WorldWideScience

Sample records for hot gaseous haloes

  1. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  2. Dynamical behaviour of gaseous halo in a disk galaxy

    International Nuclear Information System (INIS)

    Ikeuchi, S.; Habe, A.

    1981-01-01

    Assuming that the gas in the halo of a disk galaxy is supplied from the disk as a hot gas, the authors have studied its dynamical and thermal behaviour by means of a time dependent, two-dimensional hydrodynamic code. They suppose the following boundary conditions at the disk. (i) The hot gas with the temperature Tsub(d) and the density nsub(d) is uniform at r=4-12 kpc in the disk and it is time independent. (ii) This hot gas rotates with the stellar disk in the same velocity. (iii) This hot gas can escape freely from the disk to the halo. These conditions will be verified if the filling factor of hot gas is so large as f=0.5-0.8, as proposed by McKee and Ostriker (1977). The gas motion in the halo has been studied for wider ranges of gas temperature and its density at the disk than previously studied. At the same time, the authors have clarified the observability of various types of gaseous haloes and discuss the roles of gaseous halo on the evolution of galaxies. (Auth.)

  3. The effect of stellar feedback on a Milky Way-like galaxy and its gaseous halo

    NARCIS (Netherlands)

    Marasco, Antonino; Debattista, Victor P.; Fraternali, Filippo; van der Hulst, Thijs; Wadsley, James; Quinn, Thomas; Roškar, Rok

    We present the study of a set of N-body+smoothed particle hydrodynamics simulations of a Milky Way-like system produced by the radiative cooling of hot gas embedded in a dark matter halo. The galaxy and its gaseous halo evolve for 10 Gyr in isolation, which allows us to study how internal processes

  4. The Mass and Absorption Columns of Galactic Gaseous Halos

    Science.gov (United States)

    Qu, Zhijie; Bregman, Joel N.

    2018-01-01

    The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.

  5. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  6. SEEDING THE FORMATION OF COLD GASEOUS CLOUDS IN MILKY WAY-SIZE HALOS

    International Nuclear Information System (INIS)

    Keres, Dusan; Hernquist, Lars

    2009-01-01

    We use one of the highest resolution cosmological smoothed particle hydrodynamic simulations to date to demonstrate that cold gaseous clouds form around Milky Way-size galaxies. We further explore mechanisms responsible for their formation and show that a large fraction of clouds originate as a consequence of late-time filamentary 'cold mode' accretion. Here, filaments that are still colder and denser than the surrounding halo gas are not able to connect directly to galaxies, as they do at high redshift, but are instead susceptible to the combined action of cooling and Rayleigh-Taylor instabilities at intermediate radii within the halo leading to the production of cold, dense pressure-confined clouds, without an associated dark matter component. This process is aided through the compression of the incoming filaments by the hot halo gas and expanding shocks during the halo buildup. Our mechanism directly seeds clouds from gas with substantial local overdensity, unlike in previous models, and provides a channel for the origin of cloud complexes. These clouds can later 'rain' onto galaxies, delivering fuel for star formation. Owing to the relatively large cross-section of filaments and the net angular momentum carried by the gas, the clouds will be distributed in a modestly flattened region around a galaxy.

  7. The growth of galaxies and their gaseous haloes

    NARCIS (Netherlands)

    Voort, Frederieke van de

    2012-01-01

    Galaxies grow by accreting gas, which they need to form stars, from their surrounding haloes. These haloes, in turn, accrete gas from the diffuse intergalactic medium. Feedback from stars and black holes returns gas from the galaxy to the halo and can even expel it from the halo. This cycle of gas

  8. Clustered supernovae versus the gaseous disk and halo

    International Nuclear Information System (INIS)

    Heiles, C.

    1990-01-01

    The effects of clustered supernovae on the two-dimensional porosity parameter Q(2D) and the rates M of mass injection of both hot and cold gas into the halo are reconsidered. The effects of high-absolute value z, low-density extension of the neutral gas layer are theoretically calculated and the distribution of H-alpha luminosities of extragalactic H II regions is observationally determined. These results are used to estimate the birth rate of star clusters having N supernovae as a function of N. A Galaxy-wide average of Q(2D) roughly 0.30 is obtained, corresponding to an area filling factor of 0.23. Area filling factors and mass injection rates into the halo due to breakthrough bubbles with large N are calculated for different types of galaxy. The calculations are related to the area covered by H I 'holes' and the area covered by giant H II regions. The effects of supernova clusters that are too small to produce breakthrough bubbles are discussed. 53 refs

  9. HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES

    International Nuclear Information System (INIS)

    Mulchaey, John S.; Jeltema, Tesla E.

    2010-01-01

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L X -L K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L K ∼ * suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L K ∼ * galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  10. How Galaxies Acquire their Gas: A Map of Multiphase Accretion and Feedback in Gaseous Galaxy Halos

    Science.gov (United States)

    Tumlinson, Jason

    2009-07-01

    We propose to address two of the biggest open questions in galaxy formation - how galaxies acquire their gas and how they return it to the IGM - with a concentrated COS survey of diffuse multiphase gas in the halos of SDSS galaxies at z = 0.15 - 0.35. Our chief science goal is to establish a basic set of observational facts about the physical state, metallicity, and kinematics of halo gas, including the sky covering fraction of hot and cold material, the metallicity of infall and outflow, and correlations with galaxy stellar mass, type, and color - all as a function of impact parameter from 10 - 150 kpc. Theory suggests that the bimodality of galaxy colors, the shape of the luminosity function, and the mass-metallicity relation are all influenced at a fundamental level by accretion and feedback, yet these gas processes are poorly understood and cannot be predicted robustly from first principles. We lack even a basic observational assessment of the multiphase gaseous content of galaxy halos on 100 kpc scales, and we do not know how these processes vary with galaxy properties. This ignorance is presently one of the key impediments to understanding galaxy formation in general. We propose to use the high-resolution gratings G130M and G160M on the Cosmic Origins Spectrograph to obtain sensitive column density measurements of a comprehensive suite of multiphase ions in the spectra of 43 z sound map of the physical state and metallicity of gaseous halos, and subsets of the data with cuts on galaxy mass, color, and SFR will seek out predicted variations of gas properties with galaxy properties. Our interpretation of these data will be aided by state-of-the-art hydrodynamic simulations of accretion and feedback, in turn providing information to refine and test such models. We will also use Keck, MMT, and Magellan {as needed} to obtain optical spectra of the QSOs to measure cold gas with Mg II, and optical spectra of the galaxies to measure SFRs and to look for outflows. In

  11. The gaseous haloes of evolving galaxies: a probe using the linear sizes of radio sources

    International Nuclear Information System (INIS)

    Subramanian, K.; Swarup, G.

    1990-01-01

    As galaxies form and evolve, their gaseous haloes are expected to undergo corresponding evolution. We examine here whether observations of the linear sizes of radio sources can be used to probe such evolution. For this purpose we first represent the gas density at various stages of galaxy formation and evolution by means of simple model density profiles, and then work out the expected linear sizes (l) of radio sources in these models. (author)

  12. INTERACTION BETWEEN DARK MATTER SUB-HALOS AND A GALACTIC GASEOUS DISK

    International Nuclear Information System (INIS)

    Kannan, Rahul; Macciò, Andrea V.; Walter, Fabian; Pasquali, Anna; Moster, Benjamin P.

    2012-01-01

    We investigate the idea that the interaction of dark matter (DM) sub-halos with the gaseous disks of galaxies can be the origin for the observed holes and shells found in their neutral hydrogen (H I) distributions. We use high-resolution hydrodynamic simulations to show that pure DM sub-halos impacting a galactic disk are not able to produce holes; on the contrary, they result in high-density regions in the disk. However, sub-halos containing a small amount of gas (a few percent of the total DM mass of the sub-halo) are able to displace the gas in the disk and form holes and shells. The sizes and lifetimes of these holes depend on the sub-halo gas mass, density, and impact velocity. A DM sub-halo, of mass 10 8 M ☉ and a gas mass fraction of ∼3%, is able to create a kiloparsec-scale hole with a lifetime similar to those observed in nearby galaxies. We also register an increase in the star formation rate at the rim of the hole, again in agreement with observations. Even though the properties of these simulated structures resemble those found in observations, we find that the number of predicted holes (based on mass and orbital distributions of DM halos derived from cosmological N-body simulations) falls short compared to the observations. Only a handful of holes are produced per gigayear. This leads us to conclude that DM halo impact is not the major channel through which these holes are formed.

  13. The impact of feedback and the hot halo on the rates of gas accretion onto galaxies

    Science.gov (United States)

    Correa, Camila A.; Schaye, Joop; van de Voort, Freeke; Duffy, Alan R.; Wyithe, J. Stuart B.

    2018-04-01

    We investigate the physics that drives the gas accretion rates onto galaxies at the centers of dark matter haloes using the EAGLE suite of hydrodynamical cosmological simulations. We find that at redshifts z ≤ 2 the accretion rate onto the galaxy increases with halo mass in the halo mass range 1010 - 1011.7 M⊙, flattens between the halo masses 1011.7 - 1012.7 M⊙, and increases again for higher-mass haloes. However, the galaxy gas accretion does not flatten at intermediate halo masses when AGN feedback is switched off. To better understand these trends, we develop a physically motivated semi-analytic model of galaxy gas accretion. We show that the flattening is produced by the rate of gas cooling from the hot halo. The ratio of the cooling radius and the virial radius does not decrease continuously with increasing halo mass as generally thought. While it decreases up to ˜1013 M⊙ haloes, it increases for higher halo masses, causing an upturn in the galaxy gas accretion rate. This may indicate that in high-mass haloes AGN feedback is not sufficiently efficient. When there is no AGN feedback, the density of the hot halo is higher, the ratio of the cooling and virial radii does not decrease as much and the cooling rate is higher. Changes in the efficiency of stellar feedback can also increase or decrease the accretion rates onto galaxies. The trends can plausibly be explained by the re-accretion of gas ejected by progenitor galaxies and by the suppression of black hole growth, and hence AGN feedback, by stellar feedback.

  14. HOT GAS HALOS AROUND DISK GALAXIES: CONFRONTING COSMOLOGICAL SIMULATIONS WITH OBSERVATIONS

    International Nuclear Information System (INIS)

    Rasmussen, Jesper; Sommer-Larsen, Jesper; Pedersen, Kristian; Toft, Sune; Grove, Lisbeth F.; Benson, Andrew; Bower, Richard G.

    2009-01-01

    Models of disk galaxy formation commonly predict the existence of an extended reservoir of accreted hot gas surrounding massive spirals at low redshift. As a test of these models, we use X-ray and Hα data of the two massive, quiescent edge-on spirals NGC 5746 and NGC 5170 to investigate the amount and origin of any hot gas in their halos. Contrary to our earlier claim, the Chandra analysis of NGC 5746, employing more recent calibration data, does not reveal any significant evidence for diffuse X-ray emission outside the optical disk, with a 3σ upper limit to the halo X-ray luminosity of 4 x 10 39 erg s -1 . An identical study of the less massive NGC 5170 also fails to detect any extraplanar X-ray emission. By extracting hot halo properties of disk galaxies formed in cosmological hydrodynamical simulations, we compare these results to expectations for cosmological accretion of hot gas by spirals. For Milky-Way-sized galaxies, these high-resolution simulations predict hot halo X-ray luminosities which are lower by a factor of ∼2 compared to our earlier results reported by Toft et al. We find the new simulation predictions to be consistent with our observational constraints for both NGC 5746 and NGC 5170, while also confirming that the hot gas detected so far around more actively star-forming spirals is in general probably associated with stellar activity in the disk. Observational results on quiescent disk galaxies at the high-mass end are nevertheless providing powerful constraints on theoretical predictions, and hence on the assumed input physics in numerical studies of disk galaxy formation and evolution.

  15. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    Science.gov (United States)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  16. The Interaction of Hot and Cold Gas in the Disk and Halo of Galaxies

    Science.gov (United States)

    Slavin, Jonathan; Salamon, Michael (Technical Monitor)

    2004-01-01

    Most of the thermal energy in the Galaxy and perhaps most of the baryons in the Universe are found in hot (log T approximately 5.5 - 7) gas. Hot gas is detected in the local interstellar medium, in supernova remnants (SNR), the Galactic halo, galaxy clusters and the intergalactic medium (IGM). In our own Galaxy, hot gas exists in large superbubbles up to several hundred pc in diameter that locally dominate the interstellar medium (ISM) and determine its thermal and dynamic evolution. While X-ray observations using ROSAT, Chandra and XMM have allowed us to make dramatic progress in mapping out the morphology of the hot gas and in understanding some of its spectral characteristics, there remain fundamental questions that are unanswered. Chief among these questions is the way that hot gas interacts with cooler phase gas and the effects these interactions have on hot gas energetics. The theoretical investigations we proposed in this grant aim to explore these interactions and to develop observational diagnostics that will allow us to gain much improved information on the evolution of hot gas in the disk and halo of galaxies. The first of the series of investigations that we proposed was a thorough exploration of turbulent mixing layers and cloud evaporation. We proposed to employ a multi-dimensional hydrodynamical code that includes non-equilibrium ionization (NEI), radiative cooling and thermal conduction. These models are to be applied to high velocity clouds in our galactic halo that are seen to have O VI by FUSE (Sembach et ai. 2000) and other clouds for which sufficient constraining observations exist.

  17. PAndAS IN THE MIST: THE STELLAR AND GASEOUS MASS WITHIN THE HALOS OF M31 AND M33

    International Nuclear Information System (INIS)

    Lewis, Geraint F.; Braun, Robert; McConnachie, Alan W.; Irwin, Michael J.; Chapman, Scott C.; Ibata, Rodrigo A.; Martin, Nicolas F.; Ferguson, Annette M. N.; Fardal, Mark; Dubinski, John; Widrow, Larry; Mackey, A. Dougal; Babul, Arif; Tanvir, Nial R.; Rich, Michael

    2013-01-01

    Large-scale surveys of the prominent members of the Local Group have provided compelling evidence for the hierarchical formation of massive galaxies, revealing a wealth of substructure that is thought to be the debris from ancient and ongoing accretion events. In this paper, we compare two extant surveys of the M31-M33 subgroup of galaxies: the Pan-Andromeda Archaeological Survey of the stellar structure, and a combination of observations of the H I gaseous content, detected at 21 cm. Our key finding is a marked lack of spatial correlation between these two components on all scales, with only a few potential overlaps between stars and gas. The paucity of spatial correlation significantly restricts the analysis of kinematic correlations, although there does appear to be H I kinematically associated with the Giant Stellar Stream where it passes the disk of M31. These results demonstrate that different processes must significantly influence the dynamical evolution of the stellar and H I components of substructures, such as ram pressure driving gas away from a purely gravitational path. Detailed modeling of the offset between the stellar and gaseous substructures will provide a determination of the properties of the gaseous halos of M31 and M33.

  18. PAndAS IN THE MIST: THE STELLAR AND GASEOUS MASS WITHIN THE HALOS OF M31 AND M33

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Geraint F. [Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006 (Australia); Braun, Robert [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); McConnachie, Alan W. [Dominion Astrophysical Observatory, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Irwin, Michael J.; Chapman, Scott C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Ibata, Rodrigo A.; Martin, Nicolas F. [Observatoire de Strasbourg, 11, rue de l' Universite, F-67000 Strasbourg (France); Ferguson, Annette M. N. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Fardal, Mark [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Dubinski, John [Department of Astronomy and Astrophysics, 50 St. George Street, University of Toronto, ON M5S 3H4 (Canada); Widrow, Larry [Department of Physics, Queen' s University, 99 University Avenue, Kingston, ON K7L 3N6 (Canada); Mackey, A. Dougal [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Babul, Arif [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6 (Canada); Tanvir, Nial R. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Rich, Michael, E-mail: geraint.lewis@sydney.edu.au [Division of Astronomy, University of California, 8979 Math Sciences, Los Angeles, CA 90095-1562 (United States)

    2013-01-20

    Large-scale surveys of the prominent members of the Local Group have provided compelling evidence for the hierarchical formation of massive galaxies, revealing a wealth of substructure that is thought to be the debris from ancient and ongoing accretion events. In this paper, we compare two extant surveys of the M31-M33 subgroup of galaxies: the Pan-Andromeda Archaeological Survey of the stellar structure, and a combination of observations of the H I gaseous content, detected at 21 cm. Our key finding is a marked lack of spatial correlation between these two components on all scales, with only a few potential overlaps between stars and gas. The paucity of spatial correlation significantly restricts the analysis of kinematic correlations, although there does appear to be H I kinematically associated with the Giant Stellar Stream where it passes the disk of M31. These results demonstrate that different processes must significantly influence the dynamical evolution of the stellar and H I components of substructures, such as ram pressure driving gas away from a purely gravitational path. Detailed modeling of the offset between the stellar and gaseous substructures will provide a determination of the properties of the gaseous halos of M31 and M33.

  19. Constraining the Physical State of the Hot Gas Halos in NGC 4649 and NGC 5846

    Science.gov (United States)

    Paggi, Alessandro; Kim, Dong-Woo; Anderson, Craig; Burke, Doug; D'Abrusco, Raffaele; Fabbiano, Giuseppina; Fruscione, Antonella; Gokas, Tara; Lauer, Jen; McCollough, Michael; Morgan, Doug; Mossman, Amy; O'Sullivan, Ewan; Trinchieri, Ginevra; Vrtilek, Saeqa; Pellegrini, Silvia; Romanowsky, Aaron J.; Brodie, Jean

    2017-07-01

    We present results of a joint Chandra/XMM-Newton analysis of the early-type galaxies NGC 4649 and NGC 5846 aimed at investigating differences between mass profiles derived from X-ray data and those from optical data, to probe the state of the hot interstellar medium (ISM) in these galaxies. If the hot ISM is at a given radius in hydrostatic equilibrium (HE), the X-ray data can be used to measure the total enclosed mass of the galaxy. Differences from optically derived mass distributions therefore yield information about departures from HE in the hot halos. The X-ray mass profiles in different angular sectors of NGC 4649 are generally smooth with no significant azimuthal asymmetries within 12 kpc. Extrapolation of these profiles beyond this scale yields results consistent with the optical estimate. However, in the central region (rdisappears in the NW direction, where the emission is smooth and extended. In this sector we find consistent X-ray and optical mass profiles, suggesting that the hot halo is not responding to strong nongravitational forces.

  20. Metal enriched gaseous halos around distant radio galaxies: Clues to feedback in galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Reuland, M; van Breugel, W; de Vries, W; Dopita, A; Dey, A; Miley, G; Rottgering, H; Venemans, B; Stanford, S A; Lacy, M; Spinrad, H; Dawson, S; Stern, D; Bunker, A

    2006-08-01

    We present the results of an optical and near-IR spectroscopic study of giant nebular emission line halos associated with three z > 3 radio galaxies, 4C 41.17, 4C 60.07 and B2 0902+34. Previous deep narrow band Ly{alpha} imaging had revealed complex morphologies with sizes up to 100 kpc, possibly connected to outflows and AGN feedback from the central regions. The outer regions of these halos show quiet kinematics with typical velocity dispersions of a few hundred km s{sup -1}, and velocity shears that can mostly be interpreted as being due to rotation. The inner regions show shocked cocoons of gas closely associated with the radio lobes. These display disturbed kinematics and have expansion velocities and/or velocity dispersions >1000 km s{sup -1}. The core region is chemically evolved, and we also find spectroscopic evidence for the ejection of enriched material in 4C 41.17 up to a distance of {approx} 60 kpc along the radio-axis. The dynamical structures traced in the Ly{alpha} line are, in most cases, closely echoed in the Carbon and Oxygen lines. This shows that the Ly{alpha} line is produced in a highly clumped medium of small filling factor, and can therefore be used as a tracer of the dynamics of HzRGs. We conclude that these HzRGs are undergoing a final jet-induced phase of star formation with ejection of most of their interstellar medium before becoming 'red and dead' Elliptical galaxies.

  1. Normal Spiral Galaxies Really Do Have Hot Gas in Their Halos: Chandra Observations of NGC 4013 and NGC 4217.

    Science.gov (United States)

    Strickland, D. K.; Colbert, E. J. M.; Heckman, T. M.; Hoopes, C. G.; Howk, J. C.; Rand, R. J.

    2004-08-01

    Although soft X-ray emission from million degree plasma has long been observed in the halos of starburst galaxies known to have supernova-driven galactic superwinds, X-ray observations have generally failed to detect hot halos around normal spiral galaxies. Indeed, the Milky Way and NGC 891 have historically been the only genuinely "normal" spiral galaxies with unambiguous X-ray halo detections, until now. Here we report on deep observations of NGC 4013 and NGC 4217, two Milky-Way-mass spiral galaxies with star formation rates per unit area similar to the Milky Way and NGC 891, using the Chandra X-ray observatory. Preliminary investigation of the observations clearly show extra-planar diffuse X-ray emission extending several kpc into the halo of NGC 4013. We will present the results of these observations, compare them to the non-detections of hot gas around normal spirals, and relate them to galactic fountain and IGM accretion based models for hot halos. DKS acknowledges funding from NASA through the Smithsonian Astrophysical Observatory. grant G045095X.

  2. Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies

    Science.gov (United States)

    Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.

    2018-04-01

    We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has an 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has a ˜13 Gyr old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyrs ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical AGN feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot halos around such massive galaxies and the growth of super/over-massive black holes via chaotic cold accretion.

  3. The Hot ISM of Normal Galaxies

    Science.gov (United States)

    Fabbiano, Giuseppina

    1999-01-01

    X-ray observations of galaxies have shown the presence of hot ISM and gaseous halos. The most spectacular examples am in early-type galaxies (E and S0), and in galaxies hosting intense starforming regions. This talk will review the observational evidence and highlight the outstanding issues in our understanding of this gaseous component, with emphasis on our present understanding of the chemical composition of these hot halos. It will address how Chandra, XMM, and future X-ray missions can address these studies.

  4. On the origin of the warm-hot absorbers in the Milky Way's halo

    NARCIS (Netherlands)

    Marasco, A.; Marinacci, F.; Fraternali, F.

    2013-01-01

    Disc galaxies like the Milky Way are expected to be surrounded by massive coronae of hot plasma that may contain a significant fraction of the so-called missing baryons. We investigate whether the local (vertical bar v(LSR)vertical bar <400 km s(-1)) warm-hot absorption features observed towards

  5. Properties of hot gas in halos of active galaxies and clusters of galaxies

    International Nuclear Information System (INIS)

    Durret-Isnard, F.

    1982-05-01

    The importance of the inverse Compton effect in the X-ray emission of cluster galaxies is discussed; the X-ray origin problem from galaxy clusters (spectra and emission mechanisms) is studied. The insufficiency of the X-ray bremsstrahlung emission model in an isothermal gas is proved. The ionized halos in narrow-line galaxies (NLG) are studied; after some general points on NLG, one NLG is described and a brief view an emission mechanism models is given; a detailed study of the galaxy IC 5063 and its nebulosity is given: the ionized gas density is calculated together with the evaporation rate for such clouds [fr

  6. Gaseous nebulae

    International Nuclear Information System (INIS)

    Williams, R.E.

    1976-01-01

    Gaseous nebulae are large, tenuous clouds of ionized gas that are associated with hot stars and that emit visible light because of the energy that they receive from the ultraviolet radiation of the stars. Examples include H II regions, planetary nebulae, and nova/supernova remnants. The emphasis is on the physical processes that occur in gaseous nebulae as opposed to a study of the objects themselves. The introduction discusses thermodynamic vs. steady-state equilibrium and excitation conditions in a dilute radiation field. Subsequent sections take up important atomic processes in gaseous nebulae (particle--particle collision rates, radiative interaction rates, cross sections), the ionization equilibrium (sizes of H II regions, ionization of the heavier elements), kinetic temperature and energy balance (heating of the electrons, cooling of the electrons), and the spectra of gaseous nebulae (line fluxes in nebulae). 7 figures, 5 tables

  7. Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and clusters of galaxies

    Science.gov (United States)

    Mernier, F.; de Plaa, J.; Werner, N.; Kaastra, J. S.; Raassen, A. J. J.; Gu, L.; Mao, J.; Urdampilleta, I.; Truong, N.; Simionescu, A.

    2018-05-01

    X-ray measurements find systematically lower Fe abundances in the X-ray emitting haloes pervading groups (kT ≲ 1.7 keV) than in clusters of galaxies. These results have been difficult to reconcile with theoretical predictions. However, models using incomplete atomic data or the assumption of isothermal plasmas may have biased the best fit Fe abundance in groups and giant elliptical galaxies low. In this work, we take advantage of a major update of the atomic code in the spectral fitting package SPEX to re-evaluate the Fe abundance in 43 clusters, groups, and elliptical galaxies (the CHEERS sample) in a self-consistent analysis and within a common radius of 0.1r500. For the first time, we report a remarkably similar average Fe enrichment in all these systems. Unlike previous results, this strongly suggests that metals are synthesised and transported in these haloes with the same average efficiency across two orders of magnitude in total mass. We show that the previous metallicity measurements in low temperature systems were biased low due to incomplete atomic data in the spectral fitting codes. The reasons for such a code-related Fe bias, also implying previously unconsidered biases in the emission measure and temperature structure, are discussed.

  8. Stable hydrostatic equilibrium configurations of the galaxy and implications for its halo

    International Nuclear Information System (INIS)

    Bloemen, J.B.G.M.

    1987-01-01

    Using a variety of observations, it is shown that the gaseous, magnetic field, and cosmic-ray components in the local region of the Galaxy may be in a large-scale hydrostatic equilibrium that is stable against Parker-type instabilities. Lower limits for the density of the halo are derived as a function of its scale height. The temperature of the hot medium in the disk and at large distances from the plane is found to be typically about a million K in a stable equilibrium, whereas around z roughly 1-3 kpc the temperature could be only 200,000-300,000 K. The scale height of the sum of cosmic-ray and magnetic field pressures in a stable hydrostatic equilibrium state is found to be only weakly dependent on the scale height of the gaseous halo. 109 references

  9. A high spatial resolution X-ray and Hα study of hot gas in the halos of star-forming disk galaxies -- testing feedback models

    Science.gov (United States)

    Strickland, D. K.; Heckman, T. M.; Colbert, E. J. M.; Hoopes, C. G.; Weaver, K. A.

    2002-12-01

    We present arcsecond resolution Chandra X-ray and ground-based optical Hα imaging of a sample of ten edge-on star-forming disk galaxies (seven starburst and three ``normal'' spiral galaxies), a sample which covers the full range of star-formation intensity found in disk galaxies. The X-ray observations make use of the unprecented spatial resolution of the Chandra X-ray observatory to robustly remove X-ray emission from point sources, and hence obtain the X-ray properties of the diffuse thermal emission alone. This data has been combined with existing, comparable-resolution, ground-based Hα imaging. We compare these empirically-derived diffuse X-ray properties with various models for the generation of hot gas in the halos of star-forming galaxies: supernova feedback-based models (starburst-driven winds, galactic fountains), cosmologically-motivated accretion of the IGM and AGN-driven winds. SN feedback models best explain the observed diffuse X-ray emission. We then use the data to test basic, but fundamental, aspects of wind and fountain theories, e.g. the critical energy required for disk "break-out." DKS is supported by NASA through Chandra Postdoctoral Fellowship Award Number PF0-10012.

  10. A study of the effects of changing burn-up and gap gaseous compound on the gap convection coefficient (in a hot fuel pin) in VVER-1000 reactor

    International Nuclear Information System (INIS)

    Rahgoshay, M.; Rahmani, Y.

    2007-01-01

    In this article we worked on the result and process of calculation of the gap heat transfer coefficient for a hot fuel pin in accordance with burn-up changes in the VVER-1000 reactor at the Bushehr nuclear power plant (Iran). With regard to the fact that in calculating the fuel gap heat transfer coefficient, various parameters are effective and the need for designing a model is being felt, therefore, in this article we used Ross and Stoute gap model to study impacts of different effective parameters such as thermal expansion and gaseous fission products on the h gap change rate. Over time and with changes in fuel burn-up some gaseous fission products such as xenon, argon and krypton gases are released to the gas mixture in the gap, which originally contained helium. In this study, the composition of gaseous elements in the gap volume during different times of reactor operation was found using ORIGEN code. Considering that the thermal conduction of these gases is lower than that of helium, and by using the Ross and Stoute gap model, we find first that the changes in gaseous compounds in the gap reduce the values of gap thermal conductivity coefficient, but considering thermal expansion (due to burn-up alterations) of fuel and clad resulting in the reduction of gap thickness we find that the gap heat transfer coefficient will augment in a broad range of burn-up changes. These changes result in a higher rate of gap thickness reduction than the low rate of decrease of heat conduction coefficient of the gas in the gap during burn-up. Once these changes have been defined, we can proceed with the analysis of the results of calculations based on the Ross and Stoute model and compare the results obtained with the experimental results for a hot fuel pin as presented in the final safety analysis report of the VVER-1000 reactor at Bushehr. It is noteworthy that the results of accomplished calculations based on the Ross and Stoute model correspond well with the existing

  11. Hot gas filtration: Investigations to remove gaseous pollutant components out of flue gas during hot gas filtration. Final report; HGR: Untersuchung zur Minimierung von gasfoermigen Schadstoffen aus Rauchgasen bei der Heissgasfiltration. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Christ, A; Gross, R; Renz, U

    1998-07-01

    Power plants with gas and steam turbines in pressurized fluidized bed or pressurized gasification processes enable power generation of coal with high efficiency and little emissions. To run these plants the cleaning of the flue gas is necessary before entering the turbines under the conditions of high temperature and pressure. Ceramic filter elements are the most probable method for hot gas cleaning. A simultaneous reduction of gaseous pollutant components under these conditions could help to make the whole process more efficient. The aim of the project is to integrate the catalytic reduction of carbon monoxide, hydrocarbons and nitric oxides into the hot gas filtration with ceramic filter elements as a one step mecanism. The project is focused on: - the catalytic behaviour of ferruginous ashes of brown coal, - the effectiveness of calcinated aluminates as a catalyst to remove uncombusted hydrocarbons in a hot gas filtration unit, - numerical simulation of the combined removal of particles and gaseous pollutant components out of the flue gas. (orig.) [Deutsch] Gas- und Dampfturbinen-Kraftwerke mit Druckwirbelschicht- oder mit Druckvergasungsverfahren ermoeglichen die Verstromung von Kohle mit hohem Wirkungsgrad und niedrigen Emissionen. Eine Voraussetzung fuer den Betrieb dieser Anlagen ist die Entstaubung der Rauchgase bei hohen Temperaturen und Druecken. Abreinigungsfilter mit keramischen Elementen werden dazu eingesetzt. Eine Reduzierung gasfoermiger Schadstoffe unter den gleichen Bedingungen koennte die Rauchgaswaesche ersetzen. Ziel des Gesamtvorhabens ist es, die Integration von Heissgasfiltration und katalytischem Abbau der Schadstoffe Kohlenmonoxid, Kohlenwasserstoffe und Stickoxide in einem Verfahrensschritt zu untersuchen. Die Arbeitsschwerpunkte dieses Teilvorhabens betreffen - die katalytische Wirkung eisenhaltiger Braunkohlenaschen, - die Wirksamkeit des Calciumaluminats als Katalysator des Abbaus unverbrannter Kohlenwasserstoffe im Heissgasfilter

  12. The COS-Halos survey: physical conditions and baryonic mass in the low-redshift circumgalactic medium

    International Nuclear Information System (INIS)

    Werk, Jessica K.; Prochaska, J. Xavier; Tejos, Nicolas; Tumlinson, Jason; Peeples, Molly S.; Fox, Andrew J.; Thom, Christopher; Bordoloi, Rongmon; Tripp, Todd M.; Katz, Neal; Lehner, Nicolas; O'Meara, John M.; Ford, Amanda Brady; Oppenheimer, Benjamin D.; Davé, Romeel; Weinberg, David H.

    2014-01-01

    We analyze the physical conditions of the cool, photoionized (T ∼10 4 K) circumgalactic medium (CGM) using the COS-Halos suite of gas column density measurements for 44 gaseous halos within 160 kpc of L ∼ L* galaxies at z ∼ 0.2. These data are well described by simple photoionization models, with the gas highly ionized (n H II /n H ≳ 99%) by the extragalactic ultraviolet background. Scaling by estimates for the virial radius, R vir , we show that the ionization state (tracked by the dimensionless ionization parameter, U) increases with distance from the host galaxy. The ionization parameters imply a decreasing volume density profile n H = (10 –4.2±0.25 )(R/R vir ) –0.8±0.3 . Our derived gas volume densities are several orders of magnitude lower than predictions from standard two-phase models with a cool medium in pressure equilibrium with a hot, coronal medium expected in virialized halos at this mass scale. Applying the ionization corrections to the H I column densities, we estimate a lower limit to the cool gas mass M CGM cool >6.5×10 10 M ☉ for the volume within R < R vir . Allowing for an additional warm-hot, O VI-traced phase, the CGM accounts for at least half of the baryons purported to be missing from dark matter halos at the 10 12 M ☉ scale.

  13. Exotic nuclei: Halos

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Nigel [Lab. de Physique Corpusculaire, Caen Univ., 14 (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    A brief overview of the nuclear halo is presented. Following some historical remarks the general characteristics of the halo systems are discussed with reference to a simple model. The conditions governing the formation of halos are also explored, as are two subjects of current interest - low-lying resonances of halo nucleon correlations. (author) 54 refs., 16 figs., 1 tabs.

  14. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Jürg; Wadsley, James; Moustakas, Leonidas A.

    2013-01-01

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ∼70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by λ ∼ 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  15. Gaseous Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of

  16. The COS-Halos survey: physical conditions and baryonic mass in the low-redshift circumgalactic medium

    Energy Technology Data Exchange (ETDEWEB)

    Werk, Jessica K.; Prochaska, J. Xavier; Tejos, Nicolas [UCO/Lick Observatory, University of California, Santa Cruz, CA (United States); Tumlinson, Jason; Peeples, Molly S.; Fox, Andrew J.; Thom, Christopher; Bordoloi, Rongmon [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD (United States); Tripp, Todd M.; Katz, Neal [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Lehner, Nicolas [Department of Physics and Astronomy, University of Notre Dame, South Bend, IN (United States); O' Meara, John M. [Department of Chemistry and Physics, Saint Michael' s College, Colchester, VT (United States); Ford, Amanda Brady [Astronomy Department, University of Arizona, Tucson, AZ 85721 (United States); Oppenheimer, Benjamin D. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Weinberg, David H., E-mail: jwerk@ucolick.org [Department of Astronomy, The Ohio State University, Columbus, OH (United States)

    2014-09-01

    We analyze the physical conditions of the cool, photoionized (T ∼10{sup 4} K) circumgalactic medium (CGM) using the COS-Halos suite of gas column density measurements for 44 gaseous halos within 160 kpc of L ∼ L* galaxies at z ∼ 0.2. These data are well described by simple photoionization models, with the gas highly ionized (n {sub H} {sub II}/n {sub H} ≳ 99%) by the extragalactic ultraviolet background. Scaling by estimates for the virial radius, R {sub vir}, we show that the ionization state (tracked by the dimensionless ionization parameter, U) increases with distance from the host galaxy. The ionization parameters imply a decreasing volume density profile n {sub H} = (10{sup –4.2±0.25})(R/R {sub vir}){sup –0.8±0.3}. Our derived gas volume densities are several orders of magnitude lower than predictions from standard two-phase models with a cool medium in pressure equilibrium with a hot, coronal medium expected in virialized halos at this mass scale. Applying the ionization corrections to the H I column densities, we estimate a lower limit to the cool gas mass M{sub CGM}{sup cool}>6.5×10{sup 10} M {sub ☉} for the volume within R < R {sub vir}. Allowing for an additional warm-hot, O VI-traced phase, the CGM accounts for at least half of the baryons purported to be missing from dark matter halos at the 10{sup 12} M {sub ☉} scale.

  17. Hydrogenating gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nicolardot, P L.F.

    1930-08-06

    Gaseous hydrocarbons obtained by the destructive distillation of carbonaceous materials are simultaneously desulfurized and hydrogenated by passing them at 350 to 500/sup 0/C, mixed with carbon monoxide and water vapor over lime mixed with metallic oxides present in sufficient amount to absorb the carbon dioxide as it is formed. Oxides of iron, copper, silver, cobalt, and metals of the rare earths may be used and are mixed with the lime to form a filling material of small pieces filling the reaction vessel which may have walls metallized with copper and zinc dust. The products are condensed and fixed with absorbents, e.g. oils, activated carbon, silica gels. The metallic masses may be regenerated by a hot air stream and by heating in inert gases.

  18. Chataika Halo.pmd

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    INHERITANCE OF HALO BLIGHT RESISTANCE IN COMMON BEAN ... pv phaseolicola (Psp) is a serious seed-borne disease of common bean ... a toxin produced by the Psp bacterium when ... stakes or in association with maize for support.

  19. Baryonic pinching of galactic dark matter halos

    International Nuclear Information System (INIS)

    Gustafsson, Michael; Fairbairn, Malcolm; Sommer-Larsen, Jesper

    2006-01-01

    High resolution cosmological N-body simulations of four galaxy-scale dark matter halos are compared to corresponding N-body/hydrodynamical simulations containing dark matter, stars and gas. The simulations without baryons share features with others described in the literature in that the dark matter density slope continuously decreases towards the center, with a density ρ DM ∝r -1.3±0.2 , at about 1% of the virial radius for our Milky Way sized galaxies. The central cusps in the simulations which also contain baryons steepen significantly, to ρ DM ∝r -1.9±0.2 , with an indication of the inner logarithmic slope converging. Models of adiabatic contraction of dark matter halos due to the central buildup of stellar/gaseous galaxies are examined. The simplest and most commonly used model, by Blumenthal et al., is shown to overestimate the central dark matter density considerably. A modified model proposed by Gnedin et al. is tested and it is shown that, while it is a considerable improvement, it is not perfect. Moreover, it is found that the contraction parameters in their model not only depend on the orbital structure of the dark-matter-only halos but also on the stellar feedback prescription which is most relevant for the baryonic distribution. Implications for dark matter annihilation at the galactic center are discussed and it is found that, although our simulations show a considerable reduced dark matter halo contraction as compared to the Blumenthal et al. model, the fluxes from dark matter annihilation are still expected to be enhanced by at least a factor of a hundred, as compared to dark-matter-only halos. Finally, it is shown that, while dark-matter-only halos are typically prolate, the dark matter halos containing baryons are mildly oblate with minor-to-major axis ratios of c/a=0.73±0.11, with their flattening aligned with the central baryonic disks

  20. Halos and related structures

    DEFF Research Database (Denmark)

    Riisager, Karsten

    2013-01-01

    The halo structure originated from nuclear physics but is now encountered more widely. It appears in loosely bound, clustered systems where the spatial extension of the system is significantly larger than that of the binding potentials. A review is given on our current understanding of these stru......The halo structure originated from nuclear physics but is now encountered more widely. It appears in loosely bound, clustered systems where the spatial extension of the system is significantly larger than that of the binding potentials. A review is given on our current understanding...... of these structures, with an emphasis on how the structures evolve as more cluster components are added and on the experimental situation concerning halo states in light nuclei....

  1. HALO | Arts at CERN

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2018-01-01

    In 2015, the artists participated in a research residency at CERN and began to work with data captured by ATLAS, one of the four detectors at the Large Hadron Collider (LHC) that sits in a cavern 100 metres below ground near the main site of CERN, in Meyrin (Switzerland). For Art Basel, they created HALO, an installation that surrounds visitors with data collected by the ATLAS experiment at the LHC. HALO consists of a 10 m wide cylinder defined by vertical piano wires, within which a 4-m tall screen displays particle collisions. The data also triggers hammers that strike the vertical wires and set up vibrations to create a truly multisensory experience. More info: https://arts.cern/event/unveiling-halo-art-basel

  2. Weighing halo nuclides

    International Nuclear Information System (INIS)

    Lunney, D.

    2009-01-01

    Weak binding energy is one of the fundamental criteria characterizing the unique properties of nuclear halos. As such, it must be known with great accuracy and is best obtained through direct mass measurements. The global mass market is now a competitive one. Of the many investment vehicles, the Penning trap has emerged as providing the best rate of return and reliability. We examine mass-market trends, highlighting the recent cases of interest. We also hazard a prediction for the halo futures market. (author)

  3. Spectrum of Sprite Halos

    Czech Academy of Sciences Publication Activity Database

    Gordillo-Vázquez, F.J.; Luque, A.; Šimek, Milan

    2011-01-01

    Roč. 116, č. 9 (2011), A09319-A09319 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z20430508 Keywords : sprites * halos * spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.021, year: 2011 http://www.trappa.iaa.es/sites/all/files/papers/isi_journal_papers/2011/2011_08.pdf

  4. Halo Emission of the Cat's Eye Nebula, NGC 6543 Shock Excitation by Fast Stellar Winds

    Directory of Open Access Journals (Sweden)

    Siek Hyung

    2002-09-01

    Full Text Available Images taken with the Chandra X-ray telescope have for the the first time revealed the central, wind-driven, hot bubble (Chu et al. 2001, while Hubble Space Telescope (HST WFPC2 images of the Cat's Eye nebula, NGC 6543, show that the temperature of the halo region of angular radius ~ 20'', is much higher than that of the inner bright H II region. With the coupling of a photoionization calculation to a hydrodynamic simulation, we predict the observed [O III] line intensities of the halo region with the same O abundance as in the core H II region: oxygen abundance gradient does not appear to exist in the NGC 6543 inner halo. An interaction between a (leaky fast stellar wind and halo gas may cause the higher excitation temperatures in the halo region and the inner hot bubble region observed with the Chandra X-ray telescope.

  5. PROBING THE STRUCTURE AND KINEMATICS OF THE TRANSITION LAYER BETWEEN THE MAGELLANIC STREAM AND THE HALO IN H I

    International Nuclear Information System (INIS)

    Nigra, Lou; Stanimirović, Snežana; Gallagher, John S. III; Wood, Kenneth; Nidever, David; Majewski, Steven

    2012-01-01

    The Magellanic Stream (MS) is a nearby laboratory for studying the fate of cool gas streams injected into a gaseous galactic halo. We investigate properties of the boundary layer between the cool MS gas and the hot Milky Way halo with 21 cm H I observations of a relatively isolated cloud having circular projection in the northern MS. Through averaging and modeling techniques, our observations, obtained with the Robert C. Byrd Green Bank Telescope, reach unprecedented 3σ sensitivity of ∼1 × 10 17 cm –2 , while retaining the telescope's 9.'1 resolution in the essential radial dimension. We find an envelope of diffuse neutral gas with FWHM of 60 km s –1 , associated in velocity with the cloud core having FWHM of 20 km s –1 , extending to 3.5 times the core radius with a neutral mass seven times that of the core. We show that the envelope is too extended to represent a conduction-dominated layer between the core and the halo. Its observed properties are better explained by a turbulent mixing layer driven by hydrodynamic instabilities. The fortuitous alignment of the NGC 7469 background source near the cloud center allows us to combine UV absorption and H I emission data to determine a core temperature of 8350 ± 350 K. We show that the H I column density and size of the core can be reproduced when a slightly larger cloud is exposed to Galactic and extragalactic background ionizing radiation. Cooling in the large diffuse turbulent mixing layer envelope extends the cloud lifetime by at least a factor of two relative to a simple hydrodynamic ablation case, suggesting that the cloud is likely to reach the Milky Way disk.

  6. Tracking the LHC halo

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In the LHC, beams of 25-ns-spaced proton bunches travel at almost the speed of light and pass through many different devices installed along the ring that monitor their properties. During their whirling motion, beam particles might interact with the collimation instrumentation or with residual gas in the vacuum chambers and this creates the beam halo – an annoying source of background for the physics data. Newly installed CMS sub-detectors are now able to monitor it.   The Beam Halo Monitors (BHM) are installed around the CMS rotating shielding. The BHM are designed and built by University of Minnesota, CERN, Princeton University, INFN Bologna and the National Technical University of Athens. (Image: Andrea Manna). The Beam Halo Monitor (BHM) is a set of 20 Cherenkov radiators – 10-cm-long quartz crystals – installed at each end of the huge CMS detector. Their design goal is to measure the particles that can cause the so-called “machine-induced...

  7. Halo Star Lithium Depletion

    International Nuclear Information System (INIS)

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-01-01

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  8. Tune-Based Halo Diagnostics

    International Nuclear Information System (INIS)

    Cameron, Peter

    2003-01-01

    Tune-based halo diagnostics can be divided into two categories -- diagnostics for halo prevention, and diagnostics for halo measurement. Diagnostics for halo prevention are standard fare in accumulators, synchrotrons, and storage rings, and again can be divided into two categories -- diagnostics to measure the tune distribution (primarily to avoid resonances), and diagnostics to identify instabilities (which will not be discussed here). These diagnostic systems include kicked (coherent) tune measurement, phase-locked loop (PLL) tune measurement, Schottky tune measurement, beam transfer function (BTF) measurements, and measurement of transverse quadrupole mode envelope oscillations. We refer briefly to tune diagnostics used at RHIC and intended for the SNS, and then present experimental results. Tune-based diagnostics for halo measurement (as opposed to prevention) are considerably more difficult. We present one brief example of tune-based halo measurement

  9. Gaseous poison injection device

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko; Inada, Ikuo.

    1983-01-01

    Purpose: To rapidly control the chain reaction due to thermal neutrons in a reactor core by using gaseous poisons as back-up means for control rod drives. Constitution: Gaseous poisons having a large neutron absorption cross section are used as back-up means for control rod drives. Upon failure of control rod insertion, the gaseous poisons are injected into the lower portion of the reactor core to control the reactor power. As the gaseous poisons, vapors at a high temperature and a higher pressure than that of the coolants in the reactor core are injected to control the reactor power due to the void effects. Since the gaseous poisons thus employed rapidly reach the reactor core and form gas bubbles therein, the deccelerating effect of the thermal neutrons is decreased to reduce the chain reaction. (Moriyama, K.)

  10. Development of gaseous photomultiplier

    International Nuclear Information System (INIS)

    Tokanai, F.; Sumiyoshi, T.; Sugiyama, H.; Okada, T.

    2014-01-01

    We have been developing gaseous photomultiplier tubes (PMTs) with alkali photocathode combined with micropattern gas detectors (MPGDs). The potential advantage of the gaseous PMT is that it can achieve a very large effective area with adequate position and timing resolutions. In addition, it will be easily operated under a very high magnetic field, compared with the conventional vacuum-based PMT. To evaluate the gaseous PMTs filled with Ne and Ar based gas mixture, we have developed gaseous PMTs with an alkali photocathode combined with MPGDs such as a glass capillary plate, GEM, and Micromegas detector. We describe the recent development of the gaseous PMTs, particularly the production of the photocathode, gas gain, ion and photon feedbacks, quantum efficiency, and the characteristics in the magnetic field environment. (author)

  11. HALOE test and evaluation software

    Science.gov (United States)

    Edmonds, W.; Natarajan, S.

    1987-01-01

    Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.

  12. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  13. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  14. The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth

    Science.gov (United States)

    Zentner, Andrew R.

    I review the excursion set theory with particular attention toward applications to cold dark matter halo formation and growth, halo abundance, and halo clustering. After a brief introduction to notation and conventions, I begin by recounting the heuristic argument leading to the mass function of bound objects given by Press and Schechter. I then review the more formal derivation of the Press-Schechter halo mass function that makes use of excursion sets of the density field. The excursion set formalism is powerful and can be applied to numerous other problems. I review the excursion set formalism for describing both halo clustering and bias and the properties of void regions. As one of the most enduring legacies of the excursion set approach and one of its most common applications, I spend considerable time reviewing the excursion set theory of halo growth. This section of the review culminates with the description of two Monte Carlo methods for generating ensembles of halo mass accretion histories. In the last section, I emphasize that the standard excursion set approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and open excursion set theory to new applications. One such assumption is that the height of the barriers that define collapsed objects is a constant function of scale. I illustrate the implementation of the excursion set approach for barriers of arbitrary shape. One such application is the now well-known improvement of the excursion set mass function derived from the "moving" barrier for ellipsoidal collapse. I also emphasize that the statement that halo accretion histories are independent of halo environment in the excursion set approach is not a general prediction of the theory. It is a simplifying assumption. I review the method for constructing correlated random walks of the density field in the more general case. I construct a simple toy model to illustrate that excursion set

  15. Localized massive halo properties in BAHAMAS and MACSIS simulations: scalings, log-normality, and covariance

    Science.gov (United States)

    Farahi, Arya; Evrard, August E.; McCarthy, Ian; Barnes, David J.; Kay, Scott T.

    2018-05-01

    Using tens of thousands of halos realized in the BAHAMAS and MACSIS simulations produced with a consistent astrophysics treatment that includes AGN feedback, we validate a multi-property statistical model for the stellar and hot gas mass behavior in halos hosting groups and clusters of galaxies. The large sample size allows us to extract fine-scale mass-property relations (MPRs) by performing local linear regression (LLR) on individual halo stellar mass (Mstar) and hot gas mass (Mgas) as a function of total halo mass (Mhalo). We find that: 1) both the local slope and variance of the MPRs run with mass (primarily) and redshift (secondarily); 2) the conditional likelihood, p(Mstar, Mgas| Mhalo, z) is accurately described by a multivariate, log-normal distribution, and; 3) the covariance of Mstar and Mgas at fixed Mhalo is generally negative, reflecting a partially closed baryon box model for high mass halos. We validate the analytical population model of Evrard et al. (2014), finding sub-percent accuracy in the log-mean halo mass selected at fixed property, ⟨ln Mhalo|Mgas⟩ or ⟨ln Mhalo|Mstar⟩, when scale-dependent MPR parameters are employed. This work highlights the potential importance of allowing for running in the slope and scatter of MPRs when modeling cluster counts for cosmological studies. We tabulate LLR fit parameters as a function of halo mass at z = 0, 0.5 and 1 for two popular mass conventions.

  16. El halo de la memoria

    OpenAIRE

    GAVINO ROSELLÓ, AARÓN

    2017-01-01

    The halo effect is one of the most classic cognitive biases of psychology, and one that we can observe frequently in everyday life. It consists in the realization of an erroneous generalization from a single characteristic or quality of an object or a person, that is, we make a previous judgment from which, we generalize the rest of characteristics. The halo effect manifests itself as continuous in our life. For example, if someone is very handsome or attractive we attribute another series...

  17. Neutron halos in hypernuclei

    CERN Document Server

    Lue, H F; Meng, J; Zhou, S G

    2003-01-01

    Properties of single-LAMBDA and double-LAMBDA hypernuclei for even-N Ca isotopes ranging from the proton dripline to the neutron dripline are studied using the relativistic continuum Hartree-Bogolyubov theory with a zero-range pairing interaction. Compared with ordinary nuclei, the addition of one or two LAMBDA-hyperons lowers the Fermi level. The predicted neutron dripline nuclei are, respectively, sup 7 sup 5 subLAMBDA Ca and sup 7 sup 6 sub 2 subLAMBDA Ca, as the additional attractive force provided by the LAMBDA-N interaction shifts nuclei from outside to inside the dripline. Therefore, the last bound hypernuclei have two more neutrons than the corresponding ordinary nuclei. Based on the analysis of two-neutron separation energies, neutron single-particle energy levels, the contribution of continuum and nucleon density distribution, giant halo phenomena due to the pairing correlation, and the contribution from the continuum are suggested to exist in Ca hypernuclei similar to those that appear in ordinary ...

  18. Halo modelling in chameleon theories

    Energy Technology Data Exchange (ETDEWEB)

    Lombriser, Lucas; Koyama, Kazuya [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Li, Baojiu, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: baojiu.li@durham.ac.uk [Institute for Computational Cosmology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom)

    2014-03-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.

  19. Halo modelling in chameleon theories

    International Nuclear Information System (INIS)

    Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu

    2014-01-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations

  20. Fluorosis: halo effect

    International Nuclear Information System (INIS)

    Diaz Madriz, Jose Esteban; Granados Quesada, Maria Pamela; Lopez Chacon, Angelica Maria; Monge Cantillo, Carol Paola; Munoz Aguero, Geiner Andres; Vargas Vargas, Jorge Andres

    2013-01-01

    The halo effect was determined from the consumption of potatoes from Tierra Blanca de Cartago and Palmira de Zarcero. Seminars were held to get to know the topic of fluorosis. A mini health fair was held to explain the effects of fluoride in a population affected by it. Samples of water and forest type potato were collected in the area of Zarcero and San Juan de Chicoa. Measurements of the samples were made in the Chemistry Laboratory of the Universidad de Costa Rica. 20 mg of potato from each zone and 80 ml of distilled water were weighed and then liquefied. Each shake was dispensed in 2 clean test tubes and 7 samples were obtained, of which, 2 test tubes contained the liquefied 1, 2 tubes the liquefied 2, 1 tube with the Rio Reventado water centrifuged. 1 tube with Zarcero irrigation water and 1 tube with distilled water, for the subsequent analysis of fluoride concentration. The samples were taken to the LAMBDA Chemical Laboratory, where the ion chromatography test was performed on each of the samples. A concentration of fluorides of 0.73 ppm was obtained in the water of the Rio Reventado, while a concentration of less than 0.60 ppm was obtained in the water collected in Zarcero. The highest concentration of fluoride was presented in the potato from the area of Palmira de Zarcero with 2.41 ppm compared to that obtained in Cartago, with a lower concentration of 1.34 ppm. The maximum recommended concentration was exceeded in both results. A concentration less than 0.02 ppm was obtained in the analysis of distilled water as a control test [es

  1. Gaseous waste processing facility

    International Nuclear Information System (INIS)

    Konno, Masanobu; Uchiyama, Yoshio; Suzuki, Kunihiko; Kimura, Masahiro; Kawabe, Ken-ichi.

    1992-01-01

    Gaseous waste recombiners 'A' and 'B' are connected in series and three-way valves are disposed at the upstream and the downstream of the recombiners A and B, and bypass lines are disposed to the recombiners A and B, respectively. An opening/closing controller for the three-way valves is interlocked with a hydrogen densitometer disposed to a hydrogen injection line. Hydrogen gas and oxygen gas generated by radiolysis in the reactor are extracted from a main condenser and caused to flow into a gaseous waste processing system. Gaseous wastes are introduced together with overheated steams to the recombiner A upon injection of hydrogen. Both of the bypass lines of the recombiners A and B are closed, and recombining reaction for the increased hydrogen gas is processed by the recombiners A and B connected in series. In an operation mode not conducting hydrogen injection, it is passed through the bypass line of the recombiner A and processed by the recombiner B. With such procedures, the increase of gaseous wastes due to hydrogen injection can be coped with existent facilities. (I.N.)

  2. Estimating the tumble rates of galaxy halos

    International Nuclear Information System (INIS)

    Simonson, G.F.; Tohline, J.E.

    1983-01-01

    It has previously been demonstrated that cold gas in a static spheroidal galaxy will damp to a preferred plane, in which the angular momentum vector of the gas is aligned with the symmetry axis of the potential, through dissipative processes. We show now that, if the same galaxy rigidly tumbles about a nonsymmetry axis, the preferred orientation of the gas can become a permanently and smoothly warped sheet, in which rings of gas at large radii may be fully orthogonal to those near the galaxy's core. Detailed numerical orbit calculations closely match an analytic prediction made previously for the structure of the warp. This structure depends primarily on the eccentricity, density profile, and tumble rate of the spheroid. We show that the tumble rate can now be determined for a galaxy containing a significantly warped disk. Ordinary observations used in conjunction with graphs such as those we present, yield at least firm lower limits to the tumble periods of these objects. We have applied this method to the two peculiar systems NGC 5128 and NGC 2685 and found that, if they are prolate systems supporting permanently warped gaseous disks, they must tumble with periods near 5 x 10 9 yr and 2 x 10 9 yr respectively. In a preliminary investigation, we also find that the massive, unseen halos surrounding spiral galaxies must tumble with periods longer than or on the same order as those of the elliptical galaxies

  3. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    Science.gov (United States)

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    2018-03-01

    Secondary halo bias, commonly known as `assembly bias', is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalo properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. This results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.

  4. Are baryonic galactic halos possible

    International Nuclear Information System (INIS)

    Olive, K.A.; Hegyi, D.J.

    1986-01-01

    There is little doubt from the rotation curves of spiral galaxies that galactic halos must contain large amounts of dark matter. In this contribution, the authors review arguments which indicate that it is very unlikely that galactic halos contain substantial amounts of baryonic matter. While the authors would like to be able to present a single argument which would rule out baryonic matter, at the present time they are only able to present a collection of arguments each of which argues against one form of baryonic matter. These include: 1) snowballs; 2) gas; 3) low mass stars and Jupiters; 4) high mass stars; and 5) high metalicity objects such as rooks or dust. Black holes, which do not have a well defined baryon number, are also a possible candidate for halo matter. They briefly discuss black holes

  5. Halo vest effect on balance.

    Science.gov (United States)

    Richardson, J K; Ross, A D; Riley, B; Rhodes, R L

    2000-03-01

    To determine the effect of a halo vest, a cervical orthosis, on clinically relevant balance parameters. Subjects performed unipedal stance (with eyes open and closed, on both firm and soft surfaces) and functional reach, with and without the application of a halo vest. A convenience sample of 12 healthy young subjects, with an equal number of men and women. Seconds for unipedal stance (maximum 45); inches for functional reach. Both unipedal stance times and functional reach (mean +/- standard deviation) were significantly decreased with the halo vest as compared to without it (29.1+/-5.8 vs. 32.8+/-6.4 seconds, p = .002; 12.9+/-1.4 vs. 15.1+/-2.1 inches, prisk for a fall, which could have devastating consequences.

  6. Simulation of halo particles with Simpsons

    International Nuclear Information System (INIS)

    Machida, Shinji

    2003-01-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle

  7. Simulation of halo particles with Simpsons

    Science.gov (United States)

    Machida, Shinji

    2003-12-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle.

  8. Gaseous diffusion system

    International Nuclear Information System (INIS)

    Garrett, G.A.; Shacter, J.

    1978-01-01

    A gaseous diffusion system is described comprising a plurality of diffusers connected in cascade to form a series of stages, each of the diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof

  9. 2011 GASEOUS IONS GORDON RESEARCH CONFERENCE

    Energy Technology Data Exchange (ETDEWEB)

    Scott Anderson

    2011-03-04

    The Gaseous Ions: Structures, Energetics and Reactions Gordon Research Conference will focus on ions and their interactions with molecules, surfaces, electrons, and light. The conference will cover theory and experiments, and systems ranging from molecular to biological to clusters to materials. The meeting goal continues to be bringing together scientists interested in fundamentals, with those applying fundamental phenomena to a wide range of practical problems. Each of the ten conference sessions will focus on a topic within this spectrum, and there will also be poster sessions for contributed papers, with sufficient space and time to allow all participants to present their latest results. To encourage active participation by young investigators, about ten of the poster abstracts will be selected for 15 minute 'hot topic' talks during the conference sessions. Hot topic selection will be done about a month before the meeting. Funds should be available to offset the participation cost for young investigators.

  10. Non-Gaussian halo assembly bias

    International Nuclear Information System (INIS)

    Reid, Beth A.; Verde, Licia; Dolag, Klaus; Matarrese, Sabino; Moscardini, Lauro

    2010-01-01

    The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f NL , offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ∼ 23% and ∼ 48% for galaxies at z = 1 selected by stellar mass and star formation rate, respectively

  11. Halo Mitigation Using Nonlinear Lattices

    CERN Document Server

    Sonnad, Kiran G

    2005-01-01

    This work shows that halos in beams with space charge effects can be controlled by combining nonlinear focusing and collimation. The study relies on Particle-in-Cell (PIC) simulations for a one dimensional, continuous focusing model. The PIC simulation results show that nonlinear focusing leads to damping of the beam oscillations thereby reducing the mismatch. It is well established that reduced mismatch leads to reduced halo formation. However, the nonlinear damping is accompanied by emittance growth causing the beam to spread in phase space. As a result, inducing nonlinear damping alone cannot help mitigate the halo. To compensate for this expansion in phase space, the beam is collimated in the simulation and further evolution of the beam shows that the halo is not regenerated. The focusing model used in the PIC is analysed using the Lie Transform perturbation theory showing that by averaging over a lattice period, one can reuduce the focusing force to a form that is identical to that used in the PIC simula...

  12. A Population Study of Gaseous Exoplanets

    Science.gov (United States)

    Tsiaras, A.; Waldmann, I. P.; Zingales, T.; Rocchetto, M.; Morello, G.; Damiano, M.; Karpouzas, K.; Tinetti, G.; McKemmish, L. K.; Tennyson, J.; Yurchenko, S. N.

    2018-04-01

    We present here the analysis of 30 gaseous extrasolar planets, with temperatures between 600 and 2400 K and radii between 0.35 and 1.9 R Jup. The quality of the HST/WFC3 spatially scanned data combined with our specialized analysis tools allow us to study the largest and most self-consistent sample of exoplanetary transmission spectra to date and examine the collective behavior of warm and hot gaseous planets rather than isolated case studies. We define a new metric, the Atmospheric Detectability Index (ADI) to evaluate the statistical significance of an atmospheric detection and find statistically significant atmospheres in around 16 planets out of the 30 analyzed. For most of the Jupiters in our sample, we find the detectability of their atmospheres to be dependent on the planetary radius but not on the planetary mass. This indicates that planetary gravity plays a secondary role in the state of gaseous planetary atmospheres. We detect the presence of water vapour in all of the statistically detectable atmospheres, and we cannot rule out its presence in the atmospheres of the others. In addition, TiO and/or VO signatures are detected with 4σ confidence in WASP-76 b, and they are most likely present in WASP-121 b. We find no correlation between expected signal-to-noise and atmospheric detectability for most targets. This has important implications for future large-scale surveys.

  13. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.

  14. The halo current in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Pautasso, G.; Giannone, L.; Gruber, O.; Herrmann, A.; Maraschek, M.; Schuhbeck, K.H.

    2011-01-01

    Due to the complexity of the phenomena involved, a self-consistent physical model for the prediction of the halo current is not available. Therefore the ITER specifications of the spatial distribution and evolution of the halo current rely on empirical assumptions. This paper presents the results of an extensive analysis of the halo current measured in ASDEX Upgrade with particular emphasis on the evolution of the halo region, on the magnitude and time history of the halo current, and on the structure and duration of its toroidal and poloidal asymmetries. The effective length of the poloidal path of the halo current in the vessel is found to be rather insensitive to plasma parameters. Large values of the toroidally averaged halo current are observed in both vertical displacement events and centred disruptions but last a small fraction of the current quench; they coincide typically with a large but short-lived MHD event.

  15. The halo current in ASDEX Upgrade

    Science.gov (United States)

    Pautasso, G.; Giannone, L.; Gruber, O.; Herrmann, A.; Maraschek, M.; Schuhbeck, K. H.; ASDEX Upgrade Team

    2011-04-01

    Due to the complexity of the phenomena involved, a self-consistent physical model for the prediction of the halo current is not available. Therefore the ITER specifications of the spatial distribution and evolution of the halo current rely on empirical assumptions. This paper presents the results of an extensive analysis of the halo current measured in ASDEX Upgrade with particular emphasis on the evolution of the halo region, on the magnitude and time history of the halo current, and on the structure and duration of its toroidal and poloidal asymmetries. The effective length of the poloidal path of the halo current in the vessel is found to be rather insensitive to plasma parameters. Large values of the toroidally averaged halo current are observed in both vertical displacement events and centred disruptions but last a small fraction of the current quench; they coincide typically with a large but short-lived MHD event.

  16. Brown dwarfs as dark galactic halos

    International Nuclear Information System (INIS)

    Adams, F.C.; Walker, T.P.

    1990-01-01

    The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF. 30 refs

  17. Reionization histories of Milky Way mass halos

    International Nuclear Information System (INIS)

    Li, Tony Y.; Wechsler, Risa H.; Abel, Tom; Alvarez, Marcelo A.

    2014-01-01

    We investigate the connection between the reionization era and the present-day universe by examining the mass reionization histories of z = 0 dark matter halos. In a 600 3 Mpc 3 volume, we combine a dark matter N-body simulation with a three-dimensional seminumerical reionization model. This tags each particle with a reionization redshift, so that individual present-day halos can be connected to their reionization histories and environments. We find that the vast majority of present-day halos with masses larger than ∼ few × 10 11 M ☉ reionize earlier than the rest of the universe. We also find significant halo-to-halo diversity in mass reionization histories, and find that in realistic inhomogeneous models, the material within a given halo is not expected to reionize at the same time. In particular, the scatter in reionization times within individual halos is typically larger than the scatter among halos. From our fiducial reionization model, we find that the typical 68% scatter in reionization times within halos is ∼115 Myr for 10 12±0.25 M ☉ halos, decreasing slightly to ∼95 Myr for 10 15±0.25 M ☉ halos. We find a mild correlation between reionization history and environment: halos with shorter reionization histories are typically in more clustered environments, with the strongest trend on a scale of ∼20 Mpc. Material in Milky Way mass halos with short reionization histories is preferentially reionized in relatively large H II regions, implying reionization mostly by sources external to the progenitors of the present-day halo. We investigate the impact on our results of varying the reionization model parameters, which span a range of reionization scenarios with varying timing and morphology.

  18. On determining the sources of hot gas in the halo

    OpenAIRE

    R. L. Shelton

    2000-01-01

    El gas caliente sobre el disco gal actico representa un problema importante e interesante. >Podr a este gas haber sido lanzado desde el disco por burbujas calientes, provenir de fuera de la Galaxia o ser calentado in situ? Cada una de estas posibilidades tiene consecuencias importantes para la evoluci on de la Galaxia, por lo que es necesario tener mejores pruebas. Discutimos varios modelos sobre el origen del gas caliente, su historial de ionizaci on y su apariencia espectral...

  19. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  20. Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories

    International Nuclear Information System (INIS)

    González-Samaniego, A.; Avila-Reese, V.; Rodríguez-Puebla, A.; Valenzuela, O.; Colín, P.

    2014-01-01

    We present zoom-in N-body/hydrodynamics resimulations of dwarf galaxies formed in isolated cold dark matter (CDM) halos with the same virial mass (M v ≈ 2.5 × 10 10 M ☉ ) at redshift z = 0. Our goals are to (1) study the mass assembly histories (MAHs) of the halo, stellar, and gaseous components; and (2) explore the effects of the halo MAHs on the stellar/baryonic assembly of simulated dwarfs. Overall, the dwarfs are roughly consistent with observations. More specific results include: (1) the stellar-to-halo mass ratio remains roughly constant since z ∼ 1, i.e., the stellar MAHs closely follow halo MAHs. (2) The evolution of the galaxy gas fractions, f g , are episodic, showing that the supernova-driven outflows play an important role in regulating f g —and hence, the star formation rate (SFR)—however, in most cases, a large fraction of the gas is ejected from the halo. (3) The star formation histories are episodic with changes in the SFRs, measured every 100 Myr, of factors of 2-10 on average. (4) Although the dwarfs formed in late assembled halos show more extended SF histories, their z = 0 specific SFRs are still below observations. (5) The inclusion of baryons most of the time reduces the virial mass by 10%-20% with respect to pure N-body simulations. Our results suggest that rather than increasing the strength of the supernova-driven outflows, processes that reduce the star formation efficiency could help to solve the potential issues faced by CDM-based simulations of dwarfs, such as low values of the specific SFR and high stellar masses.

  1. Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories

    Energy Technology Data Exchange (ETDEWEB)

    González-Samaniego, A.; Avila-Reese, V.; Rodríguez-Puebla, A.; Valenzuela, O. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510 México D. F. (Mexico); Colín, P. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, A.P. 72-3 (Xangari), Morelia, Michoacán 58089 (Mexico)

    2014-04-10

    We present zoom-in N-body/hydrodynamics resimulations of dwarf galaxies formed in isolated cold dark matter (CDM) halos with the same virial mass (M{sub v} ≈ 2.5 × 10{sup 10} M {sub ☉}) at redshift z = 0. Our goals are to (1) study the mass assembly histories (MAHs) of the halo, stellar, and gaseous components; and (2) explore the effects of the halo MAHs on the stellar/baryonic assembly of simulated dwarfs. Overall, the dwarfs are roughly consistent with observations. More specific results include: (1) the stellar-to-halo mass ratio remains roughly constant since z ∼ 1, i.e., the stellar MAHs closely follow halo MAHs. (2) The evolution of the galaxy gas fractions, f{sub g} , are episodic, showing that the supernova-driven outflows play an important role in regulating f{sub g} —and hence, the star formation rate (SFR)—however, in most cases, a large fraction of the gas is ejected from the halo. (3) The star formation histories are episodic with changes in the SFRs, measured every 100 Myr, of factors of 2-10 on average. (4) Although the dwarfs formed in late assembled halos show more extended SF histories, their z = 0 specific SFRs are still below observations. (5) The inclusion of baryons most of the time reduces the virial mass by 10%-20% with respect to pure N-body simulations. Our results suggest that rather than increasing the strength of the supernova-driven outflows, processes that reduce the star formation efficiency could help to solve the potential issues faced by CDM-based simulations of dwarfs, such as low values of the specific SFR and high stellar masses.

  2. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  3. A general explanation on the correlation of dark matter halo spin with the large-scale environment

    Science.gov (United States)

    Wang, Peng; Kang, Xi

    2017-06-01

    Both simulations and observations have found that the spin of halo/galaxy is correlated with the large-scale environment, and particularly the spin of halo flips in filament. A consistent picture of halo spin evolution in different environments is still lacked. Using N-body simulation, we find that halo spin with its environment evolves continuously from sheet to cluster, and the flip of halo spin happens both in filament and nodes. The flip in filament can be explained by halo formation time and migrating time when its environment changes from sheet to filament. For low-mass haloes, they form first in sheets and migrate into filaments later, so their mass and spin growth inside filament are lower, and the original spin is still parallel to filament. For high-mass haloes, they migrate into filaments first, and most of their mass and spin growth are obtained in filaments, so the resulted spin is perpendicular to filament. Our results well explain the overall evolution of cosmic web in the cold dark matter model and can be tested using high-redshift data. The scenario can also be tested against alternative models of dark matter, such as warm/hot dark matter, where the structure formation will proceed in a different way.

  4. The LAMOST stellar spectroscopic survey and the Galactic halo

    International Nuclear Information System (INIS)

    Liu Chao; Deng Licai

    2015-01-01

    The formation and evolution of galaxies is an extremely important and fundamental question in modern astrophysics. Among the galaxies, the Milky Way is a very special sample not only because we live in it, but also because it is the only one in which we can carefully and individually observe its member stars. It has been confirmed that the Galactic halo, including both the stellar spheroid and the dark matter halo, contains fairly complicated structures, from which the overall shape, formation, and evolutionary history of our Galaxy can be unveiled. Moreover, some very rare and special stars in the Milky Way can be used as tracers to indirectly detect the core region of the Galaxy around the central super-massive black hole, which is also a hot topic of astrophysics. The LAMOST survey of the Milky Way will collect millions of stellar spectra at low wavelength resolution, making it the largest of such projects throughout the world. Its data base is very suitable for the study of the structure and evolution of the Milky Way. In this article, we report our on-going studies on the Galactic halo with LAMOST data, and present some early scientific results. (authors)

  5. Retention of gaseous isotopes

    International Nuclear Information System (INIS)

    Yarbro, O.O.; Mailen, J.C.; Stephenson, M.J.

    1977-01-01

    Retention of gaseous fission products during fuel reprocessing has, in the past, been limited to a modest retention of 131 I when processing fuels decayed less than about 180 days. The projected rapid growth of the nuclear power industry along with a desire to minimize environmental effects is leading to the reassessment of requirements for retention of gaseous fission products, including 131 I, 129 I, 85 Kr, 3 H, and 14 C. Starting in the late 1960s, a significant part of the LMFBR reprocessing development program has been devoted to understanding the behavior of gaseous fission products in plant process and effluent streams and the development of advanced systems for their removal. Systems for iodine control include methods for evolving up to 99% of the iodine from dissolver solutions to minimize its introduction and distribution throughout downstream equipment. An aqueous scrubbing system (Iodox) using 20 M HNO 3 as the scrubbing media effectively removes all significant iodine forms from off-gas streams while handling the kilogram quantities of iodine present in head-end and dissolver off-gas streams. Silver zeolite is very effective for removing iodine forms at low concentration from the larger-volume plant off-gas streams. Removal of iodine from plant liquid effluents by solid sorbents either prior to or following final vaporization appears feasible. Krypton is effectively released during dissolution and can be removed from the relatively small volume head-end and dissolver off-gas stream. Two methods appear applicable for removal and concentration of krypton: (1) selective absorption in fluorocarbons, and (2) cryogenic absorption in liquid nitrogen. The fluorocarbon absorption process appears to be rather tolerant of the normal contaminants (H 2 O, CO 2 , NOsub(x), and organics) present in typical reprocessing plant off-gas whereas the cryogenic system requires an extensive feed gas pretreatment system. Retention of tritium in a reprocessing plant is

  6. Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web

    Science.gov (United States)

    Tojeiro, Rita; Eardley, Elizabeth; Peacock, John A.; Norberg, Peder; Alpaslan, Mehmet; Driver, Simon P.; Henriques, Bruno; Hopkins, Andrew M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Thomas, Peter; Tonini, Chiara; Wild, Vivienne

    2017-09-01

    We present evidence for halo assembly bias as a function of geometric environment (GE). By classifying Galaxy and Mass Assembly (GAMA) galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with GE is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of GE. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star formation rate (SFR) and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous SFR is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star formation and chemical enrichment histories, which approximately mimic GAMA's typical signal-to-noise ratio and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.

  7. Gossip: Gaseous pixels

    Science.gov (United States)

    Koffeman, E. N.

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a 55Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  8. Gossip: Gaseous pixels

    Energy Technology Data Exchange (ETDEWEB)

    Koffeman, E.N. [Nikhef, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)], E-mail: d77@nikhef.nl

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a {sup 55}Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  9. Gossip: Gaseous pixels

    International Nuclear Information System (INIS)

    Koffeman, E.N.

    2007-01-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a 55 Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated

  10. 40 CFR 86.1238-96 - Hot soak test.

    Science.gov (United States)

    2010-07-01

    ....1238-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... as preparation for the hot soak test. (2) Gaseous-fueled vehicles. Since gaseous-fueled vehicles are.... (iii) Fresh impingers shall be installed in the methanol sample collection system immediately prior to...

  11. 40 CFR 86.138-96 - Hot soak test.

    Science.gov (United States)

    2010-07-01

    ....138-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... preparation for the hot soak test. (2) Gaseous-fueled vehicles. Since gaseous-fueled vehicles are not required.... (iii) Fresh impingers shall be installed in the methanol sample collection system immediately prior to...

  12. Evolution of hot galactic flows

    International Nuclear Information System (INIS)

    Loewenstein, M.; Mathews, W.G.

    1987-01-01

    The time-dependent equations describing galactic flows, including detailed models for the evolving source terms, are integrated over a Hubble time for two elliptical galaxies with total masses of 3.1 x 10 to the 12th and 8.3 x 10 to the 12th solar masses, 90 percent of which resides in extended, nonluminous halos. The standard supernova rate of Tammann and a rate 4 times smaller are considered for each galaxy model. The combination of the extended gravitational potential of the dark halo and the time-dependent source terms generally lead to the development of massive, quasi-hydrostatic, nearly isothermal distributions of gas at about 10 to the 7th K with cooling inflows inside their galactic cores. For the less massive galaxy with the higher supernova rate, however, a low-luminosity supersonic galactic wind develops. The effects of a lowered metal abundance, thermal conduction, and the absence of a massive halo are explored separately for one of the present models. The X-ray luminosities of the hot gas in the models with dark halos and the lower supernova rate are in good agreement with Einstein observations of early-type galaxies. 42 references

  13. Halo scale predictions of symmetron modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Clampitt, Joseph; Jain, Bhuvnesh; Khoury, Justin, E-mail: clampitt@sas.upenn.edu, E-mail: bjain@physics.upenn.edu, E-mail: jkhoury@sas.upenn.edu [Center for Particle Cosmology and Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd St., Philadelphia, PA 19104 (United States)

    2012-01-01

    We offer predictions of symmetron modified gravity in the neighborhood of realistic dark matter halos. The predictions for the fifth force are obtained by solving the nonlinear symmetron equation of motion in the spherical NFW approximation. In addition, we compare the three major known screening mechanisms: Vainshtein, Chameleon, and Symmetron around such dark matter halos, emphasizing the significant differences between them and highlighting observational tests which exploit these differences. Finally, we demonstrate the host halo environmental screening effect (''blanket screening'') on smaller satellite halos by solving for the modified forces around a density profile which is the sum of satellite and approximate host components.

  14. Unbound particles in dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

  15. Analytic modeling of axisymmetric disruption halo currents

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Kellman, A.G.

    1999-01-01

    Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in

  16. THE PSEUDO-EVOLUTION OF HALO MASS

    International Nuclear Information System (INIS)

    Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud

    2013-01-01

    A dark matter halo is commonly defined as a spherical overdensity of matter with respect to a reference density, such as the critical density or the mean matter density of the universe. Such definitions can lead to a spurious pseudo-evolution of halo mass simply due to redshift evolution of the reference density, even if its physical density profile remains constant over time. We estimate the amount of such pseudo-evolution of mass between z = 1 and 0 for halos identified in a large N-body simulation, and show that it accounts for almost the entire mass evolution of the majority of halos with M 200ρ-bar ≲ 10 12 h -1 M ☉ and can be a significant fraction of the apparent mass growth even for cluster-sized halos. We estimate the magnitude of the pseudo-evolution assuming that halo density profiles remain static in physical coordinates, and show that this simple model predicts the pseudo-evolution of halos identified in numerical simulations to good accuracy, albeit with significant scatter. We discuss the impact of pseudo-evolution on the evolution of the halo mass function and show that the non-evolution of the low-mass end of the halo mass function is the result of a fortuitous cancellation between pseudo-evolution and the absorption of small halos into larger hosts. We also show that the evolution of the low-mass end of the concentration-mass relation observed in simulations is almost entirely due to the pseudo-evolution of mass. Finally, we discuss the implications of our results for the interpretation of the evolution of various scaling relations between the observable properties of galaxies and galaxy clusters and their halo masses.

  17. UARS Halogen Occultation Experiment (HALOE) Level 2 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HALOE home page on the WWW is http://haloe.gats-inc.com/home/index.php The Halogen Occultation Experiment (HALOE) on NASA's Upper Atmosphere Research Satellite...

  18. Gaseous waste processing device

    International Nuclear Information System (INIS)

    Kubokoya, Takashi.

    1992-01-01

    In a gaseous waste processing device, if activated carbon is charged uniformly to a holdup tower, the amount of radioactive rare gases held in a first tower at the uppermost stream is increased to greater than that in other towers at the downstream since the radioactive rare gases decay in the form of an exponential function. Then in the present invention, the entire length of a plurality of activated carbon holdup towers connected in series is made longer than that of the towers in the downstream. As a result, since the amount of radioactive rare gases held in each of the holdup towers is made uniform, even if any one of connecting pipelines is ruptured, the amount of radioactive rare gases flown out is uniform. Only the body length of the holdup tower is changed because it is economical in view of the design and the manufacture of the vessel, and the cross section of the portion in which activated carbons are filled is made identical to keep the optimum flow rate of the rare gases. Thus, the radioactivity releasing amount can be minimized upon occurrence of an accident. (N.H.)

  19. Halo star streams in the solar neighborhood

    NARCIS (Netherlands)

    Kepley, Amanda A.; Morrison, Heather L.; Helmi, Amina; Kinman, T. D.; Van Duyne, Jeffrey; Martin, John C.; Harding, Paul; Norris, John E.; Freeman, Kenneth C.

    2007-01-01

    We have assembled a sample of halo stars in the solar neighborhood to look for halo substructure in velocity and angular momentum space. Our sample ( 231 stars) includes red giants, RR Lyrae variable stars, and red horizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than -1.0. It was

  20. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes

  1. THE UNORTHODOX ORBITS OF SUBSTRUCTURE HALOS

    NARCIS (Netherlands)

    Ludlow, Aaron D.; Navarro, Julio F.; Springel, Volker; Jenkins, Adrian; Frenk, Carlos S.; Helmi, Amina

    2009-01-01

    We use a suite of cosmological N-body simulations to study the properties of substructure halos (subhalos) in galaxy-sized cold dark matter halos. We extend prior work on the subject by considering the whole population of subhalos physically associated with the main system. These are defined as

  2. Efimov effect in 2-neutron halo nuclei

    Indian Academy of Sciences (India)

    This paper presents an overview of our theoretical investigations in search of Efimov states in light 2-neutron halo nuclei. The calculations have been carried out within a three-body formalism, assuming a compact core and two valence neutrons forming the halo. The calculations provide strong evidence for the occurrence ...

  3. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  4. Halo formation in three-dimensional bunches

    International Nuclear Information System (INIS)

    Gluckstern, R.L.; Fedotov, A.V.; Kurennoy, S.; Ryne, R.

    1998-01-01

    We have constructed, analytically and numerically, a class of self-consistent six-dimensional (6D) phase space stationary distributions. Stationary distributions allow us to study the halo development mechanism without it being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the formation of longitudinal and transverse halos in 3D axisymmetric beam bunches. We find that the longitudinal halo forms first for comparable longitudinal and transverse mismatches because the longitudinal tune depression is more severe than the transverse one for elongated bunches. Of particular importance is the result that, due to the coupling between longitudinal and transverse motion, a longitudinal or transverse halo is observed for a mismatch less than 10% if the mismatch in the other plane is large. copyright 1998 The American Physical Society

  5. Imbalance in the Local Galactic halo?

    International Nuclear Information System (INIS)

    Croswell, K.; Latham, D.W.; Carney, B.W.; North Carolina Univ., Chapel Hill)

    1987-01-01

    In a kinematically biased sample of 119 single halo stars, 65 percent of the stars are traveling away from the plane of the Galaxy. Halo spectroscopic binaries do not show this imbalance. Other kinematically biased halo surveys exhibit the same effect. Combining these samples with those of the authors' results in 223 halo stars, 63 percent of which are heading away from the plane of the Galaxy. The probability that the first result could be obtained from a symmetric w velocity distribution is 0.2 percent; the probability that the second result could be so obtained is 0.02 percent. Single halo stars traveling away from the disk appear to have a larger w velocity dispersion than those traveling toward it. Selection effects are analyzed and rejected as the cause of the observed asymmetry. Possible mechanisms for producing the imbalance are discussed, but each has serious difficulties accounting for the observations. 28 references

  6. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1976-01-01

    This invention relates to a process for the separation of gaseous isotopes by electrophoresis assisted by convective countercurrent flow and to an apparatus for use in the process. The invention is especially applicable to heavy water separation from steam; however, it is to be understood that the invention is broadly applicable to the separation of gaseous isotopes having different dipole moments and/or different molecular weights. (author)

  7. Halo assembly bias and the tidal anisotropy of the local halo environment

    Science.gov (United States)

    Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.

    2018-05-01

    We study the role of the local tidal environment in determining the assembly bias of dark matter haloes. Previous results suggest that the anisotropy of a halo's environment (i.e. whether it lies in a filament or in a more isotropic region) can play a significant role in determining the eventual mass and age of the halo. We statistically isolate this effect, using correlations between the large-scale and small-scale environments of simulated haloes at z = 0 with masses between 1011.6 ≲ (m/h-1 M⊙) ≲ 1014.9. We probe the large-scale environment, using a novel halo-by-halo estimator of linear bias. For the small-scale environment, we identify a variable αR that captures the tidal anisotropy in a region of radius R = 4R200b around the halo and correlates strongly with halo bias at fixed mass. Segregating haloes by αR reveals two distinct populations. Haloes in highly isotropic local environments (αR ≲ 0.2) behave as expected from the simplest, spherically averaged analytical models of structure formation, showing a negative correlation between their concentration and large-scale bias at all masses. In contrast, haloes in anisotropic, filament-like environments (αR ≳ 0.5) tend to show a positive correlation between bias and concentration at any mass. Our multiscale analysis cleanly demonstrates how the overall assembly bias trend across halo mass emerges as an average over these different halo populations, and provides valuable insights towards building analytical models that correctly incorporate assembly bias. We also discuss potential implications for the nature and detectability of galaxy assembly bias.

  8. Dark matter haloes: a multistream view

    Science.gov (United States)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-09-01

    Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.

  9. Effective field theory description of halo nuclei

    Science.gov (United States)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.

    2017-10-01

    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  10. Vacuum pumping by the halo plasma

    International Nuclear Information System (INIS)

    Barr, W.L.

    1985-01-01

    An estimate is made of the effective vacuum pumping speed of the halo plasma in a tandem mirror fusion reactor, and it is shown that, if the electron temperature and line density are great enough, the halo can be a very good vacuum pump. One can probably obtain the required density by recycling the ions at the halo dumps. An array of small venting ports in the dump plates allows local variation of the recycle fraction and local removal of the gas at a conveniently high pressure. This vented-port concept could introduce more flexibility in the design of pumped limiters for tokamaks

  11. Isospin quantum number and structure of the excited states in halo nuclei. Halo-isomers

    International Nuclear Information System (INIS)

    Izosimov, I.N.

    2015-01-01

    It has been shown that isobar-analog (IAS), double isobar-analog (DIAS), configuration (CS), and double configuration states (DCS) can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo-like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in 6-8 Li, 8-10 Be, 8,10,11 B, 10-14 C, 13-17 N, 15-17,19 O, and 17 F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure, but the excited state may have one.

  12. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  13. Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers

    Science.gov (United States)

    Yuan, Chengchao; Mészáros, Peter; Murase, Kohta; Jeong, Donghui

    2018-04-01

    The merger of dark matter halos and the gaseous structures embedded in them, such as protogalaxies, galaxies, and groups and clusters of galaxies, results in strong shocks that are capable of accelerating cosmic rays (CRs) to ≳10 PeV. These shocks will produce high-energy neutrinos and γ-rays through inelastic pp collisions. In this work, we study the contributions of these halo mergers to the diffuse neutrino flux and to the nonblazar portion of the extragalactic γ-ray background. We formulate the redshift dependence of the shock velocity, galactic radius, halo gas content, and galactic/intergalactic magnetic fields over the dark matter halo distribution up to a redshift z = 10. We find that high-redshift mergers contribute a significant amount of the CR luminosity density, and the resulting neutrino spectra could explain a large part of the observed diffuse neutrino flux above 0.1 PeV up to several PeV. We also show that our model can somewhat alleviate tensions with the extragalactic γ-ray background. First, since a larger fraction of the CR luminosity density comes from high redshifts, the accompanying γ-rays are more strongly suppressed through γγ annihilations with the cosmic microwave background and the extragalactic background light. Second, mildly radiative-cooled shocks may lead to a harder CR spectrum with spectral indices of 1.5 ≲ s ≲ 2.0. Our study suggests that halo mergers, a fraction of which may also induce starbursts in the merged galaxies, can be promising neutrino emitters without violating the existing Fermi γ-ray constraints on the nonblazar component of the extragalactic γ-ray background.

  14. Treatment of Radioactive Gaseous Waste

    International Nuclear Information System (INIS)

    2014-07-01

    Radioactive waste, with widely varying characteristics, is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. The waste needs to be treated and conditioned as necessary to provide waste forms acceptable for safe storage and disposal. Although radioactive gaseous radioactive waste does not constitute the main waste flow stream at nuclear fuel cycle and radioactive waste processing facilities, it represents a major source for potential direct environmental impact. Effective control and management of gaseous waste in both normal and accidental conditions is therefore one of the main issues of nuclear fuel cycle and waste processing facility design and operation. One of the duties of an operator is to take measures to avoid or to optimize the generation and management of radioactive waste to minimize the overall environmental impact. This includes ensuring that gaseous and liquid radioactive releases to the environment are within authorized limits, and that doses to the public and the effects on the environment are reduced to levels that are as low as reasonably achievable. Responsibilities of the regulatory body include the removal of radioactive materials within authorized practices from any further regulatory control — known as clearance — and the control of discharges — releases of gaseous radioactive material that originate from regulated nuclear facilities during normal operation to the environment within authorized limits. These issues, and others, are addressed in IAEA Safety Standards Series Nos RS-G-1.7, WS-G-2.3 and NS-G-3.2. Special systems should be designed and constructed to ensure proper isolation of areas within nuclear facilities that contain gaseous radioactive substances. Such systems consist of two basic subsystems. The first subsystem is for the supply of clean air to the facility, and the second subsystem is for the collection, cleanup and

  15. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  16. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  17. DISCOVERY OF A GIANT RADIO HALO IN A NEW PLANCK GALAXY CLUSTER PLCKG171.9-40.7

    Energy Technology Data Exchange (ETDEWEB)

    Giacintucci, Simona [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Kale, Ruta; Venturi, Tiziana [INAF-Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Wik, Daniel R.; Markevitch, Maxim, E-mail: simona@astro.umd.edu [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-03-20

    We report the discovery of a giant radio halo in a new, hot, X-ray luminous galaxy cluster recently found by Planck, PLCKG171.9-40.7. The radio halo was found using Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz, and in the 1.4 GHz data from an NRAO Very Large Array Sky Survey pointing that we have reanalyzed. The diffuse radio emission is coincident with the cluster X-ray emission, and has an extent of {approx}1 Mpc and a radio power of {approx}5 Multiplication-Sign 10{sup 24} W Hz{sup -1} at 1.4 GHz. Its integrated radio spectrum has a slope of {alpha} Almost-Equal-To 1.8 between 235 MHz and 1.4 GHz, steeper than that of a typical giant halo. The analysis of the archival XMM-Newton X-ray data shows that the cluster is hot ({approx}10 keV) and disturbed, consistent with X-ray-selected clusters hosting radio halos. This is the first giant radio halo discovered in one of the new clusters found by Planck.

  18. Remapping simulated halo catalogues in redshift space

    OpenAIRE

    Mead, Alexander; Peacock, John

    2014-01-01

    We discuss the extension to redshift space of a rescaling algorithm, designed to alter the effective cosmology of a pre-existing simulated particle distribution or catalogue of dark matter haloes. The rescaling approach was initially developed by Angulo & White and was adapted and applied to halo catalogues in real space in our previous work. This algorithm requires no information other than the initial and target cosmological parameters, and it contains no tuned parameters. It is shown here ...

  19. On physical scales of dark matter halos

    International Nuclear Information System (INIS)

    Zemp, Marcel

    2014-01-01

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

  20. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  1. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jounghun [Astronomy Program, Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747 (Korea, Republic of); Zhao, Gong-Bo [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China); Li, Baojiu [Institute of Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Koyama, Kazuya, E-mail: jounghun@astro.snu.ac.kr [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  2. Production of gaseous or vaporous fuels from solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    1951-05-16

    A process for the production of gaseous or vaporous fuels from solid carbonaceous materials consists of subjecting the materials in separate zones to at least three successive thermal treatments at least two of which are carried out at different temperature levels. The materials being maintained in zones in the form of beds of finely divided particles fluidized by the passage of gases or vapors upwardly there-through, and recovering product vapors or gases overhead. The total hot gaseous or vaporous effluent and entrained solids from one of the zones is passed directly without separation to another of the zones situated closely adjacent to and vertically above the first named zone in the same vessel, and the heat required in at least one of the thermal treatment zones is supplied at least in part as the sensible heat of residual solids transferred from a thermal treatment zone operated at a higher temperature.

  3. GALAXIES IN X-RAY GROUPS. II. A WEAK LENSING STUDY OF HALO CENTERING

    Energy Technology Data Exchange (ETDEWEB)

    George, Matthew R.; Ma, Chung-Pei [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Leauthaud, Alexie; Bundy, Kevin [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Finoguenov, Alexis [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Rykoff, Eli S. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Tinker, Jeremy L. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Massey, Richard [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Mei, Simona, E-mail: mgeorge@astro.berkeley.edu [Bureau des Galaxies, Etoiles, Physique, Instrumentation (GEPI), University of Paris Denis Diderot, F-75205 Paris Cedex 13 (France)

    2012-09-20

    Locating the centers of dark matter halos is critical for understanding the mass profiles of halos, as well as the formation and evolution of the massive galaxies that they host. The task is observationally challenging because we cannot observe halos directly, and tracers such as bright galaxies or X-ray emission from hot plasma are imperfect. In this paper, we quantify the consequences of miscentering on the weak lensing signal from a sample of 129 X-ray-selected galaxy groups in the COSMOS field with redshifts 0 < z < 1 and halo masses in the range 10{sup 13}-10{sup 14} M{sub Sun }. By measuring the stacked lensing signal around eight different candidate centers (such as the brightest member galaxy, the mean position of all member galaxies, or the X-ray centroid), we determine which candidates best trace the center of mass in halos. In this sample of groups, we find that massive galaxies near the X-ray centroids trace the center of mass to {approx}< 75 kpc, while the X-ray position and centroids based on the mean position of member galaxies have larger offsets primarily due to the statistical uncertainties in their positions (typically {approx}50-150 kpc). Approximately 30% of groups in our sample have ambiguous centers with multiple bright or massive galaxies, and some of these groups show disturbed mass profiles that are not well fit by standard models, suggesting that they are merging systems. We find that halo mass estimates from stacked weak lensing can be biased low by 5%-30% if inaccurate centers are used and the issue of miscentering is not addressed.

  4. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1975-01-01

    Gaseous isotopes are separated from a mixture in a vertically elongated chamber by subjecting the mixture to a nonuniform transverse electric field. Dielectrophoretic separation of the isotopes is effected, producing a transverse temperature gradient in the chamber, thereby enhancing the separation by convective countercurrent flow. In the example given, the process and apparatus are applied to the production of heavy water from steam

  5. Stress corrosion in gaseous environment

    International Nuclear Information System (INIS)

    Miannay, Dominique.

    1980-06-01

    The combined influences of a stress and a gaseous environment on materials can lead to brittleness and to unexpected delayed failure by stress corrosion cracking, fatigue cracking and creep. The most important parameters affering the material, the environment, the chemical reaction and the stress are emphasized and experimental works are described. Some trends for further research are given [fr

  6. Revealing the Cosmic Web-dependent Halo Bias

    Science.gov (United States)

    Yang, Xiaohu; Zhang, Youcai; Lu, Tianhuan; Wang, Huiyuan; Shi, Feng; Tweed, Dylan; Li, Shijie; Luo, Wentao; Lu, Yi; Yang, Lei

    2017-10-01

    Halo bias is the one of the key ingredients of the halo models. It was shown at a given redshift to be only dependent, to the first order, on the halo mass. In this study, four types of cosmic web environments—clusters, filaments, sheets, and voids—are defined within a state-of-the-art high-resolution N-body simulation. Within these environments, we use both halo-dark matter cross correlation and halo-halo autocorrelation functions to probe the clustering properties of halos. The nature of the halo bias differs strongly between the four different cosmic web environments described here. With respect to the overall population, halos in clusters have significantly lower biases in the {10}11.0˜ {10}13.5 {h}-1 {M}⊙ mass range. In other environments, however, halos show extremely enhanced biases up to a factor 10 in voids for halos of mass ˜ {10}12.0 {h}-1 {M}⊙ . Such a strong cosmic web environment dependence in the halo bias may play an important role in future cosmological and galaxy formation studies. Within this cosmic web framework, the age dependency of halo bias is found to be only significant in clusters and filaments for relatively small halos ≲ {10}12.5 {h}-1 {M}⊙ .

  7. GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY

    International Nuclear Information System (INIS)

    Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi; Busha, Michael T.; Klypin, Anatoly A.; Primack, Joel R.

    2013-01-01

    We present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consistency of halo properties (mass, position, and velocity) across time steps. Our algorithm has demonstrated the ability to improve both the completeness (through detecting and inserting otherwise missing halos) and purity (through detecting and removing spurious objects) of both merger trees and halo catalogs. In addition, our method is able to robustly measure the self-consistency of halo finders; it is the first to directly measure the uncertainties in halo positions, halo velocities, and the halo mass function for a given halo finder based on consistency between snapshots in cosmological simulations. We use this algorithm to generate merger trees for two large simulations (Bolshoi and Consuelo) and evaluate two halo finders (ROCKSTAR and BDM). We find that both the ROCKSTAR and BDM halo finders track halos extremely well; in both, the number of halos which do not have physically consistent progenitors is at the 1%-2% level across all halo masses. Our code is publicly available at http://code.google.com/p/consistent-trees. Our trees and catalogs are publicly available at http://hipacc.ucsc.edu/Bolshoi/.

  8. Halo Intrinsic Alignment: Dependence on Mass, Formation Time, and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Qianli; Kang, Xi; Wang, Peng; Luo, Yu [Purple Mountain Observatory, the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China); Yang, Xiaohu; Jing, Yipeng [Center for Astronomy and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Huiyuan [Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Mo, Houjun, E-mail: kangxi@pmo.ac.cn [Astronomy Department and Center for Astrophysics, Tsinghua University, Beijing 10084 (China)

    2017-10-10

    In this paper we use high-resolution cosmological simulations to study halo intrinsic alignment and its dependence on mass, formation time, and large-scale environment. In agreement with previous studies using N -body simulations, it is found that massive halos have stronger alignment. For the first time, we find that for a given halo mass older halos have stronger alignment and halos in cluster regions also have stronger alignment than those in filaments. To model these dependencies, we extend the linear alignment model with inclusion of halo bias and find that the halo alignment with its mass and formation time dependence can be explained by halo bias. However, the model cannot account for the environment dependence, as it is found that halo bias is lower in clusters and higher in filaments. Our results suggest that halo bias and environment are independent factors in determining halo alignment. We also study the halo alignment correlation function and find that halos are strongly clustered along their major axes and less clustered along the minor axes. The correlated halo alignment can extend to scales as large as 100 h {sup −1} Mpc, where its feature is mainly driven by the baryon acoustic oscillation effect.

  9. Self-consistent beam halo studies ampersand halo diagnostic development in a continuous linear focusing channel

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1994-01-01

    Beam halos are formed via self-consistent motion of the beam particles. Interactions of single particles with time-varying density distributions of other particles are a major source of halo. Aspects of these interactions are studied for an initially equilibrium distribution in a radial, linear, continuous focusing system. When there is a mismatch, it is shown that in the self-consistent system, there is a threshold in space-charge and mismatch, above which a halo is formed that extends to ∼1.5 times the initial maximum mismatch radius. Tools are sought for characterizing the halo dynamics. Testing the particles against the width of the mismatch driving resonance is useful for finding a conservative estimate of the threshold. The exit, entering and transition times, and the time evolution of the halo, are also explored using this technique. Extension to higher dimensions is briefly discussed

  10. Smooth halos in the cosmic web

    International Nuclear Information System (INIS)

    Gaite, José

    2015-01-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness

  11. MAPPING THE GALACTIC HALO. VIII. QUANTIFYING SUBSTRUCTURE

    International Nuclear Information System (INIS)

    Starkenburg, Else; Helmi, Amina; Van Woerden, Hugo; Morrison, Heather L.; Harding, Paul; Frey, Lucy; Oravetz, Dan; Mateo, Mario; Dohm-Palmer, R. C.; Olszewski, Edward W.; Sivarani, Thirupathi; Norris, John E.; Freeman, Kenneth C.; Shectman, Stephen A.

    2009-01-01

    We have measured the amount of kinematic substructure in the Galactic halo using the final data set from the Spaghetti project, a pencil-beam high-latitude sky survey. Our sample contains 101 photometrically selected and spectroscopically confirmed giants with accurate distance, radial velocity, and metallicity information. We have developed a new clustering estimator: the '4distance' measure, which when applied to our data set leads to the identification of one group and seven pairs of clumped stars. The group, with six members, can confidently be matched to tidal debris of the Sagittarius dwarf galaxy. Two pairs match the properties of known Virgo structures. Using models of the disruption of Sagittarius in Galactic potentials with different degrees of dark halo flattening, we show that this favors a spherical or prolate halo shape, as demonstrated by Newberg et al. using the Sloan Digital Sky Survey data. One additional pair can be linked to older Sagittarius debris. We find that 20% of the stars in the Spaghetti data set are in substructures. From comparison with random data sets, we derive a very conservative lower limit of 10% to the amount of substructure in the halo. However, comparison to numerical simulations shows that our results are also consistent with a halo entirely built up from disrupted satellites, provided that the dominating features are relatively broad due to early merging or relatively heavy progenitor satellites.

  12. Smooth halos in the cosmic web

    Energy Technology Data Exchange (ETDEWEB)

    Gaite, José, E-mail: jose.gaite@upm.es [Physics Dept., ETSIAE, IDR, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, E-28040 Madrid (Spain)

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  13. Two-halo term in stacked thermal Sunyaev-Zel'dovich measurements: Implications for self-similarity

    Science.gov (United States)

    Hill, J. Colin; Baxter, Eric J.; Lidz, Adam; Greco, Johnny P.; Jain, Bhuvnesh

    2018-04-01

    The relation between the mass and integrated electron pressure of galaxy group and cluster halos can be probed by stacking maps of the thermal Sunyaev-Zel'dovich (tSZ) effect. Perhaps surprisingly, recent observational results have indicated that the scaling relation between integrated pressure and mass follows the prediction of simple, self-similar models down to halo masses as low as 1 012.5 M⊙ . Hydrodynamical simulations that incorporate energetic feedback processes suggest that gas should be depleted from such low-mass halos, thus decreasing their tSZ signal relative to self-similar predictions. Here, we build on the modeling of V. Vikram, A. Lidz, and B. Jain, Mon. Not. R. Astron. Soc. 467, 2315 (2017), 10.1093/mnras/stw3311 to evaluate the bias in the interpretation of stacked tSZ measurements due to the signal from correlated halos (the "two-halo" term), which has generally been neglected in the literature. We fit theoretical models to a measurement of the tSZ-galaxy group cross-correlation function, accounting explicitly for the one- and two-halo contributions. We find moderate evidence of a deviation from self-similarity in the pressure-mass relation, even after marginalizing over conservative miscentering effects. We explore pressure-mass models with a break at 1 014 M⊙, as well as other variants. We discuss and test for sources of uncertainty in our analysis, in particular a possible bias in the halo mass estimates and the coarse resolution of the Planck beam. We compare our findings with earlier analyses by exploring the extent to which halo isolation criteria can reduce the two-halo contribution. Finally, we show that ongoing third-generation cosmic microwave background experiments will explicitly resolve the one-halo term in low-mass groups; our methodology can be applied to these upcoming data sets to obtain a clear answer to the question of self-similarity and an improved understanding of hot gas in low-mass halos.

  14. Halo mass dependence of H I and O VI absorption: evidence for differential kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Nigel L.; Churchill, Christopher W.; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian [New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia); Charlton, Jane; Muzahid, Sowgat [The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-09-10

    We studied a sample of 14 galaxies (0.1 < z < 0.7) using HST/WFPC2 imaging and high-resolution HST/COS or HST/STIS quasar spectroscopy of Lyα, Lyβ, and O VI λλ1031, 1037 absorption. The galaxies, having 10.8 ≤ log (M {sub h}/M {sub ☉}) ≤ 12.2, lie within D = 300 kpc of quasar sightlines, probing out to D/R {sub vir} = 3. When the full range of M {sub h} and D/R {sub vir} of the sample are examined, ∼40% of the H I absorbing clouds can be inferred to be escaping their host halo. The fraction of bound clouds decreases as D/R {sub vir} increases such that the escaping fraction is ∼15% for D/R {sub vir} < 1, ∼45% for 1 ≤ D/R {sub vir} < 2, and ∼90% for 2 ≤ D/R {sub vir} < 3. Adopting the median mass log M {sub h}/M {sub ☉} = 11.5 to divide the sample into 'higher' and 'lower' mass galaxies, we find a mass dependency for the hot circumgalactic medium kinematics. To our survey limits, O VI absorption is found in only ∼40% of the H I clouds in and around lower mass halos as compared to ∼85% around higher mass halos. For D/R {sub vir} < 1, lower mass halos have an escape fraction of ∼65%, whereas higher mass halos have an escape fraction of ∼5%. For 1 ≤ D/R {sub vir} < 2, the escape fractions are ∼55% and ∼35% for lower mass and higher mass halos, respectively. For 2 ≤ D/R {sub vir} < 3, the escape fraction for lower mass halos is ∼90%. We show that it is highly likely that the absorbing clouds reside within 4R {sub vir} of their host galaxies and that the kinematics are dominated by outflows. Our finding of 'differential kinematics' is consistent with the scenario of 'differential wind recycling' proposed by Oppenheimer et al. We discuss the implications for galaxy evolution, the stellar to halo mass function, and the mass-metallicity relationship of galaxies.

  15. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  16. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  17. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  18. Electron beam gaseous pollutants treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1999-01-01

    Emission of gaseous pollutants, mostly during combustion of fossil fuels, creates a threat to the environment. New, economical technologies are needed for flue gas treatment. A physico-chemical basis of the process using electron beam for the simultaneous removal of sulfur and nitrogen oxides and volatile organic compounds are presented in this report. Development of the process and its upscaling has been discussed. (author)

  19. Generation of gaseous tritium standards

    International Nuclear Information System (INIS)

    Hohorst, F.A.

    1994-09-01

    The determination of aqueous and non-aqueous tritium in gaseous samples is one type of determination often requested of radioanalytical laboratories. This determination can be made by introducing the sample as a gas into a sampling train containing two silica gel beds separated by.a catalytic oxidizer bed. The first bed traps tritiated water. The sample then passes into and through the oxidizer bed where non-aqueous tritium containing species are oxidized to water and other products of combustion. The second silica gel bed then traps the newly formed tritiated water. Subsequently, silica gel is removed to plastic bottles, deionized water is added, and the mixture is permitted to equilibrate. The tritium content of the equilibrium mixture is then determined by conventional liquid scintillation counting (LSC). For many years, the moisture content of inert, gaseous samples has been determined using monitors which quantitatively electrolyze the moisture present after that moisture has been absorbed by phosphorous pentoxide or other absorbents. The electrochemical reaction is quantitative and definitive, and the energy consumed during electrolysis forms the basis of the continuous display of the moisture present. This report discusses the experimental evaluation of such a monitor as the basis for a technique for conversion of small quantities of SRMs of tritiated water ( 3 HOH) into gaseous tritium standards ( 3 HH)

  20. Gaseous diffusion -- the enrichment workhorse

    International Nuclear Information System (INIS)

    Shoemaker, J.E. Jr.

    1984-01-01

    Construction of the first large-scale gaseous diffusion facility was started as part of the Manhattan Project in Oak Ridge, Tennessee, in 1943. This facility, code named ''K-25,'' began operation in January 1945 and was fully on stream by September 1945. Four additional process buildings were later added in Oak Ridge as the demand for enriched uranium escalated. New gaseous diffusion plants were constructed at Paducah, Kentucky, and Portsmouth, Ohio, during this period. The three gaseous diffusion plants were the ''workhorses'' which provided the entire enriched uranium demand for the United States during the 1950s and 1960s. As the demand for enriched uranium for military purposes decreased during the early 1960s, power to the diffusion plants was curtailed to reduce production. During the 1960s, as plans for the nuclear power industry were formulated, the role of the diffusion plants gradually changed from providing highly-enriched uranium for the military to providing low-enriched uranium for power reactors

  1. Population II brown dwarfs and dark haloes

    International Nuclear Information System (INIS)

    Zinnecker, H.

    1986-01-01

    Opacity-limited fragmentation is investigated as a function of the dust-to-gas ratio and it is found that the characteristic protostellar mass Msub(*) is metallicity-dependent. This dependence is such that, for the low metallicity gas out of which the stars of Population II formed in the halo, Msub(*) is less than 0.1 M solar mass. If applicable, these theoretical considerations would predict that substellar masses have formed more frequently under the metal-poor conditions in the early Galaxy (Population II brown dwarfs). Thus the missing mass in the Galactic halo and in the dark haloes around other spirals may well reside in these metal-poor Population II brown dwarfs. (author)

  2. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  3. Stability of BEC galactic dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, F.S.; Lora-Clavijo, F.D.; González-Avilés, J.J.; Rivera-Paleo, F.J., E-mail: guzman@ifm.umich.mx, E-mail: fadulora@ifm.umich.mx, E-mail: javiles@ifm.umich.mx, E-mail: friverap@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán (Mexico)

    2013-09-01

    In this paper we show that spherically symmetric BEC dark matter halos, with the sin r/r density profile, that accurately fit galactic rotation curves and represent a potential solution to the cusp-core problem are unstable. We do this by introducing back the density profiles into the fully time-dependent Gross-Pitaevskii-Poisson system of equations. Using numerical methods to track the evolution of the system, we found that these galactic halos lose mass at an approximate rate of half of its mass in a time scale of dozens of Myr. We consider this time scale is enough as to consider these halos are unstable and unlikely to be formed. We provide some arguments to show that this behavior is general and discuss some other drawbacks of the model that restrict its viability.

  4. Chemical enrichment in halo planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Peimbert, S; Rayo, J F; Peimbert, M [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    Photoelectric spectrophotometry of emission lines in the 3400-7400 A region is presented for the planetary nebulae 108-76/sup 0/1(BB1). From these observations the relative abundances of H, He, C, N, O and Ne are derived. The abundances of the halo PN (BB1, H4-1 and K648) are compared to those predicted by stellar evolution theory under the assumption that the envelope has the chemical composition of the matter located between the H burning shell and the surface. The observed He/H and C/O values are higher than predicted which implies that halo PN contain matter from deeper layers than the H burning shell. Furthermore, the O/Ar, N/Ar and Ne/Ar values in halo PN are higher than in the solar neighbourhood, at least part of this enrichment is produced by the PN progenitors.

  5. Galaxy halo occupation at high redshift

    Science.gov (United States)

    Bullock, James S.; Wechsler, Risa H.; Somerville, Rachel S.

    2002-01-01

    We discuss how current and future data on the clustering and number density of z~3 Lyman-break galaxies (LBGs) can be used to constrain their relationship to dark matter haloes. We explore a three-parameter model in which the number of LBGs per dark halo scales like a power law in the halo mass: N(M)=(M/M1)S for M>Mmin. Here, Mmin is the minimum mass halo that can host an LBG, M1 is a normalization parameter, associated with the mass above which haloes host more than one observed LBG, and S determines the strength of the mass-dependence. We show how these three parameters are constrained by three observable properties of LBGs: the number density, the large-scale bias and the fraction of objects in close pairs. Given these three quantities, the three unknown model parameters may be estimated analytically, allowing a full exploration of parameter space. As an example, we assume a ΛCDM cosmology and consider the observed properties of a recent sample of spectroscopically confirmed LBGs. We find that the favoured range for our model parameters is Mmin~=(0.4-8)×1010h- 1Msolar, M1~=(6-10)×1012h- 1Msolar, and 0.9acceptable if the allowed range of bg is permitted to span all recent observational estimates. We also discuss how the observed clustering of LBGs as a function of luminosity can be used to constrain halo occupation, although because of current observational uncertainties we are unable to reach any strong conclusions. Our methods and results can be used to constrain more realistic models that aim to derive the occupation function N(M) from first principles, and offer insight into how basic physical properties affect the observed properties of LBGs.

  6. DARK MATTER HALO MERGERS: DEPENDENCE ON ENVIRONMENT

    International Nuclear Information System (INIS)

    Hester, J. A.; Tasitsiomi, A.

    2010-01-01

    This paper presents a study of the specific major merger rate as a function of group membership, local environment, and redshift in a very large, 500 h -1 Mpc, cosmological N-body simulation, the Millennium Simulation. The goal is to provide environmental diagnostics of major merger populations in order to test simulations against observations and provide further constraints on major merger driven galaxy evolution scenarios. A halo sample is defined using the maximum circular velocity, which is both well defined for subhalos and closely correlated with galaxy luminosity. Subhalos, including the precursors of major mergers, are severely tidally stripped. Major mergers between subhalos are therefore rare compared to mergers between subhalos and their host halos. Tidal stripping also suppresses dynamical friction, resulting in long major merger timescales when the more massive merger progenitor does not host other subhalos. When other subhalos are present, however, major merger timescales are several times shorter. This enhancement may be due to inelastic unbound collisions between subhalos, which deplete their orbital angular momentum and lead to faster orbital decay. Following these results, we predict that major mergers in group environments are dominated by mergers involving the central galaxy, that the specific major merger rate is suppressed in groups when all group members are considered together, and that the frequency of fainter companions is enhanced for major mergers and their remnants. We also measure an 'assembly bias' in the specific major merger rate in that major mergers of galaxy-like halos are slightly suppressed in overdense environments while major mergers of group-like halos are slightly enhanced. A dynamical explanation for this trend is advanced which calls on both tidal effects and interactions between bound halos beyond the virial radii of locally dynamically dominant halos.

  7. The Reactions of Hot Fluorine-18 with Gaseous Carbon Tetrafluoride; Reactions des Atomes {sup 18}F Chauds avec le Tetrafluorure de Carbone en Phase Gazeuse; Reaktsii goryachikh atomov ftora-18 s gazovoj fazoj tetraftormetana; Reacciones de Atomos Calientes de Fluor-18 con Tetrafluoruro de Carbono Gaseoso

    Energy Technology Data Exchange (ETDEWEB)

    Colebourne, N.; Todd, J. F.J.; Wolfgang, R. [Yale University, New Haven, CT (United States)

    1965-04-15

    Studies on the reactions of hot Fie atoms with carbon tetrafluoride are reported. Gaseous samples were exposed to the 40-60 MeV (maximum) bremsstrahlung beam of the Yale University Electron Accelerator. The F{sup 19} ({gamma}, n) F{sup 18} process produces F{sup 18} with a kinetic energy of the order of 10{sup 5}-10{sup 6} eV. These species lose energy by collision and are expected to reach the ''chemical'' energy range (< 100 eV) as ground state atoms. Ethylene was found to be a good scavenger for thermal F{sup 18} atoms. Analysis of products was made using standard radio-gas chromatography techniques. The system was found to be quite sensitive to extraneous radiation damage effects and appropriate precautions were taken. Hot displacement reactions, similar to those observed for hot hydrogen, but much less efficient, were found: F{sup 18} + CF{sup 4} --> CF{sub 3}F{sup 18} + F, F{sup 18} +CF{sub 4} --> CF{sub 2}F{sup 18} + (F + F), It was impossible to study the abstraction reaction F{sup 18} + CF{sub 4} --> CF{sub 3} + FF{sup 18} directly. However, indirect evidence suggests that it also has a low efficiency. Detailed studies of the effect of moderator on the F{sup 18} + CF{sub 4} system have been made. The data obtained were analysed by means of the kinetic theory of hot reactions. The system was found to be in accord with this formalism, providing quantitative confirmation of the present interpretation of the results. The carbon tetrafluoride and methane systems provide a basis for some tentative conclusions on the mechanisms of hot fluorine atom reactions. At present it appears that with certain important, but natural, modifications the model first developed for hot hydrogen atoms is applicable [French] Le memoire est consacre a des etudes sur les reactions des atomes {sup 18}F chauds avec le tetrafluorure de carbone. Des echantillons gazeux ont ete exposes a un faisceau de rayonnements de freinage de 40 a 60 MeV (maximum) emis par l'accelerateur d

  8. Radio halo sources in clusters of galaxies

    International Nuclear Information System (INIS)

    Hanisch, R.J.

    1986-01-01

    Radio halo sources remain one of the most enigmatic of all phenomena related to radio emission from galaxies in clusters. The morphology, extent, and spectral structure of these sources are not well known, and the models proposed to explain them suffer from this lack of observational detail. However, recent observations suggest that radio halo sources may be a composite of relic radio galaxies. The validity of this model could be tested using current and planned high resolutions, low-frequency radio telescopes. 31 references

  9. Blazars with arcminute-scale radio halos

    International Nuclear Information System (INIS)

    Ulvestad, J.S.; Antonucci, R.R.J.; Space Telescope Science Institute, Baltimore, MD)

    1986-01-01

    About 10-arcsec resolution 20-cm wavelength maps are presented for three nearby BL Lac objects: Mkn 180, whose halo has a linear size of 85 kpc, 2155-304, with a halo about 375 kpc across, and 1727 + 502, whose one-sided diffuse emission extends to a distance of about 145 kpc from its radio core. Little evidence is found for strong radio variability in the cores of the three blazars; these and other results obtained are consistent with the assertion that the three objects should be classified as normal low luminosity double radio galaxies with optically dull nuclei, if seen from other directions. 20 references

  10. Structure study in the 19C halo

    International Nuclear Information System (INIS)

    Angelique, J.C.; Le Brun, C.; Liegard, E.; Marques, F.M.; Orr, N.A.

    1997-01-01

    The halo nuclei are nuclei which have one or more neutrons (or protons) with very weak binding energy what results in a spatial extension beyond the core containing the other nucleons. This important spatial extension is related via the Heisenberg principle to a narrow momentum distribution which signs the halo structure of the nucleus under consideration. To extend our understanding of this phenomenon an experiment has been carried out with the DEMON multidetector in the frame of the collaboration E133. The subject was the study of 19 C, a nucleus susceptible of having a neutron halo due to the low binding energy of its last neutron (S n = 240 ± 100 keV). The 19 C secondary beam was produced by fragmentation of a primary 40 Ar beam in a carbon target between the two solenoids of SISSI and than directed to a GANIL experimental room. A silicon detector telescope was used to detect the charged particles issued from the reaction of 19 C nuclei with the tantalum target while the DEMON detection modular assembly separated by four meters from the target allowed the neutron detection between 0 and 42 degrees. The first results of this analysis are favorable to a halo structure for this nucleus for the reaction channel in which the 18 C core is destroyed. We have compared the angular distribution of the neutrons of 19 C with those obtained from the breakup reactions of other exotic nuclei ( 21 N, 22 O and 24 F) but having no halo structure. A net different behavior of these nuclei indicate a clear difference in structure. Actually, the 19 C distribution corresponds to the superposition of a broad distribution and narrow distribution. The last one having width of 42 ± 12 MeV/c, compatible with an important spatial extension, corresponds to neutrons coming from the halo. It is argued that the model in which the halo neutron moves on a s orbital cannot described the structure of 19 C halo. A more adequate description would be a mixture of s and d orbitals which would also

  11. Dark energy and extended dark matter halos

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  12. Warm-hot gas in X-ray bright galaxy clusters and the H I-deficient circumgalactic medium in dense environments

    Science.gov (United States)

    Burchett, Joseph N.; Tripp, Todd M.; Wang, Q. Daniel; Willmer, Christopher N. A.; Bowen, David V.; Jenkins, Edward B.

    2018-04-01

    We analyse the intracluster medium (ICM) and circumgalactic medium (CGM) in seven X-ray-detected galaxy clusters using spectra of background quasi-stellar objects (QSOs) (HST-COS/STIS), optical spectroscopy of the cluster galaxies (MMT/Hectospec and SDSS), and X-ray imaging/spectroscopy (XMM-Newton and Chandra). First, we report a very low covering fraction of H I absorption in the CGM of these cluster galaxies, f_c = 25^{+25}_{-15} {per cent}, to stringent detection limits (N(H I) detect O VI in any cluster, and we only detect BLA features in the QSO spectrum probing one cluster. We estimate that the total column density of warm-hot gas along this line of sight totals to ˜ 3 per cent of that contained in the hot T > 107 K X-ray emitting phase. Residing at high relative velocities, these features may trace pre-shocked material outside the cluster. Comparing gaseous galaxy haloes from the low-density `field' to galaxy groups and high-density clusters, we find that the CGM is progressively depleted of H I with increasing environmental density, and the CGM is most severely transformed in galaxy clusters. This CGM transformation may play a key role in environmental galaxy quenching.

  13. SIMULATIONS OF RECOILING MASSIVE BLACK HOLES IN THE VIA LACTEA HALO

    International Nuclear Information System (INIS)

    Guedes, J.; Madau, P.; Diemand, J.; Kuhlen, M.; Zemp, M.

    2009-01-01

    The coalescence of a massive black hole (MBH) binary leads to the gravitational-wave recoil of the system and its ejection from the galaxy core. We have carried out N-body simulations of the motion of a M BH = 3.7 x 10 6 M sun MBH remnant in the 'Via Lactea I' simulation, a Milky Way-sized dark matter halo. The black hole receives a recoil velocity of V kick = 80, 120, 200, 300, and 400 km s -1 at redshift 1.5, and its orbit is followed for over 1 Gyr within a 'live' host halo, subject only to gravity and dynamical friction against the dark matter background. We show that, owing to asphericities in the dark matter potential, the orbit of the MBH is highly nonradial, resulting in a significantly increased decay timescale compared to a spherical halo. The simulations are used to construct a semi-analytic model of the motion of the MBH in a time-varying triaxial Navarro-Frenk-White dark matter halo plus a spherical stellar bulge, where the dynamical friction force is calculated directly from the velocity dispersion tensor. Such a model should offer a realistic picture of the dynamics of kicked MBHs in situations where gas drag, friction by disk stars, and the flattening of the central cusp by the returning black hole are all negligible effects. We find that MBHs ejected with initial recoil velocities V kick ∼> 500 km s -1 do not return to the host center within a Hubble time. In a Milky Way-sized galaxy, a recoiling hole carrying a gaseous disk of initial mass ∼M BH may shine as a quasar for a substantial fraction of its 'wandering' phase. The long decay timescales of kicked MBHs predicted by this study may thus be favorable to the detection of off-nuclear quasar activity.

  14. Dynamical or static radio halo - Is there a galactic wind

    International Nuclear Information System (INIS)

    Lerche, I.; Schlickeiser, R.

    1981-01-01

    The effect of a galactic wind on a radio halo can be best observed at frequencies smaller than about 1 GHz. At higher frequencies static halo models predict the same features as dynamical halo models. External galaxies, which exhibit a break by 0.5 in their high frequency nonthermal integral flux spectrum, are the best candidates for studying the influence of galactic winds on the formation of relativistic electron haloes around these systems. Several such cases are presented

  15. Interactions between massive dark halos and warped disks

    NARCIS (Netherlands)

    Kuijken, K; Persic, M; Salucci, P

    1997-01-01

    The normal mode theory for warping of galaxy disks, in which disks are assumed to be tilted with respect to the equator of a massive, flattened dark halo, assumes a rigid, fixed halo. However, consideration of the back-reaction by a misaligned disk on a massive particle halo shows there to be strong

  16. Binary White Dwarfs in the Galactic Halo

    NARCIS (Netherlands)

    van Oirschot, Pim; Nelemans, Gijs; Helmi, Amina; Starkenburg, Else; Pols, Onno; Brown, Anthony G. A.

    We use the stellar population synthesis code SeBa (Portegies Zwart & Verbunt (1996), Toonen, Nelemans & Portegies Zwart (2012)) to study the halo white dwarf population. Here we assume a Kroupa initial mass function and compare 4 models, varying two parameters: the star formation (SF) history of the

  17. Numerical experiments on galactic halo formation

    International Nuclear Information System (INIS)

    Quinn, P.J.; Salmon, J.K.; Zurek, W.H.

    1986-01-01

    We have used a hybrid N-body-FFT approach to solving Poisson's equation in a cosmological setting. Using this method, we have explored the connection between the form of the initial Gaussian density perturbations that by today have grown into galaxies and the internal properties of the individual galactic halos that are formed. 19 refs., 4 figs

  18. Reflection halo twins : subsun and supersun

    NARCIS (Netherlands)

    Konnen, Gunther P.; van der Werf, Siebren Y.

    2011-01-01

    From an aircraft, a short distinct vertical structure is sometimes seen above the setting sun. Such a feature can be understood as a halo, which is the counterpart of the well-known subsun. Whereas the latter arises from reflections off basal faces of plate-oriented ice crystals illuminated from

  19. Cosmology and cluster halo scaling relations

    NARCIS (Netherlands)

    Araya-Melo, Pablo A.; van de Weygaert, Rien; Jones, Bernard J. T.

    2009-01-01

    We explore the effects of dark matter and dark energy on the dynamical scaling properties of galaxy clusters. We investigate the cluster Faber-Jackson (FJ), Kormendy and Fundamental Plane (FP) relations between the mass, radius and velocity dispersion of cluster-sized haloes in cosmological N-body

  20. Gaseous Electron Multiplier (GEM) Detectors

    Science.gov (United States)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  1. THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS

    International Nuclear Information System (INIS)

    Richardson, Jonathan; Chatterjee, Suchetana; Nagai, Daisuke; Zheng Zheng; Shen Yue

    2012-01-01

    We present an estimate of the projected two-point correlation function (2PCF) of quasars in the Sloan Digital Sky Survey (SDSS) over the full range of one- and two-halo scales, 0.02 h –1 Mpc p –1 Mpc. This was achieved by combining data from SDSS DR7 on large scales and Hennawi et al. (with appropriate statistical corrections) on small scales. Our combined clustering sample is the largest spectroscopic quasar clustering sample to date, containing ∼48, 000 quasars in the redshift range 0.4 ∼ sat = (7.4 ± 1.4) × 10 –4 , be satellites in dark matter halos. At z ∼ 1.4, the median masses of the host halos of central and satellite quasars are constrained to be M cen = 4.1 +0.3 –0.4 × 10 12 h –1 M ☉ and M sat = 3.6 +0.8 –1.0 × 10 14 h –1 M ☉ , respectively. To investigate the redshift evolution of the quasar-halo relationship, we also perform HOD modeling of the projected 2PCF measured by Shen et al. for SDSS quasars with median redshift 3.2. We find tentative evidence for an increase in the mass scale of quasar host halos—the inferred median mass of halos hosting central quasars at z ∼ 3.2 is M cen = 14.1 +5.8 –6.9 × 10 12 h –1 M ☉ . The cutoff profiles of the mean occupation functions of central quasars reveal that quasar luminosity is more tightly correlated with halo mass at higher redshifts. The average quasar duty cycle around the median host halo mass is inferred to be f q = 7.3 +0.6 –1.5 × 10 –4 at z ∼ 1.4 and f q = 8.6 +20.4 –7.2 × 10 –2 at z ∼ 3.2. We discuss the implications of our results for quasar evolution and quasar-galaxy co-evolution.

  2. Hydrogen and Gaseous Fuel Safety and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  3. Characteristic time for halo current growth and rotation

    Energy Technology Data Exchange (ETDEWEB)

    Boozer, Allen H., E-mail: ahb17@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2015-10-15

    A halo current flows for part of its path through the plasma edge and for part through the chamber walls and during tokamak disruptions can be as large as tenths of the plasma current. The primary interest in halo currents is the large force that they can exert on machine components particularly if the toriodal rotation of the halo current resonates with a natural oscillation frequency of the tokamak device. Halo currents arise when required to slow down the growth of a kink that is too unstable to be stabilized by the chamber walls. The width of the current channel in the halo plasma is comparable to the amplitude of the kink, and the halo current grows linearly, not exponentially, in time. The current density in the halo is comparable to that of the main plasma body. The rocket force due to plasma flowing out of the halo and recombining on the chamber walls can cause the non-axisymmetric magnetic structure produced by the kink to rotate toroidally at a speed comparable to the halo speed of sound. Gerhardt's observations of the halo current in NSTX shot 141 687 [Nucl. Fusion 53, 023005 (2013)] illustrate many features of the theory of halo currents and are discussed as a summary of the theory.

  4. MINIMARS interim report appendix halo model and computer code

    International Nuclear Information System (INIS)

    Santarius, J.F.; Barr, W.L.; Deng, B.Q.; Emmert, G.A.

    1985-01-01

    A tenuous, cool plasma called the halo shields the core plasma in a tandem mirror from neutral gas and impurities. The neutral particles are ionized and then pumped by the halo to the end tanks of the device, since flow of plasma along field lines is much faster than radial flow. Plasma reaching the end tank walls recombines, and the resulting neutral gas is vacuum pumped. The basic geometry of the MINIMARS halo is shown. For halo modeling purposes, the core plasma and cold gas regions may be treated as single radial zones leading to halo source and sink terms. The halo itself is differential into two major radial zones: halo scraper and halo dump. The halo scraper zone is defined by the radial distance required for the ion end plugging potential to drop to the central cell value, and thus have no effect on axial confinement; this distance is typically a sloshing plug ion Larmor diameter. The outer edge of the halo dump zone is defined by the last central cell flux tube to pass through the choke coil. This appendix will summarize the halo model that has been developed for MINIMARS and the methodology used in implementing that model as a computer code

  5. The ATLAS(3D) project : XIX. The hot gas content of early-type galaxies: fast versus slow rotators

    NARCIS (Netherlands)

    Sarzi, Marc; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Young, Lisa M.; Weijmans, Anne-Marie

    2013-01-01

    For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet,

  6. The ATLAS3D project - XIX. The hot gas content of early-type galaxies: fast versus slow rotators

    NARCIS (Netherlands)

    Sarzi, Marc; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Young, Lisa M.; Weijmans, Anne-Marie

    For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet,

  7. ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS

    Energy Technology Data Exchange (ETDEWEB)

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2012-08-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  8. ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS

    International Nuclear Information System (INIS)

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.

    2012-01-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  9. Research Progresses of Halo Streams in the Solar Neighborhood

    Science.gov (United States)

    Xi-long, Liang; Jing-kun, Zhao; Yu-qin, Chen; Gang, Zhao

    2018-01-01

    The stellar streams originated from the Galactic halo may be detected when they pass by the solar neighborhood, and they still keep some information at their birth times. Thus, the investigation of halo streams in the solar neighborhood is very important for understanding the formation and evolution of our Galaxy. In this paper, the researches of halo streams in the solar neighborhood are briefly reviewed. We have introduced the methods how to detect the halo streams and identify their member stars, summarized the progresses in the observation of member stars of halo streams and in the study of their origins, introduced in detail how to analyze the origins of halo streams in the solar neighborhood by means of numerical simulation and chemical abundance, and finally discussed the prospects of the LAMOST and GAIA in the research of halo streams in the solar neighborhood.

  10. HOT 2017

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis.......HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis....

  11. Gravitational lens effect and pregalactic halo objects

    International Nuclear Information System (INIS)

    Bontz, R.J.

    1979-01-01

    The changes in flux, position, and size of a distant extended (galaxy, etc.) source that result from the gravitational lens action of a massive opaque object are discussed. The flux increase is described by a single function of two parameters. One of these parameters characterizes the strength of the gravitational lens, the other describes the alignment of source and lens object. This function also describes the relative intensity of the images formed by lens. ( A similar formalism is discussed by Bourassa et al. for a point source). The formalism is applied to the problem of the galactic halo. It appears that a massive (10 1 2 M/sub sun/) spherical halo surrounding the visible part of the galaxy is consistent with the observable properties of extragalactic sources

  12. Magnetic spiral arms in galaxy haloes

    Science.gov (United States)

    Henriksen, R. N.

    2017-08-01

    We seek the conditions for a steady mean field galactic dynamo. The parameter set is reduced to those appearing in the α2 and α/ω dynamo, namely velocity amplitudes, and the ratio of sub-scale helicity to diffusivity. The parameters can be allowed to vary on conical spirals. We analyse the mean field dynamo equations in terms of scale invariant logarithmic spiral modes and special exact solutions. Compatible scale invariant gravitational spiral arms are introduced and illustrated in an appendix, but the detailed dynamical interaction with the magnetic field is left for another work. As a result of planar magnetic spirals `lifting' into the halo, multiple sign changes in average rotation measures forming a regular pattern on each side of the galactic minor axis, are predicted. Such changes have recently been detected in the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES) survey.

  13. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Kishi, Tadao.

    1990-01-01

    The present invention concerns a radioactive gaseous waste processing device used in BWR power plants. A heater is disposed to the lower portion of a dryer for dehydrating radioactive off gases. Further, a thermometer is disposed to a coolant return pipeway on the exit side of the cooling portion of the dryer and signals sent from the thermometer are inputted to an automatic temperature controller. If the load on the dryer is reduced, the value of the thermometer is lowered than a set value, then an output signal corresponding to the change is supplied from the automatic temperature controller to the heater to forcively apply loads to the dryer. Therefore, defrosting can be conducted completely without operating a refrigerator, and the refrigerator can be maintained under a constant load by applying a dummy load when the load in the dryer is reduced. (I.N.)

  14. Trace emissions from gaseous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States)

    2000-07-01

    The U.S. Clean Air Act (CAA) was amended in 1990 to include the development of maximum achievable control technology (MACT) emission standards for hazardous air pollutants (HAPs) for certain stationary sources by November 2000. MACT emissions standards would affect process heaters and industrial boilers since combustion processes are a potential source for many air toxins. The author noted that one of the problems with MACT is the lack of a clear solid scientific footing which is needed to develop environmentally responsible regulations. In order to amend some of these deficiencies, a 4-year, $7 million research project on the origin and fate of trace emissions in the external combustion of gaseous hydrocarbons was undertaken in a collaborative effort between government, universities and industry. This collaborative project entitled the Petroleum Environmental Research Forum (PERF) Project 92-19 produced basic information and phenomenological understanding in two important areas, one basic and one applied. The specific objectives of the project were to measure emissions while operating different full-scale burners under various operating conditions and then to analyze the emission data to identify which operating conditions lead to low air toxic emissions. Another objective was to develop new chemical kinetic mechanisms and predictive models for the formation of air toxic species which would explain the origin and fate of these species in process heaters and industrial boilers. It was determined that a flame is a very effective reactor and that trace emissions from a typical gas-fired industry burner are very small. An unexpected finding was that trace emissions are not affected by hydrocarbon gaseous fuel composition, nor by the use of ultra low nitrous oxide burners. 2 refs., 8 figs.

  15. Gaseous phase heat capacity of benzoic acid

    NARCIS (Netherlands)

    Santos, L.M.N.B.F.; Alves da Rocha, M.A.; Gomes, L.R.; Schröder, B.; Coutinho, J.A.P.

    2010-01-01

    The gaseous phase heat capacity of benzoic acid (BA) was proven using the experimental technique called the "in vacuum sublimation/vaporization Calvet microcalorimetry drop method". To overcome known experimental shortfalls, the gaseous phase heat capacity of BA monomer was estimated by ab initio

  16. Structure and reactions of quantum halos

    International Nuclear Information System (INIS)

    Jensen, A.S.; Riisager, K.; Fedorov, D.V.; Garrido, E.

    2004-01-01

    This article provides an overview of the basic principles of the physics of quantum halo systems, defined as bound states of clusters of particles with a radius extending well into classically forbidden regions. Exploiting the consequences of this definition, the authors derive the conditions for occurrence in terms of the number of clusters, binding energy, angular momentum, cluster charges, and excitation energy. All these quantities must be small. The article discusses the transitions between different cluster divisions and the importance of thresholds for cluster or particle decay, with particular attention to the Efimov effect and the related exotic states. The pertinent properties can be described by the use of dimensionless variables. Then universal and specific properties can be distinguished, as shown in a series of examples selected from nuclear, atomic, and molecular systems. The neutron dripline is especially interesting for nuclei and negative ions for atoms. For molecules, in which the cluster division comes naturally, a wider range of possibilities exists. Halos in two dimensions have very different properties, and their states are easily spatially extended, whereas Borromean systems are unlikely and spatially confined. The Efimov effect and the Thomas collapse occur only for dimensions between 2.3 and 3.8 and thus not for 2. High-energy reactions directly probe the halo structure. The authors discuss the reaction mechanisms for high-energy nuclear few-body halo breakup on light, intermediate, and heavy nuclear targets. For light targets, the strong interaction dominates, while for heavy targets, the Coulomb interaction dominates. For intermediate targets these processes are of comparable magnitude. As in atomic and molecular physics, a geometric impact-parameter picture is very appropriate. Finally, the authors briefly consider the complementary processes involving electroweak probes available through beta decay, electromagnetic transitions, and

  17. Total dissociation cross section of halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Formanek, J. [Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni; Lombard, R.J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1996-10-01

    Calculations of the total dissociation cross section is performed in the impact parameter representation. The case of {sup 11}Be and {sup 11}Li loosing one and two neutron(s), respectively, by collision on a {sup 12}C target, which remains in its ground state are discussed. The results are found to depend essentially on the rms radius of the halo wave function. (author). 12 refs.

  18. The Halo B2B Studio

    Science.gov (United States)

    Gorzynski, Mark; Derocher, Mike; Mitchell, April Slayden

    Research underway at Hewlett-Packard on remote communication resulted in the identification of three important components typically missing in existing systems. These missing components are: group nonverbal communication capabilities, high-resolution interactive data capabilities, and global services. Here we discuss some of the design elements in these three areas as part of the Halo program at HP, a remote communication system shown to be effective to end-users.

  19. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.

    1989-01-01

    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  20. Photoionization in the halo of the Galaxy

    Science.gov (United States)

    Bregman, Joel N.; Harrington, J. Patrick

    1986-01-01

    The ionizing radiation field in the halo is calculated and found to be dominated in the 13.6-45 eV range by light from O-B stars that escapes the disk, by planetary nebulae at 45-54 eV, by quasars and the Galactic soft X-ray background at 54-2000 eV, and by the extragalactic X-ray background at higher energies. Photoionization models are calculated with this radiation field incident on halo clouds of constant density for a variety of densities, for normal and depleted abundances, and with variations of the incident spectrum. For species at least triply ionized, such as Si IV, C IV, N V, and O VI, the line ratios are determined by intervening gas with the greatest volume, which is not necessarily the greatest mass component. Column densities from doubly ionized species like Si III should be greater than from triply ionized species. The role of photoionized gas in cosmic ray-supported halos and Galactic fountains is discussed. Observational tests of photoionization models are suggested.

  1. The Extended Baryonic Halo of NGC 3923

    Directory of Open Access Journals (Sweden)

    Bryan W. Miller

    2017-07-01

    Full Text Available Galaxy halos and their globular cluster systems build up over time by the accretion of small satellites. We can learn about this process in detail by observing systems with ongoing accretion events and comparing the data with simulations. Elliptical shell galaxies are systems that are thought to be due to ongoing or recent minor mergers. We present preliminary results of an investigation of the baryonic halo—light profile, globular clusters, and shells/streams—of the shell galaxy NGC 3923 from deep Dark Energy Camera (DECam g and i-band imaging. We present the 2D and radial distributions of the globular cluster candidates out to a projected radius of about 185 kpc, or ∼ 37 R e , making this one of the most extended cluster systems studied. The total number of clusters implies a halo mass of M h ∼ 3 × 10 13 M ⊙ . Previous studies had identified between 22 and 42 shells, making NGC 3923 the system with the largest number of shells. We identify 23 strong shells and 11 that are uncertain. Future work will measure the halo mass and mass profile from the radial distributions of the shell, N-body models, and line-of-sight velocity distribution (LOSVD measurements of the shells using the Multi Unit Spectroscopic Explorer (MUSE.

  2. How do stars affect ψDM halos?

    Science.gov (United States)

    Chan, James H. H.; Schive, Hsi-Yu; Woo, Tak-Pong; Chiueh, Tzihong

    2018-04-01

    Wave dark matter (ψDM) predicts a compact soliton core and a granular halo in every galaxy. This work presents the first simulation study of an elliptical galaxy by including both stars and ψDM, focusing on the systematic changes of the central soliton and halo granules. With the addition of stars in the inner halo, we find the soliton core consistently becomes more prominent by absorbing mass from the host halo than that without stars, and the halo granules become "non-isothermal", "hotter" in the inner halo and "cooler" in the outer halo, as opposed to the isothermal halo in pure ψDM cosmological simulations. Moreover, the composite (star+ψDM) mass density is found to follow a r-2 isothermal profile near the half-light radius in most cases. Most striking is the velocity dispersion of halo stars that increases rapidly toward the galactic center by a factor of at least 2 inside the half-light radius caused by the deepened soliton gravitational potential, a result that compares favorably with observations of elliptical galaxies and bulges in spiral galaxies. However in some rare situations we find a phase segregation turning a compact distribution of stars into two distinct populations with high and very low velocity dispersions; while the high-velocity component mostly resides in the halo, the very low-velocity component is bound to the interior of the soliton core, resembling stars in faint dwarf spheroidal galaxies.

  3. Planck Intermediate Results. XI: The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar-to-halo ......We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar...... range extending from rich clusters down to $M_{500}\\sim 2\\times 10^{13} \\Msolar$, and there is a clear indication of signal down to $M_{500}\\sim 4\\times 10^{12} \\Msolar$. Planck's SZ detections in such low-mass halos imply that about a quarter of all baryons have now been seen in the form of hot halo...... gas, and that this gas must be less concentrated than the dark matter in such halos in order to remain consistent with X-ray observations. At the high-mass end, the measured SZ signal is 20% lower than found from observations of X-ray clusters, a difference consistent with Malmquist bias effects...

  4. Self-consistent construction of virialized wave dark matter halos

    Science.gov (United States)

    Lin, Shan-Chang; Schive, Hsi-Yu; Wong, Shing-Kwong; Chiueh, Tzihong

    2018-05-01

    Wave dark matter (ψ DM ), which satisfies the Schrödinger-Poisson equation, has recently attracted substantial attention as a possible dark matter candidate. Numerical simulations have, in the past, provided a powerful tool to explore this new territory of possibility. Despite their successes in revealing several key features of ψ DM , further progress in simulations is limited, in that cosmological simulations so far can only address formation of halos below ˜2 ×1011 M⊙ and substantially more massive halos have become computationally very challenging to obtain. For this reason, the present work adopts a different approach in assessing massive halos by constructing wave-halo solutions directly from the wave distribution function. This approach bears certain similarities with the analytical construction of the particle-halo (cold dark matter model). Instead of many collisionless particles, one deals with one single wave that has many noninteracting eigenstates. The key ingredient in the wave-halo construction is the distribution function of the wave power, and we use several halos produced by structure formation simulations as templates to determine the wave distribution function. Among different models, we find the fermionic King model presents the best fits and we use it for our wave-halo construction. We have devised an iteration method for constructing the nonlinear halo and demonstrate its stability by three-dimensional simulations. A Milky Way-sized halo has also been constructed, and the inner halo is found to be flatter than the NFW profile. These wave-halos have small-scale interferences both in space and time producing time-dependent granules. While the spatial scale of granules varies little, the correlation time is found to increase with radius by 1 order of magnitude across the halo.

  5. The Halo of NGC 2438 scrutinized

    Science.gov (United States)

    Oettl, Silvia; Kimeswenger, Stefan

    2015-08-01

    Haloes and multiple shells around planetary nebulae trace the mass-loss history of the central star. The haloes provide us with information about abundances, ionization or kinematics. Detailed investigations of these haloes can be used to study the evolution of the old stellar population in our galaxy and beyond.Different observations show structures in the haloes like radial rays, blisters and rings (e.g., Ramos-Larios et al. 2012, MNRAS 423, 3753 or Matsuura et al. 2009, ApJ, 700, 1067). The origin of these features has been associated with ionization shadows (Balick 2004, AJ, 127, 2262). They can be observed in regions, where dense knots are opaque to stellar ionizing photons. In this regions we can see leaking UV photons.In this work, we present a detailed investigation of the multiple shell PN NGC 2438. We derive a complete data set of the main nebula. This allows us to analize the physical conditions from photoionization models, such as temperature, density and ionization, and clumping.Data from ESO (3.6m telescope - EFOSC1 - direct imaging and long slit spectroscopy) and from SAAO (spectroscopic observations using a small slit) were available. These data were supplemented by imaging data from the HST archive and by archival VLA observations. The low-excitation species are found to be dominated by clumps. The emission line ratios show no evidence for shocks. We find the shell in ionization equilibrium: a significant amount of UV radiation infiltrates the inner nebula. Thus the shell still seems to be ionized.The photoionization code CLOUDY was used to model the nebular properties and to derive a more accurate distance and ionized mass. The model supports the hypothesis that photoionization is the dominant process in this nebula, far out into the shell.If we want to use extragalactic planetary nebulae as probes of the old stellar population, we need to assess the potential impact of a halo on the evolution. Also the connection of observations and models must

  6. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S. G.; Roberts, G. W.

    1980-01-01

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst

  7. Nuclear halo and its related reactions

    International Nuclear Information System (INIS)

    Zhang Huanqiao

    2005-01-01

    In order to search proton halo, the reaction cross sections of 27,28 P, 29 S and the corresponding isotones on Si target were measured at intermediate energies. The measured reaction cross sections of the N=12 and 13 isotones show an abrupt increase at Z=15. The experimental results for the isotones with Z=14 as well as 28 P can be well described by the modified Glauber theory of the optical limit approach. The enhancement of the reaction cross sections for 28 P could be explained in the modified Glauber theory with an enlarged core. Theoretical analysis with the modified Glauber theory of the optical limit and few-body approaches underpredicted the experimental data of 27 P. Our theoretical analysis shows that an enlarged core together with proton halo is probably the mechanism responsible for the enhancement of the cross sections for the reaction of 27 P+ 28 Si. In addition, we find from the experimental results that 29 S may have a moderate proton halo structure. Except the nuclei near or at drop-lines, halo may appear in the excited states of stable nuclei. By means of the asymptotic normalization coefficients (ANC's) extracted from transfer reactions of 11 B(d, p) 12 B, 12 C(d, p) 13 C, and H( 6 He, n) 6 Li, we have verified that the second ( Jπ = 2 - ) and third (Jπ = 1 - ) excited states in 12 B and the first (Jπ =1/2 + ) excited state in 13 C are the neutron halo states, while the second excited state (3.56 MeV, Jπ = 0 + ) in 6 Li is a proton-neutron halo state. We have proposed a procedure to extract the probability for valence particle being out of the binding potential from the measured nuclear asymptotic normalization coefficients. With this procedure, available data regarding the nuclear halo candidates are systematically analyzed and a number of halo nuclei are confirmed. Based on these results we have got a much relaxed condition for nuclear halo occurrence. Furthermore, we have presented the scaling laws for the dimensionless quantity 2 >/R 2 of

  8. THE TILT OF THE HALO VELOCITY ELLIPSOID AND THE SHAPE OF THE MILKY WAY HALO

    International Nuclear Information System (INIS)

    Smith, Martin C.; Wyn Evans, N.; An, Jin H.

    2009-01-01

    A sample of ∼1800 halo subdwarf stars with radial velocities and proper motions is assembled from Bramich et al.'s light-motion catalog of 2008. This is based on the repeated multiband Sloan Digital Sky Survey photometric measurements in Stripe 82. Our sample of halo subdwarfs is extracted via a reduced proper motion diagram and distances are obtained using photometric parallaxes, thus giving full phase-space information. The tilt of the velocity ellipsoid with respect to the spherical polar coordinate system is computed and found to be consistent with zero for two of the three tilt angles, and very small for the third. We prove that if the inner halo is in a steady state and the triaxial velocity ellipsoid is everywhere aligned in spherical polar coordinates, then the potential must be spherically symmetric. The detectable, but very mild, misalignment with spherical polars is consistent with the perturbative effects of the Galactic disk on a spherical dark halo. Banana orbits are generated at the 1:1 resonance (in horizontal and vertical frequencies) by the disk. They populate Galactic potentials at the typical radii of our subdwarf sample, along with the much more dominant short-axis tubes. However, on geometric grounds alone, the tilt cannot vanish for the banana orbits and this leads to a slight, but detectable, misalignment. We argue that the tilt of the stellar halo velocity ellipsoid therefore provides a hitherto largely neglected but important line of argument that the Milky Way's dark halo, which dominates the potential, must be nearly spherical.

  9. The “Building Blocks” of Stellar Halos

    Directory of Open Access Journals (Sweden)

    Kyle A. Oman

    2017-08-01

    Full Text Available The stellar halos of galaxies encode their accretion histories. In particular, the median metallicity of a halo is determined primarily by the mass of the most massive accreted object. We use hydrodynamical cosmological simulations from the apostle project to study the connection between the stellar mass, the metallicity distribution, and the stellar age distribution of a halo and the identity of its most massive progenitor. We find that the stellar populations in an accreted halo typically resemble the old stellar populations in a present-day dwarf galaxy with a stellar mass ∼0.2–0.5 dex greater than that of the stellar halo. This suggests that had they not been accreted, the primary progenitors of stellar halos would have evolved to resemble typical nearby dwarf irregulars.

  10. THE EXCEPTIONAL SOFT X-RAY HALO OF THE GALAXY MERGER NGC 6240

    Energy Technology Data Exchange (ETDEWEB)

    Nardini, E.; Wang Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pellegrini, S., E-mail: e.nardini@keele.ac.uk [Dipartimento di Fisica e Astronomia, Universita di Bologna, v.le Berti Pichat 6/2, I-40127 Bologna (Italy)

    2013-03-10

    We report on a recent {approx}150 ks long Chandra observation of the ultraluminous infrared galaxy merger NGC 6240, which allows a detailed investigation of the diffuse galactic halo. Extended soft X-ray emission is detected at the 3{sigma} confidence level over a diamond-shaped region with projected physical size of {approx}110 Multiplication-Sign 80 kpc, and a single-component thermal model provides a reasonably good fit to the observed X-ray spectrum. The hot gas has a temperature of {approx}7.5 million K, an estimated density of 2.5 Multiplication-Sign 10{sup -3} cm{sup -3}, and a total mass of {approx}10{sup 10} M{sub Sun }, resulting in an intrinsic 0.4-2.5 keV luminosity of 4 Multiplication-Sign 10{sup 41} erg s{sup -1}. The average temperature of 0.65 keV is quite high to be obviously related to either the binding energy in the dark-matter gravitational potential of the system or the energy dissipation and shocks following the galactic collision, yet the spatially resolved spectral analysis reveals limited variations across the halo. The relative abundance of the main {alpha}-elements with respect to iron is several times the solar value, and nearly constant as well, implying a uniform enrichment by type II supernovae out to the largest scales. Taken as a whole, the observational evidence is not compatible with a superwind originated by a recent, nuclear starburst, but rather hints at widespread, enhanced star formation proceeding at a steady rate over the entire dynamical timescale ({approx}200 Myr). The preferred scenario is that of a starburst-processed gas component gently expanding into, and mixing with, a pre-existing halo medium of lower metallicity (Z {approx} 0.1 solar) and temperature (kT {approx} 0.25 keV). This picture cannot be probed more extensively with the present data, and the ultimate fate of the diffuse, hot gas remains uncertain. Under some favorable conditions, at least a fraction of it might be retained after the merger completion

  11. The Exceptional Soft X-Ray Halo of the Galaxy Merger NGC 6240

    Science.gov (United States)

    Nardini, E.; Wang, Junfeng; Fabbiano, G.; Elvis, M.; Pellegrini, S.; Risaliti, G.; Karovska, M.; Zezas, A.

    2013-03-01

    We report on a recent ~150 ks long Chandra observation of the ultraluminous infrared galaxy merger NGC 6240, which allows a detailed investigation of the diffuse galactic halo. Extended soft X-ray emission is detected at the 3σ confidence level over a diamond-shaped region with projected physical size of ~110 × 80 kpc, and a single-component thermal model provides a reasonably good fit to the observed X-ray spectrum. The hot gas has a temperature of ~7.5 million K, an estimated density of 2.5 × 10-3 cm-3, and a total mass of ~1010 M ⊙, resulting in an intrinsic 0.4-2.5 keV luminosity of 4 × 1041 erg s-1. The average temperature of 0.65 keV is quite high to be obviously related to either the binding energy in the dark-matter gravitational potential of the system or the energy dissipation and shocks following the galactic collision, yet the spatially resolved spectral analysis reveals limited variations across the halo. The relative abundance of the main α-elements with respect to iron is several times the solar value, and nearly constant as well, implying a uniform enrichment by type II supernovae out to the largest scales. Taken as a whole, the observational evidence is not compatible with a superwind originated by a recent, nuclear starburst, but rather hints at widespread, enhanced star formation proceeding at a steady rate over the entire dynamical timescale (~200 Myr). The preferred scenario is that of a starburst-processed gas component gently expanding into, and mixing with, a pre-existing halo medium of lower metallicity (Z ~ 0.1 solar) and temperature (kT ~ 0.25 keV). This picture cannot be probed more extensively with the present data, and the ultimate fate of the diffuse, hot gas remains uncertain. Under some favorable conditions, at least a fraction of it might be retained after the merger completion, and evolve into the hot halo of a young elliptical galaxy.

  12. THE EXCEPTIONAL SOFT X-RAY HALO OF THE GALAXY MERGER NGC 6240

    International Nuclear Information System (INIS)

    Nardini, E.; Wang Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Pellegrini, S.

    2013-01-01

    We report on a recent ∼150 ks long Chandra observation of the ultraluminous infrared galaxy merger NGC 6240, which allows a detailed investigation of the diffuse galactic halo. Extended soft X-ray emission is detected at the 3σ confidence level over a diamond-shaped region with projected physical size of ∼110 × 80 kpc, and a single-component thermal model provides a reasonably good fit to the observed X-ray spectrum. The hot gas has a temperature of ∼7.5 million K, an estimated density of 2.5 × 10 –3 cm –3 , and a total mass of ∼10 10 M ☉ , resulting in an intrinsic 0.4-2.5 keV luminosity of 4 × 10 41 erg s –1 . The average temperature of 0.65 keV is quite high to be obviously related to either the binding energy in the dark-matter gravitational potential of the system or the energy dissipation and shocks following the galactic collision, yet the spatially resolved spectral analysis reveals limited variations across the halo. The relative abundance of the main α-elements with respect to iron is several times the solar value, and nearly constant as well, implying a uniform enrichment by type II supernovae out to the largest scales. Taken as a whole, the observational evidence is not compatible with a superwind originated by a recent, nuclear starburst, but rather hints at widespread, enhanced star formation proceeding at a steady rate over the entire dynamical timescale (∼200 Myr). The preferred scenario is that of a starburst-processed gas component gently expanding into, and mixing with, a pre-existing halo medium of lower metallicity (Z ∼ 0.1 solar) and temperature (kT ∼ 0.25 keV). This picture cannot be probed more extensively with the present data, and the ultimate fate of the diffuse, hot gas remains uncertain. Under some favorable conditions, at least a fraction of it might be retained after the merger completion, and evolve into the hot halo of a young elliptical galaxy.

  13. X-ray and SZ constraints on the properties of hot CGM

    Science.gov (United States)

    Singh, Priyanka; Majumdar, Subhabrata; Nath, Biman B.; Silk, Joseph

    2018-05-01

    We use observations of stacked X-ray luminosity and Sunyaev-Zel'dovich (SZ) signal from a cosmological sample of ˜80, 000 and 104,000 massive galaxies, respectively, with 1012.6 ≲ M500 ≲ 1013M⊙ and mean redshift, z¯ ˜ 0.1 - 0.14 to constrain the hot Circumgalactic Medium (CGM) density and temperature. The X-ray luminosities constrain the density and hot CGM mass, while the SZ signal helps in breaking the density-temperature degeneracy. We consider a simple power-law density distribution (ne∝r-3β) as well as a hydrostatic hot halo model, with the gas assumed to be isothermal in both cases. The datasets are best described by the mean hot CGM profile ∝r-1.2, which is shallower than an NFW profile. For halo virial mass ˜1012 - 1013M⊙, the hot CGM contains ˜ 20 - 30% of galactic baryonic mass for the power-law model and 4 - 11% for the hydrostatic halo model, within the virial radii. For the power-law model, the hot CGM profile broadly agrees with observations of the Milky Way. The mean hot CGM mass is comparable to or larger than the mass contained in other phases of the CGM for L* galaxies.

  14. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Murakami, Kazuo.

    1997-01-01

    In a radioactive gaseous waste processing device, a dehumidifier in which a lot of hollow thread membranes are bundled and assembled is disposed instead of a dehumidifying cooling device and a dehumidifying tower. The dehumidifier comprises a main body, a great number of hollow thread membranes incorporated in the main body, a pair of fixing members for bundling and fixing both ends of the hollow thread membranes, a pair of caps for allowing the fixing members to pass through and fixing them on both ends of the main body, an off gas flowing pipe connected to one of the caps, a gas exhaustion pipe connected to the other end of the cap and a moisture removing pipeline connected to the main body. A flowrate control valve is connected to the moisture removing pipeline, and the other end of the moisture removing pipeline is connected between a main condensator and an air extraction device. Then, cooling and freezing devices using freon are no more necessary, and since the device uses the vacuum of the main condensator as a driving source and does not use dynamic equipments, labors for the maintenance is greatly reduced to improve economical property. The facilities are reduced in the size thereby enabling to use space effectively. (N.H.)

  15. Device for filtering gaseous media

    International Nuclear Information System (INIS)

    Benzel, M.

    1978-01-01

    The air filter system for gaseous radioactive substances consists of a vertical chamber with filter material (charcoal, e.g. impregnated). On one side of the chamber there is an inlet compartment and an outlet compartment. On the other side a guiding compartment turns the gas flow coming from the natural-air side through the lower part of filter chamber to the upper part of the filter. The gas flow leaves the upper part through the outlet conpartment as cleaned-air flow. The filter material may be filled into the chamber from above and drawn off below. For better utilization of the filter material the filter chamber is separated by means of a wall between the inlet and outlet compartment. This partition wall consist of two sheets arranged one above the other provided with slots which may be superposed in alignment. In this case filter material is tickling from the upper part of the chamber into the lower part avoiding to form a crater in the filter bed. (DG) [de

  16. Solid-state photoelectrochemical H2 generation with gaseous reactants

    International Nuclear Information System (INIS)

    Iwu, Kingsley O.; Galeckas, Augustinas; Kuznetsov, Andrej Yu.; Norby, Truls

    2013-01-01

    Photocurrent and H 2 production were demonstrated in an all solid-state photoelectrochemical cell employing gaseous methanol and water vapour at the photoanode. Open circuit photovoltage of around −0.4 V and short circuit photocurrent of up to 250 μA/cm 2 were obtained. At positive bias, photocurrent generation was limited by the irradiance, i.e., the amount of photogenerated charge carriers at the anode. Time constants and impedance spectra showed an electrochemical capacitance of the cell of about 15 μF/cm 2 in the dark, which increased with increasing irradiance. With only water vapour at the anode, the short circuit photocurrent was about 6% of the value with gaseous methanol and water vapour. The photoanode and electrocatalyst on carbon paper support were affixed to the proton conducting membrane using Nafion ® as adhesive, an approach that yielded photocurrents up to 15 times better than that of a cell assembled by hot-pressing, in spite of the overall cell resistance of the latter being up to five times less than that of the former. This is attributed, at least partially, to reactants being more readily available at the photoanode of the better performing cell

  17. Haloes, molecules and multi-neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Marques Moreno, F.M

    2003-01-01

    Away from the equilibrium between protons and neutrons within stable nuclei, many exotic nuclei exist. Most of the known nuclear properties evolve smoothly with exoticism, but some extreme proton-neutron combinations have revealed during the last decade completely new concepts. They will be illustrated through three examples: the extended and dilute halo formed by very weakly bound neutrons, the molecular-like neutron orbitals found in nuclei exhibiting a clustering, and the recently revived debate on the possible existence of neutral nuclei. The different experimental results will be reviewed, and we will see how several properties of these new phenomena can be well understood within relatively simple theoretical approaches. (author)

  18. Sub-Coulomb fusion with halo nuclei

    International Nuclear Information System (INIS)

    Fekou-Youmbi, V.; Sida, J.L.; Alamanos, N.; Auger, F.; Bazin, D.; Borcea, C.; Cabot, C.; Cunsolo, A.; Foti, A.; Gillibert, A.; Lepine, A.; Lewitowicz, M.; Liguori-Neto, R.; Mittig, W.; Pollacco, E.; Roussel-Chomaz, P.; Volant, C.; Yong Feng, Y.

    1995-01-01

    The nuclear structure of halo nuclei may have strong influence on the fusion cross section at sub-barrier energies. The actual theoretical debate is briefly reviewed and sub-barrier fusion calculations for the system 11 Be+ 238 U are presented. An experimental program on sub-barrier fusion for the systems 7,9,10,11 Be+ 238 U is underway at GANIL. First results with 9 Be and 11 Be beams were obtained using the F.U.S.ION detector. Relative fission cross sections are presented. ((orig.))

  19. Project ECHO: Electronic Communications from Halo Orbit

    Science.gov (United States)

    Borrelli, Jason; Cooley, Bryan; Debole, Marcy; Hrivnak, Lance; Nielsen, Kenneth; Sangmeister, Gary; Wolfe, Matthew

    1994-01-01

    The design of a communications relay to provide constant access between the Earth and the far side of the Moon is presented. Placement of the relay in a halo orbit about the L2 Earth-Moon Lagrange point allows the satellite to maintain constant simultaneous communication between Earth and scientific payloads on the far side of the Moon. The requirements of NASA's Discovery-class missions adopted and modified for this design are: total project cost should not exceed $150 million excluding launch costs, launch must be provided by Delta-class vehicle, and the satellite should maintain an operational lifetime of 10 to 15 years. The spacecraft will follow a transfer trajectory to the L2 point, after launch by a Delta II 7925 vehicle in 1999. Low-level thrust is used for injection into a stationkeeping-free halo orbit once the spacecraft reaches the L2 point. The shape of this halo orbit is highly elliptical with the maximum excursion from the L2 point being 35000 km. A spun section and despun section connected through a bearing and power transfer assembly (BAPTA) compose the structure of the spacecraft. Communications equipment is placed on the despun section to provide for a stationary dual parabolic offset-feed array antenna system. The dual system is necessary to provide communications coverage during portions of maximum excursion on the halo orbit. Transmissions to the NASA Deep Space Network 34 m antenna include six channels (color video, two voice, scientific data from lunar payloads, satellite housekeeping and telemetry and uplinked commands) using the S- and X-bands. Four radioisotope thermoelectric generators (RTG's) provide a total of 1360 W to power onboard systems and any two of the four Hughes 13 cm ion thrusters at once. Output of the ion thrusters is approximately 17.8 mN each with xenon as the propellant. Presence of torques generated by solar pressure on the antenna dish require the addition of a 'skirt' extending from the spun section of the satellite

  20. X-ray haloes around supernova remnants

    International Nuclear Information System (INIS)

    Morfill, G.E.; Aschenbach, B.

    1984-01-01

    Recent observations of the Cas-A supernova remnant have shown X-ray emissions not only from the interior, but also from a fainter 'halo' extending beyond what is normally regarded as the outer boundary, or shock front. The authors suggest that this may be due to the diffusion of energetic, charged particles out of the remnant giving rise to precursor structure of the type predicted by the theory of diffusive shock acceleration. If this is the case we are seeing thermal emission from ambient gas heated by compression and wave dissipation. (author)

  1. X-ray haloes around supernova remnants

    Energy Technology Data Exchange (ETDEWEB)

    Morfill, G.E.; Aschenbach, B. (Max-Planck-Institut fuer Physik und Astrophysik, Garching (Germany, F.R.). Inst. fuer Extraterrestrische Physik); Drury, L.O' C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))

    1984-09-27

    Recent observations of the Cas-A supernova remnant have shown X-ray emissions not only from the interior, but also from a fainter 'halo' extending beyond what is normally regarded as the outer boundary, or shock front. The authors suggest that this may be due to the diffusion of energetic charged particles out of the remnant giving rise to precursor structure of the type predicted by the theory of diffusive shock acceleration. If this is the case we are seeing thermal emission from ambient gas heated by compression and wave dissipation.

  2. Sevoflurane improves gaseous exchange and exerts protective ...

    African Journals Online (AJOL)

    Sevoflurane improves gaseous exchange and exerts protective effects in ... Lung water content and cell count were estimated by standard protocols. ... It reversed LPS-induced oxidative stress, as demonstrated by increase in total antioxidant ...

  3. Purifying hydrocarbons in the gaseous stage

    Energy Technology Data Exchange (ETDEWEB)

    1937-02-01

    Gaseous tar oils are subjected, at temperatures of 320 to 380/sup 0/C, to the action of a mixture of activated carbon mixed with powdered metal which removes the sulfur contamination from the substance to be purified.

  4. Automated sampling and control of gaseous simulations

    KAUST Repository

    Huang, Ruoguan; Keyser, John

    2013-01-01

    In this work, we describe a method that automates the sampling and control of gaseous fluid simulations. Several recent approaches have provided techniques for artists to generate high-resolution simulations based on a low-resolution simulation

  5. The conditions of gaseous fuels development

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Face to the actual situation of petrol and gas oil in France, the situation of gaseous fuels appears to be rather modest. However, the aim of gaseous fuels is not to totally supersede the liquid fuels. Such a situation would imply a complete overturn which has not been seriously considered yet. This short paper describes the essential conditions to promote the wider use of gaseous fuels: the intervention of public authorities to adopt a more advantageous tax policy in agreement with the ''Clean Air''law project, a suitable distribution network for gaseous fuels, a choice of vehicles consistent with the urban demand, the development of transformation kits of quality and of dual-fuel vehicles by the car manufacturers. (J.S.)

  6. Convergence properties of halo merger trees; halo and substructure merger rates across cosmic history

    Science.gov (United States)

    Poole, Gregory B.; Mutch, Simon J.; Croton, Darren J.; Wyithe, Stuart

    2017-12-01

    We introduce GBPTREES: an algorithm for constructing merger trees from cosmological simulations, designed to identify and correct for pathological cases introduced by errors or ambiguities in the halo finding process. GBPTREES is built upon a halo matching method utilizing pseudo-radial moments constructed from radially sorted particle ID lists (no other information is required) and a scheme for classifying merger tree pathologies from networks of matches made to-and-from haloes across snapshots ranging forward-and-backward in time. Focusing on SUBFIND catalogues for this work, a sweep of parameters influencing our merger tree construction yields the optimal snapshot cadence and scanning range required for converged results. Pathologies proliferate when snapshots are spaced by ≲0.128 dynamical times; conveniently similar to that needed for convergence of semi-analytical modelling, as established by Benson et al. Total merger counts are converged at the level of ∼5 per cent for friends-of-friends (FoF) haloes of size np ≳ 75 across a factor of 512 in mass resolution, but substructure rates converge more slowly with mass resolution, reaching convergence of ∼10 per cent for np ≳ 100 and particle mass mp ≲ 109 M⊙. We present analytic fits to FoF and substructure merger rates across nearly all observed galactic history (z ≤ 8.5). While we find good agreement with the results presented by Fakhouri et al. for FoF haloes, a slightly flatter dependence on merger ratio and increased major merger rates are found, reducing previously reported discrepancies with extended Press-Schechter estimates. When appropriately defined, substructure merger rates show a similar mass ratio dependence as FoF rates, but with stronger mass and redshift dependencies for their normalization.

  7. Subhalo demographics in the Illustris simulation: effects of baryons and halo-to-halo variation

    Science.gov (United States)

    Chua, Kun Ting Eddie; Pillepich, Annalisa; Rodriguez-Gomez, Vicente; Vogelsberger, Mark; Bird, Simeon; Hernquist, Lars

    2017-12-01

    We study the abundance of subhaloes in the hydrodynamical cosmological simulation Illustris, which includes both baryons and dark matter in a cold dark matter volume 106.5 Mpc a side. We compare Illustris to its dark-matter only (DMO) analogue, Illustris-Dark and quantify the effects of baryonic processes on the demographics of subhaloes in the host mass range 1011-3 × 1014 M⊙. We focus on both the evolved (z = 0) subhalo cumulative mass functions (SHMF) and the statistics of subhaloes ever accreted, i.e. infall SHMF. We quantify the variance in subhalo abundance at fixed host mass and investigate the physical reasons responsible for such scatter. We find that in Illustris, baryonic physics impacts both the infall and z = 0 subhalo abundance by tilting the DMO function and suppressing the abundance of low-mass subhaloes. The breaking of self-similarity in the subhalo abundance at z = 0 is enhanced by the inclusion of baryonic physics. The non-monotonic alteration of the evolved subhalo abundances can be explained by the modification of the concentration-mass relation of Illustris hosts compared to Illustris-Dark. Interestingly, the baryonic implementation in Illustris does not lead to an increase in the halo-to-halo variation compared to Illustris-Dark. In both cases, the normalized intrinsic scatter today is larger for Milky Way-like haloes than for cluster-sized objects. For Milky Way-like haloes, it increases from about eight per cent at infall to about 25 per cent at the current epoch. In both runs, haloes of fixed mass formed later host more subhaloes than early formers.

  8. 7th International Symposium on Gaseous Dielectrics

    CERN Document Server

    James, David

    1994-01-01

    The Seventh International Symposium on Gaseous Dielectrics was held in Knoxville, Tennessee, U. S. A. , on April 24-28, 1994. The symposium continued the interdisciplinary character and comprehensive approach of the preceding six symposia. Gaseous DielecIries VII is a detailed record of the symposium proceedings. It covers recent advances and developments in a wide range of basic, applied and industrial areas of gaseous dielectrics. It is hoped that Gaseous DielecIries VII will aid future research and development in, and encourage wider industrial use of, gaseous dielectrics. The Organizing Committee of the Seventh International Symposium on Gaseous Dielectrics consisted of G. Addis (U. S. A. ), L. G. Christophorou (U. S. A. ), F. Y. Chu (Canada), A. H. Cookson (U. S. A. ), O. Farish (U. K. ), I. Gallimberti (Italy) , A. Garscadden (U. S. A. ), D. R. James (U. S. A. ), E. Marode (France), T. Nitta (Japan), W. Pfeiffer (Germany), Y. Qiu (China), I. Sauers (U. S. A. ), R. J. Van Brunt (U. S. A. ), and W. Zaengl...

  9. Periportal halo on CT: spectrum of causes

    International Nuclear Information System (INIS)

    Volpacchio, Mariano; Baltazar, Alberto D.; Santamarina, Mario G.; Casetta, Liliana; Cione, Rodrigo; Sanchez, Gimena; Vallejos, Nancy

    2003-01-01

    Purpose: A periportal hypodense halo is a relatively frequent CT finding. This halo is attributed to the presence of edema or ecstatic lymphatic channels. In our series we illustrate the CT appearance of periportal edema and analyze its causes. Material and Methods: In a retrospective study we analyze a 78 patients series who showed periportal edema on e.v. contrast-enhanced abdominal CTs. The different causes of hepatic periportal edema (demonstrated on CT exams), were established by clinical, laboratory, surgical and anatomo-pathologic correlation. Results: In this study, 49 cases were diagnosed as having congestive heart failure (62,8%), 14 patients had viral hepatitis (18%), 5 patients had recently undergone orthotopic liver transplantation (6.4%), 3 patients had a diagnosis of infectious cholangitis (3.8%), 3 patients had abdominal trauma (3.8%), 2 patients had neoplastic disease (2.6%) and 2 patients had toxic hepatitis (2.6%). Conclusion: Periportal edema is a frequent and nonspecific finding associated with systemic diseases as well as liver specific entities. The integration of CT findings and clinical picture of periportal edema leads to a confident diagnosis of the main cause in most patients. (author)

  10. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    CMS Collaboration

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will describ...

  11. Halo's production in vitro on brachytherapy experiments

    International Nuclear Information System (INIS)

    Cuperschmid, Ethel M.; Sarmento, Eduardo V.; Campos, Tarcisio P.R.

    2011-01-01

    Since earlier of 1960, one of the most significant contributions of radiation biology has been the theory of cell killing as a function of increasing doses of a cytotoxic agent, as well as the demonstration of repair of sublethal or potentially lethal damage after irradiation. The impact of cellular and molecular radiobiology, by exploitation of cellular mechanisms related to apoptosis, may be the cell killing with irradiation by including changes other than unrepaired DNA damage. Based on the understanding of the tumor microenvironment and how growth factors and proteins produced by irradiated cells may alter cellular processes, improved combined-modality strategies may emerge. This effect was show since 1960's, but here we propose to demonstrate this phenomenon in Brachytherapy. The present goal is to verify the macroscopic response through the production and analysis of clonogenic control based on halos generation by radioactive seeds of Ho-165 and Sm-153, aiming to study the effect of this type of irradiation. Confluent cell culture flasks with HeLa cell line were subjected to radiation in a period up to five half-lives of radionuclide, respectively. Devices were introduced which set the polymer-ceramic Ho-165 and Sm-153 seeds in the vials. After a period of exposure, the flasks were stained with violet Gensiana. The results showed the formation of halos control of confluent cancer cells. This paper will describe these experiments in the current stage of the research and report the implications of this new way of therapy for cancer treatment. (author)

  12. Remarks on the spherical scalar field halo in galaxies

    International Nuclear Information System (INIS)

    Nandi, Kamal K.; Valitov, Ildar; Migranov, Nail G.

    2009-01-01

    Matos, Guzman, and Nunez proposed a model for the galactic halo within the framework of scalar field theory. We argue that an analysis involving the full metric can reveal the true physical nature of the halo only when a certain condition is maintained. We fix that condition and also calculate its impact on observable parameters of the model.

  13. Double folding model analysis of elastic scattering of halo nucleus ...

    Indian Academy of Sciences (India)

    carried out which provide valuable insight for improving our understanding of nuclear reactions. One of the interesting aspects is to understand the effect of the halo structure, on elastic scattering cross-sections at near-Coulomb barrier energies in reactions induced by neutron halo nuclei and weakly bound radioactive ...

  14. The prolate dark matter halo of the Andromeda galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kohei; Chiba, Masashi, E-mail: k.hayasi@astr.tohoku.ac.jp, E-mail: chiba@astr.tohoku.ac.jp [Astronomical Institute, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan)

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  15. Characteristics of halo current in JT-60U

    International Nuclear Information System (INIS)

    Neyatani, Y.; Nakamura, Y.; Yoshino, R.; Hatae, T.

    1999-01-01

    Halo currents and their toroidal peaking factor (TPF) have been measured in JT-60U by Rogowski coil type halo current sensors. The electron temperature in the halo region was around 10 eV at 1 ms before the timing of the maximum halo current. The maximum TPF*I h /I p0 was 0.52 in the operational range of I p = 0.7 ∼ 1.8 MA, B T = 2.2 ∼ 3.5 T, including ITER design parameters of κ > 1.6 and q 95 = 3, which was lower than that of the maximum value of ITER data base (0.75). The magnitude of halo currents tended to decrease with the increase in stored energy just before the energy quench and with the line integrated electron density at the time of the maximum halo current. A termination technique in which the current channel remains stationary was useful to avoid halo current generation. Intense neon gas puffing during the VDE was effective for reducing the halo currents. (author)

  16. Characteristics of halo current in JT-60U

    International Nuclear Information System (INIS)

    Neyatani, Y.; Nakamura, Y.; Yoshino, R.; Hatae, T.

    2001-01-01

    Halo currents and their toroidal peaking factor (TPF) have been measured in JT-60U by Rogowski coil type halo current sensors. The electron temperature in the halo region was around 10 eV at 1 ms before the timing of the maximum halo current. The maximum TPF *I h /I p0 was 0.52 in the operational range of I p =0.7∼1.8MA, B T =2.2∼3.5T, including ITER design parameters of κ>1.6 and q 95 =3, which was lower than that of the maximum value of ITER data base (0.75). The magnitude of halo currents tended to decrease with the increase in stored energy just before the energy quench and with the line integrated electron density at the time of the maximum halo current. A termination technique in which the current channel remains stationary was useful to avoid halo current generation. Intense neon gas puffing during the VDE was effective for reducing the halo currents. (author)

  17. Collisionless analogs of Riemann S ellipsoids with halo

    International Nuclear Information System (INIS)

    Abramyan, M.G.

    1987-01-01

    A spheroidal halo ensures equilibrium of the collisionless analogs of the Riemann S ellipsoids with oscillations of the particles along the direction of their rotation. Sequences of collisionless triaxial ellipsoids begin and end with dynamically stable members of collisionless embedded spheroids. Both liquid and collisionless Riemann S ellipsoids with weak halo have properties that resemble those of bars of SB galaxies

  18. A two-point correlation function for Galactic halo stars

    NARCIS (Netherlands)

    Cooper, A. P.; Cole, S.; Frenk, C. S.; Helmi, A.

    2011-01-01

    We describe a correlation function statistic that quantifies the amount of spatial and kinematic substructure in the stellar halo. We test this statistic using model stellar halo realizations constructed from the Aquarius suite of six high-resolution cosmological N-body simulations, in combination

  19. The edges of dark matter halos: theory and observations

    OpenAIRE

    More, Surhud

    2017-01-01

    I discuss recent theoretical advances which have led us to suggest a physical definition for the boundary of dark matter halos. We propose using the "splashback radius" which corresponds to the apocenter of recently infalling material as a physical boundary for dark matter halos. We also present how the splashback radius can be detected in observations.

  20. The Edges Of Dark Matter Halos: Theory And Observations

    Science.gov (United States)

    More, Surhud

    2017-06-01

    I discuss recent theoretical advances which have led us to suggest a physical definition for the boundary of dark matter halos. We propose using the "splashback radius" which corresponds to the apocenter of recently infalling material as a physical boundary for dark matter halos. We also present how the splashback radius can be detected in observations.

  1. Accurate mass and velocity functions of dark matter haloes

    Science.gov (United States)

    Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Klypin, Anatoly

    2017-08-01

    N-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four orders of magnitude in halo mass from ˜1011M⊙ with 8783 874 distinct haloes and 532 533 subhaloes. The total volume used is ˜515 Gpc3, more than eight times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (function. We also model the subhalo mass function and its relation to the distinct halo mass function. The set of models obtained provides a complete and precise framework for the description of haloes in the concordance Planck cosmology. Finally, we provide precise analytical fits of the Vmax maximum velocity function up to redshift z publicly available in the Skies and Universes data base.

  2. The f ( R ) halo mass function in the cosmic web

    Energy Technology Data Exchange (ETDEWEB)

    Braun-Bates, F. von; Winther, H.A.; Alonso, D.; Devriendt, J., E-mail: francesca.vonbraun-bates@physics.ox.ac.uk, E-mail: hans.a.winther@physics.ox.ac.uk, E-mail: david.alonso@physics.ox.ac.uk, E-mail: julien.devriendt@physics.ox.ac.uk [Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom)

    2017-03-01

    An important indicator of modified gravity is the effect of the local environment on halo properties. This paper examines the influence of the local tidal structure on the halo mass function, the halo orientation, spin and the concentration-mass relation. We use the excursion set formalism to produce a halo mass function conditional on large-scale structure. Our simple model agrees well with simulations on large scales at which the density field is linear or weakly non-linear. Beyond this, our principal result is that f ( R ) does affect halo abundances, the halo spin parameter and the concentration-mass relationship in an environment-independent way, whereas we find no appreciable deviation from \\text(ΛCDM) for the mass function with fixed environment density, nor the alignment of the orientation and spin vectors of the halo to the eigenvectors of the local cosmic web. There is a general trend for greater deviation from \\text(ΛCDM) in underdense environments and for high-mass haloes, as expected from chameleon screening.

  3. The prolate dark matter halo of the Andromeda galaxy

    International Nuclear Information System (INIS)

    Hayashi, Kohei; Chiba, Masashi

    2014-01-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  4. Influence of halo doping profiles on MOS transistor mismatch

    NARCIS (Netherlands)

    Andricciola, P.; Tuinhout, H.

    2009-01-01

    Halo implants are used in modern CMOS technology to reduce the short channel effect. However, the lateral non-uniformity of the channel doping has been proven to degenerate the mismatch performance. With this paper we want to discuss the influence of the halo profile on MOS transistor mismatch. The

  5. THE EFFECTS OF ANGULAR MOMENTUM ON HALO PROFILES

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Erik W; Rosenberg, Leslie J [Physics Department, University of Washington, Seattle, WA 98195-1580 (United States); Quinn, Thomas R, E-mail: lentze@phys.washington.edu, E-mail: ljrosenberg@phys.washington.edu, E-mail: trq@astro.washington.edu [Astronomy Department, University of Washington, Seattle, WA 98195-1580 (United States)

    2016-05-10

    The near universality of DM halo density profiles provided by N -body simulations proved to be robust against changes in total mass density, power spectrum, and some forms of initial velocity dispersion. Here we study the effects of coherently spinning up an isolated DM-only progenitor on halo structure. Halos with spins within several standard deviations of the simulated mean ( λ ≲ 0.20) produce profiles with negligible deviations from the universal form. Only when the spin becomes quite large ( λ ≳ 0.20) do departures become evident. The angular momentum distribution also exhibits a near universal form, which is also independent of halo spin up to λ ≲ 0.20. A correlation between these epidemic profiles and the presence of a strong bar in the virialized halo is also observed. These bar structures bear resemblance to the radial orbit instability in the rotationless limit.

  6. Phase models of galaxies consisting of disk and halo

    International Nuclear Information System (INIS)

    Osipkov, L.P.; Kutuzov, S.A.

    1987-01-01

    A method of finding the phase density of a two-component model of mass distribution is developed. The equipotential surfaces and the potential law are given. The equipotentials are lenslike surfaces with a sharp edge in the equatorial plane, which provides the existence of an imbedded thin disk in halo. The equidensity surfaces of the halo coincide with the equipotentials. Phase models for the halo and the disk are constructed separately on the basis of spatial and surface mass densities by solving the corresponding integral equations. In particular the models for the halo with finite dimensions can be constructed. The even part of the phase density in respect to velocities is only found. For the halo it depends on the energy integral as a single argument

  7. Bimodal Formation Time Distribution for Infall Dark Matter Halos

    Science.gov (United States)

    Shi, Jingjing; Wang, Huiyuan; Mo, H. J.; Xie, Lizhi; Wang, Xiaoyu; Lapi, Andrea; Sheth, Ravi K.

    2018-04-01

    We use a 200 {h}-1 {Mpc} a-side N-body simulation to study the mass accretion history (MAH) of dark matter halos to be accreted by larger halos, which we call infall halos. We define a quantity {a}nf}\\equiv (1+{z}{{f}})/(1+{z}peak}) to characterize the MAH of infall halos, where {z}peak} and {z}{{f}} are the accretion and formation redshifts, respectively. We find that, at given {z}peak}, their MAH is bimodal. Infall halos are dominated by a young population at high redshift and by an old population at low redshift. For the young population, the {a}nf} distribution is narrow and peaks at about 1.2, independent of {z}peak}, while for the old population, the peak position and width of the {a}nf} distribution both increase with decreasing {z}peak} and are both larger than those of the young population. This bimodal distribution is found to be closely connected to the two phases in the MAHs of halos. While members of the young population are still in the fast accretion phase at z peak, those of the old population have already entered the slow accretion phase at {z}peak}. This bimodal distribution is not found for the whole halo population, nor is it seen in halo merger trees generated with the extended Press–Schechter formalism. The infall halo population at {z}peak} are, on average, younger than the whole halo population of similar masses identified at the same redshift. We discuss the implications of our findings in connection to the bimodal color distribution of observed galaxies and to the link between central and satellite galaxies.

  8. What sets the central structure of dark matter haloes?

    Science.gov (United States)

    Ogiya, Go; Hahn, Oliver

    2018-02-01

    Dark matter (DM) haloes forming near the thermal cut-off scale of the density perturbations are unique, since they are the smallest objects and form through monolithic gravitational collapse, while larger haloes contrastingly have experienced mergers. While standard cold dark matter (CDM) simulations readily produce haloes that follow the universal Navarro-Frenk-White (NFW) density profile with an inner slope, ρ ∝ r-α, with α = 1, recent simulations have found that when the free-streaming cut-off expected for the CDM model is resolved, the resulting haloes follow nearly power-law density profiles of α ∼ 1.5. In this paper, we study the formation of density cusps in haloes using idealized N-body simulations of the collapse of proto-haloes. When the proto-halo profile is initially cored due to particle free-streaming at high redshift, we universally find ∼r-1.5 profiles irrespective of the proto-halo profile slope outside the core and large-scale non-spherical perturbations. Quite in contrast, when the proto-halo has a power-law profile, then we obtain profiles compatible with the NFW shape when the density slope of the proto-halo patch is shallower than a critical value, αini ∼ 0.3, while the final slope can be steeper for αini ≳ 0.3. We further demonstrate that the r-1.5 profiles are sensitive to small-scale noise, which gradually drives them towards an inner slope of -1, where they become resilient to such perturbations. We demonstrate that the r-1.5 solutions are in hydrostatic equilibrium, largely consistent with a simple analytic model, and provide arguments that angular momentum appears to determine the inner slope.

  9. Effects of deformations and orientations on neutron-halo structure of light-halo nuclei

    International Nuclear Information System (INIS)

    Sawhney, Gudveen; Gupta, Raj K.; Sharma, Manoj K.

    2013-01-01

    The availability of radioactive nuclear beams have enabled to study the structure of nuclei far from the stability line, which in turn led to the discovery of neutron-halo nuclei. These nuclei, located near the neutron drip-line exhibit a high probability of presence of one or two loosely bound neutrons at a large distance from the rest of nucleons. The fragmentation behavior is studied for 13 cases of 1n-halo nuclei, which include 11 Be, 14 B, 15 C, 17 C, 19 C, 22 N, 22 O, 23 O, 24 O, 24 F, 26 F, 29 Ne and 31 Ne, using the cluster-core model (CCM) extended to include the deformations and orientations of nuclei

  10. [Halos and multifocal intraocular lenses: origin and interpretation].

    Science.gov (United States)

    Alba-Bueno, F; Vega, F; Millán, M S

    2014-10-01

    To present the theoretical and experimental characterization of the halo in multifocal intraocular lenses (MIOL). The origin of the halo in a MIOL is the overlaying of 2 or more images. Using geometrical optics, it can be demonstrated that the diameter of each halo depends on the addition of the lens (ΔP), the base power (P(d)), and the diameter of the IOL that contributes to the «non-focused» focus. In the image plane that corresponds to the distance focus, the halo diameter (δH(d)) is given by: δH(d)=d(pn) ΔP/P(d), where d(pn) is the diameter of the IOL that contributes to the near focus. Analogously, in the near image plane the halo diameter (δH(n)) is: δH(n)=d(pd) ΔP/P(d), where d(pd) is the diameter of the IOL that contributes to the distance focus. Patients perceive halos when they see bright objects over a relatively dark background. In vitro, the halo can be characterized by analyzing the intensity profile of the image of a pinhole that is focused by each of the foci of a MIOL. A comparison has been made between the halos induced by different MIOL of the same base power (20D) in an optical bench. As predicted by theory, the larger the addition of the MIOL, the larger the halo diameter. For large pupils and with MIOL with similar aspheric designs and addition (SN6AD3 vs ZMA00), the apodized MIOL has a smaller halo diameter than a non-apodized one in distance vision, while in near vision the size is very similar, but the relative intensity is higher in the apodized MIOL. When comparing lenses with the same diffractive design, but with different spherical-aspheric base design (SN60D3 vs SN6AD3), the halo in distance vision of the spherical MIOL is larger, while in near vision the spherical IOL induces a smaller halo, but with higher intensity due to the spherical aberration of the distance focus in the near image. In the case of a trifocal-diffractive IOL (AT LISA 839MP) the most noticeable characteristic is the double-halo formation due to the 2 non

  11. THE OVERDENSITY AND MASSES OF THE FRIENDS-OF-FRIENDS HALOS AND UNIVERSALITY OF HALO MASS FUNCTION

    International Nuclear Information System (INIS)

    More, Surhud; Kravtsov, Andrey V.; Dalal, Neal; Gottloeber, Stefan

    2011-01-01

    The friends-of-friends algorithm (hereafter FOF) is a percolation algorithm which is routinely used to identify dark matter halos from N-body simulations. We use results from percolation theory to show that the boundary of FOF halos does not correspond to a single density threshold but to a range of densities close to a critical value that depends upon the linking length parameter, b. We show that for the commonly used choice of b = 0.2, this critical density is equal to 81.62 times the mean matter density. Consequently, halos identified by the FOF algorithm enclose an average overdensity which depends on their density profile (concentration) and therefore changes with halo mass, contrary to the popular belief that the average overdensity is ∼180. We derive an analytical expression for the overdensity as a function of the linking length parameter b and the concentration of the halo. Results of tests carried out using simulated and actual FOF halos identified in cosmological simulations show excellent agreement with our analytical prediction. We also find that the mass of the halo that the FOF algorithm selects crucially depends upon mass resolution. We find a percolation-theory-motivated formula that is able to accurately correct for the dependence on number of particles for the mock realizations of spherical and triaxial Navarro-Frenk-White halos. However, we show that this correction breaks down when applied to the real cosmological FOF halos due to the presence of substructures. Given that abundance of substructure depends on redshift and cosmology, we expect that the resolution effects due to substructure on the FOF mass and halo mass function will also depend on redshift and cosmology and will be difficult to correct for in general. Finally, we discuss the implications of our results for the universality of the mass function.

  12. Universal Dark Halo Scaling Relation for the Dwarf Spheroidal Satellites

    Science.gov (United States)

    Hayashi, Kohei; Ishiyama, Tomoaki; Ogiya, Go; Chiba, Masashi; Inoue, Shigeki; Mori, Masao

    2017-07-01

    Motivated by a recently found interesting property of the dark halo surface density within a radius, {r}\\max , giving the maximum circular velocity, {V}\\max , we investigate it for dark halos of the Milky Way’s and Andromeda’s dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky-Way-sized dark halos and find that the values of their surface densities, {{{Σ }}}{V\\max }, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the universal relation, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us with important clues for understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most subhalos evolve generally along the {r}\\max \\propto {V}\\max sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature for understanding the nature of the universality of {{{Σ }}}{V\\max }.

  13. DARK MATTER SUB-HALO COUNTS VIA STAR STREAM CROSSINGS

    International Nuclear Information System (INIS)

    Carlberg, R. G.

    2012-01-01

    Dark matter sub-halos create gaps in the stellar streams orbiting in the halos of galaxies. We evaluate the sub-halo stream crossing integral with the guidance of simulations to find that the linear rate of gap creation, R U , in a typical cold dark matter (CDM) galactic halo at 100 kpc is R U ≅0.0066 M-hat 8 -0.35 kpc -1 Gyr -1 , where M-hat 8 (≡ M-hat /10 8 M ☉ ) is the minimum mass halo that creates a visible gap. The relation can be recast entirely in terms of observables, as R U ≅0.059w -0.85 kpc -1 Gyr -1 , for w in kpc, normalized at 100 kpc. Using published data, the density of gaps is estimated for M31's NW stream and the Milky Way Pal 5 stream, Orphan stream, and Eastern Banded Structure. The estimated rates of gap creation all have errors of 50% or more due to uncertain dynamical ages and the relatively noisy stream density measurements. The gap-rate-width data are in good agreement with the CDM-predicted relation. The high density of gaps in the narrow streams requires a total halo population of 10 5 sub-halos above a minimum mass of 10 5 M ☉ .

  14. Historic halo displays as weather indicator: Criteria and examples

    Science.gov (United States)

    Neuhäuser, Dagmar L.; Neuhäuser, Ralph

    2016-04-01

    There are numerous celestial signs reported in historic records, many of them refer to atmospheric ("sub-lunar") phenomena, such as ice halos and aurorae. In an interdisciplinary collaboration between astrophysics and cultural astronomy, we noticed that celestial observations including meteorological phenomena are often misinterpreted, mostly due to missing genuine criteria: especially ice crystal halos were recorded frequently in past centuries for religious reasons, but are mistaken nowadays often for other phenomena like aurorae. Ice halo displays yield clear information on humidity and temperature in certain atmospheric layers, and thereby indicate certain weather patterns. Ancient so-called rain makers used halo observations for weather forecast; e.g., a connection between certain halo displays and rain a few day later is statistically significant. Ice halos exist around sun and moon and are reported for both (they can stay for several days): many near, middle, and far eastern records from day- and night-time include such observations with high frequency. (Partly based on publications on halos by D.L. Neuhäuser & R. Neuhäuser, available at http://www.astro.uni-jena.de/index.php/terra-astronomy.html)

  15. Gaseous fuel reactors for power systems

    Science.gov (United States)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  16. Chemical Cartography. I. A Carbonicity Map of the Galactic Halo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun; Kim, Young Kwang [Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134 (Korea, Republic of); Beers, Timothy C.; Placco, Vinicius; Yoon, Jinmi [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Carollo, Daniela [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Masseron, Thomas [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Jung, Jaehun, E-mail: youngsun@cnu.ac.kr [Department of Astronomy, Space Science, and Geology, Chungnam National University, Daejeon 34134 (Korea, Republic of)

    2017-02-10

    We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H] = −1.5 and −2.2, respectively. From consideration of the absolute carbon abundances for our sample, A (C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP- s stars (those with strong overabundances of elements associated with the s -process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP- s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP- s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.

  17. Controlling beam halo-chaos via backstepping design

    International Nuclear Information System (INIS)

    Gao Yuan; Kong Feng

    2008-01-01

    A backstepping control method is proposed for controlling beam halo-chaos in the periodic focusing channels (PFCs) of high-current ion accelerator. The analysis and numerical results show that the method, via adjusting an exterior magnetic field, is effective to control beam halo chaos with five types of initial distribution ion beams, all statistical quantities of the beam halo-chaos are largely reduced, and the uniformity of ion beam is improved. This control method has an important value of application, for the exterior magnetic field can be easily adjusted in the periodical magnetic focusing channels in experiment

  18. Is there a composition gradient in the halo

    International Nuclear Information System (INIS)

    Kraft, R.P.; Trefzger, C.F.; Suntzeff, N.

    1979-01-01

    In the inner halo (galactocentric distance R < approximately 8 kpc), the Basel RGU photometry should allow the derivation of the shapes and dimensions of the iso-abundance contours. For the outer halo to R approximately 30 kpc, the authors review techniques based on Δs-measurements of RR Lyraes (Lick) and intermediate band-pass photometry of globular-cluster giants (Searle and Zinn, Palomar). Both methods suggest little change in mean [Fe/H] between 10 and 30 kpc; however, both may be biased against the discovery of very metal-poor objects. The conclusion that the outer halo has no abundance gradient may be somewhat premature. (Auth.)

  19. Dynamical instability of a charged gaseous cylinder

    Science.gov (United States)

    Sharif, M.; Mumtaz, Saadia

    2017-10-01

    In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.

  20. Entrapment process of radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Gagneraud, Francis; Gagneraud, Michel.

    1981-01-01

    Process for collecting chemically inert gaseous radioactive waste in melted substances, whereby the gaseous waste is injected under pressure in a molten substance to its saturation point followed by fast cooling. This substance is constituted of glass, ceramics, metallurgical drosses and slag masses in fusion. Its cooling is carried out by quenching by means of running water or a gas fluid, or by casting into vessels with great thermal inertia such as cast iron or similar, before recovery and confinement in receptacles for storage [fr

  1. Legal provisions governing gaseous effluents radiological monitoring

    International Nuclear Information System (INIS)

    Winkelmann, I.

    1985-01-01

    This contribution explains the main provisions governing radiological monitoring of gaseous effluents from LWR type nuclear power plants. KTA rule 1503.1 defines the measuring methods and tasks to be fulfilled by reactor operators in order to safeguard due monitoring and accounting of radioactive substances in the plants' gaseous effluents. The routine measurements are checked by a supervisory programme by an independent expert. The routine controls include analysis of filter samples, comparative measurement of radioactive noble gases, interlaboratory comparisons, and comparative evaluation of measured values. (DG) [de

  2. Gaseous Electronics Tables, Atoms, and Molecules

    CERN Document Server

    Raju, Gorur Govinda

    2011-01-01

    With the constant emergence of new research and application possibilities, gaseous electronics is more important than ever in disciplines including engineering (electrical, power, mechanical, electronics, and environmental), physics, and electronics. The first resource of its kind, Gaseous Electronics: Tables, Atoms, and Molecules fulfills the author's vision of a stand-alone reference to condense 100 years of research on electron-neutral collision data into one easily searchable volume. It presents most--if not all--of the properly classified experimental results that scientists, researchers,

  3. The immitigable nature of assembly bias: the impact of halo definition on assembly bias

    Science.gov (United States)

    Villarreal, Antonio S.; Zentner, Andrew R.; Mao, Yao-Yuan; Purcell, Chris W.; van den Bosch, Frank C.; Diemer, Benedikt; Lange, Johannes U.; Wang, Kuan; Campbell, Duncan

    2017-11-01

    Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by spherical overdensity parameter, Δ. We summarize the strength of concentration-, shape-, and spin-dependent halo clustering as a function of halo mass and halo definition. Concentration-dependent clustering depends strongly on mass at all Δ. For conventional halo definitions (Δ ∼ 200 - 600 m), concentration-dependent clustering at low mass is driven by a population of haloes that is altered through interactions with neighbouring haloes. Concentration-dependent clustering can be greatly reduced through a mass-dependent halo definition with Δ ∼ 20 - 40 m for haloes with M200 m ≲ 1012 h-1M⊙. Smaller Δ implies larger radii and mitigates assembly bias at low mass by subsuming altered, so-called backsplash haloes into now larger host haloes. At higher masses (M200 m ≳ 1013 h-1M⊙) larger overdensities, Δ ≳ 600 m, are necessary. Shape- and spin-dependent clustering are significant for all halo definitions that we explore and exhibit a relatively weaker mass dependence. Generally, both the strength and the sense of assembly bias depend on halo definition, varying significantly even among common definitions. We identify no halo definition that mitigates all manifestations of assembly bias. A halo definition that mitigates assembly bias based on one halo property (e.g. concentration) must be mass dependent. The halo definitions that best mitigate concentration-dependent halo clustering do not coincide with the expected average splashback radii at fixed halo mass.

  4. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  5. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  6. A beam halo event of the ATLAS Experiment

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    Beam halo events: These occur as a single beam of protons is circulating in one direction in LHC, just passing through ATLAS. An outlier particle hits a part of the detector causing a spray of particles.

  7. Possible existence of wormholes in the central regions of halos

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook, E-mail: rahaman@iucaa.ernet.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Salucci, P., E-mail: salucci@sissa.it [SISSA, International School for Advanced Studies, Via Bonomea 265, 34136, Trieste (Italy); INFN, Sezione di Trieste, Via Valerio 2, 34127, Trieste (Italy); Kuhfittig, P.K.F., E-mail: kuhfitti@msoe.edu [Department of Mathematics, Milwaukee School of Engineering, Milwaukee, WI 53202-3109 (United States); Ray, Saibal, E-mail: saibal@iucaa.ernet.in [Department of Physics, Government College of Engineering and Ceramic Technology, Kolkata 700010, West Bengal (India); Rahaman, Mosiur, E-mail: mosiurju@gmail.com [Department of Mathematics, Meghnad Saha Institute of Technology, Kolkata 700150 (India)

    2014-11-15

    An earlier study (Rahaman, et al., 2014 and Kuhfittig, 2014) has demonstrated the possible existence of wormholes in the outer regions of the galactic halo, based on the Navarro–Frenk–White (NFW) density profile. This paper uses the Universal Rotation Curve (URC) dark matter model to obtain analogous results for the central parts of the halo. This result is an important compliment to the earlier result, thereby confirming the possible existence of wormholes in most of the spiral galaxies. - Highlights: • Earlier we showed possible existence of wormholes in the outer regions of halo. • We obtain here analogous results for the central parts of the galactic halo. • Our result is an important compliment to the earlier result. • This confirms possible existence of wormholes in most of the spiral galaxies.

  8. First Attempts at using Active Halo Control at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Joschka [CERN; Bruce, Roderik [CERN; Garcia Morales, Hector [CERN; Höfle, Wolfgang [CERN; Kotzian, Gerd [CERN; Kwee-Hinzmann, Regina [CERN; Langner, Andy [CERN; Mereghetti, Alessio [CERN; Quaranta, Elena [CERN; Redaelli, Stefano [CERN; Rossi, Adriana [CERN; Salvachua, Belen [CERN; Stancari, Giulio [Fermilab; Tomás, Rogelio [CERN; Valentino, Gianluca [CERN; Valuch, Daniel [CERN

    2016-06-01

    The beam halo population is a non-negligible factor for the performance of the LHC collimation system and the machine protection. In particular this could become crucial for aiming at stored beam energies of 700 MJ in the High Luminosity (HL-LHC) project, in order to avoid beam dumps caused by orbit jitter and to ensure safety during a crab cavity failure. Therefore several techniques to safely deplete the halo, i.e. active halo control, are under development. In a first attempt a novel way for safe halo depletion was tested with particle narrow-band excitation employing the LHC Transverse Damper (ADT). At an energy of 450 GeV a bunch selective beam tail scraping without affecting the core distribution was attempted. This paper presents the first measurement results, as well as a simple simulation to model the underlying dynamics.

  9. Effective Dark Matter Halo Catalog in f(R) Gravity.

    Science.gov (United States)

    He, Jian-Hua; Hawken, Adam J; Li, Baojiu; Guzzo, Luigi

    2015-08-14

    We introduce the idea of an effective dark matter halo catalog in f(R) gravity, which is built using the effective density field. Using a suite of high resolution N-body simulations, we find that the dynamical properties of halos, such as the distribution of density, velocity dispersion, specific angular momentum and spin, in the effective catalog of f(R) gravity closely mimic those in the cold dark matter model with a cosmological constant (ΛCDM). Thus, when using effective halos, an f(R) model can be viewed as a ΛCDM model. This effective catalog therefore provides a convenient way for studying the baryonic physics, the galaxy halo occupation distribution and even semianalytical galaxy formation in f(R) cosmologies.

  10. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    scenario still remain poorly understood. ... to test models with future observations. ... A popular scenario for the origin of radio halos assumes that relativis- ..... based on particle acceleration by merger-driven turbulence in galaxy clusters shows.

  11. Disruption, vertical displacement event and halo current characterization for ITER

    International Nuclear Information System (INIS)

    Wesley, J.; Fujisawa, N.; Ortolani, S.; Putvinski, S.; Rosenbluth, M.N.

    1997-01-01

    Characteristics, in ITER, of plasma disruptions, vertical displacement events (VDEs) and the conversion of plasma current to runaway electron current in a disruption are presented. In addition to the well known potential of disruptions to produce rapid thermal energy and plasma current quenches and theoretical predictions that show the likelihood of ∼ 50% runaway conversion, an assessment of VDE and halo current characteristics in vertically elongated tokamaks shows that disruptions in ITER will result in VDEs with peak in-vessel halo currents of up to 50% of the predisruption plasma current and with toroidal peaking factors (peak/average current density) of up to 4:1. However, the assessment also shows an inverse correlation between the halo current magnitude and the toroidal peaking factor; hence, ITER VDEs can be expected to have a product of normalized halo current magnitude times toroidal peaking factor of ≤ 75%. (author). 3 refs, 2 figs, 3 tabs

  12. Summary of the 2014 Beam-Halo Monitoring Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan

    2015-09-25

    Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurements with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.

  13. Phase models of galaxies consisting of a disk and halo

    International Nuclear Information System (INIS)

    Osipkov, L.P.; Kutuzov, S.A.

    1988-01-01

    A method is developed for finding the phase density of a two-component model of a distribution of masses. The equipotential surfaces and potential law are given. The equipotentials are lenslike surfaces with a sharp edge in the equatorial plane, this ensuring the existence of a vanishingly thin embedded disk. The equidensity surfaces of the halo coincide with the equipotentials. Phase models are constructed separately for the halo and for the disk on the basis of the spatial and surface mass densities by the solution of the corresponding integral equations. In particular, models with a halo having finite dimensions can be constructed. For both components, the part of the phase density even with respect to the velocities is found. For the halo, it depends only on the energy integral. Two examples, for which exact solutions are found, are considered

  14. Behaviour of radioiodine in gaseous effluents

    International Nuclear Information System (INIS)

    Barry, P.J.

    1968-01-01

    Because of the different chemical forms in which radioiodine occurs in the gaseous state, it is important when designing efficient filters to know the chemical forms which may be present in the effluent gases when various operations are being carried out and to know the effect of different gaseous environments on the filtration efficiency. To obtain this information it is necessary to have available reliable means of characterizing different chemical forms and to sample gaseous effluents when these operations are being carried out. This paper describes the use for identifying molecular iodine of metallic screens in a multi-component sampling pack in different gaseous environments. Using multi-component sampling packs, the fractionation of iodine nuclides between different chemical forms was measured in the effluent gases escaping from an in-pile test loop in which the fuel was deliberately ruptured by restricting the flow of coolant. Sequential samples were taken for six hours after the rupture and it was possible to follow during this period the individual behaviours of 13 '1I, 133 I and 135 I. Simultaneous samples were also obtained of the noble gases in the effluent gas stream and of the iodine nuclides in the loop coolant. Similar experiments have been carried out with a view to characterizing the different chemical behaviour of radioiodine as it is released from a variety of operations in the nuclear industry including the cutting of fuel sections in metallurgical examination caves and an incinerator. (author)

  15. Attachment of gaseous fission products to aerosols

    International Nuclear Information System (INIS)

    Skyrme, G.

    1985-01-01

    Accidents may occur in which the integrity of fuel cladding is breached and volatile fission products are released to the containment atmosphere. In order to assess the magnitude of the subsequent radiological hazard it is necessary to know the transport behaviour of such fission products. It is frequently assumed that the fission products remain in the gaseous phase. There is a possibility, however, that they may attach themselves to particles and hence substantially modify their transport properties. This paper provides a theoretical assessment of the conditions under which gaseous fission products may be attached to aerosol particles. Specific topics discussed are: the mass transfer of a gaseous fission product to an isolated aerosol particle in an infinite medium; the rate at which the concentration of fission products in the gas phase diminishes within a container as a result of deposition on a population of particles; and the distribution of deposited fission product between different particle sizes in a log-normal distribution. It is shown that, for a given mass, small particles are more efficient for fission product attachment, and that only small concentrations of such particles may be necessary to achieve rapid attachment. Conditions under which gaseous fission products are not attached to particles are also considered, viz, the competing processes of deposition onto the containment walls and onto aerosol particles, and the possibility of the removal of aerosols from the containment by various deposition processes, or agglomeration, before attachment takes place. (author)

  16. Respiratory system. Part 2: Gaseous exchange.

    Science.gov (United States)

    McLafferty, Ella; Johnstone, Carolyn; Hendry, Charles; Farley, Alistair

    This article, which isthe last in the life sciences series and the second of two articles on the respiratory system, describes gaseous exchange in the lungs, transport of oxygen and carbon dioxide, and internal and external respiration. The article concludes with a brief consideration of two conditions that affect gas exchange and transport: carbon monoxide poisoning and chronic obstructive pulmonary disease.

  17. Technological aspects of gaseous pixel detectors fabrication

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Salm, Cora; Smits, Sander M.; Schmitz, Jurriaan; Melai, J.; Chefdeville, M.A.; van der Graaf, H.

    2007-01-01

    Integrated gaseous pixel detectors consisting of a metal punctured foil suspended in the order of 50μm over a pixel readout chip by means by SU-8 insulating pillars have been fabricated. SU-8 is used as sacrificial layer but metallization over uncrosslinked SU-8 presents adhesion and stress

  18. Halo scraper/direct converter system study

    International Nuclear Information System (INIS)

    Luzzi, T.; Clarkson, I.; Barr, W.; Neef, W.

    1985-01-01

    During the first year of the LLNL Minimars program, a system study was undertaken to determine the most efficient method for recovery of the end cell thermal energy. The goal of the study was to recovery energy at the highest possible coolant temperature and therefore at the highest thermal efficiency. Two types of coolant were considered, water and gaseous helium. In a system study where the goal is to recover maximum thermal power in an economically designed device, it is necessary to place constraints on the design. The four constraints for the direct converter are somewhat conflicting in that a particularly design solution satisfying one may lead to an unacceptable solution for another. The final design choice must be a compromise that satisfies all the constraints

  19. Testing approximate predictions of displacements of cosmological dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Munari, Emiliano; Monaco, Pierluigi; Borgani, Stefano [Department of Physics, Astronomy Unit, University of Trieste, via Tiepolo 11, I-34143 Trieste (Italy); Koda, Jun [INAF – Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Kitaura, Francisco-Shu [Instituto de Astrofísica de Canarias, 38205 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Sefusatti, Emiliano, E-mail: munari@oats.inaf.it, E-mail: monaco@oats.inaf.it, E-mail: jun.koda@brera.inaf.it, E-mail: fkitaura@iac.es, E-mail: sefusatti@oats.inaf.it, E-mail: borgani@oats.inaf.it [INAF – Osservatorio Astronomico di Trieste, via Tiepolo 11, I-34143 Trieste (Italy)

    2017-07-01

    We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing for all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z =0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are

  20. REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, R.; Brunetti, G.; Venturi, T.; Kale, R. [INAF/IRA, via Gobetti 101, I-40129 Bologna (Italy); Ettori, S. [INAF/Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Giacintucci, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Pratt, G. W. [Laboratoire AIM, IRFU/Service dAstrophysique-CEA/DSM-CNRS-Université Paris Diderot, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Dolag, K. [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Markevitch, M. [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-11-10

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R{sub 500} as P{sub 1.4}∼L{sup 2.1±0.2}{sub 500}. Our bigger and more homogenous sample confirms that the X-ray luminous (L{sub 500} > 5 × 10{sup 44} erg s{sup –1}) clusters branch into two populations—radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P{sub 1.4} scales with the cluster integrated SZ signal within R{sub 500}, measured by Planck, as P{sub 1.4}∼Y{sup 2.05±0.28}{sub 500}, in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that 'SZ-luminous' Y{sub 500} > 6 × 10{sup –5} Mpc{sup 2} clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the

  1. Testing approximate predictions of displacements of cosmological dark matter halos

    Science.gov (United States)

    Munari, Emiliano; Monaco, Pierluigi; Koda, Jun; Kitaura, Francisco-Shu; Sefusatti, Emiliano; Borgani, Stefano

    2017-07-01

    We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing for all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z=0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are

  2. THE SEGUE K GIANT SURVEY. III. QUANTIFYING GALACTIC HALO SUBSTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo; Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Rockosi, Constance [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Starkenburg, Else [Department of Physics and Astronomy, University of Victoria, P.O. Box 1700, STN CSC, Victoria BC V8W 3P6 (Canada); Xue, Xiang Xiang; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Johnson, Jennifer [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Lee, Young Sun [Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134 (Korea, Republic of); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-01-10

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5–125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position–velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (∼33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.

  3. Analytical shear and flexion of Einasto dark matter haloes

    OpenAIRE

    Retana-Montenegro, E.; Frutos-Alfaro, F.; Baes, M.

    2012-01-01

    N-body simulations predict that dark matter haloes are described by specific density profiles on both galactic- and cluster-sized scales. Weak gravitational lensing through the measurements of their first and second order properties, shear and flexion, is a powerful observational tool for investigating the true shape of these profiles. One of the three-parameter density profiles recently favoured in the description of dark matter haloes is the Einasto profile. We present exact expressions for...

  4. Possible existence of wormholes in the galactic halo region

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Kuhfittig, P.K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Islam, Nasarul [Danga High Madrasah, Department of Mathematics, Kolkata, West Bengal (India)

    2014-02-15

    Two observational results, the density profile from simulations performed in the ΛCDM scenario and the observed flat galactic rotation curves, are taken as input with the aim of showing that the galactic halo possesses some of the characteristics needed to support traversable wormholes. This result should be sufficient to provide an incentive for scientists to seek observational evidence for wormholes in the galactic halo region. (orig.)

  5. Halo-independent direct detection analyses without mass assumptions

    International Nuclear Information System (INIS)

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-01-01

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m χ −σ n plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v min −g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v min to nuclear recoil momentum (p R ), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-til-tilde(p R ). The entire family of conventional halo-independent g-tilde(v min ) plots for all DM masses are directly found from the single h-tilde(p R ) plot through a simple rescaling of axes. By considering results in h-tilde(p R ) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde(v min ) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity

  6. One dark matter mystery: halos in the cosmic web

    Science.gov (United States)

    Gaite, Jose

    2015-01-01

    The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted.

  7. One dark matter mystery: halos in the cosmic web

    International Nuclear Information System (INIS)

    Gaite, Jose

    2015-01-01

    The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted

  8. Halo and space charge issues in the SNS Ring

    International Nuclear Information System (INIS)

    Fedotov, A.V.; Abell, D.T.; Beebe-Wang, J.; Lee, Y.Y.; Malitsky, N.; Wei, J.; Gluckstern, R.L.

    2000-01-01

    The latest designs for high-intensity proton rings require minimizing beam-induced radioactivation of the vacuum chamber. Although the tune depression in the ring is much smaller than in high-intensity linacs, space-charge contributions to halo formation and, hence, beam loss may be significant. This paper reviews our current understanding of halo formation issues for the Spallation Neutron Source (SNS) accumulator ring

  9. Studies of halo distributions under beam-beam interaction

    International Nuclear Information System (INIS)

    Chen, T.; Irwin, J.; Siemann, R.H.

    1995-01-01

    The halo distribution due to the beam-beam interaction in circular electron-positron colliders is simulated with a program which uses a technique that saves a factor of hundreds to thousands of CPU time. The distribution and the interference between the beam-beam interaction and lattice nonlinearities has been investigated. The effects on the halo distribution due to radiation damping misalignment at the collision point, and chromatic effect are presented

  10. Halo and space charge issues in the SNS Ring

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, A.V.; Abell, D.T.; Beebe-Wang, J.; Lee, Y.Y.; Malitsky, N.; Wei, J.; Gluckstern, R.L.

    2000-06-30

    The latest designs for high-intensity proton rings require minimizing beam-induced radioactivation of the vacuum chamber. Although the tune depression in the ring is much smaller than in high-intensity linacs, space-charge contributions to halo formation and, hence, beam loss may be significant. This paper reviews our current understanding of halo formation issues for the Spallation Neutron Source (SNS) accumulator ring.

  11. Integrated Marketing Communications (IMC) di PT Halo Rumah Bernyanyi

    OpenAIRE

    Rebekka Rismayanti

    2017-01-01

    Abstract: This research aims to describe the effectiveness of Integrated Marketing Communication (IMC) in PT Halo Rumah Bernyanyi which, from the perspective of marketing strategy, could be studied by analyzing the segmentation, targeting, and positioning. Using case-study method with in-depth interview, the result shows that the implementation of IMC at PT Halo Rumah Bernyayi is arranged in one single strategy and tend to neglect the complexities of running multi-brand family karaoke-house. ...

  12. Integrated Marketing Communications (IMC) Di PT Halo Rumah Bernyanyi

    OpenAIRE

    Rismayanti, Rebekka

    2016-01-01

    : This research aims to describe the effectiveness of Integrated Marketing Communication (IMC) in PT Halo Rumah Bernyanyi which, from the perspective of marketing strategy, could be studied by analyzing the segmentation, targeting, and positioning. Using case-study method with in-depth interview, the result shows that the implementation of IMC at PT Halo Rumah Bernyayi is arranged in one single strategy and tend to neglect the complexities of running multi-brand family karaoke-house. This con...

  13. MD 1691: Active halo control using tune ripple at injection

    CERN Document Server

    Garcia Morales, Hector; Bruce, Roderik; Redaelli, Stefano; Fitterer, Miriam; Fiascaris, Maria; Nisbet, David; Thiesen, Hugues; Valentino, Gianluca; Xu, Chen; CERN. Geneva. ATS Department

    2017-01-01

    In this MD we performed halo excitation through tune ripple. This consists in an excitation that introduces new resonance sidebands around the existing resonance lines. In presence of sufficient detuning with amplitude, these sidebands can in principle affect only the dynamics of the halo particles at large amplitudes. Tune ripple was induced through a current modulation of the warm trim quadrupoles in IR7. This is the first time this method is experimentally tested at the LHC.

  14. Uranium enrichment by the gaseous diffusion process

    International Nuclear Information System (INIS)

    Petit, J.F.

    1977-01-01

    After a brief description of the process and technology (principle, stage constitution, cascade constitution, and description of a plant), the author gives the history of gaseous diffusion and describes the existing facilities. Among the different enrichment processes contemplated in the USA during and after the last world war, gaseous diffusion has been the only one to be developed industrially on a wide scale in the USA, then in the UK, in the USSR and in France. The large existing capacities in the USA provided the country with a good starting base for the development of a light-water nuclear power plant programme, the success of which led to a shortfall in production means. France and the USA, possessing the necessary know-how, have been able to undertake the realization of two industrial programmes: the CIP-CUP programme in the USA and the Eurodif project in France. Current plans still call for the construction of several plants by 1990. Can the gaseous diffusion process meet this challenge. Technically, there is no doubt about it. Economically, this process is mainly characterized by large energy consumption and the necessity to build large plants. This leads to a large investment, at least for the first plant. Other processes have been developed with a view to reducing both energy and capital needs. However, in spite of continuous studies and technological progress, no process has yet proved competitive. Large increments in capacities are still expected to come from gaseous diffusion, and several projects taking into account the improvements in flexibility, automatization, reliability and reduced investment, are analysed in the paper. Combining new facilities with existing plants has already proved to be of great interest. This situation explains why gaseous diffusion is being further investigated and new processes are being studied. (author)

  15. Galactic warps and the shape of heavy halos

    International Nuclear Information System (INIS)

    Sparke, L.S.

    1984-01-01

    The outer disks of many spiral galaxies are bent away from the plane of the inner disk; the abundance of these warps suggests that they are long-lived. Isolated galactic disks have long been thought to have no discrete modes of vertical oscillation under their own gravity, and so to be incapable of sustaining persistent warps. However, the visible disk contains only a fraction of the galactic mass; an invisible galactic halo makes up the rest. This paper presents an investigation of vertical warping modes in self-gravitating disks, in the imposed potential due to an axisymmetric unseen massive halo. If the halo matter is distributed so that the free precession rate of a test particle decreases with radius near the edge of the disk, then the disk has a discrete mode of vibration; oblate halos which become rapidly more flattened at large radii, and uniformly prolate halos, satisfy this requirement. Otherwise, the disk has no discrete modes and so cannot maintain a long-lived warp, unless the edge is sharply truncated. Computed mode shapes which resemble the observed warps can be found for halo masses consistent with those inferred from galactic rotation curves

  16. Cold dark matter. 1: The formation of dark halos

    Science.gov (United States)

    Gelb, James M.; Bertschinger, Edmund

    1994-01-01

    We use numerical simulations of critically closed cold dark matter (CDM) models to study the effects of numerical resolution on observable quantities. We study simulations with up to 256(exp 3) particles using the particle-mesh (PM) method and with up to 144(exp 3) particles using the adaptive particle-particle-mesh (P3M) method. Comparisons of galaxy halo distributions are made among the various simulations. We also compare distributions with observations, and we explore methods for identifying halos, including a new algorithm that finds all particles within closed contours of the smoothed density field surrounding a peak. The simulated halos show more substructure than predicted by the Press-Schechter theory. We are able to rule out all omega = 1 CDM models for linear amplitude sigma(sub 8) greater than or approximately = 0.5 because the simulations produce too many massive halos compared with the observations. The simulations also produce too many low-mass halos. The distribution of halos characterized by their circular velocities for the P3M simulations is in reasonable agreement with the observations for 150 km/s less than or = V(sub circ) less than or = 350 km/s.

  17. Unmixing the Galactic halo with RR Lyrae tagging

    Science.gov (United States)

    Belokurov, V.; Deason, A. J.; Koposov, S. E.; Catelan, M.; Erkal, D.; Drake, A. J.; Evans, N. W.

    2018-06-01

    We show that tagging RR Lyrae stars according to their location in the period-amplitude diagram can be used to shed light on the genesis of the Galactic stellar halo. The mixture of RR Lyrae of ab type, separated into classes along the lines suggested by Oosterhoff, displays a strong and coherent evolution with Galactocentric radius. The change in the RR Lyrae composition appears to coincide with the break in the halo's radial density profile at ˜25 kpc. Using simple models of the stellar halo, we establish that at least three different types of accretion events are necessary to explain the observed RRab behaviour. Given that there exists a correlation between the RRab class fraction and the total stellar content of a dwarf satellite, we hypothesize that the field halo RRab composition is controlled by the mass of the progenitor contributing the bulk of the stellar debris at the given radius. This idea is tested against a suite of cosmological zoom-in simulations of Milky Way-like stellar halo formation. Finally, we study some of the most prominent stellar streams in the Milky Way halo and demonstrate that their RRab class fractions follow the trends established previously.

  18. QUANTIFYING KINEMATIC SUBSTRUCTURE IN THE MILKY WAY'S STELLAR HALO

    International Nuclear Information System (INIS)

    Xue Xiangxiang; Zhao Gang; Luo Ali; Rix, Hans-Walter; Bell, Eric F.; Koposov, Sergey E.; Kang, Xi; Liu, Chao; Yanny, Brian; Beers, Timothy C.; Lee, Young Sun; Bullock, James S.; Johnston, Kathryn V.; Morrison, Heather; Rockosi, Constance; Weaver, Benjamin A.

    2011-01-01

    We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Way's halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierarchical assembly of the stellar halo. Using a cumulative 'close pair distribution' as a statistic in the four-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at r gc < 20 kpc.

  19. Dissipative dark matter halos: The steady state solution. II.

    Science.gov (United States)

    Foot, R.

    2018-05-01

    Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.

  20. Observation and analysis of halo current in EAST

    Science.gov (United States)

    Chen, Da-Long; Shen, Biao; Qian, Jin-Ping; Sun, You-Wen; Liu, Guang-Jun; Shi, Tong-Hui; Zhuang, Hui-Dong; Xiao, Bing-Jia

    2014-06-01

    Plasma in a typically elongated cross-section tokamak (for example, EAST) is inherently unstable against vertical displacement. When plasma loses the vertical position control, it moves downward or upward, leading to disruption, and a large halo current is generated helically in EAST typically in the scrape-off layer. When flowing into the vacuum vessel through in-vessel components, the halo current will give rise to a large J × B force acting on the vessel and the in-vessel components. In EAST VDE experiment, part of the eddy current is measured in halo sensors, due to the large loop voltage. Primary experimental data demonstrate that the halo current first lands on the outer plate and then flows clockwise, and the analysis of the information indicates that the maximum halo current estimated in EAST is about 0.4 times the plasma current and the maximum value of TPF × Ih/IP0 is 0.65, furthermore Ih/Ip0 and TPF × Ih/Ip0 tend to increase with the increase of Ip0. The test of the strong gas injection system shows good success in increasing the radiated power, which may be effective in reducing the halo current.

  1. Dissipative dark matter halos: The steady state solution

    Science.gov (United States)

    Foot, R.

    2018-02-01

    Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.

  2. The gamma-ray-flux PDF from galactic halo substructure

    International Nuclear Information System (INIS)

    Lee, Samuel K.; Ando, Shin'ichiro; Kamionkowski, Marc

    2009-01-01

    One of the targets of the recently launched Fermi Gamma-ray Space Telescope is a diffuse gamma-ray background from dark-matter annihilation or decay in the Galactic halo. N-body simulations and theoretical arguments suggest that the dark matter in the Galactic halo may be clumped into substructure, rather than smoothly distributed. Here we propose the gamma-ray-flux probability distribution function (PDF) as a probe of substructure in the Galactic halo. We calculate this PDF for a phenomenological model of halo substructure and determine the regions of the substructure parameter space in which the PDF may be distinguished from the PDF for a smooth distribution of dark matter. In principle, the PDF allows a statistical detection of substructure, even if individual halos cannot be detected. It may also allow detection of substructure on the smallest microhalo mass scales, ∼ M ⊕ , for weakly-interacting massive particles (WIMPs). Furthermore, it may also provide a method to measure the substructure mass function. However, an analysis that assumes a typical halo substructure model and a conservative estimate of the diffuse background suggests that the substructure PDF may not be detectable in the lifespan of Fermi in the specific case that the WIMP is a neutralino. Nevertheless, for a large range of substructure, WIMP annihilation, and diffuse background models, PDF analysis may provide a clear signature of substructure

  3. Remapping dark matter halo catalogues between cosmological simulations

    Science.gov (United States)

    Mead, A. J.; Peacock, J. A.

    2014-05-01

    We present and test a method for modifying the catalogue of dark matter haloes produced from a given cosmological simulation, so that it resembles the result of a simulation with an entirely different set of parameters. This extends the method of Angulo & White, which rescales the full particle distribution from a simulation. Working directly with the halo catalogue offers an advantage in speed, and also allows modifications of the internal structure of the haloes to account for non-linear differences between cosmologies. Our method can be used directly on a halo catalogue in a self-contained manner without any additional information about the overall density field; although the large-scale displacement field is required by the method, this can be inferred from the halo catalogue alone. We show proof of concept of our method by rescaling a matter-only simulation with no baryon acoustic oscillation (BAO) features to a more standard Λ cold dark matter model containing a cosmological constant and a BAO signal. In conjunction with the halo occupation approach, this method provides a basis for the rapid generation of mock galaxy samples spanning a wide range of cosmological parameters.

  4. Stellar-to-halo mass relation of cluster galaxies

    International Nuclear Information System (INIS)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; Giocoli, Carlo

    2017-01-01

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can be used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.

  5. Halo models of HI selected galaxies

    Science.gov (United States)

    Paul, Niladri; Choudhury, Tirthankar Roy; Paranjape, Aseem

    2018-06-01

    Modelling the distribution of neutral hydrogen (HI) in dark matter halos is important for studying galaxy evolution in the cosmological context. We use a novel approach to infer the HI-dark matter connection at the massive end (m_H{I} > 10^{9.8} M_{⊙}) from radio HI emission surveys, using optical properties of low-redshift galaxies as an intermediary. In particular, we use a previously calibrated optical HOD describing the luminosity- and colour-dependent clustering of SDSS galaxies and describe the HI content using a statistical scaling relation between the optical properties and HI mass. This allows us to compute the abundance and clustering properties of HI-selected galaxies and compare with data from the ALFALFA survey. We apply an MCMC-based statistical analysis to constrain the free parameters related to the scaling relation. The resulting best-fit scaling relation identifies massive HI galaxies primarily with optically faint blue centrals, consistent with expectations from galaxy formation models. We compare the Hi-stellar mass relation predicted by our model with independent observations from matched Hi-optical galaxy samples, finding reasonable agreement. As a further application, we make some preliminary forecasts for future observations of HI and optical galaxies in the expected overlap volume of SKA and Euclid/LSST.

  6. Performance of the CMS Beam Halo Monitor

    CERN Document Server

    CMS Collaboration

    2015-01-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of radiation hard synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes for a direction sensitive measurement. The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few ns resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and received data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is readout by IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed i...

  7. MAGNIFICATION BY GALAXY GROUP DARK MATTER HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Jes; Hildebrandt, Hendrik; Van Waerbeke, Ludovic [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Leauthaud, Alexie; Tanaka, Masayuki [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Chiba 277-8582 (Japan); Capak, Peter [NASA Spitzer Science Center, California Institute of Technology, 220-6 Caltech, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Finoguenov, Alexis [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); George, Matthew R. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Rhodes, Jason [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-08-01

    We report on the detection of gravitational lensing magnification by a population of galaxy groups, at a significance level of 4.9{sigma}. Using X-ray-selected groups in the COSMOS 1.64 deg{sup 2} field, and high-redshift Lyman break galaxies as sources, we measure a lensing-induced angular cross-correlation between the samples. After satisfying consistency checks that demonstrate we have indeed detected a magnification signal, and are not suffering from contamination by physical overlap of samples, we proceed to implement an optimally weighted cross-correlation function to further boost the signal to noise of the measurement. Interpreting this optimally weighted measurement allows us to study properties of the lensing groups. We model the full distribution of group masses using a composite-halo approach, considering both the singular isothermal sphere and Navarro-Frenk-White profiles, and find our best-fit values to be consistent with those recovered using the weak-lensing shear technique. We argue that future weak-lensing studies will need to incorporate magnification along with shear, both to reduce residual systematics and to make full use of all available source information, in an effort to maximize scientific yield of the observations.

  8. The CMS Beam Halo Monitor electronics

    International Nuclear Information System (INIS)

    Tosi, N.; Fabbri, F.; Montanari, A.; Torromeo, G.; Dabrowski, A.E.; Orfanelli, S.; Grassi, T.; Hughes, E.; Mans, J.; Rusack, R.; Stifter, K.; Stickland, D.P.

    2016-01-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data

  9. Halo structure of strange particles in nuclei

    International Nuclear Information System (INIS)

    Akaishi, Yoshinori; Yamazaki, Toshimitsu.

    1997-01-01

    Some characteristic behaviors of hyperons in nuclei which have recently been revealed experimentally and theoretically are discussed with the emphasis on the repulsive part of the hyperon-nucleus interaction. The observed Σ 4 He nucleus is a bound state with J π = 0 + and T ≅ 1/2. Its nucleus-Σ potential derived from a realistic ΣN interaction is characterized by inner repulsion and a strong Lane term, which play important roles in forming the Σ-hypernuclear bound state. In 208 Pb a typical Coulomb-assisted bound state is expected, where Σ is trapped in the surface region by the nucleus-Σ potential with the aid of Coulomb and centrifugal interactions. In the double-strangeness (S=-2) sector, there is a possibility that the lightest double-Λ hypernucleus ΛΛ 4 H is abundantly populated by stopping Ξ - on 4 He. Its formation branching amounts to about 15%. A stopped Ξ - on 9 Be will also produce efficiently a variety of double-Λ hyperfragments. Discrete spectra of weak-decay pions from the fragments will provide a means of mass spectroscopy of double-Λ hypernuclei. In the S=-2 five-body system an excited state Ξ 5 H is predicted to appear with 'strangeness halo' and the ground state ΛΛ 5 H with almost pure ΛΛ component. (author)

  10. The CMS Beam Halo Monitor Electronics

    CERN Document Server

    AUTHOR|(CDS)2080684; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D.P.; Stifter, K.

    2016-01-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes. The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few ns resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is readout by IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providi...

  11. Method of removing hydrogen sulphide from hot gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Yumura, M.

    1987-12-22

    Hydrogen sulphide can be removed from hot gas mixtures by contacting the hot gas mixture at temperatures in the range of 500-900/sup 0/C with an adsorbent consisting of managanese nodules. The nodules may contain additional calcium cations. In sulphided form, the nodules are catalytically active for hydrogen sulphide decomposition to produce hydrogen. Regeneration of the adsorbent can be accomplished by roasting in an oxidizing atmosphere. The nodules can be used to treat gaseous mixtures containing up to 20% hydrogen sulfide, for example, gases produced during pyrolysis, cracking, coking, and hydrotreating processes. Experiments using the processes described in this patent are also outlined. 6 tabs.

  12. In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs

    Science.gov (United States)

    Coleman, Gavin A. L.; Papaloizou, John C. B.; Nelson, Richard P.

    2017-09-01

    The core accretion hypothesis posits that planets with significant gaseous envelopes accreted them from their protoplanetary discs after the formation of rocky/icy cores. Observations indicate that such exoplanets exist at a broad range of orbital radii, but it is not known whether they accreted their envelopes in situ, or originated elsewhere and migrated to their current locations. We consider the evolution of solid cores embedded in evolving viscous discs that undergo gaseous envelope accretion in situ with orbital radii in the range 0.1-10 au. Additionally, we determine the long-term evolution of the planets that had no runaway gas accretion phase after disc dispersal. We find the following. (I) Planets with 5 M⊕ cores never undergo runaway accretion. The most massive envelope contained 2.8 M⊕ with the planet orbiting at 10 au. (II) Accretion is more efficient on to 10 M⊕ and 15 M⊕ cores. For orbital radii ap ≥ 0.5 au, 15 M⊕ cores always experienced runaway gas accretion. For ap ≥ 5 au, all but one of the 10 M⊕ cores experienced runaway gas accretion. No planets experienced runaway growth at ap = 0.1 au. (III) We find that, after disc dispersal, planets with significant gaseous envelopes cool and contract on Gyr time-scales, the contraction time being sensitive to the opacity assumed. Our results indicate that Hot Jupiters with core masses ≲15 M⊕ at ≲0.1 au likely accreted their gaseous envelopes at larger distances and migrated inwards. Consistently with the known exoplanet population, super-Earths and mini-Neptunes at small radii during the disc lifetime, accrete only modest gaseous envelopes.

  13. Solid–gaseous phase transformation of elemental contaminants during the gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ying; Ameh, Abiba [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom); Lei, Mei [Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Duan, Lunbo [Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Longhurst, Philip, E-mail: P.J.Longhurst@cranfield.ac.uk [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom)

    2016-09-01

    Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid–gas phase transition of metal(loid)s during gasification. Detailed elemental analyses (C, H, O, N and key metal/metalloid elements) were performed on five plant species collected from a contaminated site. Using multi-phase equilibria modelling software (MTDATA), the analytical data allows modelling of the solid/gas transformation of metal(loid)s during gasification. Thermodynamic modelling based on chemical equilibrium calculations was carried out in this study to predict the fate of metal(loid) elements during typical gasification conditions and to show how these are influenced by metal(loid) composition in the biomass and operational conditions. As, Cd, Zn and Pb tend to transform to their gaseous forms at relatively low temperatures (< 1000 °C). Ni, Cu, Mn and Co converts to gaseous forms within the typical gasification temperature range of 1000–1200 °C. Whereas Cr, Al, Fe and Mg remain in solid phase at higher temperatures (> 1200 °C). Simulation of pressurised gasification conditions shows that higher pressures increase the temperature at which solid-to-gaseous phase transformations takes place. - Highlights: • Disposal of plants removed from metal contaminated land raises environmental concerns • Plant samples collected from a contaminated site are shown to contain heavy metals. • Gasification is suitable for plant disposal and its emission is modelled by MTDATA. • As, Cd, Zn and Pb are found in gaseous emissions at a low process temperature. • High pressure gasification can reduce heavy metal elements in process emission.

  14. QUENCHED COLD ACCRETION OF A LARGE-SCALE METAL-POOR FILAMENT DUE TO VIRIAL SHOCKING IN THE HALO OF A MASSIVE z = 0.7 GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, Christopher W.; Holtzman, Jon; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian [Department of Astronomy, New Mexico State University, MSC 4500, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G.; Spitler, Lee R. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia); Steidel, Charles C. [Department of Astronomy, California Institute of Technology, MS 105-24, Pasadena, CA 91125 (United States)

    2012-11-20

    Using HST/COS/STIS and HIRES/Keck high-resolution spectra, we have studied a remarkable H I absorbing complex at z = 0.672 toward the quasar Q1317+277. The H I absorption has a velocity spread of {Delta}v = 1600 km s{sup -1}, comprises 21 Voigt profile components, and resides at an impact parameter of D = 58 kpc from a bright, high-mass (log M {sub vir}/M {sub Sun} {approx_equal} 13.7) elliptical galaxy that is deduced to have a 6 Gyr old, solar metallicity stellar population. Ionization models suggest the majority of the structure is cold gas surrounding a shock-heated cloud that is kinematically adjacent to a multi-phase group of clouds with detected C III, C IV, and O VI absorption, suggestive of a conductive interface near the shock. The deduced metallicities are consistent with the moderate in situ enrichment relative to the levels observed in the z {approx} 3 Ly{alpha} forest. We interpret the H I complex as a metal-poor filamentary structure being shock heated as it accretes into the halo of the galaxy. The data support the scenario of an early formation period (z > 4) in which the galaxy was presumably fed by cold-mode gas accretion that was later quenched via virial shocking by the hot halo such that, by intermediate redshift, the cold filamentary accreting gas is continuing to be disrupted by shock heating. Thus, continued filamentary accretion is being mixed into the hot halo, indicating that the star formation of the galaxy will likely remain quenched. To date, the galaxy and the H I absorption complex provide some of the most compelling observational data supporting the theoretical picture in which accretion is virial shocked in the hot coronal halos of high-mass galaxies.

  15. Hot tub folliculitis

    Science.gov (United States)

    ... survives in hot tubs, especially tubs made of wood. Symptoms The first symptom of hot tub folliculitis ... may help prevent the problem. Images Hair follicle anatomy References D'Agata E. Pseudomonas aeruginosa and other ...

  16. THE X-RAY HALO OF CEN X-3

    International Nuclear Information System (INIS)

    Thompson, Thomas W. J.; Rothschild, Richard E.

    2009-01-01

    Using two Chandra observations, we have derived estimates of the dust distribution and distance to the eclipsing high-mass X-ray binary Cen X-3 using the energy-resolved dust-scattered X-ray halo. By comparing the observed X-ray halos in 200 eV bands from 2-5 keV to the halo profiles predicted by the Weingartner and Draine interstellar grain model, we find that the vast majority (∼ 70%) of the dust along the line of sight to the system is located within about 300 pc of the Sun, although the halo measurements are insensitive to dust very close to the source. One of the Chandra observations occurred during an egress from eclipse as the pulsar emerged from behind the mass-donating primary. By comparing model halo light curves during this transition to the halo measurements, a source distance of 5.7 ± 1.5 kpc (68% confidence level) is estimated, although we find this result depends on the distribution of dust on very small scales. Nevertheless, this value is marginally inconsistent with the commonly accepted distance to Cen X-3 of 8 kpc. We also find that the energy scaling of the scattering optical depth predicted by the Weingartner and Draine interstellar grain model does not accurately represent the results determined by X-ray halo studies of Cen X-3. Relative to the model, there appears to be less scattering at low energies or more scattering at high energies in Cen X-3.

  17. Mechanical device for enhancing halo density in the TMX-U tandem mirror

    International Nuclear Information System (INIS)

    Hsu, W.L.; Barr, W.L.; Simonen, T.C.

    1984-04-01

    The halo recycler, a mechanical device similar to pumped limiters used in tokamaks, is studied as a means of enhancing the halo plasma density in the Tandem Mirror Experiment Upgrade (TMX-U). The recycler structure consists of an annular chamber at each end of the tandem mirror device where the halo plasma is collected. The halo plasma density is increased by recycling the halo ions as they are neutralized by the collector plate. With sufficient power fed into the halo electrons, the recycler can sustain an upstream electron temperature of 30 eV for effective halo shielding while maintaining a low temperature of 5 eV near the collector plate to reduce sputtering. A power flow model has shown that the required power for heating the halo is low enough to make the halo recycler a practical concept

  18. The shape of the invisible halo: N-body simulations on parallel supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Warren, M.S.; Zurek, W.H. (Los Alamos National Lab., NM (USA)); Quinn, P.J. (Australian National Univ., Canberra (Australia). Mount Stromlo and Siding Spring Observatories); Salmon, J.K. (California Inst. of Tech., Pasadena, CA (USA))

    1990-01-01

    We study the shapes of halos and the relationship to their angular momentum content by means of N-body (N {approximately} 10{sup 6}) simulations. Results indicate that in relaxed halos with no apparent substructure: (i) the shape and orientation of the isodensity contours tends to persist throughout the virialised portion of the halo; (ii) most ({approx}70%) of the halos are prolate; (iii) the approximate direction of the angular momentum vector tends to persist throughout the halo; (iv) for spherical shells centered on the core of the halo the magnitude of the specific angular momentum is approximately proportional to their radius; (v) the shortest axis of the ellipsoid which approximates the shape of the halo tends to align with the rotation axis of the halo. This tendency is strongest in the fastest rotating halos. 13 refs., 4 figs.

  19. Photosensitive Gaseous Detectors for Cryogenic Temperature Applications

    CERN Document Server

    Periale, L; Iacobaeus, C; Lund-Jensen, B; Picchi, P; Pietropaolo, F

    2007-01-01

    There are several proposals and projects today for building LXe Time Projection Chambers (TPCs) for dark matter search. An important element of these TPCs are the photomultipliers operating either inside LXe or in vapors above the liquid. We have recently demonstrated that photosensitive gaseous detectors (wire type and hole-type) can operate perfectly well until temperatures of LN2. In this paper results of systematic studies of operation of the photosensitive version of these detectors (combined with reflective or semi-transparent CsI photocathodes) in the temperature interval of 300-150 K are presented. In particular, it was demonstrated that both sealed and flushed by a gas detectors could operate at a quite stable fashion in a year/time scale. Obtained results, in particular the long-term stability of photosensitive gaseous detectors, strongly indicate that they can be cheap and simple alternatives to photomultipliers or avalanche solid-state detectors in LXe TPC applications.

  20. Basic processes and trends in gaseous detectors

    CERN Multimedia

    1999-01-01

    Almost a century after the invention of the proportional counter, a large research effort is still devoted to better understand the basic properties of gaseous detectors, and to improve their performances and reliability, particularly in view of use at the high radiation levels expected at LHC. In the first part of the lectures, after a brief introduction on underlying physical phenomena, I will review modern sophisticated computational tools, as well as some classic "back of the envelope" analytical methods, available today for estimating the general performances of gaseous detectors. In the second part, I will analyze in more detail problems specific to the use of detectors at high rates (space charge, discharges, aging), and describe the recent development of powerful and perhaps more reliable devices, particularly in the field of position-sensitive micro-pattern detectors.

  1. Secondary incinerator for radioactive gaseous waste

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Masuda, Takashi.

    1997-01-01

    A vessel incorporated with packings, in which at least either of the packings and the vessel is put to induction-heating by high frequency induction coils, is disposed in a flow channel of radioactive gaseous wastes exhausted from a radioactive waste incinerator. The packings include metals such as stainless pipes and electroconductive ceramics such as C-SiC ceramics. Since only electricity is used as an energy source, in the secondary incinerator for the radioactive gaseous wastes, it can be installed in a cell safely. In addition, if ceramics are used, there is no worry of deterioration of the incinerator due to organic materials, and essential functions are not lowered. (T.M.)

  2. Trends and new developments in gaseous detectors

    CERN Document Server

    AUTHOR|(CDS)2069485

    2004-01-01

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hadron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have p...

  3. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  4. Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies

    Science.gov (United States)

    Li, Jiang-Tao; Bregman, Joel N.; Wang, Q. Daniel; Crain, Robert A.; Anderson, Michael E.

    2018-03-01

    The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these “missing baryons” may be stored in a hot tenuous circumgalactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev–Zel’dovich (SZ) signals claimed that ∼(1–50)% of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%–20% of the virial radius). Here, we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of ≈200 kpc (or ≈130 kpc above the 1σ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for (8 ± 4)% of the baryonic mass expected for the halos. Including the stars, the baryon fraction is (27 ± 16)%, or (39 ± 20)% by assuming a flattened density profile at r ≳ 130 kpc. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the “missing baryons.”

  5. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  6. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  7. Uranium enrichment export control guide: Gaseous diffusion

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of export laws that relate to the Zangger International Trigger List for gaseous diffusion uranium enrichment process components, equipment, and materials. Particular emphasis is focused on items that are especially designed or prepared since export controls are required for these by States that are party to the International Nuclear Nonproliferation Treaty.

  8. A new gaseous gap conductance relationship

    International Nuclear Information System (INIS)

    Wesley, D.A.; Yovanovich, M.M.

    1986-01-01

    A new relationship for predicting the gaseous gap conductance between the fuel and clad of a nuclear fuel rod is derived. This relationship is derived from purely analytical considerations and represents a departure from approaches taken in the past. A comparison between the predictions from this new relationship and experimental measurements is presented and the agreement is very good. Predictions can be generated relatively quickly with this relationship making it attractive for fuel pin analysis codes

  9. Growth of planetisimals in a gaseous ring

    International Nuclear Information System (INIS)

    Hourigan, K.

    1981-01-01

    The aggregation of planetesimals in a gaseous ring leads to the development of a dominant body amongst the planetesimal population. The presence of the gas in the form of a differentially rotating ring serves to constrain the orbits of the planetesimals and grains to within a thin toroidal region through the action of gas drag. This situation allows for the efficient aggregation of bodies and, as a result of the low resultant relative velocites, the minimization of collisional fragmentation effects

  10. 2 π gaseous flux proportional detector

    International Nuclear Information System (INIS)

    Guevara, E.A.; Costello, E.D.; Di Carlo, R.O.

    1986-01-01

    A counting system has been developed in order to measure carbon-14 samples obtained in the course of a study of a plasmapheresis treatment for diabetic children. The system is based on the use of a 2π gaseous flux proportional detector especially designed for the stated purpose. The detector is described and experiment results are given, determining the characteristic parameters which set up the working conditions. (Author) [es

  11. EURODIF: the uranium enrichment by gaseous diffusion

    International Nuclear Information System (INIS)

    Rougeau, J.P.

    1981-01-01

    During the seventies the nuclear power programme had an extremely rapid growth rate which entailed to increase the world uranium enrichment capacity. EURODIF is the largest undertaking in this field. This multinational joint venture built and now operates and enrichment plant using the gaseous diffusion process at Tricastin (France). This plant is delivering low enriched uranium since two years and has contracted about 110 million SWU's till 1990. Description, current activity and prospects are given in the paper. (Author) [pt

  12. Correlation and prediction of gaseous diffusion coefficients.

    Science.gov (United States)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  13. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  14. Does SEGUE/SDSS indicate a dual galactic halo?

    International Nuclear Information System (INIS)

    Schönrich, Ralph; Asplund, Martin; Casagrande, Luca

    2014-01-01

    We re-examine recent claims of observational evidence for a dual Galactic halo in SEGUE/SDSS data, and trace them back to improper error treatment and neglect of selection effects. In particular, the detection of a vertical abundance gradient in the halo can be explained as a metallicity bias in distance. A similar bias and the impact of disk contamination affect the sample of blue horizontal branch stars. These examples highlight why non-volume complete samples require forward modeling from theoretical models or extensive bias-corrections. We also show how observational uncertainties produce the specific non-Gaussianity in the observed azimuthal velocity distribution of halo stars, which can be erroneously identified as two Gaussian components. A single kinematic component yields an excellent fit to the observed data, when we model the measurement process including distance uncertainties. Furthermore, we show that sample differences in proper motion space are the direct consequence of kinematic cuts and are enhanced when distance estimates are less accurate. Thus, their presence is neither proof of a separate population nor a measure of reliability for the applied distances. We conclude that currently there is no evidence from SEGUE/SDSS that would favor a dual Galactic halo over a single halo that is full of substructure.

  15. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    Science.gov (United States)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  16. Halo-Independent Direct Detection Analyses Without Mass Assumptions

    CERN Document Server

    Anderson, Adam J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the $m_\\chi-\\sigma_n$ plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the $v_{min}-\\tilde{g}$ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from $v_{min}$ to nuclear recoil momentum ($p_R$), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call $\\tilde{h}(p_R)$. The entire family of conventional halo-independent $\\tilde{g}(v_{min})$ plots for all DM masses are directly found from the single $\\tilde{h}(p_R)$ plot through a simple re...

  17. THE BLACK HOLE–DARK MATTER HALO CONNECTION

    International Nuclear Information System (INIS)

    Sabra, Bassem M.; Saliba, Charbel; Akl, Maya Abi; Chahine, Gilbert

    2015-01-01

    We explore the connection between the central supermassive black holes (SMBH) in galaxies and the dark matter halo through the relation between the masses of the SMBHs and the maximum circular velocities of the host galaxies, as well as the relationship between stellar velocity dispersion of the spheroidal component and the circular velocity. Our assumption here is that the circular velocity is a proxy for the mass of the dark matter halo. We rely on a heterogeneous sample containing galaxies of all types. The only requirement is that the galaxy has a direct measurement of the mass of its SMBH and a direct measurement of its circular velocity and its velocity dispersion. Previous studies have analyzed the connection between the SMBH and dark matter halo through the relationship between the circular velocity and the bulge velocity dispersion, with the assumption that the bulge velocity dispersion stands in for the mass of the SMBH, via the well-established SMBH mass–bulge velocity dispersion relation. Using intermediate relations may be misleading when one is studying them to decipher the active ingredients of galaxy formation and evolution. We believe that our approach will provide a more direct probe of the SMBH and the dark matter halo connection. We find that the correlation between the mass of SMBHs and the circular velocities of the host galaxies is extremely weak, leading us to state the dark matter halo may not play a major role in regulating the black hole growth in the present Universe

  18. THE BLACK HOLE–DARK MATTER HALO CONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Sabra, Bassem M. [Department of Physics and Astronomy, Notre Dame University-Louaize, P.O. Box 72 Zouk Mikael, Zouk Mosbeh (Lebanon); Saliba, Charbel; Akl, Maya Abi; Chahine, Gilbert, E-mail: bsabra@ndu.edu.lb [Department of Physics, Lebanese University II, Fanar (Lebanon)

    2015-04-10

    We explore the connection between the central supermassive black holes (SMBH) in galaxies and the dark matter halo through the relation between the masses of the SMBHs and the maximum circular velocities of the host galaxies, as well as the relationship between stellar velocity dispersion of the spheroidal component and the circular velocity. Our assumption here is that the circular velocity is a proxy for the mass of the dark matter halo. We rely on a heterogeneous sample containing galaxies of all types. The only requirement is that the galaxy has a direct measurement of the mass of its SMBH and a direct measurement of its circular velocity and its velocity dispersion. Previous studies have analyzed the connection between the SMBH and dark matter halo through the relationship between the circular velocity and the bulge velocity dispersion, with the assumption that the bulge velocity dispersion stands in for the mass of the SMBH, via the well-established SMBH mass–bulge velocity dispersion relation. Using intermediate relations may be misleading when one is studying them to decipher the active ingredients of galaxy formation and evolution. We believe that our approach will provide a more direct probe of the SMBH and the dark matter halo connection. We find that the correlation between the mass of SMBHs and the circular velocities of the host galaxies is extremely weak, leading us to state the dark matter halo may not play a major role in regulating the black hole growth in the present Universe.

  19. Boundary layer circulation in disk-halo galaxies. III. The dispersion relation for local disturbances and large-scale spiral waves

    International Nuclear Information System (INIS)

    Waxman, A.M.

    1980-01-01

    This paper concerns the geometry and physical properties of waves which arise from a shear-flow (i.e. inflection point) instability of the galactic boundary layer circulation. This circulation was shown to exist in the meridional plane of a model galaxy containing a gaseous disk embedded in a rotating gaseous halo. Previously derived equations describe the local effects of Boussinesq perturbations, in the form of spiral waves with aribitrary pitch angle, on the model disk-halo system. The equations are solved asymptotically for large values of the local Reynolds number. In passing to the limit of inviscid waves, it is possible to derive a locally valid dispersion relation. A perturbation technique is developed whereby the inviscid wave eigenvalues can be corrected for the effects of small but finite viscosity. In this way the roles of the buoyancy force, Coriolis acceleration, viscous stresses, and their interactions can be studied. It is found that, locally, the most unstable inviscid waves are leading and open with large azimuthal wavenumbers. However, these waves display little or no coherence over the face of the disk and so would not emerge as modes in a global analysis.The geometry of the dominant inviscid waves is found to be leading, tightly wound spirals. Viscous corrections shift the dominant wave form to trailing, tightly wound spirals with small azimuthal wavenumbers. These waves grow on a time scale of about 10 7 years. It is suggested that these waves can initiate spiral structure in galaxies during disk formation and that a subsequent transition to a self-gravitating acoustical mode with the same spiral geometry may occur. This transition becomes possible once the contrast in gas densities between the disk and surrounding halo becomes sufficiently large

  20. Is it possible to tell the difference between fermionic and bosonic hot dark matter?

    Energy Technology Data Exchange (ETDEWEB)

    Hannestad, S.; Tu, H. [Aarhus Univ. (Denmark). Dept. of Physics and Astronomy; Ringwald, A.; Wong, Y.Y.Y. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2005-07-01

    We study the difference between thermally produced fermionic and bosonic hot dark matter in detail. In the linear regime of structure formation, their distinct free-streaming behaviours can lead to pronounced differences in the matter power spectrum. While not detectable with current cosmological data, such differences will be clearly observable with upcoming large scale weak lensing surveys for particles as light as m{sub HDM} {proportional_to} 0.2 eV. In the nonlinear regime, bosonic hot dark matter is not subject to the same phase space constraints that severely limit the amount of fermionic hot dark matter infall into cold dark matter halos. Consequently, the overdensities in fermionic and bosonic hot dark matter of equal particle mass can differ by more than a factor of five in the central part of a halo. However, this unique manifestation of quantum statistics may prove very difficult to detect unless the mass of the hot dark matter particle and its decoupling temperature fall within a very narrow window, 1hot dark matter infall may have some observable consequences for the nonlinear power spectrum and hence the weak lensing convergence power spectrum at l {proportional_to} 10{sup 3} {yields} 10{sup 4} at the percent level. (orig.)

  1. Puzzle of the folding potential on the nuclear halo reactions

    International Nuclear Information System (INIS)

    Ismail, Atef; Lee, Yen Cheong; Mahmoud, Z.M.M.

    2015-01-01

    Folding potentials of the elastic scattering drip-line nuclei at various incident energies is one method to study nuclear matter density distributions and nuclear radii. The nuclei with density distributions consisting of a bulk (core) and an outer layer (halo), dilute and spatially extended are called the halo nuclei caused for the weak particle binding. Several halo nuclei are studied and many potential candidates are identified. All the cross-sections of the elastic scattering for the drip-line nuclei 11 Be and 6 He, are calculated to understand the exotic properties of these nuclei starting from its structure, extended radius, nuclear size till the large total reaction cross-sections for these nuclei when it interacts with a stable target 12 C. (author)

  2. Halo-independent methods for inelastic dark matter scattering

    International Nuclear Information System (INIS)

    Bozorgnia, Nassim; Schwetz, Thomas; Herrero-Garcia, Juan; Zupan, Jure

    2013-01-01

    We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo

  3. Properties of the ISM - Gas in the halo

    Science.gov (United States)

    Savage, Blair D.

    1990-01-01

    The properties of interstellar gas in the galactic halo are reviewed. Halo gas is found to have a wide range of physical conditions with temperatures ranging from less than 170 K to more than 200,000 K. The gas extending away from the plane of the Milky Way has density scale heights ranging from less than 300 pc for certain species in the neutral medium to approximately 3000 pc for the most highly ionized gas. The complex kinematical characteristics of the gas provides important clues about its origin. The gas phase elemental abundances in the neutral halo gas are closer to solar than is found for the highly depleted gas of the Milky Way disk. The possible origin of gas at large distances away from the galactic plane is discussed.

  4. Halos around ellipticals and the environment dependence of Hubble type

    International Nuclear Information System (INIS)

    Zurek, W.H.; Quinn, P.J.; Salmon, J.K.

    1985-01-01

    It is not surprising that the baryonic material inside the more compact halos will tend to form a more compact, luminous elliptical. What needs to be explained is the difference in the value of the spin parameter (lambda). It might be tempting to speculate that more compact, dense halos have systematically smaller values of lambda. Such an effect is predicted by linear calculations. Our simulations show that it may exist but it appears to be too small compared to the random scatter of the values of lambda and rho to be decisive. It is more likely that the baryonic material has initially similar lambda both in the future spirals and elliptical but compact halos damp out the lambda of the dissipative, baryonic material more readily

  5. The globular cluster-dark matter halo connection

    Science.gov (United States)

    Boylan-Kolchin, Michael

    2017-12-01

    I present a simple phenomenological model for the observed linear scaling of the stellar mass in old globular clusters (GCs) with z = 0 halo mass in which the stellar mass in GCs scales linearly with progenitor halo mass at z = 6 above a minimum halo mass for GC formation. This model reproduces the observed MGCs-Mhalo relation at z = 0 and results in a prediction for the minimum halo mass at z = 6 required for hosting one GC: Mmin(z = 6) = 1.07 × 109 M⊙. Translated to z = 0, the mean threshold mass is Mhalo(z = 0) ≈ 2 × 1010 M⊙. I explore the observability of GCs in the reionization era and their contribution to cosmic reionization, both of which depend sensitively on the (unknown) ratio of GC birth mass to present-day stellar mass, ξ. Based on current detections of z ≳ 6 objects with M1500 10 are strongly disfavoured; this, in turn, has potentially important implications for GC formation scenarios. Even for low values of ξ, some observed high-z galaxies may actually be GCs, complicating estimates of reionization-era galaxy ultraviolet luminosity functions and constraints on dark matter models. GCs are likely important reionization sources if 5 ≲ ξ ≲ 10. I also explore predictions for the fraction of accreted versus in situ GCs in the local Universe and for descendants of systems at the halo mass threshold of GC formation (dwarf galaxies). An appealing feature of the model presented here is the ability to make predictions for GC properties based solely on dark matter halo merger trees.

  6. The Halo Boundary of Galaxy Clusters in the SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K. [Center for Particle Cosmology, Department of Physics, University of Pennsylvania, Philadelphia, PA 19104 (United States); Chang, Chihway; Kravtsov, Andrey [Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, IL 60637 (United States); Adhikari, Susmita; Dalal, Neal [Department of Astronomy, University of Illinois at Urbana-Champaign, Champaign, IL 61801 (United States); More, Surhud [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8583 (Japan); Rozo, Eduardo [Department of Physics, University of Arizona, Tucson, AZ 85721 (United States); Rykoff, Eli, E-mail: ebax@sas.upenn.edu [Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 2450, Stanford University, Stanford, CA 94305 (United States)

    2017-05-20

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.

  7. Painting galaxies into dark matter halos using machine learning

    Science.gov (United States)

    Agarwal, Shankar; Davé, Romeel; Bassett, Bruce A.

    2018-05-01

    We develop a machine learning (ML) framework to populate large dark matter-only simulations with baryonic galaxies. Our ML framework takes input halo properties including halo mass, environment, spin, and recent growth history, and outputs central galaxy and halo baryonic properties including stellar mass (M*), star formation rate (SFR), metallicity (Z), neutral (H I) and molecular (H_2) hydrogen mass. We apply this to the MUFASA cosmological hydrodynamic simulation, and show that it recovers the mean trends of output quantities with halo mass highly accurately, including following the sharp drop in SFR and gas in quenched massive galaxies. However, the scatter around the mean relations is under-predicted. Examining galaxies individually, at z = 0 the stellar mass and metallicity are accurately recovered (σ ≲ 0.2 dex), but SFR and H I show larger scatter (σ ≳ 0.3 dex); these values improve somewhat at z = 1, 2. Remarkably, ML quantitatively recovers second parameter trends in galaxy properties, e.g. that galaxies with higher gas content and lower metallicity have higher SFR at a given M*. Testing various ML algorithms, we find that none perform significantly better than the others, nor does ensembling improve performance, likely because none of the algorithms reproduce the large observed scatter around the mean properties. For the random forest algorithm, we find that halo mass and nearby (˜200 kpc) environment are the most important predictive variables followed by growth history, while halo spin and ˜Mpc scale environment are not important. Finally we study the impact of additionally inputting key baryonic properties M*, SFR, and Z, as would be available e.g. from an equilibrium model, and show that particularly providing the SFR enables H I to be recovered substantially more accurately.

  8. Three-body halo nuclei in an effective theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Canham, David L.

    2009-05-20

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, {sup 20}C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of {sup 20}C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D{sup 0} and D{sup *0} mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  9. The Halo Boundary of Galaxy Clusters in the SDSS

    International Nuclear Information System (INIS)

    Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K.; Chang, Chihway; Kravtsov, Andrey; Adhikari, Susmita; Dalal, Neal; More, Surhud; Rozo, Eduardo; Rykoff, Eli

    2017-01-01

    Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.

  10. Three-body halo nuclei in an effective theory framework

    International Nuclear Information System (INIS)

    Canham, David L.

    2009-01-01

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, 20 C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of 20 C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D 0 and D *0 mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  11. Disc-halo interactions in ΛCDM

    Science.gov (United States)

    Bauer, Jacob S.; Widrow, Lawrence M.; Erkal, Denis

    2018-05-01

    We present a new method for embedding a stellar disc in a cosmological dark matter halo and provide a worked example from a Λ cold dark matter zoom-in simulation. The disc is inserted into the halo at a redshift z = 3 as a zero-mass rigid body. Its mass and size are then increased adiabatically while its position, velocity, and orientation are determined from rigid-body dynamics. At z = 1, the rigid disc (RD) is replaced by an N-body disc whose particles sample a three-integral distribution function (DF). The simulation then proceeds to z = 0 with live disc (LD) and halo particles. By comparison, other methods assume one or more of the following: the centre of the RD during the growth phase is pinned to the minimum of the halo potential, the orientation of the RD is fixed, or the live N-body disc is constructed from a two rather than three-integral DF. In general, the presence of a disc makes the halo rounder, more centrally concentrated, and smoother, especially in the innermost regions. We find that methods in which the disc is pinned to the minimum of the halo potential tend to overestimate the amount of adiabatic contraction. Additionally, the effect of the disc on the subhalo distribution appears to be rather insensitive to the disc insertion method. The LD in our simulation develops a bar that is consistent with the bars seen in late-type spiral galaxies. In addition, particles from the disc are launched or `kicked up' to high galactic latitudes.

  12. Bose-Einstein condensate haloes embedded in dark energy

    Science.gov (United States)

    Membrado, M.; Pacheco, A. F.

    2018-04-01

    Context. We have studied clusters of self-gravitating collisionless Newtonian bosons in their ground state and in the presence of the cosmological constant to model dark haloes of dwarf spheroidal (dSph) galaxies. Aim. We aim to analyse the influence of the cosmological constant on the structure of these systems. Observational data of Milky Way dSph galaxies allow us to estimate the boson mass. Methods: We obtained the energy of the ground state of the cluster in the Hartree approximation by solving a variational problem in the particle density. We have also developed and applied the virial theorem. Dark halo models were tested in a sample of 19 galaxies. Galaxy radii, 3D deprojected half-light radii, mass enclosed within them, and luminosity-weighted averages of the square of line-of-sight velocity dispersions are used to estimate the particle mass. Results: Cosmological constant repulsive effects are embedded in one parameter ξ. They are appreciable for ξ > 10-5. Bound structures appear for ξ ≤ ξc = 1.65 × 10-4, what imposes a lower bound for cluster masses as a function of the particle mass. In principle, these systems present tunnelling through a potential barrier; however, after estimating their mean lifes, we realize that their existence is not affected by the age of the Universe. When Milky Way dSph galaxies are used to test the model, we obtain 3.5-1.0+1.3 × 10-22 eV for the particle mass and a lower limit of 5.1-2.8+2.2 × 106 M⊙ for bound haloes. Conclusions: Our estimation for the boson mass is in agreement with other recent results which use different methods. From our particle mass estimation, the treated dSph galaxies would present dark halo masses 5-11 ×107 M⊙. With these values, they would not be affected by the cosmological constant (ξ 10-5) would already feel their effects. Our model that includes dark energy allows us to deal with these dark haloes. Assuming quantities averaged in the sample of galaxies, 10-5 < ξ ≤ ξc dark

  13. Dynamical Constraints On The Galaxy-Halo Connection

    Science.gov (United States)

    Desmond, Harry

    2017-07-01

    Dark matter halos comprise the bulk of the universe's mass, yet must be probed by the luminous galaxies that form within them. A key goal of modern astrophysics, therefore, is to robustly relate the visible and dark mass, which to first order means relating the properties of galaxies and halos. This may be expected not only to improve our knowledge of galaxy formation, but also to enable high-precision cosmological tests using galaxies and hence maximise the utility of future galaxy surveys. As halos are inaccessible to observations - as galaxies are to N-body simulations - this relation requires an additional modelling step.The aim of this thesis is to develop and evaluate models of the galaxy-halo connection using observations of galaxy dynamics. In particular, I build empirical models based on the technique of halo abundance matching for five key dynamical scaling relations of galaxies - the Tully-Fisher, Faber-Jackson, mass-size and mass discrepancy-acceleration relations, and Fundamental Plane - which relate their baryon distributions and rotation or velocity dispersion profiles. I then develop a statistical scheme based on approximate Bayesian computation to compare the predicted and measured values of a number of summary statistics describing the relations' important features. This not only provides quantitative constraints on the free parameters of the models, but also allows absolute goodness-of-fit measures to be formulated. I find some features to be naturally accounted for by an abundance matching approach and others to impose new constraints on the galaxy-halo connection; the remainder are challenging to account for and may imply galaxy-halo correlations beyond the scope of basic abundance matching.Besides providing concrete statistical tests of specific galaxy formation theories, these results will be of use for guiding the inputs of empirical and semi-analytic galaxy formation models, which require galaxy-halo correlations to be imposed by hand. As

  14. Mismatch and misalignment: dark haloes and satellites of disc galaxies

    Science.gov (United States)

    Deason, A. J.; McCarthy, I. G.; Font, A. S.; Evans, N. W.; Frenk, C. S.; Belokurov, V.; Libeskind, N. I.; Crain, R. A.; Theuns, T.

    2011-08-01

    We study the phase-space distribution of satellite galaxies associated with late-type galaxies in the GIMIC suite of simulations. GIMIC consists of resimulations of five cosmologically representative regions from the Millennium Simulation, which have higher resolution and incorporate baryonic physics. Whilst the disc of the galaxy is well aligned with the inner regions (r˜ 0.1r200) of the dark matter halo, both in shape and angular momentum, there can be substantial misalignments at larger radii (r˜r200). Misalignments of >45° are seen in ˜30 per cent of our sample. We find that the satellite population aligns with the shape (and angular momentum) of the outer dark matter halo. However, the alignment with the galaxy is weak owing to the mismatch between the disc and dark matter halo. Roughly 20 per cent of the satellite systems with 10 bright galaxies within r200 exhibit a polar spatial alignment with respect to the galaxy - an orientation reminiscent of the classical satellites of the Milky Way. We find that a small fraction (˜10 per cent) of satellite systems show evidence for rotational support which we attribute to group infall. There is a bias towards satellites on prograde orbits relative to the spin of the dark matter halo (and to a lesser extent with the angular momentum of the disc). This preference towards co-rotation is stronger in the inner regions of the halo where the most massive satellites accreted at relatively early times are located. We attribute the anisotropic spatial distribution and angular momentum bias of the satellites at z= 0 to their directional accretion along the major axes of the dark matter halo. The satellite galaxies have been accreted relatively recently compared to the dark matter mass and have experienced less phase-mixing and relaxation - the memory of their accretion history can remain intact to z= 0. Understanding the phase-space distribution of the z= 0 satellite population is key for studies that estimate the host halo

  15. FASHIONABLY LATE? BUILDING UP THE MILKY WAY'S INNER HALO

    International Nuclear Information System (INIS)

    Morrison, Heather L.; Harding, Paul; Helmi, Amina

    2009-01-01

    Using a sample of 246 metal-poor stars (RR Lyraes, red giants, and red horizontal branch stars) which is remarkable for the accuracy of its six-dimensional kinematical data, we find, by examining the distribution of stellar orbital angular momenta, a new component for the local halo which has an axial ratio c/a ∼ 0.2, a similar flattening to the thick disk. It has a small prograde rotation but is supported by velocity anisotropy, and contains more intermediate-metallicity stars (with -1.5 < [Fe/H] < -1.0) than the rest of our sample. We suggest that this component was formed quite late, during or after the formation of the disk. It formed either from the gas that was accreted by the last major mergers experienced by the Galaxy, or by dynamical friction of massive infalling satellite(s) with the halo and possibly the stellar disk or thick disk. The remainder of the halo stars in our sample, which are less closely confined to the disk plane, exhibit a clumpy distribution in energy and angular momentum, suggesting that the early, chaotic conditions under which the inner halo formed were not violent enough to erase the record of their origins. The clumpy structure suggests that a relatively small number of progenitors were responsible for building up the inner halo, in line with theoretical expectations. We find a difference in mean binding energy between the RR Lyrae variables and the red giants in our sample, suggesting that more of the RR Lyraes in the sample belong to the outer halo, and that the outer halo may be somewhat younger, as first suggested by Searle and Zinn. We also find that the RR Lyrae mean rotation is more negative than the red giants, which is consistent with the recent result of Carollo et al. that the outer halo has a retrograde rotation and with the difference in kinematics seen between RR Lyraes and blue horizontal branch stars by Kinman et al. (2007).

  16. Black Hole Space-time In Dark Matter Halo

    OpenAIRE

    Xu, Zhaoyi; Hou, Xian; Gong, Xiaobo; Wang, Jiancheng

    2018-01-01

    For the first time, we obtain the analytical form of black hole space-time metric in dark matter halo for the stationary situation. Using the relation between the rotation velocity (in the equatorial plane) and the spherical symmetric space-time metric coefficient, we obtain the space-time metric for pure dark matter. By considering the dark matter halo in spherical symmetric space-time as part of the energy-momentum tensors in the Einstein field equation, we then obtain the spherical symmetr...

  17. Method for separating gaseous mixtures of isotopes

    International Nuclear Information System (INIS)

    Neimann, H.J.; Schuster, E.; Kersting, A.

    1976-01-01

    A gaseous mixture of isotopes is separated by laser excitation of the isotope mixture with a narrow band of wavelengths, molecularly exciting mainly the isotope to be separated and thereby promoting its reaction with its chemical partner which is excited in a separate chamber. The excited isotopes and the chemical partner are mixed, perhaps in a reaction chamber to which the two excited components are conducted by very short conduits. The improvement of this method is the physical separation of the isotope mixture and its partner during excitation. The reaction between HCl and the mixture of 238 UF 6 and 235 UF 6 is discussed

  18. Treatment of gaseous and airborne radioactive waste

    International Nuclear Information System (INIS)

    Leichsenring, C.H.

    1982-01-01

    Gaseous and airborne radionuclides in the fuel cycle are retained in vessel off-gas filter systems and in the dissolver off-gas cleaning system. Those systems have to meet the regulatory requirements for both normal and accident conditions. From the solutions liquid aerosols are formed during liquid transfer (air lifts, steam jets) or by air sparging or by evaporation processes. During dissolution the volatile radionuclides i.e. 85 Kr, 129 I and 14 C are liberated and enter into the dissolver off-gas cleaning system. Flow sheets of different cleaning systems and their stage of development are described. (orig./RW)

  19. Progress in GEM-based gaseous photomultipliers

    CERN Document Server

    Chechik, R; Breskin, Amos; Buzulutskov, A F; Guedes, G P; Mörmann, D; Singh, B K

    2003-01-01

    We discuss recent progress in gaseous photomultipliers (GPMTs) comprising UV-to-visible spectral range photocathodes (PCs) coupled to multiple Gas Electron Multipliers (GEM). The PCs may be either semitransparent or reflective ones directly deposited on the first-GEM surface. These detectors provide high gain, even in noble gases, are sensitive to single photons, have nanosecond time resolution, and offer good localization. The operation of CsI-based GPMTs in CF sub 4 opens new applications in Cherenkov detectors, where both the radiator and the photosensor operate in the same gas. The latest results on sealed visible-light detectors, combining bialkali PCs and Kapton-made GEMs are presented.

  20. Developments in gaseous core reactor technology

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1979-01-01

    An effort to characterize the most promising concepts for large, central-station electrical generation was done under the auspices of the Nonproliferation Alternative Systems Assessment Program (NASAP). The two leading candidates were identified from this effort: The Mixed-Flow Gaseous Core Reactor (MFGCR) and the Heterogeneous Gas Core Reactor (HGCR). Key advantages over other nuclear concepts are weighed against the disadvantages of an unproven technology and the cost-time for deployment to make a sound decision on RandD support for these promising reactor alternatives. 38 refs

  1. Transfer of gaseous iodine to Tradescantia

    International Nuclear Information System (INIS)

    Nakamura, Yuji; Ohmomo, Yoichiro.

    1984-01-01

    Transfer rates of gaseous elemental iodine and methyliodide from atmosphere to Tradescantia were investigated in relation to supposed genetic mutation due to radioactive iodine released from nuclear facilities. The estimated transfer rate of elemental iodine to the young buds of Tradescantia, which was given as the ratio of iodine uptake rate per unit weight of the plant to the concentration of the element in the air, was approximately 7 x 10 -2 cm 3 /g.sec, about 30 to 40 times higher than that of methyliodide. The contribution of direct deposition of elemental iodine was suggested to be significant, although methyliodide was mainly absorbed by respiration through stomata of the plant. (author)

  2. Probing the shape and internal structure of dark matter haloes with the halo-shear-shear three-point correlation function

    Science.gov (United States)

    Shirasaki, Masato; Yoshida, Naoki

    2018-04-01

    Weak lensing three-point statistics are powerful probes of the structure of dark matter haloes. We propose to use the correlation of the positions of galaxies with the shapes of background galaxy pairs, known as the halo-shear-shear correlation (HSSC), to measure the mean halo ellipticity and the abundance of subhaloes in a statistical manner. We run high-resolution cosmological N-body simulations and use the outputs to measure the HSSC for galaxy haloes and cluster haloes. Non-spherical haloes cause a characteristic azimuthal variation of the HSSC, and massive subhaloes in the outer region near the virial radius contribute to ˜ 10 per cent of the HSSC amplitude. Using the HSSC and its covariance estimated from our N-body simulations, we make forecast for constraining the internal structure of dark matter haloes with future galaxy surveys. With 1000 galaxy groups with mass greater than 1013.5 h-1M⊙, the average halo ellipticity can be measured with an accuracy of 10 percent. A spherical, smooth mass distribution can be ruled out at a ˜5σ significance level. The existence of subhaloes whose masses are in 1-10 percent of the main halo mass can be detected with ˜104 galaxies/clusters. We conclude that the HSSC provides valuable information on the structure of dark haloes and hence on the nature of dark matter.

  3. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    Science.gov (United States)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  4. Stellar Velocity Dispersion: Linking Quiescent Galaxies to their Dark Matter Halos

    OpenAIRE

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-01-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This prop...

  5. Resolution of vitiligo following excision of halo congenital melanocytic nevus: a rare case report.

    Science.gov (United States)

    Wang, Kai; Wang, Zhi; Huang, Weiqing

    2016-05-01

    Halo congenital melanocytic nevus (CMN) associated with vitiligo is rare, especially with regard to CMN excision. Only two reports of excision of halo CMN following repigmentation of vitiligo are found in the literature. We present a case of a girl with halo CMN and periorbital vitiligo. The halo CMN was excised and followed by spontaneous improvement of vitiligo. The result suggests excision of the inciting lesion may be a promising way to control vitiligo. © 2015 Wiley Periodicals, Inc.

  6. Research Note--Should Consumers Use the Halo to Form Product Evaluations?

    OpenAIRE

    Peter Boatwright; Ajay Kalra; Wei Zhang

    2008-01-01

    In purchase situations where attribute information is either missing or difficult to judge, a well-known heuristic that consumers use to form evaluations is the halo effect. The psychology literature has widely considered the halo a reflection of consumers' inability to discriminate between different attributes and have therefore labeled it the "halo error" or the "logical error." The objective of this paper is to offer a rationale for the halo effect. We use a decision-theory framework to sh...

  7. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  8. De bepaling van halo-azijnzuren, chloriet en chloraat in drinkwater

    NARCIS (Netherlands)

    Peters RJB; van de Meer-Arp KKM; Versteegh JFM

    1990-01-01

    A method was developed to determine halo-acetic acids with a detection limit of 0.1 mug/L. Halo-acetic acids were determined in samples drinking water derived from surface- and bankfiltrated water however, not in drinking water derived from groundwater. Halo-acetic acids were found in chlorinated

  9. 77 FR 75672 - Manufacturer of Controlled Substances, Notice of Registration, Halo Pharmaceutical, Inc.

    Science.gov (United States)

    2012-12-21

    ..., Notice of Registration, Halo Pharmaceutical, Inc. By Notice dated July 30, 2012, and published in the Federal Register on August 7, 2012, 77 FR 47114, Halo Pharmaceutical, Inc., 30 North Jefferson Road... 21 U.S.C. 823(a), and determined that the registration of Halo Pharmaceutical, Inc., to manufacture...

  10. 77 FR 16264 - Manufacturer of Controlled Substances, Notice of Registration; Halo Pharmaceutical Inc.

    Science.gov (United States)

    2012-03-20

    ..., Notice of Registration; Halo Pharmaceutical Inc. By Notice dated December 2, 2011, and published in the Federal Register on December 14, 2011, 76 FR 77850, Halo Pharmaceutical Inc., 30 North Jefferson Road... considered the factors in 21 U.S.C. 823(a) and determined that the registration of Halo Pharmaceutical Inc...

  11. Novel gaseous detectors for medical imaging

    International Nuclear Information System (INIS)

    Danielsson, M.; Fonte, P.; Francke, T.; Iacobaeus, C.; Ostling, J.; Peskov, V.

    2004-01-01

    We have developed and successfully tested prototypes of two new types of gaseous detectors for medical imaging purposes. The first one is called the Electronic Portal Imaging Device (EPID). It is oriented on monitoring and the precise alignment of the therapeutic cancer treatment beam (pulsed gamma radiation) with respect to the patient's tumor position. The latest will be determined from an X-ray image of the patient obtained in the time intervals between the gamma pulses. The detector is based on a 'sandwich' of hole-type gaseous detectors (GEM and glass microcapillary plates) with metallic gamma and X-ray converters coated with CsI layers. The second detector is an X-ray image scanner oriented on mammography and other radiographic applications. It is based on specially developed by us high rate RPCs that are able to operate at rates of 10 5 Hz/mm 2 with a position resolution better than 50 μm at 1 atm. The quality of the images obtained with the latest version of this device were in most cases more superior than those obtained from commercially available detectors

  12. Gaseous radiocarbon measurements of small samples

    International Nuclear Information System (INIS)

    Ruff, M.; Szidat, S.; Gaeggeler, H.W.; Suter, M.; Synal, H.-A.; Wacker, L.

    2010-01-01

    Radiocarbon dating by means of accelerator mass spectrometry (AMS) is a well-established method for samples containing carbon in the milligram range. However, the measurement of small samples containing less than 50 μg carbon often fails. It is difficult to graphitise these samples and the preparation is prone to contamination. To avoid graphitisation, a solution can be the direct measurement of carbon dioxide. The MICADAS, the smallest accelerator for radiocarbon dating in Zurich, is equipped with a hybrid Cs sputter ion source. It allows the measurement of both, graphite targets and gaseous CO 2 samples, without any rebuilding. This work presents experiences dealing with small samples containing 1-40 μg carbon. 500 unknown samples of different environmental research fields have been measured yet. Most of the samples were measured with the gas ion source. These data are compared with earlier measurements of small graphite samples. The performance of the two different techniques is discussed and main contributions to the blank determined. An analysis of blank and standard data measured within years allowed a quantification of the contamination, which was found to be of the order of 55 ng and 750 ng carbon (50 pMC) for the gaseous and the graphite samples, respectively. For quality control, a number of certified standards were measured using the gas ion source to demonstrate reliability of the data.

  13. Detector for gaseous nuclear fission products

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Kubo, Katsumi.

    1979-01-01

    Purpose: To facilitate the fabrication of a precipitator type detector, as well as improve the reliability. Constitution: Gas to be measured flown in an anode is stored in a gas processing system. By applying a voltage between the anode and the cathode, if positively charged Rb or Cs which is the daughter products of gaseous fission products are present in the gas to be measured, the daughter products are successively deposited electrostatically to the cathode. The daughter products issue beta-rays and gamma-rays to ionize the argon gas at the anode, whereby ionizing current flows between both of the electrodes. Pulses are generated from the ionizing current, and presence or absence, as well as the amount of the gaseous fission products are determined by the value recorded for the number of the pulses to thereby detect failures in the nuclear fuel elements. After the completion of the detection, the inside of the anode is evacuated and the cathode is heated to evaporate and discharge the daughter products externally. This eliminates the effects of the former detection to the succeeding detection. (Moriyama, K.)

  14. Trends and new developments in gaseous detectors

    International Nuclear Information System (INIS)

    Hoch, M.

    2004-01-01

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors

  15. Trends and new developments in gaseous detectors

    Science.gov (United States)

    Hoch, M.

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors.

  16. Trends and new developments in gaseous detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, M. [CERN, Geneva 23 (Switzerland)]. E-mail: michael.hoch@cern.ch

    2004-12-11

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors.

  17. Does the galaxy-halo connection vary with environment?

    Science.gov (United States)

    Dragomir, Radu; Rodríguez-Puebla, Aldo; Primack, Joel R.; Lee, Christoph T.

    2018-05-01

    (Sub)halo abundance matching (SHAM) assumes that one (sub) halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub) halo such as its luminosity or stellar mass. This assumption implies that the dependence of galaxy luminosity functions (GLFs) and the galaxy stellar mass function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from a Sloan Digital Sky Survey sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g - r colour for all galaxies and central galaxies, although it better reproduces the colour dependence on environmental density of satellite galaxies.

  18. Large-scale assembly bias of dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Lazeyras, Titouan; Musso, Marcello; Schmidt, Fabian, E-mail: titouan@mpa-garching.mpg.de, E-mail: mmusso@sas.upenn.edu, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)

    2017-03-01

    We present precise measurements of the assembly bias of dark matter halos, i.e. the dependence of halo bias on other properties than the mass, using curved 'separate universe' N-body simulations which effectively incorporate an infinite-wavelength matter overdensity into the background density. This method measures the LIMD (local-in-matter-density) bias parameters b {sub n} in the large-scale limit. We focus on the dependence of the first two Eulerian biases b {sup E} {sup {sub 1}} and b {sup E} {sup {sub 2}} on four halo properties: the concentration, spin, mass accretion rate, and ellipticity. We quantitatively compare our results with previous works in which assembly bias was measured on fairly small scales. Despite this difference, our findings are in good agreement with previous results. We also look at the joint dependence of bias on two halo properties in addition to the mass. Finally, using the excursion set peaks model, we attempt to shed new insights on how assembly bias arises in this analytical model.

  19. Constraining the Galaxy's dark halo with RAVE stars

    NARCIS (Netherlands)

    Piffl, T.; Binney, J.; McMillan, P. J.; Steinmetz, M.; Helmi, A.; Wyse, R. F. G.; Bienaymé, O.; Bland-Hawthorn, J.; Freeman, K.; Gibson, B.; Gilmore, G.; Grebel, E. K.; Kordopatis, G.; Navarro, J. F.; Parker, Q.; Reid, W. A.; Seabroke, G.; Siebert, A.; Watson, F.; Zwitter, T.

    2014-01-01

    We use the kinematics of ˜200 000 giant stars that lie within ˜1.5 kpc of the plane to measure the vertical profile of mass density near the Sun. We find that the dark mass contained within the isodensity surface of the dark halo that passes through the Sun ((6 ± 0.9) × 1010 M⊙), and the surface

  20. The Disk Mass Project: breaking the disk-halo degeneracy

    NARCIS (Netherlands)

    Verheijen, Marc A. W.; Bershady, Matthew A.; Swaters, Rob A.; Andersen, David R.; Westfall, Kyle B.; DE JONG, R. S.

    2007-01-01

    Little is known about the content and distribution of dark matter in spiral galaxies. To break the degeneracy in galaxy rotation curve decompositions, which allows a wide range of dark matter halo density profiles, an independent measure of the mass surface density of stellar disks is needed. Here,

  1. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of ...

  2. Spin alignment of dark matter halos in filaments and walls

    NARCIS (Netherlands)

    Aragon-Calvo, Miguel A.; van de Weygaert, Rien; Jones, Bernard J. T.; van der Hulst, J. M.

    2007-01-01

    The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter halos are significantly correlated with each other and with the orientation of their host structures. The

  3. Spin alignment of dark matter haloes in filaments and walls

    NARCIS (Netherlands)

    Aragón-Calvo, M. A.; Weygaert, R. van de; Jones, B. J. T.; Hulst, T. van der

    2006-01-01

    Abstract: The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter haloes are significantly correlated with each other and with the orientation of their host

  4. Test of internal halo targets in the HERA proton ring

    International Nuclear Information System (INIS)

    Hast, C.; Hofmann, W.; Khan, S.; Knoepfle, K.T.; Reber, M.; Rieling, J.; Spahn, M.; Spengler, J.; Lohse, T.; Pugatch, V.

    1995-01-01

    Internal wire targets in the halo of stored proton beams provide a line source of proton-nucleus interactions for highest-rate fixed target experiments. We have studied such internal halo targets at the 820 GeV proton ring of the HERA ep collider. The tests showed that most of the protons in the beam halo - which would otherwise hit the collimators - can be brought to interaction in a relatively thin target wire at distances of 7 to 8 beam widths from the center of the beam. At less than 10% of the HERA total design current, and less than 20% of the current per bunch, interaction rates up to 8 MHz were observed, corresponding to more than 2 interactions per bunch crossing. The halo targets were used in parallel to the HERA luminosity operation; no significant disturbances of the HERA ep experiments, of the machine stability or beam quality were observed. We present data on the steady-state and transient behaviour of interaction rates and discuss the interpretation in terms of a simple beam dynamics model. Issues of short-, medium- and long-term rate fluctuations and of rate stabilization by feedback are addressed. ((orig.))

  5. Matting of Hair Due to Halo-egg Shampoo

    Directory of Open Access Journals (Sweden)

    Z M Mani

    1983-01-01

    Full Text Available A case of hair matting in an 18 year old female is reported. The hair got densely entangled immediately after washing the hair with ′Halo Egg′ shampoo. The hair was disentangled completely after prolonged dipping of the hair in arachis oil frr 5 days.

  6. Two distinct halo populations in the solar neighborhood. IV

    DEFF Research Database (Denmark)

    Nissen, P. E.; Schuster, W. J.

    2012-01-01

    We investigate if there is a difference in the lithium abundances of stars belonging to two halo populations of F and G main-sequence stars previously found to differ in [alpha/Fe] for the metallicity range -1.4 < [Fe/H] < -0.7. Li abundances are derived from the LiI 6707.8 A line measured in hig...

  7. The reversed halo sign: update and differential diagnosis

    Science.gov (United States)

    Godoy, M C B; Viswanathan, C; Marchiori, E; Truong, M T; Benveniste, M F; Rossi, S; Marom, E M

    2012-01-01

    The reversed halo sign is characterised by a central ground-glass opacity surrounded by denser air–space consolidation in the shape of a crescent or a ring. It was first described on high-resolution CT as being specific for cryptogenic organising pneumonia. Since then, the reversed halo sign has been reported in association with a wide range of pulmonary diseases, including invasive pulmonary fungal infections, paracoccidioidomycosis, pneumocystis pneumonia, tuberculosis, community-acquired pneumonia, lymphomatoid granulomatosis, Wegener granulomatosis, lipoid pneumonia and sarcoidosis. It is also seen in pulmonary neoplasms and infarction, and following radiation therapy and radiofrequency ablation of pulmonary malignancies. In this article, we present the spectrum of neoplastic and non-neoplastic diseases that may show the reversed halo sign and offer helpful clues for assisting in the differential diagnosis. By integrating the patient's clinical history with the presence of the reversed halo sign and other accompanying radiological findings, the radiologist should be able to narrow the differential diagnosis substantially, and may be able to provide a presumptive final diagnosis, which may obviate the need for biopsy in selected cases, especially in the immunosuppressed population. PMID:22553298

  8. Test of internal halo targets in the HERA proton ring

    International Nuclear Information System (INIS)

    Hast, C.; Hofmann, W.; Khan, S.; Knoepfle, K.T.; Reber, M.; Rieling, J.; Spahn, M.; Spengler, J.; Lohse, T.; Pugatch, V.

    1994-07-01

    Internal wire targets in the halo of stored proton beams provide a line source of proton-nucleus interactions for highest-rate fixed target experiments. We have studied such internal halo targets at the 820 GeV proton ring of the HERA ep collider. The tests showed that most of the protons in the beam halo - which would otherwise hit the collimators - can be brought to interaction in a relatively thin target wire at distances of 7 to 8 beam widths from the center of the beam. At less than 10% of the HERA total design current, and less than 20% of the current per bunch, interaction rates up to 8 MHz were observed, corresponding to more than 2 interactions per bunch crossing. The halo targets were used in parallel to the HERA luminosity operation; no significant disturbances of the HERA ep experiments, of the machine stability or beam quality were observed. We present data on the steady-state and transient behaviour of interaction rates and discuss the interpretation in terms of a simple beam dynamics model. Issues of short-, medium- and long-term rate fluctuations and of rate stabilization by feedback are addressed. (orig.)

  9. The prolate shape of the galactic dark-matter halo

    NARCIS (Netherlands)

    Helmi, A; Spooner, NJC; Kudryavtsev,

    2005-01-01

    Knowledge of the distribution of dark-matter in our Galaxy plays a crucial role in the interpretation of dark-matter detection experiments. I will argue here that probably the best way of constraining the properties of the dark-matter halo is through astrophysical observations. These provide

  10. Prospects for detecting supersymmetric dark matter in the Galactic halo

    NARCIS (Netherlands)

    Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.

    2008-01-01

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at

  11. The Galactic Halo in Mixed Dark Matter Cosmologies

    NARCIS (Netherlands)

    Anderhalden, D.; Diemand, J.; Bertone, G.; Macciò, A.V.; Schneider, A.

    2012-01-01

    A possible solution to the small scale problems of the cold dark matter (CDM) scenario is that the dark matter consists of two components, a cold and a warm one. We perform a set of high resolution simulations of the Milky Way halo varying the mass of the WDM particle (mWDM) and the cosmic dark

  12. IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

    Energy Technology Data Exchange (ETDEWEB)

    King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: cking@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-05-01

    We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

  13. IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

    International Nuclear Information System (INIS)

    King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.

    2012-01-01

    We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

  14. Influence of "Halo" and "Demon" Effects in Subjective Grading.

    Science.gov (United States)

    Gibb, Gerald D.

    1983-01-01

    The phenomenon of "halo" effects in subjective grading was investigated. Two groups of three raters evaluated 20 term papers in introductory psychology. Term paper grades correlated significantly with course grades when information about previous academic performance was made available. When this information was not available, the…

  15. Halo nuclei studied by relativistic mean-field approach

    International Nuclear Information System (INIS)

    Gmuca, S.

    1997-01-01

    Density distributions of light neutron-rich nuclei are studied by using the relativistic mean-field approach. The effective interaction which parameterizes the recent Dirac-Brueckner-Hartree-Fock calculations of nuclear matter is used. The results are discussed and compared with the experimental observations with special reference to the neutron halo in the drip-line nuclei. (author)

  16. Haloes and clustering in light, neutron-rich nuclei

    International Nuclear Information System (INIS)

    Orr, N.A.

    2001-10-01

    Clustering is a relatively widespread phenomenon which takes on many guises across the nuclear landscape. Selected topics concerning the study of halo systems and clustering in light, neutron-rich nuclei are discussed here through illustrative examples taken from the Be isotopic chain. (author)

  17. Position-sensitive gaseous photomultipliers research and applications

    CERN Document Server

    Francke, Tom; Peskov, Vladimir

    2016-01-01

    Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.

  18. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S.G.; Roberts, G.W.

    1977-01-01

    A process is described for exchanging isotopes (particularly tritium) between water and gaseous hydrogen. Isotope depleted gaseous hydrogen and water containing a hydrogen isotope are introduced into the vapour phase in a first reaction area. The steam and gaseous hydrogen are brought into contact with a supported metal catalyst in this area in a parallel flow at a temperature range of around 225 and 300 0 C. An effluent flow comprising a mixture of isotope enriched gaseous hydrogen and depleted steam is evacuated from this area and the steam condensed into liquid water [fr

  19. STOCHASTIC MODEL OF THE SPIN DISTRIBUTION OF DARK MATTER HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juhan [Center for Advanced Computation, Korea Institute for Advanced Study, Heogiro 85, Seoul 130-722 (Korea, Republic of); Choi, Yun-Young [Department of Astronomy and Space Science, Kyung Hee University, Gyeonggi 446-701 (Korea, Republic of); Kim, Sungsoo S.; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Gyeonggi 446-701 (Korea, Republic of)

    2015-09-15

    We employ a stochastic approach to probing the origin of the log-normal distributions of halo spin in N-body simulations. After analyzing spin evolution in halo merging trees, it was found that a spin change can be characterized by a stochastic random walk of angular momentum. Also, spin distributions generated by random walks are fairly consistent with those directly obtained from N-body simulations. We derived a stochastic differential equation from a widely used spin definition and measured the probability distributions of the derived angular momentum change from a massive set of halo merging trees. The roles of major merging and accretion are also statistically analyzed in evolving spin distributions. Several factors (local environment, halo mass, merging mass ratio, and redshift) are found to influence the angular momentum change. The spin distributions generated in the mean-field or void regions tend to shift slightly to a higher spin value compared with simulated spin distributions, which seems to be caused by the correlated random walks. We verified the assumption of randomness in the angular momentum change observed in the N-body simulation and detected several degrees of correlation between walks, which may provide a clue for the discrepancies between the simulated and generated spin distributions in the voids. However, the generated spin distributions in the group and cluster regions successfully match the simulated spin distribution. We also demonstrated that the log-normality of the spin distribution is a natural consequence of the stochastic differential equation of the halo spin, which is well described by the Geometric Brownian Motion model.

  20. Study of fusion probabilities with halo nuclei using different proximity based potentials

    International Nuclear Information System (INIS)

    Kumari, Raj

    2013-01-01

    We study fusion of halo nuclei with heavy targets using proximity based potentials due to Aage Winther (AW) 95, Bass 80 and Proximity 2010. In order to consider the extended matter distribution of halo nuclei, the nuclei radii borrowed from cross section measurements are included in these potentials. Our study reveals that the barrier heights are effectively reduced and fusion cross sections are appreciably enhanced by including extended radii of these nuclei. We also find that the extended sizes of halos contribute towards enhancement of fusion probabilities in case of proton halo nuclei, but, contribute to transfer or break-up process rather than fusion yield in case of neutron halo nuclei

  1. THE HOT INTERSTELLAR MEDIUM OF THE INTERACTING GALAXY NGC 4490

    International Nuclear Information System (INIS)

    Richings, A. J.; Fabbiano, G.; Wang Junfeng; Roberts, T. P.

    2010-01-01

    We present an analysis of the hot interstellar medium (ISM) in the spiral galaxy NGC 4490, which is interacting with the irregular galaxy NGC 4485, using ∼100 ks of Chandra ACIS-S observations. The high angular resolution of Chandra enables us to remove discrete sources and perform spatially resolved spectroscopy for the star-forming regions and associated outflows, allowing us to look at how the physical properties of the hot ISM such as temperature, hydrogen column density, and metal abundances vary throughout these galaxies. We find temperatures of >0.41 keV and 0.85 +0.59 -0.12 keV, electron densities of >1.87η -1/2 x 10 -3 cm -3 and 0.21 +0.03 -0.04 η -1/2 x 10 -3 cm -3 , and hot gas masses of >1.1η 1/2 x 10 7 M sun and ∼3.7η 1/2 x 10 7 M sun in the plane and halo of NGC 4490, respectively, where η is the filling factor of the hot gas. The abundance ratios of Ne, Mg, and Si with respect to Fe are found to be consistent with those predicted by theoretical models of type II supernovae (SNe). The thermal energy in the hot ISM is ∼5% of the total mechanical energy input from SNe, so it is likely that the hot ISM has been enriched and heated by type II SNe. The X-ray emission is anticorrelated with the Hα and mid-infrared emission, suggesting that the hot gas is bounded by filaments of cooler ionized hydrogen mixed with warm dust.

  2. ZOMG - III. The effect of halo assembly on the satellite population

    Science.gov (United States)

    Garaldi, Enrico; Romano-Díaz, Emilio; Borzyszkowski, Mikolaj; Porciani, Cristiano

    2018-01-01

    We use zoom hydrodynamical simulations to investigate the properties of satellites within galaxy-sized dark-matter haloes with different assembly histories. We consider two classes of haloes at redshift z = 0: 'stalled' haloes that assembled at z > 1 and 'accreting' ones that are still forming nowadays. Previously, we showed that the stalled haloes are embedded within thick filaments of the cosmic web, while the accreting ones lie where multiple thin filaments converge. We find that satellites in the two classes have both similar and different properties. Their mass spectra, radial count profiles, baryonic and stellar content, and the amount of material they shed are indistinguishable. However, the mass fraction locked in satellites is substantially larger for the accreting haloes as they experience more mergers at late times. The largest difference is found in the satellite kinematics. Substructures fall towards the accreting haloes along quasi-radial trajectories whereas an important tangential velocity component is developed, before accretion, while orbiting the filament that surrounds the stalled haloes. Thus, the velocity anisotropy parameter of the satellites (β) is positive for the accreting haloes and negative for the stalled ones. This signature enables us to tentatively categorize the Milky Way halo as stalled based on a recent measurement of β. Half of our haloes contain clusters of satellites with aligned orbital angular momenta corresponding to flattened structures in space. These features are not driven by baryonic physics and are only found in haloes hosting grand-design spiral galaxies, independently of their assembly history.

  3. A diffusive model for halo width growth during vertical displacement events

    International Nuclear Information System (INIS)

    Eidietis, N.W.; Humphreys, D.A.

    2011-01-01

    The electromagnetic loads produced by halo currents during vertical displacement events (VDEs) impose stringent requirements on the strength of ITER in-vessel components. A predictive understanding of halo current evolution is essential for ensuring the robust design of these components. A significant factor determining that evolution is the plasma resistance, which is a function of three quantities: the resistivities of the core and halo regions, and the halo region width. A diffusive model of halo width growth during VDEs has been developed, which provides one part of a physics basis for predictive halo current simulations. The diffusive model was motivated by DIII-D observations that VDEs with cold post-thermal quench plasma and a current decay time much faster than the vertical motion (type I VDE) possess much wider halo region widths than warmer plasma VDEs, where the current decay is much slower than the vertical motion (type II). A 2D finite element code is used to model the diffusion of toroidal halo current during selected type I and type II DIII-D VDEs. The model assumes a core plasma region within the last closed flux surface (LCFS) diffusing current into a halo plasma filling the vessel outside the LCFS. LCFS motion and plasma temperature are prescribed from experimental observations. The halo width evolution produced by this model compares favourably with experimental measurements of type I and type II toroidal halo current width evolution.

  4. Close correlation between the reaction mechanism and inner structure of loosely halo-nuclei

    International Nuclear Information System (INIS)

    Liu Jianye; Tianshui Normal Univ., Tianshui; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou; Guo Wenjun; Ren Zhongzhou; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou; Xing Yongzhong; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou

    2006-01-01

    It was based on the comparisons of the variance properties of fragment multiplicities FM's and nuclear stoppings R's for the neutron-halo colliding system with those of FZ's and R's for the proton-halo colliding system with the increases of beam energy in more detail, the closely correlations between the reaction mechanism and the inner structures of halo-nuclei is found. From above comparisons it is found that the variance properties of fragment multiplicities and nuclear stopping with the increases of beam energy are quite different for the neutron-halo and proton halo colliding systems, such as the effects of loosely bound neutron-halo structure on the fragment multiplicities and nuclear stopping are obviously larger than those for the proton-halo colliding system. This is due to that the structures of halo-neutron nucleus 11 Li is more loosely than that of the proton-halo nucleus 23 Al. In this case, the fragment multiplicity and nuclear stopping of halo nuclei may be used as a possible probe for studying the reaction mechanism and the correlation between the reaction mechanism and the inner structure of halo-nuclei. (authors)

  5. A new type of cascading synchronization for halo-chaos and its potential for communication applications

    International Nuclear Information System (INIS)

    Fang Jinqing; Yu Xinghuo

    2004-01-01

    Study of beam halo-chaos has become a key issue of concern for many future important applications. Control of halo-chaos has been researched intensively. This is the first time that the synchronization of beam halo-chaos has been realized in this field so far. Two nonlinear feedback control methods are proposed for the cascading synchronizing halo-chaos in coupled lattices of a periodic focusing channel. The simulation results show that the methods are effective. The realization of the synchronization of beam halo-chaos is significant not only for halo-chaos control itself but also for halo-chaos-based secure communication which may become an innovative technique

  6. Simulating Isotope Enrichment by Gaseous Diffusion

    Science.gov (United States)

    Reed, Cameron

    2015-04-01

    A desktop-computer simulation of isotope enrichment by gaseous diffusion has been developed. The simulation incorporates two non-interacting point-mass species whose members pass through a cascade of cells containing porous membranes and retain constant speeds as they reflect off the walls of the cells and the spaces between holes in the membranes. A particular feature is periodic forward recycling of enriched material to cells further along the cascade along with simultaneous return of depleted material to preceding cells. The number of particles, the mass ratio, the initial fractional abundance of the lighter species, and the time between recycling operations can be chosen by the user. The simulation is simple enough to be understood on the basis of two-dimensional kinematics, and demonstrates that the fractional abundance of the lighter-isotope species increases along the cascade. The logic of the simulation will be described and results of some typical runs will be presented and discussed.

  7. Gaseous fuel reactors for power systems

    International Nuclear Information System (INIS)

    Helmick, H.H.; Schwenk, F.C.

    1978-01-01

    The Los Alamos Scientific Laboratory is participating in a NASA-sponsored program to demonstrate the feasibility of a gaseous uranium fueled reactor. The work is aimed at acquiring experimental and theoretical information for the design of a prototype plasma core reactor which will test heat removal by optical radiation. The basic goal of this work is for space applications, however, other NASA-sponsored work suggests several attractive applications to help meet earth-bound energy needs. Such potential benefits are small critical mass, on-site fuel processing, high fuel burnup, low fission fragment inventory in reactor core, high temperature for process heat, optical radiation for photochemistry and space power transmission, and high temperature for advanced propulsion systems. Low power reactor experiments using uranium hexafluoride gas as fuel demonstrated performance in accordance with reactor physics predictions. The final phase of experimental activity now in progress is the fabrication and testing of a buffer gas vortex confinement system

  8. Method of eliminating gaseous hydrogen isotopes

    International Nuclear Information System (INIS)

    Nagakura, Masaaki; Imaizumi, Hideki; Suemori, Nobuo; Aizawa, Takashi; Naito, Taisei.

    1983-01-01

    Purpose: To prevent external diffusion of gaseous hydrogen isotopes such as tritium or the like upon occurrence of tritium leakage accident in a thermonuclear reactor by recovering to eliminate the isotopes rapidly and with safety. Method: Gases at the region of a reactor container where hydrogen isotopes might leak are sucked by a recycing pump, dehumidified in a dehumidifier and then recycled from a preheater through a catalytic oxidation reactor to a water absorption tower. In this structure, the dehumidifier is disposed at the upstream of the catalytic oxidation reactor to reduce the water content of the gases to be processed, whereby the eliminating efficiency for the gases to be processed can be maintained well even when the oxidation reactor is operated at a low temperature condition near the ambient temperature. This method is based on the fact that the oxidating reactivity of the catalyst can be improved significantly by eliminating the water content in the gases to be processed. (Yoshino, Y.)

  9. The thermodynamic functions of gaseous actinide elements

    International Nuclear Information System (INIS)

    Rand, M.H.

    1979-01-01

    The actinide gases have large number of unobserved energy states - up to 3 x 10 6 for Pu(g) - which could contribute to the partition function and its derivatives, from which the thermal functions of these gases are calculated. Existing compilations have simply ignored these levels. By making reasonable assumptions as to the distribution of these energy states, their effect on the functions can be calculated. It is concluded that the existing compilations will be inadequate above approximately 2000K. The effect is particularly marked on the heat capacity. For example, when unobserved levels for Pu(g) are included, the heat capacity of Pu(g) reaches a maximum value of more than 12R at 3200K. Similar considerations will apply to the gaseous actinide ions. (orig.) [de

  10. Device for solidification of gaseous wastes

    International Nuclear Information System (INIS)

    Shimada, Masayuki; Kamei, Hisashi.

    1979-01-01

    Purpose: To provide the subject device wherein gaseous wastes such as krypton 85 and the like are ionized and accelerated to be injected into solid targets and stored therein, thereby removing the redischarge of gas and making it possible to treat a large quantity of said gas. Constitution: Krypton gas is ionized and accelerated to high energy by an accelerator, and then introduced into an ion injection chamber. In the ion injection chamber a band-shaped target is delivered from a first take-up roll, and krypton ions are injected to said target. Thereafter, other band-shaped target delivered from a second take-up roll is brought into contact with the target in which krypton ions have been injected, and both targets are taken up together while compressing these targets. In this way, even when injected energy is small, the injected gas is not redischarged and can be continuously treated. (Kamimura, M.)

  11. Absorption of gaseous iodine by water droplets

    International Nuclear Information System (INIS)

    Albert, M.F.

    1985-07-01

    A new model has been developed for predicting the rate at which gaseous molecular iodine is absorbed by water sprays. The model is a quasi-steady state mass transfer model that includes the iodine hydrolysis reactions. The parameters of the model are spray drop size, initial concentration of the gas and liquid phases, temperature, pressure, buffered or unbuffered spray solution, spray flow rate, containment diameter and drop fall height. The results of the model were studied under many values of these parameters. Plots of concentration of iodine species in the drop versus time have been produced by varying the initial gas phase concentration of molecular iodine over the range of 1 x 10 -5 moles/liter to 1 x 10 -10 moles/liter and a drop size of 1000 microns. Results from the model are compared to results available from Containment Systems Experiments at Pacific Northwest Laboratory. The difference between the model predictions and the experimental data ranges from -120.5% to 68.0% with the closest agreement 7.7%. The new spray model is also compared to previously existing spray models. At high concentrations of gaseous molecular iodine, the new spray model is considered to be less accurate but at low concentrations, the new model predicts results that are closer to the experimental data than the model called the realistic model from WASH-1329. Inclusion of the iodine hydrolysis reaction is shown to be a feature important to a model intended for determining the removal of molecular iodine over a wide range of conditions

  12. Liquefied Gaseous Fuels Spill Test Facility

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy's liquefied Gaseous Fuels Spill Test Facility is a research and demonstration facility available on a user-fee basis to private and public sector test and training sponsors concerned with safety aspects of hazardous chemicals. Though initially designed to accommodate large liquefied natural gas releases, the Spill Test Facility (STF) can also accommodate hazardous materials training and safety-related testing of most chemicals in commercial use. The STF is located at DOE's Nevada Test Site near Mercury, Nevada, USA. Utilization of the Spill Test Facility provides a unique opportunity for industry and other users to conduct hazardous materials testing and training. The Spill Test Facility is the only facility of its kind for either large- or small-scale testing of hazardous and toxic fluids including wind tunnel testing under controlled conditions. It is ideally suited for test sponsors to develop verified data on prevention, mitigation, clean-up, and environmental effects of toxic and hazardous gaseous liquids. The facility site also supports structured training for hazardous spills, mitigation, and clean-up. Since 1986, the Spill Test Facility has been utilized for releases to evaluate the patterns of dispersion, mitigation techniques, and combustion characteristics of select materials. Use of the facility can also aid users in developing emergency planning under US P.L 99-499, the Superfund Amendments and Reauthorization Act of 1986 (SARA) and other regulations. The Spill Test Facility Program is managed by the US Department of Energy (DOE), Office of Fossil Energy (FE) with the support and assistance of other divisions of US DOE and the US Government. DOE/FE serves as facilitator and business manager for the Spill Test Facility and site. This brief document is designed to acquaint a potential user of the Spill Test Facility with an outline of the procedures and policies associated with the use of the facility

  13. Air pollution with gaseous emissions and methods for their removal

    International Nuclear Information System (INIS)

    Vassilev, Venceslav; Boycheva, Sylvia; Fidancevska, Emilija

    2009-01-01

    Information concerning gaseous pollutants generated in the atmosphere, as a result of fuel incineration processes in thermal power and industrial plants, was summarized. The main methods and technologies for flue gases purification from the most ecologically hazardous pollutants are comparatively discussed. Keywords: gaseous pollutants, aerosols, flue gas purification systems and technologies, air ecology control

  14. Flux and polarization signals of spatially inhomogeneous gaseous exoplanets

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Guirado, D.

    2013-01-01

    Aims. We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System’s gaseous planets: belts and zones, cyclonic

  15. Precision tracking with a single gaseous pixel detector

    NARCIS (Netherlands)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N.P.; de Jong, P.; Kluit, R.

    2015-01-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips.

  16. Halo histories versus Galaxy properties at z = 0 - I. The quenching of star formation

    Science.gov (United States)

    Tinker, Jeremy L.; Wetzel, Andrew R.; Conroy, Charlie; Mao, Yao-Yuan

    2017-12-01

    We test whether halo age and galaxy age are correlated at fixed halo and galaxy mass. The formation histories, and thus ages, of dark matter haloes correlate with their large-scale density ρ, an effect known as assembly bias. We test whether this correlation extends to galaxies by measuring the dependence of galaxy stellar age on ρ. To clarify the comparison between theory and observation, and to remove the strong environmental effects on satellites, we use galaxy group catalogues to identify central galaxies and measure their quenched fraction, fQ, as a function of large-scale environment. Models that match halo age to central galaxy age predict a strong positive correlation between fQ and ρ. However, we show that the amplitude of this effect depends on the definition of halo age: assembly bias is significantly reduced when removing the effects of splashback haloes - those haloes that are central but have passed through a larger halo or experienced strong tidal encounters. Defining age using halo mass at its peak value rather than current mass removes these effects. In Sloan Digital Sky Survey data, at M* ≳ 1010 M⊙ h-2, there is a ∼5 per cent increase in fQ from low-to-high densities, which is in agreement with predictions of dark matter haloes using peak halo mass. At lower stellar mass there is little to no correlation of fQ with ρ. For these galaxies, age matching is inconsistent with the data across the range of halo formation metrics that we tested. This implies that halo formation history has a small but statistically significant impact on quenching of star formation at high masses, while the quenching process in low-mass central galaxies is uncorrelated with halo formation history.

  17. Scale dependence of halo and galaxy bias: Effects in real space

    International Nuclear Information System (INIS)

    Smith, Robert E.; Scoccimarro, Roman; Sheth, Ravi K.

    2007-01-01

    We examine the scale dependence of dark matter halo and galaxy clustering on very large scales (0.01 -1 ] -1 ] -1 ], and only show amplification on smaller scales, whereas low mass haloes show strong, ∼5%-10%, suppression over the range 0.05 -1 ]<0.15. These results were primarily established through the use of the cross-power spectrum of dark matter and haloes, which circumvents the thorny issue of shot-noise correction. The halo-halo power spectrum, however, is highly sensitive to the shot-noise correction; we show that halo exclusion effects make this sub-Poissonian and a new correction is presented. Our results have special relevance for studies of the baryon acoustic oscillation features in the halo power spectra. Nonlinear mode-mode coupling: (i) damps these features on progressively larger scales as halo mass increases; (ii) produces small shifts in the positions of the peaks and troughs which depend on halo mass. We show that these effects on halo clustering are important over the redshift range relevant to such studies (0< z<2), and so will need to be accounted for when extracting information from precision measurements of galaxy clustering. Our analytic model is described in the language of the ''halo model.'' The halo-halo clustering term is propagated into the nonlinear regime using ''1-loop'' perturbation theory and a nonlinear halo bias model. Galaxies are then inserted into haloes through the halo occupation distribution. We show that, with nonlinear bias parameters derived from simulations, this model produces predictions that are qualitatively in agreement with our numerical results. We then use it to show that the power spectra of red and blue galaxies depend differently on scale, thus underscoring the fact that proper modeling of nonlinear bias parameters will be crucial to derive reliable cosmological constraints. In addition to showing that the bias on very large scales is not simply linear, the model also shows that the halo-halo and halo

  18. THE HALO MERGER RATE IN THE MILLENNIUM SIMULATION AND IMPLICATIONS FOR OBSERVED GALAXY MERGER FRACTIONS

    International Nuclear Information System (INIS)

    Genel, Shy; Genzel, Reinhard; Bouche, Nicolas; Naab, Thorsten; Sternberg, Amiel

    2009-01-01

    We have developed a new method to extract halo merger rates from the Millennium Simulation. First, by removing superfluous mergers that are artifacts of the standard friends-of-friends (FOF) halo identification algorithm, we find a lower merger rate compared to previous work. The reductions are more significant at lower redshifts and lower halo masses, and especially for minor mergers. Our new approach results in a better agreement with predictions from the extended Press-Schechter model. Second, we find that the FOF halo finder overestimates the halo mass by up to 50% for halos that are about to merge, which leads to an additional ∼20% overestimate of the merger rate. Therefore, we define halo masses by including only particles that are gravitationally bound to their FOF groups. We provide new best-fitting parameters for a global formula to account for these improvements. In addition, we extract the merger rate per progenitor halo, as well as per descendant halo. The merger rate per progenitor halo is the quantity that should be related to observed galaxy merger fractions when they are measured via pair counting. At low-mass/redshift, the merger rate increases moderately with mass and steeply with redshift. At high enough mass/redshift (for the rarest halos with masses a few times the 'knee' of the mass function), these trends break down, and the merger rate per progenitor halo decreases with mass and increases only moderately with redshift. Defining the merger rate per progenitor halo also allows us to quantify the rate at which halos are being accreted onto larger halos, in addition to the minor and major merger rates. We provide an analytic formula that converts any given merger rate per descendant halo into a merger rate per progenitor halo. Finally, we perform a direct comparison between observed merger fractions and the fraction of halos in the Millennium Simulation that have undergone a major merger during the recent dynamical friction time, and find a

  19. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  20. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min; Zhang, Xuming

    2017-01-01

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  1. The origin of the mass, disk-to-halo mass ratio, and L-V relation of spiral galaxies

    International Nuclear Information System (INIS)

    Ashman, K.M.

    1990-01-01

    A model is presented in which spiral galaxies only form when t(c) is roughly equal to t(f) in a hot component of the protogalactic gas. This assumption, along with a disk stability criterion, predicts a range of spiral galaxy masses roughly consistent with observation. The nature of the cooling function for a primordial plasma implies that in less massive galaxies, more gas must fragment in the halo to preserve t(c) roughly equal to t(f). Consequently, less gas survives to form the disk, so that the disk-to-halo mass ratio increases with disk mass and hence galaxy luminosity. The canonical L proportional to V exp 4 relation can be reproduced by the model, and the apparent change in the slope of this relation also arises naturally. In the hierarchical clustering scenario, the model requires that all spirals formed at about the same epoch. These results support earlier claims that much of the dark matter observed in the universe is baryonic and probably formed during protogalactic collapse. 38 refs

  2. Photoionization of the diffuse interstellar medium and galactic halo by OB associtations

    Science.gov (United States)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    Assuming smoothly varying H I distributions in te Galactic disk, we have calculated the geometry of diffuse II regions due to OB associations in the Galactic plane. Near the solar circle, OB associations with a Lyman continuum (Lyc) photon luminosity Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1), produce H II regions that are density bounded in the vertical direction (H II chimneys) allowing Lyc to escape the gaseous disk and penetrate into the Galactic halo. We provide analytic formulae for the Lyc escape fraction as functions of S(sub 0) O-star catalog of Garmany and a new Lyc stellar stellar Lyc stellar flux calibration, we find a production rate of Lyc photons by OB associations within 2.5 kpc of Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1). Integrating the fraction of Lyc photons that escape the disk over our adopted luminosity function of OB associations, we estimate that approximately 7% of the ionizing photons, or Phi(sub Lyc) = 2.3 x 10(exp 6) cm(exp -2) s(exp -1), escape each side of the H I disk layer and penetrate the diffuse ionized medium ('Reynolds layer'). This flux is sufficient to explain the potoionization of this, although we have not constructed a model for the observed H-alpha emission and pulsar dispersion measures that is fully consistent with the absorption rate of Lyc in the H II layer. Since our quiescent model does not account for the effects of dynamic chimneys and superbubbles, which should enhance Lyc escape, we conclude the O stars are the probable source of ionizing radiation for the Reynolds layer. For a random distribution of OB associations throughout the disk, the Lyc flux is nearly uniform for heights Z is greater than approximately 0.8 kpc above the midplane.

  3. Chameleon halo modeling in f(R) gravity

    International Nuclear Information System (INIS)

    Li Yin; Hu, Wayne

    2011-01-01

    We model the chameleon effect on cosmological statistics for the modified gravity f(R) model of cosmic acceleration. The chameleon effect, required to make the model compatible with local tests of gravity, reduces force enhancement as a function of the depth of the gravitational potential wells of collapsed structure and so is readily incorporated into a halo model by including parameters for the chameleon mass threshold and rapidity of transition. We show that the abundance of halos around the chameleon mass threshold is enhanced by both the merging from below and the lack of merging to larger masses. This property also controls the power spectrum in the nonlinear regime and we provide a description of the transition to the linear regime that is valid for a wide range of f(R) models.

  4. Relativistic Hartree-Bogoliubov description of the halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J.; Ring, P. [Universitaet Muenchen, Garching (Germany)

    1996-12-31

    Here the authors report the development of the relativistic Hartree-Bogoliubov theory in coordinate space. Pairing correlations are taken into account by both density dependent force of zero range and finite range Gogny force. As a primary application the relativistic HB theory is used to describe the chain of Lithium isotopes reaching from {sup 6}Li to {sup 11}Li. In contrast to earlier investigations within a relativistic mean field theory and a density dependent Hartree Fock theory, where the halo in {sup 11}Li could only be reproduced by an artificial shift of the 1p{sub 1/2} level close to the continuum limit, the halo is now reproduced in a self-consistent way without further modifications using the scattering of Cooper pairs to the 2s{sub 1/2} level in the continuum. Excellent agreement with recent experimental data is observed.

  5. Scraping beam halo in {mu} {sup +} {mu} {sup minus} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Drozhdin, A.; Mokhov, N.; Johnstone, C.; Wan, W.; Garren, A.

    1998-01-01

    Beam halo scraping schemes have been explored in the 50 x 50 GeV and 2 x 2 TeV {mu}{sup +}{mu}{sup -} colliders using both absorbers and electrostatic deflectors. Utility sections have been specially designed into the rings for scraping. Results of realistic STRUCT- MARS Monte-Carlo simulations show that for the low-energy machine a scheme with a 5 m long steel absorber suppresses losses in the interaction region by three orders of magnitude. The same scraping efficiency at 2 TeV is achieved only by complete extraction of beam halo from the machine. The effect of beam-induced power dissipation in the collider superconducting magnets and detector backgrounds is shown both for the first few turns after injection and for the rest of the cycle.

  6. Mass models for disk and halo components in spiral galaxies

    International Nuclear Information System (INIS)

    Athanassoula, E.; Bosma, A.

    1987-01-01

    The mass distribution in spiral galaxies is investigated by means of numerical simulations, summarizing the results reported by Athanassoula et al. (1986). Details of the modeling technique employed are given, including bulge-disk decomposition; computation of bulge and disk rotation curves (assuming constant mass/light ratios for each); and determination (for spherical symmetry) of the total halo mass out to the optical radius, the concentration indices, the halo-density power law, the core radius, the central density, and the velocity dispersion. Also discussed are the procedures for incorporating galactic gas and checking the spiral structure extent. It is found that structural constraints limit disk mass/light ratios to a range of 0.3 dex, and that the most likely models are maximum-disk models with m = 1 disturbances inhibited. 19 references

  7. Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinction coefficient observations

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2012-09-01

    Full Text Available Herein, the Halogen Occultation Experiment (HALOE aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 μm is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 μm is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 μm aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40 μm aerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 μm channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived

  8. DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Michael J.; Harris, Gretchen L. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Harris, William E., E-mail: mjhudson@uwaterloo.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2014-05-20

    We combine a new, comprehensive database for globular cluster populations in all types of galaxies with a new calibration of galaxy halo masses based entirely on weak lensing. Correlating these two sets of data, we find that the mass ratio η ≡ M {sub GCS}/M {sub h} (total mass in globular clusters, divided by halo mass) is essentially constant at (η) ∼ 4 × 10{sup –5}, strongly confirming earlier suggestions in the literature. Globular clusters are the only known stellar population that formed in essentially direct proportion to host galaxy halo mass. The intrinsic scatter in η appears to be at most 0.2 dex; we argue that some of this scatter is due to differing degrees of tidal stripping of the globular cluster systems between central and satellite galaxies. We suggest that this correlation can be understood if most globular clusters form at very early stages in galaxy evolution, largely avoiding the feedback processes that inhibited the bulk of field-star formation in their host galaxies. The actual mean value of η also suggests that about one-fourth of the initial gas mass present in protogalaxies collected into giant molecular clouds large enough to form massive, dense star clusters. Finally, our calibration of (η) indicates that the halo masses of the Milky Way and M31 are (1.2 ± 0.5) × 10{sup 12} M {sub ☉} and (3.9 ± 1.8) × 10{sup 12} M {sub ☉}, respectively.

  9. Caustic ring model of the Milky Way halo

    International Nuclear Information System (INIS)

    Duffy, L. D.; Sikivie, P.

    2008-01-01

    We present a proposal for the full phase-space distribution of the Milky Way halo. The model is axially and reflection symmetric and its time evolution is self-similar. It describes the halo as a set of discrete dark matter flows with stated densities and velocity vectors everywhere. We first discuss the general conditions under which the time evolution of a cold collisionless self-gravitating fluid is self-similar, and show that symmetry is not necessary for self-similarity. When spherical symmetry is imposed, the model is the same as described by Fillmore and Goldreich, and by Bertschinger, twenty-three years ago. The spherically symmetric model depends on one dimensionless parameter ε and two dimensionful parameters. We set ε=0.3, a value consistent with the slope of the power spectrum of density perturbations on galactic scales. The dimensionful parameters are determined by the galactic rotation velocity (220 km/s) at the position of the Sun and by the age of the Galaxy (13.7 Gyr). The properties of the outer caustics are derived in the spherically symmetric model. The structure of the inner halo depends on the angular momentum distribution of the dark matter particles. We assume that distribution to be axial and reflection symmetric, and dominated by net overall rotation. The inner caustics are rings whose radii are determined in terms of a single additional parameter j max . We summarize the observational evidence in support of the model. The evidence is consistent with j max =0.18 in Concordance cosmology, equivalent to j max,old =0.26 in Einstein-de Sitter cosmology. We give formulas to estimate the flow densities and velocity vectors anywhere in the Milky Way halo. The properties of the first 40 flows at the location of the Earth are listed.

  10. Can $\\beta$-decay probe excited state halos?

    CERN Multimedia

    2002-01-01

    In the first experiment at the newly constructed ISOLDE Facility the first-forbidden $\\beta$-decay of $^{17}$Ne into the first excited state of $^{17}$F has been measured. It is a factor two faster than the corresponding mirror decay and thus gives one of the largest recorded asymmetries for $\\beta$-decays feeding bound final states. Shell-model calculations can only reproduce the asymmetry if the halo structure of the $^{17}$F state is taken into account.

  11. Hot Weather Tips

    Science.gov (United States)

    ... the person plenty of water and fruit or vegetable juice even if they say they’re not thirsty. No alcohol, coffee or tea. Seek medical help if you suspect dehydration. Light meals: Avoid hot, heavy meals and don’ ...

  12. China's 'Hot Money' Problems

    National Research Council Canada - National Science Library

    Martin, Michael F; Morrison, Wayne M

    2008-01-01

    .... The recent large inflow of financial capital into China, commonly referred to as "hot money," has led some economists to warn that such flows may have a destabilizing effect on China's economy...

  13. Halo Formation During Solidification of Refractory Metal Aluminide Ternary Systems

    Science.gov (United States)

    D'Souza, N.; Feitosa, L. M.; West, G. D.; Dong, H. B.

    2018-02-01

    The evolution of eutectic morphologies following primary solidification has been studied in the refractory metal aluminide (Ta-Al-Fe, Nb-Al-Co, and Nb-Al-Fe) ternary systems. The undercooling accompanying solid growth, as related to the extended solute solubility in the primary and secondary phases can be used to account for the evolution of phase morphologies during ternary eutectic solidification. For small undercooling, the conditions of interfacial equilibrium remain valid, while in the case of significant undercooling when nucleation constraints occur, there is a departure from equilibrium leading to unexpected phases. In Ta-Al-Fe, an extended solubility of Fe in σ was observed, which was consistent with the formation of a halo of μ phase on primary σ. In Nb-Al-Co, a halo of C14 is formed on primary CoAl, but very limited vice versa. However, in the absence of a solidus projection it was not possible to definitively determine the extended solute solubility in the primary phase. In Nb-Al-Fe when nucleation constraints arise, the inability to initiate coupled growth of NbAl3 + C14 leads to the occurrence of a two-phase halo of C14 + Nb2Al, indicating a large undercooling and departure from equilibrium.

  14. Exhaust, ELM and halo physics using the MAST tokamak

    International Nuclear Information System (INIS)

    Counsell, G. F.

    2002-01-01

    Scalings for the SOL width on MAST extend the parameter range of conventional devices but confirm a negative dependence on power flow across the separatrix. In L-mode and at ELM peaks, >95% of power to the targets arrives to the outboard side. Peak heat flux densities rise by a factor 2∼6 during ELMs and are accompanied by a shift in the strike-point location but by little change in the target heat flux width. Energy loss per ELM as a percentage of pedestal energy and pedestal collisionality appear uncorrelated, possibly because ELMs on MAST are dominated by convective transport. Modelling shows that parallel gradients in the magnitude of the magnetic field in MAST may drive strong upstream flows. Broadening of the target heat flux width by divertor biasing is being explored as a means of reducing target power loading in next-step devices and has facilitated halo current measurements using series resistors. Halo currents are always less than 30% of plasma current and the product of toroidal peaking factor and halo current fraction is ∼50% of the ITER design limit. Varying the series resistance demonstrates that the VDE behaves more as a voltage source than a current source. (author)

  15. Precision measurement of the local bias of dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Lazeyras, Titouan; Wagner, Christian; Schmidt, Fabian [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Garching, 85748 Germany (Germany); Baldauf, Tobias, E-mail: titouan@mpa-garching.mpg.de, E-mail: cwagner@mpa-garching.mpg.de, E-mail: t.baldauf@tbaweb.de, E-mail: fabians@mpa-garching.mpg.de [Institute for Advanced Study, Einstein Drive, Princeton, NJ, 08540 United States (United States)

    2016-02-01

    We present accurate measurements of the linear, quadratic, and cubic local bias of dark matter halos, using curved 'separate universe' N-body simulations which effectively incorporate an infinite-wavelength overdensity. This can be seen as an exact implementation of the peak-background split argument. We compare the results with the linear and quadratic bias measured from the halo-matter power spectrum and bispectrum, and find good agreement. On the other hand, the standard peak-background split applied to the Sheth and Tormen (1999) and Tinker et al. (2008) halo mass functions matches the measured linear bias parameter only at the level of 10%. The prediction from the excursion set-peaks approach performs much better, which can be attributed to the stochastic moving barrier employed in the excursion set-peaks prediction. We also provide convenient fitting formulas for the nonlinear bias parameters b{sub 2}(b{sub 1}) and b{sub 3}(b{sub 1}), which work well over a range of redshifts.

  16. Exhaust, ELM and Halo physics using the MAST tokamak

    International Nuclear Information System (INIS)

    Counsell, G.F.; Ahn, J-W.; Kirk, A.; Helander, P.; Martin, R.; Tabasso, A.; Wilson, H.R.; Cohen, R.H.; Ryutov, D.D.; Yang, Y.

    2003-01-01

    The scrape-off layer (Sol) and divertor target plasma of a large spherical tokamak (ST) is characterised in detail for the first time. Scalings for the SOL heat flux width in MAST are developed and compared to conventional tokamaks. Modelling reveals the significance of the mirror force to the ST SOL. Core energy losses, including during ELMs, in MAST arrive predominantly (>80%) to the outboard targets in all geometries. Convective transport dominates energy losses during ELMs and MHD analysis suggests ELMs in MAST are Type III even at auxiliary heating powers well above the L-H threshold. ELMs are associated with a poloidally and/or toroidally localised radial efflux at ∼1 km/s well into the far SOL but not with any broadening of the target heat flux width. Toroidally asymmetric divertor biasing experiments have been conducted in an attempt to broaden the target heat flux width, with promising results. During vertical displacement events, the maximum product of the toroidal peaking factor and halo current fraction remains below 0.3, around half the ITER design limit. Evidence is presented that the resistance of the halo current path may have an impact on the distribution of halo current. (author)

  17. KINEMATICS OF OUTER HALO GLOBULAR CLUSTERS IN M31

    International Nuclear Information System (INIS)

    Veljanoski, J.; Ferguson, A. M. N.; Bernard, E. J.; Peñarrubia, J.; Mackey, A. D.; Huxor, A. P.; Irwin, M. J.; Chapman, S. C.; Côté, P.; Tanvir, N. R.; McConnachie, A.; Ibata, R. A.; Martin, N. F.; Fardal, M.; Lewis, G. F.

    2013-01-01

    We present the first kinematic analysis of the far outer halo globular cluster (GC) population in the Local Group galaxy M31. Our sample contains 53 objects with projected radii of ∼20-130 kpc, 44 of which have no previous spectroscopic information. GCs with projected radii ∼> 30 kpc are found to exhibit net rotation around the minor axis of M31, in the same sense as the inner GCs, albeit with a smaller amplitude of 79 ± 19 km s –1 . The rotation-corrected velocity dispersion of the full halo GC sample is 106 ± 12 km s –1 , which we observe to decrease with increasing projected radius. We find compelling evidence for kinematic coherence among GCs that project on top of halo substructure, including a clear signature of infall for GCs lying along the northwest stream. Using the tracer mass estimator, we estimate the dynamical mass of M31 within 200 kpc to be M M31 = (1.2-1.5) ± 0.2 × 10 12 M ☉ . This value is highly dependent on the chosen model and assumptions within.

  18. Possible Halo Depictions in the Prehistoric Rock Art of Utah

    Science.gov (United States)

    Sassen, Kenneth

    1994-01-01

    In western American rock art the concentric circle symbol, which is widely regarded as a sun symbol, is ubiquitous. We provide evidence from Archaic and Fremont Indian rock art sites in northwestern Utah that at least one depiction was motivated by an observation of a complex halo display. Cirrus cloud optical displays are linked in both folklore and meteorology to precipitation-producing weather situations, which, in combination with an abundance of weather-related rock art symbolism, indicate that such images reflected the ceremonial concerns of the indigenous cultures for ensuring adequate precipitation. As has been shown to be the case with rock art rainbows, conventionalization of the halo image may have resulted in simple patterns that lacked recognizable details of atmospheric optical phenomena. However, in one case in which an Archaic-style petroglyph (probably 1500 yr or more old) satisfactorily reproduced a complicated halo display that contained parhelia and tangent arcs, sufficient geometric information is rendered to indicate a solar elevation angle of approx. 40 deg. at the time of observation.

  19. On the core-halo structure of NGC 604

    CERN Document Server

    Melnick, Yu M

    1980-01-01

    A detailed study is presented of the core-halo structure of the largest H II region in M 33, NGC 604, using newly obtained multi- aperture H/sub beta / photometry and Fabry-Perot interferometry, in conjunction with published radio continuum observations. Based on a comparison between the radio continuum and H/sub beta / luminosities of NGC 604, a dust density of rho /sub d/=6 10/sup -25/ g cm/sup -3/ is derived for the nebular core, in good agreement with published far- infrared results. By contrast, the halo of NGC 604 appears to contain virtually no dust. It is also shown that the turbulent component of the H/sub alpha /-line profile width of the halo of NGC 604 is significantly lower than that of the nebular core. This result is found to be inconsistent with models in which the highly supersonic velocities implied by the observed emission line profile widths in both nebular components are interpreted in terms of expansion motions. (14 refs).

  20. Integrated Marketing Communications (IMC di PT Halo Rumah Bernyanyi

    Directory of Open Access Journals (Sweden)

    Rebekka Rismayanti

    2017-01-01

    Full Text Available Abstract: This research aims to describe the effectiveness of Integrated Marketing Communication (IMC in PT Halo Rumah Bernyanyi which, from the perspective of marketing strategy, could be studied by analyzing the segmentation, targeting, and positioning. Using case-study method with in-depth interview, the result shows that the implementation of IMC at PT Halo Rumah Bernyayi is arranged in one single strategy and tend to neglect the complexities of running multi-brand family karaoke-house. This considers as ineffective because it leads to “cannibalization” among brands, especially when costumer’s targetting is overlooked before drafting the IMC plan. Keywords: Business, Integrated Marketing Communication, Marketing   Abstrak: Penelitian ini bertujuan untuk mendeskripsikan efektivitas penerapan Integrated Marketing Communications (IMC yang dilihat dari aspek segmentation, targeting dan positioning. Metode penelitian adalah studi kasus dengan menggunakan wawancara mendalam. Hasil penelitian menunjukkan bahwa penerapan IMC di PT Halo Rumah Bernyanyi dibuat dalam satu strategi dan tidak memerhatikan kompleksitas dari aspek segmentation, targeting dan positioning sebagai pedoman dasar. Langkah tersebut dinilai tidak efektif karena dapat mengakibatkan “kanibalisasi” antar brand, terlebih jika perhatian terhadap target konsumen diabaikan sebelum menyusun perencanaan IMC. Kata Kunci: Bisnis, Integrated Marketing Communications, Pemasaran

  1. Decay Properties of the Halo Nucleus $^{11}$Li

    CERN Multimedia

    2002-01-01

    During the past years a considerable experimental effort has been devoted to the production and study of nuclei close to the neutron and proton drip-lines. The most spectacular phenomenon encountered is the occurrence of neutron halos in the loosely bound neutron rich nuclei. \\\\ \\\\ Another interesting feature, observed at ISOLDE, which most likely is connected to the halo structure, is the very strong (super-allowed) Gamow-Teller $\\beta$- transitions to highly excited states which are systematically observed for the lightest neutron rich drip-line nuclei. These transitions might be viewed as arising from the quasi-free $\\beta$ -decay of the halo neutrons. It is proposed to make a detailed study of the $\\beta$- strength function for $^{11}$Li, a nuclide having a half-life of 8.2 ms and a Q $\\beta$-value of 20.73~MeV. \\\\ \\\\ So far only a lower limit of the Gamow-Teller transition rate to highly excited states ($\\approx$~18.5~MeV) in the daughter nucleus has been obtained from measurements of $\\beta$-delayed tri...

  2. CARBON STARS IN THE SATELLITES AND HALO OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Hamren, Katherine; Guhathakurta, Puragra; Rockosi, Constance M.; Smith, Graeme H. [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Beaton, Rachael L. [The Observatories of the Carnegie Institutions for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Gilbert, Karoline M.; Tollerud, Erik J. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Howley, Kirsten, E-mail: khamren@ucolick.org [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States)

    2016-09-01

    We spectroscopically identify a sample of carbon stars in the satellites and halo of M31 using moderate-resolution optical spectroscopy from the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. We present the photometric properties of our sample of 41 stars, including their brightness with respect to the tip of the red giant branch (TRGB) and their distributions in various color–color spaces. This analysis reveals a bluer population of carbon stars fainter than the TRGB and a redder population of carbon stars brighter than the TRGB. We then apply principal component analysis to determine the sample’s eigenspectra and eigencoefficients. Correlating the eigencoefficients with various observable properties reveals the spectral features that trace effective temperature and metallicity. Putting the spectroscopic and photometric information together, we find the carbon stars in the satellites and halo of M31 to be minimally impacted by dust and internal dynamics. We also find that while there is evidence to suggest that the sub-TRGB stars are extrinsic in origin, it is also possible that they are are particularly faint members of the asymptotic giant branch.

  3. New halo formation mechanism at the KEK compact energy recovery linac

    Science.gov (United States)

    Tanaka, Olga; Nakamura, Norio; Shimada, Miho; Miyajima, Tsukasa; Ueda, Akira; Obina, Takashi; Takai, Ryota

    2018-02-01

    The beam halo mitigation is a very important challenge for reliable and safe operation of a high-energy machine. A systematic beam halo study was conducted at the KEK compact energy recovery linac (cERL) since non-negligible beam loss was observed in the recirculation loop during a common operation. We found that the beam loss can be avoided by making use of the collimation system. Beam halo measurements have demonstrated the presence of vertical beam halos at multiple locations in the beam line (except the region near the electron gun). Based on these observations, we made a conjecture that the transverse beam halo is attributed to the longitudinal bunch tail arising at the photocathode. The transfer of particles from the longitudinal space to a transverse halo may have been observed and studied in other machines, considering nonlinear effects as their causes. However, our study demonstrates a new unique halo formation mechanism, in which a transverse beam halo can be generated by a longitudinal bunch tail due to transverse rf kicks from the accelerating (monopole) fields of the radio-frequency cavities. This halo formation occurs when nonrelativistic particles enter the cavities with a transverse offset, even if neither nonlinear optics nor nonlinear beam effects are present. A careful realignment of the injector system will mitigate the present halo. Another possible cure is to reduce the bunch tails by changing the photocathode material from the present GaAs to a multi-alkali that is known to have a shorter longitudinal tail.

  4. Hierarchical formation of dark matter halos and the free streaming scale

    International Nuclear Information System (INIS)

    Ishiyama, Tomoaki

    2014-01-01

    The smallest dark matter halos are formed first in the early universe. According to recent studies, the central density cusp is much steeper in these halos than in larger halos and scales as ρ∝r –(1.5-1.3) . We present the results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. We confirmed early studies that the inner density cusps are steeper in halos at the free streaming scale. The cusp slope gradually becomes shallower as the halo mass increases. The slope of halos 50 times more massive than the smallest halo is approximately –1.3. No strong correlation exists between the inner slope and the collapse epoch. The cusp slope of halos above the free streaming scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60-70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Microhalos could still exist in the present universe with the same steep density profiles.

  5. Strong orientation dependence of surface mass density profiles of dark haloes at large scales

    Science.gov (United States)

    Osato, Ken; Nishimichi, Takahiro; Oguri, Masamune; Takada, Masahiro; Okumura, Teppei

    2018-06-01

    We study the dependence of surface mass density profiles, which can be directly measured by weak gravitational lensing, on the orientation of haloes with respect to the line-of-sight direction, using a suite of N-body simulations. We find that, when major axes of haloes are aligned with the line-of-sight direction, surface mass density profiles have higher amplitudes than those averaged over all halo orientations, over all scales from 0.1 to 100 Mpc h-1 we studied. While the orientation dependence at small scales is ascribed to the halo triaxiality, our results indicate even stronger orientation dependence in the so-called two-halo regime, up to 100 Mpc h-1. The orientation dependence for the two-halo term is well approximated by a multiplicative shift of the amplitude and therefore a shift in the halo bias parameter value. The halo bias from the two-halo term can be overestimated or underestimated by up to {˜ } 30 per cent depending on the viewing angle, which translates into the bias in estimated halo masses by up to a factor of 2 from halo bias measurements. The orientation dependence at large scales originates from the anisotropic halo-matter correlation function, which has an elliptical shape with the axis ratio of ˜0.55 up to 100 Mpc h-1. We discuss potential impacts of halo orientation bias on other observables such as optically selected cluster samples and a clustering analysis of large-scale structure tracers such as quasars.

  6. CLUMPY STREAMS FROM CLUMPY HALOS: DETECTING MISSING SATELLITES WITH COLD STELLAR STRUCTURES

    International Nuclear Information System (INIS)

    Yoon, Joo Heon; Johnston, Kathryn V.; Hogg, David W.

    2011-01-01

    Dynamically cold stellar streams are ideal probes of the gravitational field of the Milky Way. This paper re-examines the question of how such streams might be used to test for the presence of m issing satellites - the many thousands of dark-matter subhalos with masses 10 5 -10 7 M sun which are seen to orbit within Galactic-scale dark-matter halos in simulations of structure formation in ΛCDM cosmologies. Analytical estimates of the frequency and energy scales of stream encounters indicate that these missing satellites should have a negligible effect on hot debris structures, such as the tails from the Sagittarius dwarf galaxy. However, long cold streams, such as the structure known as GD1 or those from the globular cluster Palomar 5 (Pal 5), are expected to suffer many tens of direct impacts from missing satellites during their lifetimes. Numerical experiments confirm that these impacts create gaps in the debris' orbital energy distribution, which will evolve into degree- and sub-degree-scale fluctuations in surface density over the age of the debris. Maps of Pal 5's own stream contain surface density fluctuations on these scales. The presence and frequency of these inhomogeneities suggests the existence of a population of missing satellites in numbers predicted in the standard ΛCDM cosmologies.

  7. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: ppatel54@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2017-02-20

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H i (H α and H β ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10{sup −10}( R {sub *}/ R ){sup 3} g cm{sup −3} in the equatorial plane of a 25 R {sub *} (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H α -emitting portion of the inner gaseous disk of ∼10{sup −9} M {sub *}. We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.

  8. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    International Nuclear Information System (INIS)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D.

    2017-01-01

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H i (H α and H β ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10 −10 ( R * / R ) 3 g cm −3 in the equatorial plane of a 25 R * (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H α -emitting portion of the inner gaseous disk of ∼10 −9 M * . We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.

  9. Frozen Hydrocarbon Particles of Cometary Halos as Carriers of ...

    Indian Academy of Sciences (India)

    coma temperature and pressure, bombardment with charged particles, or collisions with gaseous neutrals of cometary atmosphere. The width of each FHP luminescence spectral line seems to depend on the heliocentric distance, since the cometary sub- stance temperature changes with the distance from the sun. Lines of ...

  10. Process for humidifying a gaseous fuel stream

    International Nuclear Information System (INIS)

    Sederquist, R. A.

    1985-01-01

    A fuel gas stream for a fuel cell is humidified by a recirculating hot liquid water stream using the heat of condensation from the humidified stream as the heat to vaporize the liquid water. Humidification is accomplished by directly contacting the liquid water with the dry gas stream in a saturator to evaporate a small portion of water. The recirculating liquid water is reheated by direct contact with the humidified gas stream in a condenser, wherein water is condensed into the liquid stream. Between the steps of humidifying and condensing water from the gas stream it passes through the fuel cell and additional water, in the form of steam, is added thereto

  11. Hot-electron plasma formation and confinement in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Ress, D.B.

    1988-01-01

    Electron-cyclotron range-of-frequency heating (ECRH) at 28 GHz is used to create a population of mirror-confined hot electrons in the Tandem Mirror Experiment-Upgrade (TMX-U). Generation of a large fraction of such electrons within each end-cell of TMX-U is essential to the formation of the desired electrostatic potential profile of the thermal-barrier tandem mirror. The formation and confinement of the ECRH-generated hot-electron plasma was investigated with a variety of diagnostic instruments, including a novel instrumented limiter probe. The author characterized the spatial structure of the hot-electron plasma. Details of the heating process cause the plasma to separate into two regions: a halo, consisting entirely of energetic electrons, and a core, which is dominated by cooler electrons. The plasma structure forms rapidly under the action of second-harmonic ECRH. Fundamental ECRH, which is typically applied simultaneously, is only weakly absorbed and generally does not create energetic electrons. The ECRH-generated plasma displays several loss mechanisms. Hot electrons in the halo region, with T e ∼ 30 keV, are formed by localized ECRH near the plasma boundary, and are lost through a radial process involving open magnetic-curvature-drift surfaces

  12. Gaseous isotope correlation technique for safeguards at reprocessing facilities

    International Nuclear Information System (INIS)

    Ohkubo, Michiaki.

    1988-03-01

    The isotope correlation technique based on gaseous stable fission products can be used as a means of verifying the input measurement to fuel reprocessing plants. This paper reviews the theoretical background of the gaseous fission product isotope correlation technique. The correlations considered are those between burnup and various isotopic ratios of Kr and Xe nuclides. The feasibility of gaseous ICT application to Pu input accountancy of reprocessing facilities is also discussed. The technique offers the possibility of in situ measurement verification by the inspector. (author). 16 refs, 7 figs

  13. Growth of graphene films from non-gaseous carbon sources

    Science.gov (United States)

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  14. Coevolution of Binaries and Circumbinary Gaseous Disks

    Science.gov (United States)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  15. Method for separating gaseous mixtures of matter

    International Nuclear Information System (INIS)

    Schuster, E.; Kersting, A.

    1979-01-01

    Molecules to be separated from a mixture of matter of a chemical component are excited in a manner known per se by narrow-band light sources, and a chemical reaction partner for reacting with these molecules is admixed while supplied with energy by electromagnetic radiation or heating, and as additionally required for making chemical reactions possible. A method is described for separating gaseous mixtures of matter by exciting the molecules to be separated with laser radiation and causing the excited species to react chemically with a reaction partner. It may be necessary to supply additional energy to the reaction partner to make the chemical reaction possible. The method is applicable to the separation of hydrogen isotopes by the bromination of normal methanol in a mixture normal methanol and deuterated methanol; of uranium isotope by the reactions of UF 6 with SF 4 , SiCl 4 , HCl, or SO 2 ; and of boron isotopes by the reaction of BH 3 with NH 3

  16. Release of gaseous tritium during reprocessing

    International Nuclear Information System (INIS)

    Bruecher, H.; Hartmann, K.

    1983-01-01

    About 50% of the tritium put through an LWR reprocessing plant is obtained as tritium-bearing water, HTO. Gaseous tritium, HT has a radiotoxicity which is by 4 orders of magnitude lower than that of HTO. A possibility for the removal of HTO could therefore be its conversion into the gas phase with subsequent emission of the HT into the atmosphere. However, model computations which are, in part, supported by experimental data reveal that the radiation exposure caused by HT release is only by about one order of magnitude below that caused by HTO. This is being attributed to the relatively quick reoxidation of HT by soil bacteria. Two alternatives for producing HT from HTO (electrolysis; voloxidation with subsequent electrolysis) are presented and compared with the reference process of deep-well injection of HTO. The authors come to the conclusion that tritium removal by HT release into the atmosphere cannot be recommended at present under either radiological or economic aspects. (orig.) [de

  17. Gaseous Nitrogen Orifice Mass Flow Calculator

    Science.gov (United States)

    Ritrivi, Charles

    2013-01-01

    The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.

  18. The behavior of gaseous iodine in sand

    International Nuclear Information System (INIS)

    Takahashi, Kanji

    1974-01-01

    Radioactive iodine gas was passed through 10 different sands collected at rivers and hills. The relation between the amount of the loaded gas and the amount of adsorbed gas was determined at room temperature, 50 -- 60 0 C, and 90 -- 100 0 C under humidity of 2 sand. This amount was about 1 -- 3 times as much as that of monomolecular membrane adsorption, 0.2 -- 0.3 μg/cm 2 . The decrease of adsorption amount that accompanies the increase of humidity is attributable to the decrease of effective surface area of sand due to the presence of water. The transport of iodine in sand was studied by passing gaseous iodine through a glass tubing packed with sand. The distribution in the flow direction of iodine indicated that the ease of desorption depends upon the situation of adsorption. Easily desorbed case was named Henry type adsorption. Hardly desorbed case was named absorption type. Discussion is made on experimental results. (Fukutomi, T.)

  19. Automated sampling and control of gaseous simulations

    KAUST Repository

    Huang, Ruoguan

    2013-05-04

    In this work, we describe a method that automates the sampling and control of gaseous fluid simulations. Several recent approaches have provided techniques for artists to generate high-resolution simulations based on a low-resolution simulation. However, often in applications the overall flow in the low-resolution simulation that an animator observes and intends to preserve is composed of even lower frequencies than the low resolution itself. In such cases, attempting to match the low-resolution simulation precisely is unnecessarily restrictive. We propose a new sampling technique to efficiently capture the overall flow of a fluid simulation, at the scale of user\\'s choice, in such a way that the sampled information is sufficient to represent what is virtually perceived and no more. Thus, by applying control based on the sampled data, we ensure that in the resulting high-resolution simulation, the overall flow is matched to the low-resolution simulation and the fine details on the high resolution are preserved. The samples we obtain have both spatial and temporal continuity that allows smooth keyframe matching and direct manipulation of visible elements such as smoke density through temporal blending of samples. We demonstrate that a user can easily configure a simulation with our system to achieve desired results. © 2013 Springer-Verlag Berlin Heidelberg.

  20. GEM - A novel gaseous particle detector

    CERN Document Server

    Meinschad, T

    2005-01-01

    The work carried out within the framework of this Ph.D. deals with the construction of gaseous prototype detectors using Gas Electron Multiplier electrodes for the amplification of charges released by ionizing particles. The Gas Electron Multiplier (GEM) is a thin metal-clad polymer foil, etched with a high density of narrow holes, typically 50-100mm-2. On the application of a potential difference between the conductive top and bottom sides each hole acts as independent proportional counter. This new fast device permits to reach large amplification factors at high rates with a strong photon and ion-mediated feedback suppression due to the avalanche confinement in the GEM-holes. Here, in particular studies have been performed, which should prove, that the GEM-technology is applicable for an efficient measurement of single Cherenkov photons. These UV-photons can be detected in different ways. An elegant solution to develop large area RICH-detectors is to evaporate a pad-segmented readout-cathode of a multi-wire...

  1. Heat-pipe effect on the transport of gaseous radionuclides released from a nuclear waste container

    International Nuclear Information System (INIS)

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1990-11-01

    When an unsaturated porous medium is subjected to a temperature gradient and the temperature is sufficiently high, vadose water is heated and vaporizes. Vapor flows under its pressure gradient towards colder regions where it condenses. Vaporization and condensation produce a liquid saturation gradient, creating a capillary pressure gradient inside the porous medium. Condensate flows towards the hot end under the influence of a capillary pressure gradient. This is a heat pipe in an unsaturated porous medium. We study analytically the transport of gaseous species released from a spent-fuel waste package, as affected by a time-dependent heat pipe in an unsaturated rock. For parameter values typical of a potential repository in partially saturated fractured tuff at Yucca Mountain, we found that a heat pipe develops shortly after waste is buried, and the heat-pipe's spatial extent is time-dependent. Water vapor movements produced by the heat pipe can significantly affect the migration of gaseous radionuclides. 12 refs., 6 figs., 1 tab

  2. Wear characterization of a tool steel surface modified by melting and gaseous alloying

    International Nuclear Information System (INIS)

    Rizvi, S.A.

    1999-01-01

    Hot forging dies are subjected to laborious service conditions and so there is a need to explore means of improving die life to increase productivity and quality of forgings. Surface modification in order to produce wear resistant surface is an attractive method as it precludes the need to use expensive and highly alloyed steels. In this study, a novel, inexpensive surface modification technique is used to improve the tri biological properties of an H13 tool steel. Surface melting was achieved using a tungsten heat source and gaseous alloying produced under a shield of argon, carbon dioxide, carbon dioxide-argon mixture and nitrogen gases. The change in wear behaviour was compared through micro-hardness indentation measurements and using a dry sliding pin-on-plate wear testing machine. This study shows superior wear behaviour of the modified surfaces when compared to the untreated surfaces. The increase in wear resistance is attributed to the formation of carbides when surfaces are melted under a carbon dioxide shield. However, in the case of nitrogen and argon gaseous alloying, an increase in wear resistance can be attributed to an increase in surface hardness which in turn effects surface deformation behaviour. (author)

  3. Mass spectrometric study of thermodynamic properties of gaseous lead tellurates. Estimation of formation enthalpies of gaseous lead polonates

    Energy Technology Data Exchange (ETDEWEB)

    Shugurov, S.M., E-mail: s.shugurov@spbu.ru; Panin, A.I.; Lopatin, S.I.; Emelyanova, K.A.

    2016-10-15

    Gaseous reactions involving lead oxides, tellurium oxide and lead tellurates were studied by the Knudsen effusion mass spectrometry. Equilibrium constants and reaction enthalpies were evaluated. Structures, molecular parameters and thermodynamic functions of gaseous PbTeO{sub 3} and Pb{sub 2}TeO{sub 4} were calculated by quantum chemistry methods. The formation enthalpies Δ{sub f}H{sup 0} (298.15) = −294 ± 13 for gaseous PbTeO{sub 3} and Δ{sub f}H{sup 0} (298.15) = −499 ± 12 for gaseous Pb{sub 2}TeO{sub 4} were obtained. On the base of these results the formation enthalpies of gaseous PbPoO{sub 3} and Pb{sub 2}PoO{sub 4} were estimated as −249 ± 34 and −478 ± 38, respectively. - Highlights: • Gaseous lead tellurates PbTeO{sub 3}, Pb{sub 2}TeO{sub 4} were discovered. • Their thermodynamic properties were studied using both high temperature mass spectrometry and quantum chemistry computations. • The obtained data allows to predict the formation enthalpies of gaseous lead polonates PbPoO{sub 3}, Pb{sub 2}PoO{sub 4}.

  4. A study of 11 Be an 11 Li halo nuclei by core breakup reactions

    International Nuclear Information System (INIS)

    Grevy, S.

    1997-01-01

    The study of light nuclei with large neutron excess are very useful for the understanding of nuclear matter far from stability. The nuclear halo phenomenon has been observed for the first time for Z 11 Be and 11 Li halo nuclei. In this channel, the neutron is supposed not to participate to the reaction and then, when detected, to carry out the same properties as in the halo nucleus. The deduced widths of the neutron momentum distributions are different from the one extracted from the core distributions and with the more recent theoretical models. From these studies, it is also stressed that the properties of the core are essential to understand the halo phenomenon. In particular, the correlation between the core vibrations and the halo neutron are able to explain the emergence of the halo in 11 Be. (author)

  5. Longitudinal halo in beam bunches with self-consistent 6-D distributions

    International Nuclear Information System (INIS)

    Gluckstern, R. L.; Fedotov, A. V.; Kurennoy, S. S.; Ryne, R. D.

    1998-01-01

    We have explored the formation of longitudinal and transverse halos in 3-D axisymmetric beam bunches by starting with a self-consistent 6-D phase space distribution. Stationary distributions allow us to study the halo development mechanism without being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the rate, intensity and spatial extent of the halos which form, as a function of the beam charge and the mismatches. We find that the longitudinal halo forms first because the longitudinal tune depression is more severe than the transverse one for elongated bunches and conclude that it plays a major role in halo formation

  6. Injection halos of hydrocarbons above oil-gas fields with super-high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, V.V.

    1979-09-01

    We studied the origin of injection halos of hydrocarbons above oil-gas fields with anomalously high formation pressures (AHFP). Using fields in Azerbaydzhan and Chechen-Ingushetiya as an example, we demonstrate the effect of certain factors (in particular, faults and zones of increased macro- and micro-jointing) on the morpholoy of the halos. The intensity of micro-jointing (jointing permeability, three-dimensional density of micro-jointing) is directly connected with vertical dimensions of the halos. We measured halos based on transverse profiles across the Khayan-Kort field and studied the distribution of bitumen saturation within the injection halo. Discovery of injection halos during drilling has enabled us to improve the technology of wiring deep-seated exploratory wells for oil and gas in regions with development of AHFP.

  7. Group support system and explanatory feedback: An experimental study of mitigating halo effect

    Directory of Open Access Journals (Sweden)

    Intiyas Utami

    2015-12-01

    Full Text Available Comprehensive assessment potentially leads to halo effect that will affect accuracy of auditors decision-making process. Biased initial audit decision will potentially influence final audit decision. It is there-fore necessary to mitigate halo effect that is the consequence of auditors good impression on clients initial condition. This re-search aims to empirically show that halo effect can be mitigated by explanatory feedback and Group Support System (GSS. The researchers experimentally mani-pulate explanatory feedback and GSS using online web-site. The subjects are stu-dents who have already taken auditing courses. The results show that: 1 explanato-ry feedback can mitigate halo effect so that audit decision will be more accurate 2 GSS can also mitigate halo effect 3 explanatory feedback and GSS are the best me-thods to mitigate halo effect.

  8. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  9. ZOMG - I. How the cosmic web inhibits halo growth and generates assembly bias

    Science.gov (United States)

    Borzyszkowski, Mikolaj; Porciani, Cristiano; Romano-Díaz, Emilio; Garaldi, Enrico

    2017-07-01

    The clustering of dark matter haloes with fixed mass depends on their formation history, an effect known as assembly bias. We use zoom N-body simulations to investigate the origin of this phenomenon. For each halo at redshift z = 0, we determine the time in which the physical volume containing its final mass becomes stable. We consider five examples for which this happens at z ˜ 1.5 and two that do not stabilize by z = 0. The zoom simulations show that early-collapsing haloes do not grow in mass at z = 0 while late-forming ones show a net inflow. The reason is that 'accreting' haloes are located at the nodes of a network of thin filaments feeding them. Conversely, each 'stalled' halo lies within a prominent filament that is thicker than the halo size. Infalling material from the surroundings becomes part of the filament while matter within it recedes from the halo. We conclude that assembly bias originates from quenching halo growth due to tidal forces following the formation of non-linear structures in the cosmic web, as previously conjectured in the literature. Also the internal dynamics of the haloes change: the velocity anisotropy profile is biased towards radial (tangential) orbits in accreting (stalled) haloes. Our findings reveal the cause of the yet unexplained dependence of halo clustering on the anisotropy. Finally, we extend the excursion-set theory to account for these effects. A simple criterion based on the ellipticity of the linear tidal field combined with the spherical-collapse model provides excellent predictions for both classes of haloes.

  10. The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos

    Science.gov (United States)

    Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder

    2018-01-01

    We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.

  11. Exploring the liminality: properties of haloes and subhaloes in borderline f(R) gravity

    Science.gov (United States)

    Shi, Difu; Li, Baojiu; Han, Jiaxin; Gao, Liang; Hellwing, Wojciech A.

    2015-09-01

    We investigate the properties of dark matter haloes and subhaloes in an f(R) gravity model with |fR0| = 10-6, using a very-high-resolution N-body simulation. The model is a borderline between being cosmologically interesting and yet still consistent with current data. We find that the halo mass function in this model has a maximum 20 per cent enhancement compared with the Λ-cold-dark-matter (ΛCDM) predictions between z = 1 and 0. Because of the chameleon mechanism which screens the deviation from standard gravity in dense environments, haloes more massive than 1013 h-1 M⊙ in this f(R) model have very similar properties to haloes of similar mass in ΛCDM, while less massive haloes, such as that of the Milky Way, can have steeper inner density profiles and higher velocity dispersions due to their weaker screening. The halo concentration is remarkably enhanced for low-mass haloes in this model due to a deepening of the total gravitational potential. Contrary to the naive expectation, the halo formation time zf is later for low-mass haloes in this model, a consequence of these haloes growing faster than their counterparts in ΛCDM at late times and the definition of zf. Subhaloes, especially those less massive than 1011 h-1 M⊙, are substantially more abundant in this f(R) model for host haloes less massive than 1013 h-1 M⊙. We discuss the implications of these results for the Milky Way satellite abundance problem. Although the overall halo and subhalo properties in this borderline f(R) model are close to their ΛCDM predictions, our results suggest that studies of the Local Group and astrophysical systems, aided by high-resolution simulations, can be valuable for further tests of it.

  12. HotRegion: a database of predicted hot spot clusters.

    Science.gov (United States)

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  13. Container for gaseous samples for irradiation at accelerators

    International Nuclear Information System (INIS)

    Kupsch, H.; Riemenschneider, J.; Leonhardt, J.

    1985-01-01

    The invention concerns a container for gaseous samples for the irradiation at accelerators especially to generate short-lived radioisotopes. The container is also suitable for storage and transport of the target gas and can be multiply reused

  14. Sampling and identification of gaseous and particle bounded air pollutants

    International Nuclear Information System (INIS)

    Kettrup, A.

    1993-01-01

    Air pollutants are gaseous, components of aerosols or particle bounded. Sampling, sample preparation, identification and quantification of compounds depend from kind and chemical composition of the air pollutants. Quality assurance of analytical data must be guaranted. (orig.) [de

  15. Device for taking gaseous samples from irradiated fuel elements

    International Nuclear Information System (INIS)

    Lengacker, B.

    1983-01-01

    The described device allows to take gaseous samples from irradiated fuel elements. It is connected with a gas analyzer and a pressure gage, so that in opening the fuel can the internal pressure can be determined

  16. Absorbing method of iodine in radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Fukutome, Yutaka; Mifuji, Hiroshi; Ito, Sakae.

    1983-01-01

    Purpose: To maintain an iodine adsorbing efficiency at a high level by keeping the adsorbing atmosphere to more than a predetermined temperature to thereby suppress the degradation and the activity reduction in zeolite. Method: Adsorption and desorption-regeneration of gaseous wastes are performed in parallel by heating gaseous wastes in a heater and switchingly supplying the same to adsorption columns by way of valve operation. Processed gases are cooled in a cooler and desorbed gases are supplied to an after-treatment device to eliminate or recover iodine 131. In the adsorption column, iodine in gaseous wastes is adsorbed to remove by using zeolite, wherein the adsorbing atmosphere is kept at a temperature higher than 40 0 C. This can prevent the formation of an aqueous HNO 3 solution from NO 2 and H 2 O contained in the gaseous wastes and prevent the degradation of the zeolite adsorption layer. (Kawakami, Y.)

  17. OVII and Temperature Limits on the Local Hot Bubble

    Science.gov (United States)

    Pirtle, Robert; Petre, N.; McCammon, D.; Morgan, K.; Sauter, P.; Clavadetscher, K.; Fujimoto, R.; Hagihara, T.; Masui, K.; Mitsuda, K.; Takei, Y.; Wang, Q. D.; Yamasaki, N. Y.; Yao, Y.; Yoshino, T.

    2013-01-01

    The observed ¼-keV (ROSAT R12 band) X-ray background originates largely in a region of hot ionized gas roughly 100 pc in extent surrounding the Sun known as the Local Hot Bubble (LHB). The observed flux is quite uniform at low latitudes (|b| factors of 2 - 3. Charge exchange between highly charged ions in the Solar wind and interstellar neutral H and He moving through interplanetary space might provide a very roughly isotropic contribution about equal to the low- latitude flux (Koutroumpa et al. 2008), but cannot produce the enhancements. Correlations with the interstellar absorbing column show that some of these bright regions are apparently due to clumps of hot gas in the Galactic halo, while many of them show no correlation and must be due to extensions of the LHB (Kuntz & Snowden 2000, Bellm & Vaillancourt 2005). Global fits of simple plasma emission spectra give temperatures near 1.0 x 106 K for both LHB and halo emission, but the possibility of a substantial contamination by charge exchange could distort this result in unknown ways. Thermal excitation of O VII is strongly temperature dependent in this range, so we have tried to correlate O VII fluxes measured with Suzaku with variations in ¼-keV intensity from the ROSAT R12 band map to determine the temperature. We take eleven O VII intensity measurements from Yoshino et al. (2009), one from Masui et al. (2009), and an additional eighteen from archival Suzaku pointings and correlate these with the R12 band local and halo intensities as separated by Kunzt & Snowden (2000). The lack of detectable correlation in both cases strongly limits any O VII production by the material producing the enhancements, and upper limits to the temperatures are set. This work was supported in part by the National Science Foundation's REU program through NSF Award AST-1004881 and by NASA grant NNX09AF09G. *present address: Department of Physics, Lewis & Clark College, Portland, OR. This work was supported in part by the National

  18. A High-Fidelity Haze Removal Method Based on HOT for Visible Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Hou Jiang

    2016-10-01

    Full Text Available Spatially varying haze is a common feature of most satellite images currently used for land cover classification and mapping and can significantly affect image quality. In this paper, we present a high-fidelity haze removal method based on Haze Optimized Transformation (HOT, comprising of three steps: semi-automatic HOT transform, HOT perfection and percentile based dark object subtraction (DOS. Since digital numbers (DNs of band red and blue are highly correlated in clear sky, the R-squared criterion is utilized to search the relative clearest regions of the whole scene automatically. After HOT transform, spurious HOT responses are first masked out and filled by means of four-direction scan and dynamic interpolation, and then homomorphic filter is performed to compensate for loss of HOT of masked-out regions with large areas. To avoid patches and halo artifacts, a procedure called percentile DOS is implemented to eliminate the influence of haze. Scenes including various land cover types are selected to validate the proposed method, and a comparison analysis with HOT and Background Suppressed Haze Thickness Index (BSHTI is performed. Three quality assessment indicators are selected to evaluate the haze removed effect on image quality from different perspective and band profiles are utilized to analyze the spectral consistency. Experiment results verify the effectiveness of the proposed method for haze removal and the superiority of it in preserving the natural color of object itself, enhancing local contrast, and maintaining structural information of original image.

  19. High-resolution disruption halo current measurements using Langmuir probes in Alcator C-Mod

    Science.gov (United States)

    Tinguely, R. A.; Granetz, R. S.; Berg, A.; Kuang, A. Q.; Brunner, D.; LaBombard, B.

    2018-01-01

    Halo currents generated during disruptions on Alcator C-Mod have been measured with Langmuir ‘rail’ probes. These rail probes are embedded in a lower outboard divertor module in a closely-spaced vertical (poloidal) array. The dense array provides detailed resolution of the spatial dependence (~1 cm spacing) of the halo current distribution in the plasma scrape-off region with high time resolution (400 kHz digitization rate). As the plasma limits on the outboard divertor plate, the contact point is clearly discernible in the halo current data (as an inversion of current) and moves vertically down the divertor plate on many disruptions. These data are consistent with filament reconstructions of the plasma boundary, from which the edge safety factor of the disrupting plasma can be calculated. Additionally, the halo current ‘footprint’ on the divertor plate is obtained and related to the halo flux width. The voltage driving halo current and the effective resistance of the plasma region through which the halo current flows to reach the probes are also investigated. Estimations of the sheath resistance and halo region resistivity and temperature are given. This information could prove useful for modeling halo current dynamics.

  20. Investigating the Wave Nature of the Outer Envelope of Halo Coronal Mass Ejections

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ryun-Young [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Vourlidas, Angelos, E-mail: rkwon@gmu.edu [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-02-20

    We investigate the nature of the outer envelope of halo coronal mass ejections (H-CMEs) using multi-viewpoint observations from the Solar Terrestrial Relations Observatory-A , -B , and SOlar and Heliospheric Observatory coronagraphs. The 3D structure and kinematics of the halo envelopes and the driving CMEs are derived separately using a forward modeling method. We analyze three H-CMEs with peak speeds from 1355 to 2157 km s{sup −1}; sufficiently fast to drive shocks in the corona. We find that the angular widths of the halos range from 192° to 252°, while those of the flux ropes range between only 58° and 91°, indicating that the halos are waves propagating away from the CMEs. The halo widths are in agreement with widths of Extreme Ultraviolet (EUV) waves in the low corona further demonstrating the common origin of these structures. To further investigate the wave nature of the halos, we model their 3D kinematic properties with a linear fast magnetosonic wave model. The model is able to reproduce the position of the halo flanks with realistic coronal medium assumptions but fails closer to the CME nose. The CME halo envelope seems to arise from a driven wave (or shock) close to the CME nose, but it is gradually becoming a freely propagating fast magnetosonic wave at the flanks. This interpretation provides a simple unifying picture for CME halos, EUV waves, and the large longitudinal spread of solar energetic particles.

  1. TSC plasma halo simulation of a DIII-D vertical displacement episode

    International Nuclear Information System (INIS)

    Sayer, R.O.; Peng, Y.K.M.; Jardin, S.C.

    1993-01-01

    A benchmark of the Tokamak Simulation Code (TSC) plasma halo model has been achieved by calibration against a DIII-D vertical displacement episode (VDE) consisting of vertical drift, thermal quench and current quench. With a suitable halo surrounding the main plasma, the TSC predictions are in good agreement with experimental results for the plasma current decay, plasma trajectory, toroidal and poloidal vessel currents, and for the magnetic probe and flux loop values for the entire VDE. Simulations with no plasma halo yield much faster vertical motion and significantly worse agreement with the magnetics and flux loop data than do halo simulations. (author). 12 refs, 13 figs

  2. Gaia reveals a metal-rich in-situ component of the local stellar halo

    Science.gov (United States)

    Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip; Keres, Dusan

    2018-01-01

    We use the first Gaia data release, combined with RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ~3 kpc from the Sun. We identify halo stars kinematically, as moving with a relative speed of at least 220 km/s with respect to the local standard of rest. These stars are in general more metal-poor than the disk, but surprisingly, half of our halo sample is comprised of stars with [Fe/H]>-1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the isotropic orbital distribution of the more metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, while lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the Solar neighborhood in fact formed in situ within the Galactic disk rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.

  3. Gaia Reveals a Metal-rich, in situ Component of the Local Stellar Halo

    Science.gov (United States)

    Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip F.; Kereš, Dušan

    2017-08-01

    We use the first Gaia data release, combined with the RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ≲ 3 kpc from the Sun. We identify halo stars kinematically as moving at a relative speed of at least 220 km s-1 with respect to the local standard of rest. These stars are generally less metal-rich than the disk, but surprisingly, half of our halo sample is comprised of stars with [{Fe}/{{H}}]> -1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the intrinsically isotropic orbital distribution of the metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, whereas lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the solar neighborhood actually formed in situ within the Galactic disk, rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.

  4. MEASUREMENT AND SIMULATION OF SOURCE-GENERATED HALOS IN THE UNIVERSITY OF MARYLAND ELECTRON RING (UMER)

    International Nuclear Information System (INIS)

    Haber, I.; Haber, I.; Bernal, S.; Kishek, R.A.; O'Shea, P.G.; Papadopoulos, C.; Reiser, M.; Feldman, R.B.; Stratakis, D.; Walter, M.; Vay, J.-L.; Friedman, A.; Grote, D.P.

    2007-01-01

    One of the areas of fundamental beam physics that have served as the rationale for recent research on UMER is the study of the generation and evolution of beam halos. Recent experiments and simulations have identified imperfections in the source geometry, particularly in the region near the emitter edge, as a significant potential source of halo particles. The edge-generated halo particles, both in the experiments and the simulations are found to pass through the center of the beam a short distance downstream of the anode plane. Understanding the detailed evolution of these particle orbits is therefore important to designing any aperture to remove the beam halo

  5. Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks

    Directory of Open Access Journals (Sweden)

    J. Uwamahoro

    2012-06-01

    Full Text Available Estimating the geoeffectiveness of solar events is of significant importance for space weather modelling and prediction. This paper describes the development of a neural network-based model for estimating the probability occurrence of geomagnetic storms following halo coronal mass ejection (CME and related interplanetary (IP events. This model incorporates both solar and IP variable inputs that characterize geoeffective halo CMEs. Solar inputs include numeric values of the halo CME angular width (AW, the CME speed (Vcme, and the comprehensive flare index (cfi, which represents the flaring activity associated with halo CMEs. IP parameters used as inputs are the numeric peak values of the solar wind speed (Vsw and the southward Z-component of the interplanetary magnetic field (IMF or Bs. IP inputs were considered within a 5-day time window after a halo CME eruption. The neural network (NN model training and testing data sets were constructed based on 1202 halo CMEs (both full and partial halo and their properties observed between 1997 and 2006. The performance of the developed NN model was tested using a validation data set (not part of the training data set covering the years 2000 and 2005. Under the condition of halo CME occurrence, this model could capture 100% of the subsequent intense geomagnetic storms (Dst ≤ −100 nT. For moderate storms (−100 < Dst ≤ −50, the model is successful up to 75%. This model's estimate of the storm occurrence rate from halo CMEs is estimated at a probability of 86%.

  6. Astrophysics of gaseous nebulae and active galactic nuclei

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1989-01-01

    A graduate-level text and reference book on gaseous nebulae and the emission regions in Seyfert galaxies, quasars, and other types of active galactic nuclei (AGN) is presented. The topics discussed include: photoionization equilibrium, thermal equilibrium, calculation of emitted spectrum, comparison of theory with observations, internal dynamics of gaseous nebulae, interstellar dust, regions in the galactic context, planetary nebulae, nova and supernova remnants, diagnostics and physics of AGN, observational results on AGN

  7. Freezer-sublimer for gaseous diffusion plant

    International Nuclear Information System (INIS)

    Reti, G.R.

    1978-01-01

    A method and apparatus is disclosed for freezing and subliming uranium hexafluoride (UF 6 ) as part of a gaseous diffusion plant from which a quantity of the UF 6 inventory is intermittently withdrawn and frozen to solidify it. A plurality of upright heat pipes holds a coolant and is arranged in a two compartment vessel, the lower compartment is exposed to UF 6 , the higher one serves for condensing the evaporated coolant by means of cooling water. In one embodiment, each pipe has a quantity of coolant such as freon, hermetically sealded therein. In the other embodiment, each pipe is sealed only at the lower end while the upper end communicates with a common vapor or cooling chamber which contains a water cooled condenser. The cooling water has a sufficiently low temperature to condense the evaporated coolant. The liquid coolant flows gravitationally downward to the lower end portion of the pipe. UF 6 gas is flowed into the tank where it contacts the finned outside surface of the heat pipes. Heat from the gas evaporates the coolant and the gas in turn is solidified on the exterior of the heat pipe sections in the tank. To recover UF 6 gas from the tank, the solidified UF 6 is sublimed by passing compressed UF 6 gas over the frozen UF 6 gas on the pipes or by externally heating the lower ends of the pipes sufficiently to evaporate the coolant therein above the subliming temperature of the UF 6 . The subliming UF 6 gas then condenses the coolant in the vertical heat pipes, so that it can gravitationally flow back to the lower end portions

  8. Euthanasia using gaseous agents in laboratory rodents.

    Science.gov (United States)

    Valentim, A M; Guedes, S R; Pereira, A M; Antunes, L M

    2016-08-01

    Several questions have been raised in recent years about the euthanasia of laboratory rodents. Euthanasia using inhaled agents is considered to be a suitable aesthetic method for use with a large number of animals simultaneously. Nevertheless, its aversive potential has been criticized in terms of animal welfare. The data available regarding the use of carbon dioxide (CO2), inhaled anaesthetics (such as isoflurane, sevoflurane, halothane and enflurane), as well as carbon monoxide and inert gases are discussed throughout this review. Euthanasia of fetuses and neonates is also addressed. A table listing currently available information to ease access to data regarding euthanasia techniques using gaseous agents in laboratory rodents was compiled. Regarding better animal welfare, there is currently insufficient evidence to advocate banning or replacing CO2 in the euthanasia of rodents; however, there are hints that alternative gases are more humane. The exposure to a volatile anaesthetic gas before loss of consciousness has been proposed by some scientific studies to minimize distress; however, the impact of such a measure is not clear. Areas of inconsistency within the euthanasia literature have been highlighted recently and stem from insufficient knowledge, especially regarding the advantages of the administration of isoflurane or sevoflurane over CO2, or other methods, before loss of consciousness. Alternative methods to minimize distress may include the development of techniques aimed at inducing death in the home cage of animals. Scientific outcomes have to be considered before choosing the most suitable euthanasia method to obtain the best results and accomplish the 3Rs (replacement, reduction and refinement). © The Author(s) 2015.

  9. Treatment of Plants with Gaseous Ethylene and Gaseous Inhibitors of Ethylene Action.

    Science.gov (United States)

    Tucker, Mark L; Kim, Joonyup; Wen, Chi-Kuang

    2017-01-01

    The gaseous nature of ethylene affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some part of the plant hoping the hormone will be taken up into the plant and translocated throughout the plant at the desired concentration. Because all plant cells are connected by an intercellular gas space the ethylene concentration you treat with is relatively quickly reached throughout the plant. In some instances, like mature fruit, treatment with ethylene initiates autocatalytic synthesis of ethylene. However, in most experiments, the exogenous ethylene concentration is saturating, usually >1 μL L -1 , and the synthesis of additional ethylene is inconsequential. Also facilitating ethylene research compared with other hormones is that there are inhibitors of ethylene action 1-MCP (1-methylcyclopropene) and 2,5-NBD (2,5-norbornadiene) that are also gases wherein you can achieve nearly 100% inhibition of ethylene action quickly and with few side effects. Inhibitors for other plant hormones are applied as a solution and their transport and concentration at the desired site is not always known and difficult to measure. Here, our focus is on how to treat plants and plant parts with the ethylene gas and the gaseous inhibitors of ethylene action.

  10. Method of separating tritium contained in gaseous wastes

    International Nuclear Information System (INIS)

    Hashimoto, Yasuo; Oozono, Hideaki.

    1981-01-01

    Purpose: To decrease tritium concentration in gaseous wastes to less than the allowable level by removing tritium in gaseous wastes generated upon combustion of radioactive wastes by using a plurality of heat exchangers. Method: Gaseous wastes at high temperature generated upon combustion of radioactive wastes in an incinerator are removed with radioactive solid substances through filters, cooled down to a temperature below 10 0 C by the passage through first and second heat exchangers and decreased with tritium content to less than the allowable concentration by the gaseous wastes at low temperature from the second heat exhcanger. The gaseous wastes at low temperature are used as the cooling medium for the first heat exchanger. They are heat exchanged at the upstream of the second heat exchanger with the cooling water from the third heat exchanger and cooled at the downstream by the cooling water cooled by the cooling medium. The gaseous wastes at low temperature thus cooled below 10 0 C are heated to about 350 0 C in the first heat exchanger and discharged. (Moriyama, K.)

  11. Disk Heating, Galactoseismology, and the Formation of Stellar Halos

    Directory of Open Access Journals (Sweden)

    Kathryn V. Johnston

    2017-08-01

    Full Text Available Deep photometric surveys of the Milky Way have revealed diffuse structures encircling our Galaxy far beyond the “classical” limits of the stellar disk. This paper reviews results from our own and other observational programs, which together suggest that, despite their extreme positions, the stars in these structures were formed in our Galactic disk. Mounting evidence from recent observations and simulations implies kinematic connections between several of these distinct structures. This suggests the existence of collective disk oscillations that can plausibly be traced all the way to asymmetries seen in the stellar velocity distribution around the Sun. There are multiple interesting implications of these findings: they promise new perspectives on the process of disk heating; they provide direct evidence for a stellar halo formation mechanism in addition to the accretion and disruption of satellite galaxies; and, they motivate searches of current and near-future surveys to trace these oscillations across the Galaxy. Such maps could be used as dynamical diagnostics in the emerging field of “Galactoseismology”, which promises to model the history of interactions between the Milky Way and its entourage of satellites, as well examine the density of our dark matter halo. As sensitivity to very low surface brightness features around external galaxies increases, many more examples of such disk oscillations will likely be identified. Statistical samples of such features not only encode detailed information about interaction rates and mergers, but also about long sought-after dark matter halo densities and shapes. Models for the Milky Way’s own Galactoseismic history will therefore serve as a critical foundation for studying the weak dynamical interactions of galaxies across the universe.

  12. Baryonic distributions in galaxy dark matter haloes - II. Final results

    Science.gov (United States)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2018-06-01

    Re-creating the observed diversity in the organization of baryonic mass within dark matter haloes represents a key challenge for galaxy formation models. To address the growth of galaxy discs in dark matter haloes, we have constrained the distribution of baryonic and non-baryonic matter in a statistically representative sample of 44 nearby galaxies defined from the Extended Disk Galaxy Exploration Science (EDGES) Survey. The gravitational potentials of each galaxy are traced using rotation curves derived from new and archival radio synthesis observations of neutral hydrogen (H I). The measured rotation curves are decomposed into baryonic and dark matter halo components using 3.6 μm images for the stellar content, the H I observations for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. The H I kinematics are supplemented with optical integral field spectroscopic (IFS) observations to measure the central ionized gas kinematics in 26 galaxies, including 13 galaxies that are presented for the first time in this paper. Distributions of baryonic-to-total mass ratios are determined from the rotation curve decompositions under different assumptions about the contribution of the stellar component and are compared to global and radial properties of the dominant stellar populations extracted from optical and near-infrared photometry. Galaxies are grouped into clusters of similar baryonic-to-total mass distributions to examine whether they also exhibit similar star and gas properties. The radial distribution of baryonic-to-total mass in a galaxy does not appear to correlate with any characteristics of its star formation history.

  13. Halo carbon stars associated with dwarf spheroidal galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Bergh, S.; Lafontaine, A.

    1984-11-01

    Star counts have been performed for rings centered on the carbon star at 1 69 degrees, b + 55 degrees at a distance of 60 kpc. The counts were performed in order to determine whether halo carbon stars might be situated in dwarf spheroidal galaxies which are too star-poor to have been recognized as galaxies. The counts were made on a IIIa-J plate baked in forming gas that was exposed for 40 minutes through a 2C filter with the Palomar 1.2-m Schmidt telescope. It is shown that the carbon star is not situated in a dwarf spheroidal galaxy brighter than M(V) 5.7.

  14. The Age of the Inner Halo Globular Cluster NGC 6652

    OpenAIRE

    Chaboyer, Brian; Sarajedini, Ata; Armandroff, Taft E.

    2000-01-01

    HST (V,I) photometry has been obtained for the inner halo globular cluster NGC 6652. The photometry reaches approximately 4 mag below the turn-off and includes a well populated horizontal branch. This cluster is located close to the Galactic center at a galactocentric distance of approximately 2.0 kpc with a reddening of E(V-I) = 0.15 +/- 0.02 and has a metallicity of [Fe/H] approximately -0.85. Based upon Delta(V) between the point on the sub-giant branch which is 0.05 mag redder than the tu...

  15. Network secure communications based on beam halo-chaos

    International Nuclear Information System (INIS)

    Liu Qiang; Fang Jinqing; Li Yong

    2010-01-01

    Based on beam halo-chaos synchronization in the beam transport network (line)with small-world effect, using three synchronization methods:the driver-response synchronization, small-world topology coupling synchronization and multi-local small-world topology coupling synchronization, three kinds of secure communication projects were designed respectively, and were studied numerically by the Simulink tool of the Matlab software. Numerical experimental results demonstrate that encryption and decryption of the original signal are realized successfully. It provides effective theoretical foundation and reference for the next engineering design and network experiment. (authors)

  16. New modes of halo excitation in the 6He nucleus

    International Nuclear Information System (INIS)

    Danilin, B.V.; Rogde, T.; Ershov, S.N.; Heiberg-Andersen, H.; Vaagen, J.S.; Danilin, B.V.; Ershov, S.N.; Vaagen, J.S.; Thompson, I.J.; Zhukov, M.V.

    1997-01-01

    Predictions are made for the structure of a second 2 + resonance, the soft dipole mode and unnatural parity modes in the 6 He continuum. We use a structure model which describes the system as a three-body α+N+N cluster structure, giving the experimentally known properties of 6 He and 6 Li, and use the distorted-wave impulse approximation (DWIA) reaction theory appropriate for dilute matter. The presence of both resonant and nonresonant structures in the halo excitation continuum is shown to be manifest in charge-exchange reactions as well as inelastic scattering with single nucleons. copyright 1997 The American Physical Society

  17. Gravitational lensing of wormholes in the galactic halo region

    Energy Technology Data Exchange (ETDEWEB)

    Kuhfittig, Peter K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States)

    2014-03-15

    A recent study by Rahaman et al. has shown that the galactic halo possesses the necessary properties for supporting traversable wormholes, based on two observational results, the Navarro-Frenk-White density profile and the observed flat rotation curves of galaxies. Using a method for calculating the deflection angle pioneered by V. Bozza, it is shown that the deflection angle diverges at the throat of the wormhole. The resulting photon sphere has a radius of about 0.40 ly. Given the dark-matter background, detection may be possible from past data using ordinary light. (orig.)

  18. Beam Scraping to detect and remove Halo in LHC Injection

    CERN Document Server

    Letnes, P A; Brielmann, A; Burkhardt, H; Kramer, Daniel

    2008-01-01

    Fast scrapers are installed in the SPS to detect and remove beam halo before extraction of beams to the LHC, to minimize the probability for quenching of superconducting magnets in the LHC. We shortly describe the current system and then focus on our recent work, which aims at providing a system which can be used as operational tool for standard LHC injection. A new control application was written and tested with the beam. We describe the current status and results and compare these with detailed simulations.

  19. MD 2179: Scraping of off-momentum halo after injection

    CERN Document Server

    Garcia Morales, Hector; Patecki, Marcin; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2018-01-01

    In this MD, a beam scraping was performed using the momentum primary collimator in IR3 where dispersion is high. A second scraping was performed using a TCSG in IR7 where dispersion is almost negligible. In such a way, we aim to disentangle the contribution of off-momentum particles to halo population. These scrapings will provide useful information to better understand the usual off-momentum losses we see at the start of the ramp. The MD results would also be used to benchmark simulations of off-momentum beam losses in order to gain confidence in simulation models.

  20. Population studies - evidence for accretion of the galactic halo

    International Nuclear Information System (INIS)

    Norris, J.E.; Ryan, S.G.

    1989-01-01

    While there are comparatively few prograde-orbit dwarf stars in advance of the sun's motion of the type of which 510, selected kinematically, are presented, it is noted that there are significant numbers of objects on retrograde orbits that move with a speed greater than the sun's, relative to a nonrotating system, in the opposite direction about the Galactic center. It is suggested that this asymmetry is explainable in terms of the Searle and Zinn (1978) and Rodgers and Paltoglou (1984) models of halo formation by accretion; in these, fragments experience dynamical friction from an already-formed Galactic disk. 21 references

  1. Charge Radius Measurement of the Halo Nucleus $^{11}$Li

    CERN Multimedia

    Kluge, H-J; Kuehl, T; Simon, H; Wang, Haiming; Zimmermann, C; Onishi, T; Tanihata, I; Wakasugi, M

    2002-01-01

    %IS385 %title\\\\ \\\\The root-mean-square charge radius of $^{11}$Li will be determined by measuring the isotope shift of a suitable atomic transition in a laser spectroscopic experiment. Comparing the charge radii of the lithium isotopes obtained by this nuclear-model-independent method with the relevant mass radii obtained before will help to answer the question whether the proton distribution in halo nuclei at the neutron drip-line is decoupled to the first order from their neutron distribution. The necessary experimental sensitivity requires the maximum possible rate of $^{11}$Li nuclei in a beam of low emittance which can only be provided by ISOLDE.

  2. Minimizing the stochasticity of halos in large-scale structure surveys

    Science.gov (United States)

    Hamaus, Nico; Seljak, Uroš; Desjacques, Vincent; Smith, Robert E.; Baldauf, Tobias

    2010-08-01

    In recent work (Seljak, Hamaus, and Desjacques 2009) it was found that weighting central halo galaxies by halo mass can significantly suppress their stochasticity relative to the dark matter, well below the Poisson model expectation. This is useful for constraining relations between galaxies and the dark matter, such as the galaxy bias, especially in situations where sampling variance errors can be eliminated. In this paper we extend this study with the goal of finding the optimal mass-dependent halo weighting. We use N-body simulations to perform a general analysis of halo stochasticity and its dependence on halo mass. We investigate the stochasticity matrix, defined as Cij≡⟨(δi-biδm)(δj-bjδm)⟩, where δm is the dark matter overdensity in Fourier space, δi the halo overdensity of the i-th halo mass bin, and bi the corresponding halo bias. In contrast to the Poisson model predictions we detect nonvanishing correlations between different mass bins. We also find the diagonal terms to be sub-Poissonian for the highest-mass halos. The diagonalization of this matrix results in one large and one low eigenvalue, with the remaining eigenvalues close to the Poisson prediction 1/n¯, where n¯ is the mean halo number density. The eigenmode with the lowest eigenvalue contains most of the information and the corresponding eigenvector provides an optimal weighting function to minimize the stochasticity between halos and dark matter. We find this optimal weighting function to match linear mass weighting at high masses, while at the low-mass end the weights approach a constant whose value depends on the low-mass cut in the halo mass function. This weighting further suppresses the stochasticity as compared to the previously explored mass weighting. Finally, we employ the halo model to derive the stochasticity matrix and the scale-dependent bias from an analytical perspective. It is remarkably successful in reproducing our numerical results and predicts that the

  3. THE CONTRIBUTION OF HALO WHITE DWARF BINARIES TO THE LASER INTERFEROMETER SPACE ANTENNA SIGNAL

    International Nuclear Information System (INIS)

    Ruiter, Ashley J.; Belczynski, Krzysztof; Benacquista, Matthew; Holley-Bockelmann, Kelly

    2009-01-01

    Galactic double white dwarfs were postulated as a source of confusion limited noise for the Laser Interferometer Space Antenna (LISA), the future space-based gravitational wave observatory. Until very recently, the Galactic population consisted of a relatively well-studied disk population, a somewhat studied smaller bulge population and a mostly unknown, but potentially large halo population. It has been argued that the halo population may produce a signal that is much stronger (factor of ∼5 in spectral amplitude) than the disk population. However, this surprising result was not based on an actual calculation of a halo white dwarf population, but was derived on (1) the assumption that one can extrapolate the halo population properties from those of the disk population and (2) the postulated (unrealistically) high number of white dwarfs in the halo. We perform the first calculation of a halo white dwarf population using population synthesis models. Our comparison with the signal arising from double white dwarfs in the Galactic disk+bulge clearly shows that it is impossible for the double white dwarf halo signal to exceed that of the rest of the Galaxy. Using microlensing results to give an upper limit on the content of white dwarfs in the halo (∼30% baryonic mass in white dwarfs), our predicted halo signal is a factor of 10 lower than the disk+bulge signal. Even in the implausible case, where all of the baryonic halo mass is found in white dwarfs, the halo signal does not become comparable to that of the disk+bulge, and thus would still have a negligible effect on the detection of other LISA sources.

  4. HOBBY-EBERLY TELESCOPE OBSERVATIONS OF THE DARK HALO IN NGC 821

    International Nuclear Information System (INIS)

    Forestell, Amy D.; Gebhardt, Karl

    2010-01-01

    We present stellar line-of-sight velocity distributions (LOSVDs) of elliptical galaxy NGC 821 obtained to approximately 100'' (over two effective radii) with long-slit spectroscopy from the Hobby-Eberly Telescope. Our measured stellar LOSVDs are larger than the planetary nebulae measurements at similar radii. We fit axisymmetric orbit-superposition models with a range of dark halo density profiles, including two-dimensional kinematics at smaller radii from SAURON data. Within our assumptions, the best-fitted model gives a total enclosed mass of 2.0 x 10 11 M sun within 100'', with an accuracy of 2%; this mass is equally divided between halo and stars. At 1 R e , the best-fitted dark matter halo accounts for 13% of the total mass in the galaxy. This dark halo is inconsistent with previous claims of little to no dark matter halo in this galaxy from planetary nebula measurements. We find that a power-law dark halo with a slope 0.1 is the best-fitted model; both the no dark halo and Navarro-Frenk-White models are worse fits at a greater than 99% confidence level. NGC 821 does not appear to have the expected dark halo density profile. The internal moments of the stellar velocity distribution show that the model with no dark halo is radially anisotropic at small radii and tangentially isotropic at large radii, while the best-fitted halo models are slightly radially anisotropic at all radii. We test the potential effects of model smoothing and find that there are no effects on our results within the errors. Finally, we run models using the planetary nebula kinematics and assuming our best-fitted halos and find that the planetary nebulae require radial orbits throughout the galaxy.

  5. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  6. Utilizing hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Nozik, Arthur J.

    2018-03-01

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  7. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abdel-Rassoul, A.A.

    1983-01-01

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  8. Evidence for halo kinematics among cool carbon-rich dwarfs

    Science.gov (United States)

    Farihi, J.; Arendt, A. R.; Machado, H. S.; Whitehouse, L. J.

    2018-04-01

    This paper reports preliminary yet compelling kinematical inferences for N ≳ 600 carbon-rich dwarf stars that demonstrate around 30% to 60% are members of the Galactic halo. The study uses a spectroscopically and non-kinematically selected sample of stars from the SDSS, and cross-correlates these data with three proper motion catalogs based on Gaia DR1 astrometry to generate estimates of their 3-D space velocities. The fraction of stars with halo-like kinematics is roughly 30% for distances based on a limited number of parallax measurements, with the remainder dominated by the thick disk, but close to 60% of the sample lie below an old, metal-poor disk isochrone in reduced proper motion. An ancient population is consistent with an extrinsic origin for C/O >1 in cool dwarfs, where a fixed mass of carbon pollution more readily surmounts lower oxygen abundances, and with a lack of detectable ultraviolet-blue flux from younger white dwarf companions. For an initial stellar mass function that favors low-mass stars as in the Galactic disk, the dC stars are likely to be the dominant source of carbon-enhanced, metal-poor stars in the Galaxy.

  9. The Age of the Inner Halo Globular Cluster NGC 6652

    Science.gov (United States)

    Chaboyer, Brian; Sarajedini, Ata; Armandroff, Taft E.

    2000-01-01

    Hubble Space Telescope (HST) (V,I) photometry has been obtained for the inner halo globular cluster NGC 6652. The photometry reaches approximately 4 mag below the turn-off and includes a well populated horizontal branch (HB). This cluster is located close to the Galactic center at RGC approximately equal to 2.0 kpc with a reddening of E(V-I) = 0.15 +/- 0.02 and has a metallicity of [Fe/H] approximately equal to -0.85. Based upon DELTA V (sup SGB) (sub HB), NGC 6652 is 11.7 plus or minus 1.6 Gyr old. Using A HB precise differential ages for 47 Tuc (a thick disk globular), M107 and NGC 1851 (both halo clusters) were obtained. NGC 6652 appears to be the same age as 47 Tuc and NGC 1851 (within +/- 1.2 Gyr), while there is a slight suggestion that M107 is older than NGC 6652 by 2.3 +/- 1.5 Gyr. As this is a less than 2 sigma result, this issue needs to be investigated further before a definitive statement regarding the relative age of M107 and NGC 6652 may be made.

  10. Method for observing phase objects without halos and directional shadows

    Science.gov (United States)

    Suzuki, Yoshimasa; Kajitani, Kazuo; Ohde, Hisashi

    2015-03-01

    A new microscopy method for observing phase objects without halos and directional shadows is proposed. The key optical element is an annular aperture at the front focal plane of a condenser with a larger diameter than those used in standard phase contrast microscopy. The light flux passing through the annular aperture is changed by the specimen's surface profile and then passes through an objective and contributes to image formation. This paper presents essential conditions for realizing the method. In this paper, images of colonies formed by induced pluripotent stem (iPS) cells using this method are compared with the conventional phase contrast method and the bright-field method when the NA of the illumination is small to identify differences among these techniques. The outlines of the iPS cells are clearly visible with this method, whereas they are not clearly visible due to halos when using the phase contrast method or due to weak contrast when using the bright-field method. Other images using this method are also presented to demonstrate a capacity of this method: a mouse ovum and superimposition of several different images of mouse iPS cells.

  11. DAMA RESULTS: DARK MATTER IN THE GALACTIC HALO

    Directory of Open Access Journals (Sweden)

    R. Bernabei

    2013-12-01

    Full Text Available Experimental efforts and theoretical developmens support that most of the Universe is Dark and a large fraction of it should be made of relic particles; many possibilities are open on their nature and interaction types. In particular, the DAMA/LIBRA experiment at Gran Sasso Laboratory (sensitive mass: ~250 kg is mainly devoted to the investigation of Dark Matter (DM particles in the Galactic halo by exploiting the model independent DM annual modulation signature with higly radiopure Na I(Tl targets. DAMA/LIBRA is the succesor of the first generation DAMA/NaI (sensitive mass: ~100 kg; cumulatively the two experiments have released so far the results obtained by analyzing an exposure of 1.17 t yr, collected over 13 annual cycles. The data show a model independent evidence of the presence of DM particles in the galactic halo at 8.9σ confidence level (C.L.. Some of the already achieved results are shortly reminded, the last upgrade occurred at fall 2010 is mentioned and future perspectives are sumarized.

  12. The bias of weighted dark matter halos from peak theory

    CERN Document Server

    Verde, Licia; Simpson, Fergus; Alvarez-Gaume, Luis; Heavens, Alan; Matarrese, Sabino

    2014-01-01

    We give an analytical form for the weighted correlation function of peaks in a Gaussian random field. In a cosmological context, this approach strictly describes the formation bias and is the main result here. Nevertheless, we show its validity and applicability to the evolved cosmological density field and halo field, using Gaussian random field realisations and dark matter N-body numerical simulations. Using this result from peak theory we compute the bias of peaks (and dark matter halos) and show that it reproduces results from the simulations at the ${\\mathcal O}(10\\%)$ level. Our analytical formula for the bias predicts a scale-dependent bias with two characteristics: a broad band shape which, however, is most affected by the choice of weighting scheme and evolution bias, and a more robust, narrow feature localised at the BAO scale, an effect that is confirmed in simulations. This scale-dependent bias smooths the BAO feature but, conveniently, does not move it. We provide a simple analytic formula to des...

  13. Halo shapes, initial shear field, and cosmic web

    International Nuclear Information System (INIS)

    Rossi, G

    2014-01-01

    The ellipsoidal collapse model, combined with the excursion set theory, allows one to estimate the shapes of dark matter halos as seen in high-resolution numerical simulations. The same theoretical framework predicts a quasi-universal behaviour for the conditional axis ratio distributions at later times, set by initial conditions and unaltered by non-linear evolution. The formalism for halo shapes is also useful in making the connection with the initial shear field of the cosmic web, which plays a crucial role in the formation of large-scale structures. The author has briefly discussed the basic aspects of the modelling, as well as the implications of a new formula for the constrained eigenvalues of the initial shear field, given the fact that positions are peaks or dips in the corresponding density field – and not random locations. This formula leads to a new generalized excursion set algorithm for peaks in Gaussian random fields. The results highlighted, here, are relevant for a number of applications, especially for weak lensing studies and for devising algorithms to find and classify structures in the cosmic web

  14. Halo current and resistive wall simulations of ITER

    International Nuclear Information System (INIS)

    Strauss, H.R.; Zheng Linjin; Kotschenreuther, M.; Park, W.; Jardin, S.; Breslau, J.; Pletzer, A.; Paccagnella, R.; Sugiyama, L.; Chu, M.; Chance, M.; Turnbull, A.

    2005-01-01

    A number of ITER relevant problems in resistive MHD concern the effects of a resistive wall: vertical displacement events (VDE), halo currents caused by disruptions, and resistive wall modes. Simulations of these events have been carried out using the M3D code. We have verified the growth rate scaling of VDEs, which is proportional to the wall resistivity. Simulations have been done of disruptions caused by large inversion radius internal kink modes, as well as by nonlinear growth of resistive wall modes. Halo current flowing during the disruption has asymmetries with toroidal peaking factor up to about 3. VDEs have larger growth rates during disruption simulations, which may account for the loss of vertical feedback control during disruptions in experiments. Further simulations have been made of disruptions caused by resistive wall modes in ITER equilibria. For these modes the toroidal peaking factor is close to 1. Resistive wall modes in ITER and reactors have also been investigated utilizing the newly developed AEGIS (Adaptive EiGenfunction Independent Solution) linear full MHD code, for realistically shaped, fully toroidal equilibria. The AEGIS code uses an adaptive mesh in the radial direction which allows thin inertial layers to be accurately resolved, such as those responsible for the stabilization of resistive wall modes (RWM) by plasma rotation. Stabilization of resistive wall modes by rotation and wall thickness effects are examined. (author)

  15. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  16. Lithium abundances in high- and low-alpha halo stars

    DEFF Research Database (Denmark)

    Nissen, P. E.; Schuster, W. J.

    2012-01-01

    A previous study of F and G main-sequence stars in the solar neighborhood has revealed the existence of two distinct halo populations with a clear separation in [alpha /Fe] for the metallicity range -1.4 < [Fe/H] < -0.7. The kinematics of the stars and models of galaxy formation suggest that the ......A previous study of F and G main-sequence stars in the solar neighborhood has revealed the existence of two distinct halo populations with a clear separation in [alpha /Fe] for the metallicity range -1.4 ... that the ``high-alpha '' stars were formed in situ in the inner parts of the Galaxy, whereas the ``low-alpha '' ones have been accreted from satellite galaxies. In order to see if there is any systematic difference in the lithium abundances of high- and low-alpha stars, equivalent widths of the iLi 6707.8 Å line...... have been measured from VLT/UVES and NOT/FIES spectra and used to derive Li abundances. Furthermore, stellar masses are determined from evolutionary tracks in the log T_eff - log g diagram. For stars with masses 0.7 lithium abundance...

  17. Control of beam halo-chaos using fuzzy logic controller

    International Nuclear Information System (INIS)

    Gao Yuan; Yuan Haiying; Tan Guangxing; Luo Wenguang

    2012-01-01

    Considering the ion beam with initial K-V distribution in the periodic focusing magnetic filed channels (PFCs) as a typical sample, a fuzzy control method for control- ling beam halo-chaos was studied. A fuzzy proportional controller, using output of fuzzy inference as a control factor, was presented for adjusting exterior focusing magnetic field. The stability of controlled system was proved by fuzzy phase plane analysis. The simulation results demonstrate that the chaotic radius of envelope can be controlled to the matched radius via controlling magnetic field. This method was also applied to the multi-particle model. Under the control condition, the beam halos and its regeneration can be eliminated effectively, and that both the compactness and the uniformity of ion beam are improved evidently. Since the exterior magnetic field can be rather easily adjusted by proportional control and the fuzzy logic controller is independent to the mathematical model, this method has adaptive ability and is easily realized in experiment. The research offers a valuable reference for the design of the PFCs in the high- current linear ion accelerators. (authors)

  18. Fermionic halos at finite temperature in AdS/CFT

    Science.gov (United States)

    Argüelles, Carlos R.; Grandi, Nicolás E.

    2018-05-01

    We explore the gravitational backreaction of a system consisting in a very large number of elementary fermions at finite temperature, in asymptotically AdS space. We work in the hydrodynamic approximation, and solve the Tolman-Oppenheimer-Volkoff equations with a perfect fluid whose equation of state takes into account both the relativistic effects of the fermionic constituents, as well as its finite temperature effects. We find a novel dense core-diluted halo structure for the density profiles in the AdS bulk, similarly as recently reported in flat space, for the case of astrophysical dark matter halos in galaxies. We further study the critical equilibrium configurations above which the core undergoes gravitational collapse towards a massive black hole, and calculate the corresponding critical central temperatures, for two qualitatively different central regimes of the fermions: the diluted-Fermi case, and the degenerate case. As a probe for the dual CFT, we construct the holographic two-point correlator of a scalar operator with large conformal dimension in the worldline limit, and briefly discuss on the boundary CFT effects at the critical points.

  19. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    Science.gov (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  20. Software Simulation of Hot Tearing

    DEFF Research Database (Denmark)

    Andersen, S.; Hansen, P.N.; Hattel, Jesper Henri

    1999-01-01

    The brittleness of a solidifying alloy in a temperature range near the solidus temperature has been recognised since the fifties as the mechanism responsible for hot tearing. Due to this brittlenes, the metal will crack under even small amounts of strain in that temperature range. We see these hot...... tears in castings close to hot centres, where the level of strain is often too high.Although the hot tearing mechanism is well understood, until now it has been difficult to do much to reduce the hot tearing tendency in a casting. In the seventies, good hot tearing criteria were developed by considering...... the solidification rate and the strain rate of the hot tear prone areas. But, until recently it was only possible to simulate the solidification rate, so that the criteria could not be used effectively.Today, with new software developments, it is possible to also simulate the strain rate in the hot tear prone areas...