in office buildings in hot climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ashwal, Nagib T. [Sana' a University, Sana' a (Yemen); Budaiwi, Ismail M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2011-07-01

    Reducing energy consumption while maintaining acceptable environmental quality in buildings has been a challenging task for building professionals. In office buildings, artificial lighting systems are a major consumer of energy and can significantly contribute to building cooling load. Furthermore, although reliable, artificial lighting does not necessarily provide the required quality of lighting. Significant improvement in lighting quality and energy consumption can be achieved by proper integration of daylight and artificial lighting. The objective of this study is to investigate the energy performance of office buildings resulting from daylight and artificial lighting integration in hot climates. A parametric analysis is conducted to find the impact of different window design parameters, including window area, height and glazing type, on building energy performance. Results have shown that as much as 35% reduction in lighting energy consumption and 13% reduction in total energy consumption can be obtained when proper daylighting and artificial lighting integration is achieved.

  13. Simulation of Transcritical CO2 Refrigeration System with Booster Hot Gas Bypass in Tropical Climate

    Science.gov (United States)

    Santosa, I. D. M. C.; Sudirman; Waisnawa, IGNS; Sunu, PW; Temaja, IW

    2018-01-01

    A Simulation computer becomes significant important for performance analysis since there is high cost and time allocation to build an experimental rig, especially for CO2 refrigeration system. Besides, to modify the rig also need additional cos and time. One of computer program simulation that is very eligible to refrigeration system is Engineering Equation System (EES). In term of CO2 refrigeration system, environmental issues becomes priority on the refrigeration system development since the Carbon dioxide (CO2) is natural and clean refrigerant. This study aims is to analysis the EES simulation effectiveness to perform CO2 transcritical refrigeration system with booster hot gas bypass in high outdoor temperature. The research was carried out by theoretical study and numerical analysis of the refrigeration system using the EES program. Data input and simulation validation were obtained from experimental and secondary data. The result showed that the coefficient of performance (COP) decreased gradually with the outdoor temperature variation increasing. The results show the program can calculate the performance of the refrigeration system with quick running time and accurate. So, it will be significant important for the preliminary reference to improve the CO2 refrigeration system design for the hot climate temperature.

  14. Performance of a Hot-Dry Climate Whole-House Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E. [Alliance for Residential Building Innovation, Davis, CA (United States); German, A. [Alliance for Residential Building Innovation, Davis, CA (United States); Porse, E. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2014-06-01

    The Stockton house retrofit is a two-story Tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

  15. Performance of a Hot-Dry Climate Whole-House Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E.; German, A.; Porse, E.

    2014-06-01

    The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

  16. Building America Best Practices Series: Volume 4; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Mixed-Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Z. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartlett, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilbride, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hefty, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steward, H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Love, P. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Palmer, J. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2005-09-01

    This best practices guide is part of a series produced by Building America. The guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the mixed-humid climate region. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builders team-from the manager to the site planner to the designers, site supervisors, the trades, and marketers. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

  17. Declining impacts of hot spells on mortality in the Czech Republic: adaptation to climate change?

    Science.gov (United States)

    Kysely, Jan; Plavcova, Eva

    2010-05-01

    Extreme temperature events have pronounced negative impacts on ecosystems and society, including human health effects. The study examines temporal changes in mortality associated with spells of large positive temperature anomalies (hot spells) in the population of the Czech Republic (central Europe) during 1986-2006. Declining trends in the mortality impacts are found in summer as well as in transition seasons, in spite of rising temperature trends (warming by 1.4 deg. C in summer over the 21-year period). The finding remains unchanged if possible confounding effects of within-season acclimatization to heat and the mortality displacement effect are taken into account. Recent positive socio-economic development, following the collapse of communism in central and eastern Europe in 1989, and better public awareness of heat-related risks are likely the primary causes of the declining vulnerability. The results suggest that climate change may have relatively little influence on heat-related deaths, since changes in other factors that influence vulnerability of the population are dominant instead of temperature trends. It is essential to better understand the observed non-stationarity of the temperature-mortality relationship and the role of adaptation and its limits, both physiological and technological, and to address associated uncertainties in studies dealing with climate change projections of temperature-related mortality.

  18. Potential Alternative Lower Global Warming Refrigerants for Air Conditioning in Hot Climates

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL; Shen, Bo [ORNL

    2017-01-01

    The earth continues to see record increase in temperatures and extreme weather conditions that is largely driven by anthropogenic emissions of warming gases such as carbon dioxide and other more potent greenhouse gases such as refrigerants. The cooperation of 188 countries in the Conference of the Parties in Paris 2015 (COP21) resulted in an agreement aimed to achieve a legally binding and universal agreement on climate, with the aim of keeping global warming below 2 C. A global phasedown of hydrofluorocarbons (HFCs) can prevent 0.5 C of warming by 2100. However, most of the countries in hot climates are considered as developing countries and as such are still using R-22 (a Hydrochlorofluorocarbon (HCFC)) as the baseline refrigerant and are currently undergoing a phase-out of R-22 which is controlled by current Montreal Protocol to R-410A and other HFC based refrigerants. These HFCs have significantly high Global Warming Potential (GWP) and might not perform as well as R-22 at high ambient temperature conditions. In this paper we present recent results on evaluating the performance of alternative lower GWP refrigerants for R-22 and R-410A for small residential mini-split air conditioners and large commercial packaged units. Results showed that several of the alternatives would provide adequate replacement for R-22 with minor system modification. For the R-410A system, results showed that some of the alternatives were almost drop-in ready with benefit in efficiency and/or capacity. One of the most promising alternatives for R-22 mini-split unit is propane (R-290) as it offers higher efficiency; however it requires compressor and some other minor system modification to maintain capacity and minimize flammability risk. Between the R-410A alternatives, R-32 appears to have a competitive advantage; however at the cost of higher compressor discharge temperature. With respect to the hydrofluoroolefin (HFO) blends, there existed a tradeoff in performance and system design

  19. Effect of fabric stuff of work clothing on the physiological strain index at hot conditions in the climatic chamber

    Directory of Open Access Journals (Sweden)

    Habibollah Dehghan

    2014-01-01

    Full Text Available Aims: The purpose of the present study was to evaluate the effect of fabric stuff of work clothing that are widely used in Iran industries on the physiological strain index (PSI at hot conditions in the climatic chamber. Materials and Methods: This interventional study was performed upon 18 male students in 16 trials, which included combination of four kinds of work clothing (13.7% viscose (VIS 86.3% polyester(PES, 30.2% cotton [CT]-69.8% PES, 68.5% CT-31.5% PES, 100% CT, two activity levels (light and moderate and two kinds of climatic conditions included hot-wet (T a = 35, RH = 70% and hot-dry (T a = 38, RH = 40%. During each trial, the RH and core temperature was recorded once a minute and then PSI was calculated. Data were analyzed by using SPSS-16 software. Results: The results showed that in hot-wet conditions, the least value of PSI in light and moderate activities was related to 100% CT clothing and 30.2% CT-69.8% PES clothing, respectively. In hot-dry conditions, the least value of PSI in both of activities was related to 30.2% CT-69.8% PES clothing. The mean value of PSI in hot-wet conditions, during moderate activity had significant difference for various clothing types (P = 0.044. Conclusion: The research findings showed that for a heat strain reduction in hot-wet conditions at light activity level, 100% CT clothing is suitable. Furthermore, at moderate activity level, 30.2% CT-69.8% PES clothing and in hot-dry conditions, 30.2% CT-69.8% PES is suitable.

  20. Monitoring Mechanism in Preservation of Monuments in Hot and Wet Climate Area

    Science.gov (United States)

    Lee, M. C.; Tsai, Y. L.; Lin, M. L.; Hang, L. W.; Chen, C. Y.

    2015-08-01

    Historic monuments and buildings are critical cultural assets which cannot be presented by again by human beings. Longer affected by natural climate, environment and biological behavior (including human), resulting in damage and the need for repair. Therefore, UNESCO proposed periodic reporting and reactive monitoring in 2007, in order to achieve "early detection, early repair". This study discusses about suitable preservation monitoring methods for Taiwan. To shed light on damage and impact factors of historical buildings and cultural relics, the study is based on impact and sensor, monitoring method, monitoring period and maintenance personnel in order to propose standard operating procedures of monitoring method. To reduce the rate of the human and sensor monitoring, with the long-term monitoring data analysis, it is calculated that 30 minutes is the best period of data collecting. Besides, the study is adopted regression analysis to select temperature variable only then calculate humidity variable function. This study provides a reference monitoring method for monitoring personnel and maintenance personnel, and establishes a long-term monitoring data based information for damage and destroy in the future. Monitoring period and maintenance personnel can follow the data based to find out the damage points and problems, to keep the value of cultural assets.

  1. Numerical analysis of the efficiency of earth to air heat exchange systems in cold and hot-arid climates

    International Nuclear Information System (INIS)

    Fazlikhani, Faezeh; Goudarzi, Hossein; Solgi, Ebrahim

    2017-01-01

    Highlights: • A numerical model is developed to evaluate performance of earth to air heat exchanger. • The cooling/heating potential of earth to air heat exchanger is investigated in hot-dry and cold climates. • The more performance of earth to air heat exchanger in hot-dry climates compared to cold climates. • The high efficiency of earth to air heat exchanger for pre-heating in both hot-dry and cold climates. - Abstract: In order to examine and compare the efficiency of earth to air heat exchanger (EAHE) systems in hot-arid (Yazd) and cold (Hamadan) climates in Iran a steady state model was developed to evaluate the impact of various parameters including inlet air temperatures, pipe lengths and ground temperatures on the cooling and heating potential of EAHEs in both climates. The results demonstrated the ability of the system to not only improve the average temperature and decrease the temperature fluctuation of the outlet air temperature of EAHE, but also to trigger considerable energy saving. It was found that in both climates, the system is highly utilized for pre-heating, and its usage is unfeasible in certain periods throughout the year. In winter, EAHEs have the potential of increasing the air temperature in the range of 0.2–11.2 °C and 0.1–17.2 °C for Yazd and Hamadan, respectively. However, in summer, the system decreases the air temperature for the aforementioned cities in the range of 1.3–11.4 °C and 5.7–11.1 °C, respectively. The system ascertains to be more efficient in the hot-arid climate of Yazd, where it can be used on 294 days of the year, leading to 50.1–63.6% energy saving, when compared to the cold climate of Hamadan, where it can be used on 225 days of the year resulting in a reduction of energy consumption by 24.5–47.9%.

  2. Effect of Shading on Physiological, Biochemical and Behaviour Changes in Crossbred Calves Under Hot Climatic Conditions

    International Nuclear Information System (INIS)

    Teama, F.E.I.; Gad, A.E.; El-Tarabany, A.A.

    2012-01-01

    The purpose of this study was to investigate the importance and the effect of shading and non-shading house on physiological changes, body weight (BW), average daily gain (ADG), total antioxidant and thyroid hormones in crossbred calves under hot conditions. Thirty six growing crossbred calves (Friesian x Baladi) aged 8-10 months were divided into two groups (each 18 calves); the first group was maintained in shaded house and the second in house without shade (climatic house). The period of study was 79 days during hot conditions. Performance variables (BW, ADG) were measured and the blood samples were collected to assess some biochemical parameters including antioxidants such as total antioxidant (TA), catalase (CAT), total protein, thyroid hormones (T3, T4) and immunoglobulin factor (IgG). Respiration rates and behaviour parameters (feeding, drinking, standing, lying and agonistic) were also measured during the study. The data indicated that the shaded calves had higher ADG (P<0.05) and final BW than non-shaded ones. Also, a significant improvement in total protein levels and globulins were recorded in shaded house calves as compared to non-shaded ones. The same result was obtained for T3 level whereas non-significant changes were observed for T4 level as well as the level of IgG at different times. The present data indicated that using shaded house will decrease the effect of heat stress on calves which will increase the animal performance through improving BW and ADG as well as some biochemical parameters in addition to T3 hormonal level.

  3. Synthesis of γ-WO{sub 3} thin films by hot wire-CVD and investigation of its humidity sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Jadkar, Vijaya; Waykar, Ravindra; Jadhavar, Ashok [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Pawbake, Amit [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Physical and Material Chemistry Division, National Chemical Laboratory, Pune 411 008 (India); Date, Abhijit [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Plenty Road, Bundoora, Melbourne VIC 3083 (Australia); Late, Dattatray [Physical and Material Chemistry Division, National Chemical Laboratory, Pune 411 008 (India); Pathan, Habib; Gosavi, Suresh; Jadkar, Sandesh [Department of Physics, Savitribai Phule Pune University, Pune 411 007 (India)

    2017-05-15

    In this study, monoclinic tungsten oxide (γ-WO{sub 3}) have been grown in a single step using HW-CVD method by resistively heating W filaments in a constant O{sub 2} pressure. The formation of γ-WO{sub 3} was confirmed using low angle-XRD and Raman spectroscopy analysis. Low angle-XRD analysis revealed that as-deposited WO{sub 3} film are highly crystalline and the crystallites have preferred orientation along the (002) direction. HRTEM analysis and SAED pattern also show the highly crystalline nature of WO{sub 3} with d spacing of ∝ 0.38 nm, having an orientation along the (002) direction. Surface topography investigated by SEM analysis shows the formation of a uniform and homogeneous cauliflower like morphology throughout the substrate surface without flaws and cracks. A humidity sensing device incorporating WO{sub 3} is also fabricated, which shows a maximum humidity sensitivity factor of ∝ 3954% along with a response time of ∝14 s and a recovery time of ∝25 s. The obtained results demonstrate that it is possible to synthesize WO{sub 3} in a single step by HW-CVD method and to fabricate a humidity sensor by using it. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Health symptoms in relation to temperature, humidity, and self-reported perceptions of climate in New York City residential environments

    Science.gov (United States)

    Quinn, Ashlinn; Shaman, Jeffrey

    2017-07-01

    Little monitoring has been conducted of temperature and humidity inside homes despite the fact that these conditions may be relevant to health outcomes. Previous studies have observed associations between self-reported perceptions of the indoor environment and health. Here, we investigate associations between measured temperature and humidity, perceptions of indoor environmental conditions, and health symptoms in a sample of New York City apartments. We measured temperature and humidity in 40 New York City apartments during summer and winter seasons and collected survey data from the households' residents. Health outcomes of interest were (1) sleep quality, (2) symptoms of heat illness (summer season), and (3) symptoms of respiratory viral infection (winter season). Using mixed-effects logistic regression models, we investigated associations between the perceptions, symptoms, and measured conditions in each season. Perceptions of indoor temperature were significantly associated with measured temperature in both the summer and the winter, with a stronger association in the summer season. Sleep quality was inversely related to measured and perceived indoor temperature in the summer season only. Heat illness symptoms were associated with perceived, but not measured, temperature in the summer season. We did not find an association between any measured or perceived condition and cases of respiratory infection in the winter season. Although limited in size, the results of this study reveal that indoor temperature may impact sleep quality, and that thermal perceptions of the indoor environment may indicate vulnerability to heat illness. These are both important avenues for further investigation.

  5. Groundwater in the Boreal Plains: How Climate and Geology Interact to Control Water Table Configurations in a Sub-Humid, Low-Relief Region

    Science.gov (United States)

    Hokanson, K. J.; Devito, K.; Mendoza, C. A.

    2017-12-01

    The Boreal Plain (BP) region of Canada, a landscape characterized by low-relief, a sub-humid climate and heterogeneous glacial landforms, is experiencing unprecedented anthropogenic and natural disturbance, including climate change and oil & gas operations. Understanding the controls on and the natural variability of water table position, and subsequently predicting changes in water table position under varying physical and climatic scenarios will become important as water security becomes increasingly threatened. The BP is composed of a mosaic of forestland, wetland, and aquatic land covers that contrast in dominant vegetation cover, evapotranspiration, and soil storage that, in turn, influence water table configurations. Additionally, these land-covers overlie heterogeneous glacial landforms with large contrasts in storage and hydraulic properties which, when coupled with wet-dry climate cycles, result in complex water table distributions in time and space. Several forestland-wetland-pond complexes were selected at the Utikuma Research Study Area (URSA) over three distinct surficial geologic materials (glacial fluvial outwash, stagnant ice moraine, lacustrine clay plain) to explore the roles of climate (cumulative departure from the long term yearly mean precipitation), geology, topographic position, and land cover on water table configurations over 15 years (2002 - 2016). In the absence of large groundwater flow systems, local relief and shallow low conductivity substrates promote the formation of near-surface water tables that are less susceptible to climate variation, regardless of topography. Furthermore, in areas of increased storage, wet and dry climate conditions can result in appreciably different water table configurations over time, ranging from mounds to hydraulic depressions, depending on the arrangement of land-covers, dominant surficial geology, and substrate layering.

  6. A vaccine cold chain freezing study in PNG highlights technology needs for hot climate countries.

    Science.gov (United States)

    Wirkas, Theo; Toikilik, Steven; Miller, Nan; Morgan, Chris; Clements, C John

    2007-01-08

    Fourteen data loggers were packed with vaccine vials at the national vaccine store, Port Moresby, Papua New Guinea (PNG), and sent to peripheral locations in the health system. The temperatures that the data loggers recorded during their passage along the cold chain indicated that heat damage was unlikely, but that all vials were exposed to freezing temperatures at some time. The commonest place where freezing conditions existed was during transport. The freezing conditions were likely induced by packing the vials too close to the ice packs that were themselves too cold, and with insufficient insulation between them. This situation was rectified and a repeat dispatch of data loggers demonstrated that the system had indeed been rectified. Avoiding freeze damage becomes even more important as the price of freeze-sensitive vaccines increases with the introduction of more multiple-antigen vaccines. This low-cost high-tech method of evaluating the cold chain function is highly recommended for developing and industrialized nations and should be used on a regular basis to check the integrity of the vaccine cold chain. The study highlights the need for technological solutions to avoid vaccine freezing, particularly in hot climate countries.

  7. Performance optimization of evacuated tube collector for solar cooling of a house in hot climate

    Science.gov (United States)

    Ghoneim, Adel A.

    2018-02-01

    Evacuating the space connecting cover and absorber significantly improves evacuated tube collector (ETC) performance. So, ETCs are progressively utilised all over the world. The main goal of current study is to explore ETC thermal efficiency in hot and severe climate like Kuwait weather conditions. A collector test facility was installed to record ETC thermal performance for one-year period. An extensively developed model for ETCs is presented, employing complete optical and thermal assessment. This study analyses separately optics and heat transfer in the evacuated tubes, allowing the analysis to be extended to different configurations. The predictions obtained are in agreement with experimental. The optimum collector parameters (collector tube length and diameter, mass flow rate and collector tilt angle) are determined. The present results indicate that the optimum tube length is 1.5 m, as at this length a significant improvement is achieved in efficiency for different tube diameters studied. Finally, the heat generated from ETCs is used for solar cooling of a house. Results of the simulation of cooling system indicate that an ETC of area 54 m2, tilt angle of 25° and storage tank volume of 2.1 m3 provides 80% of air-conditioning demand in a house located in Kuwait.

  8. A solar cooling system for greenhouse food production in hot climates

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P.A. [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2005-12-01

    This study is motivated by the difficulty of cultivating crops in very hot countries and by the tendency for some such countries to become dependent on imported food. Liquid desiccation with solar regeneration is considered as maintained at or above room temperature, and this was confirgreenhouses. Previous studies demonstrated the technical feasibility of the desiccation-evaporation process, but mainly in the context of human dwellings. In the proposed cycle, the air is dried prior to entering the evaporative cooler. This lowers the wet-bulb temperature of the air. The cooling is assisted by using the regenerator to partially shade the greenhouse. The heat of desiccation is transferred and rejected at the outlet of the greenhouse. The cycle is analysed and results given for the climate of the The Gulf, based on weather data from Abu Dhabi. Taking examples of a temperate crop (lettuce), a tropical crop (tomato) and a tropical crop resistant to high temperatures (cucumber) we estimate the extension in growing seasons relative to (i) a greenhouse with simple fan ventilation (ii) a greenhouse with conventional evaporative cooling. Compared to option (ii), the proposed system lowers summers maximum temperatures by 5{sup o}C. This will extend the optimum season for lettuce cultivation from 3 to 6 months of the year and, for tomato and cucumber, from 7 months to the whole year. (author)

  9. Bioclimatic influence of extension of white and black coat color on Holstein cows production in a hot tropical climate

    International Nuclear Information System (INIS)

    Manrique P, Luis Phanor

    1999-01-01

    Was determined the influence of the white and black hair coat percentage in Holstein cows managed under hot climate condition at the San Jose del Hato farm, located in Palmira, Cauca Valley, Colombia. Three categories or classes of hair score were established, according to the white color distribution and with three observers it was determined the relative frequency of cows within each color category; the productive data were studied through an Anova using the least squares means method and Ducan test for means separation. The results were in agreement with the effect of color categories in the 305 days of milk production and in the total milk production (p < 0.05), being the best producer the cows group with 40 - 60 % white hair coats. These results showed the influence of the hair coat surface over the productive capability of Holstein cattle for selection programs in tropical conditions of hot climates

  10. Architectural approach to the energy performance of buildings in a hot-dry climate with special reference to Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Hamdy, I F

    1986-01-01

    A thesis is presented on the changing approach to architectural design of buildings in a hot, dry climate in view of the increased recognition of the importance of energy efficiency. The thermal performance of buildings in Egypt is used as an example and the nature of the local climate and human requirements are also studied. Other effects on the thermal performance considered include building form, orientation and surrounding conditions. An evaluative computer model is constructed and its applications allow the prediction on the energy performance of changing design parameters.

  11. Study of the Thermal Behaviour of Water for Residential Use in Tanks of Concrete and Polyethylene in Humid Subtropical Climate

    Directory of Open Access Journals (Sweden)

    Diego-Ayala Ulises

    2015-09-01

    Full Text Available This article presents a comparative study of the thermal behavior of residential water tanks of polyethylene and concrete exposed to the sun over a year in the state of Yucatan. The energy for radiation and their corresponding temperatures in each system were measured. Daily patterns of elevation and reduction of temperature were identified and the amount of energy acquired during the day as well as the heat dissipated overnight were determined, aiming to determine the possibility of using residential water tanks as a source of hot water in residential homes in the Yucatan region. Based on this study it has been found that the periods of the day with hot water temperature for showering with comfort is limited and that, interestingly, both systems show similar temperatures at the bottom of the tanks throughout the year.

  12. Declining impacts of hot spells on mortality in the Czech Republic, 1986-2009: adaptation to climate change?

    Czech Academy of Sciences Publication Activity Database

    Kyselý, Jan; Plavcová, Eva

    2012-01-01

    Roč. 113, č. 2 (2012), s. 437-453 ISSN 0165-0009 R&D Projects: GA ČR GC205/07/J044; GA ČR(CZ) GAP209/11/1985 Institutional support: RVO:68378289 Keywords : Mortality * hot spells * climate change * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.634, year: 2012 http://www.springerlink.com/content/d437532820hx7451/fulltext.pdf

  13. Humidity and Buildings. Technical Paper No. 188.

    Science.gov (United States)

    Hutcheon, N. B.

    Modified and controlled relative humidity in buildings for certain occupancies is discussed. New criteria are used in determining the needs, desirability and problems associated with humidities in a building. Severe winter climate requires that special attention be given to the problems associated with increased indoor humidities during cold…

  14. EDITORIAL: Humidity sensors Humidity sensors

    Science.gov (United States)

    Regtien, Paul P. L.

    2012-01-01

    All matter is more or less hygroscopic. The moisture content varies with vapour concentration of the surrounding air and, as a consequence, most material properties change with humidity. Mechanical and thermal properties of many materials, such as the tensile strength of adhesives, stiffness of plastics, stoutness of building and packaging materials or the thermal resistivity of isolation materials, all decrease with increasing environmental humidity or cyclic humidity changes. The presence of water vapour may have a detrimental influence on many electrical constructions and systems exposed to humid air, from high-power systems to microcircuits. Water vapour penetrates through coatings, cable insulations and integrated-circuit packages, exerting a fatal influence on the performance of the enclosed systems. For these and many other applications, knowledge of the relationship between moisture content or humidity and material properties or system behaviour is indispensable. This requires hygrometers for process control or test and calibration chambers with high accuracy in the appropriate temperature and humidity range. Humidity measurement methods can roughly be categorized into four groups: water vapour removal (the mass before and after removal is measured); saturation (the air is brought to saturation and the `effort' to reach that state is measured); humidity-dependent parameters (measurement of properties of humid air with a known relation between a specific property and the vapour content, for instance the refractive index, electromagnetic spectrum and acoustic velocity); and absorption (based on the known relation between characteristic properties of non-hydrophobic materials and the amount of absorbed water from the gas to which these materials are exposed). The many basic principles to measure air humidity are described in, for instance, the extensive compilations by Wexler [1] and Sonntag [2]. Absorption-type hygrometers have small dimensions and can be

  15. Estimation of potential evapotranspiration from extraterrestrial radiation, air temperature and humidity to assess future climate change effects on the vegetation of the Northern Great Plains, USA

    Science.gov (United States)

    King, David A.; Bachelet, Dominique M.; Symstad, Amy J.; Ferschweiler, Ken; Hobbins, Michael

    2014-01-01

    The potential evapotranspiration (PET) that would occur with unlimited plant access to water is a central driver of simulated plant growth in many ecological models. PET is influenced by solar and longwave radiation, temperature, wind speed, and humidity, but it is often modeled as a function of temperature alone. This approach can cause biases in projections of future climate impacts in part because it confounds the effects of warming due to increased greenhouse gases with that which would be caused by increased radiation from the sun. We developed an algorithm for linking PET to extraterrestrial solar radiation (incoming top-of atmosphere solar radiation), as well as temperature and atmospheric water vapor pressure, and incorporated this algorithm into the dynamic global vegetation model MC1. We tested the new algorithm for the Northern Great Plains, USA, whose remaining grasslands are threatened by continuing woody encroachment. Both the new and the standard temperature-dependent MC1 algorithm adequately simulated current PET, as compared to the more rigorous PenPan model of Rotstayn et al. (2006). However, compared to the standard algorithm, the new algorithm projected a much more gradual increase in PET over the 21st century for three contrasting future climates. This difference led to lower simulated drought effects and hence greater woody encroachment with the new algorithm, illustrating the importance of more rigorous calculations of PET in ecological models dealing with climate change.

  16. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata based wind turbine blade

    Directory of Open Access Journals (Sweden)

    Sudarsono S.

    2018-01-01

    Full Text Available In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM and material component is measured with Energy Dispersive X-ray spectrometer (EDS. The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  17. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata) based wind turbine blade

    Science.gov (United States)

    Sudarsono, S.; Purwanto; Sudarsono, Johny W.

    2018-02-01

    In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM) and material component is measured with Energy Dispersive X-ray spectrometer (EDS). The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  18. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eastment, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jalalzadeh-Azar, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  19. It's the Heat AND the Humidity -- Assessment of Extreme Heat Scenarios to Enable the Assessment of Climate Impacts on Public Health

    Science.gov (United States)

    Crosson, William L; Al-Hamdan, Mohammad Z.; Economou, Sigrid, A.; Estes, Maurice G.; Estes, Sue M.; Puckett, Mark; Quattrochi, Dale A

    2013-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. In a NASA-funded project supporting the National Climate Assessment, we are providing historical and future measures of extreme heat to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The project s emphasis is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM output, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons, 2040 and 2090, are the focus of future assessments; these are compared to the recent past period of 1981-2000. We are characterizing regional-scale temperature and humidity conditions using GCM output for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM output have been analyzed to develop a heat stress climatology based on statistics of extreme heat indicators. Differences between the two future and past periods have been used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes, combined with hourly historical meteorological data at a spatial scale (12 km) much finer than that of GCMs, enable us to create future climate realizations, from which we compute the daily heat stress measures and related spatially-specific climatological fields. These include the mean annual

  20. Application of cold thermal energy storage (CTES) for building demand management in hot climates

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Nagarajan, Balamurugan; Romagnoli, Alessandro

    2016-01-01

    Highlights: • A new index, Savings per energy unit, is defined to assess the effectiveness of CTES. • CTES systems were used to perform demand management strategies, removing partial load operations and shaving peak loads. • CTES was used to perform price arbitrage, exploiting the difference between peak and off peak electricity rates in Singapore. • Results showed that it is possible to enhance the efficiency of the whole system, achieving both energy and economic savings. • Depending on the sizing scenario, the pay back periods ranged from a minimum of 8.9 years to a maximum of 16 years. - Abstract: This paper investigates the feasibility of Cold Thermal Energy Storage (CTES) for building demand management applications in hot climate characterized by a cooling season lasting all year long. An existing office building, located in Singapore, serves as case study. The CTES is coupled to the existing cooling systems in order to address the opportunity of improving overall energy efficiency and to perform price arbitrage, exploiting the spread between peak and off-peak energy tariffs. Six different sizes for the CTES are analyzed, addressing different percentage of the daily cooling energy demand. A new index, Savings per energy unit, is defined to assess the effectiveness of CTES. Results indicate that it is possible to enhance the efficiency of the whole cooling system, achieving both energy and economic savings. The payback periods of the different solutions range from a minimum of 8.9 years to a maximum of 16 years. All these aspects make CTES applications a viable option. However, a large amount of space in direct proximity to the building is necessary and, especially in largely urban environment, this is not always available.

  1. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Nemesure, S.; Wagener, R.; Schwartz, S.E. [Brookhaven National Lab., Upton, New York (United States)

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  2. Climate scenarios for semi-arid and sub-humid regions. A comparison of climate scenarios for the dryland regions, in West Africa from 1990 to 2050

    NARCIS (Netherlands)

    van den Born GJ; Schaeffer M; Leemans R; NOP

    2001-01-01

    The identification of climate scenarios for dryland areas in Sub-Saharan West Africa is part of a project to assess the impact of climate change on water availability, agriculture and food security in drylands (ICCD-project). The project is financed by Netherlands Research Programme on Global Air

  3. Proposition of Regression Equations to Determine Outdoor Thermal Comfort in Tropical and Humid Environment

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2012-05-01

    Full Text Available This study is about field experimentation in order to construct regression equations of perception of thermalcomfort for outdoor activities under hot and humid environment. Relationships between thermal-comfort perceptions, micro climate variables (temperatures and humidity and body parameters (activity, clothing, body measure have been observed and analyzed. 180 adults, men, and women participated as samples/respondents. This study is limited for situation where wind velocity is about 1 m/s, which touch the body of the respondents/samples. From questionnaires and field measurements, three regression equations have been developed, each for activity of normal walking, brisk walking, and sitting.

  4. Effect of Phase Change Materials (PCMs Integrated into a Concrete Block on Heat Gain Prevention in a Hot Climate

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-10-01

    Full Text Available In the current study, a phase change material (PCM contained in an insulated concrete block is tested in extremely hot weather in the United Arab Emirates (UAE to evaluate its cooling performance. An insulated chamber is constructed behind the block containing PCM to mimic a scaled down indoor space. The effect of placement of the PCM layer on heat gain indoors is studied at two locations: adjacent to the outer as well as the inner concrete layer. The inclusion of PCM reduced heat gain through concrete blocks compared to blocks without PCM, yielding a drop in cooling load indoors. The placement of PCM and insulation layers adjacent to indoors exhibited better cooling performance compared to that adjacent to the outdoors. In the best case, a temperature drop of 8.5% and a time lag of 2.6 h are achieved in peak indoor temperature, rendering a reduction of 44% in the heat gain. In the tested hot climate, the higher ambient temperature and the lower wind speed hampered heat dissipation and PCM re-solidification by natural ventilation. The findings recommend employing a mechanical ventilation in hot climates to enhance regeneration of the PCM to solid state for its optimal performance.

  5. Armoured mud balls as a result of ephemeral fluvial flood in a humid climate: Modern example from Guizhou Province, South China

    Directory of Open Access Journals (Sweden)

    Gerhard H. Bachmann

    2014-10-01

    Full Text Available Armoured mud balls were observed after rainfall and a short flood in the otherwise dry Xiaohe (small river valley of Guanling County, Guizhou Province, South China, approximately 30 km southwest of Guanling City. Armoured mud balls are most common in semiarid climates, but rather unusual in a humid climate as in Guizhou. A number of well-rounded mud balls, 2–20 cm in diameter, were found lying on the gravel of the Xiaohe gully floor. The mud balls consist of sticky, light brown and slightly mottled clay without carbonate content. The surfaces of the mud balls were studded with rims of sand- or gravel-size limestone clasts, collected during bedload transport, as is typical for armoured mud balls. The mud balls originated from alluvial mudstone deposits of the valley floor and cliff that are most likely derived from the weathering and karstification of bedrock limestones. Such mudstones with high clay content seem to be especially well suited for forming armoured mud balls. As flood events are rather common in the area, the formation of armoured mud balls should be very frequent in the Xiaohe valley and similar valleys nearby, giving the possibility for further and more detailed studies. To the best of our knowledge this is the first description of armoured mud balls in China.

  6. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    Energy Technology Data Exchange (ETDEWEB)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  7. Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam

    Directory of Open Access Journals (Sweden)

    Pham Quang Thai

    2015-12-01

    Conclusions: Our results identify a role for AH in driving the epidemiology of ILI in a tropical setting. However, in contrast to temperate regions, high rather than low AH is associated with increased ILI activity. Fluctuation in AH may be the climate factor that underlies and unifies the seasonality of ILI in both temperate and tropical regions. Alternatively, the mechanism of action of AH on disease transmission may be different in cold-dry versus hot-humid settings.

  8. Educational strategies used in increasing fluid intake and enhancing hydration status in field hockey players preparing for competition in a hot and humid environment: a case study.

    Science.gov (United States)

    Dabinett, J A; Reid, K; James, N

    2001-09-01

    The purpose of the present study was to develop a hydration strategy for use by female English field hockey players at the 1998 Commonwealth Games in Malaysia. An additional aim was to initiate the process of acclimation. Fifteen elite players, mean age (+/-SEM) 24.1 +/- 1.19 years, height 1.67 +/- 0.01 m, and body mass 62.8 +/- 1.76 kg, took part in a 5-day training camp immediately prior to departure for the Games. In order to develop the hydration strategy, training took place under similar environmental conditions to those to be experienced in Malaysia (i.e., 32 degrees C, 80% humidity). Acclimation training consisted of 30-50 min of either continuous, low intensity cycling or high intensity intermittent cycling, which more closely replicated the pattern of activity in field hockey. Body mass measures taken each morning, and pre and post training, together with urine color measures, were used to assess hydration status. Pre-loading with up to 1 L of a 3% carbohydrate-electrolyte solution or water immediately prior to acclimation training, as well as regular drinks throughout, ensured that players avoided significant dehydration, with percent body mass changes ranging from -0.34% to +4.24% post training. Furthermore, the protocol used was sufficient to initiate the process of acclimation as demonstrated by a significant reduction in exercising heart rate and core temperature at all time points by days 4 and 5. In conclusion, although labor intensive and time consuming, the camp was successful in developing a hydration strategy that players were able to utilize once at the Games.

  9. Effect of Hot Climatic Conditions With Different Types of Housing on Productive Efficiency and Physiological Changes in Buffalo Calves

    International Nuclear Information System (INIS)

    Habeeb, A.A.M.; Gad, A.E.; El-Tarabany, A.A.

    2012-01-01

    The present study was planned to investigate the effect of housing types under both mild and hot periods of the year on twenty four buffalo calves aged 8-10 months with average body weight 156.8 kg. The study included two periods each was of 3 months. The first period was carried out during mild conditions while the second period was carried out during hot conditions. Averages of air temperature and relative humidity values at midday inside the farm building were 20.8 ± 1.0 degree C and 72.07 ± 2.1% under mild conditions and 35.93± 1.4 degree C and 58.23 ± 1.5 under the hot period, respectively. The estimated temperature-humidity index of values 20.23 and 33.17 during mild and hot conditions, respectively, indicated absence of heat stress during the first period and exposing the animals to very severe heat stress during the second period. The animals during the two experimental periods were fed the concentrate feed mixture according to body weight and daily gain with rice straw offered ad libitum. In each of the two studied periods, the animals were divided into two equal groups according to type of housing system. The animals in the first group (6 calves) were tied from their neck in stall barn in two rows tail to tail while the animals in the second group (6 calves) were left loose housing in the barn. The results showed that heat stress conditions of summer period induced significant decreases in daily body weight gain, total proteins, albumin, globulin, glucose, total lipids, total cholesterol, triglycerides, creatinine, sodium, potassium, calcium, inorganic phosphorus and GGT as well as T4 , T3 , parathormone hormonal levels. On the other hand, significant increase in respiration rate, temperatures of rectal and skin, urea, cortisol, GOT and GPT. Concerning the effect of housing type, there were significant differences in daily body gain of buffalo calves between free and tied through the first two months of experiment, so, daily body gain of buffalo

  10. Water and forests in the Mediterranean hot climate zone: a review based on a hydraulic interpretation of tree functioning

    Energy Technology Data Exchange (ETDEWEB)

    Soares David, T.; Assunção Pinto, C.; Nadezhdina, N.; Soares David, J.

    2016-07-01

    Aim of the study: Water scarcity is the main limitation to forest growth and tree survival in the Mediterranean hot climate zone. This paper reviews literature on the relations between water and forests in the region, and their implications on forest and water resources management. The analysis is based on a hydraulic interpretation of tree functioning. Area of the study: The review covers research carried out in the Mediterranean hot climate zone, put into perspective of wider/global research on the subject. The scales of analysis range from the tree to catchment levels. Material and Methods: For literature review we used Sc opus, Web of Science and Go ogle Scholar as bibliographic databases. Data from two Quercus suber sites in Portugal were used for illustrative purposes. Main results: We identify knowledge gaps and discuss options to better adapt forest management to climate change under a tree water use/availability perspective. Forest management is also discussed within the wider context of catchment water balance: water is a constraint for biomass production, but also for other human activities such as urban supply, industry and irrigated agriculture. Research highlights: Given the scarce and variable (in space and in time) water availability in the region, further research is needed on: mapping the spatial heterogeneity of water availability to trees; adjustment of tree density to local conditions; silviculture practices that do not damage soil properties or roots; irrigation of forest plantations in some specific areas; tree breeding. Also, a closer cooperation between forest and water managers is needed. (Author)

  11. Lower prevalence and greater severity of asthma in hot and dry climate

    Directory of Open Access Journals (Sweden)

    Marco Aurélio de Valois Correia Junior

    2017-03-01

    Full Text Available Objective: To estimate asthma prevalence, severity, and associated factors in adolescents who live in a low relative humidity environment. Methods: In this cross-sectional study, adolescents aged 13–14 years from the city of Petrolina located in the Brazilian semiarid region answered the International Study of Asthma and Allergies in Childhood (ISAAC questionnaire. The possible explanatory variables of the study were gender, family income, mother's education, smokers in the household, parental history of asthma, personal history of allergic rhinitis or atopic dermatitis, and physical activity level. Poisson regression analysis was used to assess the association between asthma and the explanatory variables. Results: A total of 1591 adolescents participated in the study, of whom 49.7% were male. The prevalence of active asthma, severe asthma, and physician-diagnosed asthma were 14.0%, 10.4%, and 17.8%, respectively. Adolescents with asthma missed more school days than their peers (33 vs. 22 days/year; p < 0.03. Associated factors that remained significant after adjustment were history of asthma in parents (PR = 2.65, p < 0.001 and personal diagnosis of allergic rhinitis (PR = 1.96, p < 0.001 and/or atopic dermatitis (PR = 2.18, p < 0.001. Conclusion: Asthma prevalence in this low-humidity environment was lower, but more severe than those reported in other Brazilian cities. The dry climate might hamper disease control and this may have contributed to the higher school absenteeism observed. The association of asthma with allergic rhinitis and atopic dermatitis as well as a history of asthma in parents suggests that atopy is an important risk factor for asthma in this population. Resumo: Objetivo: Estimar a prevalência, a gravidade e os fatores associados à asma em adolescentes que vivem em uma região de baixa umidade relativa do ar. Métodos: Estudo transversal em adolescentes de 13 e 14 anos do semiárido brasileiro. Os

  12. Design study on the efficiency of the thermal scheme of power unit of thermal power plants in hot climates

    Science.gov (United States)

    Sedlov, A.; Dorokhov, Y.; Rybakov, B.; Nenashev, A.

    2017-11-01

    At the stage of pre-proposals unit of the thermal power plants for regions with a hot climate requires a design study on the efficiency of possible options for the structure of the thermal circuit and a set of key parameters. In this paper, the thermal circuit of the condensing unit powerfully 350 MW. The main feature of the external conditions of thermal power plants in hot climates is the elevated temperature of cooling water of the turbine condensers. For example, in the Persian Gulf region as the cooling water is sea water. In the hot season of the year weighted average sea water temperature of 30.9 °C and during the cold season to 22.8 °C. From the turbine part of the steam is supplied to the distillation-desalination plant. In the hot season of the year heat scheme with pressure fresh pair of 23.54 MPa, temperature 570/560 °C and feed pump with electric drive (EDP) is characterized by a efficiency net of 0.25% higher than thermal schem with feed turbine pump (TDP). However, the supplied power unit with PED is less by 11.6 MW. Calculations of thermal schemes in all seasons of the year allowed us to determine the difference in the profit margin of units of the TDP and EDP. During the year the unit with the TDP provides the ability to obtain the profit margin by 1.55 million dollars more than the unit EDP. When using on the market subsidized price of electricity (Iran) marginal profit of a unit with TDP more at 7.25 million dollars.

  13. NPC Based Design Optimization for a Net Zero Office Building in Hot Climates with PV Panels as Shading Device

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair

    2018-05-01

    Full Text Available Hot areas of the world receive a high amount of solar radiation. As a result, buildings in those areas consume more energy to maintain a comfortable climate for their inhabitants. In an effort to design net-zero energy building in hot climates, PV possesses the unique advantage of generating electrical energy while protecting the building from solar irradiance. In this work, to form a net-zero energy building (NZEB, renewable resources such as solar and wind available onsite for an existing building have been analyzed in a hot climate location. PV and wind turbines in various configurations are studied to form a NZEB, where PV-only systems offer better performance than Hybrid PV Wind systems, based on net present cost (NPC. The self-shading losses in PV placed on rooftop areas are analyzed by placing parallel arrays of PV modules at various distances in between them. The effect on building cooling load by rooftop PV panels as shading devices is investigated. Furthermore, self-shading losses of PV are compared by the savings in cooling loads using PV as shading. In the case study, 12.3% saving in the cooling load of the building is observed when the building rooftop is completed shaded by PV panels; annual cooling load decreased from 3.417 GWh to 2.996 GWh, while only 1.04% shaded losses are observed for fully shaded (FS buildings compared to those with no shading (NS, as PV generation decreases from 594.39 kWh/m2 to 588.21 kWh/m2. The net present cost of the project has been decreased from US$4.77 million to US$4.41 million by simply covering the rooftop completely with PV panels, for a net-zero energy building.

  14. Low-frequency and high-frequency changes in temperature and effective humidity during the Holocene in south-central Sweden: implications for atmospheric and oceanic forcings of climate

    Energy Technology Data Exchange (ETDEWEB)

    Seppae, H. [University of Helsinki, Department of Geology, 64, Helsinki (Finland); Hammarlund, D. [Lund University, GeoBiosphere Science Centre, Quaternary Sciences, Lund (Sweden); Antonsson, K. [Uppsala University, Department of Earth Sciences, Uppsala (Sweden)

    2005-08-01

    An integrated use of independent palaeoclimatological proxy techniques that reflect different components of the climate system provides a potential key for functional analysis of past climate changes. Here we report a 10,000 year quantitative record of annual mean temperature (T{sub ann}), based on pollen-climate transfer functions and pollen-stratigraphical data from Lake Flarken, south-central Sweden. The pollen-based temperature reconstruction is compared with a reconstruction of effective humidity, as reflected by a {delta}{sup 18}O record obtained on stratigraphy of lacustrine carbonates from Lake Igelsjoen, c. 10 km from Lake Flarken, which gives evidence of pronounced changes in effective humidity. The relatively low T{sub ann}, and high effective humidity as reflected by a low evaporation/inflow ratio suggest a maritime early Holocene climate (10,000-8,300 cal year BP), seemingly incompatible with the highly seasonal solar insolation configuration. We argue that the maritime climate was due to the stronger-than-present zonal flow, enhanced by the high early Holocene sea-surface temperatures in the North Atlantic. The maritime climate mode was disrupted by the abrupt cold event at 8,200 cal year BP, followed at 8,000 cal year BP by a stable Holocene Thermal Maximum. The latter was characterized by T{sub ann} values about 2.5 C higher than at present and markedly dry conditions, indicative of stable summer-time anti-cyclonic circulation, possibly corresponding with modern blocking anticyclonic conditions. The last 4,300 year period is characterized by an increasingly cold, moist, and unstable climate. The results demonstrate the value of combining two independent palaeoclimatic proxies in enhancing the reliability, generality, and interpretability of the palaeoclimatic results. Further methodological refinements especially in resolving past seasonal climatic contrasts are needed to better understand the role of different forcing factors in driving millennial

  15. The Effect of Passive Design Strategies on Thermal Performance of Female Secondary School Buildings during Warm Season in Hot Dry Climate

    Directory of Open Access Journals (Sweden)

    Sahar eZahiri

    2016-03-01

    Full Text Available This paper describes a series of field studies and simulation analysis to improve the thermal performance of school buildings in the city of Tehran in Iran during warm season. The field studies used on-site measurement and questionnaire-based survey in the warm spring season in a typical female secondary school building. The on-site monitoring assessed the indoor air temperature and humidity levels of six classrooms while the occupants completed questionnaires covering their thermal sensations and thermal preferences. Moreover, thermal simulation analysis was also carried out to evaluate and improve the thermal performance of the classrooms based on the students’ thermal requirements and passive design strategies. In this study, the environmental design guidelines for female secondary school buildings were introduced for the hot and dry climate of Tehran, using passive design strategies. The study shows that the application of passive design strategies including south and south-east orientation, 10cm thermal insulation in wall and 5cm in the roof, and the combination of 30cm side fins and overhangs as a solar shading devices, as well as all-day ventilation strategy and the use of thermal mass materials with 25cm-30cm thickness, has considerable impact on indoor air temperatures in warm season in Tehran and keeps the indoor environment in an acceptable thermal condition. The results of the field studies also indicated that most of the occupants found their thermal environment not to be comfortable and the simulation results showed that passive design techniques had a significant influence on the indoor air temperature and can keep it in an acceptable range based on the female students’ thermal requirement. Therefore, in order to enhance the indoor environment and to increase the learning performance of the students, it is necessary to use the appropriate passive design strategies, which also reduce the need for mechanical systems and

  16. Energy and Economic Performance of Plant-Shaded Building Façade in Hot Arid Climate

    Directory of Open Access Journals (Sweden)

    Mahmoud Haggag

    2017-11-01

    Full Text Available The use of vegetated walls and intensive plantation around buildings has increased in popularity in hot and arid climates, such as those in the United Arab Emirates (UAE. This is due to its contribution towards reducing the heat gain and increasing the occupants’ comfort levels in spaces. This paper examines the introduction of plant-shaded walls as passive technique to reduce heat gain in indoor spaces as a strategy to lower cooling demand in hot arid climate of Al-Ain city. Experimental work was carried out to analyze the impact of using plantation for solar control of residential building façades in extreme summer. External and internal wall surface and ambient temperatures were measured for plant-shaded and bare walls. The study concluded that shading effect of the intensive plantation can reduce peak time indoor air temperature by 12 °C and reduce the internal heat gain by 2 kWh daily in the tested space. The economic analysis reveals a payback period of 10 years considering local energy tariff excluding environmental savings.

  17. To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate

    Science.gov (United States)

    Kini, Pradeep G.; Garg, Naresh Kumar; Kamath, Kiran

    2017-07-01

    India’s commercial building sector is witnessing robust growth. India continues to be a key growth market among global corporates and this is reflective in the steady growth in demand for prime office space. A recent trend that has been noted is the increase in demand for office spaces not just in major cities but also in smaller tier II and Tier III cities. Growth in the commercial building sector projects a rising trend of energy intensive mechanical systems in office buildings in India. The air conditioning market in India is growing at 25% annually. This is due to the ever increasing demand to maintain thermal comfort in tropical regions. Air conditioning is one of the most energy intensive technologies which are used in buildings. As a result India is witnessing significant spike in energy demand and further widening the demand supply gap. Challenge in India is to identify passive measures in building envelope design in office buildings to reduce the cooling loads and conserve energy. This paper investigates the overall heat gain through building envelope components and natural ventilation in warm and humid climate region through experimental and simulation methods towards improved thermal environmental performance.

  18. A spatial analysis of population dynamics and climate change in Africa: potential vulnerability hot spots emerge where precipitation declines and demographic pressures coincide

    Science.gov (United States)

    López-Carr, David; Pricope, Narcisa G.; Aukema, Juliann E.; Jankowska, Marta M.; Funk, Christopher C.; Husak, Gregory J.; Michaelsen, Joel C.

    2014-01-01

    We present an integrative measure of exposure and sensitivity components of vulnerability to climatic and demographic change for the African continent in order to identify “hot spots” of high potential population vulnerability. Getis-Ord Gi* spatial clustering analyses reveal statistically significant locations of spatio-temporal precipitation decline coinciding with high population density and increase. Statistically significant areas are evident, particularly across central, southern, and eastern Africa. The highly populated Lake Victoria basin emerges as a particularly salient hot spot. People located in the regions highlighted in this analysis suffer exceptionally high exposure to negative climate change impacts (as populations increase on lands with decreasing rainfall). Results may help inform further hot spot mapping and related research on demographic vulnerabilities to climate change. Results may also inform more suitable geographical targeting of policy interventions across the continent.

  19. Climate classification and passive solar design implications in China

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Chris C.S.; Lam, Joseph C. [Building Energy Research Group, Department of Building and Construction, City University of Hong Kong, Kowloon, Hong Kong (China); Yang, Liu [School of Architecture, Xi' an University of Architecture and Technology, Shaanxi 710055 (China)

    2007-07-15

    China's climate differs greatly in various regions, ranging from severe cold to hot and arid to humid. This has significant influences on energy efficient building design strategies and energy use. Solar radiation data from 123 measuring stations were used to propose a map indicating the solar radiation climates in China. A cluster analysis was adopted to identify the prevailing solar climates using the monthly average daily clearness index, K{sub t}, as climatic variable. Five major solar climates were identified with annual average K{sub t} ranging from 0.3 in the Sichuan Basin to 0.65 in the north and northwest regions. The solar climates were compared with the more widely used general (thermal) climates (severe cold, cold, hot summer and cold winter, mild and hot summer and warm winter) and the major topography (basin, plain and plateau), and implications for building designs were briefly discussed. (author)

  20. Climate classification and passive solar design implications in China

    International Nuclear Information System (INIS)

    Lau, Chris C.S.; Lam, Joseph C.; Yang, Liu

    2007-01-01

    China's climate differs greatly in various regions, ranging from severe cold to hot and arid to humid. This has significant influences on energy efficient building design strategies and energy use. Solar radiation data from 123 measuring stations were used to propose a map indicating the solar radiation climates in China. A cluster analysis was adopted to identify the prevailing solar climates using the monthly average daily clearness index, K t , as climatic variable. Five major solar climates were identified with annual average K t ranging from 0.3 in the Sichuan Basin to 0.65 in the north and northwest regions. The solar climates were compared with the more widely used general (thermal) climates (severe cold, cold, hot summer and cold winter, mild and hot summer and warm winter) and the major topography (basin, plain and plateau), and implications for building designs were briefly discussed

  1. Influences of hot climate and metamizol treatment on physiological responses, blood constituents and productivity of baladi goats

    International Nuclear Information System (INIS)

    Aboulnaga, A.I.; Kamal, T.H.; Abusinna, G.; Amer, M.M.

    1992-01-01

    Nine lactating baladi goats (2.5 years old and 17 Kg b. wt.) were maintained in the climatic chamber for 3 successive experimental periods of 7 days each. The first was mild climate exposure (15 - 20 degree C and 50 - 25% R.H.) . The second was heat exposure of 35 degree C and 25% R.H. from 7 a.m. to 15 p.m. and about 20 degree C and 28% R.H. during the remaining 16 hours. The third was the same previous hot climate exposure but the goats were injected daily with 30 mg/Kg B.wt./day with metamizol ( novalgin ) . Under heat stress conditions, goats injected with novalgin tended to restore the heat-induced changes in most biological parameters studied to their initial levels. There were significant increases in RBC; plasma T 4 , Na, Ca, P, Mg, and cholesterol; body weight ( B.wt. ), milk yield ( M.Y.) and significant decreases in rectal temperature (RT), respiration rate (RR) and pulse rate (PR), as compared with the corresponding parameters of the same heat-stressed goats prior to novalgin administration.1 tab

  2. Simulation of whole building coupled hygrothermal-airflow transfer in different climates

    International Nuclear Information System (INIS)

    Qin Menghao; Walton, George; Belarbi, Rafik; Allard, Francis

    2011-01-01

    The coupled heat, air and moisture transfer between building envelopes and indoor air is complicated, and has a significant influence on the indoor environment and the energy performance of buildings. In the paper, a model for predicting coupled multi-zone hygrothermal-airflow transfer is presented. Both heat and moisture transfer in the building envelope and multi-zone indoor airflow are simultaneously considered; their interactions are modeled. The coupled system model is implemented into Matlab-Simulink, and is validated by using a series of testing tools and experiments. The new program is applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption in different climates (hot-humid, temperate and hot-dry climates). The results show that not accounting for hygrothermal effects in modeling will result in overestimation of energy costs for hot and humid climate situations and possible over sizing of plant leading to inefficient operation.

  3. An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate.

    Science.gov (United States)

    Balke, Elizabeth C; Healy, William M; Ullah, Tania

    2016-12-01

    An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COP sys ) of 2.87. The heat pump water heater alone results in a COP sys of 1.9, while the baseline resistance water heater has a COP sys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COP sys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COP sys , the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning.

  4. An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate

    Science.gov (United States)

    Balke, Elizabeth C.; Healy, William M.; Ullah, Tania

    2016-01-01

    An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COPsys) of 2.87. The heat pump water heater alone results in a COPsys of 1.9, while the baseline resistance water heater has a COPsys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COPsys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COPsys, the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning. PMID:27990058

  5. The impacts of climate on retailing in the UK with particular reference to the anomalously hot summer of 1995

    Science.gov (United States)

    Agnew, M. D.; Palutikof, J. P.

    1999-11-01

    The impacts on the UK retailing sector of the extreme climate of 1995 are analysed in the context of monthly climate conditions in the previous two decades. Over the period from November 1994 to October 1995, the mean monthly Central England temperature (CET) was 1.6°C above the 1961-1990 normal, the highest mean 12-month temperature since the CET records began in 1659. Retail activities are geared towards average conditions and are therefore affected in the short-term by any unexpected change in supply and demand. This study focuses on those areas of retailing where the responses to climate in terms of a change in consumer demand are most likely to be clear: first, clothing and footwear and, second, food and drink. Economic time series are extracted from official government publications (1972-1995). Stepwise multiple regressions are performed to assess the amount of variance in the retail series accounted for by monthly temperature, rainfall and sunshine indices.Statistically significant associations are found between retail and climate indices over the 1972-1995 study period, these are generally strongest in winter and spring, and weakest in summer. There is some indication of an increase in the climate-sensitivity of the retail series in unusually hot years. This may be a function of factors such as: just-in-time supply chains, refrigeration and changes in the trading environment. The anomalous climate of 1995 has the greatest economic impact on the clothing and footwear market, with extreme temperatures at the end of the summer associated with a decline in the market. An attempt is made to place a monetary value on the 1995 impacts. It is estimated that the clothing and footwear market sustained a loss of #383 million (1.7% of turnover). However, the extreme climate of 1995 brought gains to the beer and wine industries of #123 million (0.9% of turnover) and #11 million (0.2% of turnover), respectively, and a gain of approximately #25 million (1.8% of turnover

  6. Reproductive and productive performances of Santa Inês ewes submitted to breeding in different periods of the Amazonian humid tropical climate.

    Science.gov (United States)

    Soares, Felipe Nogueira; Oliveira, Maria Emilia Franco; Padilha-Nakaghi, Luciana Cristina; de Oliveira, Luís Guilherme; Feliciano, Marcus Antônio Rossi; de Oliveira, Felipe Brener Bezerra; Teixeira, Pedro Paulo Maia; Vicente, Wilter Ricardo Russiano; Faturi, Cristian; Rodrigues, Luiz Fernando de Souza

    2015-12-01

    The objective of this study was to evaluate the reproductive and productive performance of Santa Inês ewes bred at different times of the year in humid tropical climate. One hundred and forty-eight Santa Inês ewes were grouped according to the time of the year of their breeding season (i.e., mating period) (dry/wet, wet, wet/dry, and dry season). The service type was natural mating and the ewes and rams were kept together every night for 45 days. Reproductive efficiency was assessed by service, pregnancy, lambing, prolificacy, twinning, pregnancy loss, weaning, and lamb mortality rates. Ewes were weighed at the beginning and at the end of the breeding season and before and after parturition, and sequential weighing of the lambs was performed (at birth, 15, 30, 60, and 90 days). Reproductive efficiency index (number of lambs weaned/total of served ewes) and productive efficiency (kg of weaned lamb/kg of served or lambed ewes) were calculated. All ewes expressed estrus early in the breeding season; however, a higher percentage (53.5 and 7.1 % at 30 and 45 days, respectively) of ewes returned to estrus during the wet/dry period. The lower rates (13.9 %) of return to estrus at 30 days were during the wet season (P  0.05) effects of breeding seasons on the remaining reproductive rates. Ewes that lambed during the wet/dry transition period weighted less, before (40.5 ± 2.5 kg) and after (38.6 ± 1.6 kg) parturition, than those of other groups (P ewes, respectively; P ewes served in the dry season. The reproductive performance of Santa Inês ewes was not significantly influenced by the period of the year in which the breeding seasons took place, allowing for four breeding seasons a year in the Amazon region. Variations between periods in return to estrus rates, weight of ewes close to parturition and lamb weight at weaning indicate that climate changes can also affect reproductive rates.

  7. The effects of window alternatives on energy efficiency and building economy in high-rise residential buildings in moderate to humid climates

    International Nuclear Information System (INIS)

    Yaşar, Yalçın; Kalfa, Sibel Maçka

    2012-01-01

    Highlights: ► We investigated energy and economy efficiency of window alternatives in Trabzon. ► Energy consumptions of eight window alternatives were simulated and discussed. ► Window alternatives’s life cycle costs were calculated and compared. ► We suggested appropriate energy and economy efficient window alternatives. ► The study defines useful guidelines to select appropriate window alternatives. - Abstract: Currently, focused efforts are being made to determine the influence of windows on the energy consumption and economy of high-rise buildings. Certain window designs and appropriate glazing systems reduce building energy consumption for heating and cooling and contribute to building economy. This paper addresses double-glazed window units that are composed of tinted glass; clear reflective glass; low emissivity (low-e) glass; and smart glass (one surface consists of a high-performance, heat-reflective glass, and other surface has a low-emissivity coated). These materials reduce the heating and cooling loads of buildings by providing solar control and heat conservation. The aim of this study was to investigate the effects of these alternative units, rather than readily available double-glazed units, in two types of flats. The flats have the same construction and operating system, but they have different plan types with regard to building energy consumption and building economy as it relates to life cycle cost analysis. For this study, we selected buildings in Trabzon, in Climate Region II of Turkey, due to its moderate-humid climate. F- and C-type high-rise residential blocks, with flats composed of two to three bedrooms, constructed by the Republic of Turkey’s Prime Ministry Housing Development Administration of Turkey (TOKİ) are used as models for the simulation. The flat plans in these blocks are modeled using DesignBuilder v.1.8 energy simulation software. The simulation results show that smart-glazed units and those with low emissivity

  8. The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates

    KAUST Repository

    Haschke, Jan

    2017-03-23

    Extensive knowledge of the dependence of solar cell and module performance on temperature and irradiance is essential for their optimal application in the field. Here we study such dependencies in the most common high-efficiency silicon solar cell architectures, including so-called Aluminum back-surface-field (BSF), passivated emitter and rear cell (PERC), passivated emitter rear totally diffused (PERT), and silicon heterojunction (SHJ) solar cells. We compare measured temperature coefficients (TC) of the different electrical parameters with values collected from commercial module data sheets. While similar TC values of the open-circuit voltage and the short circuit current density are obtained for cells and modules of a given technology, we systematically find that the TC under maximum power-point (MPP) conditions is lower in the modules. We attribute this discrepancy to additional series resistance in the modules from solar cell interconnections. This detrimental effect can be reduced by using a cell design that exhibits a high characteristic load resistance (defined by its voltage-over-current ratio at MPP), such as the SHJ architecture. We calculate the energy yield for moderate and hot climate conditions for each cell architecture, taking into account ohmic cell-to-module losses caused by cell interconnections. Our calculations allow us to conclude that maximizing energy production in hot and sunny environments requires not only a high open-circuit voltage, but also a minimal series-to-load-resistance ratio.

  9. Sodium levels in the diets of semi-heavy laying hens reared in a hot climate after peak lay

    Directory of Open Access Journals (Sweden)

    A. S. A. Assunção

    2017-03-01

    Full Text Available The objective of this study was to estimate the sodium (Na requirements of semi-heavy laying hens reared in a hot climate after peak lay. A total of 120 Hisex Brown hens, 48 weeks of age, were used. The birds were allocated in a completely randomized design consisting of five treatments, six replicates and four animals per experimental unit. The experimental diets were formulated with corn and soybean meal and the treatments consisted of five levels of sodium (0.12, 0.17, 0.22, 0.27 and 0.32% derived from common salt. The following parameters were evaluated: feed intake (g, egg production (%, egg weight (g, egg mass (g, feed conversion (kg per kilogram of eggs and per dozen eggs, specific gravity (g/cm3, shell thickness (mm, egg components including egg yolk (g and %, albumin (g and % and shell (g and %, viability (%, and variation in body weight (g of the birds. There was no effect (P>0.05 of sodium levels on egg yolk weight (g or albumin percentage. A decreasing linear effect (P<0.01 was observed for feed intake, which decreased with increasing sodium level in the diet. A quadratic effect (P<0.05 was found for egg production, egg weight, feed conversion per kilogram of eggs and dozen eggs, albumin and shell weight, specific gravity, shell thickness, and percentage of shell and egg yolk. A sodium level higher than 0.27% negatively influenced egg components and zootechnical performance of the birds. The inclusion of 0.20% sodium in the diet after peak lay is recommended for semi-heavy laying hens reared in a hot climate to increase egg quality and productive performance.

  10. The Importance of Humidity in the Relationship between Heat and Population Mental Health: Evidence from Australia.

    Science.gov (United States)

    Ding, Ning; Berry, Helen L; Bennett, Charmian M

    2016-01-01

    Despite many studies on the effects of heat on mental health, few studies have examined humidity. In order to investigate the relationship among heat, humidity and mental health, we matched data from the Social, Economic and Environmental Factors (SEEF) project with gridded daily temperature and water vapour pressure data from the Australian Bureau of Meteorology. Logit models were employed to describe the associations among heat (assessed using temperature, °C), humidity (assessed using vapour pressure, hPa) and two measures of mental health, (i) high or very high distress (assessed using K10 scores ≥ 22) and (ii) having been treated for depression or anxiety. We found a one-unit increase in temperature and vapour pressure was associated with an increase in the occurrence of high or very high distress by 0.2% (p humidity rose to the 99th percentile of the sample, the estimated marginal effect of heat was more than doubled (0.5%, p humidity was related to having been treated for depression or anxiety in the last month. Humidity compounds the negative association between hot weather and mental health and thus should be taken into account when reforming the health care system to respond to the challenge of climate change.

  11. Overview of humidity driven reliability issues of electronics

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2017-01-01

    Electronic control units, power modules, and consumer electronics are used today in a wide variety of varying climatic conditions. Varying external climatic conditions of temperature and humidity can cause an uncontrolled local climate inside the device enclosure. Uncontrolled humidity together w...

  12. Lower prevalence and greater severity of asthma in hot and dry climate.

    Science.gov (United States)

    Correia Junior, Marco Aurélio de Valois; Sarinho, Emanuel Sávio Cavalcanti; Rizzo, José Angelo; Sarinho, Silvia Wanick

    To estimate asthma prevalence, severity, and associated factors in adolescents who live in a low relative humidity environment. In this cross-sectional study, adolescents aged 13-14 years from the city of Petrolina located in the Brazilian semiarid region answered the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. The possible explanatory variables of the study were gender, family income, mother's education, smokers in the household, parental history of asthma, personal history of allergic rhinitis or atopic dermatitis, and physical activity level. Poisson regression analysis was used to assess the association between asthma and the explanatory variables. A total of 1591 adolescents participated in the study, of whom 49.7% were male. The prevalence of active asthma, severe asthma, and physician-diagnosed asthma were 14.0%, 10.4%, and 17.8%, respectively. Adolescents with asthma missed more school days than their peers (33 vs. 22 days/year; pclimate might hamper disease control and this may have contributed to the higher school absenteeism observed. The association of asthma with allergic rhinitis and atopic dermatitis as well as a history of asthma in parents suggests that atopy is an important risk factor for asthma in this population. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  13. Carbon farming in hot, dry coastal areas: an option for climate change mitigation

    Science.gov (United States)

    Becker, K.; Wulfmeyer, V.; Berger, T.; Gebel, J.; Münch, W.

    2013-07-01

    We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas - if established in hot, dry coastal areas around the world - could capture 17-25 t of carbon dioxide per hectare per year from the atmosphere (over a 20 yr period). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to have a significant impact on atmospheric CO2 levels at least for several decades. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42-63 EUR per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level. In such areas, plant growth and CO2 storage could continue until permanent woodland or forest had been established. In other areas, salinization of the soil may limit plant growth to 2-3 decades whereupon irrigation could be ceased and the captured carbon stored as woody biomass.

  14. New recommendations for building in tropical climates

    Energy Technology Data Exchange (ETDEWEB)

    Waal, H.B. de (ISOVER BV, Cappelle a/d IJssel (Netherlands))

    1993-07-01

    Traditional recommendations for building a thermally efficient or comfortable building in a tropical climate are briefly summarized. They suffer from three main drawbacks; they are not quantitative, partly incorrect and only for two climates; the hot dry and the warm humid. A new climate classification, made up of forty tropical climates is presented. Eight building elements, which affect the thermal system of a building, are distinguished. The method by which the new recommendations are derived, is discussed. The new recommendations are briefly presented. (Author)

  15. The bridge from cold facts and hot rhetoric to rational climate policy

    International Nuclear Information System (INIS)

    O'Keefe, W.F.

    2001-01-01

    The scientific community must expand its role in the political debate over climate change if we are to have wise and smart policies. The current debate is characterized by a cacaphony of competing scientific claims, scare tactics and propaganda. Scientists, particularly those in academia, are badly needed to uphold the principles of scientific inquiry and standards of evidence, upon which rational public policy depends. They should weigh into the conflict heavily, when the bounds of -rational analysis are exceeded. The acid test of analytical rigor must remain a first principle

  16. The bridge from cold facts and hot rhetoric to rational climate policy

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, W.F. [American Petroleum Institute, 1220 L St., NW, 20005 Washington, DC (United States)

    2001-06-01

    The scientific community must expand its role in the political debate over climate change if we are to have wise and smart policies. The current debate is characterized by a cacaphony of competing scientific claims, scare tactics and propaganda. Scientists, particularly those in academia, are badly needed to uphold the principles of scientific inquiry and standards of evidence, upon which rational public policy depends. They should weigh into the conflict heavily, when the bounds of -rational analysis are exceeded. The acid test of analytical rigor must remain a first principle.

  17. The bridge from cold facts and hot rhetoric to rational climate policy

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, W.F. [American Petroleum Institute, 1220 L St., NW, 20005 Washington, DC (United States)

    2001-06-01

    The scientific community must expand its role in the political debate over climate change if we are to have wise and smart policies. The current debate is characterized by a cacaphony of competing scientific claims, scare tactics and propaganda. Scientists, particularly those in academia, are badly needed to uphold the principles of scientific inquiry and standards of evidence, upon which rational public policy depends. They should weigh into the conflict heavily, when the bounds of rational analysis are exceeded. The acid test of analytical rigor must remain a first principle.

  18. The bridge from cold facts and hot rhetoric to rational climate policy

    International Nuclear Information System (INIS)

    O'Keefe, W.F.

    2001-01-01

    The scientific community must expand its role in the political debate over climate change if we are to have wise and smart policies. The current debate is characterized by a cacaphony of competing scientific claims, scare tactics and propaganda. Scientists, particularly those in academia, are badly needed to uphold the principles of scientific inquiry and standards of evidence, upon which rational public policy depends. They should weigh into the conflict heavily, when the bounds of rational analysis are exceeded. The acid test of analytical rigor must remain a first principle

  19. 'Ye Olde Hot Aire' : reporting on human contributions to climate change in the UK tabloid press

    International Nuclear Information System (INIS)

    Boykoff, Maxwell T; Mansfield, Maria

    2008-01-01

    This letter explores daily print media coverage of climate change in four United Kingdom (UK) tabloid newspapers: The Sun (and News of the World), Daily Mail (and Mail on Sunday), the Daily Express (and Sunday Express), and the Mirror (and Sunday Mirror). Through examinations of content in articles over the last seven years (2000-2006), triangulated with semi-structured interviews of journalists and editors, the study finds that UK tabloid coverage significantly diverged from the scientific consensus that humans contribute to climate change. Moreover, there was no consistent increase in the percentage of accurate coverage throughout the period of analysis and across all tabloid newspapers, and these findings are not consistent with recent trends documented in United States and UK 'prestige press' or broadsheet newspaper reporting. Findings from interviews indicate that inaccurate reporting may be linked to the lack of specialist journalists in the tabloid press. This study therefore contributes to wider discussions of socio-economic inequality, media and the environment. Looking to newspapers that are consumed by typically working class readership, this article contributes to ongoing investigations related to what media representations mean for ongoing science-policy interactions as well as potentialities for public engagement

  20. Effectiveness of indirect evaporative cooling and thermal mass in a hot arid climate

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Eduardo [Programa de Pos-Graduacao em Tecnologia/Programa de Pos-Graduacao em Engenharia Civil, Departamento de Construcao Civil, Universidade Tecnologica Federal do Parana - UTFPR, Av. Sete de Setembro, 3165. Curitiba PR, CEP. 80230-901 (Brazil); Gonzalez Cruz, Eduardo [Instituto de Investigaciones de la Facultad de Arquitectura y Diseno (IFAD), Universidad del Zulia, Nucleo Tecnico de LUZ, Av. Goajira (16) con Calle 67, Maracaibo, CP 4011-A-526 (Venezuela); Givoni, Baruch [Department of Architecture, School of Arts and Architecture, UCLA, Los Angeles CA, USA, and Ben Gurion University (Israel)

    2010-06-15

    In this paper, we compare results of a long-term temperature monitoring in a building with high thermal mass to indoor temperature predictions of a second building that uses an indirect evaporative cooling system as a means of passive cooling (Vivienda Bioclimatica Prototipo -VBP-1), for the climatic conditions of Sde Boqer, Negev region of Israel (local latitude 30 52'N, longitude 34 46'E, approximately 480 m above sea level). The high-mass building was monitored from January through September 2006 and belongs to a student dormitory complex located at the Sde Boqer Campus of Ben-Gurion University. VBP-1 was designed and built in Maracaibo, Venezuela (latitude 10 34'N, longitude 71 44'W, elevation 66 m above sea level) and had its indoor air temperatures, below and above a shaded roof pond, as well as the pond temperature monitored from February to September 2006. Formulas were developed for the VBP-1, based on part of the whole monitoring period, which represent the measured daily indoor maximum, average and minimum temperatures. The formulas were then validated against measurements taken independently in different time periods. The developed formulas were here used for estimating the building's thermal and energy performance at the climate of Sde Boqer, allowing a comparison of two different strategies: indirect evaporative cooling and the use of thermal mass. (author)

  1. Performance analysis of high-concentrated multi-junction solar cells in hot climate

    Science.gov (United States)

    Ghoneim, Adel A.; Kandil, Kandil M.; Alzanki, Talal H.; Alenezi, Mohammad R.

    2018-03-01

    Multi-junction concentrator solar cells are a promising technology as they can fulfill the increasing energy demand with renewable sources. Focusing sunlight upon the aperture of multi-junction photovoltaic (PV) cells can generate much greater power densities than conventional PV cells. So, concentrated PV multi-junction solar cells offer a promising way towards achieving minimum cost per kilowatt-hour. However, these cells have many aspects that must be fixed to be feasible for large-scale energy generation. In this work, a model is developed to analyze the impact of various atmospheric factors on concentrator PV performance. A single-diode equivalent circuit model is developed to examine multi-junction cells performance in hot weather conditions, considering the impacts of both temperature and concentration ratio. The impacts of spectral variations of irradiance on annual performance of various high-concentrated photovoltaic (HCPV) panels are examined, adapting spectra simulations using the SMARTS model. Also, the diode shunt resistance neglected in the existing models is considered in the present model. The present results are efficiently validated against measurements from published data to within 2% accuracy. Present predictions show that the single-diode model considering the shunt resistance gives accurate and reliable results. Also, aerosol optical depth (AOD) and air mass are most important atmospheric parameters having a significant impact on HCPV cell performance. In addition, the electrical efficiency (η) is noticed to increase with concentration to a certain concentration degree after which it decreases. Finally, based on the model predictions, let us conclude that the present model could be adapted properly to examine HCPV cells' performance over a broad range of operating conditions.

  2. Humidity level In psychrometric processes

    International Nuclear Information System (INIS)

    Mojsovski, Filip

    2008-01-01

    When a thermal engineer needs to control, rather than merely moderate humidity, he must focus on the moisture level as a separate variable - not simply an addition of temperature control. Controlling humidity generally demands a correct psychrometric approach dedicated to that purpose [1].Analysis of the humidity level in psychrometric thermal processes leads to relevant data for theory and practice [2]. This paper presents: (1) the summer climatic curve for the Skopje region, (2) selected results of investigation on farm dryers made outside laboratories. The first purpose of such activity was to examine relations between weather conditions and drying conditions. The estimation of weather condition for the warmest season of the year was realized by a summer climatic curve. In the science of drying, basic drying conditions are temperature, relative humidity and velocity of air, thickness of dried product and dryer construction. The second purpose was to realize correct prediction of drying rates for various psychrometrics drying processes and local products. Test runs with the dryer were carried out over a period of 24 h, using fruits and vegetables as experimental material. Air flow rate through the dryer of 150 m3/h, overall drying rate of 0.04 kg/h and air temperature of 65 oC were reached. Three types of solar dryers, were exploited in the research.

  3. A study of energy performance and audit of commercial mall in hot-summer/warm-winter climate zone in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhisheng, Li; Jiawen, Liao; Xiaoxia, Wang [School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong, 510006 (China); Lin, Yaolin [Building Energy Solutions and Technologies, Inc, San Jose Office, San Jose, CA 95134 (United States); Xuhong, Liu [School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou, Guangdong, 510643 (China)

    2013-08-15

    The building energy performance improvement of large-scale public buildings is very important to release China's energy shortage pressure. The aim of the study is to find out the building energy saving potentials of large-scale public and commercial buildings by energy audit. In this paper, the energy consumption, energy performance, and audit were carried out for a typical commercial mall, the so-called largest mall in Asia, located in a hot-summer and warm-winter climate zone. The total annual energy consumption reaches 210.01 kWh/m{sup 2}, of which lighting energy consumption accounts for 30.03 kWh/m{sup 2} and the lift and elevator energy consumption accounts for 40.46 kWh/m{sup 2}. It is by far higher than that of the average building energy consumption in the same category. However, the annual heating, ventilation, and air-conditioning (HVAC) energy consumption is only 87.19 kWh/m{sup 2} even though they run 24/7. It proves that the energy performance of the HVAC system is good. Therefore, the building energy savings potential mainly relies on reducing the excessive usage of lighting, lifts, and elevators.

  4. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate. Long-Term Utility and Monitoring Data

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D. [BA-PIRC/ Florida Solar Energy Center, Cocoa, FL (United States); Sherwin, J. [BA-PIRC/ Florida Solar Energy Center, Cocoa, FL (United States)

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution, and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.

  5. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate: Long-Term Utility and Monitoring Data (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.; Sherwin, J.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution, and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.

  6. Ceiling-mounted personalized ventilation system integrated with a secondary air distribution system--a human response study in hot and humid climate.

    Science.gov (United States)

    Yang, B; Sekhar, S C; Melikov, A K

    2010-08-01

    The benefits of thermal comfort and indoor air quality with personalized ventilation (PV) systems have been demonstrated in recent studies. One of the barriers for wide spread acceptance by architects and HVAC designers has been attributed to challenges and constraints faced in the integration of PV systems with the work station. A newly developed ceiling-mounted PV system addresses these challenges and provides a practical solution while retaining much of the apparent benefits of PV systems. Assessments of thermal environment, air movement, and air quality for ceiling-mounted PV system were performed with tropically acclimatized subjects in a Field Environmental Chamber. Thirty-two subjects performed normal office work and could choose to be exposed to four different PV airflow rates (4, 8, 12, and 16 L/s), thus offering themselves a reasonable degree of individual control. Ambient temperatures of 26 and 23.5 degrees C and PV air temperatures of 26, 23.5, and 21 degrees C were employed. The local and whole body thermal sensations were reduced when PV airflow rates were increased. Inhaled air temperature was perceived cooler and perceived air quality and air freshness improved when PV airflow rate was increased or temperature was reduced. The newly developed ceiling-mounted PV system offers a practical solution to the integration of PV air terminal devices (ATDs) in the vicinity of the workstation. By remotely locating the PV ATDs on the ceiling directly above the occupants and under their control, the conditioned outdoor air is now provided to the occupants through the downward momentum of the air. A secondary air-conditioning and air distribution system offers additional cooling in the room and maintains a higher ambient temperature, thus offering significant benefits in conserving energy. The results of this study provide designers and consultants with needed knowledge for design of PV systems.

  7. Ceiling-mounted personalized ventilation system integrated with a secondary air distribution system - a human response study in hot and humid climate

    DEFF Research Database (Denmark)

    Bin, Yang; Sekhar, S.C.; Melikov, Arsen Krikor

    2010-01-01

    The benefits of thermal comfort and indoor air quality with personalized ventilation (PV) systems have been demonstrated in recent studies. One of the barriers for wide spread acceptance by architects and HVAC designers has been attributed to challenges and constraints faced in the integration...... performed with tropically acclimatized subjects in a Field Environmental Chamber. Thirty-two subjects performed normal office work and could choose to be exposed to four different PV airflow rates (4, 8, 12, and 16 L/s), thus offering themselves a reasonable degree of individual control. Ambient...

  8. Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate

    DEFF Research Database (Denmark)

    Li, Ruixin; Sekhar, S.C.; Melikov, Arsen Krikor

    2010-01-01

    The potential for improving occupants' thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied...... of the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD supply air...

  9. Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruixin [Department of Building, National University of Singapore (Singapore); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark (Denmark); Sekhar, S.C. [Department of Building, National University of Singapore (Singapore); Melikov, A.K. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark (Denmark)

    2010-09-15

    The potential for improving occupants' thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied by UFAD system and uncomfortable sensation as ''warm head'' can be reduced by the PV system providing cool and fresh outdoor air at the facial level. A study with 30 human subjects was conducted in a Field Environmental Chamber. The chamber was served by two dedicated systems - a primary air handling unit (AHU) for 100% outdoor air that is supplied through the PV air terminal devices and a secondary AHU for 100% recirculated air that is supplied through UFAD outlets. Responses of the subjects to the PV-UFAD system were collected at various room air and PV air temperature combinations. The analyses of the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD supply air temperature was adopted in the PV-UFAD system. (author)

  10. Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam.

    Science.gov (United States)

    Thai, Pham Quang; Choisy, Marc; Duong, Tran Nhu; Thiem, Vu Dinh; Yen, Nguyen Thu; Hien, Nguyen Tran; Weiss, Daniel J; Boni, Maciej F; Horby, Peter

    2015-12-01

    Experimental and ecological studies have shown the role of climatic factors in driving the epidemiology of influenza. In particular, low absolute humidity (AH) has been shown to increase influenza virus transmissibility and has been identified to explain the onset of epidemics in temperate regions. Here, we aim to study the potential climatic drivers of influenza-like illness (ILI) epidemiology in Vietnam, a tropical country characterized by a high diversity of climates. We specifically focus on quantifying and explaining the seasonality of ILI. We used 18 years (1993-2010) of monthly ILI notifications aggregated by province (52) and monthly climatic variables (minimum, mean, maximum temperatures, absolute and relative humidities, rainfall and hours of sunshine) from 67 weather stations across Vietnam. Seasonalities were quantified from global wavelet spectra, using the value of the power at the period of 1 year as a measure of the intensity of seasonality. The 7 climatic time series were characterized by 534 summary statistics which were entered into a regression tree to identify factors associated with the seasonality of AH. Results were extrapolated to the global scale using simulated climatic times series from the NCEP/NCAR project. The intensity of ILI seasonality in Vietnam is best explained by the intensity of AH seasonality. We find that ILI seasonality is weak in provinces experiencing weak seasonal fluctuations in AH (annual power power >17.6). In Vietnam, AH and ILI are positively correlated. Our results identify a role for AH in driving the epidemiology of ILI in a tropical setting. However, in contrast to temperate regions, high rather than low AH is associated with increased ILI activity. Fluctuation in AH may be the climate factor that underlies and unifies the seasonality of ILI in both temperate and tropical regions. Alternatively, the mechanism of action of AH on disease transmission may be different in cold-dry versus hot-humid settings

  11. Building America Best Practices Series: Volume 2; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    This guidebook is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the hot-dry and mixed-dry climates.

  12. Modelling thermal comfort of visitors at urban squares in hot and arid climate using NN-ARX soft computing method

    Science.gov (United States)

    Kariminia, Shahab; Motamedi, Shervin; Shamshirband, Shahaboddin; Piri, Jamshid; Mohammadi, Kasra; Hashim, Roslan; Roy, Chandrabhushan; Petković, Dalibor; Bonakdari, Hossein

    2016-05-01

    Visitors utilize the urban space based on their thermal perception and thermal environment. The thermal adaptation engages the user's behavioural, physiological and psychological aspects. These aspects play critical roles in user's ability to assess the thermal environments. Previous studies have rarely addressed the effects of identified factors such as gender, age and locality on outdoor thermal comfort, particularly in hot, dry climate. This study investigated the thermal comfort of visitors at two city squares in Iran based on their demographics as well as the role of thermal environment. Assessing the thermal comfort required taking physical measurement and questionnaire survey. In this study, a non-linear model known as the neural network autoregressive with exogenous input (NN-ARX) was employed. Five indices of physiological equivalent temperature (PET), predicted mean vote (PMV), standard effective temperature (SET), thermal sensation votes (TSVs) and mean radiant temperature ( T mrt) were trained and tested using the NN-ARX. Then, the results were compared to the artificial neural network (ANN) and the adaptive neuro-fuzzy inference system (ANFIS). The findings showed the superiority of the NN-ARX over the ANN and the ANFIS. For the NN-ARX model, the statistical indicators of the root mean square error (RMSE) and the mean absolute error (MAE) were 0.53 and 0.36 for the PET, 1.28 and 0.71 for the PMV, 2.59 and 1.99 for the SET, 0.29 and 0.08 for the TSV and finally 0.19 and 0.04 for the T mrt.

  13. The importance of hot drought in providing more useful, and higher confidence, projections of future climatic, hydrologic, and ecosystem impacts.

    Science.gov (United States)

    Overpeck, J. T.; Udall, B. H.

    2017-12-01

    Often cited as a general guide to future climatic change, "the wet get wetter, and the dry get drier" is a misleading way to look towards the future for many regions of the globe, just as the simple use of multi-model ensemble projections of temperature and precipitation change averaged over many years can also be quite misleading for real-world planning and decision-making. Factors that support these assertions are multi-fold. First, we know with high confidence that warming will continue as long as greenhouse gas emissions continue. Second, continued warming will act to make droughts more frequent, longer and more severe in many regions. Even in the absence of precipitation declines, increases in evaporation and evapotranspiration, among other things, will drive regional drying. It is misleading to suggest to decision-makers that although the future may see an increase in drought risk, a projected increase in mean precipitation will counter-balance the increased drought risk. This counter-balancing will be absent during periods of precipitation-dominated drought. Moreover, projections of precipitation change are usually associated with much less confidence than projections of warming. For example, in places like the headwaters of the Colorado and Rio Grande Rivers, or East Africa, many models suggest we should be seeing an increase in precipitation, when in fact we are only seeing significant warming. Moreover, paleoclimatic evidence suggests that state-of-the-art Earth System Models may underestimate the risk of future multi-decadal droughts, even though these droughts have occurred in many regions during the last 2000 years. This reality suggests that even in regions that do see modest increases in mean precipitation, there will likely be periods in the future characterized by decades of below 20th century mean precipitation coupled with unprecedented warmth. Hot drought may be a much more widespread and serious threat than widely recognized.

  14. The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Woloszyn, Monika [Universite de Lyon, Lyon F-69003 (France); Universite Lyon1, Villeurbanne F-69622 (France); INSA-Lyon, CETHIL UMR CNRS 5008, bat. Sadi Carnot, F-69621 Villeurbanne cedex (France); Kalamees, Targo [Chair of Building Physics and Architecture, Tallinn University of Technology, Ehiteja tee 5 19086 (Estonia); Olivier Abadie, Marc [Pontifical Catholic University of Parana - PUCPR/CCET-Thermal Systems Laboratory, Rua Imaculada Conceicao, 1155 Curitiba, PR 80215-901 (Brazil); LEPTIAB-University of La Rochelle, Avenue M. Crepeau, 17000 La Rochelle (France); Steeman, Marijke [Department of Architecture and Urban Planning, UGENT-Ghent University, J. Plateaustraat 22, 9000 Ghent (Belgium); Sasic Kalagasidis, Angela [Department of Building Technology, Chalmers University of Technology, Sven Hultins gata 8, 412 96 Gothenburg (Sweden)

    2009-03-15

    Indoor moisture management, which means keeping the indoor relative humidity (RH) at correct levels, is very important for whole building performance in terms of indoor air quality (IAQ), energy performance and durability of the building. In this study, the effect of combining a relative-humidity-sensitive (RHS) ventilation system with indoor moisture buffering materials was investigated. Four comprehensive heat-air-moisture (HAM) simulation tools were used to analyse the performance of different moisture management strategies in terms of IAQ and of energy efficiency. Despite some differences in results, a good agreement was found and similar trends were detected from the results, using the four different simulation tools. The results from simulations demonstrate that RHS ventilation reduces the spread between the minimum and maximum values of the RH in the indoor air and generates energy savings. Energy savings are achieved while keeping the RH at target level, not allowing for possible risk of condensations. The disadvantage of this type of demand controlled-ventilation is that other pollutants (such as CO{sub 2}) may exceed target values. This study also confirmed that the use of moisture-buffering materials is a very efficient way to reduce the amplitude of daily moisture variations. It was possible, by the combined effect of ventilation and wood as buffering material, to keep the indoor RH at a very stable level. (author)

  15. The Design of Temperature and Humidity Chamber Monitor and Controller

    OpenAIRE

    Tibebu, Simachew

    2016-01-01

    The temperature and humidity chamber, (climate chamber) is a device located at the Technobothnia Education and Research Center that simulates different climate conditions. The simulated environment is used to test the capabilities of electrical equipment in different temperature and humidity conditions. The climate chamber, among other things houses a dedicated computer, the control PC, and a control software running in it which together are responsible for running and control-ling these simu...

  16. Attribution of observed surface humidity changes to human influence.

    Science.gov (United States)

    Willett, Katharine M; Gillett, Nathan P; Jones, Philip D; Thorne, Peter W

    2007-10-11

    Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.

  17. ESTIMATION OF THE IMPORTANCE OF BIOLOGICAL VALUE OF NUTRITION ALLOWANCES OF SPORTSMEN OF WEIGHTLIFTING IN THE CONDITIONS OF THE HOT CLIMATE

    OpenAIRE

    BAXROM TUHTAROV

    2011-01-01

    The work observes options of optimal average daily food diets for weightlifting athletes in a hot climate through measuring the biological value of diets. It is established, that balance of nutrientsin the changed nutrition background reached an optimum level and made 1:1.1:4.1, against 1:1.2:4.9 on actual food intake. The optimum ratio of nutrients in the average daily food rations of sportsmen on the changed nutrition background is reached byincreasing norms of proteins of animal origin, v...

  18. Humidity Sensing in Drosophila.

    Science.gov (United States)

    Enjin, Anders; Zaharieva, Emanuela E; Frank, Dominic D; Mansourian, Suzan; Suh, Greg S B; Gallio, Marco; Stensmyr, Marcus C

    2016-05-23

    Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. How to reduce risk of climate change: Domestic hot water production methanization and programmed timing of heaters

    International Nuclear Information System (INIS)

    Silvestrini, G.

    1992-01-01

    This paper first identifies a significant and deleterious trend, in terms of poor energy efficiency and high carbon dioxide emissions, towards the increased use of electric water heaters for sanitary hot water production in single family units. It then points out how the use of wall mounted methane fired boilers can result in overall energy savings (overall electric power consumption for domestic hot water production is estimated to represent one- quarter of Italy's total domestic power demand), as well as air pollution abatement. The feasibility of other methods of energy conservation and pollution abatement in domestic water heating are also examined. These include the use of solar hot water heaters, computerized timers which allow users to program the operation of their heating plants, and the adoption by residential communities of methane fuelled district heating plants

  20. Effects of Thermal Mass, Window Size, and Night-Time Ventilation on Peak Indoor Air Temperature in the Warm-Humid Climate of Ghana

    Directory of Open Access Journals (Sweden)

    S. Amos-Abanyie

    2013-01-01

    Full Text Available Most office buildings in the warm-humid sub-Saharan countries experience high cooling load because of the predominant use of sandcrete blocks which are of low thermal mass in construction and extensive use of glazing. Relatively, low night-time temperatures are not harnessed in cooling buildings because office openings remain closed after work hours. An optimization was performed through a sensitivity analysis-based simulation, using the Energy Plus (E+ simulation software to assess the effects of thermal mass, window size, and night ventilation on peak indoor air temperature (PIAT. An experimental system was designed based on the features of the most promising simulation model, constructed and monitored, and the experimental data used to validate the simulation model. The results show that an optimization of thermal mass and window size coupled with activation of night-time ventilation provides a synergistic effect to obtain reduced peak indoor air temperature. An expression that predicts, indoor maximum temperature has been derived for models of various thermal masses.

  1. Building America Best Practices Series, Volume 9: Builders Challenge Guide to 40% Whole-House Energy Savings in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Williamson, Jennifer L.; Ruiz, Kathleen A.; Bartlett, Rosemarie; Love, Pat M.

    2009-10-23

    This best practices guide is the ninth in a series of guides for builders produced by the U.S. Department of Energy’s Building America Program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-dry and mixed-dry climates can achieve homes that have whole house energy savings of 40% over the Building America benchmark (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code) with no added overall costs for consumers. These best practices are based on the results of research and demonstration projects conducted by Building America’s research teams. The guide includes information for managers, designers, marketers, site supervisors, and subcontractors, as well as case studies of builders who are successfully building homes that cut energy use by 40% in the hot-dry and mixed-dry climates.

  2. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices.

    Science.gov (United States)

    Schüller, L K; Burfeind, O; Heuwieser, W

    2014-05-01

    The objectives of this retrospective study were to investigate the relationship between temperature-humidity index (THI) and conception rate (CR) of lactating dairy cows, to estimate a threshold for this relationship, and to identify periods of exposure to heat stress relative to breeding in an area of moderate climate. In addition, we compared three different heat load indices related to CR: mean THI, maximum THI, and number of hours above the mean THI threshold. The THI threshold for the influence of heat stress on CR was 73. It was statistically chosen based on the observed relationship between the mean THI at the day of breeding and the resulting CR. Negative effects of heat stress, however, were already apparent at lower levels of THI, and 1 hour of mean THI of 73 or more decreased the CR significantly. The CR of lactating dairy cows was negatively affected by heat stress both before and after the day of breeding. The greatest negative impact of heat stress on CR was observed 21 to 1 day before breeding. When the mean THI was 73 or more in this period, CR decreased from 31% to 12%. Compared with the average maximum THI and the total number of hours above a threshold of more than or 9 hours, the mean THI was the most sensitive heat load index relating to CR. These results indicate that the CR of dairy cows raised in the moderate climates is highly affected by heat stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt

    Directory of Open Access Journals (Sweden)

    D. V. Kent

    2013-03-01

    Full Text Available The small reservoir of carbon dioxide in the atmosphere (pCO2 that modulates climate through the greenhouse effect reflects a delicate balance between large fluxes of sources and sinks. The major long-term source of CO2 is global outgassing from sea-floor spreading, subduction, hotspot activity, and metamorphism; the ultimate sink is through weathering of continental silicates and deposition of carbonates. Most carbon cycle models are driven by changes in the source flux scaled to variable rates of ocean floor production, but ocean floor production may not be distinguishable from being steady since 180 Ma. We evaluate potential changes in sources and sinks of CO2 for the past 120 Ma in a paleogeographic context. Our new calculations show that decarbonation of pelagic sediments by Tethyan subduction contributed only modestly to generally high pCO2 levels from the Late Cretaceous until the early Eocene, and thus shutdown of this CO2 source with the collision of India and Asia at the early Eocene climate optimum at around 50 Ma was inadequate to account for the large and prolonged decrease in pCO2 that eventually allowed the growth of significant Antarctic ice sheets by around 34 Ma. Instead, variation in area of continental basalt terranes in the equatorial humid belt (5° S–5° N seems to be a dominant factor controlling how much CO2 is retained in the atmosphere via the silicate weathering feedback. The arrival of the highly weatherable Deccan Traps in the equatorial humid belt at around 50 Ma was decisive in initiating the long-term slide to lower atmospheric pCO2, which was pushed further down by the emplacement of the 30 Ma Ethiopian Traps near the equator and the southerly tectonic extrusion of SE Asia, an arc terrane that presently is estimated to account for 1/4 of CO2 consumption from all basaltic provinces that account for ~1/3 of the total CO2 consumption by continental silicate weathering (Dessert et al., 2003. A negative climate

  4. Response of apple (malus domestica borkh.) cultivars grafted on two rootstocks under sub-humid temperate climate of azad jammu and kashmir

    International Nuclear Information System (INIS)

    Ahmed, M.J.; Gillani, G.M.; Kiani, F.A.

    2013-01-01

    Nine apple (Malus domestica Borkh.) cultivars grafted on two rootstocks were assessed on morphological and biochemical basis under sub-humid temperate region of Azad Jammu and Kashmir. Starking Delicious, Kala Kulu, Fuji, Red Chief, Royal Gala, Red Labnani, Red Delicious, Star Crimson and Sky Spur grafted on local Crab apple and MM.111 were studied for various growth characteristics. Red Chief exhibited maximum (415.8 cm) plant height on crab apple whereas, more flower (1866) tree-1, higher number (967.0) of fruit set tree/sup -1/, fruits matured (490.0) tree/sup -1/ and maximum (46.33 kg) weight of fruits tree/sup -1/ were recorded on MM.111. Minimum duration (5 days) of flowering was presented by Sky Spur on local crab apple while minimum (92.0) days for fruit maturation were required by Royal Gala on MM.111. Maximum (112.5 g) fruit weight, total soluble solids (13.95%), total sugars (10.9 %) and reducing sugars (7.94%) were recorded for Starking Delicious on MM.111. On the other hand more pH (3.51) and ascorbic acid (9.2 %) content were recorded for Kala Kulu on crab apple. Red Chief found to be high yielding cultivar on MM.111 than crab apple while total sugars, TSS and average fruit weight were better for Starking Delicious. It was concluded that performance of apple cultivars were variable on both rootstocks. However, MM.111 proved better than local crab apple under prevailing conditions. (author)

  5. Controlled humidity gas circulators

    International Nuclear Information System (INIS)

    Gruner, S.M.

    1981-01-01

    A programmable circulator capable of regulating the humidity of a gas stream over a wide range of humidity is described. An optical dew-point hygrometer is used as a feedback element to control the addition or removal of water vapor. Typical regulation of the gas is to a dew-point temperature of +- 0.2 0 C and to an accuracy limited by the dew-point hygrometer

  6. Comment on "Donders, T.H. 2014. Middle Holocene humidity increase in Florida: climate or sea-level? Quaternary Science Reviews 103:170-174."

    Science.gov (United States)

    Glaser, Paul H.; Hansen, Barbara CS; Donovan, Joseph J.; Givnish, Thomas J.; Stricker, Craig A.; Volin, John C.

    2015-01-01

    Donders (2014) has recently proposed that the climate of Florida became progressively wetter over the past 5000 years in response to a marked strengthening of the El Niño regime. This reconstruction is largely based on a re-analysis of pollen records from regions north of Lake Okeechobee (Fig. 1) using a new set of pollen transfer functions. Donders concluded that a latitudinal gradient in precipitation prevailed across Florida since the mid Holocene, but the overall trend was toward progressively wetter conditions from 5000 cal BP to the present.

  7. Sensitivity Analysis of Snow Patterns in Swiss Ski Resorts to Shifts in Temperature, Precipitation and Humidity Under Condition of Climate Change

    Science.gov (United States)

    Uhlmann, B.; Goyette, S.; Beniston, M.

    2008-12-01

    The value of snow as a resource has considerably increased in Swiss mountain regions, in particular in the context of winter tourism. In the perspective of a warming climate, it is thus important to quantify the potential changes in snow amount and duration that could have large repercussions on the economy of ski resorts. Because of the fine spatial variability of snow, the use of a Surface Energy Balance Model (SEBM) is adequate to simulate local snow cover evolution. A perturbation method has been developed to generate plausible future meteorological input data required for SEBM simulations in order to assess the changes in snow cover patterns. Current and future snow depths have also been simulated within the ski areas themselves. The results show a large decrease of the snow depths and duration, even at high elevation in a warmer climate and emphasize the sensitivity of snow to topographical characteristics of the resorts. The study highlights the fact that not only the altitude of a domain but also its exposure, localization inland and slope gradients need to be taken into account when evaluating current and future snow depths. This method enables a precise assessment of the snow pattern over a small area.

  8. Role of climate variability in the heatstroke death rates of Kanto region in Japan

    Science.gov (United States)

    Akihiko, Takaya; Morioka, Yushi; Behera, Swadhin K.

    2014-07-01

    The death toll by heatstroke in Japan, especially in Kanto region, has sharply increased since 1994 together with large interannual variability. The surface air temperature and humidity observed during boreal summers of 1980-2010 were examined to understand the role of climate in the death toll. The extremely hot days, when the daily maximum temperature exceeds 35°C, are more strongly associated with the death toll than the conventional Wet Bulb Globe Temperature index. The extremely hot days tend to be associated with El Niño/Southern Oscillation or the Indian Ocean Dipole, suggesting a potential link with tropical climate variability to the heatstroke related deaths. Also, the influence of these climate modes on the death toll has strengthened since 1994 probably related to global warming. It is possible to develop early warning systems based on seasonal climate predictions since recent climate models show excellent predictability skills for those climate modes.

  9. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  10. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  11. The effects of low levels of dietary trace minerals on the plasma levels, faecal excretion health and performance of pigs in a hot African climate

    Directory of Open Access Journals (Sweden)

    M.H. Boma

    2009-09-01

    Full Text Available The present study was performed in order to evaluate the effects of lower than usual industry levels of dietary trace minerals on plasma levels, faecal excretion, performance, mortality and morbidity in growing-finishing pigs in a hot African climate. Group 1 (n =100 pigs received a diet with common industry levels of trace minerals. Group 2 (n =100 pigs received reduced dietary trace mineral levels but were fed the same basic diet as Group 1. Mortality, morbidity, pig performance and carcass measurements were evaluated. Two pigs in Group 1 and three pigs in Group 2 died. Thirteen pigs in Group 1 and 27 pigs in Group 2 were medically treated (P 0.05 by the dietary levels of these trace minerals. Plasma trace mineral concentrations were not affected by the dietary treatment.

  12. How Hot was Africa during the Mid-Holocene? Reexamining Africa's Thermal History via integrated Climate and Proxy System Modeling

    Science.gov (United States)

    Dee, S.; Russell, J. M.; Morrill, C.

    2017-12-01

    Climate models predict Africa will warm by up to 5°C in the coming century. Reconstructions of African temperature since the Last Glacial Maximum (LGM) have made fundamental contributions to our understanding of past, present, and future climate and can help constrain predictions from general circulation models (GCMs). However, many of these reconstructions are based on proxies of lake temperature, so the confounding influences of lacustrine processes may complicate our interpretations of past changes in tropical climate. These proxy-specific uncertainties require robust methodology for data-model comparison. We develop a new proxy system model (PSM) for paleolimnology to facilitate data-model comparison and to fully characterize uncertainties in climate reconstructions. Output from GCMs are used to force the PSM to simulate lake temperature, hydrology, and associated proxy uncertainties. We compare reconstructed East African lake and air temperatures in individual records and in a stack of 9 lake records to those predicted by our PSM forced with Paleoclimate Model Intercomparison Project (PMIP3) simulations, focusing on the mid-Holocene (6 kyr BP). We additionally employ single-forcing transient climate simulations from TraCE (10 kyr to 4 kyr B.P. and historical), as well as 200-yr time slice simulations from CESM1.0 to run the lake PSM. We test the sensitivity of African climate change during the mid-Holocene to orbital, greenhouse gas, and ice-sheet forcing in single-forcing simulations, and investigate dynamical hypotheses for these changes. Reconstructions of tropical African temperature indicate 1-2ºC warming during the mid-Holocene relative to the present, similar to changes predicted in the coming decades. However, most climate models underestimate the warming observed in these paleoclimate data (Fig. 1, 6kyr B.P.). We investigate this discrepancy using the new lake PSM and climate model simulations, with attention to the (potentially non

  13. Dynamics of the temperature-humidity index in the Mediterranean basin

    Science.gov (United States)

    Segnalini, Maria; Nardone, Alessandro; Bernabucci, Umberto; Vitali, Andrea; Ronchi, Bruno; Lacetera, Nicola

    2011-03-01

    The study was aimed at describing the temperature humidity index (THI) dynamics over the Mediterranean basin for the period 1951-2007. The THI combines temperature and humidity into a single value, and may help to predict the effects of environmental warmth in farm animals. In particular, on the basis of THI values, numerous studies have been performed to establish thresholds for heat stress in dairy cows. The THI was calculated by using monthly mean values of temperature and humidity obtained from the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis project. The analysis demonstrated a high degree of heterogeneity of THI patterns over the Mediterranean basin, a strong north-south gradient, and an overall warming during the study period, which was particularly marked during summer seasons. Results indicated that several areas of the basin present summer THI values which were unfavorable to cow welfare and productivity, and that risk of heat stress for cows is generally greater in the countries of the south coast of the basin. Furthermore, THI data from the summer 2003 revealed that severe positive anomalies may impact areas normally characterized by a favorable climate for animal production. In conclusion, THI dynamics should be taken into careful consideration by farmers and policy makers operating in Mediterranean countries when planning investments in the sector of animal production. The investments should at least partially be directed towards implementation of adaptation measures, which may help to alleviate the impact of hot on farm animals welfare, performance and health.

  14. Density of loose-fill insulation material exposed to cyclic humidity conditions

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    the granulated loose-fill material is exposed to a climate that is characterised as cyclic humidity conditions (a constant temperature and a relative humidity alternating between two predetermined constant relative humidity levels). A better understanding of the behaviour of granulated loose-fill material...

  15. Hands-on Humidity.

    Science.gov (United States)

    Pankiewicz, Philip R.

    1992-01-01

    Presents five hands-on activities that allow students to detect, measure, reduce, and eliminate moisture. Students make a humidity detector and a hygrometer, examine the effects of moisture on different substances, calculate the percent of water in a given food, and examine the absorption potential of different desiccants. (MDH)

  16. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  17. Ambient humidity and the skin: the impact of air humidity in healthy and diseased states.

    Science.gov (United States)

    Goad, N; Gawkrodger, D J

    2016-08-01

    Humidity, along with other climatic factors such as temperature and ultraviolet radiation, can have an important impact on the skin. Limited data suggest that external humidity influences the water content of the stratum corneum. An online literature search was conducted through Pub-Med using combinations of the following keywords: skin, skin disease, humidity, dermatoses, dermatitis, eczema, and mist. Publications included in this review were limited to (i) studies in humans or animals, (ii) publications showing relevance to the field of dermatology, (iii) studies published in English and (iv) publications discussing humidity as an independent influence on skin function. Studies examining environmental factors as composite influences on skin health are only included where the impact of humidity on the skin is also explored in isolation of other environmental factors. A formal systematic review was not feasible for this topic due to the heterogeneity of the available research. Epidemiological studies indicated an increase in eczema with low internal (indoors) humidity and an increase in eczema with external high humidity. Other studies suggest that symptoms of dry skin appear with low humidity internal air-conditioned environments. Murine studies determined that low humidity caused a number of changes in the skin, including the impairment of the desquamation process. Studies in humans demonstrated a reduction in transepidermal water loss (TEWL) (a measure of the integrity of the skin's barrier function) with low humidity, alterations in the water content in the stratum corneum, decreased skin elasticity and increased roughness. Intervention with a humidifying mist increased the water content of the stratum corneum. Conversely, there is some evidence that low humidity conditions can actually improve the barrier function of the skin. Ambient relative humidity has an impact on a range of parameters involved in skin health but the literature is inconclusive. Further

  18. Methods of humidity determination Part II: Determination of material humidity

    OpenAIRE

    Rübner, Katrin; Balköse, Devrim; Robens, E.

    2008-01-01

    Part II covers the most common methods of measuring the humidity of solid material. State of water near solid surfaces, gravimetric measurement of material humidity, measurement of water sorption isotherms, chemical methods for determination of water content, measurement of material humidity via the gas phase, standardisation, cosmonautical observations are reviewed.

  19. Statistical analysis of the effects of relative humidity and temperature ...

    African Journals Online (AJOL)

    Meteorological data from the Department of Satellite Application Facility on Climate Monitoring (CMSAF), DWD Germany have been used to study and investigate the effect of relative humidity and temperature on refractivity in twenty six locations grouped into for climatic regions aloft Nigeria (Coastal, Guinea savannah, ...

  20. Strategies for humidity control

    Energy Technology Data Exchange (ETDEWEB)

    Baumgarth, S

    1987-01-01

    Humidity and temperature control in air-conditioning systems mostly involves coupled closed-loop control circuits. The author discusses their uncoupling and resulting consequences as well as energy-optimized control of recirculation air flaps or enthalpy recovering systems (h-x control) in detail. Special reference is made of the application of the DDC technology and its scope, limits and preconditions. In conclusions, the author presents pertinent measurement results. (orig.).

  1. Seasonally warmer and humid climates in a lower paleolatitude position of southern Brazil (Paraná Basin): new findings of the Lueckisporites virkkiae zone (late Cisuralian-Guadalupian) in the Serra do Rio do Rastro and neighboring localities

    Science.gov (United States)

    di Pasquo, Mercedes; Souza, Paulo A.; Kavali, Pauline Sabina; Felix, Cristina

    2018-03-01

    First palynological information from surface samples of the Serra Alta and Rio do Rasto formations (Passa Dois Group, Paraná Basin), exposed in the Serra do Rio do Rastro (White's Column) and Urubici regions in Santa Catarina State (Brazil) is presented. The Serra Alta Formation is transitionally deposited over the Irati Formation, which is constrained to the late Artinskian/Kungurian by different paleontological and radiometric data. Twelve productive samples (of forty) yielded fairly well preserved palynomorphs, dominated by striate and non striate bisaccate and asaccate pollen grains and subordinated trilete and monolete spores, monosaccate pollen grains and Botryococcus. Diagnostic species of the Lueckisporites virkkiae Zone (Artinskian-Guadalupian) in the Paraná Basin are recorded along with few species of Guadalupian-Lopingian age (e.g. Cladaitina veteadensis, Guttulapollenites hannonicus, Lophotriletes parryensis, Protohaploxypinus microcorpus, Staurosaccites quadrifidus, Weylandites cincinnatus). They support a Kungurian-?Roadian age for the Serra Alta, and a Capitanian (?Lopingian) age for the Rio do Rasto formations. Four samples from the Sete Quedas outcrop yielded scarce and poorly preserved specimens of Lueckisporites likely due to weathering. A statistic comparison among our assemblages and selected Permian palynozones and palynofloras from South America supports a closer correlation with the La Veteada Formation (Guadalupian-Lopingian) from western Argentina due to common occurrence of all the species, and with the Striatites Zone (late Artinskian-Kungurian) of the Chacoparaná Basin, and the I-S Zone Melo Formation in Uruguay. The botanical affinities of the palynomorphs from both assemblages indicate the presence of spores of hygro-mesophytic affinities along with meso-xerophyle pollen grains, which is in agreement with seasonally warmer and humid climates favored by a lower paleolatitude position. The presence of pyrite in some of the miospore

  2. Improving the Performance Attributes of Plug-in Hybrid Electric Vehicles in Hot Climates through Key-Off Battery Cooling

    Directory of Open Access Journals (Sweden)

    Sina Shojaei

    2017-12-01

    Full Text Available Ambient conditions can have a significant impact on the average and maximum temperature of the battery of electric and plug-in hybrid electric vehicles. Given the sensitivity of the ageing mechanisms of typical battery cells to temperature, a significant variability in battery lifetime has been reported with geographical location. In addition, high battery temperature and the associated cooling requirements can cause poor passenger thermal comfort, while extreme battery temperatures can negatively impact the power output of the battery, limiting the available electric traction torque. Avoiding such issues requires enabling battery cooling even when the vehicle is parked and not plugged in (key-off, but the associated extra energy requirements make applying key-off cooling a non-trivial decision. In this paper, a representative plug-in parallel hybrid electric vehicle model is used to simulate a typical 24-h duty cycle to quantify the impact of hot ambient conditions on three performance attributes of the vehicle: the battery lifetime, passenger thermal comfort and fuel economy. Key-off cooling is defined as an optimal control problem in view of the duty cycle of the vehicle. The problem is then solved using the dynamic programming method. Controlling key-off cooling through this method leads to significant improvements in the battery lifetime, while benefiting the fuel economy and thermal comfort attributes. To further improve the battery lifetime, partial charging of the battery is considered. An algorithm is developed that determines the optimum combination of key-off cooling and the level of battery charge. Simulation results confirm the benefits of the proposed method.

  3. Analysis of air temperature and relative humidity: study of microclimates

    OpenAIRE

    Elis Dener Lima Alves; Marcelo Sacardi Biudes

    2012-01-01

    Understanding the variability of climate elements in time and space is fundamental to the knowledge of the dynamics of microclimate. Thus, the objective was to analyze the variability of air temperature and relative humidity on the Cuiabá campus of the Federal University of Mato Grosso, and, through the clustering technique, to analyze the formation of groups to propose a zoning microclimate in the area study. To this end, collection data of air temperature and relative humidity at 15 points ...

  4. The effect of hot summer climate and level of milk yield on blood biochemistry and circulating thyroid and progesterone hormones in friesian cows

    International Nuclear Information System (INIS)

    Habeeb, A.A.; El-Masry, K.A.; Aboulnaga, A.I.; Kamal, T.H.

    1996-01-01

    Thirty six adult friesian cows were divided into two comparable experimental groups (18 cows each). The first group was exposed for two months to mild winter climate, meanwhile, the second one was exposed for a similar period to hot summer climate. Average ambient temperature was 19.5 and 35.0 degree C, respectively. Each experimental group was subdivided into 3 subgroups mainly dry cows, low yielders and high yielders, respectively (each subgroup = 6 cows). High yielders produced on the average 8 and 6 Kg milk/day versus 8 and 6 Kg milk/day produced by low yielders in winter and summer months, respectively. Blood samples were individually taken at the last week of the experimental period and plasma was carefully separated. Thyroxine (T 4 ), Triiodothyronine (T 3 ), progesterone (P 4 ), glucose, total protein, albumin, globulin, total lipids, cholesterol, and phospholipids concentrations were determined in the clear plasma. Average daily milk yield (DMY) was recorded at weekly intervals. The data revealed that the overall average of DMy, T 4 , T 4/ T 3 ratio, P 4 and blood glucose were significantly lower in summer samples than in winter samples. The opposite was true for T 3 . Both T 4 and P 4 proved a regular response to heat stress condition in a similar pattern to that mentioned above. Dry cows exhibited significantly higher levels of T 4 , T 4/ T 3 ratio, P 4 and total lipids as compared to high lactating cows. This was true for P 4 and total lipids when the dry and low yielders were compared. Blood glucose, total protein and albumin concentrations showed an opposite trend where they were significantly lower in dry cows than in high yielders. Low yielders also had significantly lower concentrations of total protein and albumin than high yielders and lower total than dry cows.4 tabs

  5. Changes of pressure and humidity affect olfactory function.

    Science.gov (United States)

    Kuehn, Michael; Welsch, Heiko; Zahnert, Thomas; Hummel, Thomas

    2008-03-01

    The present study aimed at investigating the question whether olfactory function changes in relation to barometric pressure and humidity. Using climate chambers, odor threshold and discrimination for butanol were tested in 75 healthy volunteers under hypobaric and hyperbaric, and different humidity conditions. Among other effects, olfactory sensitivity at threshold level, but not suprathreshold odor discrimination, was impaired in a hypobaric compared to a hyperbaric milieu, and thresholds were lower in humid, compared to relatively dry conditions. In conclusion, environmental conditions modulate the sense of smell, and may, consecutively, influence results from olfactory tests.

  6. Humidity sensing in insects-from ecology to neural processing.

    Science.gov (United States)

    Enjin, Anders

    2017-12-01

    Humidity is an omnipresent climatic factor that influences the fitness, reproductive behavior and geographic distribution of animals. Insects in particular use humidity cues to navigate the environment. Although the sensory neurons of this elusive sense were first described more than fifty years ago, the transduction mechanism of humidity sensing (hygrosensation) remains unknown. Recent work has uncovered some of the key molecules involved, opening up for novel approaches to study hygrosensory transduction. In this review, I will discuss this progress made toward understanding hygrosensation in insects. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; Kabeel, A.E.

    2014-01-01

    Highlights: • The performance of the hybrid air conditioning system is studied. • The influence of important operating parameters are estimated. • The ventilation, makeup and mix cycles are investigated at different climate. • The highest COP of the hybrid air conditioning system is 1.03. • The hybrid system provides a human thermal comfort at different climates. - Abstract: Energy saving still and continue a major seek in our life, due to the continuous increase in energy consumptions. So, a desiccant air conditioning system with geothermal energy is conducted in the current study. The thermal analysis of air conditioning system with its different components desiccant wheel, solar collector, heat exchanger, ground heat exchanger and water spray evaporative cooler is presented. Three different air conditioning cycles are simulated in the current study for different zones like: hot-dry zone, warm-dry zone, hot-humid zone and the warm-humid zone. The results show that the desiccant air conditioning system successfully provides a better thermal comfort condition in different climates. This hybrid system significantly decreases the supplied air temperature from 12.7 to 21.7 °C at different climate zones. When ω in , air and T Reg increasing, COP decreases and the ventilation cycle provides the better COP. The highest COP value of the desiccant air conditioning system is about 1.03 while the lowest value is about 0.15. The SHR of makeup cycle is higher than that ventilation cycle at warm and hot-humid zone and vice versa at warm and hot-dry zone. The highest SHR value of the desiccant air conditioning system is about 0.99 while the lowest value is about 0.2. The T sup,air , ω sup,air , COP and SHR isolines may easily be used for pre-evaluating of various cooling cycles in different climates. The hybrid system provides a human thermal comfort at different climates

  8. Passive Design Strategies to Enhance Natural Ventilation in Buildings "Election of Passive Design Strategies to Achieve Natural Ventilation in Iraqi Urban Environment with Hot Arid Climate"

    Directory of Open Access Journals (Sweden)

    Ghada M.Ismael Abdul Razzaq Kamoona

    2016-06-01

    Full Text Available the natural ventilation in buildings is one of effective strategies for achieving energy efficiency in buildings by employing methods and ways of passive design, as well as its efficiency in providing high ranges of thermal comfort for occupants in buildings and raises their productivity. Because the concept of natural ventilation for many people confined to achieve through the windows and openings only, become necessary to provide this research to demonstrate the various passive design strategies for natural ventilation. Then, research problem: Insufficient knowledge about the importance and mechanism of the application of passive design strategies for natural ventilation in buildings. The research objective is: Analysis of passive design strategies to achieve natural ventilation in buildings, for the purpose of the proper selection of them to Iraqi urban environment. Accordingly, the research included two parts: First, the theoretical part, which dealt with the conceptual framework of natural ventilation and deriving the most important aspects in it, in order to adopted as a base for the practical part of the research. Second: the practical part, which analyzed examples of buildings projects that employed various design strategies for natural ventilation, according to the theoretical framework that has been drawn. The main conclusion is, Necessity to adopt various passive design strategies for natural ventilation in Iraqi urban environment with hot dry climate, as they have a significant impact in reducing the energy consumption for the purposes of ventilation and cooling, as well as for its efficiency in improving air quality in indoor environments of buildings.

  9. Effect of Various External Shading Devices on Windows for Minimum Heat Gain and Adequate Day lighting into Buildings of Hot and Dry Climatic Zone in India

    Directory of Open Access Journals (Sweden)

    Kirankumar Gorantla

    2018-01-01

    Full Text Available Glass is the major component of the building envelope to provide visual comfort to inside the buildings. In général clear and bronze glass was used as a main building envelope for both residential and commercial buildings to provide better day lighting into the buildings. If we use more glass area as a building envelope more radiation allows into the buildings. So that it is necessary to reduce more solar radiation and provide sufficient daylight factor inside the building's through glass windows with the help of external devices called shading devices. In this work four shading devices was tried on bronze glass window to find the heat gain and daylighting into buildings. This paper presents the experimental measurement of spectral characteristics of bronze glass which include transmission and reflection in entire solar spectrum region (300nm-2500nm based on ASTM standards. A MATLAB code was developed to compute visible and solar optical properties as per the British standards. A building model was designed by design builder software tool. 40% window to wall ratio was considered for building models, thermal and day lighting analysis of buildings through windows was carried out in Energy plus software tool for hot and dry climatic zone of India.

  10. Parameter analysis and optimization of the energy and economic performance of solar-assisted liquid desiccant cooling system under different climate conditions

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2015-01-01

    Highlights: • Operation conditions significantly affect energy & economic performance of SLDCS. • Control parameters in three areas were optimized by Multi-Population Genetic Algorithm. • Solar collector area showed the greatest effect on system performance for humid areas. • Desiccant concentration showed greatest effect on system performance for dry areas. • Requirement of collector area, heating water and desiccant flow rates for humid areas is highest. - Abstract: Operation conditions significantly affect the energy and economic performance of solar-assisted liquid desiccant cooling systems. This study optimized the system control parameters for buildings in different climates, i.e., Singapore (hot and humid), Beijing (moderate) and Boulder (hot and dry), with a multi-parameter optimization based on the Multi-Population Genetic Algorithm to obtain optimal system performance in terms of relatively maximum electricity saving rate with a minimum cost payback period. The results indicated that the selection of operation parameters is significantly influenced by climatic conditions. The solar collector installation area exhibited the greatest effect on both energy and economic performance in humid areas, and the heating water flow rate was also important. For dry areas, a change in desiccant concentration had the largest effect on system performance. Although the effect of the desiccant flow rate was significant in humid cities, it appeared to have little influence over buildings in dry areas. Furthermore, the requirements of the solar collector installation area in humid areas were much higher. The optimized area was up to 70 m"2 in Singapore compared with 27.5 m"2 in Boulder. Similar results were found for the flow rates of heating water and the desiccant solution. Applying the optimization, humid cities could achieve an electricity saving of more than 40% with a six-year payback period. The optimal performance for hot and dry areas of a 38% electricity

  11. Comparisons of urban and rural heat stress conditions in a hot–humid tropical city

    Directory of Open Access Journals (Sweden)

    Ahmed A. Balogun

    2010-11-01

    Full Text Available Background: In recent years the developing world, much of which is located in the tropical countries, has seen dramatic growth of its urban population associated with serious degradation of environmental quality. Climate change is producing major impacts including increasing temperatures in these countries that are considered to be most vulnerable to the impact of climate change due to inadequate public health infrastructure and low income status. However, relevant information and data for informed decision making on human health and comfort are lacking in these countries. Objective: The aim of this paper is to study and compare heat stress conditions in an urban (city centre and rural (airport environments in Akure, a medium-sized tropical city in south-western Nigeria during the dry harmattan season (January–March of 2009. Materials and methods: We analysed heat stress conditions in terms of the mean hourly values of the thermohygrometric index (THI, defined by simultaneous in situ air temperature and relative humidity measurements at both sites. Results: The urban heat island (UHI exists in Akure as the city centre is warmer than the rural airport throughout the day. However, the maximum UHI intensity occurs at night between 1900 and 2200 hours local time. Hot conditions were predominant at both sites, comfortable conditions were only experienced in the morning and evenings of January at both sites, but the rural area has more pleasant morning and evenings and less of very hot and torrid conditions. January has the lowest frequency of hot and torrid conditions at both sites, while March and February has the highest at the city centre and the airport, respectively. The higher frequencies of high temperatures in the city centre suggest a significant heat stress and health risk in this hot humid environment of Akure. Conclusions: More research is needed to achieve better understanding of the seasonal variation of indoor and outdoor heat stress

  12. Effects of temperature and relative humidity on DNA methylation.

    Science.gov (United States)

    Bind, Marie-Abele; Zanobetti, Antonella; Gasparrini, Antonio; Peters, Annette; Coull, Brent; Baccarelli, Andrea; Tarantini, Letizia; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel

    2014-07-01

    Previous studies have found relationships between DNA methylation and various environmental contaminant exposures. Associations with weather have not been examined. Because temperature and humidity are related to mortality even on non-extreme days, we hypothesized that temperature and relative humidity may affect methylation. We repeatedly measured methylation on long interspersed nuclear elements (LINE-1), Alu, and 9 candidate genes in blood samples from 777 elderly men participating in the Normative Aging Study (1999-2009). We assessed whether ambient temperature and relative humidity are related to methylation on LINE-1 and Alu, as well as on genes controlling coagulation, inflammation, cortisol, DNA repair, and metabolic pathway. We examined intermediate-term associations of temperature, relative humidity, and their interaction with methylation, using distributed lag models. Temperature or relative humidity levels were associated with methylation on tissue factor (F3), intercellular adhesion molecule 1 (ICAM-1), toll-like receptor 2 (TRL-2), carnitine O-acetyltransferase (CRAT), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and glucocorticoid receptor, LINE-1, and Alu. For instance, a 5°C increase in 3-week average temperature in ICAM-1 methylation was associated with a 9% increase (95% confidence interval: 3% to 15%), whereas a 10% increase in 3-week average relative humidity was associated with a 5% decrease (-8% to -1%). The relative humidity association with ICAM-1 methylation was stronger on hot days than mild days. DNA methylation in blood cells may reflect biological effects of temperature and relative humidity. Temperature and relative humidity may also interact to produce stronger effects.

  13. Climate

    International Nuclear Information System (INIS)

    Fellous, J.L.

    2005-02-01

    This book starts with a series of about 20 preconceived ideas about climate and climatic change and analyses each of them in the light of the present day knowledge. Using this approach, it makes a status of the reality of the climatic change, of its causes and of the measures to be implemented to limit its impacts and reduce its most harmful consequences. (J.S.)

  14. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  15. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  16. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  17. Performance analysis of proposed hybrid air conditioning and humidification–dehumidification systems for energy saving and water production in hot and dry climatic regions

    International Nuclear Information System (INIS)

    Nada, S.A.; Elattar, H.F.; Fouda, A.

    2015-01-01

    Highlights: • Integrative air-conditioning (A/C) and humidification–dehumidification desalination systems are proposed. • Effects of operating parameters on the proposed systems are investigated. • System configurations that have the highest fresh water production rate, power saving and total cost saving are identified. - Abstract: Performance of integrative air-conditioning (A/C) and humidification–dehumidification desalination systems proposed for hot and dry climatic regions is theoretically investigated. The proposed systems aim to energy saving and systems utilization in fresh water production. Four systems with evaporative cooler and heat recovery units located at different locations are proposed, analyzed and evaluated at different operating parameters (fresh air ratio, supply air temperature and outside air wet bulb temperature). Other two basic systems are used as reference systems in proposed systems assessment. Fresh water production rate, A/C cooling capacity, A/C electrical power consumption, saving in power consumptions and total cost saving (TCS) parameters are used for systems evaluations and comparisons. The results show that (i) the fresh water production rates of the proposed systems increase with increasing fresh air ratio, supply air temperature and outdoor wet bulb temperature, (ii) powers saving of the proposed systems increase with increasing fresh air ratio and supply air temperature and decreasing of the outdoor air wet bulb temperature, (iii) locating the evaporative cooling after the fresh air mixing remarkably increases water production rate, and (vi) incorporating heat recovery in the air conditioning systems with evaporative cooling may adversely affect both of the water production rate and the total cost saving of the system. Comparison study has been presented to identify systems configurations that have the highest fresh water production rate, highest power saving and highest total cost saving. Numerical correlations for

  18. Climate-sensitive urban design through Envi-Met simulation: case study in Kemayoran, Jakarta

    Science.gov (United States)

    Kusumastuty, K. D.; Poerbo, H. W.; Koerniawan, M. D.

    2018-03-01

    Indonesia as a tropical country which the character of its climate are hot and humid, the outdoor activity applications are often disrupted due to discomfort in thermal conditions. Massive construction of skyscrapers in urban areas are caused by the increase of human population leads to reduced green and infiltration areas that impact to environmental imbalances and triggering microclimate changes with rising air temperatures on the surface. The area that significantly experiences the rise of temperature in the Central Business District (CBD), which has need an analysis to create thermal comfort conditions to improve the ease of outdoor activities by an approach. This study aims to design the Kemayoran CBD through Climate Sensitive Urban Design especially in hot and humid tropical climate area and analyze thermal comfort level and optimal air conditioning in the outdoor area. This research used a quantitative method by generating the design using Climate Sensitive Urban Design principle through Envi-met 4.1 simulation program to find out the value of PMV, air temperature, wind speed and relative humidity conditions. The design area considers the configuration of buildings such as the distance between buildings, the average height, the orientation of the building, and the width of the road.

  19. Humidity Graphs for All Seasons.

    Science.gov (United States)

    Esmael, F.

    1982-01-01

    In a previous article in this journal (Vol. 17, p358, 1979), a wet-bulb depression table was recommended for two simple experiments to determine relative humidity. However, the use of a graph is suggested because it gives the relative humidity directly from the wet and dry bulb readings. (JN)

  20. Humidity requirements in WSCF Laboratories

    International Nuclear Information System (INIS)

    Evans, R.A.

    1994-01-01

    The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment

  1. Prevalência e fatores associados a fogachos em mulheres climatéricas e pós-climatéricas Prevalence and factors associated with hot flashes in climacteric and post-climacteric women

    Directory of Open Access Journals (Sweden)

    Iândora Krolow Timm Sclowitz

    2005-04-01

    Full Text Available Com o objetivo de determinar a prevalência de fogachos e fatores associados, em mulheres entre 40 e 69 anos de idade, provenientes de uma amostra representativa da população da cidade de Pelotas, Rio Grande do Sul, Brasil, realizou-se um estudo transversal. O processo de amostragem foi em múltiplos estágios, e a coleta de dados, realizada através de entrevista e questionário auto-aplicado. Foram incluídas 879 mulheres. A prevalência ponto e a prevalência de episódio de fogachos foram, respectivamente, de 30,1% e 53,2%. Os fatores estatisticamente associados a fogachos atuais foram a categoria menopausal de pré-menopausa (RP = 2,33 e pós-menopausa (RP = 2,66; idade de 45 a 49 anos (RP = 1,34 e de 50 a 54 anos (RP = 1,42; status sócio-econômico mais baixo (RP = 2,16; não uso de anticoncepção hormonal após os 40 anos (RP = 1,40; obesidade (RP = 1,39; sobrepeso (RP = 1,32 e viver sem companheiro (RP = 0,80. Dada a alta prevalência do sintoma, é necessário que os serviços de saúde se organizem para lidar com a mulher climatérica.A cross-sectional study was conducted on the prevalence of hot flashes and associated factors among women from 40 to 69 years old, from a population-based sample in the city of Pelotas, southern Brazil. A multi-stage sampling process was used, and data were collected through an interview and a self-applied questionnaire. A total of 879 women were included. Point prevalence and lifetime prevalence were 30.1% and 53.2%, respectively. Factors associated with hot flashes were: pre-menopausal status (RP = 2.33 and post-menopausal status (RP = 2.66; age 45-49 years (RP = 1.34 and 50-54 years (RP = 1.42; lower social class (RP = 2.16; no use of a hormonal contraception method after 40 years of age (RP = 1.40; obesity (RP = 1.39 and overweight (RP = 1.32; and not having a partner (RP = 0.80. High prevalence of this symptom indicates that health facilities should be prepared to deal with problems encountered

  2. Humidity Testing for Human Rated Spacecraft

    Science.gov (United States)

    Johnson, Gary B.

    2009-01-01

    Determination that equipment can operate in and survive exposure to the humidity environments unique to human rated spacecraft presents widely varying challenges. Equipment may need to operate in habitable volumes where the atmosphere contains perspiration, exhalation, and residual moisture. Equipment located outside the pressurized volumes may be exposed to repetitive diurnal cycles that may result in moisture absorption and/or condensation. Equipment may be thermally affected by conduction to coldplate or structure, by forced or ambient air convection (hot/cold or wet/dry), or by radiation to space through windows or hatches. The equipment s on/off state also contributes to the equipment s susceptibility to humidity. Like-equipment is sometimes used in more than one location and under varying operational modes. Due to these challenges, developing a test scenario that bounds all physical, environmental and operational modes for both pressurized and unpressurized volumes requires an integrated assessment to determine the "worst-case combined conditions." Such an assessment was performed for the Constellation program, considering all of the aforementioned variables; and a test profile was developed based on approximately 300 variable combinations. The test profile has been vetted by several subject matter experts and partially validated by testing. Final testing to determine the efficacy of the test profile on actual space hardware is in the planning stages. When validation is completed, the test profile will be formally incorporated into NASA document CxP 30036, "Constellation Environmental Qualification and Acceptance Testing Requirements (CEQATR)."

  3. Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate

    International Nuclear Information System (INIS)

    Singh, Ramkishore; Lazarus, I.J.; Kishore, V.V.N.

    2016-01-01

    Highlights: • Various alternatives of glazing and venetian blind were simulated for office space. • Daylighting and energy performances were assessed for each alternative. • Large uncertainties were estimated in the energy consumptions and UDI values. • Glazing design parameters were prioritised by performing sensitivity analysis. • WWR, glazing type, blind orientation and slat angle were identified top in priority. - Abstract: Fenestration has become an integral part of the buildings and has a significant impact on the energy and indoor visual performances. Inappropriate design of the fenestration component may lead to low energy efficiency and visual discomfort as a result of high solar and thermal heat gains, excessive daylight and direct sunlight. External venetian blind has been identified as one of the effective shading devices for controlling the heat gains and daylight through fenestration. This study explores uncertainty and sensitivity analyses to identify and prioritize the most influencing parameters for designing glazed components that include external shading devices for office buildings. The study was performed for hot-dry climate of Jodhpur (Latitude 26° 180′N, longitude 73° 010′E) using EnergyPlus, a whole building energy simulation tool providing a large number of inputs for eight façade orientations. A total 150 and 845 data points (for each orientation) for input variables were generated using Hyper Cubic Sampling and extended FAST methods for uncertainty and sensitivity analyses respectively. Results indicated a large uncertainty in the lighting, HVAC, source energy consumptions and useful daylight illuminance (UDI). The estimated coefficients of variation were highest (up to 106%) for UDI, followed by lighting energy (up to 45%) and HVAC energy use (around 33%). The sensitivity analysis identified window to wall ratio, glazing type, blind type (orientation of slats) and slat angle as highly influencing factors for energy and

  4. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  5. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  6. Climatic classification of the Karst

    International Nuclear Information System (INIS)

    Eslava Ramirez Jesus Antonio; Bahamon Ayala, Sandra Marcela; Lopez Romero Maria Ines

    2000-01-01

    Climate is one the main factors in forming or modifying Karsts, or its resulting forms. The determining climatic elements of Karst characteristics are humidity, air circulation and temperature. Many Karstic processes show characteristics corresponding to a given climate sequence. In the present article we discuss the relation between climate and Karst as well as a climate classification based on the structure of the Karsts

  7. Georgian climate change under global warming conditions

    Directory of Open Access Journals (Sweden)

    Mariam Elizbarashvili

    2017-03-01

    Full Text Available Georgian Climate change has been considered comprehensively, taking into account World Meteorological Organization recommendations and recent observation data. On the basis of mean temperature and precipitation decadal trend geo-information maps for 1936–2012 years period, Georgian territory zoning has been carried out and for each areas climate indices main trends have been studied, that best characterize climate change - cold and hot days, tropical nights, vegetation period duration, diurnal maximum precipitation, maximum five-day total precipitation, precipitation intensity simple index, precipitation days number of at least 10 mm, 20 mm and 50 mm, rainy and rainless periods duration. Trends of temperature indices are statistically significant. On the Black Sea coastline and Colchis lowland at high confidence level cold and hot days and tropical nights number changes are statistically significant. On eastern Georgia plains at high level of statistical significance, the change of all considered temperature indices has been fixed except for the number of hot days. In mountainous areas only hot day number increasing is significant. Trends of most moisture indices are statistically insignificant. While keeping Georgian climate change current trends, precipitation amount on the Black Sea coastline and Colchis lowland, as well as in some parts of Western Caucasus to the end of the century will increase by 50% and amounts to 3000 and 6000 mm, respectively this will strengthen humidity of those areas. Besides increasing of rainy period duration may constitute the risk for flooding and high waters. On eastern Georgia plains, in particular Kvemo Kartli, annual precipitation amount will decrease by 50% or more, and will be only 150–200 mm and the precipitation daily maximum will decrease by about 20 mm and be only 10–15 mm, which of course will increase the intensity of desertification of steppe and semi-desert landscapes.

  8. Trends in continental temperature and humidity directly linked to ocean warming.

    Science.gov (United States)

    Byrne, Michael P; O'Gorman, Paul A

    2018-05-08

    In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.

  9. Ultrahigh humidity sensitivity of graphene oxide.

    Science.gov (United States)

    Bi, Hengchang; Yin, Kuibo; Xie, Xiao; Ji, Jing; Wan, Shu; Sun, Litao; Terrones, Mauricio; Dresselhaus, Mildred S

    2013-01-01

    Humidity sensors have been extensively used in various fields, and numerous problems are encountered when using humidity sensors, including low sensitivity, long response and recovery times, and narrow humidity detection ranges. Using graphene oxide (G-O) films as humidity sensing materials, we fabricate here a microscale capacitive humidity sensor. Compared with conventional capacitive humidity sensors, the G-O based humidity sensor has a sensitivity of up to 37800% which is more than 10 times higher than that of the best one among conventional sensors at 15%-95% relative humidity. Moreover, our humidity sensor shows a fast response time (less than 1/4 of that of the conventional one) and recovery time (less than 1/2 of that of the conventional one). Therefore, G-O appears to be an ideal material for constructing humidity sensors with ultrahigh sensitivity for widespread applications.

  10. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    Energy Technology Data Exchange (ETDEWEB)

    Skwarczynski, M.A. [Faculty of Environmental Engineering, Institute of Environmental Protection Engineering, Department of Indoor Environment Engineering, Lublin University of Technology, Lublin (Poland); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Melikov, A.K.; Lyubenova, V. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Kaczmarczyk, J. [Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Gliwice (Poland)

    2010-10-15

    The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 C and relative humidity of 70%. (author)

  11. Humidity evolution (breathing effect) in enclosures with electronics

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Popok, Vladimir

    2015-01-01

    Packaging and enclosures used for protecting power electronics operating outdoors are designed to withstand the local climatic and environmental changes. Hermetic enclosures are expensive and therefore other solutions for protecting the electronics from a harsh environment are required. One...... of the dangerous parameters is high humidity of air. Moisture can inevitable reach the electronics either due to diffusion through the wall of an enclosure or small holes, which are designed for electrical or other connections. A driving force for humid air movement is the temperature difference between...... the operating electronics and the surrounding environment. This temperature, thus, gives rise to a natural convection, which we also refer to as breathing. Robust and intelligent enclosure designs must account for this breathing as it can significantly change the humidity distribution in the enclosure...

  12. Integration of Building Information Modeling and Critical Path Method Schedules to Simulate the Impact of Temperature and Humidity at the Project Level

    Directory of Open Access Journals (Sweden)

    Yongwei Shan

    2014-07-01

    Full Text Available Steel construction activities are often undertaken in an environment with limited climate control. Both hot and cold temperatures can physically and psychologically affect construction workers, thus decreasing their productivity. Temperature and humidity are two factors that constantly exert forces on workers and influence their performance and efficiency. Previous studies have established a relationship between labor productivity and temperature and humidity. This research is built on the existing body of knowledge and develops a framework of integrating building information modeling (BIM with a lower level critical path method (CPM schedule to simulate the overall impact of temperature and humidity on a healthcare facility’s structural steel installation project in terms of total man hours required to build the project. This research effort utilized historical weather data of four cities across the U.S., with each city having workable seasons year-round and conducted a baseline assessment to test if various project starting dates and locations could significantly impact the project’s schedule performance. It was found that both varied project start dates and locations can significantly contribute to the difference in the man hours required to build the model project and that the project start date and location can have an interaction effect. This study contributes to the overall body of knowledge by providing a framework that can help practitioners better understand the overall impact of a productivity influencing factor at a project level, in order to facilitate better decision making.

  13. HOT 2017

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis.......HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis....

  14. Air humidity requirements for human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole

    1999-01-01

    level near 100% rh. For respiratory comfort are the requirements much more stringent and results in lower permissible indoor air humidities. Compared with the upper humidity limit specified in existing thermal comfort standards, e.g. ASHRAE Addendum 55a, the humidity limit based on skin humidity......Upper humidity limits for the comfort zone determined from two recently presented models for predicting discomfort due to skin humidity and insufficient respiratory cooling are proposed. The proposed limits are compared with the maximum permissible humidity level prescribed in existing standards...... for the thermal indoor environment. The skin humidity model predicts discomfort as a function of the relative humidity of the skin, which is determined by existing models for human heat and moisture transfer based on environmental parameters, clothing characteristics and activity level. The respiratory model...

  15. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.

    1989-01-01

    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  16. Impact of Ambient Humidity on Child Health: A Systematic Review

    Science.gov (United States)

    Gao, Jinghong; Sun, Yunzong; Lu, Yaogui; Li, Liping

    2014-01-01

    Background and Objectives Changes in relative humidity, along with other meteorological factors, accompany ongoing climate change and play a significant role in weather-related health outcomes, particularly among children. The purpose of this review is to improve our understanding of the relationship between ambient humidity and child health, and to propose directions for future research. Methods A comprehensive search of electronic databases (PubMed, Medline, Web of Science, ScienceDirect, OvidSP and EBSCO host) and review of reference lists, to supplement relevant studies, were conducted in March 2013. All identified records were selected based on explicit inclusion criteria. We extracted data from the included studies using a pre-designed data extraction form, and then performed a quality assessment. Various heterogeneities precluded a formal quantitative meta-analysis, therefore, evidence was compiled using descriptive summaries. Results Out of a total of 3797 identified records, 37 papers were selected for inclusion in this review. Among the 37 studies, 35% were focused on allergic diseases and 32% on respiratory system diseases. Quality assessment revealed 78% of the studies had reporting quality scores above 70%, and all findings demonstrated that ambient humidity generally plays an important role in the incidence and prevalence of climate-sensitive diseases among children. Conclusions With climate change, there is a significant impact of ambient humidity on child health, especially for climate-sensitive infectious diseases, diarrhoeal diseases, respiratory system diseases, and pediatric allergic diseases. However, some inconsistencies in the direction and magnitude of the effects are observed. PMID:25503413

  17. Humidity Buildup in Electronic Enclosures Exposed to Constant Conditions

    DEFF Research Database (Denmark)

    Conseil, Helene; Staliulionis, Zygimantas; Jellesen, Morten Stendahl

    2017-01-01

    Electronic components and devices are exposed to a wide variety of climatic conditions, therefore the protection of electronic devices from humidity is becoming a critical factor in the system design. The ingress of moisture into typical electronic enclosures has been studied with defined paramet....... The moisture buildup inside the enclosure has been simulated using an equivalent RC circuit consisting of variables like controlled resistors and capacitors to describe the diffusivity, permeability, and storage in polymers....

  18. Cross-Sensitivity Of Aethalometer Measurements To Relative Humidity

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, A.; Baltensperger, U.; Weingartner, E.

    2005-03-01

    Absorptive light reduction by atmospheric aerosols is important with respect to their climate forcing. An instrument to measure light absorption is the aethalometer, which is routinely used to measure the attenuation of light transmitted through aerosol-laden fibre filters. Measurements have shown that the condensable gases require a correction for artefacts. We present the first corrections for hydrophobic Palas soot-laden filters for the whole humidity range, enhancing the accuracy of aethalometer datasets. (author)

  19. Repeated short climatic change affects the epidermal differentiation program and leads to matrix remodeling in a human organotypic skin model.

    Science.gov (United States)

    Boutrand, Laetitia-Barbollat; Thépot, Amélie; Muther, Charlotte; Boher, Aurélie; Robic, Julie; Guéré, Christelle; Vié, Katell; Damour, Odile; Lamartine, Jérôme

    2017-01-01

    Human skin is subject to frequent changes in ambient temperature and humidity and needs to cope with these environmental modifications. To decipher the molecular response of human skin to repeated climatic change, a versatile model of skin equivalent subject to "hot-wet" (40°C, 80% relative humidity [RH]) or "cold-dry" (10°C, 40% RH) climatic stress repeated daily was used. To obtain an exhaustive view of the molecular mechanisms elicited by climatic change, large-scale gene expression DNA microarray analysis was performed and modulated function was determined by bioinformatic annotation. This analysis revealed several functions, including epidermal differentiation and extracellular matrix, impacted by repeated variations in climatic conditions. Some of these molecular changes were confirmed by histological examination and protein expression. Both treatments (hot-wet and cold-dry) reduced the expression of genes encoding collagens, laminin, and proteoglycans, suggesting a profound remodeling of the extracellular matrix. Strong induction of the entire family of late cornified envelope genes after cold-dry exposure, confirmed at protein level, was also observed. These changes correlated with an increase in epidermal differentiation markers such as corneodesmosin and a thickening of the stratum corneum, indicating possible implementation of defense mechanisms against dehydration. This study for the first time reveals the complex pattern of molecular response allowing adaption of human skin to repeated change in its climatic environment.

  20. Intercomparison of four regional climate models for the German State of Saxonia

    Science.gov (United States)

    Kreienkamp, F.; Spekat, A.; Enke, W.

    2009-09-01

    Results from four regional climate models which focus on Central Europe are presented: CCLM, the climate version of the German Weather Service's Local Model - REMO, the regional dynamic model from the Max Planck Institute for Meteorology in Hamburg - STAR, the statistical model developed at the PIK Potsdam Institute and WETTREG, the statistic-dynamic model developed by the company CEC Potsdam. For the area of the German State of Saxonia a host of properties and indicators were analyzed aiming to show the models' abilities to reconstruct the current climate and compare climate model scenarios. These include a group of thermal indicators, such as the number of ice, frost, summer and hot days, the number of tropical nights; then there are hydrometeorological indicators such as the exceedance of low and high precipitation thresholds; humidity, cloudiness and wind indicators complement the array. A selection of them showing similarities and differences of the models investigated will be presented.

  1. Endotoxin predictors and associated respiratory outcomes differ with climate regions in the U.S.

    Science.gov (United States)

    Mendy, Angelico; Wilkerson, Jesse; Salo, Pӓivi M; Cohn, Richard D; Zeldin, Darryl C; Thorne, Peter S

    2018-03-01

    Although endotoxin is a recognized cause of environmental lung disease, how its relationship with respiratory outcomes varies with climate is unknown. To examine the endotoxin predictors as well as endotoxin association with asthma, wheeze, and sensitization to inhalant allergens in various US climate regions. We analyzed data on 6963 participants in the National Health and Nutrition Examination Survey. Endotoxin measurements of house dust from bedroom floor and bedding were performed at the University of Iowa. Linear and logistic regression analyses were used to identify endotoxin predictors and assess endotoxin association with health outcomes. The overall median house dust endotoxin was 16.2 EU/mg; it was higher in mixed-dry/hot-dry regions (19.7 EU/mg) and lower in mixed-humid/marine areas (14.8 EU/mg). Endotoxin predictors and endotoxin association with health outcomes significantly differed across climate regions. In subarctic/very cold/cold regions, log 10 -endotoxin was significantly associated with higher prevalence of wheeze outcomes (OR:1.48, 95% CI:1.19-1.85 for any wheeze, OR:1.48, 95% CI:1.22-1.80 for exercise-induced wheeze, OR:1.50, 95% CI:1.13-1.98 for prescription medication for wheeze, and OR:1.95, 95% CI:1.50-2.54 for doctor/ER visit for wheeze). In hot-humid regions, log 10 -endotoxin was positively associated with any wheeze (OR:1.66, 95% CI:1.04-2.65) and current asthma (OR:1.56, 95% CI:1.11-2.18), but negatively with sensitization to any inhalant allergens (OR:0.83, 95% CI:0.74-0.92). Endotoxin predictors and endotoxin association with asthma and wheeze differ across U.S. climate regions. Endotoxin is associated positively with wheeze or asthma in cold and hot-humid regions, but negatively with sensitization to inhalant allergens in hot-humid climates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. CLIMATE AS A RISK FACTOR FOR TOURISM

    Directory of Open Access Journals (Sweden)

    ÁKOS NÉMETH

    2009-12-01

    Full Text Available Weather and climate risk factors for tourism are surveyed and illustrated with regard to the expected climate changes in Hungary. These changes are not at all advantageous and which affect the business in question both directly and indirectly. These are the summer resort tourism (characterised by bioclimatic indices. Green tourism is the next one to characterise, including skiing, mountain climbing and eco-tourism, as well. Here both day-to-day weather extremes and long-lasting effects on the biota (e.g. drought, or inundation for plain-area eco-tourism. Last, but not least the urban (cultural- and shopping- tourism is presented, since the large towns exhibit their special climate and different risks. The paper intends to specify these meteorological factors and effects also in terms of the different types of touristic activities. The general statements on the effect of weather and climate on tourism are illustrated by a few individual parameters and also by the so called Physiologically Equivalent Temperature. Annual and diurnal course of this parameter are presented, together with various trends in this variable at different sites and in different (hot and cold extremities of the occurring values. Other examples, helping the tourism industry are presented in various climate conditions of the country. They include high precipitation and high relative humidity information. The paper also lists the possible adaptation measures to extreme events and also their likely changes in time.

  3. Induced Air Movement for Wide-Span Schools in Humid Asia. Educational Building Digest 9.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    Schools in the hot and humid zones of the Asian region are narrow to ensure good ventilation. The purpose of this report is to show that it is possible, through appropriate design, to obtain sufficient breeze for thermal comfort in buildings as wide as 15 meters. Some of the conclusions of a study of the subject are summarized. The summary is…

  4. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity

    Science.gov (United States)

    The chemistry of whey protein concentrate (WPC) under adverse storage conditions was monitored to provide information on shelf life in hot, humid areas. WPC34 (34.9 g protein/100 g) and WPC80 (76.8 g protein/100 g) were stored for up to 18 mo under ambient conditions and at elevated temperature and...

  5. Uncertainties in downscaled relative humidity for a semi-arid region ...

    Indian Academy of Sciences (India)

    variables are extracted from the (1) National Centers for Environmental Prediction ... and (2) simulations of the third generation Canadian Coupled Global Climate ... Ef, MAE and P. Cumulative distribution functions were prepared from the ... Climate change; downscaling; hydroclimatology; relative humidity; multi-step linear ...

  6. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  7. Building America Best Practices Series: Volume 2. Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Hot-Dry and Mixed-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Z. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartlett, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilbride, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hefty, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Love, P. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2005-09-01

    This best practices guide is part of a series produced by Building America. The guidebook is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the hot-dry and mixed-dry climates. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builder's team—from the manager to the site planner to the designers, site supervisors, the trades, and marketers. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

  8. Energy- and humidity-budget of the non-hydrostatic mesoscale model GESIMA by nesting into the regional climate model REMO; Energie- und Feuchtehaushalt im nichthydrostatischen Mesoskalamodell GESIMA bei Nestung in das Regionalklimamodell REMO

    Energy Technology Data Exchange (ETDEWEB)

    Horneffer, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik]|[Hamburg Univ. (Germany). Fachbereich 15 - Geowissenschaften

    1997-12-31

    The `Geesthacht Simulationsmodel of the Atmosphere` (GESIMA) was nested into the `Regional Climate Model` (REMO). Exemplary studies prove that the presented nesting scheme is suitable to resolve subscale phenomena in the regional climate model. Some results of simulations above the island Gotland in the Baltic Sea were presented. The mesoscale model GESIMA could now be used to analyze real synoptic weather situations. (orig.) [Deutsch] Das Geesthachter Simulationsmodell der Atmosphaere (GESIMA) wird in das Regionalklimamodell (REMO) genestet. Beispielhafte Untersuchungen zeigen, dass mit der genesteten Modellversion subskalige Effekte, die durch das grobe Raster des Regionalklimamodells fallen, aufgeloest werden. Dies wird anhand von Simulationen ueberprueft. Hauptuntersuchungsgegenstand ist die Insel Gotland in der Ostsee. Duch die Nestung kann das Mesoskalamodell fuer tatsaechliche synoptische Situationen eingesetzt werden. (orig.)

  9. Coexistence of Dunes and Humid Conditions at Titan's Tropics

    Science.gov (United States)

    Radebaugh, Jani; Lorenz, R. D.; Lunine, J. I.; Kirk, R. L.; Ori, G. G.; Farr, T. G.; Malaska, M.; Le Gall, A.; Liu, Z. Y. C.; Encrenaz, P. J.; Paillou, P.; Hayes, A.; Lopes, R. M. C.; Turtle, E. P.; Wall, S. D.; Stofan, E. R.; Wood, C. A.; Cassini RADAR Team

    2012-10-01

    At Titan's equatorial latitudes there are tens of thousands of dunes, a landform typical of desert environments where sand does not become anchored by vegetation or fluids. Model climate simulations predict generally dry conditions at the equator and humid conditions near the poles of Titan, where lakes of methane/ethane are found. However, moderate relative methane humidity was observed at the Huygens landing site, recent rainfall was seen by Cassini ISS near the Belet Sand Sea, and a putative transient lake in Shangri-La was observed by Cassini VIMS, all of which indicate abundant fluids may be present, at least periodically, at Titan's equatorial latitudes. Terrestrial observations and studies demonstrate dunes can exist and migrate in conditions of high humidity. Active dunes are found in humid climates, indicating the movement of sand is not always prohibited by the presence of fluids. Sand mobility is related to precipitation, evaporation and wind speed and direction. If dune surfaces become wetted by rainfall or rising subsurface fluids, they can become immobilized. However, winds can act to dry the uppermost layers, freeing sands for saltation and enabling dune migration in wet conditions. Active dunes are found in tropical NE Brazil and NE Australia, where there are alternating dry and wet periods, a condition possible for Titan's tropics. Rising and falling water levels lead to the alteration of dune forms, mainly from being anchored by vegetation, but also from cementation by carbonates or clays. Studies of Titan's dunes, which could undergo anchoring of organic sediments by hydrocarbon fluids, could inform the relative strength of vegetation vs. cementation at humid dune regions on Earth. Furthermore, a comprehensive survey of dune morphologies near regions deemed low by SARTopo and stereo, where liquids may collect in wet conditions, could reveal if bodies of liquid have recently existed at Titan's tropics.

  10. Design of evaporative-cooling roof for decreasing air temperatures in buildings in the humid tropics

    Science.gov (United States)

    Kindangen, Jefrey I.; Umboh, Markus K.

    2017-03-01

    This subject points to assess the benefits of the evaporative-cooling roof, particularly for buildings with corrugated zinc roofs. In Manado, many buildings have roofed with corrugated zinc sheets; because this material is truly practical, easy and economical application. In general, to achieve thermal comfort in buildings in a humid tropical climate, people applying cross ventilation to cool the air in the room and avoid overheating. Cross ventilation is a very popular path to achieve thermal comfort; yet, at that place are other techniques that allow reducing the problem of excessive high temperature in the room in the constructions. This study emphasizes applications of the evaporative-cooling roof. Spraying water on the surface of the ceiling has been executed on the test cell and the reuse of water after being sprayed and cooled once more by applying a heat exchanger. Initial results indicate a reliable design and successfully meet the target as an effective evaporative-cooling roof technique. Application of water spraying automatic and cooling water installations can work optimally and can be an optimal model for the cooling roof as one of the green technologies. The role of heat exchangers can lower the temperature of the water from spraying the surface of the ceiling, which has become a hot, down an average of 0.77° C. The mass flow rate of the cooling water is approximately 1.106 kg/h and the rate of heat flow is around 515 Watt, depend on the site.

  11. Retrofitting Domestic Hot Water Heaters for Solar Water Heating Systems in Single-Family Houses in a Cold Climate: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Björn Karlsson

    2012-10-01

    Full Text Available One of the biggest obstacles to economic profitability of solar water heating systems is the investment cost. Retrofitting existing domestic hot water heaters when a new solar hot water system is installed can reduce both the installation and material costs. In this study, retrofitting existing water heaters for solar water heating systems in Swedish single-family houses was theoretically investigated using the TRNSYS software. Four simulation models using forced circulation flow with different system configurations and control strategies were simulated and analysed in the study. A comparison with a standard solar thermal system was also presented based on the annual solar fraction. The simulation results indicate that the retrofitting configuration achieving the highest annual performance consists of a system where the existing tank is used as storage for the solar heat and a smaller tank with a heater is added in series to make sure that the required outlet temperature can be met. An external heat exchanger is used between the collector circuit and the existing tank. For this retrofitted system an annual solar fraction of 50.5% was achieved. A conventional solar thermal system using a standard solar tank achieves a comparable performance for the same total storage volume, collector area and reference conditions.

  12. Performance of Denitrifying Bioreactors at Reducing  Agricultural Nitrogen Pollution in a Humid  Subtropical Coastal Plain Climate

    Directory of Open Access Journals (Sweden)

    Timothy Rosen

    2017-02-01

    Full Text Available Denitrifying bioreactors are an agricultural best management practice developed in the  midwestern United States to treat agricultural drainage water enriched with nitrate‐nitrogen (NO3N. The practice is spreading rapidly to agricultural regions with poor water quality due to nutrient  enrichment. This makes it imperative to track bioreactor NO3‐N reduction efficiency as this practice  gets deployed to new regions. This study evaluated the application and performance of denitrifying  bioreactors in the humid subtropical coastal plain environment of the Chesapeake Bay catchment to  provide data about regionally specific NO3‐N reduction efficiencies. NO3‐N samples were taken  before  and  after  treatment  at  three  denitrifying  bioreactors,  in  addition  to  other  nutrients  (orthophosphate‐phosphorus,  PO4‐P;  ammonium‐nitrogen,  NH4‐N;  total  nitrogen,  TN;  total  phosphorus,  TP  and  water  quality  parameters  (dissolved  oxygen,  DO;  oxidation  reduction  potential,  ORP;  pH;  specific  conductance,  SPC.  Total  removal  ranged  drastically  between  bioreactors from 10 to 133 kg N, with removal efficiencies of 9.0% to 62% and N removal rates of  0.21 to 5.36 g N removed per m3 of bioreactor per day. As the first bioreactor study in the humid  subtropical coastal plain, this data provides positive proof of concept that denitrifying bioreactor is  another tool for reducing N loads in agricultural tile drainage in this region.

  13. Experimental study of humidity distribution inside electronic enclosure and effect of internal heating

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2016-01-01

    on the humidity and temperature profile inside typical electronic enclosures. Defined parameters include external temperature and humidity conditions, temperature and time of the internal heat cycle, thermal mass, and ports/openings size. The effect of the internal humidity on electronic reliability has been......Corrosion reliability of electronic products is a key factor for electronics industry, and today there is a large demand for performance reliability in a wide range of temperature and humidity during day and night time periods. Corrosion failures are still a challenge due to the combined effects...... of temperature, humidity and corrosion accelerating species in the atmosphere. Moreover the surface region of printed circuit board assemblies is often contaminated by various aggressive chemical species.This study describes the overall effect of the exposure to severe climate conditions and internal heat cycles...

  14. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  15. Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei and coffee production in East Africa.

    Directory of Open Access Journals (Sweden)

    Juliana Jaramillo

    Full Text Available The negative effects of climate change are already evident for many of the 25 million coffee farmers across the tropics and the 90 billion dollar (US coffee industry. The coffee berry borer (Hypothenemus hampei, the most important pest of coffee worldwide, has already benefited from the temperature rise in East Africa: increased damage to coffee crops and expansion in its distribution range have been reported. In order to anticipate threats and prioritize management actions for H. hampei we present here, maps on future distributions of H. hampei in coffee producing areas of East Africa. Using the CLIMEX model we relate present-day insect distributions to current climate and then project the fitted climatic envelopes under future scenarios A2A and B2B (for HADCM3 model. In both scenarios, the situation with H. hampei is forecasted to worsen in the current Coffea arabica producing areas of Ethiopia, the Ugandan part of the Lake Victoria and Mt. Elgon regions, Mt. Kenya and the Kenyan side of Mt. Elgon, and most of Rwanda and Burundi. The calculated hypothetical number of generations per year of H. hampei is predicted to increase in all C. arabica-producing areas from five to ten. These outcomes will have serious implications for C. arabica production and livelihoods in East Africa. We suggest that the best way to adapt to a rise of temperatures in coffee plantations could be via the introduction of shade trees in sun grown plantations. The aims of this study are to fill knowledge gaps existing in the coffee industry, and to draft an outline for the development of an adaptation strategy package for climate change on coffee production. An abstract in Spanish is provided as Abstract S1.

  16. Simulation of electronic circuit sensitivity towards humidity using electrochemical data on water layer

    DEFF Research Database (Denmark)

    Joshy, Salil; Verdingovas, Vadimas; Jellesen, Morten Stendahl

    2015-01-01

    Climatic conditions like temperature and humidity have direct influence on the operation of electronic circuits. The effects of temperature on the operation of electronic circuits have been widely investigated, while the effect of humidity and solder flux residues are not well understood including...... the effect on circuit and PCBA (printed circuit board assembly) layout design. This paper elucidates a methodology for analyzing the sensitivity of an electronic circuit based on parasitic circuit analysis using data on electrical property of the water layer formed under humid as well as contaminated...

  17. Holocene climate change in North Africa and the end of the African humid period - results of new high-resolution transient simulations with the MPI-ESM 1.3

    Science.gov (United States)

    Dallmeyer, Anne; Claussen, Martin; Lorenz, Stephan

    2017-04-01

    The Max-Planck-Institute for Meteorology has recently undertaken high-resolution transient Holocene simulations using the fully-coupled Earth System Model MPI-ESM 1.3. The simulations cover the last 8000 years and are forced not only by reconstructed Holocene orbital variations and atmospheric greenhouse gas concentrations, but also by recent compilations of Holocene volcanic aerosol distributions, variations in spectral solar irradiance, stratospheric ozone and land-use change. The simulations reveal the ubiquitous "Holocene conundrum": simulated global mean temperatures increase during the mid-Holocene and stay constant during the late Holocene. Simulated mid-Holocene near-surface temperatures are too cold in large parts of the world. Simulated precipitation, however, agrees much better with reconstruction than temperatures do. Likewise simulated global biome pattern fit reconstructions nicely, except for North Western America. First results of these simulations are presented with the main focus on the North African monsoon region. The amplitude of the mid-Holocene African Humid Period (AHP) is well captured in terms of precipitation and vegetation cover, so is the south-ward transgression of the termination of the AHP seen in reconstructions. The Holocene weakening and southward retreat of the North African monsoon as well as changes in the monsoon dynamic including shifts in the seasonal cycle and their relation to the locally varying termination of the AHP are discussed in detail. Members of the Hamburg Holocene Team: Jürgen Bader (1), Sebastian Bathiany (2), Victor Brovkin (1), Martin Claussen (1,3), Traute Crüger (1), Roberta D'agostino (1), Anne Dallmeyer (1), Sabine Egerer (1), Vivienne Groner (1), Matthias Heinze (1), Tatiana Ilyina (1), Johann Jungclaus (1), Thomas Kleinen (1), Alexander Lemburg (1), Stephan Lorenz (1), Thomas Raddatz (1), Hauke Schmidt (1), Gerhard Schmiedl (3), Bjorn Stevens (1), Claudia Timmreck (1), Matthew Toohey (4) (1) Max

  18. Observational evidence for aerosols increasing upper tropospheric humidity

    Directory of Open Access Journals (Sweden)

    L. Riuttanen

    2016-11-01

    Full Text Available Aerosol–cloud interactions are the largest source of uncertainty in the radiative forcing of the global climate. A phenomenon not included in the estimates of the total net forcing is the potential increase in upper tropospheric humidity (UTH by anthropogenic aerosols via changes in the microphysics of deep convection. Using remote sensing data over the ocean east of China in summer, we show that increased aerosol loads are associated with an UTH increase of 2.2 ± 1.5 in units of relative humidity. We show that humidification of aerosols or other meteorological covariation is very unlikely to be the cause of this result, indicating relevance for the global climate. In tropical moist air such an UTH increase leads to a regional radiative effect of 0.5 ± 0.4 W m−2. We conclude that the effect of aerosols on UTH should be included in future studies of anthropogenic climate change and climate sensitivity.

  19. The anthropogenic influence on heat and humidity in the US Midwest

    Science.gov (United States)

    Inda Diaz, H. A.; O'Brien, T. A.; Stone, D. A.

    2016-12-01

    Heatwaves, and extreme temperatures in general, have a wide range of negative impacts on society, and particularly on human health. In addition to temperature, humidity plays a key role in regulating human body temperature, with higher humidities tending to reduce the effectiveness of perspiration. There is recent theoretical and observational evidence that co-occurring extreme heat and humidity can potentially have a much more dramatic impact on human health than either extreme in isolation. There is an abundance of observational evidence indicating that anthropogenic increases in greenhouse gas (GHG) forcing have contributed to an increase in the intensity and frequency of temperature extremes on a global scale. However, aside from purely thermodynamically-driven increases in near-surface humidity, there is a paucity of similar evidence for anthropogenic impacts on humidity. Thermodynamic scaling would suggest that air masses originating from the ocean would be associated with higher specific humidity in a warmer world, and transpiration from irrigated crops could further increase humidity in warm air masses. In order to explore the role of anthropogenic GHG forcing on the co-occurrence of temperature and humidity extremes in the Midwestern United States (US), we evaluate a large ensemble of global climate model simulations with and without anthropogenic GHG forcing. In particular, we examine differences between the probability distributions of near-surface temperature, humidity, wet-bulb temperature, and the joint distribution of temperature and humidity in this ensemble. Finally, we explore augmenting this experimental framework with additional simulations to explore the role of anthropogenic changes in the land surface, and in particular irrigated crops, on co-occurring extreme heat and humidity.

  20. The impact of relative humidity and atmospheric pressure on mortality in Guangzhou, China.

    Science.gov (United States)

    Ou, Chun Quan; Yang, Jun; Ou, Qiao Qun; Liu, Hua Zhang; Lin, Guo Zhen; Chen, Ping Yan; Qian, Jun; Guo, Yu Ming

    2014-12-01

    Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impacts of atmospheric pressure and relative humidity on mortality in Guangzhou, China. This study included 213,737 registered deaths during 2003-2011 in Guangzhou, China. A quasi-Poisson regression with a distributed lag non-linear model was used to assess the effects of atmospheric pressure/relative humidity. We found significant effect of low atmospheric pressure/relative humidity on mortality. There was a 1.79% (95% confidence interval: 0.38%-3.22%) increase in non-accidental mortality and a 2.27% (0.07%-4.51%) increase in cardiovascular mortality comparing the 5th and 25th percentile of atmospheric pressure. A 3.97% (0.67%-7.39%) increase in cardiovascular mortality was also observed comparing the 5th and 25th percentile of relative humidity. Women were more vulnerable to decrease in atmospheric pressure and relative humidity than men. Age and education attainment were also potential effect modifiers. Furthermore, low atmospheric pressure and relative humidity increased temperature-related mortality. Both low atmospheric pressure and relative humidity are important risk factors of mortality. Our findings would be helpful to develop health risk assessment and climate policy interventions that would better protect vulnerable subgroups of the population. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. VAB Temperature and Humidity Study

    Science.gov (United States)

    Lane, John E.; Youngquist, Robert C.; Muktarian, Edward; Nurge, Mark A.

    2014-01-01

    In 2012, 17 data loggers were placed in the VAB to measure temperature and humidity at 10-minute intervals over a one-year period. In 2013, the data loggers were replaced with an upgraded model and slight adjustments to their locations were made to reduce direct solar heating effects. The data acquired by the data loggers was compared to temperature data provided by three wind towers located around the building. It was found that the VAB acts as a large thermal filter, delaying and reducing the thermal oscillations occurring outside of the building. This filtering is typically more pronounced at higher locations in the building, probably because these locations have less thermal connection with the outside. We surmise that the lower elevations respond more to outside temperature variations because of air flow through the doors. Temperatures inside the VAB rarely exceed outdoor temperatures, only doing so when measurements are made directly on a surface with connection to the outside (such as a door or wall) or when solar radiation falls directly on the sensor. A thermal model is presented to yield approximate filter response times for various locations in the building. Appendix A contains historical thermal and humidity data from 1994 to 2009.

  2. Characterization of spacecraft humidity condensate

    Science.gov (United States)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  3. Physiological responses of horses to a treadmill simulated speed and endurance test in high heat and humidity before and after humid heat acclimation.

    Science.gov (United States)

    Marlin, D J; Scott, C M; Schroter, R C; Harris, R C; Harris, P A; Roberts, C A; Mills, P C

    1999-01-01

    with a humid heat acclimation response. These changes were mostly similar to those reported to occur in man and other species and were consistent with thermal acclimation and an increased thermotolerance, leading to an improved exercise tolerance. It is concluded that a 15 day period of acclimation is beneficial for horses from cooler and or drier climates, that have to compete in hot humid conditions and that this may redress, to some extent, the decrement in exercise tolerance seen in nonacclimated horses and reduce the risk of heat related disorders, such as heat exhaustion.

  4. Too hot to trot? evaluating the effects of wildfire on patterns of occupancy and abundance for a climate-sensitive habitat-specialist

    Science.gov (United States)

    Varner, Johanna; Lambert, Mallory S.; Horns, Joshua J.; Laverty, Sean; Dizney, Laurie; Beever, Erik; Dearing, M. Denise

    2015-01-01

    Wildfires are increasing in frequency and severity as a result of climate change in many ecosystems; however, effects of altered disturbance regimes on wildlife remain poorly quantified. Here, we leverage an unexpected opportunity to investigate how fire affects the occupancy and abundance of a climate-sensitive habitat specialist, the American pika (Ochotona princeps). We determine the effects of a fire on microclimates within talus and explore habitat factors promoting persistence and abundance in fire-affected habitat. During the fire, temperatures in talus interstices remained below 19°C, suggesting that animals could have survived in situ. Within 2 years, pikas were widely distributed throughout burned areas and did not appear to be physiologically stressed at severely burned sites. Furthermore, pika densities were better predicted by topographic variables known to affect this species than by metrics of fire severity. This widespread distribution may reflect quick vegetation recovery and the fact that the fire did not alter the talus microclimates in the following years. Together, these results highlight the value of talus as a thermal refuge for small animals during and after fire. They also underscore the importance of further study in individual species’ responses to typical and altered disturbance regimes.

  5. Evaluation of simulated corn yields and associated uncertainty in different climate zones of China using Daycent Model

    Science.gov (United States)

    Fu, A.; Xue, Y.

    2017-12-01

    Corn is one of most important agricultural production in China. Research on the simulation of corn yields and the impacts of climate change and agricultural management practices on corn yields is important in maintaining the stable corn production. After climatic data including daily temperature, precipitation, solar radiation, relative humidity, and wind speed from 1948 to 2010, soil properties, observed corn yields, and farmland management information were collected, corn yields grown in humidity and hot environment (Sichuang province) and cold and dry environment (Hebei province) in China in the past 63 years were simulated by Daycent, and the results was evaluated based on published yield record. The relationship between regional climate change, global warming and corn yield were analyzed, the uncertainties of simulation derived from agricultural management practices by changing fertilization levels, land fertilizer maintenance and tillage methods were reported. The results showed that: (1) Daycent model is capable to simulate corn yields under the different climatic background in China. (2) When studying the relationship between regional climate change and corn yields, it has been found that observed and simulated corn yields increased along with total regional climate change. (3) When studying the relationship between the global warming and corn yields, It was discovered that newly-simulated corn yields after removing the global warming trend of original temperature data were lower than before.

  6. Can resistant coral-Symbiodinium associations enable coral communities to survive climate change? A study of a site exposed to long-term hot water input

    Directory of Open Access Journals (Sweden)

    Shashank Keshavmurthy

    2014-04-01

    Full Text Available Climate change has led to a decline in the health of corals and coral reefs around the world. Studies have shown that, while some corals can cope with natural and anthropogenic stressors either through resistance mechanisms of coral hosts or through sustainable relationships with Symbiodinium clades or types, many coral species cannot. Here, we show that the corals present in a reef in southern Taiwan, and exposed to long-term elevated seawater temperatures due to the presence of a nuclear power plant outlet (NPP OL, are unique in terms of species and associated Symbiodinium types. At shallow depths (<3 m, eleven coral genera elsewhere in Kenting predominantly found with Symbiodinium types C1 and C3 (stress sensitive were instead hosting Symbiodinium type D1a (stress tolerant or a mixture of Symbiodinium type C1/C3/C21a/C15 and Symbiodinium type D1a. Of the 16 coral genera that dominate the local reefs, two that are apparently unable to associate with Symbiodinium type D1a are not present at NPP OL at depths of <3 m. Two other genera present at NPP OL and other locations host a specific type of Symbiodinium type C15. These data imply that coral assemblages may have the capacity to maintain their presence at the generic level against long-term disturbances such as elevated seawater temperatures by acclimatization through successful association with a stress-tolerant Symbiodinium over time. However, at the community level it comes at the cost of some coral genera being lost, suggesting that species unable to associate with a stress-tolerant Symbiodinium are likely to become extinct locally and unfavorable shifts in coral communities are likely to occur under the impact of climate change.

  7. Comparison of land surface humidity between observations and CMIP5 models

    Science.gov (United States)

    Dunn, Robert J. H.; Willett, Kate M.; Ciavarella, Andrew; Stott, Peter A.

    2017-08-01

    We compare the latest observational land surface humidity dataset, HadISDH, with the latest generation of climate models extracted from the CMIP5 archive and the ERA-Interim reanalysis over the period 1973 to present. The globally averaged behaviour of HadISDH and ERA-Interim are very similar in both humidity measures and air temperature, on decadal and interannual timescales. The global average relative humidity shows a gradual increase from 1973 to 2000, followed by a steep decline in recent years. The observed specific humidity shows a steady increase in the global average during the early period but in the later period it remains approximately constant. None of the CMIP5 models or experiments capture the observed behaviour of the relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed climatologies with those from historical model runs shows that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra-tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends is relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the tropics and very little at high latitudes. The observed drying in mid-latitudes is present at a much lower magnitude in the CMIP5 models. Relationships between temperature and humidity anomalies (T-q and T-rh) show good agreement for specific humidity between models and observations, and between the models themselves, but much poorer for relative humidity. The T-q correlation from the models is more steeply positive than

  8. Shallow Land Burial Technology - Humid

    International Nuclear Information System (INIS)

    Davis, E.C.; Spalding, B.P.; Lee, S.Y.

    1983-01-01

    The Shallow Land Burial Technology - Humid Project is being conducted for the Department of Energy Low-Level Waste Management Program with the objective of identifying and demonstrating improved technology for disposing of low-level solid waste in humid environments. Two improved disposal techniques are currently being evaluated using nine demonstration trenches at the Engineered Test Facility (ETF). The first is use of a cement-bentonite grout applied as a waste backfill material prior to trench closure and covering. The second is complete hydrologic isolation of waste by emplacement in a trench that is lined on all four sides, top and bottom using synthetic impermeable lining material. An economic analysis of the trench grouting and lining demonstration favored the trench lining operation ($1055/demonstration trench) over trench grouting ($1585/demonstration trench), with the cost differential becoming even greater (as much as a factor of 6 in favor of lining for typical ORNL trenches) as trench dimensions increase and trench volumes exceed those of the demonstration trenches. In addition to the evaluation of trench grouting and lining, major effort has centered on characterization of the ETF site. Though only a part of the overall study, characterization is an extremely important component of the site selection process; it is during these activities that potential problems, which may obviate the site from further consideration, are found. Characterization of the ETF has included studies of regional and site-specific geology, the physical and chemical properties of the soils in which the demonstration trenches are located, and hydrology of the small watershed of which the ETF is a part. 12 references, 6 figures, 2 tables

  9. EFICIENCIA ENERGÉTICA POR LA UTILIZACIÓN DE COMPONENTES DE CONDUCCIÓN DE LUZ NATURAL EN CLIMA CÁLIDO-HÚMEDO | ENERGETIC EFFICIENCY DERIVED FROM THE USE OF CONDUCTION COMPONENTS OF DAYLIGHT IN WARM-HUMID CLIMATE

    Directory of Open Access Journals (Sweden)

    Rosalinda González Gómez

    2015-11-01

    Full Text Available The electric energy saving was estimated by the utilization of Conduction Components of Daylight (CCD in warm-humid climate. For this, the luminic performance of the component was determined, considering values of horizontal exterior lighting and interior lighting obtained by monitoring under real sky conditions in scale models, and the comparison with incandescent bulbs and Compact Fluorescent Lamps (CFL. The utilization of the natural light through CCLN allows to obtain a saving in the expense for energy, with respect to the use of Incandescent Bulb and/or Compact Fluorescent Lamp (artificial lighting. In this sense, their use would correspond to 219 KWh and to 54.75 KWh, respectively, if they are used for an average of 10 daily hours, during a period of one year. It was estimated that a possible reduction could be achieved in the electricity consumption, maintaining the comfort and quality of life of the users in buildings (high luminic performance without use of energy from commercial supplier, contributing this way to the "energy efficiency" in them.

  10. Passive Wireless SAW Humidity Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the preliminary development of passive wireless surface acoustic wave (SAW) based humidity sensors for NASA application to distributed...

  11. Effects of ventilated safety helmets in a hot environment

    Science.gov (United States)

    G.A. Davis; E.D. Edmisten; R.E. Thomas; R.B. Rummer; D.D. Pascoe

    2001-01-01

    Forest workers are likely to remove head protection in hot and humid conditions because of thermal discomfort. However, a recent Occupational Safety and Health Administration (OSHA) regulation revision requires all workers in logging operations to wear safety helmets, thus creating a compliance problem. To determine which factors contribute to forest workers’ thermal...

  12. Model, Proxy and Isotopic Perspectives on the East African Humid Period

    Science.gov (United States)

    Tierney, Jessica E.; Lewis, Sophie C.; Cook, Benjamin I.; LeGrande, Allegra N.; Schmidt, Gavin A.

    2011-01-01

    Both North and East Africa experienced more humid conditions during the early and mid-Holocene epoch (11,000-5000yr BP; 11-5 ka) relative to today. The North African Humid Period has been a major focus of paleoclimatic study, and represents a response of the hydrological cycle to the increase in boreal summer insolation and associated ocean, atmosphere and land surface feedbacks. Meanwhile, the mechanisms that caused the coeval East African Humid Period are poorly understood. Here, we use results from isotopeenabled coupled climate modeling experiments to investigate the cause of the East African Humid Period. The modeling results are interpreted alongside proxy records of both water balance and the isotopic composition of rainfall. Our simulations show that the orbitally-induced increase in dry season precipitation and the subsequent reduction in precipitation seasonality can explain the East African Humid Period, and this scenario agrees well with regional lake level and pollen paleoclimate data. Changes in zonal moisture flux from both the Atlantic and Indian Ocean account for the simulated increase in precipitation from June through November. Isotopic paleoclimate data and simulated changes in moisture source demonstrate that the western East African Rift Valley in particular experienced more humid conditions due to the influx of Atlantic moisture and enhanced convergence along the Congo Air Boundary. Our study demonstrates that zonal changes in moisture advection are an important determinant of climate variability in the East African region.

  13. Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events

    Science.gov (United States)

    Ballard, T.; Diffenbaugh, N. S.

    2016-12-01

    Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.

  14. Effect of age, gender, economic group and tenure on thermal comfort: A field study in residential buildings in hot and dry climate with seasonal variations

    Energy Technology Data Exchange (ETDEWEB)

    Indraganti, Madhavi; Rao, Kavita Daryani [Architecture Department, Jawaharlal Nehru Architecture and Fine Arts University, Hyderabad (India)

    2010-03-15

    Energy consumption in Indian residential buildings is one of the highest and is increasing phenomenally. Indian standards specify comfort temperatures between 23 and 26 C for all types of buildings across the nation. However, thermal comfort research in India is very limited. A field study in naturally ventilated apartments was done in 2008, during the summer and monsoon seasons in Hyderabad in composite climate. This survey involved over 100 subjects, giving 3962 datasets. They were analysed under different groups: age, gender, economic group and tenure. Age, gender and tenure correlated weakly with thermal comfort. However, thermal acceptance of women, older subjects and owner-subjects was higher. Economic level of the subjects showed significant effect on the thermal sensation, preference, acceptance and neutrality. The comfort band for lowest economic group was found to be 27.3-33.1 C with the neutral temperature at 30.2 C. This is way above the standard. This finding has far reaching energy implications on building and HVAC systems design and practice. Occupants' responses for other environmental parameters often depended on their thermal sensation, often resulting in a near normal distribution. The subjects displayed acoustic and olfactory obliviousness due to habituation, resulting in higher satisfaction and acceptance. (author)

  15. Study on Applicability of Conceptual Hydrological Models for Flood Forecasting in Humid, Semi-Humid Semi-Arid and Arid Basins in China

    Directory of Open Access Journals (Sweden)

    Guangyuan Kan

    2017-09-01

    Full Text Available Flood simulation and forecasting in various types of watersheds is a hot issue in hydrology. Conceptual hydrological models have been widely applied to flood forecasting for decades. With the development of economy, modern China faces with severe flood disasters in all types of watersheds include humid, semi-humid semi-arid and arid watersheds. However, conceptual model-based flood forecasting in semi-humid semi-arid and arid regions is still challenging. To investigate the applicability of conceptual hydrological models for flood forecasting in the above mentioned regions, three typical conceptual models, include Xinanjiang (XAJ, mix runoff generation (MIX and northern Shannxi (NS, are applied to 3 humid, 3 semi-humid semi-arid, and 3 arid watersheds. The rainfall-runoff data of the 9 watersheds are analyzed based on statistical analysis and information theory, and the model performances are compared and analyzed based on boxplots and scatter plots. It is observed the complexity of drier watershed data is higher than that of the wetter watersheds. This indicates the flood forecasting is harder in drier watersheds. Simulation results indicate all models perform satisfactorily in humid watersheds and only NS model is applicable in arid watersheds. Model with consideration of saturation excess runoff generation (XAJ and MIX perform better than the infiltration excess-based NS model in semi-humid semi-arid watersheds. It is concluded more accurate mix runoff generation theory, more stable and efficient numerical solution of infiltration equation and rainfall data with higher spatial-temporal resolution are main obstacles for conceptual model-based flood simulation and forecasting.

  16. Mask humidity during CPAP: influence of ambient temperature, heated humidification and heated tubing.

    Science.gov (United States)

    Nilius, Georg; Domanski, Ulrike; Schroeder, Maik; Woehrle, Holger; Graml, Andrea; Franke, Karl-Josef

    2018-01-01

    Mucosal drying during continuous positive airway pressure (CPAP) therapy is problematic for many patients. This study assessed the influence of ambient relative humidity (rH) and air temperature (T) in winter and summer on mask humidity during CPAP, with and without mask leak, and with or without heated humidification ± heated tubing. CPAP (8 and 12 cmH 2 O) without humidification (no humidity [nH]), with heated humidification controlled by ambient temperature and humidity (heated humidity [HH]) and HH plus heated tubing climate line (CL), with and without leakage, were compared in 18 subjects with OSA during summer and winter. The absolute humidity (aH) and the T inside the mask during CPAP were significantly lower in winter versus summer under all applied conditions. Overall, absolute humidity differences between summer and winter were statistically significant in both HH and CL vs. nH ( p humidification or with standard HH. Clinically-relevant reductions in aH were documented during CPAP given under winter conditions. The addition of heated humidification, using a heated tube to avoid condensation is recommended to increase aH, which could be useful in CPAP users complaining of nose and throat symptoms.

  17. Graphene based humidity-insensitive films

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2017-01-01

    A humidity nonsensitive material based on reduced-graphene oxide (r-GO) and methods of making the same are provided, in an embodiment, the materia! has a resistance/humidity variation of about -15% to 15% based on different sintering time

  18. Temperature and Humidity Control in Livestock Stables

    DEFF Research Database (Denmark)

    Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.

    2010-01-01

    The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...

  19. Direct versus indirect effects of tropospheric humidity changes on the hydrologic cycle

    International Nuclear Information System (INIS)

    Sherwood, S C

    2010-01-01

    Abundant evidence indicates that tropospheric specific humidity increases in a warmer atmosphere, at rates roughly comparable to those at constant relative humidity. While the implications for the planetary energy budget and global warming are well recognized, it is the net atmospheric cooling (or surface heating) that controls the hydrologic cycle. Relative humidity influences this directly through gas-phase radiative transfer, and indirectly by affecting cloud cover (and its radiative effects) and convective heating. Simple calculations show that the two indirect impacts are larger than the direct impact by roughly one and two orders of magnitude respectively. Global or regional relative humidity changes could therefore have significant indirect impacts on energy and water cycles, especially by altering deep convection, even if they are too small to significantly affect global temperature. Studies of climate change should place greater emphasis on these indirect links, which may not be adequately represented in models.

  20. A Humidity-Dependent Lifetime Derating Factor for DC Film Capacitors

    DEFF Research Database (Denmark)

    Wang, Huai; Reigosa, Paula Diaz; Blaabjerg, Frede

    2015-01-01

    accelerated testing of film capacitors under different humidity conditions, enabling a more justified lifetime prediction of film capacitors for DC-link applications under specific climatic environments. The analysis of the testing results and the detailed discussion on the derating factor with different......Film capacitors are widely assumed to have superior reliability performance than Aluminum electrolytic capacitors in DC-link design of power electronic converters. However, the assumption needs to be critically judged especially for applications under high humidity environments. This paper proposes...... a humidity-dependent lifetime derating factor for a type of plastic-boxed metallized DC film capacitors. It overcomes the limitation that the humidity impact is not considered in the state-of-the-art DC film capacitor lifetime models. The lifetime derating factor is obtained based on a total of 8,700 hours...

  1. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    International Nuclear Information System (INIS)

    Poirier, Aurelie; Douysset, Guilhem

    2006-01-01

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a 192 Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A ±0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations

  2. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Aurelie; Douysset, Guilhem [Laboratoire National Henri Becquerel-LNE, CEA Saclay 91191 Gif-sur-Yvette (France)

    2006-10-07

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a {sup 192}Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A {+-}0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations.

  3. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  4. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  5. Humidity detection using chitosan film based sensor

    Science.gov (United States)

    Nasution, T. I.; Nainggolan, I.; Dalimunthe, D.; Balyan, M.; Cuana, R.; Khanifah, S.

    2018-02-01

    A humidity sensor made of the natural polymer chitosan has been successfully fabricated in the film form by a solution casting method. Humidity testing was performed by placing a chitosan film sensor in a cooling machine room, model KT-2000 Ahu. The testing results showed that the output voltage values of chitosan film sensor increased with the increase in humidity percentage. For the increase in humidity percentage from 30 to 90% showed that the output voltage of chitosan film sensor increased from 32.19 to 138.75 mV. It was also found that the sensor evidenced good repeatability and stability during the testing. Therefore, chitosan has a great potential to be used as new sensing material for the humidity detection of which was cheaper and environmentally friendly.

  6. Graphene based humidity-insensitive films

    KAUST Repository

    Tai, Yanlong

    2017-09-08

    A humidity nonsensitive material based on reduced-graphene oxide (r-GO) and methods of making the same are provided, in an embodiment, the materia! has a resistance/humidity variation of about -15% to 15% based on different sintering time or temperature. In an aspect, the resistance variation to humidity can be close to zero or -0.5% to 0.5%, showing a humidity non sensitivity property. In an embodiment, a humidity nonsensitive material based on the r-GO and carbon nanotube (CNT) composites is provided, wherein the ratio of CNT to r-GO is adjusted. The ratio can be adjusted based on the combined contribution of carbon nanotube (positive resistance variation) and reduced- graphene oxide (negative resistance variation) behaviors.

  7. Office-like Test Chambers to Measure Cool Roof Energy Savings in Four Indian Climates

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Rathish [Saint Gobain Research India Pvt. Ltd. (India); B, Sasank [Saint Gobain Research India Pvt. Ltd. (India); T, Rajappa [Saint Gobain Research India Pvt. Ltd. (India); N, Vinay [Saint Gobain Research India Pvt. Ltd. (India); Garg, Vishal [International Inst. of Information Technology, Hyderabad (India); Reddy, Niranjan [International Inst. of Information Technology, Hyderabad (India); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-21

    Selecting a high albedo (solar reflectance) waterproofing layer on the top of a roof helps lower the roof’s surface temperature and reduce the air conditioning energy consumption in the top floor of a building. The annual energy savings depend on factors including weather, internal loads, and building operation schedule. To demonstrate the energy saving potential of high albedo roofs, an apparatus consisting of two nearly identical test chambers (A and B) has been built in four Indian climates: Chennai (hot & humid), Bangalore (temperate), Jhagadia (Hot & dry) and Delhi (composite). Each chamber has well-insulated walls to mimic the core of an office building. Both chambers have the same construction, equipment, and operating schedule, differing only in roof surface. The reinforced cement concrete roof of Chamber A is surfaced with a low-albedo cement layer, while that of Chamber B is surfaced with a high-albedo water proof membrane (change in solar reflectance of 0.28). The experiment will be carried out for one year to explore seasonal variations in energy savings. Initial results in the month of July (post summer) shows that savings from high albedo roof ranges from 0.04 kWh/m2/day in temperate climates, to 0.08 kWh/m2/day in hot & dry climate.

  8. The influence of air humidity on an unsealed ionization chamber in a linear accelerator

    International Nuclear Information System (INIS)

    Blad, B.; Nilsson, P.; Knoeoes, T.

    1996-01-01

    The safe and accurate delivery of the prescribed absorbed dose is the central function of the dose monitoring and beam stabilization system in a medical linear accelerator. The absorbed dose delivered to the patient during radiotherapy is often monitored by a transmission ionization chamber. Therefore it is of utmost importance that the chamber behaves correctly. We have noticed that the sensitivity of an unsealed chamber in a Philips SL linear accelerator changes significantly, especially during and after the summer season. The reason for this is probably a corrosion effect of the conductive plates in the chamber due to the increased relative humidity during hot periods. We have found that the responses of the different ion chamber plates change with variations in air humidity and that they do not return to their original values when the air humidity is returned to ambient conditions. (author)

  9. Fudo: An East Asian Notion of Climate and Sustainability

    Directory of Open Access Journals (Sweden)

    Jin Baek

    2013-09-01

    Full Text Available My paper discusses an East Asian notion of climate and its significance for sustainability. A particular reference is the environmental philosophy of Tetsuro Watsuji (1889–1960, a Japanese philosopher who reflected upon the meaning of climate, or “fudo” in the Sino-Japanese linguistic tradition. Watsuji sees fudo not merely as a collection of natural features—climatic, scenic, and topographical—of a given land, but also as the metaphor of subjectivity, or “who I am”. Furthermore, this self-discovery through fudo is never private but collective. By referring to a phenomenological notion of “ek-sistere”, or “to be out among other ‘I’s”, Watsuji demonstrates the pervasiveness of a climatic phenomenon and the ensuing inter-personal joining of different individuals to shape a collective sustainable measure in response to the phenomenon. My paper lastly concretizes the significance of fudo and its inter-personal ethical basis for sustainability by dwelling upon cross-ventilation in Japanese vernacular residential architecture. Cross-ventilation emerges only through what Watsuji calls “selfless openness” between different rooms predicated upon the joining of different ‘I’s soaked in hotness and humidity. Watsuji’s fudo thus offers a lesson that without considering the collective humane characteristic of a natural climatic phenomenon, any sustainable act is flawed and inefficient.

  10. Heat impact on schoolchildren in Cameroon, Africa: potential health threat from climate change

    Directory of Open Access Journals (Sweden)

    Tord Kjellstrom

    2010-11-01

    Full Text Available Background: Health impacts related to climate change are potentially an increasing problem in Cameroon, especially during hot seasons when there are no means for protective and adaptive actions. Objective: To describe environmental conditions in schools and to evaluate the impact of heat on schoolchildren's health during school days in the Cameroon cities of Yaoundé and Douala. Methods: Schoolchildren (N=285 aged 12–16 years from public secondary schools completed a questionnaire about their background, general symptoms, and hot feelings in a cross-sectional study. In Yaoundé, 50 schoolchildren were individually interviewed during school days about hourly symptoms (fatigue, headache, and feeling very hot and performance. Lascar dataloggers were used to measure indoor classroom temperatures and humidity. Results: There was a significant correlation between daily indoor temperature and the percentages of schoolchildren who felt very hot, had fatigue, and headaches in Yaoundé. A high proportion of schoolchildren felt very hot (48%, had fatigue (76%, and headaches (38% in Yaoundé. Prevalences (% were higher among girls than boys for headaches (58 vs 39, feeling ‘very hot overall’ (37 vs 21, and ‘very hot in head’ (21 vs 18. Up to 62% were absentminded and 45% had slow writing speed. High indoor temperatures of 32.5°C in Yaoundé and 36.6°C in Douala were observed in school. Conclusions: Headache, fatigue, and feeling very hot associated with high indoor air temperature were observed among schoolchildren in the present study. Longitudinal data in schools are needed to confirm these results. School environmental conditions should be improved in order to enhance learning.

  11. Modelling soil moisture under different land covers in a sub-humid ...

    Indian Academy of Sciences (India)

    in the sub-humid climate within the Western Ghats, Karnataka, India. ... carried out with respect to the water-holding capacity of the soils with the aim of explaining ... changes have taken place in the land-use/cover of ... about 20–25 km inland.

  12. The role of absorbent building materials in moderating changes of relative humidity

    DEFF Research Database (Denmark)

    Padfield, Tim

    The problem studied in this work is, how porous, absorbent materials surroundning or placed in a room influence the relative humidity of the room. This is of interest in designing precautions and machinery to monitor the indoor climate in museums and dwelling rooms. - A novel technique for the in...

  13. Endotracheal temperature and humidity measurements in laryngectomized patients: intra- and inter-patient variability

    NARCIS (Netherlands)

    Scheenstra, R.J.; Muller, S.H.; Vincent, A.; Sinaasappel, M.; Zuur, J.K.; Hilgers, F.J.M.

    2009-01-01

    This study assesses intra- and inter-patient variability in endotracheal climate (temperature and humidity) and effects of heat and moister exchangers (HME) in 16 laryngectomized individuals, measured repeatedly (N = 47). Inhalation Breath Length (IBL) was 1.35 s without HME and 1.05 s with HME (P <

  14. Endotracheal temperature and humidity measurements in laryngectomized patients: intra- and inter-patient variability

    NARCIS (Netherlands)

    Scheenstra, R. J.; Muller, S. H.; Vincent, A.; Sinaasappel, M.; Zuur, J. K.; Hilgers, Frans J. M.

    2009-01-01

    This study assesses intra- and inter-patient variability in endotracheal climate (temperature and humidity) and effects of heat and moister exchangers (HME) in 16 laryngectomized individuals, measured repeatedly (N = 47). Inhalation Breath Length (IBL) was 1.35 s without HME and 1.05 s with HME (P

  15. Analysis of humidity effects on growth and production of glasshouse fruit vegetables

    NARCIS (Netherlands)

    Bakker, J.C.

    1991-01-01

    Air humidity is a climate factor that can modify final yield and quality of crops through its impact on processes with a short as well as with a long response time. This thesis primarily deals with the long term responses of growth and production of glasshouse cucumber, tomato, sweet pepper and

  16. Humidity control device in a reactor container

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo; Osumi, Katsumi; Kimura, Takashi.

    1986-01-01

    Purpose: To provide a device capable of maintaining the inside of a container under high humidity circumstantial conditions causing less atmospheric corrosions, in order to prevent injuries due to atmospheric corrosions to smaller diameter stainless steel pipeways in the reactor container. Constitution: Stress corrosion cracks (SCC) to the smaller diameter stainless steel pipeways are caused dependent on the relative humidity and it is effective as the countermeasure against SCC to maintain the relative humidity at a low level less than 30 % or high level greater than 60 %. Based on the above findings, a humidity control device is disposed so as to maintain the relative humidity for the atmosphere within a reactor core on a higher humidity region. The device is adapted such that recycling gas in the dry-well coolant circuit is passed through an orifice to atomize the water introduced from feedwater pipe and introduce into a reactor core or such that the recycling gases in the dry-well cooling circuit are bubbled into water to remove chlorine gas in the reactor container gas thereby increasing the humidity in the reactor container. (Kamimura, M.)

  17. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6......Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...

  18. Laboratory setup for temperature and humidity measurements

    CERN Document Server

    Eimre, Kristjan

    2015-01-01

    In active particle detectors, the temperature and humidity conditions must be under constant monitoring and control, as even small deviations from the norm cause changes to detector characteristics and result in a loss of precision. To monitor the temperature and humidity, different kinds of sensors are used, which must be calibrated beforehand to ensure their accuracy. To calibrate the large number of sensors that are needed for the particle detectors and other laboratory work, a calibration system is needed. The purpose of the current work was to develop a laboratory setup for temperature and humidity sensor measurements and calibration.

  19. Hot tub folliculitis

    Science.gov (United States)

    ... survives in hot tubs, especially tubs made of wood. Symptoms The first symptom of hot tub folliculitis ... may help prevent the problem. Images Hair follicle anatomy References D'Agata E. Pseudomonas aeruginosa and other ...

  20. Drought or humidity oscillations? The case of coastal zone of Lebanon

    Science.gov (United States)

    Shaban, Amin; Houhou, Rola

    2015-10-01

    There is discrepancy in classifying Lebanon according to the different climatic zones; however, it is often described as a semi-arid region. Lately, Lebanon has been witnessing climatic oscillations in the meteorological parameters. The impact of these oscillations on water sector has been reflected also on energy-food nexus. Yet, there are a number of studies obtained to identify the climate of Lebanon, and they show contradictory results; especially these studies elaborated different datasets and applied diverse methods which often modeled only on large-scale regions. Therefore, the analysis of climatic data depended on complete and long-term climatic records that can be applied to assess the existing climatic status of Lebanon, as well as to assure whether Lebanon is under drought, humidity or it is oscillating between both. This study utilized considerable datasets, from different sources including the remotely sensed systems (e.g. TRMM). These datasets were interpolated and analyzed statistically according to De Martonne Aridity Index. Aiming to affirm the climatic attribute of Lebanon; however, ten climatic stations were investigated. They are with representative geographic setting and diverse time series in the coastal zone of Lebanon were investigated. Even though, Lebanon is known as a semi-arid region, yet results in this study show that the studied zone does not evidence any drought, since around 70% of the investigated years are characterized by semi-humid to humid climate. This climatic figure is well pronounced since rainfall rate exceeds 900 mm, average temperature rate is about 19 °C, and snow remains for a couple of months annually.

  1. Humidity Response of Polyaniline Based Sensor

    Directory of Open Access Journals (Sweden)

    Mamta PANDEY

    2010-02-01

    Full Text Available Abstract: This paper presents hitherto unreported humidity sensing capacity of emeraldine salt form of polyaniline. Humidity plays a major role in different processes in industries ranging from food to electronic goods besides human comfort and therefore its monitoring is an essential requirement during various processes. Polyaniline has a wide use for making sensors as it can be easily synthesized and has long stability. Polyaniline is synthesized here by chemical route and is found to sense humidity as it shows variation in electrical resistance with variation in relative humidity. Results are presented here for a range of 15 to 90 RH%. The resistance falls from 5.8 to 0.72 Giga ohms as RH varies from 15 to 65 % and then falls to 13.9 Mega ohms as RH approaches 90 %. The response and recovery times are also measured.

  2. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  3. Effect of the temperature and relative humidity in dosemeters used for personnel monitoring

    International Nuclear Information System (INIS)

    Antonio Filho, J.

    1982-12-01

    The systematics of the combined effect of temperature and humidity on photographic dosimeters of the type Agfa-Gevaert, Kodak type II, III and the thermoluminescent dosimeters LiF:Mg,Ti (TLD-100, Harshaw), D-CaSO 4 :Dy-0,4 (Teledyne), e CaSO 4 :Dy+NaCl (IPEN), used in personal monitoring in Brazil was investigated, in the temperature range of 20 0 C to 50 0 C and relative humidity of 65% to 95%, in order to determine the best manner of utilization of these detectors in Brazilian climatic conditions. The dosimeters were studied in different forms of packing-sheet such as aluminezed paper and polyethylene. For the determination of the systematics, the dosimeters were irradiated in three conditions: before, during and after of storage in climatic chambers to a maximum period of 60 days. It was found that the dosimetric filmes and thermoluminescent dosimeter CaSO 4 :Dy+NaCl without protection, presented a high dependence to temperature and humidity, and when protected presented good results. Therefore, the best manner of utilization of these monitors in environments with relative humidity and temperature greater them 75% and 30 0 C respectively, is achieved with the protection of aluminized paper. The LiF:Mg,Ti and D+CaSO 4 :Dy-0,4 dosimeters can be utilized in their original form because they presented low dependence with humidity and temperature in the range studied. (Author) [pt

  4. Humidity measurements in the precast concrete

    International Nuclear Information System (INIS)

    Hurez, M.

    1986-01-01

    The precast concrete industry manufactures requires a good knowledge and control of the humidity factor: during the manufacturing process, in order to regulate the water content of aggregates, or the fresh concrete workability: during the quality control of the product characteristics. The principles of measurements: conductivity, dielectric characteristics and neutron moisture meters are compared for cost, humidity range, accuracy, temperature dependence, interfering elements, density dependence, grain size and shape [fr

  5. Study on the Correlation between Humidity and Material Strains in Separable Micro Humidity Sensor Design

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Chang

    2017-05-01

    Full Text Available Incidents of injuries caused by tiles falling from building exterior walls are frequently reported in Taiwan. Humidity is an influential factor in tile deterioration but it is more difficult to measure the humidity inside a building structure than the humidity in an indoor environment. Therefore, a separable microsensor was developed in this study to measure the humidity of the cement mortar layer with a thickness of 1.5–2 cm inside the external wall of a building. 3D printing technology is used to produce an encapsulation box that can protect the sensor from damage caused by the concrete and cement mortar. The sensor is proven in this study to be capable of measuring temperature and humidity simultaneously and the measurement results are then used to analyze the influence of humidity on external wall tile deterioration.

  6. Evaluation of Temperature and Humidity Profiles of Unified Model and ECMWF Analyses Using GRUAN Radiosonde Observations

    Directory of Open Access Journals (Sweden)

    Young-Chan Noh

    2016-07-01

    Full Text Available Temperature and water vapor profiles from the Korea Meteorological Administration (KMA and the United Kingdom Met Office (UKMO Unified Model (UM data assimilation systems and from reanalysis fields from the European Centre for Medium-Range Weather Forecasts (ECMWF were assessed using collocated radiosonde observations from the Global Climate Observing System (GCOS Reference Upper-Air Network (GRUAN for January–December 2012. The motivation was to examine the overall performance of data assimilation outputs. The difference statistics of the collocated model outputs versus the radiosonde observations indicated a good agreement for the temperature, amongst datasets, while less agreement was found for the relative humidity. A comparison of the UM outputs from the UKMO and KMA revealed that they are similar to each other. The introduction of the new version of UM into the KMA in May 2012 resulted in an improved analysis performance, particularly for the moisture field. On the other hand, ECMWF reanalysis data showed slightly reduced performance for relative humidity compared with the UM, with a significant humid bias in the upper troposphere. ECMWF reanalysis temperature fields showed nearly the same performance as the two UM analyses. The root mean square differences (RMSDs of the relative humidity for the three models were larger for more humid conditions, suggesting that humidity forecasts are less reliable under these conditions.

  7. Ambient temperature, humidity and hand, foot, and mouth disease: A systematic review and meta-analysis.

    Science.gov (United States)

    Cheng, Qiang; Bai, Lijun; Zhang, Yanwu; Zhang, Heng; Wang, Shusi; Xie, Mingyu; Zhao, Desheng; Su, Hong

    2018-06-01

    The relationship between ambient temperature, humidity and hand, foot, and mouth disease (HFMD) has been highlighted in East and Southeast Asia, which showed multiple different results. Therefore, our goal is to conduct a meta-analysis to further clarify this relationship and to quantify the size of these effects as well as the susceptible populations. PubMed, Web of science, and Cochrane library were searched up to November 22, 2017 for articles analyzing the relationships between ambient temperature, humidity and incidence of HFMD. We assessed sources of heterogeneity by study design (temperature measure and exposed time resolution), population vulnerability (national income level and regional climate) and evaluated pooled effect estimates for the subgroups identified in the heterogeneity analysis. We identified 11 studies with 19 estimates of the relationship between ambient temperature, humidity and incidence of HFMD. It was found that per 1°C increase in the temperature and per 1% increase in the relative humidity were both significantly associated with increased incidence of HFMD (temperature: IRR, 1.05; 95% CI, 1.02-1.08; relative humidity: IRR, 1.01; 95% CI, 1.00-1.02). Subgroup analysis showed that people living in subtropical and middle income areas had a higher risk of incidence of HFMD. Ambient temperature and humidity may increase the incidence of HFMD in Asia-Pacific regions. Further studies are needed to clarify the relationship between ambient temperature, humidity and incidence of HFMD in various settings with distinct climate, socioeconomic, and demographic features. Copyright © 2018. Published by Elsevier B.V.

  8. Medical Meteorology: the Relationship between Meteorological Parameters (Humidity, Rainfall, Wind, and Temperature) and Brucellosis in Zanjan Province

    OpenAIRE

    Yousefali Abedini; Nahideh Mohammadi; Koorosh Kamali; Mohsen Ahadnejad; Mehdi Azari

    2016-01-01

    Background: Brucellosis (Malta fever) is a major contagious zoonotic disease, with economic and public health importance. Methods To assess the effect of meteorological (temperature, rainfall, humidity, and wind) and climate parameters on incidence of brucellosis, brucellosis distribution and meteorological zoning maps of Zanjan Province were prepared using Inverse Distance Weighting (IDW) and Kriging technique in Arc GIS medium. Zoning maps of mean temperature, rainfall, humidity, and win...

  9. The Holocene warm-humid phases in the North China Plain as recorded by multi-proxy records

    Science.gov (United States)

    Cui, Jianxin; Zhou, Shangzhe; Chang, Hong

    2009-02-01

    The grain size and palinology of sediment and the frequency of 14C dada provide an integrated reconstruction of the Holocene warm-humid phases of the North China Plain. Two clear intense and long-lasting warm-humid phases were identified by comprehensive research in this region. The first phase was dated back to the early Holocene (9 000-7 000 a BP), and the second was centered at 5 000-3 000 a BP. The warm-humid episode between 9 000 and 7 000 a BP was also recognized at other sites showing global climatic trends rather than local events. Compared with the concern to the warm-humid phase of the early Holocene, the second one was not paid enough attention in the last few decades. The compilation of the Holocene paleoclimate data suggests that perhaps the second warm-humid phase was pervasive in monsoon region of China. In perspective of environmental archaeology, much attention should be devoted to it, because the flourish and adaptation of the Neolithic cultures and the building up of the first state seem to corresponding to the general warm-humid climatic conditions of this period. In addition, a warm-humid interval at 7 200-6 500 a BP was recognized by the grain size data from three sites. However, this warm-humid event was not shown in pollen assemblage and temporal distribution of 14C data. Perhaps, the resolution for climatic reconstruction from pollen and temporal distribution of 14C data cited here is relatively low and small-amplitude and short-period climatic events cannot be well reflected by the data. Due to the difference in locality and elevation of sampling site, as well as in resolution of proxy records, it is difficult to make precise correlation. Further work is needed in the future.

  10. Roller compaction: Effect of relative humidity of lactose powder.

    Science.gov (United States)

    Omar, Chalak S; Dhenge, Ranjit M; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2016-09-01

    The effect of storage at different relative humidity conditions, for various types of lactose, on roller compaction behaviour was investigated. Three types of lactose were used in this study: anhydrous lactose (SuperTab21AN), spray dried lactose (SuperTab11SD) and α-lactose monohydrate 200M. These powders differ in their amorphous contents, due to different manufacturing processes. The powders were stored in a climatic chamber at different relative humidity values ranging from 10% to 80% RH. It was found that the roller compaction behaviour and ribbon properties were different for powders conditioned to different relative humidities. The amount of fines produced, which is undesirable in roller compaction, was found to be different at different relative humidity. The minimum amount of fines produced was found to be for powders conditioned at 20-40% RH. The maximum amount of fines was produced for powders conditioned at 80% RH. This was attributed to the decrease in powder flowability, as indicated by the flow function coefficient ffc and the angle of repose. Particle Image Velocimetry (PIV) was also applied to determine the velocity of primary particles during ribbon production, and it was found that the velocity of the powder during the roller compaction decreased with powders stored at high RH. This resulted in less powder being present in the compaction zone at the edges of the rollers, which resulted in ribbons with a smaller overall width. The relative humidity for the storage of powders has shown to have minimal effect on the ribbon tensile strength at low RH conditions (10-20%). The lowest tensile strength of ribbons produced from lactose 200M and SD was for powders conditioned at 80% RH, whereas, ribbons produced from lactose 21AN at the same condition of 80% RH showed the highest tensile strength. The storage RH range 20-40% was found to be an optimum condition for roll compacting three lactose powders, as it resulted in a minimum amount of fines in the

  11. A comparison of large scale changes in surface humidity over land in observations and CMIP3 general circulation models

    International Nuclear Information System (INIS)

    Willett, Katharine M; Thorne, Peter W; Jones, Philip D; Gillett, Nathan P

    2010-01-01

    Observed changes in the HadCRUH global land surface specific humidity and CRUTEM3 surface temperature from 1973 to 1999 are compared to CMIP3 archive climate model simulations with 20th Century forcings. Observed humidity increases are proportionately largest in the Northern Hemisphere, especially in winter. At the largest spatio-temporal scales moistening is close to the Clausius-Clapeyron scaling of the saturated specific humidity (∼7% K -1 ). At smaller scales in water-limited regions, changes in specific humidity are strongly inversely correlated with total changes in temperature. Conversely, in some regions increases are faster than implied by the Clausius-Clapeyron relation. The range of climate model specific humidity seasonal climatology and variance encompasses the observations. The models also reproduce the magnitude of observed interannual variance over all large regions. Observed and modelled trends and temperature-humidity relationships are comparable except for the extratropical Southern Hemisphere where observations exhibit no trend but models exhibit moistening. This may arise from: long-term biases remaining in the observations; the relative paucity of observational coverage; or common model errors. The overall degree of consistency of anthropogenically forced models with the observations is further evidence for anthropogenic influence on the climate of the late 20th century.

  12. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  13. 40 CFR 89.326 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air... type of intake air supply, the humidity measurements must be made within the intake air supply system...

  14. 40 CFR 91.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply. Air...

  15. 40 CFR 90.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a) Humidity...

  16. Durabilité de pâtes de ciments contenant du laitier d’El Hadjar conservées dans des milieux agressifs et à des températures de climat chaud Durability of cement pastes containing slag of El Hajar preserved in aggressive environments and at temperatures of hot climate

    Directory of Open Access Journals (Sweden)

    Clastres P.

    2012-09-01

    Full Text Available En vue d’améliorer la durabilité des bétons durcis, notamment vis à vis des eaux agressives telles que eau de mer, eaux sulfatées, …et dans le cas d’une température de conservation de climat chaud (20 à 40 °C, nous proposons d’utiliser des ciments contenant 20 % (CPJ, CEM II B ou 50 % (CHF, CEM III A de laitier granulé moulu de haut fourneau d’El Hadjar. Les essais sont réalisés sur pâte pure afin de mieux suivre parallèlement l’évolution minéralogique des mélanges durcis par analyse au moyen de la diffraction des rayons X. Les indicateurs de durabilités choisis et suivis de 1 jour à 1 an sont les variations dimensionnelles et les résistances mécaniques en compression simple. Le pH des solutions, liés notamment à la fréquence de renouvellement des bains, apparaît comme un paramètre important d’agressivité. Les résultats obtenus permettent notamment de mettre en évidence l’effet bénéfique sur la durabilité aux sulfates d’un ajout aux ciments de laitier granulé ainsi qu’une certaine agressivité pour ces mêmes ciments d’une conservation en eau de mer à 20°C. Une température de climat chaud (40°C ne modifie pas fondamentalement ces résultats. To improve the durability of hardened concrete, especially against aggressive water such as sea water, sulphated, … and in the case of a conservation temperature of hot climate (20 to 40°C we propose the use of cements containing 20% (CPJ CEM II B or 50% (CHF, CEM III A granulated blast furnace slag of El Hajar. The tests are performed on cement paste in order to better follow parallely the mineralogical evolution of mixtures cured by analysis of X-ray diffraction. The Indicators of sustainability selected and followed from 1 day to 1 year, are the dimensional variation and the compressive strength simple. The pH of the solutions, especially related to the renewal frequency of the baths, appears as an important parameter of aggressiveness. The

  17. Upper limits for air humidity based on human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole; Jørgensen, Anette S.

    1998-01-01

    respiratory cooling. Human subjects perceived the condition of their skin to be less acceptable with increasing skin humidity. Inhaled air was rated warmer, more stuffy and less acceptable with increasing air humidity and temperature. Based on the subjects' comfort responses, new upper limits for air humidity......The purpose of this study was to verify the hypothesis that insufficient respiratory cooling and a high level of skin humidity are two reasons for thermal discomfort at high air humidities, and to prescribe upper limits for humidity based on discomfort due to elevated skin humidity and insufficient...

  18. Modelling the energy and exergy utilisation of the Mexican non-domestic sector: A study by climatic regions

    International Nuclear Information System (INIS)

    García Kerdan, Iván; Morillón Gálvez, David; Raslan, Rokia; Ruyssevelt, Paul

    2015-01-01

    This paper presents the development of a bottom-up stock model to perform a holistic energy study of the Mexican non-domestic sector. The current energy and exergy flows are shown based on a categorisation by climatic regions with the aim of understanding the impact of local characteristics on regional efficiencies. Due to the limited data currently available, the study is supported by the development of a detailed archetype-based stock model using EnergyPlus as a first law analysis tool combined with an existing exergy analysis method. Twenty-one reference models were created to estimate the electric and gas use in the sector. The results indicate that sectoral energy and exergy annual input are 95.37 PJ and 94.28 PJ, respectively. Regional exergy efficiencies were found to be 17.8%, 16.6% and 23.2% for the hot-dry, hot-humid and temperate climates, respectively. The study concludes that significant potential for improvements still exists, especially in the cases of space conditioning, lighting, refrigeration, and cooking where most exergy destructions occur. Additionally, this work highlights that the method described may be further used to study the impact of large-scale refurbishments and promote national regulations and standards for sustainable buildings that takes into consideration energy and exergy indicators. - Highlights: • A bottom-up physics model was developed to analyse the Mexican commercial stock. • A detailed energy analysis by climate, buildings and end-uses is presented. • The Mexican non-domestic sector as a whole has an exergy efficiency of 19.7%. • The lowest regional exergy efficiency is found at the hot-humid region with 16.6%. • By end use, the highest exergy destructions are caused by HVAC and lighting

  19. All-Optical Graphene Oxide Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Weng Hong Lim

    2014-12-01

    Full Text Available The optical characteristics of graphene oxide (GO were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.

  20. All-optical graphene oxide humidity sensors.

    Science.gov (United States)

    Lim, Weng Hong; Yap, Yuen Kiat; Chong, Wu Yi; Ahmad, Harith

    2014-12-17

    The optical characteristics of graphene oxide (GO) were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s) to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.

  1. Use of personalized ventilation for improving health, comfort, and performance at high room temperature and humidity

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Skwarczynski, Mariusz; Kaczmarczyk, J.

    2013-01-01

    in five 4-h experiments in a climate chamber. Under the conditions with PV, the subjects were able to control the rate and direction of the supplied personalized flow of clean air. Subjective responses were collected through questionnaires. During all exposures, the subjects were occupied with tasks used......The effect of personalized ventilation (PV) on people's health, comfort, and performance in a warm and humid environment (26 and 28°C at 70% relative humidity) was studied and compared with their responses in a comfortable environment (23°C and 40% relative humidity). Thirty subjects participated...... to assess their performance. Objective measures of tear film stability, concentration of stress biomarkers in saliva, and eye blinking rate were taken. Using PV significantly improved the perceived air quality (PAQ) and thermal sensation and decreased the intensity of Sick Building Syndrome (SBS) symptoms...

  2. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  3. Influence of air humidity on polymeric microresonators

    International Nuclear Information System (INIS)

    Schmid, S; Kühne, S; Hierold, C

    2009-01-01

    The influence of air humidity on polymeric microresonators is investigated by means of three different resonator types. SU-8 microbeams, SU-8 microstrings and a silicon micromirror with SU-8 hinges are exposed to relative humidities between 3% and 60%. The shifts of the resonant frequencies as a function of the relative humidity (RH) are explained based on mechanical models which are extended with water absorption models in polymer materials. The dominant effect causing the resonant frequency change is evaluated for each structure type. The eigenfrequency of the microstrings and the micromirror in the out-of-plane mode, which both mainly are defined by the pre-stress of the polymeric structures, are found to be highly sensitive to changes of air humidity. The humidity-induced (hygrometric) volume expansion reversibly reduces the pre-stress which results in relative frequency changes of up to 0.78%/%RH for the microstrings. A maximum coefficient of humidity-induced volume expansion for SU-8 of α hyg = 52.3 ppm/%RH is evaluated by fitting the data with the analytical model. It was found that microstrings that were stored at 150 °C over 150 h are more moisture sensitive compared to structures that were stored at room temperature. For the SU-8 microbeams and the micromirror in the tilt mode, the eigenfrequency is mainly defined by the modulus of the polymer material. The measured relative resonant frequency changes were below 1% for the given RH range. For low RH values, antiplasticization is observed (the modulus increases) followed by a plasticization for increasing RH values

  4. Comparison of hot hydroxylamine hydrochloride and oxalic acid leaching of stream sediment and coated rock samples as anomaly enhancement techniques

    Science.gov (United States)

    Filipek, L.H.; Chao, T.T.; Theobald, P.K.

    1982-01-01

    A hot hydroxylamine hydrochloride (H-Hxl) extraction in 25% acetic acid is compared with the commonly used oxalic acid extraction as a method of anomaly enhancement for Cu and Zn in samples from two very different metal deposits and climatic environments. Results obtained on minus-80-mesh stream sediments from an area near the Magruder massive sulfide deposit in Lincoln County, Georgia, where the climate is humid subtropical, indicate that H-Hxl enhances the anomaly for Cu by a factor of 2 and for Zn by a factor of 1.5, compared to the oxalic method. Analyses of Fe oxide-coated rock samples from outcrops overlying the North Silver Bell porphyry copper deposit near Tucson, Arizona, where the climate is semi-arid to arid, indicate that both techniques effectively outline the zones of hydrothermal alteration. The H-Hxl extraction can also perform well in high-carbonate or high-clay environments, where other workers have suggested that oxalic acid is not very effective. Therefore, the H-Hxl method is recommended for general exploration use. ?? 1982.

  5. Energy Saving Potential of PCMs in Buildings under Future Climate Conditions

    Directory of Open Access Journals (Sweden)

    Abdo Abdullah Ahmed Gassar

    2017-11-01

    Full Text Available Energy consumption reduction under changing climate conditions is a major challenge in buildings design, where excessive energy consumption creates an economic and environmental burden. Improving thermal performance of the buildings through support applying phase change material (PCM is a promising strategy for reducing building energy consumption under future climate change. Therefore, this study aims to investigate the energy saving potentials in buildings under future climate conditions in the humid and snowy regions in the hot continental and humid subtropical climates of the east Asia (Seoul, Tokyo and Hong Kong when various PCMs with different phase change temperatures are applied to a lightweight building envelope. Methodology in this work is implemented in two phases: firstly, investigation of energy saving potentials in buildings through inclusion of three types of PCMs with different phase temperatures into the building envelop separately and use weather file in the present (2017; and, secondly, evaluation of the effect of future climate change on the performance of PCMs by analyzing energy saving potentials of PCMs with 2020, 2050 and 2080 weather data. The results show that the inclusion of PCM into the building envelope is a promising strategy to increase the energy performance in buildings during both heating and cooling seasons in Seoul, Tokyo and Hong Kong under future climate conditions. The energy savings achieved by using PCMs in those regions are electricity savings of 4.48–8.21%, 3.81–9.69%, and 1.94–5.15%, and gas savings of 1.65–16.59%, 7.60–61.76%, and 62.07–93.33% in Seoul, Tokyo and Hong Kong, respectively, for the years 2017, 2020, 2050 and 2080. In addition, BioPCM and RUBITHERMPCM are the most efficient for improving thermal performance and saving energy in buildings in the tested regions and years.

  6. Effects of Vernacular Climatic Strategies (VCS on Energy Consumption in Common Residential Buildings in Southern Iran: The Case Study of Bushehr City

    Directory of Open Access Journals (Sweden)

    Amin Mohammadi

    2017-10-01

    Full Text Available This study aims to use the vernacular climatic strategies (VCS of traditional dwellings in Bushehr, in the common residential buildings of this southern Iranian city (which is characterized by its hot and humid climate, and provide answers to the following question: What effects do VCS have in terms of energy consumption in these buildings? This study has been conducted at three levels. At the first level, three context-based climatic solutions including shading, natural ventilation, and insulation of external walls and roofs were identified and selected based on bibliographic study. At the second level, a case study reflecting the current typology of common residential buildings in Bushehr city was selected. A combination of the mentioned climatic solutions was used in the baseline case to create a developed model. Based on the space layout of the developed model and some design criteria, a series of proposed models was also created and modeled. The selected case study building was also used to establish a local weather station at a height of 12 m based on the roof, collecting local climate data which were then used for simulation to improve simulation accuracy. Finally, all models were simulated with the use of Design Builder software under natural ventilation conditions during moderate climatic periods of the year while split air-conditioning systems were used during hot and humid periods. The results showed reductions of 16% in energy consumption and 22% in CO2 emissions for the developed model, and reductions of 24–26% in energy consumption and 32–34% in CO2 emissions for the proposed models, as compared with the baseline model. Furthermore, all proposed models achieved lower annual energy consumption when compared with a selection of international sustainable low energy standards and domestic energy performance references for the Middle East region. Further studies are also recommended, and there is potential for combining VCS with

  7. VEMAP 2: Monthly Ecosystem Model Responses to U.S. Climate Change, 1994-2100

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase 2 developed historical (1895-1993) gridded data sets of climate (temperature, precipitation, solar radiation, humidity, and wind speed) and projected...

  8. Humidity fluctuations in the marine boundary layer measured at a coastal site with an infrared humidity sensor

    DEFF Research Database (Denmark)

    Sempreviva, A.M.; Gryning, Sven-Erik

    1996-01-01

    An extensive set of humidity turbulence data has been analyzed from 22-m height in the marine boundary layer. Fluctuations of humidity were measured by an ''OPHIR'', an infrared humidity sensor with a 10 Hz scanning frequency and humidity spectra were produced. The shapes of the normalized spectra...... follow the established similarity functions. However the 10-min time averaged measurements underestimate the value of the absolute humidity. The importance of the humidity flux contribution in a marine environment in calculating the Obukhov stability length has been studied. Deviations from Monin......-Obukhov similarity theory seem to be connected to a low correlation between humidity and temperature....

  9. Noise performance of microwave humidity sounders over their lifetime

    Science.gov (United States)

    Hans, Imke; Burgdorf, Martin; John, Viju O.; Mittaz, Jonathan; Buehler, Stefan A.

    2017-12-01

    The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2), Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs) of the instrument and the noise equivalent differential temperature (NEΔT) as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT processing to provide input values for the uncertainty propagation in the generation of a new set of Fundamental Climate Data Records (FCDRs) that are currently produced in the project Fidelity and Uncertainty in Climate data

  10. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China.

    Science.gov (United States)

    Zeng, Jie; Zhang, Xuehai; Yang, Jun; Bao, Junzhe; Xiang, Hao; Dear, Keith; Liu, Qiyong; Lin, Shao; Lawrence, Wayne R; Lin, Aihua; Huang, Cunrui

    2017-11-14

    Background : The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD) mortality in Zhejiang Province, China. Methods : We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010-2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF). The analyses were further stratified by gender, age group, education level, and location of cities. Results : In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0-21 days with a significant AF of 31.36% (95% eCI: 14.79-38.41%), while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44). The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions : The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications for developing CVD

  11. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China

    Science.gov (United States)

    Zeng, Jie; Zhang, Xuehai; Yang, Jun; Bao, Junzhe; Dear, Keith; Liu, Qiyong; Lin, Shao; Lin, Aihua; Huang, Cunrui

    2017-01-01

    Background: The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD) mortality in Zhejiang Province, China. Methods: We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010–2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF). The analyses were further stratified by gender, age group, education level, and location of cities. Results: In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0–21 days with a significant AF of 31.36% (95% eCI: 14.79–38.41%), while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44). The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions: The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications for developing CVD

  12. Humidity May Modify the Relationship between Temperature and Cardiovascular Mortality in Zhejiang Province, China

    Directory of Open Access Journals (Sweden)

    Jie Zeng

    2017-11-01

    Full Text Available Background: The evidence of increased mortality attributable to extreme temperatures is widely characterized in climate-health studies. However, few of these studies have examined the role of humidity on temperature-mortality association. We investigated the joint effect between temperature and humidity on cardiovascular disease (CVD mortality in Zhejiang Province, China. Methods: We collected data on daily meteorological and CVD mortality from 11 cities in Zhejiang Province during 2010–2013. We first applied time-series Poisson regression analysis within the framework of distributed lag non-linear models to estimate the city-specific effect of temperature and humidity on CVD mortality, after controlling for temporal trends and potential confounding variables. We then applied a multivariate meta-analytical model to pool the effect estimates in the 11 cities to generate an overall provincial estimate. The joint effects between them were calculated by the attributable fraction (AF. The analyses were further stratified by gender, age group, education level, and location of cities. Results: In total, 120,544 CVD deaths were recorded in this study. The mean values of temperature and humidity were 17.6 °C and 72.3%. The joint effect between low temperature and high humidity had the greatest impact on the CVD death burden over a lag of 0–21 days with a significant AF of 31.36% (95% eCI: 14.79–38.41%, while in a condition of low temperature and low humidity with a significant AF of 16.74% (95% eCI: 0.89, 24.44. The AFs were higher at low temperature and high humidity in different subgroups. When considering the levels of humidity, the AFs were significant at low temperature and high humidity for males, youth, those with a low level of education, and coastal area people. Conclusions: The combination of low temperature and high humidity had the greatest impact on the CVD death burden in Zhejiang Province. This evidence has important implications

  13. The Relationship between Climatic Factors and the Prevalence of Visceral Leishmaniasis in North West of Iran

    Directory of Open Access Journals (Sweden)

    Eslam Moradiasl

    2018-02-01

    Full Text Available Background Visceral leishmaniasis (VL is most commonly found among children under the age of 10 in some provinces of Iran including Ardabil. As such, this study set out to determine the relationship between some climatic factors and the prevalence of VL in Northwest of Iran. Materials and Methods In this descriptive-analytic study, data collection was done on some climatic factors including rainfall, temperature, and the number of sunny and snowy days from Apr. 2001 to Sep. 2017 from the weather station in Meshkinshahr County of Ardabil province, Iran, and the related information of the VL patients from the health center. Statistical analysis was done using Excel and SPSS version 23.0 software. Pearson correlation coefficient test was utilized for data analysis. Results Over the course of 17 years, 226 cases of VL occurred in rural and urban areas of Meshkinshahr. The highest prevalence of VL disease was reported in February and March. Climatic factors of temperature and the number of sunny days showed a direct relationship with the prevalence of VL disease (P0.05.   Conclusion In spite of the rather cold and humid climate of Meshkinshahr County during much of the year, based on the findings of present study, there was a significantly direct relationship between VL disease and the hot temperature as well as sunny days. Background Visceral leishmaniasis (VL is most commonly found among children under the age of 10 in some provinces of Iran including Ardabil. As such, this study set out to determine the relationship between some climatic factors and the prevalence of VL in Northwest of Iran. Materials and Methods In this descriptive-analytic study, data collection was done on some climatic factors including rainfall, temperature, and the number of sunny and snowy days from Apr. 2001 to Sep. 2017 from the weather station in Meshkinshahr County of Ardabil province, Iran, and the related information of the VL patients from the health center

  14. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    The electrical conductivity of the films is observed to vary with humidity and selectively show high sensitivity to moisture at room temperature. In order to understand the mechanism of sensing, the films were examined by X-ray diffraction at elevated temperatures and in controlled atmospheres. Based on these observations ...

  15. Soil erosion in humid regions: a review

    Science.gov (United States)

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover

    2015-01-01

    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  16. Biochars as Innovative Humidity Sensing Materials

    Directory of Open Access Journals (Sweden)

    Daniele Ziegler

    2017-12-01

    Full Text Available In this work, biochar-based humidity sensors were prepared by drop-coating technique. Polyvinylpyrrolidone (PVP was added as an organic binder to improve the adhesion of the sensing material onto ceramic substrates having platinum electrodes. Two biochars obtained from different precursors were used. The sensors were tested toward relative humidity (RH at room temperature and showed a response starting around 5 RH%, varying the impedance of 2 orders of magnitude after exposure to almost 100% relative humidity. In both cases, biochar materials are behaving as p-type semiconductors under low amounts of humidity. On the contrary, for higher RH values, the impedance decreased due to water molecules adsorption. When PVP is added to SWP700 biochar, n-p heterojunctions are formed between the two semiconductors, leading to a higher sensitivity at low RH values for the sensors SWP700-10% PVP and SWP700-20% PVP with respect to pure SWP700 sensor. Finally, response and recovery times were both reasonably fast (in the order of 1 min.

  17. Recent Developments in Fiber Optics Humidity Sensors.

    Science.gov (United States)

    Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R

    2017-04-19

    A wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution.

  18. Microbial ecology of hot desert edaphic systems.

    Science.gov (United States)

    Makhalanyane, Thulani P; Valverde, Angel; Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Cowan, Don A

    2015-03-01

    A significant proportion of the Earth's surface is desert or in the process of desertification. The extreme environmental conditions that characterize these areas result in a surface that is essentially barren, with a limited range of higher plants and animals. Microbial communities are probably the dominant drivers of these systems, mediating key ecosystem processes. In this review, we examine the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly. We also assess the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms. We conclude by discussing current gaps in our understanding of the microbiology of hot deserts and suggest fruitful avenues for future research. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Effect of time-varying humidity on the performance of a polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Noorani, Shamsuddin [Department of Mechanical Engineering, University of Michigan-Dearborn (United States); Shamim, Tariq [Mechanical Engineering, Masdar Institute of Science and Technology (United Arab Emirates)], E-mail: tshamim@masdar.ac.ae

    2011-07-01

    In the energy sector, fuel cells constitute a promising solution for the future due to their energy-efficient and environment-friendly characteristics. However, the performance of fuel cells is very much affected by the humidification level of the reactants, particularly in hot regions. The aim of this paper is to develop a better understanding of the effect of driving conditions on the performance of fuel cells. A macroscopic single-fuel-cell-based, one dimensional, isothermal model was used on a polymer electrolyte membrane fuel cell to carry out a computational study of the impact of humidity conditions which vary over time. It was found that the variation of humidity has a significant effect on water distribution but a much lower impact on power and current densities. This paper provided useful information on fuel cells' performance under varying conditions which could be used to improve their design for mobile applications.

  20. 21st Century Climate Change in the European Alps

    Science.gov (United States)

    Gobiet, Andreas; Kotlarski, Sven; Stoffel, Markus; Heinrich, Georg; Rajczak, Jan; Beniston, Martin

    2014-05-01

    The Alps are particularly sensitive to global warming and warmed twice as much as the global average in the recent past. In addition, the Alps and its surroundings are a densly populated areas where society is affected by climate change in many ways, which calls for reliable estimates of future climate change. However, the complex Alpine region poses considerable challenges to climate models, which translate to uncertainties in future climate projections. Against this background, the present study reviews the state-of-knowledge about 21st century climate change in the Alps based on existing literature and additional analyses. It will be demonstrated that considerable and accelerating changes are not only to be expected with regard to temperature, but also precipitation, global radiation, relative humidity, and closely related impacts like floods, droughts, snow cover, and natural hazards will be effected by global warming. Under the A1B emission scenario, about 0.25 °C warming per decade until the mid of the 21st century and accelerated 0.36 °C warming per decade in the second half of the century is expected. Warming will most probably be associated with changes in the seasonality of precipitation, global radiation, and relative humidity. More intense precipitation extremes and flooding potential are particularly expected in the colder part of the year. The conditions of currently record breaking warm or hot winter or summer seasons, respectively, may become normal at the end of the 21st century, and there is indication for droughts to become more severe in the future. Snow cover is expected to drastically decrease below 1500 - 2000 m and natural hazards related to glacier and permafrost retreat are expected to become more frequent. Such changes in climatic variables and related quantities will have considerable impact on ecosystems and society and will challenge their adaptive capabilities. Acknowledgements: This study has been initiated and is partly funded by

  1. Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997

    Science.gov (United States)

    Díaz, J.; García, R.; Velázquez de Castro, F.; Hernández, E.; López, C.; Otero, A.

    2002-04-01

    The effects of heat waves on the population have been described by different authors and a consistent relationship between mortality and temperature has been found, especially in elderly subjects. The present paper studies this effect in Seville, a city in the south of Spain, known for its climate of mild winters and hot summers, when the temperature frequently exceeds 40 °C. This study focuses on the summer months (June to September) for the years from 1986 to 1997. The relationships between total daily mortality and different specific causes for persons older than 65 and 75 years, of each gender, were analysed. Maximum daily temperature and relative humidity at 7.00 a.m. were introduced as environmental variables. The possible confounding effect of different atmospheric pollutants, particularly ozone, were considered. The methodology employed was time series analysis using Box-Jenkins models with exogenous variables. On the basis of dispersion diagrams, we defined extremely hot days as those when the maximum daily temperature surpassed 41 °C. The ARIMA model clearly shows the relationship between temperature and mortality. Mortality for all causes increased up to 51% above the average in the group over 75 years for each degree Celsius beyond 41 °C. The effect is more noticeable for cardiovascular than for respiratory diseases, and more in women than in men. Among the atmospheric pollutants, a relation was found between mortality and concentrations of ozone, especially for men older than 75.

  2. Thermal comfort requirements in hot dry regions with special reference to Riyadh Part 2: for Friday prayer

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, S.A.R. [King Saud University, Riyadh (Saudi Arabia). Dept. of Architecture and Building Science

    1996-01-01

    This study is an attempt to define thermal comfort requirements for Friday prayer during the hot season of Riyadh, Saudi Arabia. According to Islam, a Muslim should perform his prayers five times a day. The obligatory five prayers are Subuh prayer immediately before dawn, Thohor prayer in the afternoon, Assor prayer in late afternoon, Maghreb prayer immediately after sunset, and Ishaa prayer early evening. Generally, Muslims are encouraged to perform all five prayers in a mosque. Friday prayer that replaces Thohor prayer once a week, should take place in one of the main mosques of the neighbourhood. The mosque where Friday prayer could be performed is known as Friday mosque. Usually Friday prayer is attended by hundreds of worshippers and takes place in the afternoon. Since the summer of Riyadh is characterised by a very high temperature and a very low relative humidity, the indoor climate of the Friday mosque (Al-Masjed Al-Gamae) need a special study. This is the second part of a series of field investigations dealing with thermal comfort requirements in the hot-dry region of Saudi Arabia. (author)

  3. The influence of humidity fluxes on offshore wind speed profiles

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Sempreviva, Anna Maria; Pryor, Sara

    2010-01-01

    extrapolation from lower measurements. With humid conditions and low mechanical turbulence offshore, deviations from the traditional logarithmic wind speed profile become significant and stability corrections are required. This research focuses on quantifying the effect of humidity fluxes on stability corrected...... wind speed profiles. The effect on wind speed profiles is found to be important in stable conditions where including humidity fluxes forces conditions towards neutral. Our results show that excluding humidity fluxes leads to average predicted wind speeds at 150 m from 10 m which are up to 4% higher...... than if humidity fluxes are included, and the results are not very sensitive to the method selected to estimate humidity fluxes....

  4. Fast humidity sensors based on CeO2 nanowires

    International Nuclear Information System (INIS)

    Fu, X Q; Wang, C; Yu, H C; Wang, Y G; Wang, T H

    2007-01-01

    Fast humidity sensors are reported that are based on CeO 2 nanowires synthesized by a hydrothermal method. Both the response and recovery time are about 3 s, and are independent of the humidity. The sensitivity increases gradually as the humidity increases, and is up to 85 at 97% RH. The resistance decreases exponentially with increasing humidity, implying ion-type conductivity as the humidity sensing mechanism. A model based on the morphology and surface energy of the nanowires is given to explain these results further. Our experimental results indicate a pathway to improving the performance of humidity sensors

  5. Evolution of temperature and humidity in an underground repository over the exploitation period

    International Nuclear Information System (INIS)

    Benet, L.V.; Tulita, C.; Calsyn, L.; Wendling, J.

    2012-01-01

    Document available in extended abstract form only. The ANDRA waste repository will be operated for about a hundred years. During this period, the ventilation scheme will follow the development of the different storage zones. The ventilation system will ensure adequate air condition for the staff in the working zone and prevent high humidity and temperature damageable for the infrastructures. The untreated incoming air is characterized by great temperature and humidity variations in time, between day and night as well as between winter and summer time. The air from the surface enters the repository through the supply shaft and flows in full section along the main galleries of the central zone until the storage zones. In each storage zone, the air is distributed between storage modules via access galleries and collected at the outflow of each module before being extracted from the repository, retreated and finally released into the atmosphere. Throughout its journey within the repository, the ventilation air will undergo a set of temperature and moisture changes by interacting with its host environment. The aim of this study is to foresee how the air condition will evolve in time all over the exploitation period, along the ventilation network. Air condition assessment in the waste repository has been achieved by means of numerical simulation and analyzed in terms of bulk temperature and moisture in the air and on contact with walls. The physical modeling takes into account (i) air/wall heat exchanges due to forced and free advection, (ii) advection flux in the air, (iii) thermal storage and conduction flux into concrete structure and host rock, (iv) condensation flux on the wall, (v) time functions of wall evaporation flux and (vi) climate variations data from 7 years of meteorological measurements at the site of Bure. In bi-flux galleries, air/air heat exchanges between incoming air in full section and outgoing air through ceiling ducts are modeled. Temperature and

  6. Work climate and work load measurement in production room of Batik Merak Manis Laweyan

    Science.gov (United States)

    Suhardi, Bambang; Simanjutak, Sry Yohana; Laksono, Pringgo Widyo; Herjunowibowo, Dewanto

    2017-11-01

    The work environment is everything around the labours that can affect them in the exercise of duties and work that is charged. In a work environment, there are workplace climate and workload which affect the labour in force carrying out its work. The working climate is one of the physical factors that could potentially cause health problems towards labour at extreme conditions of hot and cold that exceed the threshold limit value allowed by the standards of health. The climate works closely related to the workload accepted by workers in the performance of their duties. The influence of workload is pretty dominant against the performance of human resources and may cause negative effects to the safety and health of the labours. This study aims to measure the effect of the work climate and the workload against workers productivity. Furthermore, some suggestions to increase the productivity also been recommended. The research conducted in production room of Batik Merak Manis Laweyan. The results showed that the workplace climate and the workload at eight stations in production room of Merak Manis does not agree to the threshold limit value that has been set. Therefore, it is recommended to add more opening windows to add air velocity inside the building thus the humidity and temperature might be reduced.

  7. Trends in mean maximum temperature, mean minimum temperature and mean relative humidity for Lautoka, Fiji during 2003 – 2013

    Directory of Open Access Journals (Sweden)

    Syed S. Ghani

    2017-12-01

    Full Text Available The current work observes the trends in Lautoka’s temperature and relative humidity during the period 2003 – 2013, which were analyzed using the recently updated data obtained from Fiji Meteorological Services (FMS. Four elements, mean maximum temperature, mean minimum temperature along with diurnal temperature range (DTR and mean relative humidity are investigated. From 2003–2013, the annual mean temperature has been enhanced between 0.02 and 0.080C. The heating is more in minimum temperature than in maximum temperature, resulting in a decrease of diurnal temperature range. The statistically significant increase was mostly seen during the summer months of December and January. Mean Relative Humidity has also increased from 3% to 8%. The bases of abnormal climate conditions are also studied. These bases were defined with temperature or humidity anomalies in their appropriate time sequences. These established the observed findings and exhibited that climate has been becoming gradually damper and heater throughout Lautoka during this period. While we are only at an initial phase in the probable inclinations of temperature changes, ecological reactions to recent climate change are already evidently noticeable. So it is proposed that it would be easier to identify climate alteration in a small island nation like Fiji.

  8. Impact of temperature and humidity on acceptability of indoor air quality during immediate and longer whole-body exposures

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1997-01-01

    Acceptability of clean air and air polluted by building materials was studied in climate chambers with different levels of air temperature and humidity in the ranges 18-28°C and 30-70%. The immediate acceptability after entering a chamber and the acceptability during a 20-minute whole-body exposu...

  9. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  10. Dynamic temperature and humidity environmental profiles: impact for future emergency and disaster preparedness and response.

    Science.gov (United States)

    Ferguson, William J; Louie, Richard F; Tang, Chloe S; Paw U, Kyaw Tha; Kost, Gerald J

    2014-02-01

    During disasters and complex emergencies, environmental conditions can adversely affect the performance of point-of-care (POC) testing. Knowledge of these conditions can help device developers and operators understand the significance of temperature and humidity limits necessary for use of POC devices. First responders will benefit from improved performance for on-site decision making. To create dynamic temperature and humidity profiles that can be used to assess the environmental robustness of POC devices, reagents, and other resources (eg, drugs), and thereby, to improve preparedness. Surface temperature and humidity data from the National Climatic Data Center (Asheville, North Carolina USA) was obtained, median hourly temperature and humidity were calculated, and then mathematically stretched profiles were created to include extreme highs and lows. Profiles were created for: (1) Banda Aceh, Indonesia at the time of the 2004 Tsunami; (2) New Orleans, Louisiana USA just before and after Hurricane Katrina made landfall in 2005; (3) Springfield, Massachusetts USA for an ambulance call during the month of January 2009; (4) Port-au-Prince, Haiti following the 2010 earthquake; (5) Sendai, Japan for the March 2011 earthquake and tsunami with comparison to the colder month of January 2011; (6) New York, New York USA after Hurricane Sandy made landfall in 2012; and (7) a 24-hour rescue from Hawaii USA to the Marshall Islands. Profiles were validated by randomly selecting 10 days and determining if (1) temperature and humidity points fell inside and (2) daily variations were encompassed. Mean kinetic temperatures (MKT) were also assessed for each profile. Profiles accurately modeled conditions during emergency and disaster events and enclosed 100% of maximum and minimum temperature and humidity points. Daily variations also were represented well with 88.6% (62/70) of temperature readings and 71.1% (54/70) of relative humidity readings falling within diurnal patterns. Days

  11. Wireless sensor for temperature and humidity measurement

    Science.gov (United States)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  12. Humidity-regulated dormancy onset in the Fabaceae: a conceptual model and its ecological implications for the Australian wattle Acacia saligna

    Science.gov (United States)

    Tozer, Mark G.; Ooi, Mark K. J.

    2014-01-01

    Background and aims Seed dormancy enhances fitness by preventing seeds from germinating when the probability of seedling survival and recruitment is low. The onset of physical dormancy is sensitive to humidity during ripening; however, the implications of this mechanism for seed bank dynamics have not been quantified. This study proposes a model that describes how humidity-regulated dormancy onset may control the accumulation of a dormant seed bank, and seed experiments are conducted to calibrate the model for an Australian Fabaceae, Acacia saligna. The model is used to investigate the impact of climate on seed dormancy and to forecast the ecological implications of human-induced climate change. Methods The relationship between relative humidity and dormancy onset was quantified under laboratory conditions by exposing freshly matured non-dormant seeds to constant humidity levels for fixed durations. The model was field-calibrated by measuring the response of seeds exposed to naturally fluctuating humidity. The model was applied to 3-hourly records of humidity spanning the period 1972–2007 in order to estimate both temporal variability in dormancy and spatial variability attributable to climatic differences among populations. Climate change models were used to project future changes in dormancy onset. Key Results A sigmoidal relationship exists between dormancy and humidity under both laboratory and field conditions. Seeds ripened under field conditions became dormant following very short exposure to low humidity (<20 %). Prolonged exposure at higher humidity did not increase dormancy significantly. It is predicted that populations growing in a temperate climate produce 33–55 % fewer dormant seeds than those in a Mediterranean climate; however, dormancy in temperate populations is predicted to increase as a result of climate change. Conclusions Humidity-regulated dormancy onset may explain observed variation in physical dormancy. The model offers a systematic

  13. Humidity-regulated dormancy onset in the Fabaceae: a conceptual model and its ecological implications for the Australian wattle Acacia saligna.

    Science.gov (United States)

    Tozer, Mark G; Ooi, Mark K J

    2014-09-01

    Seed dormancy enhances fitness by preventing seeds from germinating when the probability of seedling survival and recruitment is low. The onset of physical dormancy is sensitive to humidity during ripening; however, the implications of this mechanism for seed bank dynamics have not been quantified. This study proposes a model that describes how humidity-regulated dormancy onset may control the accumulation of a dormant seed bank, and seed experiments are conducted to calibrate the model for an Australian Fabaceae, Acacia saligna. The model is used to investigate the impact of climate on seed dormancy and to forecast the ecological implications of human-induced climate change. The relationship between relative humidity and dormancy onset was quantified under laboratory conditions by exposing freshly matured non-dormant seeds to constant humidity levels for fixed durations. The model was field-calibrated by measuring the response of seeds exposed to naturally fluctuating humidity. The model was applied to 3-hourly records of humidity spanning the period 1972-2007 in order to estimate both temporal variability in dormancy and spatial variability attributable to climatic differences among populations. Climate change models were used to project future changes in dormancy onset. A sigmoidal relationship exists between dormancy and humidity under both laboratory and field conditions. Seeds ripened under field conditions became dormant following very short exposure to low humidity (humidity did not increase dormancy significantly. It is predicted that populations growing in a temperate climate produce 33-55 % fewer dormant seeds than those in a Mediterranean climate; however, dormancy in temperate populations is predicted to increase as a result of climate change. Humidity-regulated dormancy onset may explain observed variation in physical dormancy. The model offers a systematic approach to modelling this variation in population studies. Forecast changes in climate have

  14. Calibration of Relative Humidity Sensors using a Dew Point Generator

    OpenAIRE

    Brooks, Milo

    2010-01-01

    A relative humidity sensor can be calibrated using a dew point generator to continuously supply an air stream of known constant humidity and a temperature chamber to control the dew point and ambient temperature.

  15. Humidity Detection Using Metal Organic Framework Coated on QCM

    KAUST Repository

    Kosuru, Lakshmoji; Bouchaala, Adam M.; Jaber, Nizar; Younis, Mohammad I.

    2016-01-01

    of a quartz crystal microbalance. The resonance frequencies of these sensors with varying relative humidity (RH) from 22% RH to 69% RH are measured using impedance analysis method. The sensitivity, humidity hysteresis, response, and recovery times

  16. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  17. Effect of relative humidity on solar potential

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2005-01-01

    In this study, the effect of relative humidity on solar potential is investigated using artificial neural-networks. Two different models are used to train the neural networks. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine-duration, and mean temperature) are used in the input layer of the network (Model 1). But, relative humidity values are added to one network in model (Model 2). In other words, the only difference between the models is relative humidity. New formulae based on meteorological and geographical data, have been developed to determine the solar energy potential in Turkey using the networks' weights for both models. Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer-function were used in the network. The best approach was obtained by the SCG algorithm with nine neurons for both models. Meteorological data for the four years, 2000-2003, for 18 cities (Artvin, Cesme, Bozkurt, Malkara, Florya, Tosya, Kizilcahamam, Yenisehir, Edremit, Gediz, Kangal, Solhan, Ergani, Selcuk, Milas, Seydisehir, Siverek and Kilis) spread over Turkey have been used as data in order to train the neural network. Solar radiation is in output layer. One month for each city was used as test data, and these months have not been used for training. The maximum mean absolute percentage errors (MAPEs) for Tosya are 2.770394% and 2.8597% for Models 1 and 2, respectively. The minimum MAPEs for Seydisehir are 1.055205% and 1.041% with R 2 (99.9862%, 99.9842%) for Models 1 and 2, respectively, in the SCG algorithm with nine neurons. The best value of R 2 for Models 1 and 2 are for Seydisehir. The minimum value of R 2 for Model 1 is 99.8855% for Tosya, and the value for Model 2 is 99.9001% for Yenisehir. Results show that the humidity has only a negligible effect upon the prediction of solar potential using artificial neural-networks

  18. Procedure for drying humidity-containing bodies

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1976-01-01

    The invention concerns a decontamination process for extracting impurities, in particular humidity and gases, from nuclear fuel rods before they are sealed and inserted into the reactor. The fuel rod, which has a small drilling hole, is placed in a low pressure container. The container is filled with a liquid drying agent which washes out the impurities. A dry inert gas (nitrogen, noble gases) is used for rinsing. Alcohols, ketones, methanol, acetone are named as drying agents. (UWI) [de

  19. Relative Humidity in the Tropopause Saturation Layer

    Science.gov (United States)

    Selkirk, H. B.; Schoeberl, M. R.; Pfister, L.; Thornberry, T. D.; Bui, T. V.

    2017-12-01

    The tropical tropopause separates two very different atmospheric regimes: the stable lower stratosphere where the air is both extremely dry and nearly always so, and a transition layer in the uppermost tropical troposphere, where humidity on average increases rapidly downward but can undergo substantial temporal fluctuations. The processes that control the humidity in this layer below the tropopause include convective detrainment (which can result in either a net hydration or dehydration), slow ascent, wave motions and advection. Together these determine the humidity of the air that eventually passes through the tropopause and into the stratosphere, and we refer to this layer as the tropopause saturation layer or TSL. We know from in situ water vapor observations such as Ticosonde's 12-year balloonsonde record at Costa Rica that layers of supersaturation are frequently observed in the TSL. While their frequency is greatest during the local rainy season from June through October, supersaturation is also observed in the boreal winter dry season when deep convection is well south of Costa Rica. In other words, local convection is not a necessary condition for the presence of supersaturation. Furthermore, there are indications from airborne measurements during the recent POSIDON campaign at Guam that if anything deep convection tends to `reset' the TSL locally to a state of just-saturation. Conversely, it may be that layers of supersaturation are the result of slow ascent. To explore these ideas we take Ticosonde water vapor observations from the TSL, stratify them on the basis of relative humidity and report on the differences in the the history of upstream convective influence between supersaturated parcels and those that are not.

  20. Seasonal variations of Saanen goat milk composition and the impact of climatic conditions.

    Science.gov (United States)

    Kljajevic, Nemanja V; Tomasevic, Igor B; Miloradovic, Zorana N; Nedeljkovic, Aleksandar; Miocinovic, Jelena B; Jovanovic, Snezana T

    2018-01-01

    The aim of this research was to investigate the effect of climatic conditions and their impact on seasonal variations of physico-chemical characteristics of Saanen goat milk produced over a period of 4 years. Lactation period (early, mid and late) and year were considered as factors that influence physico-chemical composition of milk. Pearson's coefficient of correlation was calculated between the physico-chemical characteristics of milk (fat, proteins, lactose, non-fat dry matter, density, freezing point, pH, titrable acidity) and climatic condition parameters (air temperature, temperature humidity index-THI, solar radiation duration, relative humidity). Results showed that all physico-chemical characteristics of Saanen goat milk varied significantly throughout the lactation period and years. The decrease of fat, protein, non-fat dry matter and lactose content in goat milk during the mid-lactation period was more pronounced than was previously reported in the literature. The highest values for these characteristics were recorded in the late lactation period. Observed variations were explained by negative correlation between THI and the physico-chemical characteristics of Saanen goat milk. This indicated that Saanen goats were very prone to heat stress, which implied the decrease of physico-chemical characteristics during hot summers.

  1. Hot Weather Tips

    Science.gov (United States)

    ... the person plenty of water and fruit or vegetable juice even if they say they’re not thirsty. No alcohol, coffee or tea. Seek medical help if you suspect dehydration. Light meals: Avoid hot, heavy meals and don’ ...

  2. China's 'Hot Money' Problems

    National Research Council Canada - National Science Library

    Martin, Michael F; Morrison, Wayne M

    2008-01-01

    .... The recent large inflow of financial capital into China, commonly referred to as "hot money," has led some economists to warn that such flows may have a destabilizing effect on China's economy...

  3. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  4. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold.

    Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  5. Humidity effects on hydrophilic film dosimeter systems

    International Nuclear Information System (INIS)

    Gehringer, P.; Eschweiler, H.; Proksch, E.

    1979-11-01

    At dose-rates typical for 60 Co-gamma irradiation sources the radiation response of hexahydroxyethyl pararosanilin cyanide/50μm nylon radachromic films is dependent upon dose-rate as well as upon the moisture content of the film. Under equilibrium moisture conditions, the response measured at 606 nm 24 hours after end of irradiation shows its highest dose-rate dependence at about 32 % r.h. A decrease in dose-rate from 2.8 to 0.039 Gy.s -1 results in decrease in response by 17%. At higher humidities, the sensitivity of the film as well as the rate dependence decreases and at 86% r.h. no discernible dose-rate effect could be found. At nominal 0 % r.h. a second absorption band at 412 nm appears which is converted completely to an additional 606 nm absorption by exposure to a humid atmosphere. After that procedure the resultant response is somewhat lower but shows almost the same dose-rate dependence as at 32% r.h. Preliminary results concerning the influence of humidity on the response of Blue Cellophane are given, too. (author)

  6. Lead Oxide- PbO Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Sk. Khadeer Pasha

    2010-11-01

    Full Text Available Alcohol thermal route has been used to synthesize nanocrystalline PbO at a low temperature of 75 oC using lead acetate. The synthesized PbO (P75 was annealed in the temperatures ranging from 200-500 oC for 2 h to study the effect of crystal structure and phase changes and were labeled as P200, P300, P400 and P500, respectively. X-Ray diffraction and FT-IR spectroscopy were carried out to identify the structural phases and vibrational stretching frequencies respectively. The TEM images revealed the porous nature of P75 sample which is an important criterion for the humidity sensor. The dc resistance measurements were carried out in the relative humidity (RH range 5-98 %. Among the different prepared, P75 possessed the highest humidity sensitivity of 6250, while the heat treated sample P500 have a low sensitivity of 330. The response and recovery characteristics of the maximum sensitivity sample P75 were 170 s and 40 s respectively.

  7. Anoxic conditions drive phosphorus limitation in humid tropical forest soil microorganisms

    Science.gov (United States)

    Gross, A.; Pett-Ridge, J.; Weber, P. K.; Blazewicz, S.; Silver, W. L.

    2017-12-01

    The elemental stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) of soil microorganisms (C:N:P ratios) regulates transfers of energy and nutrients to higher trophic levels. In humid tropical forests that grow on P-depleted soils, the ability of microbes to concentrate P from their surroundings likely plays a critical role in P-retention and ultimately in forest productivity. Models predict that climate change will cause dramatic changes in rainfall patterns in the humid tropics and field studies have shown these changes can affect the redox state of tropical forest soils, influencing soil respiration and biogeochemical cycling. However, the responses of soil microorganisms to changing environmental conditions are not well known. Here, we incubated humid tropical soils under oxic or anoxic conditions with substrates differing in both C:P stoichiometry and lability, to assess how soil microorganisms respond to different redox regimes. We found that under oxic conditions, microbial C:P ratios were similar to the global optimal ratio (55:1), indicating most microbial cells can adapt to persistent aerated conditions in these soils. However, under anoxic conditions, the ability of soil microbes to acquire soil P declined and their C:P ratios shifted away from the optimal ratio. NanoSIMS elemental imaging of single cells extracted from soil revealed that under anoxic conditions, C:P ratios were above the microbial optimal value in 83% of the cells, in comparison to 41% under oxic conditions. These data suggest microbial growth efficiency switched from being energy limited under oxic conditions to P-limited under anoxic conditions, indicating that, microbial growth in low P humid tropical forests soils may be most constrained by P-limitation when conditions are oxygen-limited. We suggest that differential microbial responses to soil redox states could have important implications for productivity of humid tropical forests under future climate scenarios.

  8. Relation of temperature and humidity to the risk of recurrent gout attacks.

    Science.gov (United States)

    Neogi, Tuhina; Chen, Clara; Niu, Jingbo; Chaisson, Christine; Hunter, David J; Choi, Hyon; Zhang, Yuqing

    2014-08-15

    Gout attack risk may be affected by weather (e.g., because of volume depletion). We therefore examined the association of temperature and humidity with the risk of recurrent gout attacks by conducting an internet-based case-crossover study in the United States (in 2003-2010) among subjects with a diagnosis of gout who had 1 or more attacks during 1 year of follow-up. We examined the association of temperature and humidity over the prior 48 hours with the risk of gout attacks using a time-stratified approach and conditional logistic regression. Among 632 subjects with gout, there was a significant dose-response relationship between mean temperature in the prior 48 hours and the risk of subsequent gout attack (P = 0.01 for linear trend). Higher temperatures were associated with approximately 40% higher risk of gout attack compared with moderate temperatures. There was a reverse J-shaped relationship between mean relative humidity and the risk of gout attacks (P = 0.03 for quadratic trend). The combination of high temperature and low humidity had the greatest association (odds ratio = 2.04, 95% confidence interval: 1.26, 3.30) compared with moderate temperature and relative humidity. Thus, high ambient temperature and possibly extremes of humidity were associated with an increased risk of gout attack, despite the likelihood that individuals are often in climate-controlled indoor environments. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Methods of measurement on a PCPV with hot liner at Seibersdorf Research Centre

    International Nuclear Information System (INIS)

    Zemann, H.

    1975-08-01

    The distribution of stress, strain, temperature and humidity within the structural concrete of the PCPV with hot liner at Seibersdorf Research Centre is measured for safety surveillance and in order to prove the suitability as a reactor pressure vessel. The paper gives a survey of the methods of measurement at elevated temperatures. (author)

  10. 7 CFR 28.301 - Measurement: humidity; temperature.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Measurement: humidity; temperature. 28.301 Section 28... for Length of Staple § 28.301 Measurement: humidity; temperature. The length of staple of any cotton... its fibers under a relative humidity of the atmosphere of 65 percent and a temperature of 70° F. ...

  11. A Standard CMOS Humidity Sensor without Post-Processing

    OpenAIRE

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    A 2 ?W power dissipation, voltage-output, humidity sensor accurate to 5% relative humidity was developed using the LFoundry 0.15 ?m CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a Intervia Photodielectric 8023?10 humidity-sensitive layer, and a CMOS capacitance to voltage converter.

  12. Dietary fat affects heat production and other variables of equine performance, under hot and humid conditions.

    Science.gov (United States)

    Kronfeld, D S

    1996-07-01

    Does dietary fat supplementation during conditioning improve athletic performance, especially in the heat? Fat adaptation has been used to increase energy density, decrease bowel bulk and faecal output and reduce health risks associated with hydrolysable carbohydrate overload. It may also reduce spontaneous activity and reactivity (excitability), increase fatty acid oxidation, reduce CO2 production and associated acidosis, enhance metabolic regulation of glycolysis, improve both aerobic and anaerobic performance and substantially reduce heat production. A thermochemical analysis of ATP generation showed the least heat release during the direct oxidation of long chain fatty acids, which have a 3% advantage over glucose and 20 to 30% over short chain fatty acids and amino acids. Indirect oxidation via storage as triglyceride increased heat loss during ATP generation by 3% for stearic acid, 65% for glucose and 174% for acetic acid. Meal feeding and nutrient storage, therefore, accentuates the advantage of dietary fat. A calorimetric model was based on initial estimates of net energy for competitive work (10.76 MJ for the Endurance Test of an Olympic level 3-day-event), other work (14.4 MJ/day) and maintenance (36 MJ), then applied estimates of efficiencies to derive associated heat productions for the utilisation of 3 diets, Diet A: hay (100), Diet B: hay and oats (50:50) and Diet C: hay, oats and vegetable oil (45:45:10), the difference between the last 2 diets representing fat adaptation. During a 90.5 min speed and stamina test, heat production was estimated as 37, 35.4 and 34.6 MJ for the 3 diets, respectively, an advantage 0.8 MJ less heat load for the fat adapted horse, which would reduce water needed for evaporation by 0.33 kg and reduce body temperature increase by about 0.07 degree C. Total estimated daily heat production was 105, 93 and 88 MJ for the 3 diets, respectively, suggesting a 5 MJ advantage for the fat adapted horse (Diet C vs. Diet B). Estimated intake energy was 348, 269 and 239 MJ for the 3 diets, respectively, and corresponding daily intakes as fed were 22.2, 16.6 and 12.9 kg, an advantage of 3.7 kg for the fat adapted horse. Water requirement was estimated to decrease by about 6 kg/day in the fat adapted horse: 4 kg less faecal water output and 2 kg less water for evaporation. This model indicated that the fat supplemented diet reduced daily heat load by 5%, feed intake by 22%, faecal output (and bowel ballast) by 31% and water requirement by 12%. The advantage of fat supplementation over hay and oats was in general about half that gained by hay and oats over hay alone.

  13. Envelope colour on thermal load in hot humid Hong Kong: Effect of hue, value, and chroma

    Institute of Scientific and Technical Information of China (English)

    VickyCHENG; EdwardNG

    2003-01-01

    Cooling energy consumption of a building can be significantly reduced by limiting solar heat gain through envelope, in which depends on the intensity of impinging solar radiation and on the colour of external surface. Albedo, from the thermal point of view, is the prime parameter of interest; however, it does appear to be too conceptual in practice. Architects, when considering choices of envelope colour, the actual decision is between various colours: yellow, blue, or green rather than a single numerical albedo. This study is to investigate the effect and magnitude of colour, in terms of visual qualities hue, value (lightness), and chroma (saturation), on thermal load of buildings. In the experiment, air temperatures inside test cells painted into different colours were measured, the results suggest that colour attribute: chroma has negligible effect on thermal performance of building envelope, while value has significant thermal effect. The effect of hue, as shown in this study, was insignificant, however further study might be needed as to obtain a clearer picture of its effect.

  14. An adaptive thermal comfort model for hot humid South-East Asia

    OpenAIRE

    Nguyen, Anh Tuan; Singh, Manoj Kumar; Reiter, Sigrid

    2012-01-01

    The present paper presents a full procedure to develop an adaptive comfort model for South-East Asia. Meta-analysis on large number of observations from field surveys which were conducted in this region was employed. Standardization and bias control of the database were fully reported. Statistical tests of significance and weighted regression method applied in the analyses strengthened the reliability of the findings. This paper found a great influence of ‘Griffiths constant’ on the establish...

  15. Climate chamber for environmentally controlled laboratory airflow experiments.

    Science.gov (United States)

    Even-Tzur, Nurit; Zaretsky, Uri; Grinberg, Orly; Davidovich, Tomer; Kloog, Yoel; Wolf, Michael; Elad, David

    2010-01-01

    Climate chambers have been widely used in in vitro and in vivo studies which require controlled environmental temperature and humidity conditions. This article describes a new desktop climate chamber that was developed for application of respiratory airflows on cultured nasal epithelial cells (NEC) under controlled temperature and humidity conditions. Flow experiments were performed by connecting the climate chamber to an airflow generator via a flow chamber with cultured NEC. Experiments at two controlled climate conditions, 25 degrees C and 40% relative humidity (RH) and 37 degrees C and 80%RH, were conducted to study mucin secretion from the cultures inresponse to the flow. The new climate chamber is a relatively simple and inexpensive apparatus which can easily be connected to any flow system for climate controlled flow experiments. This chamber can be easily adjusted to various in vitro experiments, as well as to clinical studies with animals or human subjects which require controlled climate conditions.

  16. Determination of equilibrium humidities using temperature and humidity controlled X-ray diffraction (RH-XRD)

    International Nuclear Information System (INIS)

    Linnow, Kirsten; Steiger, Michael

    2007-01-01

    Confined growth of crystals in porous building materials is generally considered to be a major cause of damage. We report on the use of X-ray diffraction under controlled conditions of temperature and relative humidity (RH-XRD) for the investigation of potentially deleterious phase transition reactions. An improved procedure based on rate measurements is used for the accurate and reproducible determination of equilibrium humidities of deliquescence and hydration reactions. The deliquescence humidities of NaCl (75.4 ± 0.5% RH) and Ca(NO 3 ) 2 .4H 2 O (50.8 ± 0.7% RH) at 25 deg. C determined with this improved RH-XRD technique are in excellent agreement with available literature data. Measurement of the hydration of anhydrous Ca(NO 3 ) 2 to form Ca(NO 3 ) 2 .2H 2 O revealed an equilibrium humidity of 10.2 ± 0.3%, which is also in reasonable agreement with available data. In conclusion, dynamic X-ray diffraction measurements are an appropriate method for the accurate and precise determination of equilibrium humidities with a number of interesting future applications

  17. BC SEA Solar Hot Water Acceleration project

    Energy Technology Data Exchange (ETDEWEB)

    Harris, N.C. [BC Sustainable Energy Association, Victoria, BC (Canada)

    2005-07-01

    Although solar hot water heating is an environmentally responsible technology that reduces fossil fuel consumption and helps mitigate global climate change, there are many barriers to its widespread use. Each year, domestic water heating contributes nearly 6 million tonnes of carbon dioxide towards Canada's greenhouse gas emissions. The installation of solar water heaters can eliminate up to 2 tonnes of carbon dioxide emissions per household. The BC SEA Solar Hot Water Acceleration project was launched in an effort to demonstrate that the technology has the potential to be widely used in homes and businesses across British Columbia. One of the main barriers to the widespread use of solar hot water heating is the initial cost of the system. Lack of public awareness and understanding of the technology are other barriers. However, other jurisdictions around the world have demonstrated that the use of renewables are the product of conscious policy decisions, including low-cost financing and other subsidies that have created demand for these technologies. To this end, the BC SEA Solar Hot Water Acceleration project will test the potential for the rapid acceleration of solar water heating in pilot communities where barriers are removed. The objective of the project is to install 100 solar water systems in homes and 25 in businesses and institutions in communities in British Columbia by July 2007. The project will explore the financial barriers to the installation of solar hot water systems and produce an action plan to reduce these barriers. In addition to leading by example, the project will help the solar energy marketplace, mitigate climate change and improve energy efficiency.

  18. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  19. Effect of humidity on radon exhalation rate from concrete

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni; Obayashi, Haruo; Tsuji, Naruhito; Nakayoshi, Hisao

    1998-01-01

    The objective of the present study is evaluation of seasonal humidity effect on radon exhalation rate from concrete. Three concrete pieces have been placed in three different fixed humidity circumstances for about a year. The three fixed humidities are selected 3, 10, 25 g m -3 in absolute humidity, those correspond to dry condition as control, winter and summer, respectively. Radon exhalation rate from each concrete piece is measured every one month during humidity exposure. Under the lower humidity, radon exhalation rate from concrete is small. On the contrary, radon exhalation rate is large in the higher humidity circumstance. This trend is consistent with the seasonal variation of indoor air radon concentration in low air-exchange-rate room. (author)

  20. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    Science.gov (United States)

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.