WorldWideScience

Sample records for hot gas halos

  1. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  2. HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES

    International Nuclear Information System (INIS)

    Mulchaey, John S.; Jeltema, Tesla E.

    2010-01-01

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L X -L K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L K ∼ * suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L K ∼ * galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  3. The impact of feedback and the hot halo on the rates of gas accretion onto galaxies

    Science.gov (United States)

    Correa, Camila A.; Schaye, Joop; van de Voort, Freeke; Duffy, Alan R.; Wyithe, J. Stuart B.

    2018-04-01

    We investigate the physics that drives the gas accretion rates onto galaxies at the centers of dark matter haloes using the EAGLE suite of hydrodynamical cosmological simulations. We find that at redshifts z ≤ 2 the accretion rate onto the galaxy increases with halo mass in the halo mass range 1010 - 1011.7 M⊙, flattens between the halo masses 1011.7 - 1012.7 M⊙, and increases again for higher-mass haloes. However, the galaxy gas accretion does not flatten at intermediate halo masses when AGN feedback is switched off. To better understand these trends, we develop a physically motivated semi-analytic model of galaxy gas accretion. We show that the flattening is produced by the rate of gas cooling from the hot halo. The ratio of the cooling radius and the virial radius does not decrease continuously with increasing halo mass as generally thought. While it decreases up to ˜1013 M⊙ haloes, it increases for higher halo masses, causing an upturn in the galaxy gas accretion rate. This may indicate that in high-mass haloes AGN feedback is not sufficiently efficient. When there is no AGN feedback, the density of the hot halo is higher, the ratio of the cooling and virial radii does not decrease as much and the cooling rate is higher. Changes in the efficiency of stellar feedback can also increase or decrease the accretion rates onto galaxies. The trends can plausibly be explained by the re-accretion of gas ejected by progenitor galaxies and by the suppression of black hole growth, and hence AGN feedback, by stellar feedback.

  4. The Interaction of Hot and Cold Gas in the Disk and Halo of Galaxies

    Science.gov (United States)

    Slavin, Jonathan; Salamon, Michael (Technical Monitor)

    2004-01-01

    Most of the thermal energy in the Galaxy and perhaps most of the baryons in the Universe are found in hot (log T approximately 5.5 - 7) gas. Hot gas is detected in the local interstellar medium, in supernova remnants (SNR), the Galactic halo, galaxy clusters and the intergalactic medium (IGM). In our own Galaxy, hot gas exists in large superbubbles up to several hundred pc in diameter that locally dominate the interstellar medium (ISM) and determine its thermal and dynamic evolution. While X-ray observations using ROSAT, Chandra and XMM have allowed us to make dramatic progress in mapping out the morphology of the hot gas and in understanding some of its spectral characteristics, there remain fundamental questions that are unanswered. Chief among these questions is the way that hot gas interacts with cooler phase gas and the effects these interactions have on hot gas energetics. The theoretical investigations we proposed in this grant aim to explore these interactions and to develop observational diagnostics that will allow us to gain much improved information on the evolution of hot gas in the disk and halo of galaxies. The first of the series of investigations that we proposed was a thorough exploration of turbulent mixing layers and cloud evaporation. We proposed to employ a multi-dimensional hydrodynamical code that includes non-equilibrium ionization (NEI), radiative cooling and thermal conduction. These models are to be applied to high velocity clouds in our galactic halo that are seen to have O VI by FUSE (Sembach et ai. 2000) and other clouds for which sufficient constraining observations exist.

  5. HOT GAS HALOS AROUND DISK GALAXIES: CONFRONTING COSMOLOGICAL SIMULATIONS WITH OBSERVATIONS

    International Nuclear Information System (INIS)

    Rasmussen, Jesper; Sommer-Larsen, Jesper; Pedersen, Kristian; Toft, Sune; Grove, Lisbeth F.; Benson, Andrew; Bower, Richard G.

    2009-01-01

    Models of disk galaxy formation commonly predict the existence of an extended reservoir of accreted hot gas surrounding massive spirals at low redshift. As a test of these models, we use X-ray and Hα data of the two massive, quiescent edge-on spirals NGC 5746 and NGC 5170 to investigate the amount and origin of any hot gas in their halos. Contrary to our earlier claim, the Chandra analysis of NGC 5746, employing more recent calibration data, does not reveal any significant evidence for diffuse X-ray emission outside the optical disk, with a 3σ upper limit to the halo X-ray luminosity of 4 x 10 39 erg s -1 . An identical study of the less massive NGC 5170 also fails to detect any extraplanar X-ray emission. By extracting hot halo properties of disk galaxies formed in cosmological hydrodynamical simulations, we compare these results to expectations for cosmological accretion of hot gas by spirals. For Milky-Way-sized galaxies, these high-resolution simulations predict hot halo X-ray luminosities which are lower by a factor of ∼2 compared to our earlier results reported by Toft et al. We find the new simulation predictions to be consistent with our observational constraints for both NGC 5746 and NGC 5170, while also confirming that the hot gas detected so far around more actively star-forming spirals is in general probably associated with stellar activity in the disk. Observational results on quiescent disk galaxies at the high-mass end are nevertheless providing powerful constraints on theoretical predictions, and hence on the assumed input physics in numerical studies of disk galaxy formation and evolution.

  6. On determining the sources of hot gas in the halo

    OpenAIRE

    R. L. Shelton

    2000-01-01

    El gas caliente sobre el disco gal actico representa un problema importante e interesante. >Podr a este gas haber sido lanzado desde el disco por burbujas calientes, provenir de fuera de la Galaxia o ser calentado in situ? Cada una de estas posibilidades tiene consecuencias importantes para la evoluci on de la Galaxia, por lo que es necesario tener mejores pruebas. Discutimos varios modelos sobre el origen del gas caliente, su historial de ionizaci on y su apariencia espectral...

  7. Normal Spiral Galaxies Really Do Have Hot Gas in Their Halos: Chandra Observations of NGC 4013 and NGC 4217.

    Science.gov (United States)

    Strickland, D. K.; Colbert, E. J. M.; Heckman, T. M.; Hoopes, C. G.; Howk, J. C.; Rand, R. J.

    2004-08-01

    Although soft X-ray emission from million degree plasma has long been observed in the halos of starburst galaxies known to have supernova-driven galactic superwinds, X-ray observations have generally failed to detect hot halos around normal spiral galaxies. Indeed, the Milky Way and NGC 891 have historically been the only genuinely "normal" spiral galaxies with unambiguous X-ray halo detections, until now. Here we report on deep observations of NGC 4013 and NGC 4217, two Milky-Way-mass spiral galaxies with star formation rates per unit area similar to the Milky Way and NGC 891, using the Chandra X-ray observatory. Preliminary investigation of the observations clearly show extra-planar diffuse X-ray emission extending several kpc into the halo of NGC 4013. We will present the results of these observations, compare them to the non-detections of hot gas around normal spirals, and relate them to galactic fountain and IGM accretion based models for hot halos. DKS acknowledges funding from NASA through the Smithsonian Astrophysical Observatory. grant G045095X.

  8. Constraining the Physical State of the Hot Gas Halos in NGC 4649 and NGC 5846

    Science.gov (United States)

    Paggi, Alessandro; Kim, Dong-Woo; Anderson, Craig; Burke, Doug; D'Abrusco, Raffaele; Fabbiano, Giuseppina; Fruscione, Antonella; Gokas, Tara; Lauer, Jen; McCollough, Michael; Morgan, Doug; Mossman, Amy; O'Sullivan, Ewan; Trinchieri, Ginevra; Vrtilek, Saeqa; Pellegrini, Silvia; Romanowsky, Aaron J.; Brodie, Jean

    2017-07-01

    We present results of a joint Chandra/XMM-Newton analysis of the early-type galaxies NGC 4649 and NGC 5846 aimed at investigating differences between mass profiles derived from X-ray data and those from optical data, to probe the state of the hot interstellar medium (ISM) in these galaxies. If the hot ISM is at a given radius in hydrostatic equilibrium (HE), the X-ray data can be used to measure the total enclosed mass of the galaxy. Differences from optically derived mass distributions therefore yield information about departures from HE in the hot halos. The X-ray mass profiles in different angular sectors of NGC 4649 are generally smooth with no significant azimuthal asymmetries within 12 kpc. Extrapolation of these profiles beyond this scale yields results consistent with the optical estimate. However, in the central region (rdisappears in the NW direction, where the emission is smooth and extended. In this sector we find consistent X-ray and optical mass profiles, suggesting that the hot halo is not responding to strong nongravitational forces.

  9. Properties of hot gas in halos of active galaxies and clusters of galaxies

    International Nuclear Information System (INIS)

    Durret-Isnard, F.

    1982-05-01

    The importance of the inverse Compton effect in the X-ray emission of cluster galaxies is discussed; the X-ray origin problem from galaxy clusters (spectra and emission mechanisms) is studied. The insufficiency of the X-ray bremsstrahlung emission model in an isothermal gas is proved. The ionized halos in narrow-line galaxies (NLG) are studied; after some general points on NLG, one NLG is described and a brief view an emission mechanism models is given; a detailed study of the galaxy IC 5063 and its nebulosity is given: the ionized gas density is calculated together with the evaporation rate for such clouds [fr

  10. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  11. A high spatial resolution X-ray and Hα study of hot gas in the halos of star-forming disk galaxies -- testing feedback models

    Science.gov (United States)

    Strickland, D. K.; Heckman, T. M.; Colbert, E. J. M.; Hoopes, C. G.; Weaver, K. A.

    2002-12-01

    We present arcsecond resolution Chandra X-ray and ground-based optical Hα imaging of a sample of ten edge-on star-forming disk galaxies (seven starburst and three ``normal'' spiral galaxies), a sample which covers the full range of star-formation intensity found in disk galaxies. The X-ray observations make use of the unprecented spatial resolution of the Chandra X-ray observatory to robustly remove X-ray emission from point sources, and hence obtain the X-ray properties of the diffuse thermal emission alone. This data has been combined with existing, comparable-resolution, ground-based Hα imaging. We compare these empirically-derived diffuse X-ray properties with various models for the generation of hot gas in the halos of star-forming galaxies: supernova feedback-based models (starburst-driven winds, galactic fountains), cosmologically-motivated accretion of the IGM and AGN-driven winds. SN feedback models best explain the observed diffuse X-ray emission. We then use the data to test basic, but fundamental, aspects of wind and fountain theories, e.g. the critical energy required for disk "break-out." DKS is supported by NASA through Chandra Postdoctoral Fellowship Award Number PF0-10012.

  12. Properties of the ISM - Gas in the halo

    Science.gov (United States)

    Savage, Blair D.

    1990-01-01

    The properties of interstellar gas in the galactic halo are reviewed. Halo gas is found to have a wide range of physical conditions with temperatures ranging from less than 170 K to more than 200,000 K. The gas extending away from the plane of the Milky Way has density scale heights ranging from less than 300 pc for certain species in the neutral medium to approximately 3000 pc for the most highly ionized gas. The complex kinematical characteristics of the gas provides important clues about its origin. The gas phase elemental abundances in the neutral halo gas are closer to solar than is found for the highly depleted gas of the Milky Way disk. The possible origin of gas at large distances away from the galactic plane is discussed.

  13. Catalytic hot gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P [VTT Energy, Espoo (Finland)

    1997-12-31

    Gasification gas that contains particulates can be purified from tars and ammonia by using nickel monolith catalysts. Temperatures over 900 deg C are required at 20 bar pressure to avoid deactivation by H{sub 2}S and carbon. Dolomites and limestones are effective tar decomposing catalysts only when calcined. Tar decomposition in gasification conditions can take place by steam or dry (CO{sub 2}) reforming reactions. These reactions follow apparent first order kinetics with respect to hydrocarbons in gasification conditions. (author) (16 refs.)

  14. Catalytic hot gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas that contains particulates can be purified from tars and ammonia by using nickel monolith catalysts. Temperatures over 900 deg C are required at 20 bar pressure to avoid deactivation by H{sub 2}S and carbon. Dolomites and limestones are effective tar decomposing catalysts only when calcined. Tar decomposition in gasification conditions can take place by steam or dry (CO{sub 2}) reforming reactions. These reactions follow apparent first order kinetics with respect to hydrocarbons in gasification conditions. (author) (16 refs.)

  15. The ATLAS(3D) project : XIX. The hot gas content of early-type galaxies: fast versus slow rotators

    NARCIS (Netherlands)

    Sarzi, Marc; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Young, Lisa M.; Weijmans, Anne-Marie

    2013-01-01

    For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet,

  16. The ATLAS3D project - XIX. The hot gas content of early-type galaxies: fast versus slow rotators

    NARCIS (Netherlands)

    Sarzi, Marc; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Young, Lisa M.; Weijmans, Anne-Marie

    For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet,

  17. Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies

    Science.gov (United States)

    Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.

    2018-04-01

    We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has an 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has a ˜13 Gyr old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyrs ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical AGN feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot halos around such massive galaxies and the growth of super/over-massive black holes via chaotic cold accretion.

  18. How Galaxies Acquire their Gas: A Map of Multiphase Accretion and Feedback in Gaseous Galaxy Halos

    Science.gov (United States)

    Tumlinson, Jason

    2009-07-01

    We propose to address two of the biggest open questions in galaxy formation - how galaxies acquire their gas and how they return it to the IGM - with a concentrated COS survey of diffuse multiphase gas in the halos of SDSS galaxies at z = 0.15 - 0.35. Our chief science goal is to establish a basic set of observational facts about the physical state, metallicity, and kinematics of halo gas, including the sky covering fraction of hot and cold material, the metallicity of infall and outflow, and correlations with galaxy stellar mass, type, and color - all as a function of impact parameter from 10 - 150 kpc. Theory suggests that the bimodality of galaxy colors, the shape of the luminosity function, and the mass-metallicity relation are all influenced at a fundamental level by accretion and feedback, yet these gas processes are poorly understood and cannot be predicted robustly from first principles. We lack even a basic observational assessment of the multiphase gaseous content of galaxy halos on 100 kpc scales, and we do not know how these processes vary with galaxy properties. This ignorance is presently one of the key impediments to understanding galaxy formation in general. We propose to use the high-resolution gratings G130M and G160M on the Cosmic Origins Spectrograph to obtain sensitive column density measurements of a comprehensive suite of multiphase ions in the spectra of 43 z sound map of the physical state and metallicity of gaseous halos, and subsets of the data with cuts on galaxy mass, color, and SFR will seek out predicted variations of gas properties with galaxy properties. Our interpretation of these data will be aided by state-of-the-art hydrodynamic simulations of accretion and feedback, in turn providing information to refine and test such models. We will also use Keck, MMT, and Magellan {as needed} to obtain optical spectra of the QSOs to measure cold gas with Mg II, and optical spectra of the galaxies to measure SFRs and to look for outflows. In

  19. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  20. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  1. Injection halos of hydrocarbons above oil-gas fields with super-high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, V.V.

    1979-09-01

    We studied the origin of injection halos of hydrocarbons above oil-gas fields with anomalously high formation pressures (AHFP). Using fields in Azerbaydzhan and Chechen-Ingushetiya as an example, we demonstrate the effect of certain factors (in particular, faults and zones of increased macro- and micro-jointing) on the morpholoy of the halos. The intensity of micro-jointing (jointing permeability, three-dimensional density of micro-jointing) is directly connected with vertical dimensions of the halos. We measured halos based on transverse profiles across the Khayan-Kort field and studied the distribution of bitumen saturation within the injection halo. Discovery of injection halos during drilling has enabled us to improve the technology of wiring deep-seated exploratory wells for oil and gas in regions with development of AHFP.

  2. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    Science.gov (United States)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  3. ZOMG - II. Does the halo assembly history influence central galaxies and gas accretion?

    Science.gov (United States)

    Romano-Díaz, Emilio; Garaldi, Enrico; Borzyszkowski, Mikolaj; Porciani, Cristiano

    2017-08-01

    The growth rate and the internal dynamics of galaxy-sized dark-matter haloes depend on their location within the cosmic web. Haloes that sit at the nodes grow in mass till the present time and are dominated by radial orbits. Conversely, haloes embedded in prominent filaments do not change much in size and are dominated by tangential orbits. Using zoom hydrodynamical simulations including star formation and feedback, we study how gas accretes on to these different classes of objects, which, for simplicity, we dub 'accreting' and 'stalled' haloes. We find that all haloes get a fresh supply of newly accreted gas in their inner regions, although this slowly decreases with time, in particular for the stalled haloes. The inflow of new gas is always higher than (but comparable with) that of recycled material. Overall, the cold-gas fraction increases (decreases) with time for the accreting (stalled) haloes. In all cases, a stellar disc and a bulge form at the centre of the simulated haloes. The total stellar mass is in excellent agreement with expectations based on the abundance-matching technique. Many properties of the central galaxies do not seem to correlate with the large-scale environment in which the haloes reside. However, there are two notable exceptions that characterize stalled haloes with respect to their accreting counterparts: (I) The galaxy disc contains much older stellar populations. (II) Its vertical scaleheight is larger by a factor of 2 or more. This thickening is likely due to the heating of the long-lived discs by mergers and close flybys.

  4. High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM

    Science.gov (United States)

    Stewart, Kyle R.; Maller, Ariyeh H.; Oñorbe, Jose; Bullock, James S.; Joung, M. Ryan; Devriendt, Julien; Ceverino, Daniel; Kereš, Dušan; Hopkins, Philip F.; Faucher-Giguère, Claude-André

    2017-07-01

    We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ˜4 times more specific angular momentum in cold halo gas (λ cold ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.

  5. High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R. [Department of Mathematical Sciences, California Baptist University, 8432 Magnolia Ave., Riverside, CA 92504 (United States); Maller, Ariyeh H. [Department of Physics, New York City College of Technology, 300 Jay St., Brooklyn, NY 11201 (United States); Oñorbe, Jose [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Bullock, James S. [Center for Cosmology, Department of Physics and Astronomy, The University of California at Irvine, Irvine, CA 92697 (United States); Joung, M. Ryan [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Devriendt, Julien [Department of Physics, University of Oxford, The Denys Wilkinson Building, Keble Rd., Oxford OX1 3RH (United Kingdom); Ceverino, Daniel [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Kereš, Dušan [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Hopkins, Philip F. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Faucher-Giguère, Claude-André [Department of Physics and Astronomy and CIERA, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208 (United States)

    2017-07-01

    We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ∼4 times more specific angular momentum in cold halo gas ( λ {sub cold} ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.

  6. Hot fuel gas dedusting after sorbent-based gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  7. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  8. Planck Intermediate Results. XI: The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar-to-halo ......We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar...... range extending from rich clusters down to $M_{500}\\sim 2\\times 10^{13} \\Msolar$, and there is a clear indication of signal down to $M_{500}\\sim 4\\times 10^{12} \\Msolar$. Planck's SZ detections in such low-mass halos imply that about a quarter of all baryons have now been seen in the form of hot halo...... gas, and that this gas must be less concentrated than the dark matter in such halos in order to remain consistent with X-ray observations. At the high-mass end, the measured SZ signal is 20% lower than found from observations of X-ray clusters, a difference consistent with Malmquist bias effects...

  9. NOT DEAD YET: COOL CIRCUMGALACTIC GAS IN THE HALOS OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Thom, Christopher; Tumlinson, Jason; Sembach, Kenneth R.; Werk, Jessica K.; Xavier Prochaska, J.; Oppenheimer, Benjamin D.; Peeples, Molly S.; Tripp, Todd M.; Katz, Neal S.; O'Meara, John M.; Ford, Amanda Brady; Davé, Romeel; Weinberg, David H.

    2012-01-01

    We report new observations of circumgalactic gas in the halos of early-type galaxies (ETGs) obtained by the COS-Halos Survey with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We find that detections of H I surrounding ETGs are typically as common and strong as around star-forming galaxies, implying that the total mass of circumgalactic material is comparable in the two populations. For ETGs, the covering fraction for H I absorption above 10 16 cm –2 is ∼40%-50% within ∼150 kpc. Line widths and kinematics of the detected material show it to be cold (T ∼ 5 K) in comparison to the virial temperature of the host halos. The implied masses of cool, photoionized circumgalactic medium baryons may be up to 10 9 -10 11 M ☉ . Contrary to some theoretical expectations, strong halo H I absorbers do not disappear as part of the quenching of star formation. Even passive galaxies retain significant reservoirs of halo baryons that could replenish the interstellar gas reservoir and eventually form stars. This halo gas may feed the diffuse and molecular gas that is frequently observed inside ETGs.

  10. Depressurization test on hot gas duct

    International Nuclear Information System (INIS)

    Tanihira, Masanori; Kunitomi; Kazuhiko; Inagaki, Yoshiyuki; Miyamoto, Yoshiaki; Sato, Yutaka.

    1989-05-01

    To study the integrity of internal structures and the characteristics in a hot gas duct under the rapid depressurization accident, depressurization tests have been carried out using a test apparatus installed the hot gas duct with the same size and the same structures as that of the High Temperature Engineering Test Reactor (HTTR). The tests have been performed with three parameters: depressurization rate (0.14-3.08 MPa/s) determined by orifice diameter, area of the open space at the slide joint (11.9-2036 mm 2 ), and initial pressure (1.0-4.0 MPa) filled up in a pressure vessel, by using nitrogen gas and helium gas. The maximum pressure difference applied on the internal structures of the hot gas duct was 2.69 MPa on the liner tube and 0.45 MPa on the separating plate. After all tests were completed, the hot gas duct which was used in the tests was disassembled. Inspection revealed that there were no failure and no deformation on the internal structures such as separating plates, insulation layers, a liner tube and a pressure tube. (author)

  11. Evolution of Hot Gas in Elliptical Galaxies

    Science.gov (United States)

    Mathews, William G.

    2004-01-01

    This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.

  12. Physics of dust grains in hot gas

    International Nuclear Information System (INIS)

    Draine, B.T.; Salpeter, E.E.

    1979-01-01

    Charging of dust grains in hot (10 4 --10 9 K) plasma is studied, including photoelectron and secondary electron emission, field emission, and transmission of electrons and ions through the grain; resulting grain potentials are (for T > or approx. = 10 5 K) considerably smaller in magnitude than found by Burke and Silk. Even so, large electrostatic stresses can cause ion field emission and rapid destruction of small grains in very hot gas. Rapid rotation can also disrupt small grains, but damping (by microwave emission) usually limits the centrifugal stress to acceptable values for plasma densities n/sub H/ -3 . Sputtering rates are estimated for grains in hot gas, based upon a semiempirical fit to experimental data. Predicted sputtering rates for possible grain constituents are similar to estimates by Barlow, but in some cases differ significantly. Useful approximation formulae are given for the drag forces acting on a grain with arbitrary Mach number

  13. Catalytic hot gas cleaning of gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The aim of this work was to study the catalytic cleaning of gasification gas from tars and ammonia. In addition, factors influencing catalytic activity in industrial applications were studied, as well as the effects of different operation conditions and limits. Also the catalytic reactions of tar and ammonia with gasification gas components were studied. The activities of different catalyst materials were measured with laboratory-scale reactors fed by slip streams taken from updraft and fluid bed gasifiers. Carbonate rocks and nickel catalysts proved to be active tar decomposing catalysts. Ammonia decomposition was in turn facilitated by nickel catalysts and iron materials like iron sinter and iron dolomite. Temperatures over 850 deg C were required at 2000{sup -1} space velocity at ambient pressure to achieve almost complete conversions. During catalytic reactions H{sub 2} and CO were formed and H{sub 2}O was consumed in addition to decomposing hydrocarbons and ammonia. Equilibrium gas composition was almost achieved with nickel catalysts at 900 deg C. No deactivation by H{sub 2}S or carbon took place in these conditions. Catalyst blocking by particulates was avoided by using a monolith type of catalyst. The apparent first order kinetic parameters were determined for the most active materials. The activities of dolomite, nickel catalyst and reference materials were measured in different gas atmospheres using laboratory apparatus. This consisted of nitrogen carrier, toluene as tar model compound, ammonia and one of the components H{sub 2}, H{sub 2}O, CO, CO{sub 2}, CO{sub 2}+H{sub 2}O or CO+CO{sub 2}. Also synthetic gasification gas was used. With the dolomite and nickel catalyst the highest toluene decomposition rates were measured with CO{sub 2} and H{sub 2}O. In gasification gas, however, the rate was retarded due to inhibition by reaction products (CO, H{sub 2}, CO{sub 2}). Tar decomposition over dolomite was modelled by benzene reactions with CO{sub 2}, H

  14. Control apparatus for hot gas engine

    Science.gov (United States)

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  15. Hot-Gas Filter Ash Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.

    1997-07-01

    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  16. THE SMOOTH Mg II GAS DISTRIBUTION THROUGH THE INTERSTELLAR/EXTRA-PLANAR/HALO INTERFACE

    Energy Technology Data Exchange (ETDEWEB)

    Kacprzak, Glenn G.; Cooke, Jeff; Ryan-Weber, Emma V. [Swinburne University of Technology, VIC 3122 (Australia); Churchill, Christopher W.; Nielsen, Nikole M., E-mail: gkacprzak@astro.swin.edu.au [New Mexico State University, Las Cruces, NM 88003 (United States)

    2013-11-01

    We report the first measurements of Mg II absorption systems associated with spectroscopically confirmed z ∼ 0.1 star-forming galaxies at projected distances of D < 6 kpc. We demonstrate that the data are consistent with the well-known anti-correlation between rest-frame Mg II equivalent width, W{sub r} (2796), and impact parameter, D, represented by a single log-linear relation derived by Nielsen et al. (MAGIICAT) that converges to ∼2 Å at D = 0 kpc. Incorporating MAGIICAT, we find that the halo gas covering fraction is unity below D ∼ 25 kpc. We also report that our D < 6 kpc absorbers are consistent with the W{sub r} (2796) distributions of the Milky Way interstellar medium (ISM) and ISM+halo. In addition, quasar sight lines of intermediate redshift galaxies with 6 < D < 25 kpc have an equivalent width distribution similar to that of the Milky Way halo, implying that beyond ∼6 kpc, quasar sight lines are likely probing halo gas and not the ISM. As inferred by the Milky Way and our new data, the gas profiles of galaxies can be fit by a single log-linear W{sub r} (2796)-D relation out to large scales across a variety of gas-phase conditions and is maintained through the halo/extra-planar/ISM interfaces, which is remarkable considering their kinematic complexity. These low-redshift, small impact parameter absorption systems are the first steps to bridge the gap between quasar absorption-line studies and H I observations of the circumgalactic medium.

  17. Transport of gas from disk to halo in starforming galaxies

    Directory of Open Access Journals (Sweden)

    Shevchenko Mikhail G.

    2017-12-01

    Full Text Available Using 3-D gas dynamic simulations, we study the supernova (SNe driven transport of gas from the galactic disk. We assume that SNe are distributed randomly and uniformly in the galactic plane and we consider sufficiently high volume SNe rates that are typical for starforming galaxies: νSN = (0.3 − 3 × 10−11 pc−3 yr−1. We found that under such conditions, a major part of gas locked initially in the galactic disk is transported up to ∼ 1 − 5 stellar scale heights within several millions years. As expected gas transport is more efficient in the case of a thinner stellar disk. An decrease/increase of SN rate in the galactic disk with the same stellar scale height leads to an enlarging/shortening of time scale for gas transport. Independent of SN rate, the major fraction of the swept up gas is in the cold phase (T 106 K is elevated to larger heights than cold gas.

  18. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  19. Gas infall into atomic cooling haloes: on the formation of protogalactic disks and supermassive black holes at z > 10

    CERN Document Server

    Prieto, Joaquin; Haiman, Zoltan

    2013-01-01

    We have performed cosmo-hydro simulations using the RAMSES code to study atomic cooling (ACHs) haloes at z=10 with masses 5E7Msun10 to date. We examine the morphology, angular momentum (AM), thermodynamic, and turbulence of these haloes, in order to assess the prevalence of disks and supermassive black holes (SMBHs). We find no correlation between either the magnitude or the direction of the AM of the gas and its parent DM halo. Only 3 haloes form rotationally supported cores. Two of the most massive haloes form massive, compact overdense blobs. These blobs have an accretion rate ~0.5 Msun/yr (at a distance of 100 pc), and are possible sites of SMBH formation. Our results suggest that the degree of rotational support and the fate of the gas in a halo is determined by its large-scale environment and merger history. In particular, the two haloes forming blobs are located at knots of the cosmic web, cooled early on, and experienced many mergers. The gas in these haloes is lumpy and highly turbulent, with Mach N....

  20. The Klinger hot gas double axial valve

    International Nuclear Information System (INIS)

    Kruschik, J.; Hiltgen, H.

    1984-01-01

    The Klinger hot gas valve is a medium controlled double axial valve with advanced design features and safety function. It was first proposed by Klinger early in 1976 for the PNP-Project as a containment shut-off for hot helium (918 deg. C and 42 bar), because a market research has shown that such a valve is not state of present techniques. In the first stage of development a feasibility study had to be made by detailed design, calculation and by basic experiments for key components in close collaboration with Interatom/GHT. This was the basis for further design, calculation, construction and experimental work for such a valve prototype within the new development contract. The stage of knowledge to that time revealed the following key priority development areas: Finite element stress analysis for the highly stressed high temperature main components; development of an insulation layout; Detailed experimental tests of functionally important structural components or units of the valve, partly at Klingers (gasstatic bearings, flexible metallic sealing element, aerodynamic and thermohydraulic tests), partly at Interatom (actuator unit and also gasstatic bearings), partly at HRB in Juelich (flexible metallic sealing system, aerodynamic and thermohydraulic tests); Design of a test valve for experimental work in the KVK (test circuit at Interatom) for evaluation of temperature distribution and reliability of operation; Design of a prototype and extensive testing in the KVK

  1. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  2. Dynamic simulation for hot gas cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Zeppi, C.; Berg, H.; Vitolo, S.; Tartarelli, R.; Tonini, D.; Zaccagnini, M. (ENEL CRTN, Pisa (Italy))

    1993-01-01

    Removal of sulfur compounds from hot coal gas is a necessary step during power generation operations. Metal oxides such as zinc ferrite, zinc titanate and tin oxide have been identified as promising adsorbent materials. A mathematical model capable of describing the sulfidation phase in fixed-, moving- and fluidized-bed reactors has been developed. Equations selected are sufficiently simple and numerical solutions can be obtained in a reasonable time using available computer equipment. At the same time the equations produce satisfactory agreement with experimental results. This paper presents kinetic models of spherical sorbent-particles applicable to all reactor configurations and a mathematical model limited to the moving-bed reactor. 10 refs., 5 figs.

  3. THE SMOOTH Mg II GAS DISTRIBUTION THROUGH THE INTERSTELLAR/EXTRA-PLANAR/HALO INTERFACE

    International Nuclear Information System (INIS)

    Kacprzak, Glenn G.; Cooke, Jeff; Ryan-Weber, Emma V.; Churchill, Christopher W.; Nielsen, Nikole M.

    2013-01-01

    We report the first measurements of Mg II absorption systems associated with spectroscopically confirmed z ∼ 0.1 star-forming galaxies at projected distances of D r (2796), and impact parameter, D, represented by a single log-linear relation derived by Nielsen et al. (MAGIICAT) that converges to ∼2 Å at D = 0 kpc. Incorporating MAGIICAT, we find that the halo gas covering fraction is unity below D ∼ 25 kpc. We also report that our D r (2796) distributions of the Milky Way interstellar medium (ISM) and ISM+halo. In addition, quasar sight lines of intermediate redshift galaxies with 6 r (2796)-D relation out to large scales across a variety of gas-phase conditions and is maintained through the halo/extra-planar/ISM interfaces, which is remarkable considering their kinematic complexity. These low-redshift, small impact parameter absorption systems are the first steps to bridge the gap between quasar absorption-line studies and H I observations of the circumgalactic medium

  4. Dynamics of a hot (T∼107 K) gas cloud with volume energy losses

    International Nuclear Information System (INIS)

    Suchkov, A.A.; Berman, V.G.; Mishurov, Yu.N.

    1987-01-01

    The dynamics of a hot (T=10 6 -5x10 7 K) gas cloud with volume energy losses is investigated by numerical integration of gas dynamics equations. The dynamics is governed by a spherically symmetric gravitational field of the cloud and additional ''hidden'' mass. The cloud mass is taken in the range M 0 =10 10 -10 12 M sun , its radius R 0 =50-200 kpc, the ''hidden'' mass M ν =10 11 -3x10 13 M sun . The results show that in such sytems a structure can develop in the form of a dense compact nucleus with a radius R s 0 , and an extended rarefied hot envelope with a radius R X ∼ R 0 . Among the models involved are those where the gas cloud is either entirely blown up or entirely collapses; in some models, after the phase of initial expansion, part of the gas mass returns back into the system to form a nucleus and an envelope, and the other part leaves the system. The results are discussed in connection with the formation and early evolution of galaxies, the history of star formation and chemical evolution of galaxies, the origin of hot gas in galaxies and clusters of galaxies. It is suggested that in the real history of galaxies, formation of the nucleus and envelope corresponds to formation of galactic stellar component and X-ray halo

  5. Dynamical behaviour of gaseous halo in a disk galaxy

    International Nuclear Information System (INIS)

    Ikeuchi, S.; Habe, A.

    1981-01-01

    Assuming that the gas in the halo of a disk galaxy is supplied from the disk as a hot gas, the authors have studied its dynamical and thermal behaviour by means of a time dependent, two-dimensional hydrodynamic code. They suppose the following boundary conditions at the disk. (i) The hot gas with the temperature Tsub(d) and the density nsub(d) is uniform at r=4-12 kpc in the disk and it is time independent. (ii) This hot gas rotates with the stellar disk in the same velocity. (iii) This hot gas can escape freely from the disk to the halo. These conditions will be verified if the filling factor of hot gas is so large as f=0.5-0.8, as proposed by McKee and Ostriker (1977). The gas motion in the halo has been studied for wider ranges of gas temperature and its density at the disk than previously studied. At the same time, the authors have clarified the observability of various types of gaseous haloes and discuss the roles of gaseous halo on the evolution of galaxies. (Auth.)

  6. Dust characterisation for hot gas filters

    Energy Technology Data Exchange (ETDEWEB)

    Dockter, B.; Erickson, T.; Henderson, A.; Hurley, J.; Kuehnel, V.; Katrinak, K.; Nowok, J.; O`Keefe, C.; O`Leary, E.; Swanson, M.; Watne, T. [University of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center (UNDEERC)

    1998-03-01

    Hot gas filtration to remove particulates from the gas flow upstream of the gas turbine is critical to the development of many of the advanced coal-fired power generation technologies such as the Air Blown Gasification Cycle (ABGC), a hybrid gasification combined cycle being developed in the UK. Ceramic candle filters are considered the most promising technology for this purpose. Problems of mechanical failure and of `difficult-to-clean` dusts causing high pressure losses across the filter elements need to be solved. The project investigated the behaviour of high-temperature filter dusts, and the factors determining the ease with which they can be removed from filters. The high-temperature behaviour of dusts from both combustion and gasification systems was investigated. Dust samples were obtained from full-scale demonstration and pilot-scale plant operating around the world. Dust samples were also produced from a variety of coals, and under several different operating conditions, on UNDEERC`s pilot-scale reactor. Key factors affecting dust behaviour were examined, including: the rates of tensile strength developing in dust cakes; the thermochemical equilibria pertaining under filtration conditions; dust adhesivity on representative filter materials; and the build-up and cleaning behaviour of dusts on representative filter candles. The results obtained confirmed the importance of dust temperature, dust cake porosity, cake liquid content, and particle size distribution in determining the strength of a dust cake. An algorithm was developed to indicate the likely sticking propensity of dusts as a function of coal and sorbent composition and combustion conditions. This algorithm was incorporated into a computer package which can be used to judge the degree of difficulty in filter cleaning that can be expected to arise in a real plant based on operating parameters and coal analyzes. 6 figs.

  7. On the origin of the warm-hot absorbers in the Milky Way's halo

    NARCIS (Netherlands)

    Marasco, A.; Marinacci, F.; Fraternali, F.

    2013-01-01

    Disc galaxies like the Milky Way are expected to be surrounded by massive coronae of hot plasma that may contain a significant fraction of the so-called missing baryons. We investigate whether the local (vertical bar v(LSR)vertical bar <400 km s(-1)) warm-hot absorption features observed towards

  8. Hot gas path component having near wall cooling features

    Science.gov (United States)

    Miranda, Carlos Miguel; Kottilingam, Srikanth Chandrudu; Lacy, Benjamin Paul

    2017-11-28

    A method for providing micro-channels in a hot gas path component includes forming a first micro-channel in an exterior surface of a substrate of the hot gas path component. A second micro-channel is formed in the exterior surface of the hot gas path component such that it is separated from the first micro-channel by a surface gap having a first width. The method also includes disposing a braze sheet onto the exterior surface of the hot gas path component such that the braze sheet covers at least of portion of the first and second micro-channels, and heating the braze sheet to bond it to at least a portion of the exterior surface of the hot gas path component.

  9. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the tenth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task I is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, analyses were performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. A site visit was made to the Power Systems Development Facility (PSDF) to collect ash samples from the filter vessel and to document the condition of the filter vessel with still photographs and videotape. Particulate samples obtained during this visit are currently being analyzed for entry into the Hot Gas Cleanup (HGCU) data base. Preparations are being made for a review meeting on ash bridging to be held at Department of Energy Federal Energy Technology Center - Morgantown (DOE/FETC-MGN) in the near future. Most work on Task 2 was on hold pending receipt of additional funds; however, creep testing of Schumacher FT20 continued. The creep tests on Schumacher FT20 specimens just recently ended and data analysis and comparisons to other data are ongoing. A summary and analysis of these creep results will be sent out shortly. Creep

  10. HOT AND COLD GALACTIC GAS IN THE NGC 2563 GALAXY GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Jesper [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Bai, Xue-Ning [Department of Astrophysical Sciences, Peyton Hall, Princeton University, NJ 08544 (United States); Mulchaey, John S. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Van Gorkom, J. H.; Lee, Duane [Department of Astronomy, Columbia University, Mail Code 5246, 550 West 120th Street, New York, NY 10027 (United States); Jeltema, Tesla E. [UCO/Lick Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Zabludoff, Ann I. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Wilcots, Eric [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St., Madison, WI 53706 (United States); Martini, Paul [Department of Astronomy, 4055 McPherson Laboratory, Ohio State University, 140 West 18th Avenue, Columbus, OH (United States); Roberts, Timothy P., E-mail: jr@dark-cosmology.dk [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-03-01

    The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc ({approx}1.4 R{sub vir}) of the group center, down to a limiting X-ray luminosity and H I mass of 3 Multiplication-Sign 10{sup 39} erg s{sup -1} and 2 Multiplication-Sign 10{sup 8} M{sub Sun }, respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The H I results suggest moderate H I mass loss from the group members when compared to similar field galaxies. Six of the 20 H I-detected group members show H I evidence of ongoing interactions with other galaxies or with the intragroup medium. Suggestive evidence is further seen for galaxies with close neighbors in position-velocity space to show relatively low H I content, consistent with tidal removal of H I. The results thus indicate removal of both hot and cold gas from the group members via a combination of ram pressure stripping and tidal interactions. We also find that 16 of the 20 H I detections occur on one side of the group, reflecting an unusual morphological segregation whose origin remains unclear.

  11. HOT AND COLD GALACTIC GAS IN THE NGC 2563 GALAXY GROUP

    International Nuclear Information System (INIS)

    Rasmussen, Jesper; Bai, Xue-Ning; Mulchaey, John S.; Van Gorkom, J. H.; Lee, Duane; Jeltema, Tesla E.; Zabludoff, Ann I.; Wilcots, Eric; Martini, Paul; Roberts, Timothy P.

    2012-01-01

    The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc (∼1.4 R vir ) of the group center, down to a limiting X-ray luminosity and H I mass of 3 × 10 39 erg s –1 and 2 × 10 8 M ☉ , respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The H I results suggest moderate H I mass loss from the group members when compared to similar field galaxies. Six of the 20 H I-detected group members show H I evidence of ongoing interactions with other galaxies or with the intragroup medium. Suggestive evidence is further seen for galaxies with close neighbors in position-velocity space to show relatively low H I content, consistent with tidal removal of H I. The results thus indicate removal of both hot and cold gas from the group members via a combination of ram pressure stripping and tidal interactions. We also find that 16 of the 20 H I detections occur on one side of the group, reflecting an unusual morphological segregation whose origin remains unclear.

  12. Geochemical haloes as an indication of over oil and gas fields in the Arctic shelf

    Science.gov (United States)

    Kholmiansky, Mikhail; Anokhin, Vladimir

    2013-04-01

    Hydrocarbon deposits at the Arctic shelf of Russia are a source of jet dispersion of heavy metals that forms haloes in sediments and in the bottom layer of sea water. The intensity of the haloes and their spatial position are jointly determined by geological structure of their source and the environment, i.e., hydrocarbon deposits in host rocks, seafloor lithodynamics and oceanographic factors. Based on theoretical works of Kholmyansky and Putikov (2000; 2006; 2008), an application of electrochemical modification of electric prospecting for offshore hydrocarbon exploration and detailed survey of the morphology of deposits was developed. Specialized equipment was developed for studies of electrochemical features of bottom water layer. With this equipment one can detect ion anomalies in water and determine the type of deposit as gas, gas hydrate, gas condensate or oil. At operation, the unit with equipment is towed underwater off the stern of research vessel. Type and configuration of deposits are determined based on occurrence of trace heavy metals detected by ion-selective electrodes. The proposed method was applied to study a few hydrocarbon fields in Barents and Kara seas in 2001 -2012 including Shtokman, Medyn, Polyarnoe, Prirazlomnoye and others. The results allowed us to trace the margins of the deposits in more detail, and geochemical data, in addition, showed the type of deposits. In general, the method has proven efficient and applicable to a wide range of hydrocarbon deposits.

  13. Status of the development of hot gas ducts for HTRs

    International Nuclear Information System (INIS)

    Stehle, H.; Klas, E.

    1984-01-01

    In the PNP nuclear process heat system the heat generated in the helium cooled core is transferred to the steam reformer and to the successive steam generator or to the intermediate heat exchanger by the primary helium via suitable hot gas ducts. The heat is carried over to the steam gasifier by the intermediate heat exchanger and a secondary helium loop. In both the primary and the secondary loop, the hot gas ducts are internally insulated by a ceramic fibre insulation to protect the support tube and the pressure housing from the high helium temperatures. A graphite hot gas liner will be used for the coaxial primary duct with an annular gap between support tube and pressure shell for the cold gas counterflow. A metallic hot gas liner will be installed in the secondary duct

  14. HOT GAS LINES IN T TAURI STARS

    International Nuclear Information System (INIS)

    Ardila, David R.; Herczeg, Gregory J.; Gregory, Scott G.; Hillenbrand, Lynne A.; Ingleby, Laura; Bergin, Edwin; Bethell, Thomas; Calvet, Nuria; France, Kevin; Brown, Alexander; Edwards, Suzan; Johns-Krull, Christopher; Linsky, Jeffrey L.; Yang, Hao; Valenti, Jeff A.; Abgrall, Hervé; Alexander, Richard D.; Brown, Joanna M.; Espaillat, Catherine; Hussain, Gaitee

    2013-01-01

    For Classical T Tauri Stars (CTTSs), the resonance doublets of N V, Si IV, and C IV, as well as the He II 1640 Å line, trace hot gas flows and act as diagnostics of the accretion process. In this paper we assemble a large high-resolution, high-sensitivity data set of these lines in CTTSs and Weak T Tauri Stars (WTTSs). The sample comprises 35 stars: 1 Herbig Ae star, 28 CTTSs, and 6 WTTSs. We find that the C IV, Si IV, and N V lines in CTTSs all have similar shapes. We decompose the C IV and He II lines into broad and narrow Gaussian components (BC and NC). The most common (50%) C IV line morphology in CTTSs is that of a low-velocity NC together with a redshifted BC. For CTTSs, a strong BC is the result of the accretion process. The contribution fraction of the NC to the C IV line flux in CTTSs increases with accretion rate, from ∼20% to up to ∼80%. The velocity centroids of the BCs and NCs are such that V BC ∼> 4 V NC , consistent with the predictions of the accretion shock model, in at most 12 out of 22 CTTSs. We do not find evidence of the post-shock becoming buried in the stellar photosphere due to the pressure of the accretion flow. The He II CTTSs lines are generally symmetric and narrow, with FWHM and redshifts comparable to those of WTTSs. They are less redshifted than the CTTSs C IV lines, by ∼10 km s –1 . The amount of flux in the BC of the He II line is small compared to that of the C IV line, and we show that this is consistent with models of the pre-shock column emission. Overall, the observations are consistent with the presence of multiple accretion columns with different densities or with accretion models that predict a slow-moving, low-density region in the periphery of the accretion column. For HN Tau A and RW Aur A, most of the C IV line is blueshifted suggesting that the C IV emission is produced by shocks within outflow jets. In our sample, the Herbig Ae star DX Cha is the only object for which we find a P-Cygni profile in the C IV

  15. Biomass gasification hot gas cleanup for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, B.C.; Bachovchin, D.M. [Westinghouse Electric Corp., Orlando, FL (United States); Carty, R.H.; Onischak, M. [Institute of Gas Technology, Chicago, IL (United States); Horazak, D.A. [Gilbert/Commonwealth, Reading, PA (United States); Ruel, R.H. [The Pacific International Center for High Technology Research, Honolulu, HI (United States)

    1993-12-31

    In support of the US Department of Energy`s Biomass Power Program, a Westinghouse Electric led team consisting of the Institute of Gas Technology (IGT), Gilbert/Commonwealth (G/C), and the Pacific International Center for High Technology Research (PICHTR), is conducting a 30 month research and development program. The program will provide validation of hot gas cleanup technology with a pressurized fluidized bed, air-blown, biomass gasifier for operation of a gas turbine. This paper discusses the gasification and hot gas cleanup processes, scope of work and approach, and the program`s status.

  16. Thermal performance test of the hot gas ducts of HENDEL

    International Nuclear Information System (INIS)

    Hishida, M.; Kunitomi, K.; Ioka, I.; Umenishi, K.; Tanaka, T.; Shimomura, H.; Sanokawa, K.

    1984-01-01

    A hot gas duct provided with internal thermal insulation is to be used for high-temperature gas-cooled reactors (HTGR). This type of hot gas duct has not been used so far in industrial facilities, and only a couple of tests on such a large-scale model of a hot gas duct have been conducted. The present report deals with the results of the thermal performance of the single tube type hot gas ducts which are installed as parts of a helium engineering demonstration loop (HENDEL). Uniform temperature and heat flux distribution at the surface of the duct were observed, the experimental correlations being obtained for the effective thermal conductivity of the internal thermal insulation layer. The measured temperature distribution of the pressure tube was in good agreement with the calculation by a TRUMP heat transfer computer code. The temperature distribution of the inner tube of the co-axial hot gas duct was evaluated and no hot spot was detected. These results would be very valuable for the design and development of HTGR. (orig.)

  17. Power control system for a hot gas engine

    Science.gov (United States)

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  18. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the eleventh in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task 1 is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task 1 during the past quarter, analyses were completed on samples obtained during a site visit to the Power Systems Development Facility (PSDF). Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. An additional analysis was performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. A manuscript and poster were prepared for presentation at the Advanced Coal-Based Power and Environmental Systems `97 Conference scheduled for July 22 - 24, 1997. A summary of recent project work covering the mechanisms responsible for ash deposit consolidation and ash bridging in APF`s collecting PFB ash was prepared and presented at FETC-MGN in early July. The material presented at that meeting is included in the manuscript prepared for the Contractor`s Conference and also in this report. Task 2 work during the past quarter included mechanical testing and microstructural examination of Schumacher FT20 and Pall 326 as- manufactured, after 540 hr in service at Karhula, and after 1166 hr in service at

  19. The effect of stellar feedback on a Milky Way-like galaxy and its gaseous halo

    NARCIS (Netherlands)

    Marasco, Antonino; Debattista, Victor P.; Fraternali, Filippo; van der Hulst, Thijs; Wadsley, James; Quinn, Thomas; Roškar, Rok

    We present the study of a set of N-body+smoothed particle hydrodynamics simulations of a Milky Way-like system produced by the radiative cooling of hot gas embedded in a dark matter halo. The galaxy and its gaseous halo evolve for 10 Gyr in isolation, which allows us to study how internal processes

  20. Extraplanar H II Regions in Spiral Galaxies. I. Low-metallicity Gas Accreting through the Disk-halo Interface of NGC 4013

    Science.gov (United States)

    Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.

    2018-04-01

    The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous, thick disk H II region located at z = 860 pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an Hα luminosity ∼4–7 times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H II regions. From our emission line spectroscopy, we show that the metal content of the thick disk H II region is a factor of ≈2 lower than gas in H II regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by ‑0.32 ± 0.09 dex). This implies incomplete mixing of material in the thick disk on small scales (hundreds of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently proposed “fountain-driven” accretion models.

  1. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    Energy Technology Data Exchange (ETDEWEB)

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  2. Advanced sulfur control concepts for hot gas desulfurization technology

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H 2 S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct. The Direct Sulfur Recovery Process (DSRP), a leading process for producing an elemental sulfur byproduct in hot-gas desulfurization systems, incurs a coal gas use penalty, because coal gas is required to reduce the SO 2 in regeneration off-gas to elemental sulfur. Alternative regeneration schemes, which avoid coal gas use and produce elemental sulfur, will be evaluated. These include (i) regeneration of sulfided sorbent using SO 2 ; (ii) partial oxidation of sulfided sorbent in an O 2 starved environment; and (iii) regeneration of sulfided sorbent using steam to produce H 2 S followed by direct oxidation of H 2 S to elemental sulfur. Known regenerable sorbents will be modified to improve the feasibility of the above alternative regeneration approaches. Performance characteristics of the modified sorbents and processes will be obtained through lab- and bench-scale testing. Technical and economic evaluation of the most promising processes concept(s) will be carried out

  3. Method of removing hydrogen sulphide from hot gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Yumura, M.

    1987-12-22

    Hydrogen sulphide can be removed from hot gas mixtures by contacting the hot gas mixture at temperatures in the range of 500-900/sup 0/C with an adsorbent consisting of managanese nodules. The nodules may contain additional calcium cations. In sulphided form, the nodules are catalytically active for hydrogen sulphide decomposition to produce hydrogen. Regeneration of the adsorbent can be accomplished by roasting in an oxidizing atmosphere. The nodules can be used to treat gaseous mixtures containing up to 20% hydrogen sulfide, for example, gases produced during pyrolysis, cracking, coking, and hydrotreating processes. Experiments using the processes described in this patent are also outlined. 6 tabs.

  4. The role of the Milky Way hot coronal gas on its dwarf galaxies stellar population

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2015-08-01

    A large amount (˜5 ×1010 Msun) of hot gas is thought to exist in an extended (˜200 kpc) hot diffuse halo around the Milky Way (MW). We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation history of gravitationally bound system in this external environment. Ram pressure, Kelvin-Helmholtz instability, Rayleigh-Taylor, and tidal forces are accounted separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment useful in observational applications as well as theoretical interpretations of numerical results.We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance.The theoretical framework developed has direct applications to the cases of our MW system as well as dwarf galaxies in galaxy clusters or any primordial gas-rich cluster of stars orbiting within its host galaxy.

  5. Study of the Milky Way's hot coronal gas with its dwarf galaxies

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; Fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2016-08-01

    A large amount (5 × 1010 M⊙) of hot gas is thought to exist in an extended (~ 200 kpc) hot diffuse halo around the Milky Way. We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation of this gravitationally bound systems in this external environment. Ram pressure, Kelvin-Helmholtz and Rayleigh- Taylor instabilities, and tidal forces are accounted for separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment, useful in observational applications as well as theoretical interpretations of numerical results. We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system, thus investigating the detectability limits and relevance of these different effects for future observational projects. The theoretical framework developed has direct applications to the cases of our MW system as well as dwarf galaxies in galaxy clusters or any primordial gas-rich star cluster of stars orbiting within its host galaxy.

  6. Hot-Gas Desulfurization with Sulfur Recovery

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Damle, Ashok S.; Gangwal, Santosh K.

    1997-01-01

    The objective of this study is to develop a second generation HGD process that regenerates the sulfided sorbent directly to elemental sulfur using SO 2 , with minimal consumption of coal gas. The goal is to have better overall economics than DSRP when integrated with the overall IGCC system

  7. Evolution of the atomic and molecular gas content of galaxies in dark matter haloes

    NARCIS (Netherlands)

    Popping, Gergö; Behroozi, Peter S.; Peeples, Molly S.

    We present a semi-empirical model to infer the atomic and molecular hydrogen content of galaxies as a function of halo mass and time. Our model combines the star formation rate (SFR)-halo mass-redshift relation (constrained by galaxy abundances) with inverted SFR-surface density relations to infer

  8. Core-in-shell sorbent for hot coal gas desulfurization

    Science.gov (United States)

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  9. Bench-Scale Demonstration of Hot-Gas Desulfurization Technology

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Gangwal, Santosh K.

    1997-01-01

    Prior to the current project, development of the DSRP was done in a laboratory setting, using synthetic gas mixtures to simulate the regeneration off-gas and coal gas feeds. The objective of the current work is to further the development of zinc titanate fluidized-bed desulfurization (ZTFBD) and the DSRP for hot-gas cleanup by testing with actual coal gas. The objectives of this project are to: (1) Develop and test an integrated, skid-mounted, bench-scale ZTFBD/DSRP reactor system with a slipstream of actual coal gas; (2) Test the bench-scale DSRP over an extended period with a slipstream of actual coal gas to quantify the degradation in performance, if any, caused by the trace contaminants present in coal gas (including heavy metals, chlorides, fluorides, and ammonia); (3) Expose the DSRP catalyst to actual coal gas for extended periods and then test its activity in a laboratory reactor to quantify the degradation in performance, if any, caused by static exposure to the trace contaminants in coal gas; (4) Design and fabricate a six-fold larger-scale DSRP reactor system for future slipstream testing; (5) Further develop the fluidized-bed DSRP to handle high concentrations (up to 14 percent) of SO 2 that are likely to be encountered when pure air is used for regeneration of desulfurization sorbents; and (6) Conduct extended field testing of the 6X DSRP reactor with actual coal gas and high concentrations of SO 2 . The accomplishment of the first three objectives--testing the DSRP with actual coal gas, integration with hot-gas desulfurization, and catalyst exposure testing--was described previously (Portzer and Gangwal, 1994, 1995; Portzer et al., 1996). This paper summarizes the results of previous work and describes the current activities and plans to accomplish the remaining objectives

  10. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2)TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2)TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  11. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2)TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2)TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  12. Cosmic X-ray background from hot gas

    International Nuclear Information System (INIS)

    Rogers, R.D.; Field, G.B.

    1991-01-01

    This paper considers constraints on models of the cosmic X-ray background (XRB) in which the XRB is produced by optically thin thermal bremsstrahlung from hot gas. It is shown that models in which the gas is gravitationally confined in a spherical configuration and is heated only once are contradicted by the observed number of gravitationally lensed quasars together with the lower limit on the number of XRB sources required by limits on fluctuations in the XRB and the cosmic microwave background. In addition, it is shown that, for models in which the gas is not gravitationally confined, the expansion time of the gas is much shorter than the radiative cooling time, so that such models cannot explain the XRB. It is concluded that thermal bremsstrahlung models cannot account for the XRB if the emitting gas is heated only once. 31 refs

  13. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    Science.gov (United States)

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  14. Exploring Hot Gas at Junctions of Galaxy Filaments

    Science.gov (United States)

    Mitsuishi, Ikuyuki; Yamasaki, Noriko; Kawahara, Hajime; Sekiya, Norio; Sasaki, Shin; Sousbie, Thierry

    Because galaxies are forced to follow the strong gravitational potential created by the underlying cosmic web of the dark matter, their distribution reflects its filamentary structures. By identifying the filamentary structures, one can therefore recover a map of the network that drives structure formation. Filamentary junctions are regions of particular interest as they identify places where mergers and other interesting astrophysical phenomena have high chances to occur. We identified the galaxy filaments by our original method (Sousbie (2011) & Sousbie et al. (2011)) and X-ray pointing observations were conducted for the six fields locating in the junctions of the galaxy filaments where no specific diffuse X-ray emissions had previously been detected so far. We discovered significant X-ray signals in their images and spectra of the all regions. Spectral analysis demonstrated that six sources originate from diffuse emissions associated with optically bright galaxies, group-scale, or cluster-scale X-ray halos with kT˜1-4 keV, while the others are compact object origin. Interestingly, all of the newly discovered three intracluster media show peculiar features such as complex or elongated morphologies in X-ray and/or optical and hot spot involved in ongoing merger events (Kawahara et al. (2011) & Mitsuishi et al. (2014)). In this conference, results of follow-up radio observations for the merging groups as well as the details of the X-ray observations will be reported.

  15. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2) TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2) TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown below: Sulfidation: Zn(sub 2) TiO(sub 4)+ 2H(sub 2)S(yields) 2ZnS+ TiO(sub 2)+ 2H(sub 2)O; Regeneration: 2ZnS+ TiO(sub 2)+ 3O(sub 2)(yields) Zn(sub 2) TiO(sub 4)+ 2SO(sub 2) The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  16. Rheinbraun`s experience in hot gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Renzenbrink, W.; Wischnewski, R. [Rheinbraun AG, Koeln (Germany)

    1998-11-01

    For the introduction of modern types of power stations like IGCC, PCFBC, etc. the application of a functional hot gas filter is of essential importance. A hot gas filter with two tiers for dry and complete dedusting of the entire raw gas flow of 53,000 m{sup 3}(STP)/h was started up in 1993 in the High Temperature Winkler (HTW) coal gasification demonstration plant in Hurth/Berrenrath near Cologne, Germany. The operational data of the filter are a pressure of 10 bar and a temperature of 270{degree}C. The filter was supplied by the `LLB` company and is characterised by the principle of upright arrangement of the ceramic filter elements. During nearly 8,000 h of plant operation up to September 1995 the filter showed stable and safe operation, a separation efficiency of {gt}99.98%, a 21% reduction in filtration surface, reduction in cleaning gas requirement by factor 10, reduction in cleaning gas pressure to 16 bar and a significant reduction in maintenance and operating costs. The resultant clean gas dust content was {lt} 3 mg/m{sup 3}(STP) compared to the design value of 5 mg/m{sup 3}(STP). In a test to the limit of operation one failure occurred when 20 candles broke. In order to yield larger filtering surfaces in very large filter units, e.g. for IGCCs, without using more than one filter the multistage design is the only sensible solution. Prior to industrial-scale application such a system has to be tested. Therefore the two-tier filter was converted into a three-tier type with separate filter modules at the end of 1995. After another 5,400 h of plant operation this three-tier filter shows safe and stable operation with a clean gas dust content of {lt} 2 mg/m{sup 3}(STP). 3 refs., 5 figs., 1 tab.

  17. Halo Emission of the Cat's Eye Nebula, NGC 6543 Shock Excitation by Fast Stellar Winds

    Directory of Open Access Journals (Sweden)

    Siek Hyung

    2002-09-01

    Full Text Available Images taken with the Chandra X-ray telescope have for the the first time revealed the central, wind-driven, hot bubble (Chu et al. 2001, while Hubble Space Telescope (HST WFPC2 images of the Cat's Eye nebula, NGC 6543, show that the temperature of the halo region of angular radius ~ 20'', is much higher than that of the inner bright H II region. With the coupling of a photoionization calculation to a hydrodynamic simulation, we predict the observed [O III] line intensities of the halo region with the same O abundance as in the core H II region: oxygen abundance gradient does not appear to exist in the NGC 6543 inner halo. An interaction between a (leaky fast stellar wind and halo gas may cause the higher excitation temperatures in the halo region and the inner hot bubble region observed with the Chandra X-ray telescope.

  18. X(3872 production and absorption in a hot hadron gas

    Directory of Open Access Journals (Sweden)

    L.M. Abreu

    2016-10-01

    Full Text Available We calculate the time evolution of the X(3872 abundance in the hot hadron gas produced in the late stage of heavy ion collisions. We use effective field Lagrangians to obtain the production and dissociation cross sections of X(3872. In this evaluation we include diagrams involving the anomalous couplings πD⁎D¯⁎ and XD¯⁎D⁎ and also the couplings of the X(3872 with charged D and D⁎ mesons. With these new terms the X(3872 interaction cross sections are much larger than those found in previous works. Using these cross sections as input in rate equations, we conclude that during the expansion and cooling of the hadronic gas, the number of X(3872, originally produced at the end of the mixed QGP/hadron gas phase, is reduced by a factor of 4.

  19. Experimental optimization of temperature distribution in the hot-gas duct through the installation of internals in the hot-gas plenum of a high-temperature reactor

    International Nuclear Information System (INIS)

    Henssen, J.; Mauersberger, R.

    1990-01-01

    The flow conditions in the hot-gas plenum and in the adjacent hot-gas ducts and hot-gas pipes for the high-temperature reactor project PNP-1000 (nuclear process heat project for 1000 MW thermal output) have been examined experimentally. The experiments were performed in a closed loop in which the flow model to be analyzed, representing a 60deg sector of the core bottom of the PNP-1000 with connecting hot-gas piping and diverting arrangements, was installed. The model scale was approx. 1:5.6. The temperature and flow velocity distribution in the hot-gas duct was registered by means of 14 dual hot-wire flowmeters. Through structural changes and/or the installation of internals into the hot-gas plenum of the core bottom offering little flow resistance coolant gas temperature differentials produced in the core could be reduced to such an extent that a degree of mixture amounting to over 80% was achieved at the entrance of the connected heat exchanger systems. Thereby the desired goal of an adequate degree of mixture of the hot gas involving an acceptable pressure loss was reached. (orig.)

  20. Research on thermal insulation for hot gas ducts

    International Nuclear Information System (INIS)

    Broeckerhoff, P.

    1984-01-01

    The inner surfaces of prestressed reactor vessels and hot gas ducts of Gas Cooled High Temperature Reactors need internal thermal insulation to protect the pressure bearing walls from high temperatures. The design parameters of the insulation depend on the reactor type. In a PNP-plant temperature and pressure of the cooling medium helium are proposed to be 950 deg. C and 40 bars, respectively. The experimental work was started at KFA in 1971 for the HHT-project using three test facilities. At first metallic foil insulation and stuffed fibre insulating systems, the hot gas ducting shrouds of which were made of metal, have been tested. Because of the elevated helium temperature in case of PNP and the resulting lower strength of the metallic parts the interest was directed to rigid ceramic materials for the spacers and the inner shrouds. This led to modified structures designed by the INTERATOM company. Tests were performed at KFA. The main object of the investigations was to study the influence of temperature, pressure and axial pressure gradients on the thermal efficiency of the structures. Moreover, the temperatures within the insulation, at the pressure tube, and at the elements which bear the inner shrouds were measured. Thermal fluxes and effective thermal conductivities in axial and circumferential direction of the pressure tube are given, mainly for the INTERATOM-design with spherical spacers. (author)

  1. Erosion of graphite surface exposed to hot supersonic hydrogen gas

    Science.gov (United States)

    Sharma, O. P.

    1972-01-01

    A theoretical model based on laminar boundary layer flow equations was developed to predict the erosion rate of a graphite (AGCarb-101) surface exposed to a hot supersonic stream of hydrogen gas. The supersonic flow in the nozzle outside the boundary layer formed over the surface of the specimen was determined by assuming one-dimensional isentropic conditions. An overall surface reaction rate expression based on experimental studies was used to describe the interaction of hydrogen with graphite. A satisfactory agreement was found between the results of the computation, and the available experimental data. Some shortcomings of the model and further possible improvements are discussed.

  2. Modelling of hot surface ignition within gas turbines subject to flammable gas in the intake

    DEFF Research Database (Denmark)

    Pedersen, Lea Duedahl; Nielsen, Kenny Krogh; Yin, Chungen

    2017-01-01

    Controlling risks associated with fires and explosions from leaks of flammable fluids at oil and gas facilities is paramount to ensuring safe operations. The gas turbine is a significant potential source of ignition; however, the residual risk is still not adequately understood. A model has been...... but decreases with increase in initial mixture temperature and pressure. The model shows a great potential in reliable prediction of the risk of hot surface ignition within gas turbines in the oil and gas industry. In the future, a dedicated experimental study will be performed not only to improve...

  3. Surprisingly low natural gas consumption for hot water in the Netherlands in 1996

    International Nuclear Information System (INIS)

    Geerse, C.

    1997-01-01

    The Dutch use hot water more efficient than previously expected. This conclusion is drawn from a recent study of hot water consumption in Dutch households and the corresponding natural gas consumption. Based on that (once-only) hot water use survey the hot water use models, as applied in the annual Basic Survey of Natural Gas Consumption of Small-scale Consumers in the Netherlands (BAK), will be modified. 6 tabs

  4. Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and clusters of galaxies

    Science.gov (United States)

    Mernier, F.; de Plaa, J.; Werner, N.; Kaastra, J. S.; Raassen, A. J. J.; Gu, L.; Mao, J.; Urdampilleta, I.; Truong, N.; Simionescu, A.

    2018-05-01

    X-ray measurements find systematically lower Fe abundances in the X-ray emitting haloes pervading groups (kT ≲ 1.7 keV) than in clusters of galaxies. These results have been difficult to reconcile with theoretical predictions. However, models using incomplete atomic data or the assumption of isothermal plasmas may have biased the best fit Fe abundance in groups and giant elliptical galaxies low. In this work, we take advantage of a major update of the atomic code in the spectral fitting package SPEX to re-evaluate the Fe abundance in 43 clusters, groups, and elliptical galaxies (the CHEERS sample) in a self-consistent analysis and within a common radius of 0.1r500. For the first time, we report a remarkably similar average Fe enrichment in all these systems. Unlike previous results, this strongly suggests that metals are synthesised and transported in these haloes with the same average efficiency across two orders of magnitude in total mass. We show that the previous metallicity measurements in low temperature systems were biased low due to incomplete atomic data in the spectral fitting codes. The reasons for such a code-related Fe bias, also implying previously unconsidered biases in the emission measure and temperature structure, are discussed.

  5. Effect of gas release in hot molding on flexural strength of composite friction brake

    Science.gov (United States)

    Rusdja, Andy Permana; Surojo, Eko; Muhayat, Nurul; Raharjo, Wijang Wisnu

    2018-02-01

    Composite friction brake is a vital part of braking system which serves to reduce the speed of vehicle. To fulfill the requirement of brake performance, composite friction brake must have friction and mechanical characteristic as required. The characteristics of composite friction brake are affected by brake material formulation and manufacturing parameter. In the beginning of hot molding, intermittent hot pressing was carried out to release the gases that consist of ammonia gas and water vapor. In composite friction brake, phenolic resin containing hexamethylenetetramine (HMTA) is often used as a binder. During hot molding, the reaction of phenolic resin and HMTA forms ammonia gas. Hot molding also generates water vapor because raw materials absorb moisture from environment when they are placed in storage. The gas release in hot molding is supposed affecting mechanical properties because it avoid entrapped gas in composite, so that this research investigated effect of gas release on flexural strength. Manufacturing of composite specimen was carried out as follow: mixing of raw materials, cold molding, and hot molding. In this research, duration of intermittent hot pressing and number of gas release were varied. The flexural strength of specimen was measured using three point bending test. The results showed that flexural strength specimens that were manufactured without gas release, using 4 times gas release with intermittent hot pressing for 5 and 10 seconds were not remarkably different. Conversely, hot molding using 4 times gas release with intermittent hot pressing for 15 seconds decreased flexural strength of composite. Hot molding using 2, 4, and 8 times gas release with intermittent hot pressing for 10 seconds also had no effect on increasing flexural strength. Increasing of flexural strength of composite was obtained only by using 6 times gas release with intermittent hot pressing for 10 seconds.

  6. Local ISM 3D Distribution and Soft X-ray Background Inferences for Nearby Hot Gas

    Science.gov (United States)

    Puspitarini, L.; Lallement, R.; Snowden, Steven L.; Vergely, J.-L.; Snowden, S.

    2014-01-01

    Three-dimensional (3D) interstellar medium (ISM) maps can be used to locate not only interstellar (IS) clouds, but also IS bubbles between the clouds that are blown by stellar winds and supernovae, and are filled by hot gas. To demonstrate this, and to derive a clearer picture of the local ISM, we compare our recent 3D IS dust distribution maps to the ROSAT diffuse Xray background maps after removal of heliospheric emission. In the Galactic plane, there is a good correspondence between the locations and extents of the mapped nearby cavities and the soft (0.25 keV) background emission distribution, showing that most of these nearby cavities contribute to this soft X-ray emission. Assuming a constant dust to gas ratio and homogeneous 106 K hot gas filling the cavities, we modeled in a simple way the 0.25 keV surface brightness along the Galactic plane as seen from the Sun, taking into account the absorption by the mapped clouds. The data-model comparison favors the existence of hot gas in the solar neighborhood, the so-called Local Bubble (LB). The inferred mean pressure in the local cavities is found to be approx.9,400/cu cm K, in agreement with previous studies, providing a validation test for the method. On the other hand, the model overestimates the emission from the huge cavities located in the third quadrant. Using CaII absorption data, we show that the dust to CaII ratio is very small in those regions, implying the presence of a large quantity of lower temperature (non-X-ray emitting) ionized gas and as a consequence a reduction of the volume filled by hot gas, explaining at least part of the discrepancy. In the meridian plane, the two main brightness enhancements coincide well with the LB's most elongated parts and chimneys connecting the LB to the halo, but no particular nearby cavity is found towards the enhancement in the direction of the bright North Polar Spur (NPS) at high latitude. We searched in the 3D maps for the source regions of the higher energy

  7. The growth of galaxies and their gaseous haloes

    NARCIS (Netherlands)

    Voort, Frederieke van de

    2012-01-01

    Galaxies grow by accreting gas, which they need to form stars, from their surrounding haloes. These haloes, in turn, accrete gas from the diffuse intergalactic medium. Feedback from stars and black holes returns gas from the galaxy to the halo and can even expel it from the halo. This cycle of gas

  8. Integrated hot fuel gas cleaning for advanced gasification combined cycle process

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Kangasmaa, K.; Laatikainen, J.; Staahlberg, P.; Kurkela, E. [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1996-12-01

    The fate of halogens in pressurised fluidized-bed gasification and hot gas filtration is determined. Potential halogen removal sorbents, suitable for integrated hot gas cleaning, are screened and some selected sorbents are tested in bench scale. Finally, halogen removal results are verified using the PDU-scale pressurised fluidized-bed gasification and integrated hot gas cleaning facilities of VTT. The project is part of the JOULE II Extension programme of the European Union. (author)

  9. Mechanical design and testing of a hot-gas turbine on a test facility

    International Nuclear Information System (INIS)

    Staude, R.

    1981-01-01

    Advanced calculation methods and specific solutions for any particular problem are basic requirements for the mechanical design of hot-gas components for gas turbines. The mechanical design contributes a great deal to the smooth running and operational reliability and thus to the quality of the machine. By reference to an expander, the present paper discusses the strength of hot components, such as the casing and the rotor, for both stationary and transient temperature distribution. Mechanical testing under hot-gas conditions fully confirmed the reliability of the rating and design of the hot-gas turbines supplied by M:A.N.-GHH STERKRADE. (orig.) [de

  10. A Search for Hot, Diffuse Gas in Superclusters

    Science.gov (United States)

    Boughn, Stephen P.

    1998-01-01

    The HEA01 A2 full sky, 2-10 keV X-ray map was searched for diffuse emission correlated with the plane of the local supercluster of galaxies and a positive correlation was found at the 99% confidence level. The most obvious interpretation is that the local supercluster contains a substantial amount of hot (10(exp 8) OK), diffuse gas, i.e. ionized hydrogen, with a density on the order of 2 - 3 x 10(exp -6) ions per cubic centimeter. This density is about an order of magnitude larger than the average baryon density of the universe and is consistent with a supercluster collapse factor of 10. The implied total mass is of the order of 10(exp 16) times the mass of the sun and would constitute a large fraction of the baryonic matter in the local universe. This result supports current thinking that most of the ordinary matter in the universe is in the form of ionized hydrogen; however, the high temperature implied by the X-ray emission is at the top of the range predicted by most theories. The presence of a large amount of hot gas would leave its imprint on the Cosmic Microwave Background (CMB) via the Sunyaev-Zel'dovich (SZ) effect. A marginal decrement (-17 muK) was found in the COBE 4-year 53 GHz CMB map coincident with the plane of the local supercluster. Although the detection is only 1beta, the level is consistent with the SZ effect predicted from the hot gas. If these results are confirmed by future observations they will have important implications for the formation of large-scale structure in the universe. Three other projects related directly to the HEAO 1 map or the X-ray background in general benefited from this NASA grant. They are: (1) "Correlations between the Cosmic X-ray and Microwave Backgrounds: Constraints on a Cosmological Constant"; (2) "Cross-correlation of the X-ray Background with Radio Sources: Constraining the Large-Scale Structure of the X-ray Background"; and (3) "Radio and X-ray Emission Mechanisms in Advection Dominated Accretion Flow".

  11. Solid adsorbents for removal of hydrogen sulphide from hot gas

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Yumura, Motoo

    1986-04-01

    A wide range of solids have been tested as potential adsorbents for H/sub 2/S removal from hot gas. These solids can be divided into two main groups, i.e., the adsorbents containing alkaline earth metals and those containing transition metals. Among the former, calcium oxide and naturally occurring materials such as limestone, dolomite and calcium silicate have attracted a great deal of attention. The adsorbents of the second group include iron oxide alone or in combination with some supports, zinc oxide, zinc ferrite and manganese oxide. The materials containing both the alkaline earth metals and transition metals, e.g., manganese nodules, fly ash and the reject from the aluminium industry (red mud) have been evaluated as well.

  12. BINARY BLACK HOLES, GAS SLOSHING, AND COLD FRONTS IN THE X-RAY HALO HOSTING 4C+37.11

    Energy Technology Data Exchange (ETDEWEB)

    Andrade-Santos, Felipe; Bogdán, Ákos; Forman, William R.; Jones, Christine; Murray, Stephen S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Romani, Roger W. [Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States); Taylor, Greg B. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Zavala, Robert T. [US Naval Observatory, Flagstaff Station, 10391 W. Naval Observatory Road, Flagstaff, AZ 86001 (United States)

    2016-07-20

    We analyzed deep Chandra ACIS-I exposures of the cluster-scale X-ray halo surrounding the radio source 4C+37.11. This remarkable system hosts the closest resolved pair of super-massive black holes and an exceptionally luminous elliptical galaxy, the likely product of a series of past mergers. We characterize the halo with r {sub 500} ∼ 0.95 Mpc, M {sub 500} = 2.5 ± 0.2 × 10{sup 14} M {sub ⊙}, kT = 4.6 ± 0.2 keV, and a gas mass of M {sub g,500} = 2.2 ± 0.1 × 10{sup 13} M {sub ⊙}. The gas mass fraction within r {sub 500} is f {sub g} = 0.09 ± 0.01. The entropy profile shows large non-gravitational heating in the central regions. We see several surface brightness jumps, associated with substantial temperature and density changes but approximate pressure equilibrium, implying that these are sloshing structures driven by a recent merger. A residual intensity image shows a core spiral structure closely matching that seen in the Perseus cluster, although at z = 0.055 the spiral pattern is less distinct. We infer that the most recent merger occurred 1–2 Gyr ago and that the event that brought the two observed super-massive black holes to the system core is even older. Under this interpretation, the black hole binary pair has, unusually, remained at a parsec-scale separation for more than 2 Gyr.

  13. High-BTU gas production from tar-bearing hot coke oven gas over iron catalyst

    Energy Technology Data Exchange (ETDEWEB)

    L.Y. Li; K. Morishita; T. Takarada [Gunma University, Gunma (Japan). Department of Biological and Chemical Engineering

    2005-07-01

    To utilize the tar-bearing hot coke oven gas (the by-product of coke making process) more effectively, a process was developed by converting the hot coke oven gas into a methane rich high-BTU gas over iron-bearing catalysts. The catalytic behaviour of Indonesian limonite ore was mainly discussed. For a reference, a conventional nickel catalyst (Ni/Al{sub 2}O{sub 3}) was employed. Laboratory scale tests were carried out in a two-stage fixed-bed reactor at ambient pressure. A bituminous coal sample was heated at first stage, the volatiles was carried by feed gas and decomposed at second stage. The limonite promoted hydropyrolysis of coal volatiles similar to Ni/Al{sub 2}O{sub 3} catalyst. High yields of total product gas and methane were obtained at 50 vol.% hydrogen atmosphere with a feed gas of 60 ml min{sup -1} hydrogen and 60 ml min{sup -1} nitrogen. After experiments, hydrocarbons heavier than ethane were not observed. Also that, carbon balance was more than 99.8% in coal char, product gases and carbon deposits. It was considered that coal volatiles converted into light gases and carbon almost completely in catalyst bed. Yields of product gas and methane depended upon catalytic temperature. At 923 K, the maximum yield of product gas was achieved at 74.3% for limonite catalyst on carbon balance with methane 83.2 vol.% of the carbonaceous gas products. Comparing with limonite, Fe/Al{sub 2}O{sub 3} and BOF dust samples showed low activities on coal volatiles catalytic decomposition. 21 refs., 5 figs., 3 tabs.

  14. Bulk and shear viscosities of hot and dense hadron gas

    International Nuclear Information System (INIS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-01-01

    We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons

  15. Localized massive halo properties in BAHAMAS and MACSIS simulations: scalings, log-normality, and covariance

    Science.gov (United States)

    Farahi, Arya; Evrard, August E.; McCarthy, Ian; Barnes, David J.; Kay, Scott T.

    2018-05-01

    Using tens of thousands of halos realized in the BAHAMAS and MACSIS simulations produced with a consistent astrophysics treatment that includes AGN feedback, we validate a multi-property statistical model for the stellar and hot gas mass behavior in halos hosting groups and clusters of galaxies. The large sample size allows us to extract fine-scale mass-property relations (MPRs) by performing local linear regression (LLR) on individual halo stellar mass (Mstar) and hot gas mass (Mgas) as a function of total halo mass (Mhalo). We find that: 1) both the local slope and variance of the MPRs run with mass (primarily) and redshift (secondarily); 2) the conditional likelihood, p(Mstar, Mgas| Mhalo, z) is accurately described by a multivariate, log-normal distribution, and; 3) the covariance of Mstar and Mgas at fixed Mhalo is generally negative, reflecting a partially closed baryon box model for high mass halos. We validate the analytical population model of Evrard et al. (2014), finding sub-percent accuracy in the log-mean halo mass selected at fixed property, ⟨ln Mhalo|Mgas⟩ or ⟨ln Mhalo|Mstar⟩, when scale-dependent MPR parameters are employed. This work highlights the potential importance of allowing for running in the slope and scatter of MPRs when modeling cluster counts for cosmological studies. We tabulate LLR fit parameters as a function of halo mass at z = 0, 0.5 and 1 for two popular mass conventions.

  16. Two-branch Gas Experiments for Hot Gas Mixing of HTR-PM

    International Nuclear Information System (INIS)

    Zhou Yangping; Hao Pengefei; He Heng; Li Fu; Shi Lei

    2014-01-01

    A model experiment is proposed to investigate the hot gas mixing efficiency of HTR-PM reactor outlet. The test facility is introduced which is set at a scale of 1:2.5 comparing with the design of thermal mixing structure at HTR-PM reactor outlet. The test facility using air as its flow media includes inlet pipe system, electric heaters, main body of test facility, hot gas duct, exhaust pipe system and I&C system. Two-branch gas experiments are conducted on the test facility and the values of thermal-fluid parameters are collected and analyzed which include the temperature, pressure and velocity of the flow as well as the temperature of the tube wall. The analysis result shows the mixing efficiency is higher than the requirement of thermal mixing by steam generator even with conservative assumption which indicates that the design of hog gas mixing structure of HTR-PM fulfills the requirement for thermal mixing at two-branch working conditions. (author)

  17. The origin of the hot metal-poor gas in NGC 1291 - Testing the hypothesis of gas dynamics as the cause of the gas heating

    NARCIS (Netherlands)

    Perez, [No Value; Freeman, K

    In this paper we test the idea that the low-metallicity hot gas in the centre of NGC 1291 is heated via a dynamical process. In this scenario, the gas from the outer gas-rich ring loses energy through bar-driven shocks and falls to the centre. Heating of the gas to X-ray temperatures comes from the

  18. High temperature gasification and gas cleaning – phase II of the HotVegas project

    OpenAIRE

    Meysel, P.; Halama, S.; Botteghi, F.; Steibel, M.; Nakonz, M.; Rück, R.; Kurowski, P.; Buttler, A.; Spliethoff, H.

    2016-01-01

    The primary objective of the research project HotVeGas is to lay the necessary foundations for the long-term development of future, highly efficient high-temperature gasification processes. This includes integrated hot gas cleaning and optional CO2 capture and storage for next generation IGCC power plants and processes for the development of synthetic fuels. The joint research project is funded by the German Federal Ministry of Economics and Technology and five industry partners. It is coordi...

  19. Spectrum of Sprite Halos

    Czech Academy of Sciences Publication Activity Database

    Gordillo-Vázquez, F.J.; Luque, A.; Šimek, Milan

    2011-01-01

    Roč. 116, č. 9 (2011), A09319-A09319 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z20430508 Keywords : sprites * halos * spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.021, year: 2011 http://www.trappa.iaa.es/sites/all/files/papers/isi_journal_papers/2011/2011_08.pdf

  20. Thermal performance test of hot gas ducts of helium engineering demonstration loop (HENDEL)

    International Nuclear Information System (INIS)

    Hishida, Makoto; Kunitomi, Kazuhiko; Ioka, Ikuo; Umenishi, Koji; Kondo, Yasuo; Tanaka, Toshiyuki; Shimomura, Hiroaki

    1984-01-01

    A hot gas duct provided with internal thermal insulation is supposed to be used for an experimental very high-temperature gas-cooled reactor (VHTR) which has been developed by the Japan Atomic Energy Research Institute (JAERI). This type of hot gas duct has not been used so far in industrial facilities, and only a couple of tests on such a large-scale model of hot gas duct have been conducted. The present test was to investigate the thermal performance of the hot gas ducts which are installed as parts of a helium engineering demonstration loop (HENDEL) of JAERI. Uniform temperature and heat flux distributions at the surface of the duct were observed, the experimental correlation being obtained for the effective thermal conductivity of the internal thermal insulation layer. The measured temperature distribution of the pressure tube was in good agreement with the calculation by a TRUMP heat transfer computer code. The temperature distribution of the inner tube of VHTR hot gas duct was evaluated, and no hot spot was detected. These results would be very valuable for the design and development of VHTR. (author)

  1. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    International Nuclear Information System (INIS)

    Soelberg, Nick; Enneking, Joe

    2011-01-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absorption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  2. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Simon J.; Carollo, C. Marcella; Pipino, Antonio; Peng Yingjie [Institute for Astronomy, Department of Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Renzini, Alvio [Department of Physics and Astronomy Galileo Galilei, Universita degli Studi di Padova, via Marzolo 8, I-35131 Padova (Italy)

    2013-08-01

    A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and the regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass

  3. DYNAMIC S0 GALAXIES. II. THE ROLE OF DIFFUSE HOT GAS

    International Nuclear Information System (INIS)

    Li Jiangtao; Chen Yang; Daniel Wang, Q.; Li Zhiyuan

    2011-01-01

    Cold gas loss is thought to be important in star formation quenching and morphological transition during the evolution of S0 galaxies. In high-density environments, this gas loss can be achieved via many external mechanisms. However, in relatively isolated environments, where these external mechanisms cannot be efficient, the gas loss must then be dominated by some internal processes. We have performed Chandra analysis of hot gas in five nearby isolated S0 galaxies, based on the quantitative subtraction of various stellar contributions. We find that all the galaxies studied in the present work are X-ray faint, with the luminosity of the hot gas (L X ) typically accounting for ∼ X at the low-mass end (typically with K-band luminosity L K ∼ 11 L sun,K ). However, at the high-mass end, S0 galaxies tend to have significantly lower L X than elliptical galaxies of the same stellar masses, as already shown in previous observational and theoretical works. We further discuss the potential relationship of the diffuse X-ray emission with the cold (atomic and molecular) gas content in the S0 and elliptical galaxies included in our study. We find that L X /L 2 K tends to correlate positively with the total cold gas mass (M H 2 +H i ) for cold-gas-poor galaxies with M H 2 +H i ∼ 8 M sun , while they anti-correlate with each other for cold-gas-rich galaxies. This cold-hot gas relationship can be explained in a scenario of early-type galaxy evolution, with the leftover cold gas from the precursor star-forming galaxy mainly removed by the long-lasting Type Ia supernova (SN) feedback. The two different trends for cold-gas-rich and cold-gas-poor galaxies may be the results of the initial fast decreasing SN rate and the later fast decreasing mass loading to hot gas, respectively.

  4. Hot gas handling device and motorized vehicle comprising the device

    NARCIS (Netherlands)

    Klein Geltink, J.; Beukers, A.; Van Tooren, M.J.L.; Koussios, S.

    2012-01-01

    The invention relates to a device for handling hot exhaust gasses discharged from an internal combustion engine. The device comprises a housing (2), enclosing a space (3) for transporting the exhaust gasses. The housing (2) is provided with an entrance - opening (4) for the exhaust gasses discharged

  5. Potential for preparation of hot gas cleanup sorbents from spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Biagini, M. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada). Energy Research Labs.

    1996-01-01

    Three spent-decoked hydroprocessing catalysts and two corresponding fresh catalysts were tested as hot gas clean-up sorbents and compared with the zinc ferrite using a simulated coal gasification gas mixture. The catalysts deposited only by coke exhibited relatively good cleaning efficiency. The catalyst deposited by coke and metals such as vanadium and nickel was less efficient. The useful life of the spent hydroprocessing catalysts may be extended if utilized as hot gas clean-up sorbents. 12 refs., 3 figs., 4 tabs.

  6. Partial oxidation process for producing a stream of hot purified gas

    Science.gov (United States)

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  7. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

  8. Energy Requirement and Comfort of Gas- and Electric-powered Hot-water Systems

    International Nuclear Information System (INIS)

    Luedemann, B.; Schmitz, G.

    1999-01-01

    In view of the continuous reduction in the specific heating energy demand of new buildings the power demand for hot-water supply increasingly dominates the heating supply of residential buildings. Furthermore, the German energy-savings-regulation 2000 (ESVO) is intended to evaluate the techniques installed such as domestic heating or hot-water supply within an overall energetic view of the building. Planning advice for domestic heating, ventilation and hot-water systems in gas-heated, low-energy buildings has therefore been developed in a common research project of the Technical University of Hamburg Harburg (TUHH) and four energy supply companies. In this article different gas-or electricity-based hot-water systems in one family houses and multiple family houses are compared with one another with regard to the aspects of comfort and power requirements considering the user's behaviour. (author)

  9. Hot Gas TVC For Planetary Ascent Vehicle, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Mars ascent vehicle (MAV) uses solid rocket motors to propel soil samples into orbit, but the motors cannot provide steering. Cold gas thrusters are used for...

  10. Thermo-resistant filtration fabrics for hot gas extraction

    International Nuclear Information System (INIS)

    Wierzbowska, T.

    1992-01-01

    Types and technical and utilizing data of heat resistant filtrating fabrics initiated to production by 'Moratex' and provided for dust extraction of technical gas from various industrial processes have been discussed. (author). 8 refs, 2 tabs

  11. Hot gas flow cell for optical measurements on reactive gases

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Nielsen, Karsten Lindorff

    2013-01-01

    A new design is presented for a gas flow cell for reactive gases at high temperatures. The design features three heated sections that are separated by flow windows. This design avoids the contact of reactive gases with the material of the exchangeable optical windows. A gas cell with this design ......-resolution measurements are presented for the absorption cross-section of sulfur dioxide (SO2) in the UV range up to 773 K (500 degrees C)...

  12. Oil and gas, the hot spots of the planet

    International Nuclear Information System (INIS)

    Delage, St.

    2009-01-01

    Despite the economic crisis, more than 400 billion dollars have been in,vested in 2009 in oil and gas exploration and production. Oil companies and their suppliers from the para-petroleum industry are still working hard to exploit new discoveries. This paper makes a worldwide overview of the most promising oil and gas fields in particular in Brazil, Australia, Ghana and qatar (investments, partners, production, reserves). (J.S.)

  13. Gas purification by use of hot metal getter beds

    International Nuclear Information System (INIS)

    Albrecht, H.

    1992-11-01

    An experimental program is described which was performed in the frame of a tritium technology task for the NET/ITER fusion fuel cycle. The aim was to investigate commercial gas purifiers containing metallic getters for the purification of gas streams such as the plasma exhaust gas. Five purifiers with up to 3000g of getter material were tested in the PEGASUS facility mainly with respect to the removal of methane, which is known to be much more difficult to remove than other impurities like O 2 , N 2 , or CO. A proposal for a fuel cleanup method based on a combination of getter beds and Pd/Ag diffusors is presented as the main conclusion of the test program. The discussion of this method includes the aspects of flow rates, tritium inventory, and consumption of getter material. (orig.) [de

  14. Design and Fabrication of Porous Yttria-Stabilized Zirconia Ceramics for Hot Gas Filtration Applications

    Science.gov (United States)

    Shahini, Shayan

    Hot gas filtration has received growing attention in a variety of applications over the past few years. Yttria-stabilized zirconia (YSZ) is a promising candidate for such an application. In this study, we fabricated disk-type porous YSZ filters using the pore forming procedure, in which poly methyl methacrylate (PMMA) was used as the pore-forming agent. After fabricating the pellets, we characterized them to determine their potential for application as gas filters. We investigated the effect of sintering temperature, polymer particle size, and polymer-to-ceramic ratio on the porosity, pore size, gas permeability, and Vickers hardness of the sintered pellets. Furthermore, we designed two sets of experiments to investigate the robustness of the fabricated pellets--i.e., cyclic heating/cooling and high temperature exposure. This study ushers in a robust technique to fabricate such porous ceramics, which have the potential to be utilized in hot gas filtration.

  15. Numerical study of the generation of runaway electrons in a gas diode with a hot channel

    Energy Technology Data Exchange (ETDEWEB)

    Lisenkov, V. V., E-mail: lisenkov@iep.uran.ru [Institute of Electrophysics UrB RAS, 106 Amundsena St., Ekaterinburg 620012 (Russian Federation); Ural Federal University, 19 Mira St., Ekaterinburg 620002 (Russian Federation); Shklyaev, V. A., E-mail: shklyaev@to.hcei.tsc.ru [Institute of High Current Electronics SD RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation)

    2015-11-15

    A new method for increasing the efficiency of runaway electron beam generation in atmospheric pressure gas media has been suggested and theoretically proved. The method consists of creating a hot region (e.g., a spark channel or a laser plume) with a decreased numerical density of gas molecules (N) near the cathode. In this method, the ratio E/N (E—electric field strength) is increased by decreasing N instead of increasing E, as has been done in the past. The numerical model that is used allows the simultaneous calculation of the formation of a subnanosecond gas discharge and the generation of runaway electrons in gas media. The calculations have demonstrated the possibility of obtaining current pulses of runaway electrons with amplitudes of hundred of amperes and durations of more than 100 ps. The influence of the hot channel geometry on the parameters of the generated beam has been investigated.

  16. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.

  17. Absorption signatures of warm-hot gas at low redshift : Ne VIII

    NARCIS (Netherlands)

    Tepper-García, T

    2013-01-01

    At z {lt} 1 a large fraction of the baryons is thought to reside in diffuse gas that has been shock-heated to high temperatures (10$^{5}$-10$^{6}$ K). Absorption by the 770.41, 780.32 å doublet of Ne VIII in quasar spectra represents a unique tool to study this elusive warm-hot phase. We have

  18. 30 CFR 77.303 - Hot gas inlet chamber dropout doors.

    Science.gov (United States)

    2010-07-01

    ... Section 77.303 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND... employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...

  19. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  20. Advanced sulfur control concepts for hot-gas desulfurization technology

    International Nuclear Information System (INIS)

    Lopez Ortiz, A.; Harrison, D.P.; Groves, F.R.; White, J.D.; Zhang, S.; Huang, W.N.; Zeng, Y.

    1998-01-01

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500C to 700C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a

  1. Cleanable sintered metal filters in hot off-gas systems

    International Nuclear Information System (INIS)

    Schurr, G.A.

    1981-01-01

    Filters with sintered metal elements, arranged as tube bundles with backflush air cleaning, are the equivalent of bag filters for high-temperature, harsh environments. They are virtually the only alternative for high-temperature off-gas systems where a renewable, highly efficient particle trap is required. Tests were conducted which show that the sintered metal elements installed in a filter system provide effective powder collection in high-temperature atmospheres over thousands of cleaning cycles. Such a sintered metal filter system is now installed on the experimental defense waste calciner at the Savannah River Laboratory. The experimental results included in this paper were used as the basis for its design

  2. The removal of alkali metals from hot gas

    Energy Technology Data Exchange (ETDEWEB)

    Orjala, M.; Haukka, P. (Valtion Teknillinen Tutkimuskeskus, Jyvaeskylae (Finland). Polttoaine- ja Polttotekniikan Lab.)

    1990-01-01

    In investigations in progress at the Fuel and Combustion Laboratory of the Technical Research Centre of Finland, we have been studying in co-operation with A. Ahlstrom Boiler Works, the removal of alkali metals from flue gases of ash-rich fuel with a dense suspension particle cooler. The applications of the particle cooler can be found in combined cycles and in industrial gas cleaning and heat recovery. We have also developed a general mathematical model of heat and mass transfer as well as chemical and physical reactions in multiphase systems.

  3. HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Sell, D. A.; Baily, C. E.; Malewitz, T. J.; Medvedev, P. G.; Porter, D. L.; Hilton, B. A.

    2016-09-01

    A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium after the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.

  4. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, July 1--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; hot Gas Cleanup Units to mate to all gas streams; and Combustion Gas Turbine. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  5. Forged hollows (alloy 617) for PNP-hot gas collectors

    International Nuclear Information System (INIS)

    Hofmann, F.

    1984-01-01

    When the partners in the PNP-Project decided to manufacture components, such as gas collectors, from material of type alloy 617, the problem arose that required semi-fabricated products, especially forged hollows weighing several tons each, were not available. As VDM (Vereinigte Deutsche Metallwerke AG) had already experience in production of other semi-fabricated products of this alloy, attempts were made based on this knowledge, to develop manufacturing methods for forged hollows. The aim was to produce hollows as long as possible, and to keep the welding cost minimum. Welded seams are always critical during fabrication, as well as during later inspection under actual operating conditions. The three stage plan used to perform the above task illustrates the development aims is described

  6. Hot Gas in the Wolf–Rayet Nebula NGC 3199

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A.; Chu, Y.-H. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Marston, A. P. [European Space Agency/STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada E-18008 (Spain); Gruendl, R. A. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States)

    2017-09-01

    The Wolf–Rayet (WR) nebula NGC 3199 has been suggested to be a bow shock around its central star, WR 18, which is presumably a runaway star, because optical images of the nebula show a dominating arc of emission southwest of the star. We present the XMM-Newton detection of extended X-ray emission from NGC 3199, unveiling the powerful effect of the fast wind from WR 18. The X-ray emission is brighter in the region southeast of the star and an analysis of the spectral properties of the X-ray emission reveals abundance variations: (i) regions close to the optical arc present nitrogen-rich gas enhanced by the stellar wind from WR 18 and (ii) gas at the eastern region exhibits abundances close to those reported for the nebular abundances derived from optical studies, which is a signature of an efficient mixing of the nebular material with the stellar wind. The dominant plasma temperature and electron density are estimated to be T ≈ 1.2 × 10{sup 6} K and n {sub e} = 0.3 cm{sup −3} with an X-ray luminosity in the 0.3–3.0 keV energy range of L {sub X} = 2.6 × 10{sup 34} erg s{sup −1}. Combined with information derived from Herschel and the recent Gaia first data release, we conclude that WR 18 is not a runaway star and that the formation, chemical variations, and the shape of NGC 3199 depend on the initial configuration of the interstellar medium.

  7. First operational tests of an oxycoal hot gas cleaning facility; Erste Betriebstests einer Oxycoal-Heissgasreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Kellermann, A.; Habermehl, M.; Foerster, M.; Kneer, R. [RWTH Aachen University (Germany). Lehrstuhl fuer Waerme- und Stoffuebertragung

    2009-07-01

    An oxyfuel power plant process using a ceramic high temperature membrane for oxygen supply is investigated within the scope of the OXYCOAL-AC project at RWTH Aachen Uni-versity. Implementing the membrane requires a clean gas at a temperature of 850 C. There-fore a hot gas cleaning facility based on porous ceramic candle filters is used, which is state-of-the-art for the gas cleaning of synthesis gas or for flue gas cleaning in pressurised fluid-ised bed furnaces. However, these applications operate at lower temperatures and in a sig-nificantly different atmosphere. Thus, experiences for dust removal at high temperatures in oxyfuel atmoshere are not available. Experiments with a hot gas cleaning facility were con-ducted at the experimental combustion plant of the Institute of Heat and Mass Transfer, us-ing different candle filter materials. The flue gas was provided by a coal fired 100 kW{sub th} oxy-fuel furnace. The operational behaviour of the filtration facility, the adhesion and dedusting properties of the filter cake were investigated. (orig.)

  8. The co-existence of hot and cold gas in debris discs

    Science.gov (United States)

    Rebollido, I.; Eiroa, C.; Montesinos, B.; Maldonado, J.; Villaver, E.; Absil, O.; Bayo, A.; Canovas, H.; Carmona, A.; Chen, Ch.; Ertel, S.; Garufi, A.; Henning, Th.; Iglesias, D. P.; Launhardt, R.; Liseau, R.; Meeus, G.; Moór, A.; Mora, A.; Olofsson, J.; Rauw, G.; Riviere-Marichalar, P.

    2018-06-01

    Context. Debris discs have often been described as gas-poor discs as the gas-to-dust ratio is expected to be considerably lower than in primordial, protoplanetary discs. However, recent observations have confirmed the presence of a non-negligible amount of cold gas in the circumstellar (CS) debris discs around young main-sequence stars. This cold gas has been suggested to be related to the outgassing of planetesimals and cometary-like objects. Aims: The goal of this paper is to investigate the presence of hot gas in the immediate surroundings of the cold-gas-bearing debris-disc central stars. Methods: High-resolution optical spectra of all currently known cold-gas-bearing debris-disc systems, with the exception of β Pic and Fomalhaut, have been obtained from La Palma (Spain), La Silla (Chile), and La Luz (Mexico) observatories. To verify the presence of hot gas around the sample of stars, we have analysed the Ca II H&K and the Na I D lines searching for non-photospheric absorptions of CS origin, usually attributed to cometary-like activity. Results: Narrow, stable Ca II and/or Na I absorption features have been detected superimposed to the photospheric lines in 10 out of the 15 observed cold-gas-bearing debris-disc stars. Features are found at the radial velocity of the stars, or slightly blue- or red-shifted, and/or at the velocity of the local interstellar medium (ISM). Some stars also present transient variable events or absorptions extended towards red wavelengths (red wings). These are the first detections of such Ca II features in 7 out of the 15 observed stars. Although an ISM origin cannot categorically be excluded, the results suggest that the stable and variable absorptions arise from relatively hot gas located in the CS close-in environment of the stars. This hot gas is detected in at least 80%, of edge-on cold-gas-bearing debris discs, while in only 10% of the discs seen close to face-on. We interpret this result as a geometrical effect, and suggest

  9. Evolution of hot galactic flows

    International Nuclear Information System (INIS)

    Loewenstein, M.; Mathews, W.G.

    1987-01-01

    The time-dependent equations describing galactic flows, including detailed models for the evolving source terms, are integrated over a Hubble time for two elliptical galaxies with total masses of 3.1 x 10 to the 12th and 8.3 x 10 to the 12th solar masses, 90 percent of which resides in extended, nonluminous halos. The standard supernova rate of Tammann and a rate 4 times smaller are considered for each galaxy model. The combination of the extended gravitational potential of the dark halo and the time-dependent source terms generally lead to the development of massive, quasi-hydrostatic, nearly isothermal distributions of gas at about 10 to the 7th K with cooling inflows inside their galactic cores. For the less massive galaxy with the higher supernova rate, however, a low-luminosity supersonic galactic wind develops. The effects of a lowered metal abundance, thermal conduction, and the absence of a massive halo are explored separately for one of the present models. The X-ray luminosities of the hot gas in the models with dark halos and the lower supernova rate are in good agreement with Einstein observations of early-type galaxies. 42 references

  10. Influence of heat exchange of reservoir with rocks on hot gas injection via a single well

    Science.gov (United States)

    Nikolaev, Vladimir E.; Ivanov, Gavril I.

    2017-11-01

    In the computational experiment the influence of heat exchange through top and bottom of the gas-bearing reservoir on the dynamics of temperature and pressure fields during hot gas injection via a single well is investigated. The experiment was carried out within the framework of modified mathematical model of non-isothermal real gas filtration, obtained from the energy and mass conservation laws and the Darcy law. The physical and caloric equations of state together with the Newton-Riemann law of heat exchange of gas reservoir with surrounding rocks, are used as closing relations. It is shown that the influence of the heat exchange with environment on temperature field of the gas-bearing reservoir is localized in a narrow zone near its top and bottom, though the size of this zone is increased with time.

  11. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau

    International Nuclear Information System (INIS)

    Zhou, Xiaocheng; Liu, Lei; Chen, Zhi; Cui, Yueju; Du, Jianguo

    2017-01-01

    The southeast Tibetan Plateau is a region with high level seismic activity and strong hydrothermal activity. Several large (7.5 > M > 7) historical earthquakes have occurred in the Litang fault zone (LFZ), eastern Tibetan Plateau since 1700. Litang Ms 5.1 earthquake occurred On Sept 23, 2016, indicating the reactivation of the LFZ. This study was undertaken to elucidate spatial-temporal variations of the hot spring gas geochemistry along the LFZ from Jun 2010 to April 2016. The chemical components, He, Ne and C isotropic ratios of bubbling gas samples taken from 18 hot springs along LFZ were investigated. Helium isotope ratios ( 3 He/ 4 He) measured in hot springs varied from 0.06 to 0.93 Ra (Ra = air 3 He/ 4 He = 1.39 × 10 −6 ), with mantle-derivd He up to 11.1% in the LFZ (assuming R/Ra = 8 for mantle) indicated the fault was a crustal-scale feature that acts as a conduit for deep fluid from the mantle. CO 2 concentrations of the majority of hot spring gas samples were ≥80 vol%, CO 2 / 3 He ratios varied from 1.4 to 929.5 × 10 10 , and δ 13 C CO2 values varied from −19.2‰ to −2.3‰ (vs. PDB). The proportions of mantle-derived CO 2 varied from 0 to 1.8%. Crustal marine limestone was the major contributor (>75%) to the carbon inventory of the majority of hot spring gas samples. Before Litang Ms 5.1 earthquake, the 3 He/ 4 He ratios obviously increased in the Heni spring from May 2013 to Apr 2016. The geographical distribution of the mantle-derivd He decreased from east to west along 30°N in the southeast Tibetan Plateau relative to a corresponding increase in the radiogenic component. The gas geochemical data suggested that the upwelling mantle fluids into the crust play an important role in seismic activity in the strike-slip faults along 30°N in the southeast Tibetan Plateau. - Highlights: • Gas geochemistry of hot springs along Litang fault, Southeast Tibetan Plateau were surveyed. • Mantle-derived He decreased from east to

  12. Detection of hot gas in clusters of galaxies by observation of the microwave background radiation

    International Nuclear Information System (INIS)

    Gull, S.F.; Northover, K.J.E.

    1976-01-01

    It is stated that satellite observations have indicated that many rich clusters are powerful sources of x-rays. This has been interpreted as due to either thermal bremsstrahlung from very hot gas filling the clusters or as inverse Compton scattering of photons by relativistic electrons. Spectral evidence appears to favour a thermal origin for the radiation, implying the existence of large amounts of hot gas. This gas may be a major constituent of the Universe, and independent confirmation of its existence is very important. Observations are here reported of small diminutions in the cosmic microwave background radiation in the direction of several rich clusters of galaxies. This is considered to confirm the existence of large amounts of very hot gas in these clusters and to indicate that the x-radiation is thermal bremsstrahlung and not inverse Compton emission. The observations were made in 1975/1976 using the 25m. telescope at the SRC Appleton Laboratory at a frequency of 10.6 GH2, and details are given of the technique employed. (U.K.)

  13. Warm-hot gas in X-ray bright galaxy clusters and the H I-deficient circumgalactic medium in dense environments

    Science.gov (United States)

    Burchett, Joseph N.; Tripp, Todd M.; Wang, Q. Daniel; Willmer, Christopher N. A.; Bowen, David V.; Jenkins, Edward B.

    2018-04-01

    We analyse the intracluster medium (ICM) and circumgalactic medium (CGM) in seven X-ray-detected galaxy clusters using spectra of background quasi-stellar objects (QSOs) (HST-COS/STIS), optical spectroscopy of the cluster galaxies (MMT/Hectospec and SDSS), and X-ray imaging/spectroscopy (XMM-Newton and Chandra). First, we report a very low covering fraction of H I absorption in the CGM of these cluster galaxies, f_c = 25^{+25}_{-15} {per cent}, to stringent detection limits (N(H I) detect O VI in any cluster, and we only detect BLA features in the QSO spectrum probing one cluster. We estimate that the total column density of warm-hot gas along this line of sight totals to ˜ 3 per cent of that contained in the hot T > 107 K X-ray emitting phase. Residing at high relative velocities, these features may trace pre-shocked material outside the cluster. Comparing gaseous galaxy haloes from the low-density `field' to galaxy groups and high-density clusters, we find that the CGM is progressively depleted of H I with increasing environmental density, and the CGM is most severely transformed in galaxy clusters. This CGM transformation may play a key role in environmental galaxy quenching.

  14. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  15. Tracking the LHC halo

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In the LHC, beams of 25-ns-spaced proton bunches travel at almost the speed of light and pass through many different devices installed along the ring that monitor their properties. During their whirling motion, beam particles might interact with the collimation instrumentation or with residual gas in the vacuum chambers and this creates the beam halo – an annoying source of background for the physics data. Newly installed CMS sub-detectors are now able to monitor it.   The Beam Halo Monitors (BHM) are installed around the CMS rotating shielding. The BHM are designed and built by University of Minnesota, CERN, Princeton University, INFN Bologna and the National Technical University of Athens. (Image: Andrea Manna). The Beam Halo Monitor (BHM) is a set of 20 Cherenkov radiators – 10-cm-long quartz crystals – installed at each end of the huge CMS detector. Their design goal is to measure the particles that can cause the so-called “machine-induced...

  16. Review of hot corrosion of thermal barrier coatings of gas turbine

    Directory of Open Access Journals (Sweden)

    LIU Yongbao

    2017-03-01

    Full Text Available The review was done in order to make clear the problem of the hot corrosion of the Thermal Barrier Coatings(TBCsduring gas turbine serving. This paper summarizes the factors resulting from the hot corrosion of TBCs during turbine service and classifies methods for enhancing the corrosive resistance of TBCs. A prospective methodology for improving corrosion resistance is also formulated. The main types of corrosion coating include phase reaction, oxidizing of the bond coating, salt-fog corrosion, CMAS corrosion and fuel impurity corrosion. So far, methods for improving the corrosion resistance of TBCs include developing new coating materials, anticorrosive treatment on the surface of TBCs, modifying the stacking configuration and improving the cleansing functions of the gas turbines. In the future, developing new materials with excellent performance will still be the main direction for boosting the improvement of the hot corrosion resistance of TBCs. Simultaneously, improving the tacking configuration and nanotechnology of TBC coatings are potential approaches for improving corrosion resistance. With the development of a Ceramic Matrix Composite (CMC, the focus of the hot corrosion of TBCs may turn to that of Environmental Barrier Coatings (EBCs.

  17. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    Science.gov (United States)

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  18. Hot gas in clusters of galaxies, cosmic microwave background radiation and cosmology

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Presence of the hot (kTe ~ 3 - 10 KeV) rarefied gas in the clusters of galaxies (most massive gravitationally bound objects in the Universe) leads to the appearance of  "shadows"  in the angular distribution of the Cosmic Microwave Background (CMB) Radiation and permits to measure the peculiar velocities of these clusters relative to the unique coordinate frame where CMB is isotropic. I plan to describe the physics leading to these observational effects. Planck spacecraft, ground based South Pole and Atacama Cosmology Telescopes discovered recently more than two thousand of unknown before Clusters of Galaxies at high redshifts detecting these "shadows" and traces of kinematic effect, demonstrating the correlation of the hot gas velocities with mass concentrations on large scales. Giant ALMA interferometer in Atacama desert resolved recently strong shocks between merging clusters of galaxies. Newly discovered clusters of galaxies permit to study the rate of growth of the large scale structur...

  19. Regeneration of iron oxide containing pellets used for hot gas clean up

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.; Heeney, P.; Furimsky, E. (CANMET, Ottawa, Ontario (Canada). Energy Research Laboratories)

    1989-09-01

    Four iron-containing pelletized solids used for H{sub 2}S removal from hot gas were oxidized in a Cahn electrobalance and in a fixed bed reactor. The main reactions included the sequence in which FeS was oxidized to iron sulphate which then decomposed rapidly yielding SO{sub 2} and iron oxides. The oxidation occurred predominantly on the outer surface of the pellets. 12 refs., 5 figs., 5 tabs.

  20. Cool infalling gas and its interaction with the hot ISM of elliptical galaxies

    Science.gov (United States)

    Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    The authors describe work leading to the suggestion that interaction between infalling cool gas and ambient hot, coronal plasma in elliptical galaxies is responsible for emission filaments, and might remove the need for large mass depositions in cooling flows. A test of the hypothesis is undertaken - the run of surface brightness with radius for the emission lines - and the prediction agrees well with the data.

  1. Isospin and momentum dependence of liquid-gas phase transition in hot asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Xu, Jun; Ma, Hongru; Chen, Liewen; Li, Baoan

    2008-01-01

    The liquid-gas phase transition in hot neutron-rich nuclear matter is investigated within a self-consistent thermal model using different interactions with or without isospin and/or momentum dependence. The boundary of the phase-coexistence region is shown to be sensitive to the density dependence of the nuclear symmetry energy as well as the isospin and momentum dependence of the nuclear interaction. (author)

  2. Carbon Formation and Metal Dusting in Hot-Gas Cleanup Systems of Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, Peter F.; Judkins, Roddie R.; DeVan, Jackson H.; Wright, Ian G.

    1995-12-31

    There are several possible materials/systems degradation modes that result from gasification environments with appreciable carbon activities. These processes, which are not necessarily mutually exclusive, include carbon deposition, carburization, metal dusting, and CO disintegration of refractories. Carbon formation on solid surfaces occurs by deposition from gases in which the carbon activity (a sub C) exceeds unity. The presence of a carbon layer CO can directly affect gasifier performance by restricting gas flow, particularly in the hot gas filter, creating debris (that may be deposited elsewhere in the system or that may cause erosive damage of downstream components), and/or changing the catalytic activity of surfaces.

  3. SEEDING THE FORMATION OF COLD GASEOUS CLOUDS IN MILKY WAY-SIZE HALOS

    International Nuclear Information System (INIS)

    Keres, Dusan; Hernquist, Lars

    2009-01-01

    We use one of the highest resolution cosmological smoothed particle hydrodynamic simulations to date to demonstrate that cold gaseous clouds form around Milky Way-size galaxies. We further explore mechanisms responsible for their formation and show that a large fraction of clouds originate as a consequence of late-time filamentary 'cold mode' accretion. Here, filaments that are still colder and denser than the surrounding halo gas are not able to connect directly to galaxies, as they do at high redshift, but are instead susceptible to the combined action of cooling and Rayleigh-Taylor instabilities at intermediate radii within the halo leading to the production of cold, dense pressure-confined clouds, without an associated dark matter component. This process is aided through the compression of the incoming filaments by the hot halo gas and expanding shocks during the halo buildup. Our mechanism directly seeds clouds from gas with substantial local overdensity, unlike in previous models, and provides a channel for the origin of cloud complexes. These clouds can later 'rain' onto galaxies, delivering fuel for star formation. Owing to the relatively large cross-section of filaments and the net angular momentum carried by the gas, the clouds will be distributed in a modestly flattened region around a galaxy.

  4. The COS-Halos survey: physical conditions and baryonic mass in the low-redshift circumgalactic medium

    International Nuclear Information System (INIS)

    Werk, Jessica K.; Prochaska, J. Xavier; Tejos, Nicolas; Tumlinson, Jason; Peeples, Molly S.; Fox, Andrew J.; Thom, Christopher; Bordoloi, Rongmon; Tripp, Todd M.; Katz, Neal; Lehner, Nicolas; O'Meara, John M.; Ford, Amanda Brady; Oppenheimer, Benjamin D.; Davé, Romeel; Weinberg, David H.

    2014-01-01

    We analyze the physical conditions of the cool, photoionized (T ∼10 4 K) circumgalactic medium (CGM) using the COS-Halos suite of gas column density measurements for 44 gaseous halos within 160 kpc of L ∼ L* galaxies at z ∼ 0.2. These data are well described by simple photoionization models, with the gas highly ionized (n H II /n H ≳ 99%) by the extragalactic ultraviolet background. Scaling by estimates for the virial radius, R vir , we show that the ionization state (tracked by the dimensionless ionization parameter, U) increases with distance from the host galaxy. The ionization parameters imply a decreasing volume density profile n H = (10 –4.2±0.25 )(R/R vir ) –0.8±0.3 . Our derived gas volume densities are several orders of magnitude lower than predictions from standard two-phase models with a cool medium in pressure equilibrium with a hot, coronal medium expected in virialized halos at this mass scale. Applying the ionization corrections to the H I column densities, we estimate a lower limit to the cool gas mass M CGM cool >6.5×10 10 M ☉ for the volume within R < R vir . Allowing for an additional warm-hot, O VI-traced phase, the CGM accounts for at least half of the baryons purported to be missing from dark matter halos at the 10 12 M ☉ scale.

  5. Exotic nuclei: Halos

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Nigel [Lab. de Physique Corpusculaire, Caen Univ., 14 (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    A brief overview of the nuclear halo is presented. Following some historical remarks the general characteristics of the halo systems are discussed with reference to a simple model. The conditions governing the formation of halos are also explored, as are two subjects of current interest - low-lying resonances of halo nucleon correlations. (author) 54 refs., 16 figs., 1 tabs.

  6. Formation of hot intergalactic gas by gas ejection from a galaxy in an early explosive era

    International Nuclear Information System (INIS)

    Ikeuchi, Satoru

    1977-01-01

    Chemical evolution of a galaxy in an early explosive era is studied by means of one zone model. Calculating the thermal properties of interstellar gas and the overlapping factor of expanding supernova-remnant shells, the gas escape conditions from a galaxy are examined. From these, it is shown that the total mass of ejected gas from a galaxy amounts to 10 -- 40% of the initial mass of a galaxy. The ejected gas extends to the intergalactic space and the whole universe. The mass, the heavy-element abundance and other physical properties of thus formed intergalactic gas are investigated for various parameters of galactic evolution. Some other effects of gas release on the evolution of a galaxy and the evolution of the universe are discussed. (auth.)

  7. Are baryonic galactic halos possible

    International Nuclear Information System (INIS)

    Olive, K.A.; Hegyi, D.J.

    1986-01-01

    There is little doubt from the rotation curves of spiral galaxies that galactic halos must contain large amounts of dark matter. In this contribution, the authors review arguments which indicate that it is very unlikely that galactic halos contain substantial amounts of baryonic matter. While the authors would like to be able to present a single argument which would rule out baryonic matter, at the present time they are only able to present a collection of arguments each of which argues against one form of baryonic matter. These include: 1) snowballs; 2) gas; 3) low mass stars and Jupiters; 4) high mass stars; and 5) high metalicity objects such as rooks or dust. Black holes, which do not have a well defined baryon number, are also a possible candidate for halo matter. They briefly discuss black holes

  8. Shear stress from hot-film sensors in unsteady gas flow

    International Nuclear Information System (INIS)

    Cole, K.D.

    1991-01-01

    In this paper a data analysis procedure is proposed for obtaining unsteady wall shear stress from flush-mounted hot-film anemometer measurements. The method is based on a two-dimensional heat transfer model of the unsteady heat transfer in both the hot-film sensor and in the gas flow. The sensor thermal properties are found from preliminary calibration experiments at zero flow. Numerical experiments are used to demonstrate the data analysis method using simulated sensor signals that are corrupted with noise. The numerical experiments show that noise in the data propagates into the results so that data smoothing may be important in analyzing experimental data. Because the data analysis procedure is linear, a linear digital filter is constructed that could be used for processing large amounts of experimental data. However, further refinements will be needed before the method can be applied to experimental data

  9. Hot gas filtration: Investigations to remove gaseous pollutant components out of flue gas during hot gas filtration. Final report; HGR: Untersuchung zur Minimierung von gasfoermigen Schadstoffen aus Rauchgasen bei der Heissgasfiltration. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Christ, A; Gross, R; Renz, U

    1998-07-01

    Power plants with gas and steam turbines in pressurized fluidized bed or pressurized gasification processes enable power generation of coal with high efficiency and little emissions. To run these plants the cleaning of the flue gas is necessary before entering the turbines under the conditions of high temperature and pressure. Ceramic filter elements are the most probable method for hot gas cleaning. A simultaneous reduction of gaseous pollutant components under these conditions could help to make the whole process more efficient. The aim of the project is to integrate the catalytic reduction of carbon monoxide, hydrocarbons and nitric oxides into the hot gas filtration with ceramic filter elements as a one step mecanism. The project is focused on: - the catalytic behaviour of ferruginous ashes of brown coal, - the effectiveness of calcinated aluminates as a catalyst to remove uncombusted hydrocarbons in a hot gas filtration unit, - numerical simulation of the combined removal of particles and gaseous pollutant components out of the flue gas. (orig.) [Deutsch] Gas- und Dampfturbinen-Kraftwerke mit Druckwirbelschicht- oder mit Druckvergasungsverfahren ermoeglichen die Verstromung von Kohle mit hohem Wirkungsgrad und niedrigen Emissionen. Eine Voraussetzung fuer den Betrieb dieser Anlagen ist die Entstaubung der Rauchgase bei hohen Temperaturen und Druecken. Abreinigungsfilter mit keramischen Elementen werden dazu eingesetzt. Eine Reduzierung gasfoermiger Schadstoffe unter den gleichen Bedingungen koennte die Rauchgaswaesche ersetzen. Ziel des Gesamtvorhabens ist es, die Integration von Heissgasfiltration und katalytischem Abbau der Schadstoffe Kohlenmonoxid, Kohlenwasserstoffe und Stickoxide in einem Verfahrensschritt zu untersuchen. Die Arbeitsschwerpunkte dieses Teilvorhabens betreffen - die katalytische Wirkung eisenhaltiger Braunkohlenaschen, - die Wirksamkeit des Calciumaluminats als Katalysator des Abbaus unverbrannter Kohlenwasserstoffe im Heissgasfilter

  10. The Gas-Phase Formation of Methyl Formate in Hot Molecular Cores

    Science.gov (United States)

    Horn, Anne; Møllendal, Harald; Sekiguchi, Osamu; Uggerud, Einar; Roberts, Helen; Herbst, Eric; Viggiano, A. A.; Fridgen, Travis D.

    2004-08-01

    Methyl formate, HCOOCH3, is a well-known interstellar molecule prominent in the spectra of hot molecular cores. The current view of its formation is that it occurs in the gas phase from precursor methanol, which is synthesized on the surfaces of grain mantles during a previous colder era and evaporates while temperatures increase during the process of high-mass star formation. The specific reaction sequence thought to form methyl formate, the ion-molecule reaction between protonated methanol and formaldehyde followed by dissociative recombination of the protonated ion [HCO(H)OCH3]+, has not been studied in detail in the laboratory. We present here the results of both a quantum chemical study of the ion-molecule reaction between [CH3OH2]+ and H2CO as well as new experimental work on the system. In addition, we report theoretical and experimental studies for a variety of other possible gas-phase reactions leading to ion precursors of methyl formate. The studied chemical processes leading to methyl formate are included in a chemical model of hot cores. Our results show that none of these gas-phase processes produces enough methyl formate to explain its observed abundance.

  11. Analysis of graphite dust deposition in hot gas duct of HTGR

    International Nuclear Information System (INIS)

    Peng Wei; Zhen Ya'nan; Yang Xiaoyong; Ye Ping

    2013-01-01

    The behavior of the graphite dust is important to the safety of high-temperature gas-cooled reactor (HTGR). The temperature field in hot gas duct was obtained using computational fluid dynamics (CFD) method. Further analysis to the thermo-phoretic deposition and turbulent deposition shows that as the dust particle diameter increases, the thermo-phoretic deposition efficiency decreases, and the turbulent deposition efficiency initially decreases and then increases. The comparisons of calculation results for two reactor powers, namely 30% FP (full power) and 100 % FP, indicate that the thermo-phoretic deposition efficiency is higher at 30% FP than that at 100% FP. while the turbulent deposition efficiency grows more rapidly at 100% FP. Besides, the results also demonstrate that the thermo-phoretic deposition and the turbulent deposition are nearly equivalent when particle sizes are small, while the turbulent deposition becomes dominant when particle sizes are fairly large. The calculation results by using the most probable distribution of particle size show that the total deposition of graphite dusts in hot gas duct is limited. (authors)

  12. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas

    International Nuclear Information System (INIS)

    Zhang, F.M.; Liu, B.S.; Zhang, Y.; Guo, Y.H.; Wan, Z.Y.; Subhan, Fazle

    2012-01-01

    Highlights: ► A series of mesoporous Cu x Mn y O z /SBA-15 sorbents were fabricated for hot coal gas desulfurization. ► 1Cu9Mn/SBA-15 sorbent with high breakthrough sulfur capacity is high stable and regenerable. ► Utilization of SBA-15 constrained the sintering and pulverization of sorbents. - Abstract: A series of mesoporous xCuyMn/SBA-15 sorbents with different Cu/Mn atomic ratios were prepared by wet impregnation method and their desulfurization performance in hot coal gas was investigated in a fixed-bed quartz reactor in the range of 700–850 °C. The successive nine desulfurization–regeneration cycles at 800 °C revealed that 1Cu9Mn/SBA-15 presented high performance with durable regeneration ability due to the high dispersion of Mn 2 O 3 particles incorporated with a certain amount of copper oxides. The breakthrough sulfur capacity of 1Cu9Mn/SBA-15 observed 800 °C is 13.8 g S/100 g sorbents, which is remarkably higher than these of 40 wt%LaFeO 3 /SBA-15 (4.8 g S/100 g sorbents) and 50 wt%LaFe 2 O x /MCM-41 (5.58 g S/100 g sorbents) used only at 500–550 °C. This suggested that the loading of Mn 2 O 3 active species with high thermal stability to SBA-15 support significantly increased sulfur capacity at relatively higher sulfidation temperature. The fresh and used xCuyMn/SBA-15 sorbents were characterized by means of BET, XRD, XPS, XAES, TG/DSC and HRTEM techniques, confirmed that the structure of the sorbents remained intact before and after hot coal gas desulfurization.

  13. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  14. Hot gas path component having cast-in features for near wall cooling

    Science.gov (United States)

    Miranda, Carlos Miguel; Kottilingam, Srikanth Chandrudu; Lacy, Benjamin Paul

    2018-04-10

    A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface of the substrate defines at least one interior space. At least a portion of the outer surface of the substrate includes a recess formed therein. The recess includes a bottom surface and a groove extending at least partially along the bottom surface of the recess. A cover is disposed within the recess and covers at least a portion of the groove. The groove is configured to channel a cooling fluid therethrough to cool the cover.

  15. Hot gas path component cooling system having a particle collection chamber

    Science.gov (United States)

    Miranda, Carlos Miguel; Lacy, Benjamin Paul

    2018-02-20

    A cooling system for a hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines at least one interior space. A passage is formed in the substrate between the outer surface and the inner surface. An access passage is formed in the substrate and extends from the outer surface to the inner space. The access passage is formed at a first acute angle to the passage and includes a particle collection chamber. The access passage is configured to channel a cooling fluid to the passage. Furthermore, the passage is configured to channel the cooling fluid therethrough to cool the substrate.

  16. THE EVOLUTION OF GAS CLOUDS FALLING IN THE MAGNETIZED GALACTIC HALO: HIGH-VELOCITY CLOUDS (HVCs) ORIGINATED IN THE GALACTIC FOUNTAIN

    International Nuclear Information System (INIS)

    Kwak, Kyujin; Shelton, Robin L.; Raley, Elizabeth A.

    2009-01-01

    In the Galactic fountain scenario, supernovae and/or stellar winds propel material into the Galactic halo. As the material cools, it condenses into clouds. By using FLASH three-dimensional magnetohydrodynamic simulations, we model and study the dynamical evolution of these gas clouds after they form and begin to fall toward the Galactic plane. In our simulations, we assume that the gas clouds form at a height of z = 5 kpc above the Galactic midplane, then begin to fall from rest. We investigate how the cloud's evolution, dynamics, and interaction with the interstellar medium (ISM) are affected by the initial mass of the cloud. We find that clouds with sufficiently large initial densities (n ≥ 0.1 H atoms cm -3 ) accelerate sufficiently and maintain sufficiently large column densities as to be observed and identified as high-velocity clouds (HVCs) even if the ISM is weakly magnetized (1.3 μG). However, the ISM can provide noticeable resistance to the motion of a low-density cloud (n ≤ 0.01 H atoms cm -3 ) thus making it more probable that a low-density cloud will attain the speed of an intermediate-velocity cloud rather than the speed of an HVC. We also investigate the effects of various possible magnetic field configurations. As expected, the ISM's resistance is greatest when the magnetic field is strong and perpendicular to the motion of the cloud. The trajectory of the cloud is guided by the magnetic field lines in cases where the magnetic field is oriented diagonal to the Galactic plane. The model cloud simulations show that the interactions between the cloud and the ISM can be understood via analogy to the shock tube problem which involves shock and rarefaction waves. We also discuss accelerated ambient gas, streamers of material ablated from the clouds, and the cloud's evolution from a sphere-shaped to a disk- or cigar-shaped object.

  17. Continuous distillation of bituminous shale. [hot gas in chamber and chamber heated externally

    Energy Technology Data Exchange (ETDEWEB)

    1921-04-27

    A process of continuous distillation of bituminous shale is given in which the heat necessary is produced not only on the exterior but also in the interior of the distillation apparatus in the form of hot gas directly bathing the shale. The residual carbon in the shale after distillation, or maybe with other fuel added to it, can be utilized; the fuel may be utilized not only for the heat it furnishes but also for the gas it gives and which adds itself to the incondensable gas from the distillation. The temperature of the zone of distillation of the shale is regulated by the quantity of gas, the temperature of this gas (which can be lowered voluntarily by injecting into the air a certain quantity of water vapor), the length of the zone comprised between the zone of gasification and distillation; the injection of water vapor permits the recovery of part of the nitrogen of the shale in the form of ammonia; the materials are withdrawn continuously in a mechanical way.

  18. Preliminary design analysis of hot gas ducts and a intermediate heat exchanger for the nuclear hydrogen reactor

    International Nuclear Information System (INIS)

    Song, K. N.; Kim, Y. W.

    2008-01-01

    Korea Atomic Energy Research Institute (KAERI) is in the process of carrying out a nuclear hydrogen system by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. Primary and secondary hot gas ducts with coaxial double tubes and are key components connecting a reactor pressure vessel and a intermediate heat exchanger for the nuclear hydrogen system. In this study, preliminary design analyses on the hot gas ducts and the intermediate heat exchanger were carried out. These preliminary design activities include a preliminary design on the geometric dimensions, a preliminary strength evaluation, thermal sizing, and an appropriate material selection

  19. A gas production system from methane hydrate layers by hot water injection and BHP control with radial horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, T.; Ono, S.; Iwamoto, A.; Sugai, Y.; Sasaki, K. [Kyushu Univ., Fukuoka, Fukuoka (Japan)

    2010-07-01

    Reservoir characterization of methane hydrate (MH) bearing turbidite channel in the eastern Nankai Trough, in Japan has been performed to develop a gas production strategy. This paper proposed a gas production system from methane hydrate (MH) sediment layers by combining the hot water injection method and bottom hole pressure control at the production well using radial horizontal wells. Numerical simulations of the cylindrical homogeneous MH layer model were performed in order to evaluate gas production characteristics by the depressurization method with bottom hole pressure control. In addition, the effects of numerical block modeling and averaging physical properties of MH layers were presented. According to numerical simulations, combining the existing production system with hot water injection and bottom hole pressure control results in an outward expansion of the hot water chamber from the center of the MH layer with continuous gas production. 10 refs., 15 figs.

  20. Pion-pair formation and the pion dispersion relation in a hot pion gas

    Energy Technology Data Exchange (ETDEWEB)

    Chanfay, G. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; Alm, T. [Rostock Univ. (Germany); Schuck, P. [Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires; Welke, G. [Wayne State Univ., Detroit, MI (United States). Dept. of Physics and Astronomy

    1996-09-01

    The possibility of pion-pair formation in a hot pion gas, based on the bosonic gap equation, is pointed out and discussed in detail. The critical temperature for condensation of pion pairs (Evans-Rashind transition) is determined as a function of the pion density. As for fermions, this phase transition is signaled by the appearance of a pole in the two-particle propagator. In Bose systems there exists a second, lower critical temperature, associated with the appearance of the single-particle condensate. Between the two critical temperatures the pion dispersion relation changes from the usual quasiparticle dispersion to a Bogoliubov-like dispersion relation at low momenta. This generalizes the non-relativistic results for an attractive Bose gas by Evans et al. Possible consequences for the inclusive pion spectra measured in heavy-ion collisions at ultra-relativistic energies are discussed. 21 refs.

  1. MINIMARS interim report appendix halo model and computer code

    International Nuclear Information System (INIS)

    Santarius, J.F.; Barr, W.L.; Deng, B.Q.; Emmert, G.A.

    1985-01-01

    A tenuous, cool plasma called the halo shields the core plasma in a tandem mirror from neutral gas and impurities. The neutral particles are ionized and then pumped by the halo to the end tanks of the device, since flow of plasma along field lines is much faster than radial flow. Plasma reaching the end tank walls recombines, and the resulting neutral gas is vacuum pumped. The basic geometry of the MINIMARS halo is shown. For halo modeling purposes, the core plasma and cold gas regions may be treated as single radial zones leading to halo source and sink terms. The halo itself is differential into two major radial zones: halo scraper and halo dump. The halo scraper zone is defined by the radial distance required for the ion end plugging potential to drop to the central cell value, and thus have no effect on axial confinement; this distance is typically a sloshing plug ion Larmor diameter. The outer edge of the halo dump zone is defined by the last central cell flux tube to pass through the choke coil. This appendix will summarize the halo model that has been developed for MINIMARS and the methodology used in implementing that model as a computer code

  2. Thermal hydrodynamic modeling and simulation of hot-gas duct for next-generation nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Hong, Sungdeok; Kim, Chansoo [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bai, Cheolho; Hong, Sungyull [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shim, Jaesool, E-mail: jshim@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2016-12-15

    Highlights: • Thermal hydrodynamic nonlinear model is presented to examine a hot gas duct (HGD) used in a fourth-generation nuclear power reactor. • Experiments and simulation were compared to validate the nonlinear porous model. • Natural convection and radiation are considered to study the effect on the surface temperature of the HGD. • Local Nusselt number is obtained for the optimum design of a possible next-generation HGD. - Abstract: A very high-temperature gas-cooled reactor (VHTR) is a fourth-generation nuclear power reactor that requires an intermediate loop that consists of a hot-gas duct (HGD), an intermediate heat exchanger (IHX), and a process heat exchanger for massive hydrogen production. In this study, a mathematical model and simulation were developed for the HGD in a small-scale nitrogen gas loop that was designed and manufactured by the Korea Atomic Energy Research Institute. These were used to investigate the effect of various important factors on the surface of the HGD. In the modeling, a porous model was considered for a Kaowool insulator inside the HGD. The natural convection and radiation are included in the model. For validation, the modeled external surface temperatures are compared with experimental results obtained while changing the inlet temperatures of the nitrogen working fluid. The simulation results show very good agreement with the experiments. The external surface temperatures of the HGD are obtained with respect to the porosity of insulator, emissivity of radiation, and pressure of the working fluid. The local Nusselt number is also obtained for the optimum design of a possible next-generation HGD.

  3. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up

    International Nuclear Information System (INIS)

    Giuffrida, Antonio; Romano, Matteo C.; Lozza, Giovanni

    2013-01-01

    Air-blown IGCC systems with hot fuel gas clean-up are investigated. In detail, the gas clean-up station consists of two reactors: in the first, the raw syngas exiting the gasifier and passed through high-temperature syngas coolers is desulfurized by means of a zinc oxide-based sorbent, whereas in the second the sulfided sorbent is duly regenerated. The hot fuel gas clean-up station releases H 2 S-free syngas, which is ready to fuel the combustion turbine after hot gas filtration, and a SO 2 -laden stream, which is successively treated in a wet scrubber. A thermodynamic analysis of two air-blown IGCC systems, the first with cold fuel gas clean-up and the second with hot fuel gas clean-up, both with a state-of-the-art combustion turbine as topping cycle, shows that it is possible to obtain a really attractive net efficiency (more than 51%) for the second system, with significant improvements in comparison with the first system. Nevertheless, higher efficiency is accomplished with a small reduction in the power output and no sensible efficiency improvements seem to be appreciated when the desulfurization temperature increases. Other IGCC systems, with an advanced 1500 °C-class combustion turbine as the result of technology improvements, are investigated as well, with efficiency as high as 53%. - Highlights: ► Hot fuel gas clean-up is a highly favorable technology for IGCC concepts. ► Significant IGCC efficiency improvements are possible with hot fuel gas clean-up. ► Size reductions of several IGCC components are possible. ► Higher desulfurization temperatures do not sensibly affect IGCC efficiency. ► IGCC efficiency as high as 53% is possible with a 1500°C-class combustion turbine

  4. Process simulation and experimental validation of Hot Metal Gas Forming with new press hardening steels

    Science.gov (United States)

    Paul, A.; Reuther, F.; Neumann, S.; Albert, A.; Landgrebe, D.

    2017-09-01

    One field in the work of the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz is industry applied research in Hot Metal Gas Forming, combined with press hardening in one process step. In this paper the results of investigations on new press hardening steels from SSAB AB (Docol®1800 Bor and Docol®2000 Bor) are presented. Hot tensile tests recorded by the project partner (University of West Bohemia, Faculty of Mechanical Engineering) were used to create a material model for thermo-mechanical forming simulations. For this purpose the provided raw data were converted into flow curve approximations of the real stress-real strain-curves for both materials and afterwards integrated in a LS-DYNA simulation model of Hot Metal Gas Forming with all relevant boundary conditions and sub-stages. Preliminary experimental tests were carried out using a tool at room temperature to permit evaluation of the forming behaviour of Docol 1800 Bor and Docol 2000 Bor tubes as well as validation of the simulation model. Using this demonstrator geometry (outer diameter 57 mm, tube length 300 mm, wall thickness 1.5 mm), the intention was to perform a series of tests with different furnace temperatures (from 870 °C to 1035 °C), maximum internal pressures (up to 67 MPa) and pressure build-up rates (up to 40 MPa/s) to evaluate the formability of Docol 1800 Bor and Docol 2000 Bor. Selected demonstrator parts produced in that way were subsequently analysed by wall thickness and hardness measurements. The tests were carried out using the completely modernized Dunkes/AP&T HS3-1500 hydroforming press at the Fraunhofer IWU. In summary, creating a consistent simulation model with all relevant sub-stages was successfully established in LS-DYNA. The computation results show a high correlation with the experimental data regarding the thinning behaviour. The Hot Metal Gas Forming of the demonstrator geometry was successfully established as well. Different hardness values

  5. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  6. Novel process chain for hot metal gas forming of ferritic stainless steel 1.4509

    Science.gov (United States)

    Mosel, André; Lambarri, Jon; Degenkolb, Lars; Reuther, Franz; Hinojo, José Luis; Rößiger, Jörg; Eurich, Egbert; Albert, André; Landgrebe, Dirk; Wenzel, Holger

    2018-05-01

    Exhaust gas components of automobiles are often produced in ferritic stainless steel 1.4509 due to the low thermal expansion coefficient and the low material price. Until now, components of the stainless steel with complex geometries have been produced in series by means of multi-stage hydroforming at room temperature with intermediate annealing operations. The application of a single-stage hot-forming process, also referred to as hot metal gas forming (HMGF), offers great potential to significantly reduce the production costs of such components. The article describes a novel process chain for the HMGF process. Therefore the tube is heated in two steps. After pre-heating of the semi-finished product outside the press, the tube is heated up to forming start temperature by means of a tool-integrated conductive heating before forming. For the tube of a demonstrator geometry, a simulation model for the conduction heating was set up. In addition to the tool development for this process, experimental results are also described for the production of the demonstrator geometry.

  7. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Jürg; Wadsley, James; Moustakas, Leonidas A.

    2013-01-01

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ∼70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by λ ∼ 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  8. Hot gas cleaning in power stations by using electron beam technology. Influence on PAH emissions

    International Nuclear Information System (INIS)

    Callen, M.S.; de la Cruz, M.T.; Mastral, A.M.; Murillo, R.; Marinov, S.; Stefanova, M.

    2007-01-01

    The Electron Beam Technology (EBT), proven treatment for SO 2 and NO x removal, is applied to different power stations as a hot gas cleaning system. In this paper, an assessment of this technique installed in a Bulgarian power station on organic emissions is analyzed. The Polycyclic Aromatic Hydrocarbons (PAH) content, not only emitted in the gas phase but also trapped in the solid phase, has been carried out before and after the irradiation. The main aim has been to know whether the EBT affects organic emissions, like PAH, as it happens with inorganic pollutants, like SO 2 and NO x , studying EBT effects from an organic environmental point of view. The PAH quantification was performed by using a very sensitive analytical technique, gas chromatography with mass spectrometry mass spectrometry detection (GC-MS-MS). Results showed that PAH are influenced by the EBT showing a reduction of the most volatile PAH in the gas phase. With regard to the solid by-products obtained after the irradiation, fertilizers, similar PAH concentration to the fly ashes produced when no irradiation is applied were found. These fertilizers were considered like unpolluted soils being adequate for agriculture applications with PAH concentrations below the target value set up by the Dutch government. (author)

  9. Effects of atmospheric gas composition and temperature on the gasification of coal in hot briquetting carbon composite iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Y.; Kanayama, M.; Maeda, T.; Nishika, K.; Shimizu, M. [Kyushu University, Fukuoka (Japan). Dept. of Materials Science & Engineering

    2007-01-15

    The gasification behavior of carbon composite iron ore produced by hot briquetting process was examined under various gas atmospheres such as CO-N{sub 2}, CO{sub 2}-N, and CO-CO{sub 2} at various temperatures. The gasification of coal was affected strongly by atmospheric gas concentration and reaction temperature. Kinetic analysis in various gas atmospheres was carried out by using the first order reaction model, which yields the straight line relation between reaction rate constants for the gasification of coal and the gas concentration. Therefore, reaction rate constants for the gasification of coal in CO-CO{sub 2}-N{sub 2} gas atmosphere were derived.

  10. Two-halo term in stacked thermal Sunyaev-Zel'dovich measurements: Implications for self-similarity

    Science.gov (United States)

    Hill, J. Colin; Baxter, Eric J.; Lidz, Adam; Greco, Johnny P.; Jain, Bhuvnesh

    2018-04-01

    The relation between the mass and integrated electron pressure of galaxy group and cluster halos can be probed by stacking maps of the thermal Sunyaev-Zel'dovich (tSZ) effect. Perhaps surprisingly, recent observational results have indicated that the scaling relation between integrated pressure and mass follows the prediction of simple, self-similar models down to halo masses as low as 1 012.5 M⊙ . Hydrodynamical simulations that incorporate energetic feedback processes suggest that gas should be depleted from such low-mass halos, thus decreasing their tSZ signal relative to self-similar predictions. Here, we build on the modeling of V. Vikram, A. Lidz, and B. Jain, Mon. Not. R. Astron. Soc. 467, 2315 (2017), 10.1093/mnras/stw3311 to evaluate the bias in the interpretation of stacked tSZ measurements due to the signal from correlated halos (the "two-halo" term), which has generally been neglected in the literature. We fit theoretical models to a measurement of the tSZ-galaxy group cross-correlation function, accounting explicitly for the one- and two-halo contributions. We find moderate evidence of a deviation from self-similarity in the pressure-mass relation, even after marginalizing over conservative miscentering effects. We explore pressure-mass models with a break at 1 014 M⊙, as well as other variants. We discuss and test for sources of uncertainty in our analysis, in particular a possible bias in the halo mass estimates and the coarse resolution of the Planck beam. We compare our findings with earlier analyses by exploring the extent to which halo isolation criteria can reduce the two-halo contribution. Finally, we show that ongoing third-generation cosmic microwave background experiments will explicitly resolve the one-halo term in low-mass groups; our methodology can be applied to these upcoming data sets to obtain a clear answer to the question of self-similarity and an improved understanding of hot gas in low-mass halos.

  11. Vacuum pumping by the halo plasma

    International Nuclear Information System (INIS)

    Barr, W.L.

    1985-01-01

    An estimate is made of the effective vacuum pumping speed of the halo plasma in a tandem mirror fusion reactor, and it is shown that, if the electron temperature and line density are great enough, the halo can be a very good vacuum pump. One can probably obtain the required density by recycling the ions at the halo dumps. An array of small venting ports in the dump plates allows local variation of the recycle fraction and local removal of the gas at a conveniently high pressure. This vented-port concept could introduce more flexibility in the design of pumped limiters for tokamaks

  12. Removal of H/sub 2/S from hot gas in the presence of Cu-containing sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Kyotani, T.; Kawashima, H.; Tomita, A.; Palmer, A.; Furimsky, E.

    1989-01-01

    Three solids containing Cu oxides were tested as sorbents for H/sub 2/S removal from hot gas at 600 degrees C. The formation of a surface layer of sulphides on pellet exterior affected Cu utilization for the sorbent prepared from Cu oxides alone. This improved for the sorbent prepared by impregnation of zeolite with Cu oxides, although complete utilization of Cu was not achieved. The combination of Cu oxides with SiO/sub 2/ gave the most efficient sorbent. Oxidation of H/sub 2/S to SO/sub 2/ on admission of hot gas to the fixed bed was a common observation for all sorbents. The addition of steam to hot gas suppressed the SO/sub 2/ formation. 9 refs., 6 figs., 4 tabs.

  13. Hot Gas Particulate Cleaning Technology Applied for PFBC/IGFC -The Ceramic Tube Filter (CTF) and Metal Filter-

    Energy Technology Data Exchange (ETDEWEB)

    Sasatsu, H; Misawa, N; Kobori, K; Iritani, J

    2002-09-18

    Coal is a fossil fuel abundant and widespread all over world. It is a vital resource for energy security, because the supply is stable. However, its CO2 emission per unit calorific value is greater than that of other fossil fuels. It is necessary to develop more efficient coal utilization technologies to expand the coal utilization that meets the social demand for better environment. The Pressurized Fluidized Bed Combustion (PFBC) combined cycle has become a subject of world attention in terms of better plant operation, improved plant efficiency, lower flue gas emission and fuel flexibility. The gas turbine, one of the most important components in the PFBC, is eager for a hot gas (approximately 650-850C) cleaning system in order to eliminate the severe erosion problem with the less thermal loss. The cyclone is most popular system for a hot gas cleaning, however, the severe damage for gas turbine blades by highly concentrated fine fly ash from PFBC boiler is reported.

  14. Simulation of Transcritical CO2 Refrigeration System with Booster Hot Gas Bypass in Tropical Climate

    Science.gov (United States)

    Santosa, I. D. M. C.; Sudirman; Waisnawa, IGNS; Sunu, PW; Temaja, IW

    2018-01-01

    A Simulation computer becomes significant important for performance analysis since there is high cost and time allocation to build an experimental rig, especially for CO2 refrigeration system. Besides, to modify the rig also need additional cos and time. One of computer program simulation that is very eligible to refrigeration system is Engineering Equation System (EES). In term of CO2 refrigeration system, environmental issues becomes priority on the refrigeration system development since the Carbon dioxide (CO2) is natural and clean refrigerant. This study aims is to analysis the EES simulation effectiveness to perform CO2 transcritical refrigeration system with booster hot gas bypass in high outdoor temperature. The research was carried out by theoretical study and numerical analysis of the refrigeration system using the EES program. Data input and simulation validation were obtained from experimental and secondary data. The result showed that the coefficient of performance (COP) decreased gradually with the outdoor temperature variation increasing. The results show the program can calculate the performance of the refrigeration system with quick running time and accurate. So, it will be significant important for the preliminary reference to improve the CO2 refrigeration system design for the hot climate temperature.

  15. Hot gas stripping of ammonia and carbon dioxide from simulated and actual in situ retort waters

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.L.

    1979-01-01

    This study proved that ammonia and carbon dioxide could be removed from retort water by hot gas stripping and that overall transfer rates were slower than for physical desorption alone. The ammonia in solution complexed with the carbonate species with the result that the CO/sub 2/ transfer rates were linked to the relatively slower desorption of NH/sub 3/ from solution. Ionic reactions in the liquid phase limited the quantity of free NH/sub 3/ and CO/sub 2/, thus decreasing the driving forces for mass transfer. The retort water exhibited foaming tendencies that affected the interfacial area which should be taken into account if a stripping tower is considered on a larger scale. Transfer unit heights were calculated for the process conditions studied and correlated such that scaleup to increased capacities is possible.

  16. Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2017-01-01

    are built additively to nearly net shape. This allows the fabrication of arbitrary complex geometries that cannot be made by conventional manufacturing techniques. However, despite the powerful capabilities of SLM, a number of issues (e.g. part orientation, support structures, internal stresses), have......Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts...... to be considered in order to manufacture cost-effective and high quality parts at an industrial scale. These issues are discussed in the present work from an engineering point of view with the aim to provide simple quidelines to produce high quality SLM parts....

  17. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  18. Structural Pre-sizing of a Coaxial Double-tube Type Hot Gas Duct

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kim, Y-W [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    The nuclear hydrogen system being researched at KAERI is planning to produce hydrogen in the order of 950 .deg. C by using nuclear energy and a thermo-chemical process, and helium gas is tentatively considered as the choice for the coolant. A hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the nuclear hydrogen system. The HGD is a unique component exclusively found in an HTR-module concept where a nuclear core and IHX are placed separately into two pressure vessels, which require a connecting duct between them. A coaxial double-tube type cross vessel is considered for the HGD structure of the nuclear hydrogen system because of its successive extensive experience. In this study, a structural pre-sizing for the primary HGD was carried out. These activities include a predecision on the geometric dimensions, a pre-evaluation on the strength, and a pre-selection on the material of the coaxial double-tube type cross vessel components. A predecision on the geometric dimensions was undertaken based on various engineering concepts, such as a constant flow velocity (CFV) model, a constant flow rate (CFR) model, a constant hydraulic head (CHH) model, and finally a heat balanced (HB) model. For the CFV model, CFR model, and CHH model, the HGD structure might be insensitive to a flow induced vibration (FIV) in the case where there are no pressure differences between the hot and cold helium regions. Also we compared the geometric dimensions from the various models.

  19. Hot-gas-side heat transfer characteristics of subscale, plug-nozzle rocket calorimeter chamber

    Science.gov (United States)

    Quentmeyer, Richard J.; Roncace, Elizabeth A.

    1993-01-01

    An experimental investigation was conducted to determine the hot-gas-side heat transfer characteristics for a liquid-hydrogen-cooled, subscale, plug-nozzle rocket test apparatus. This apparatus has been used since 1975 to evaluate rocket engine advanced cooling concepts and fabrication techniques, to screen candidate combustion chamber liner materials, and to provide data for model development. In order to obtain the data, a water-cooled calorimeter chamber having the same geometric configuration as the plug-nozzle test apparatus was tested. It also used the same two showerhead injector types that were used on the test apparatus: one having a Rigimesh faceplate and the other having a platelet faceplate. The tests were conducted using liquid oxygen and gaseous hydrogen as the propellants over a mixture ratio range of 5.8 to 6.3 at a nominal chamber pressure of 4.14 MPa abs (600 psia). The two injectors showed similar performance characteristics with the Rigimesh faceplate having a slightly higher average characteristic-exhaust-velocity efficiency of 96 percent versus 94.4 percent for the platelet faceplate. The throat heat flux was 54 MW/m(sup 2) (33 Btu/in.(sup 2)-sec) at the nominal operating condition, which was a chamber pressure of 4.14 MPa abs (600 psia), a hot-gas-side wall temperature of 730 K (1314 R), and a mixture ratio of 6.0. The chamber throat region correlation coefficient C(sub g) for a Nusselt number correlation of the form Nu =C(sub g)Re(sup 0.8)Pr(sup 0.3) averaged 0.023 for the Rigimesh faceplate and 0.026 for the platelet faceplate.

  20. Chemical hot gas purification for biomass gasification processes; Chemische Heissgasreinigung bei Biomassevergasungsprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Stemmler, Michael

    2010-07-01

    The German government decided to increase the percentage of renewable energy up to 20 % of all energy consumed in 2020. The development of biomass gasification technology is advanced compared to most of the other technologies for producing renewable energy. So the overall efficiency of biomass gasification processes (IGCC) already increased to values above 50 %. Therefore, the production of renewable energy attaches great importance to the thermochemical biomass conversion. The feedstock for biomass gasification covers biomasses such as wood, straw and further energy plants. The detrimental trace elements released during gasification of these biomasses, e.g. KCl, H{sub 2}S and HCl, cause corrosion and harm downstream devices. Therefore, gas cleaning poses an especial challenge. In order to improve the overall efficiency this thesis aims at the development of gas cleaning concepts for the allothermic, water blown gasification at 800 C and 1 bar (Guessing-Process) as well as for the autothermic, water and oxygen blown gasification at 950 C and 18 bar (Vaernamo-Process). Although several mechanisms for KCl- and H{sub 2}S-sorption are already well known, the achievable reduction of the contamination concentration is still unknown. Therefore, calculations on the produced syngas and the chemical hot gas cleaning were done with a thermodynamic process model using SimuSage. The syngas production was included in the calculations because the knowledge of the biomass syngas composition is very limited. The results of these calculations prove the dependence of syngas composition on H{sub 2}/C-ratio and ROC (Relative Oxygen Content). Following the achievable sorption limits were detected via experiments. The KCl containing syngases were analysed by molecular beam mass spectrometry (MBMS). Furthermore, an optimised H{sub 2}S-sorbent was developed because the examined sorbents exceeded the sorption limit of 1 ppmv. The calculated sorption limits were compared to the limits

  1. Clustered supernovae versus the gaseous disk and halo

    International Nuclear Information System (INIS)

    Heiles, C.

    1990-01-01

    The effects of clustered supernovae on the two-dimensional porosity parameter Q(2D) and the rates M of mass injection of both hot and cold gas into the halo are reconsidered. The effects of high-absolute value z, low-density extension of the neutral gas layer are theoretically calculated and the distribution of H-alpha luminosities of extragalactic H II regions is observationally determined. These results are used to estimate the birth rate of star clusters having N supernovae as a function of N. A Galaxy-wide average of Q(2D) roughly 0.30 is obtained, corresponding to an area filling factor of 0.23. Area filling factors and mass injection rates into the halo due to breakthrough bubbles with large N are calculated for different types of galaxy. The calculations are related to the area covered by H I 'holes' and the area covered by giant H II regions. The effects of supernova clusters that are too small to produce breakthrough bubbles are discussed. 53 refs

  2. Galaxy And Mass Assembly (GAMA): gas fuelling of spiral galaxies in the local Universe II. - direct measurement of the dependencies on redshift and host halo mass of stellar mass growth in central disc galaxies

    Science.gov (United States)

    Grootes, M. W.; Dvornik, A.; Laureijs, R. J.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Liske, J.; Brown, M. J. I.; Holwerda, B. W.; Wang, L.

    2018-06-01

    We present a detailed analysis of the specific star formation rate-stellar mass (sSFR-M*) of z ≤ 0.13 disc central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5 M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR-M* relations of disc-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR-M* relation of non-grouped (field) central disc galaxies with redshift, even over a Δz ≈ 0.04 (≈5 × 108 yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the `main sequence of star-forming-galaxies' from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star formation in discs, with the inflow being determined by the product of the cosmological accretion rate and a fuelling efficiency - \\dot{M}_{b,halo}ζ. In particular, maintaining the paradigm requires \\dot{M}_{b,halo}ζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3 M⊙ over z = 0-0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disc-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for discs are unclear.

  3. Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Swift, W.M.; Johnson, I.

    1980-01-01

    Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

  4. X-ray and SZ constraints on the properties of hot CGM

    Science.gov (United States)

    Singh, Priyanka; Majumdar, Subhabrata; Nath, Biman B.; Silk, Joseph

    2018-05-01

    We use observations of stacked X-ray luminosity and Sunyaev-Zel'dovich (SZ) signal from a cosmological sample of ˜80, 000 and 104,000 massive galaxies, respectively, with 1012.6 ≲ M500 ≲ 1013M⊙ and mean redshift, z¯ ˜ 0.1 - 0.14 to constrain the hot Circumgalactic Medium (CGM) density and temperature. The X-ray luminosities constrain the density and hot CGM mass, while the SZ signal helps in breaking the density-temperature degeneracy. We consider a simple power-law density distribution (ne∝r-3β) as well as a hydrostatic hot halo model, with the gas assumed to be isothermal in both cases. The datasets are best described by the mean hot CGM profile ∝r-1.2, which is shallower than an NFW profile. For halo virial mass ˜1012 - 1013M⊙, the hot CGM contains ˜ 20 - 30% of galactic baryonic mass for the power-law model and 4 - 11% for the hydrostatic halo model, within the virial radii. For the power-law model, the hot CGM profile broadly agrees with observations of the Milky Way. The mean hot CGM mass is comparable to or larger than the mass contained in other phases of the CGM for L* galaxies.

  5. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    International Nuclear Information System (INIS)

    Pence, D.T.; Kirstein, B.E.

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m 3 /h (15-ft 3 /min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed

  6. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Pence, D T; Kirstein, B E

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m/sup 3//h (15-ft/sup 3//min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed.

  7. Hot corrosion behavior of Ni-Cr-W-C alloys in impure helium gas

    International Nuclear Information System (INIS)

    Ohmura, Taizo; Sahira, Kensho; Sakonooka, Akihiko; Yonezawa, Noboru

    1976-01-01

    Influence of the minor alloy constituents such as Al, Mn and Si on the hot corrosion behavior of Ni-20Cr-20W-0.07C alloy was studied in 99.995% helium gas at 1000 0 C, comparing with that behavior of commercial Ni-base superalloys (Hastelloy X and Inconel 617). The low oxidizing potential in the impure helium gas usually causes selective oxidation of these elements and the growth of oxide whiskers on the surface of specimen at elevated temperature. The intergranular attack was caused by selective oxidation of Al, Si and Mn. The spalling of oxide film was restrained by addition of Mn and Si, providing tough spinel type oxide film on the surface and 'Keyes' on the oxide-matrix interface respectively. The amount and the morphology of the oxide whiskers depended on Si and Mn content. More than 0.29% of Si content without Mn always caused the growth of rather thinner whiskers with smooth surface, and the whiskers analyzed by electron diffraction patterns and EPMA to be Cr 2 O 3 containing Si. Mn addition changed the whiskers to thicker ones of spinel type oxide (MnCr 2 O 1 ) with rough surface. On the basis of these results, the optimum content of Al, Mn and Si to minimize the growth of whiskers, the intergranular attack and the spalling of oxide film was discussed. (auth.)

  8. Hot corrosion behavior of Ni-Cr-W-C alloys in impure He gas

    International Nuclear Information System (INIS)

    Ohmura, Taizo; Sahira, Kensho; Sakonooka, Akihiko; Yonezawa, Noboru

    1977-01-01

    Influence of the minor alloy constituents such as Al, Mn and Si on the hot corrosion behavior of Ni-20Cr-20W-0.07C alloy was studied in 99.995%He gas at 1,000 0 C, in comparison with the behavior of commercial Ni-base superalloys (Hastelloy X and Inconel 617). The low oxidizing potential in the impure He gas usually causes selective oxidation of the elements described above and the growth of oxide whiskers on the surface of specimen at elevated temperatures. The intergranular attack was caused by selective oxidation of Al, Si and Mn. The spalling of oxide film was restrained by additions of Mn and Si, providing tough spinel type oxide film on the surface and 'keys' on the oxide-matrix interface respectively. The amount and morphology of the oxide whiskers depended on Si and Mn contents. Si of more than 0.29% without Mn always caused the growth of rather thinner whiskers with smooth surface, and the whiskers analyzed by electron diffraction patterns and EPMA to be Cr 2 O 3 containing Si. Mn addition changes the whiskers to thicker ones of spinel type oxide (MnCr 2 O 4 ) with rough surface. On the basis of these results, the optimum contents of Al, Mn and Si to minimize the growth of whiskers, the intergranular attack, and the spalling of oxide film were discussed. (auth.)

  9. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  10. Preliminary design for hot dirty-gas control-valve test facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  11. The COS-Halos survey: physical conditions and baryonic mass in the low-redshift circumgalactic medium

    Energy Technology Data Exchange (ETDEWEB)

    Werk, Jessica K.; Prochaska, J. Xavier; Tejos, Nicolas [UCO/Lick Observatory, University of California, Santa Cruz, CA (United States); Tumlinson, Jason; Peeples, Molly S.; Fox, Andrew J.; Thom, Christopher; Bordoloi, Rongmon [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD (United States); Tripp, Todd M.; Katz, Neal [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Lehner, Nicolas [Department of Physics and Astronomy, University of Notre Dame, South Bend, IN (United States); O' Meara, John M. [Department of Chemistry and Physics, Saint Michael' s College, Colchester, VT (United States); Ford, Amanda Brady [Astronomy Department, University of Arizona, Tucson, AZ 85721 (United States); Oppenheimer, Benjamin D. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Weinberg, David H., E-mail: jwerk@ucolick.org [Department of Astronomy, The Ohio State University, Columbus, OH (United States)

    2014-09-01

    We analyze the physical conditions of the cool, photoionized (T ∼10{sup 4} K) circumgalactic medium (CGM) using the COS-Halos suite of gas column density measurements for 44 gaseous halos within 160 kpc of L ∼ L* galaxies at z ∼ 0.2. These data are well described by simple photoionization models, with the gas highly ionized (n {sub H} {sub II}/n {sub H} ≳ 99%) by the extragalactic ultraviolet background. Scaling by estimates for the virial radius, R {sub vir}, we show that the ionization state (tracked by the dimensionless ionization parameter, U) increases with distance from the host galaxy. The ionization parameters imply a decreasing volume density profile n {sub H} = (10{sup –4.2±0.25})(R/R {sub vir}){sup –0.8±0.3}. Our derived gas volume densities are several orders of magnitude lower than predictions from standard two-phase models with a cool medium in pressure equilibrium with a hot, coronal medium expected in virialized halos at this mass scale. Applying the ionization corrections to the H I column densities, we estimate a lower limit to the cool gas mass M{sub CGM}{sup cool}>6.5×10{sup 10} M {sub ☉} for the volume within R < R {sub vir}. Allowing for an additional warm-hot, O VI-traced phase, the CGM accounts for at least half of the baryons purported to be missing from dark matter halos at the 10{sup 12} M {sub ☉} scale.

  12. Hot Experiment on Fission Gas Release Behavior from Voloxidation Process using Spent Fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Park, J. J.; Jung, I. H.; Shin, J. M.; Cho, K. H.; Yang, M. S.; Song, K. C.

    2007-08-01

    Quantitative analysis of the fission gas release characteristics during the voloxidation and OREOX processes of spent PWR fuel was carried out by spent PWR fuel in a hot-cell of the DFDF. The release characteristics of 85 Kr and 14 C fission gases during voloxidation process at 500 .deg. C is closely linked to the degree of conversion efficiency of UO 2 to U 3 O 8 powder, and it can be interpreted that the release from grain-boundary would be dominated during this step. Volatile fission gases of 14 C and 85 Kr were released to near completion during the OREOX process. Both the 14 C and 85 Kr have similar release characteristics under the voloxidation and OREOX process conditions. A higher burn-up spent fuel showed a higher release fraction than that of a low burn-up fuel during the voloxidation step at 500 .deg. C. It was also observed that the release fraction of semi-volatile Cs was about 16% during a reduction at 1,000 .deg. C of the oxidized powder, but over 90% during the voloxidation at 1,250 .deg. C

  13. Research improvement in Zn-based sorbent for hot gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    X. Bu; Y. Ying; C. Zhang; W. Peng [China Coal Research Institute (CCRI), Beijing (China). Beijing Research Institute of Coal Chemistry

    2005-07-01

    Two Zn-based sorbents, named as L-991 and L-992, used for hot gas desulfurization were developed. The L-992, which was prepared by changing the Zn/Ti ratio and adding a certain proportion of Cu and Mn metal oxide, acquired better performance than L-991. The suitable desulfurisation temperature was 600-700{sup o}C for the L-991 and 600-800{sup o}C for the L-992. The sulfur capacity was about 16 g/100 g and 19-21 g/100 g of L-991 and L-992 respectively. After 17 multi-cycles sulfidation/regeneration tests, the sulfur capacity of the L-991 decreased greatly, while that of the L-992 still remained at 17 g/100 g. Both the sorbents showed orderly crystalline orientation and the particle size did not change. Sulfidation and regeneration tests were done both on lab micro-fixed bed reactor and SMOVEN equipment. During the continuous tests, the H{sub 2}S concentration can be reduced from about 10 g/m{sup 3} to less than 20 mg/m{sup 3}, the H{sub 2}S removal efficiency being {gt} 99%. 14 refs., 9 figs., 2 tabs.

  14. Hot gas metallicity and the history of supernova activity in elliptical galaxies

    International Nuclear Information System (INIS)

    Loewenstein, M.; Mathews, W.G.

    1991-01-01

    Calculations of the dynamical evolution of the hot interstellar medium (ISM) in a massive elliptical galaxy are described, with a variety of past variations of the SN rate being assumed. The investigation focuses on iron enrichment in the ISM. The equivalent widths of the 6.7-keV iron line are calculated as a function of redshift and of galactic projected radius. The present-day interstellar gas in elliptical galaxies contains a fossil record of past SN activity that can be determined from measurements of iron line equivalent widths at several projected radii in the galaxy. It is proposed that the ISM iron abundance is likely to be quite inhomogeneous. The hydrogen-free ejecta of type Ia SN also result in pronounced ISM abundance inhomogeneities that probably eventually cool and move in pressure equilibrium with the local ISM flow velocity. The 6.7-keV iron line emission is greater if the iron is confined to ionized regions of pure iron. 25 refs

  15. Population II brown dwarfs and dark haloes

    International Nuclear Information System (INIS)

    Zinnecker, H.

    1986-01-01

    Opacity-limited fragmentation is investigated as a function of the dust-to-gas ratio and it is found that the characteristic protostellar mass Msub(*) is metallicity-dependent. This dependence is such that, for the low metallicity gas out of which the stars of Population II formed in the halo, Msub(*) is less than 0.1 M solar mass. If applicable, these theoretical considerations would predict that substellar masses have formed more frequently under the metal-poor conditions in the early Galaxy (Population II brown dwarfs). Thus the missing mass in the Galactic halo and in the dark haloes around other spirals may well reside in these metal-poor Population II brown dwarfs. (author)

  16. GAS DEPLETION IN LOCAL GROUP DWARFS ON ∼250 kpc SCALES: RAM PRESSURE STRIPPING ASSISTED BY INTERNAL HEATING AT EARLY TIMES

    International Nuclear Information System (INIS)

    Nichols, Matthew; Bland-Hawthorn, Joss

    2011-01-01

    A recent survey of the Galaxy and M31 reveals that more than 90% of dwarf galaxies within 270 kpc of their host galaxy are deficient in H I gas. At such an extreme radius, the coronal halo gas is an order of magnitude too low to remove H I gas through ram pressure stripping for any reasonable orbit distribution. However, all dwarfs are known to have an ancient stellar population (∼> 10 Gyr) from early epochs of vigorous star formation which, through heating of H I, could allow the hot halo to remove this gas. Our model looks at the evolution of these dwarf galaxies analytically as the host-galaxy dark matter halo and coronal halo gas build up over cosmic time. The dwarf galaxies-treated as spherically symmetric, smooth distributions of dark matter and gas-experience early star formation, which sufficiently heats the gas, allowing it to be removed easily through tidal stripping by the host galaxy, or ram pressure stripping by a tenuous hot halo (n H = 3 x 10 -4 cm -3 at 50 kpc). This model of evolution is able to explain the observed radial distribution of gas-deficient and gas-rich dwarfs around the Galaxy and M31 if the dwarfs fell in at high redshift (z ∼ 3-10).

  17. Chataika Halo.pmd

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    INHERITANCE OF HALO BLIGHT RESISTANCE IN COMMON BEAN ... pv phaseolicola (Psp) is a serious seed-borne disease of common bean ... a toxin produced by the Psp bacterium when ... stakes or in association with maize for support.

  18. A SYSTEMATIC SEARCH FOR X-RAY CAVITIES IN THE HOT GAS OF GALAXY GROUPS

    International Nuclear Information System (INIS)

    Dong Ruobing; Rasmussen, Jesper; Mulchaey, John S.

    2010-01-01

    We have performed a systematic search for X-ray cavities in the hot gas of 51 galaxy groups with Chandra archival data. The cavities are identified based on two methods: subtracting an elliptical β-model fitted to the X-ray surface brightness, and performing unsharp masking. Thirteen groups in the sample (∼25%) are identified as clearly containing cavities, with another 13 systems showing tentative evidence for such structures. We find tight correlations between the radial and tangential radii of the cavities, and between their size and projected distance from the group center, in quantitative agreement with the case for more massive clusters. This suggests that similar physical processes are responsible for cavity evolution and disruption in systems covering a large range in total mass. We see no clear association between the detection of cavities and the current 1.4 GHz radio luminosity of the central brightest group galaxy, but there is a clear tendency for systems with a cool core to be more likely to harbor detectable cavities. To test the efficiency of the adopted cavity detection procedures, we employ a set of mock images designed to mimic typical Chandra data of our sample, and find that the model-fitting approach is generally more reliable than unsharp masking for recovering cavity properties. Finally, we find that the detectability of cavities is strongly influenced by a few factors, particularly the signal-to-noise ratio of the data, and that the real fraction of X-ray groups with prominent cavities could be substantially larger than the 25%-50% suggested by our analysis.

  19. Thermodynamic assessment of IGCC power plants with hot fuel gas desulfurization

    International Nuclear Information System (INIS)

    Giuffrida, Antonio; Romano, Matteo C.; Lozza, Giovanni G.

    2010-01-01

    In IGCC power plants, hot gas desulfurization (HGD) represents an attractive solution to simplify syngas treatments and to improve the efficiency, potentially reducing the final cost of electricity. In the present study, the various consequences of the introduction of a HGD station in the power plant are discussed and evaluated, in comparison with conventional near-ambient temperature clean-up. Attention is paid to the potential improvements of the overall energy balance of the complete power station, along with the requirements of the sorbent regeneration process, to the influence of the desulfurization temperature and to the different solutions needed to control the NO x emissions (altered by the presence of HGD). The net performance of complete IGCC power plants (with HGD or with conventional desulfurization) were predicted, with reference to status-of-the-art solutions based on an entrained flow, dry-feed, oxygen-blown gasifier and on an advanced, FB-class combined cycle. The net efficiency experiences about 2.5% point improvement with HGD, even if a small reduction in the power output was predicted, when using the same combustion turbine. An exhaustive sensitivity analysis was carried out to evaluate the effects of different working conditions at the HGD station, e.g. desulfurization temperature and oxygen content in the gaseous stream for sorbent regeneration. According to the obtained results, these parameters have a weak influence on the efficiency. In particular, a very elevated desulfurization temperature (above 400-500 o C) does not provide decisive thermodynamic advantages. Therefore, the HGD unit optimization can be driven by technical and economical aspects and by emission abatement requirements. For instance, utilization of nitrogen for HGD sorbent regeneration (rather than for syngas dilution) and higher fuel temperature may improve the NO formation. Hence, different strategies to achieve acceptable NO x emissions (e.g. steam dilution) and their

  20. Forming Hot Jupiters: Observational Constraints on Gas Giant Formation and migration

    Science.gov (United States)

    Becker, Juliette; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2018-04-01

    Since the first extrasolar planets were detected, the existence of hot Jupiters has challenged prevailing theories of planet formation. The three commonly considered pathways for hot Jupiter formation are in situ formation, runaway accretion in the outer disk followed by disk migration, and tidal migration (occurring after the disk has dissipated). None of these explains the entire observed sample of hot Jupiters, suggesting that different selections of systems form via different pathways. The way forward is to use observational data to constrain the migration pathways of particular classes of systems, and subsequently assemble these results into a coherent picture of hot Jupiter formation. We present constraints on the migratory pathway for one particular type of system: hot Jupiters orbiting cool stars (T< 6200 K). Using the full observational sample, we find that the orbits of most wide planetary companions to hot Jupiters around these cool stars must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. The population of systems containing both a hot Jupiter and an exterior companion around a cool star thus generally exist in roughly coplanar configurations, consistent with the idea that disk-driven migratory mechanisms have assembled most of this class of systems. We then discuss the overall applicability of this result to a wider range of systems and the broader implications on planet formation.

  1. Transformation of a beta gamma hot-cell under air in a tight hot-cell under inert gas

    International Nuclear Information System (INIS)

    Lambert, G.

    1981-05-01

    For several years now, fuel elements from graphite gas reactors have been stored in pools at the Cadarache Center after having been subjected (in general) to laboratory examinations. The CEA has adopted the following re-transfer procedure for these fuel elements while awaiting reprocessing: the fuel elements are extracted from their existing cartridges and transferred into new welded stainless steel containers capable of assuring long term storage. The storage, however, envisaged is temporary and is realized in the Pegase pool, specially adapted for this purpose. This re-transfer operation is envisaged for some 2.300 containers. All the appropriate safety measures will be taken. The various different fuel materials handled are often highly irradiated. The presence of water in certain containers due to loss of leaktightness has led to a series of chemical reactions (corrosion of uranium by water, reactions with magnesium, formation of hydrides). As a result, existing envelopes can contain UO 2 , UH 3 and hydrogen; operations must therefore being carried out in an inert atmosphere (preferably argon). The re-transfer process can not therefore be carried out in a conventional cell. It is therefore envisaged to carry out this work in a leaktight cell in an inert atmosphere. A laboratory cell could be modified to perform these functions. This cell would be reconverted to its original state when operations terminate (in about 3 years time) [fr

  2. THE EXCEPTIONAL SOFT X-RAY HALO OF THE GALAXY MERGER NGC 6240

    Energy Technology Data Exchange (ETDEWEB)

    Nardini, E.; Wang Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pellegrini, S., E-mail: e.nardini@keele.ac.uk [Dipartimento di Fisica e Astronomia, Universita di Bologna, v.le Berti Pichat 6/2, I-40127 Bologna (Italy)

    2013-03-10

    We report on a recent {approx}150 ks long Chandra observation of the ultraluminous infrared galaxy merger NGC 6240, which allows a detailed investigation of the diffuse galactic halo. Extended soft X-ray emission is detected at the 3{sigma} confidence level over a diamond-shaped region with projected physical size of {approx}110 Multiplication-Sign 80 kpc, and a single-component thermal model provides a reasonably good fit to the observed X-ray spectrum. The hot gas has a temperature of {approx}7.5 million K, an estimated density of 2.5 Multiplication-Sign 10{sup -3} cm{sup -3}, and a total mass of {approx}10{sup 10} M{sub Sun }, resulting in an intrinsic 0.4-2.5 keV luminosity of 4 Multiplication-Sign 10{sup 41} erg s{sup -1}. The average temperature of 0.65 keV is quite high to be obviously related to either the binding energy in the dark-matter gravitational potential of the system or the energy dissipation and shocks following the galactic collision, yet the spatially resolved spectral analysis reveals limited variations across the halo. The relative abundance of the main {alpha}-elements with respect to iron is several times the solar value, and nearly constant as well, implying a uniform enrichment by type II supernovae out to the largest scales. Taken as a whole, the observational evidence is not compatible with a superwind originated by a recent, nuclear starburst, but rather hints at widespread, enhanced star formation proceeding at a steady rate over the entire dynamical timescale ({approx}200 Myr). The preferred scenario is that of a starburst-processed gas component gently expanding into, and mixing with, a pre-existing halo medium of lower metallicity (Z {approx} 0.1 solar) and temperature (kT {approx} 0.25 keV). This picture cannot be probed more extensively with the present data, and the ultimate fate of the diffuse, hot gas remains uncertain. Under some favorable conditions, at least a fraction of it might be retained after the merger completion

  3. The Exceptional Soft X-Ray Halo of the Galaxy Merger NGC 6240

    Science.gov (United States)

    Nardini, E.; Wang, Junfeng; Fabbiano, G.; Elvis, M.; Pellegrini, S.; Risaliti, G.; Karovska, M.; Zezas, A.

    2013-03-01

    We report on a recent ~150 ks long Chandra observation of the ultraluminous infrared galaxy merger NGC 6240, which allows a detailed investigation of the diffuse galactic halo. Extended soft X-ray emission is detected at the 3σ confidence level over a diamond-shaped region with projected physical size of ~110 × 80 kpc, and a single-component thermal model provides a reasonably good fit to the observed X-ray spectrum. The hot gas has a temperature of ~7.5 million K, an estimated density of 2.5 × 10-3 cm-3, and a total mass of ~1010 M ⊙, resulting in an intrinsic 0.4-2.5 keV luminosity of 4 × 1041 erg s-1. The average temperature of 0.65 keV is quite high to be obviously related to either the binding energy in the dark-matter gravitational potential of the system or the energy dissipation and shocks following the galactic collision, yet the spatially resolved spectral analysis reveals limited variations across the halo. The relative abundance of the main α-elements with respect to iron is several times the solar value, and nearly constant as well, implying a uniform enrichment by type II supernovae out to the largest scales. Taken as a whole, the observational evidence is not compatible with a superwind originated by a recent, nuclear starburst, but rather hints at widespread, enhanced star formation proceeding at a steady rate over the entire dynamical timescale (~200 Myr). The preferred scenario is that of a starburst-processed gas component gently expanding into, and mixing with, a pre-existing halo medium of lower metallicity (Z ~ 0.1 solar) and temperature (kT ~ 0.25 keV). This picture cannot be probed more extensively with the present data, and the ultimate fate of the diffuse, hot gas remains uncertain. Under some favorable conditions, at least a fraction of it might be retained after the merger completion, and evolve into the hot halo of a young elliptical galaxy.

  4. THE EXCEPTIONAL SOFT X-RAY HALO OF THE GALAXY MERGER NGC 6240

    International Nuclear Information System (INIS)

    Nardini, E.; Wang Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Pellegrini, S.

    2013-01-01

    We report on a recent ∼150 ks long Chandra observation of the ultraluminous infrared galaxy merger NGC 6240, which allows a detailed investigation of the diffuse galactic halo. Extended soft X-ray emission is detected at the 3σ confidence level over a diamond-shaped region with projected physical size of ∼110 × 80 kpc, and a single-component thermal model provides a reasonably good fit to the observed X-ray spectrum. The hot gas has a temperature of ∼7.5 million K, an estimated density of 2.5 × 10 –3 cm –3 , and a total mass of ∼10 10 M ☉ , resulting in an intrinsic 0.4-2.5 keV luminosity of 4 × 10 41 erg s –1 . The average temperature of 0.65 keV is quite high to be obviously related to either the binding energy in the dark-matter gravitational potential of the system or the energy dissipation and shocks following the galactic collision, yet the spatially resolved spectral analysis reveals limited variations across the halo. The relative abundance of the main α-elements with respect to iron is several times the solar value, and nearly constant as well, implying a uniform enrichment by type II supernovae out to the largest scales. Taken as a whole, the observational evidence is not compatible with a superwind originated by a recent, nuclear starburst, but rather hints at widespread, enhanced star formation proceeding at a steady rate over the entire dynamical timescale (∼200 Myr). The preferred scenario is that of a starburst-processed gas component gently expanding into, and mixing with, a pre-existing halo medium of lower metallicity (Z ∼ 0.1 solar) and temperature (kT ∼ 0.25 keV). This picture cannot be probed more extensively with the present data, and the ultimate fate of the diffuse, hot gas remains uncertain. Under some favorable conditions, at least a fraction of it might be retained after the merger completion, and evolve into the hot halo of a young elliptical galaxy.

  5. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  6. Conversion of hot coke oven gas into light fuel gas over Ni/Al{sub 2}O{sub 3} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.Y.; Morishita, K.; Takarada, T. [Gunma University, Gunma (Japan). Dept. of Biology & Chemical Engineering

    2006-04-15

    Conversion of hot coke oven gas (COG, containing tarry material) into light fuel gas over a Ni/Al{sub 2}O{sub 3} catalyst was studied. Laboratory scale tests were carried out in a two-stage fixed-bed reactor at ambient pressure. The nickel catalyst promoted the hydropyrolysis reaction of tarry materials. High yields of total product gas and methane were obtained at high hydrogen concentrations. If the hydrogen supply was adequate for hydropyrolysis of the tarry material, conversion of coal volatiles was high, at more than 95% on carbon balance, even with a gas residence time as short as 0.15 s in the catalyst bed. The product gas yield depended on catalytic temperature. At 923 K, the maximum conversion of coal volatiles into the light gas was achieved at 95.0% on carbon balance, with methane 86.7 vol% of the carbonaceous gas product. Although carbon deposits deactivated the catalyst after a long period of use, the catalyst could be regenerated by treatment with oxygen at 800 K, providing high activity in subsequent decomposition of tarry material. The influence of sulphide on the tarry material decomposition reaction was small even in a 2000 ppm H{sub 2}S atmosphere.

  7. Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases

    International Nuclear Information System (INIS)

    Sun, Yongqi; Seetharaman, Seshadri; Liu, Qianyi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2016-01-01

    In this study, the thermodynamics of a novel strategy, i.e., biomass/CO 2 gasification integrated with heat recovery from hot slags in the steel industry, were systemically investigated. Both the target syngas yield and the polluting gas release were considered where the effect of gasifying conditions including temperature, pressure and CO 2 reacted was analyzed and then the roles of hot slags were further clarified. The results indicated that there existed an optimum temperature for the maximization of H 2 production. Compared to blast furnace slags, steel slags remarkably increased the CO yield at 600–1400 °C due to the existence of iron oxides and decreased the S-containing gas releases at 400–700 °C, indicating potential desulfurizing ability. The identification of biomass/CO 2 gasification thermodynamics in presence of slags could thus provide important clues not only for the deep understanding of biomass gasification but also for the industrial application of this emerging strategy from the viewpoint of syngas optimization and pollution control. - Highlights: • Biomass/CO 2 gasification was integrated with the heat recovery from hot slags. • Both syngas yield and polluting gas release during gasification were determined. • There existed an optimum temperature for the maximization of H 2 production. • Steel slags increased CO yield at 600–1400 °C due to the existence of iron oxides. • Steel slags remarkably decreased the releases of S-containing gas at 400–700 °C.

  8. QUENCHED COLD ACCRETION OF A LARGE-SCALE METAL-POOR FILAMENT DUE TO VIRIAL SHOCKING IN THE HALO OF A MASSIVE z = 0.7 GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, Christopher W.; Holtzman, Jon; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian [Department of Astronomy, New Mexico State University, MSC 4500, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G.; Spitler, Lee R. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia); Steidel, Charles C. [Department of Astronomy, California Institute of Technology, MS 105-24, Pasadena, CA 91125 (United States)

    2012-11-20

    Using HST/COS/STIS and HIRES/Keck high-resolution spectra, we have studied a remarkable H I absorbing complex at z = 0.672 toward the quasar Q1317+277. The H I absorption has a velocity spread of {Delta}v = 1600 km s{sup -1}, comprises 21 Voigt profile components, and resides at an impact parameter of D = 58 kpc from a bright, high-mass (log M {sub vir}/M {sub Sun} {approx_equal} 13.7) elliptical galaxy that is deduced to have a 6 Gyr old, solar metallicity stellar population. Ionization models suggest the majority of the structure is cold gas surrounding a shock-heated cloud that is kinematically adjacent to a multi-phase group of clouds with detected C III, C IV, and O VI absorption, suggestive of a conductive interface near the shock. The deduced metallicities are consistent with the moderate in situ enrichment relative to the levels observed in the z {approx} 3 Ly{alpha} forest. We interpret the H I complex as a metal-poor filamentary structure being shock heated as it accretes into the halo of the galaxy. The data support the scenario of an early formation period (z > 4) in which the galaxy was presumably fed by cold-mode gas accretion that was later quenched via virial shocking by the hot halo such that, by intermediate redshift, the cold filamentary accreting gas is continuing to be disrupted by shock heating. Thus, continued filamentary accretion is being mixed into the hot halo, indicating that the star formation of the galaxy will likely remain quenched. To date, the galaxy and the H I absorption complex provide some of the most compelling observational data supporting the theoretical picture in which accretion is virial shocked in the hot coronal halos of high-mass galaxies.

  9. HERSCHEL* FAR-INFRARED SPECTROSCOPY OF THE GALACTIC CENTER. HOT MOLECULAR GAS: SHOCKS VERSUS RADIATION NEAR Sgr A

    Energy Technology Data Exchange (ETDEWEB)

    Goicoechea, Javier R.; Etxaluze, M.; Cernicharo, J.; Bell, T. A. [Departamento de Astrofisica, Centro de Astrobiologia, CSIC-INTA, Carretera de Ajalvir, Km 4, Torrejon de Ardoz, E-28850 Madrid (Spain); Gerin, M.; De Luca, M.; Encrenaz, P. [LERMA, UMR 8112 du CNRS, Observatoire de Paris, Ecole Normale Superieure (France); Neufeld, D. A.; Indriolo, N. [Johns Hopkins University, Baltimore, MD 21218 (United States); Contursi, A. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching (Germany); Lis, D. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Polehampton, E. T. [RAL Space, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sonnentrucker, P., E-mail: jr.goicoechea@cab.inta-csic.es [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2013-05-20

    We present a {approx}52-671 {mu}m spectral scan toward Sgr A* taken with the PACS and SPIRE spectrometers on board Herschel. The achieved angular resolution allows us to separate, for the first time at far-IR wavelengths, the emission toward the central cavity (gas in the inner central parsec of the galaxy) from that of the surrounding circumnuclear disk. The spectrum toward Sgr A* is dominated by strong [O III], [O I], [C II], [N III], [N II], and [C I] fine-structure lines (in decreasing order of luminosity) arising in gas irradiated by UV photons from the central stellar cluster. In addition, rotationally excited lines of {sup 12}CO (from J = 4-3 to 24-23), {sup 13}CO, H{sub 2}O, OH, H{sub 3}O{sup +}, HCO{sup +}, and HCN, as well as ground-state absorption lines of OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, CH{sup +}, H{sub 2}O, OH, HF, CH, and NH are detected. The excitation of the {sup 12}CO ladder is consistent with a hot isothermal component at T{sub k} {approx_equal} 10{sup 3.1} K and n(H{sub 2}) {approx}< 10{sup 4} cm{sup -3}. It is also consistent with a distribution of temperature components at higher density with most CO at T{sub k} {approx}< 300 K. The detected molecular features suggest that, at present, neither very enhanced X-ray nor cosmic-ray fluxes play a dominant role in the heating of the hot molecular gas. The hot CO component (either the bulk of the CO column or just a small fraction depending on the above scenario) results from a combination of UV- and shock-driven heating. If irradiated dense clumps/clouds do not exist, shocks likely dominate the heating of the hot molecular gas. This is consistent with the high-velocity gas detected toward Sgr A*.

  10. Halos and related structures

    DEFF Research Database (Denmark)

    Riisager, Karsten

    2013-01-01

    The halo structure originated from nuclear physics but is now encountered more widely. It appears in loosely bound, clustered systems where the spatial extension of the system is significantly larger than that of the binding potentials. A review is given on our current understanding of these stru......The halo structure originated from nuclear physics but is now encountered more widely. It appears in loosely bound, clustered systems where the spatial extension of the system is significantly larger than that of the binding potentials. A review is given on our current understanding...... of these structures, with an emphasis on how the structures evolve as more cluster components are added and on the experimental situation concerning halo states in light nuclei....

  11. HALO | Arts at CERN

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2018-01-01

    In 2015, the artists participated in a research residency at CERN and began to work with data captured by ATLAS, one of the four detectors at the Large Hadron Collider (LHC) that sits in a cavern 100 metres below ground near the main site of CERN, in Meyrin (Switzerland). For Art Basel, they created HALO, an installation that surrounds visitors with data collected by the ATLAS experiment at the LHC. HALO consists of a 10 m wide cylinder defined by vertical piano wires, within which a 4-m tall screen displays particle collisions. The data also triggers hammers that strike the vertical wires and set up vibrations to create a truly multisensory experience. More info: https://arts.cern/event/unveiling-halo-art-basel

  12. Weighing halo nuclides

    International Nuclear Information System (INIS)

    Lunney, D.

    2009-01-01

    Weak binding energy is one of the fundamental criteria characterizing the unique properties of nuclear halos. As such, it must be known with great accuracy and is best obtained through direct mass measurements. The global mass market is now a competitive one. Of the many investment vehicles, the Penning trap has emerged as providing the best rate of return and reliability. We examine mass-market trends, highlighting the recent cases of interest. We also hazard a prediction for the halo futures market. (author)

  13. Hot spots in Ar and Ne gas puff Z-pinch

    International Nuclear Information System (INIS)

    Krejci, A.; Krousky, E.; Renner, O.

    1989-02-01

    The hot spots in Ar and Ne pinch plasma were investigated. Two pinhole cameras with entrance diameter 13 to 250 μm and flat crystal spectrographs with Si and KAP crystals were used for spatially and spectrally resolved soft X-ray diagnostics. The diameters of Ar (25 to 30 μm) and Ne (40 μm) hot spots were found. From X-ray spectrum of Ar spots the following plasma parameters were determined: T e =1.0 to 1.1 keV and n e =(1.8 to 4.0)x10 27 m -3 . The validity of the Bennett equilibrium for unstable hot spots is discussed. (author). 1 fig., 11 refs

  14. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  15. By-pass flows and temperature distribution in a hot gas duct internally insulated by carbon stone

    International Nuclear Information System (INIS)

    Konuk, A.A.

    1979-01-01

    A mathematical model has been developed to calculate by-pass flows and temperature distribution in a hot gas duct internally insulated by carbon stone rings. The equations of conservation of mass and momentum are solved for a piping system to obtain axial and radial by-pass velocities. The energy equation is solved next by a marching method to obtain the radial temperature distribution along the duct. The results, although qualitative due to simplifications in the model, are useful to study the effects of duct geometry on its performance. (Author) [pt

  16. Liquid-fog and liquid-gas phase transitions in hot nuclei

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; ); Oeschier, H.; Budzanowski, A.

    2006-01-01

    Thermal multifragmentation of hot nuclei is interpreted as the nuclear liquid-fog phase transition inside the spinodal region. The exclusive data for p(8.1 GeV) + Au collisions are analyzed within the framework of statistical model (SSM). It is found that the partition hot nuclei is specified after expansion to a volume equal to V t = (2.6 ± 0.3)V 0 . The freeze-out volume is found to be twice as large V f = (5 ± 1)V 0 . The similarity between multifragmentation and ordinary fission is discussed [ru

  17. Characteristics of halo current in JT-60U

    International Nuclear Information System (INIS)

    Neyatani, Y.; Nakamura, Y.; Yoshino, R.; Hatae, T.

    1999-01-01

    Halo currents and their toroidal peaking factor (TPF) have been measured in JT-60U by Rogowski coil type halo current sensors. The electron temperature in the halo region was around 10 eV at 1 ms before the timing of the maximum halo current. The maximum TPF*I h /I p0 was 0.52 in the operational range of I p = 0.7 ∼ 1.8 MA, B T = 2.2 ∼ 3.5 T, including ITER design parameters of κ > 1.6 and q 95 = 3, which was lower than that of the maximum value of ITER data base (0.75). The magnitude of halo currents tended to decrease with the increase in stored energy just before the energy quench and with the line integrated electron density at the time of the maximum halo current. A termination technique in which the current channel remains stationary was useful to avoid halo current generation. Intense neon gas puffing during the VDE was effective for reducing the halo currents. (author)

  18. Characteristics of halo current in JT-60U

    International Nuclear Information System (INIS)

    Neyatani, Y.; Nakamura, Y.; Yoshino, R.; Hatae, T.

    2001-01-01

    Halo currents and their toroidal peaking factor (TPF) have been measured in JT-60U by Rogowski coil type halo current sensors. The electron temperature in the halo region was around 10 eV at 1 ms before the timing of the maximum halo current. The maximum TPF *I h /I p0 was 0.52 in the operational range of I p =0.7∼1.8MA, B T =2.2∼3.5T, including ITER design parameters of κ>1.6 and q 95 =3, which was lower than that of the maximum value of ITER data base (0.75). The magnitude of halo currents tended to decrease with the increase in stored energy just before the energy quench and with the line integrated electron density at the time of the maximum halo current. A termination technique in which the current channel remains stationary was useful to avoid halo current generation. Intense neon gas puffing during the VDE was effective for reducing the halo currents. (author)

  19. The growth of GaN films by alternate source gas supply hot-mesh CVD method

    Energy Technology Data Exchange (ETDEWEB)

    Komae, Yasuaki; Saitou, Takeshi [Nagaoka University of Technology, Nagaoka 940-2188 (Japan); Suemitsu, Maki; Ito, Takashi [Center of Interdisciplinary Research, Tohoku University, Sendai 980-8578 (Japan); Endoh, Tetsuo [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Nakazawa, Hideki [Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561 (Japan); Narita, Yuzuru [Faculty of Engineering, Yamagata University, Yonezawa 992-8510 (Japan); Takata, Masasuke; Akahane, Tadashi [Nagaoka University of Technology, Nagaoka 940-2188 (Japan); Yasui, Kanji, E-mail: kyasui@vos.nagaokaut.ac.j [Nagaoka University of Technology, Nagaoka 940-2188 (Japan)

    2009-04-30

    Gallium nitride (GaN) films and Aluminium nitride (AlN) layers were deposited on SiC/Si (111) substrates by an alternating source gas supply or an intermittent supply of a source gas such as ammonia (NH{sub 3}), trimethylgallium (TMG) or trimethylaluminum (TMA) in a hot-mesh chemical vapor deposition (CVD) apparatus. The AlN layer was deposited as a buffer layer using NH{sub 3} and TMA on a SiC layer grown by carbonization on Si substrates using propane (C{sub 3}H{sub 8}). GaN films were grown on an AlN layer by a reaction between NH{sub x} radicals generated on a ruthenium (Ru) coated tungsten (W)-mesh and TMG molecules. An alternating source gas supply or an intermittent supply of one of the source gases during the film growth are expected to be effective for the suppression of gas phase reactions and for the enhancement of precursor migration on the substrate surface. By the intermittent supply of alkylmetal gas only during the growth of the AlN layer, the defect generation in the GaN films was reduced. GaN film growth by intermittent supply on an AlN buffer layer, however, did not lead to the improvement of the film quality.

  20. Liquid-gas phase transition in hot nuclei: correlation between dynamical and thermodynamical signals

    Energy Technology Data Exchange (ETDEWEB)

    Rivet, M.F.; Borderie, B.; Desesquelles, P.; Galichet, E. [Institut de Physique Nucleaire, IN2P3-CNRS, 91 - Orsay (France); Bougault, R.; Le Neindre, N. [Caen Univ, LPC, IN2P3-CNRS, ISMRA, 14 - Caen (France); Galichet, E. [Conservatoire National des Arts et Metiers, 75 - Paris (France); Guiot, B.; Wieleczko, J.P. [GANIL, CEA et IN2P3-CNRS, 14 - Caen (France); Parlog, M.; Tabacaru, G. [Nat. Inst. for Physics and Nuclear Engineering, Bucharest-Magurele (Romania)

    2003-07-01

    The dynamics and thermodynamics of phase transition in hot nuclei are studied through experimental results on multifragmentation of heavy systems (A(projectile) + A(target) > 200) formed in central heavy ion collisions. Different signals such as negative heat capacity and spinodal decomposition, indicative of a phase transition studied in the INDRA collaboration are presented and their consistency is stressed. (authors)

  1. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    Science.gov (United States)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  2. Two 'hot buttons' in gas contracting: security performance and force majeure

    International Nuclear Information System (INIS)

    Park, J.J.

    1996-01-01

    Two important developments in gas contracting issues are the 'force majeure' provisions and security for performance clauses. 'Force majeure' was defined as any acts of God or any acts of omission by a transporter of gas, which is excused by any event not within the control of the party claiming suspension. 'Force majeure' provisions need to be specifically negotiated in every case. These issues often arise in gas contracting situations, but the nature of Canada's non-litigious oil and gas industry is such that we have had little or no Canadian case law to assist in interpreting what these clauses mean. The 'force majeure' clause is basically meant to protect the parties from events outside normal business risk. The security of performance issue arises when the obligation of a supplier of gas to perform, and the obligation of a buyer of gas to pay, is unsecured, as would be the case for example, if one of the parties becomes bankrupt

  3. Improved PFB operations: 400-hour turbine test results. [coal combustion products and hot corrosion in gas turbines

    Science.gov (United States)

    Rollbuhler, R. J.; Benford, S. M.; Zellars, G. R.

    1980-01-01

    A pressurized fluidized bed (PFB) coal-burning reactor was used to provide hot effluent gases for operation of a small gas turbine. Preliminary tests determined the optimum operating conditions that would result in minimum bed particle carryover in the combustion gases. Solids were removed from the gases before they could be transported into the test turbine by use of a modified two stage cyclone separator. Design changes and refined operation procedures resulted in a significant decrease in particle carryover, from 2800 to 93 ppm (1.5 to 0.05 grains/std cu ft), with minimal drop in gas temperature and pressure. The achievement of stable burn conditions and low solids loadings made possible a 400 hr test of small superalloy rotor, 15 cm (6 in.) in diameter, operating in the effluent. Blades removed and examined metallographically after 200 hr exhibited accelerated oxidation over most of the blade surface, with subsurface alumina penetration to 20 micron m. After 400 hours, average erosion loss was about 25 micron m (1 mil). Sulfide particles, indicating hot corrosion, were present in depletion zones, and their presence corresponded in general to the areas of adherent solids deposit. Sulfidation appears to be a materials problem equal in importance to erosion.

  4. H‑ Opacity and Water Dissociation in the Dayside Atmosphere of the Very Hot Gas Giant WASP-18b

    Science.gov (United States)

    Arcangeli, Jacob; Désert, Jean-Michel; Line, Michael R.; Bean, Jacob L.; Parmentier, Vivien; Stevenson, Kevin B.; Kreidberg, Laura; Fortney, Jonathan J.; Mansfield, Megan; Showman, Adam P.

    2018-03-01

    We present one of the most precise emission spectra of an exoplanet observed so far. We combine five secondary eclipses of the hot Jupiter WASP-18b (T day ∼ 2900 K) that we secured between 1.1 and 1.7 μm with the Wide Field Camera 3 instrument on board the Hubble Space Telescope. Our extracted spectrum (S/N = 50, R ∼ 40) does not exhibit clearly identifiable molecular features but is poorly matched by a blackbody spectrum. We complement this data with previously published Spitzer/Infrared Array Camera observations of this target and interpret the combined spectrum by computing a grid of self-consistent, 1D forward models, varying the composition and energy budget. At these high temperatures, we find there are important contributions to the overall opacity from H‑ ions, as well as the removal of major molecules by thermal dissociation (including water), and thermal ionization of metals. These effects were omitted in previous spectral retrievals for very hot gas giants, and we argue that they must be included to properly interpret the spectra of these objects. We infer a new metallicity and C/O ratio for WASP-18b, and find them well constrained to be solar ([M/H] = ‑0.01 ± 0.35, C/O < 0.85 at 3σ confidence level), unlike previous work but in line with expectations for giant planets. The best-fitting self-consistent temperature–pressure profiles are inverted, resulting in an emission feature at 4.5 μm seen in the Spitzer photometry. These results further strengthen the evidence that the family of very hot gas giant exoplanets commonly exhibit thermal inversions.

  5. Diffuse interstellar gas in disk galaxies

    International Nuclear Information System (INIS)

    Vladilo, G.

    1989-01-01

    The physical properties of the diffuse gas in our Galaxy are reviewed and considered as a starting point for interstellar (IS) studies of disk galaxies. Attention is focussed on the atomic and ionic component, detected through radio, optical, ultraviolet (UV) and X-ray observations. The cooling and heating processes in the IS gas are briefly recalled in order to introduce current models of disk and halo gas. Observations of nearby galaxies critical to test IS models are considered, including 21-cm surveys, optical and UV absorptions of bright, extragalactic sources, and X-ray emission from hot halos. Finally, further steps necessary to develop a global model for the structure and evolution of the interstellar medium are indicated. (author)

  6. Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up

    International Nuclear Information System (INIS)

    Giuffrida, A.; Bonalumi, D.; Lozza, G.

    2013-01-01

    Highlights: • Hot fuel gas clean-up is a very favorable technology for IGCC concepts. • IGCC net efficiency reduces to 41.5% when realizing post-combustion CO 2 capture. • Complex IGCC layouts are necessary if exhaust gas recirculation is realized. • IGCC performance does not significantly vary with exhaust gas recirculation. - Abstract: This paper focuses on the thermodynamic performance of air-blown IGCC systems with post-combustion CO 2 capture by chemical absorption. Two IGCC technologies are investigated in order to evaluate two different strategies of coal-derived gas clean-up. After outlining the layouts of two power plants, the first with conventional cold gas clean-up and the second with hot gas clean-up, attention is paid to the CO 2 capture station and to issues related to exhaust gas recirculation in combined cycles. The results highlight that significant improvements in IGCC performance are possible if hot coal-derived gas clean-up is realized before the syngas fuels the combustion turbine, so the energy cost of CO 2 removal in an amine-based post-combustion mode is less strong. In particular, IGCC net efficiency as high as 41.5% is calculated, showing an interesting potential if compared to the one of IGCC systems with pre-combustion CO 2 capture. Thermodynamic effects of exhaust gas recirculation are investigated as well, even though IGCC performance does not significantly vary against a more complicated plant layout

  7. Heat and mass transfer across gas-filled enclosed spaces between a hot liquid surface and a cooled roof

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, J C; Bennett, A W [Atomic Energy Research Establishment, Harwell, Oxfordshire (United Kingdom)

    1977-01-01

    A detailed knowledge is required of the amounts of sodium vapour which may be transported from the hot surface of a fast reactor coolant pool through the cover gas to cooler regions of the structure. Evaporation from the unbounded liquid surfaces of lakes and seas has been studied extensively but the heat and mass transfer mechanisms in gas-vapour mixtures which occur in enclosed spaces have received less attention. Recent work at Harwell has provided a theoretical model from which the heat and mass transfer in idealised plane cavities can be calculated. An experimental study is reported in this paper which seeks to verify the theoretical prediction. Heat and mass transfer measurements have been made on a system in which a heated water pool transfers heat and mass across a gas-filled space to a cooled horizontal cover plate. Several cover gases were used in the experiments and the results show that, provided the partial density of the vapour is low compared with that of the gas, the heat transfer mechanism is that of combined convection and radiation. The enhancement in heat transfer due to the presence of the vapour is broadly consistent with assumption of a direct analogy between heat and mass transfer neglecting condensation in the interspace. The mass transfer measurements, in which water condensing on the cooled roof was measured directly, showed for low roof temperatures an imbalance between the mass and heat transfer. This observation is consistent with the theoretical predictions that heat transfer in the convecting system should be independent of the amount of condensation and 'rain-back' within the cavity. The results of tests with helium showed that convection was entirely suppressed by the presence of the water vapour. This confirms the behaviour predicted for gas-vapour mixtures in which the vapour density is of the same order as the gas density. (author)

  8. Hot continent: South America is open for fast growth in the natural gas sector

    International Nuclear Information System (INIS)

    Reinsch, A. E.

    1997-01-01

    Opportunities for participation in the rapid expansion of the natural gas sector in South America following privatization and deregulation initiatives, were examined on a country-by-country basis. In Colombia and Venezuela opportunities exist primarily in domestic development of the gas sector, whereas in the countries of the southern cone - Argentina, Bolivia, Brazil, Chile, Paraguay, Peru and Uruguay - the situation is said to be ripe for energy sector integration. Currently, a second regional pipeline link, with a capacity of 129 Bcf/year, is nearing completion, which will carry gas from west Argentina to Santiago, Chile, to supplement the 77 Bcf/year pipeline carrying gas from Bolivia to the Argentine border, where it connects with a trunk line to supply the Buenos Aires market. A Canadian Energy Research Institute study, to be published in the summer of 1997, focuses on the various pipeline links being put forward to integrate the gas resources in the southern cone with existing and potential gas markets. The integration scenarios examined are predicted to reveal both economic and commercial merit for the pipeline corridors. Canadian energy and pipeline companies are said to be well positioned to take advantage of the opportunities resulting from these initiatives, and to help making the vision of an integrated gas pipeline network in the southern cone of South America a reality

  9. In Situ Apparatus to Study Gas-Metal Reactions and Wettability at High Temperatures for Hot-Dip Galvanizing Applications

    Science.gov (United States)

    Koltsov, A.; Cornu, M.-J.; Scheid, J.

    2018-02-01

    The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.

  10. Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies

    Science.gov (United States)

    Li, Jiang-Tao; Bregman, Joel N.; Wang, Q. Daniel; Crain, Robert A.; Anderson, Michael E.

    2018-03-01

    The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these “missing baryons” may be stored in a hot tenuous circumgalactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev–Zel’dovich (SZ) signals claimed that ∼(1–50)% of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%–20% of the virial radius). Here, we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of ≈200 kpc (or ≈130 kpc above the 1σ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for (8 ± 4)% of the baryonic mass expected for the halos. Including the stars, the baryon fraction is (27 ± 16)%, or (39 ± 20)% by assuming a flattened density profile at r ≳ 130 kpc. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the “missing baryons.”

  11. Numerical simulation and geometry optimization of hot-gas mixing in lower plenum of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Hang; Wang Jie; Laurien, E.

    2010-01-01

    The lower plenum in high temperature gas-cooled reactor was designed to mix the gas of different temperatures from the reactor core. Previous researches suggest the current geometry of the lower plenum to be improved for better mixing capability and lower pressure drop. In the presented work, a series of varied geometries were investigated with numerical simulation way. The choice of appropriate mesh type and size used in the geometry variation was discussed with the reference of experimental data. The original thin ribs in the current design were merged into thicker ones, and a junction located at the starting end of the outlet pipe was introduced. After comparing several potential optimization methods, an improved geometry was selected with the merged ribs increasing the pre-defined mixing coefficient and the junction reducing the pressure drop. Future work was discussed based on the simulation of real reactor case. The work shows a direction for design improvements of the lower plenum geometry. (authors)

  12. Cold, warm, and hot gas in the late-stage merger NGC 7252

    Science.gov (United States)

    Hibbard, J. E.; Guhathakurta, Puragra; van Gorkom, J. H.; Schweizer, Francois

    1994-01-01

    We present the first observations of the neutral hydrogen distribution and x-ray emission in the prototypical merger remnant NGC 7252, the 'Atoms-for-Peace' galaxy. These data are supplemented by accurate B and R surface photometry, reaching a limit of muB = 26.5 mag/sq arcsec, and images taken through a narrow-band H alpha filter. We find all of the 2 x 109/sq h solar mass of atomic gas to be restricted to the outer, tidal regions of this system (Hzero = 100 h km/s/Mpc). By contrast, the molecular gas traced by the (12)CO(1 approaches zero) map of Wang et al. (1992) is confined to an inner rotating disk of radius 7 seconds and has an H alpha counterpart. The gap between the atomic and molecular gas distributions is filled in by diffuse H alpha emission and perhaps by x-ray emission. The velocity field of the atomic gas in the tidal tails indicates that they are swinging through space in the same sense as the rotation of the inner gas disk. The H I at the apparent base of the northwestern tail seems to be falling back toward the main body of the galaxy, yet there is no H I associated with this main stellar body: This suggests ongoing efficient conversion of the atomic gas into other phases in this region. The H alpha velocity anomalies previously found in the remnant body may be produced in part by the combination of tail-related, noncircular motions and the inner gas-disk rotation. Both tidal tails have bluer B-R colors than the main body of the remnant, with the bluest regions coinciding with peaks in the gas column density. Each tail contains one giant H II region near the end of its optical light distribution. These H II regions are associated with large concentrations of gas and stars that approach the sizes and gas contents of dwarf galaxies. The H I extends beyond the end of the optical tails and reaches projected distances of 62/h kpc east and 120/h kpc northwest from the center. We discuss the possible relevance of these data to : (1) the transformation of

  13. Investigation of geothermal development and promotion for fiscal 1997. Fluid geochemical investigation (hot-spring gas) report (No. B-5 Musadake area); 1997 nendo chinetsu kaihatus sokushin chosa. Ryutai chikagaku chosa (onsen gas) hokokusho (No.B-5 Musadake chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This investigation elucidated the possible existence of geothermal reservoir layer in the subject area by studying and analyzing the hot-spring gasses of Musadake. The Musadake area is the one extending over Shibetu-cho and Nakashibetu-cho, Shibetu district, Hokkaido. The sampling of the hot-spring gasses was carried out at three natural gusher sites and one hot spring well site. The gasses in the Kawakita hot spring is most affected by volcanic gasses. The origin of the volcanic gasses is a magmatic gas of andesite nature the {sup 3}He/{sup 4}He ratio of which is 8X10{sup -6} or about. As a result of the analysis, the hot-spring water is Na-Cl type, high salt concentrated, and 200 degrees C in temperature; from the result of a gas geochemical thermometer, it is estimated to be not less than 250 degrees C. In the tectonic viewpoint, the depth hot water is derived from the meteorite water that flows in through a bent zone incident to the Musadake-Shitabanupuri mountain fault and from the fossil sea water that exists in the underground depth; the depth hot water is formed by conduction heat from a magma reservoir that formed Musadake and by volcanic ejecta. This depth hot water rises along Kawakita south, Urappu River fault, etc., mixing with the meteorite water and forming the shallow reservoir layer. (NEDO)

  14. Hot gas in the interstellar medium, from supernova remnants to the diffuse coronal phase

    International Nuclear Information System (INIS)

    Ballet, Jean

    1988-01-01

    This research thesis addresses the study of the hot interstellar medium and of its main component, supernovae remnants. The author studied the hypothesis according to which ions observed in the interstellar medium are produced during the evaporation of cold clouds in the coronal phase. He shows that effects of ionisation delay are important and modify by a factor 10 the total quantity of ions predicted by the model. The study of the influence on ionisation of hot electrons penetrating cold layers revealed that this effect is rather weak. Then, based on the observation of the Kepler supernovae remnants by means of EXOSAT, and on the use of a hydrodynamics code coupled with a step-by-step calculation of ionisation of elements, the author studied the evolution of young supernovae remnants: propagation of the main shock in the interstellar medium, and of the backlash in the matter ejected by the star. The author also studied the X emission of an older supernovae remnant (the Cygnus Loop) by analysing three EXOSAT observations of this remnant. Results of Fabry-Perot spectrophotometry have been used to study optic lines [fr

  15. Active Galactic Nuclei Feedback and the Origin and Fate of the Hot Gas in Early-type Galaxies

    Science.gov (United States)

    Pellegrini, Silvia; Ciotti, Luca; Negri, Andrea; Ostriker, Jeremiah P.

    2018-04-01

    A recent determination of the relationships between the X-ray luminosity of the ISM (L X) and the stellar and total mass for a sample of nearby early-type galaxies (ETGs) is used to investigate the origin of the hot gas, via a comparison with the results of hydrodynamical simulations of the ISM evolution for a large set of isolated ETGs. After the epoch of major galaxy formation (after z ≃ 2), the ISM is replenished by stellar mass losses and SN ejecta, at the rate predicted by stellar evolution, and is depleted by star formation; it is heated by the thermalization of stellar motions, SNe explosions, and the mechanical (from winds) and radiative AGN feedback. The models agree well with the observed relations, even for the largely different L X values at the same mass, thanks to the sensitivity of the gas flow to many galaxy properties; this holds for models including AGN feedback, and those without. Therefore, the mass input from the stellar population is able to account for a major part of the observed L X; and AGN feedback, while very important to maintain massive ETGs in a time-averaged quasi-steady state, keeping low star formation and the black hole mass, does not dramatically alter the gas content originating in stellar recycled material. These conclusions are based on theoretical predictions for the stellar population contributions in mass and energy, and on a self-consistent modeling of AGN feedback.

  16. Halo Star Lithium Depletion

    International Nuclear Information System (INIS)

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-01-01

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  17. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  18. Critical temperature of liquid-gas phase transition for hot nuclear matter and three-body force effect

    International Nuclear Information System (INIS)

    Zuo Wei; Lu Guangcheng; Li Zenghua; Luo Peiyan; Chinese Academy of Sciences, Beijing

    2005-01-01

    The finite temperature Brueckner-Hartree-Fock (FTBHF) approach is extended by introducing a microscopic three-body force. Within the extended approach, the three-body force effects on the equation of state of hot nuclear matter and its temperature dependence have been investigated. The critical properties of the liquid-gas phase transition of hot nuclear matter have been calculated. It is shown that the three-body force provides a repulsive contribution to the equation of state of hot nuclear matter. The repulsive effect of the three-body force becomes more pronounced as the density and temperature increase and consequently inclusion of the three-body force contribution in the calculation reduces the predicted critical temperature from about 16 MeV to about 13 MeV. By separating the contribution originated from the 2σ-exchange process coupled to the virtual excitation of a nucleon-antinucleon pair from the full three-body force, the connection between the three-body force effect and the relativistic correction from the Dirac-Brueckner-Hartree-Fock has been explored. It turns out that the contribution of the 2σ-N(N-bar) part is more repulsive than that of the full three-body force and the calculated critical temperature is about 11 MeV if only the 2σ-N(N-bar) component of the three-body force is included which is lower than the value obtained in the case of including the full three-body force and is close to the value predicted by the Dirac-Brueckner-Hartree-Fock (DBHF) approach. Our result provides a reasonable explanation for the discrepancy between the values of critical temperature predicted from the FTBHF approach including the three-body force and the DBHF approach. (authors)

  19. Experimental and Simulation Analysis of Hot Isostatic Pressing of Gas Atomized Stainless Steel 316L Powder Compacts

    International Nuclear Information System (INIS)

    Lin, Dongguo; Park, Seong Jin; Ha, Sangyul; Shin, Youngho; Park, Dong Yong; Chung, Sung Taek; Bollina, Ravi; See, Seongkyu

    2016-01-01

    In this work, both experimental and numerical studies were conducted to investigate the densification behavior of stainless steel 316L (STS 316L) powders during hot isostatic pressing (HIP), and to characterize the mechanical properties of HIPed specimens. The HIP experiments were conducted with gas atomized STS 316L powders with spherical particle shapes under controlled pressure and temperature conditions. The mechanical properties of HIPed samples were determined based on a series of tensile tests, and the results were compared to a reference STS 316L sample prepared by the conventional process, i.e., extrusion and annealing process. Corresponding microstructures before and after tensile tests were observed using scanning electron microscopy and their relationships to the mechanical properties were addressed. Furthermore, a finite element simulation based on the power-law creep model was carried out to predict the density distribution and overall shape change of the STS316L powder compact during HIP process, which agreed well with the experimental results.

  20. Experimental and Simulation Analysis of Hot Isostatic Pressing of Gas Atomized Stainless Steel 316L Powder Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dongguo; Park, Seong Jin [Pohang University of Science and Technology, Pohang (Korea, Republic of); Ha, Sangyul [Samsung Electro-Mechanics, Suwon (Korea, Republic of); Shin, Youngho [Doosan Heavy Industries and Construction Co., Ltd., Changwon (Korea, Republic of); Park, Dong Yong [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Chung, Sung Taek [CetaTech Inc., Sacheon (Korea, Republic of); Bollina, Ravi [Bahadurpally Jeedimetla, Hyderabad (India); See, Seongkyu [POSCO, Pohang (Korea, Republic of)

    2016-10-15

    In this work, both experimental and numerical studies were conducted to investigate the densification behavior of stainless steel 316L (STS 316L) powders during hot isostatic pressing (HIP), and to characterize the mechanical properties of HIPed specimens. The HIP experiments were conducted with gas atomized STS 316L powders with spherical particle shapes under controlled pressure and temperature conditions. The mechanical properties of HIPed samples were determined based on a series of tensile tests, and the results were compared to a reference STS 316L sample prepared by the conventional process, i.e., extrusion and annealing process. Corresponding microstructures before and after tensile tests were observed using scanning electron microscopy and their relationships to the mechanical properties were addressed. Furthermore, a finite element simulation based on the power-law creep model was carried out to predict the density distribution and overall shape change of the STS316L powder compact during HIP process, which agreed well with the experimental results.

  1. High-Pressure Hot-Gas Self-Acting Floating Ring Shaft Seal for Liquid Rocket Turbopumps. [tapered bore seals

    Science.gov (United States)

    Burcham, R. E.; Diamond, W. A.

    1980-01-01

    Design analysis, detail design, fabrication, and experimental evaluation was performed on two self acting floating ring shaft seals for a rocket engine turbopump high pressure 24132500 n/sq m (3500 psig) hot gas 533 K 9500 F) high speed 3142 rad/sec (30000 rmp) turbine. The initial design used Rayleigh step hydrodynamic lift pads to assist in centering the seal ring with minimum rubbing contact. The final design used a convergent tapered bore to provide hydrostatic centering force. The Rayleigh step design was tested for 107 starts and 4.52 hours total. The leakage was satisfactory; however, the design was not acceptable due to excessive wear caused by inadequate centering force and failure of the sealing dam caused by erosion damage. The tapered bore design was tested for 370 starts and 15.93 hours total. Satisfactory performance for the required life of 7.5 hours per seal was successfully demonstrated.

  2. Tune-Based Halo Diagnostics

    International Nuclear Information System (INIS)

    Cameron, Peter

    2003-01-01

    Tune-based halo diagnostics can be divided into two categories -- diagnostics for halo prevention, and diagnostics for halo measurement. Diagnostics for halo prevention are standard fare in accumulators, synchrotrons, and storage rings, and again can be divided into two categories -- diagnostics to measure the tune distribution (primarily to avoid resonances), and diagnostics to identify instabilities (which will not be discussed here). These diagnostic systems include kicked (coherent) tune measurement, phase-locked loop (PLL) tune measurement, Schottky tune measurement, beam transfer function (BTF) measurements, and measurement of transverse quadrupole mode envelope oscillations. We refer briefly to tune diagnostics used at RHIC and intended for the SNS, and then present experimental results. Tune-based diagnostics for halo measurement (as opposed to prevention) are considerably more difficult. We present one brief example of tune-based halo measurement

  3. Baryonic pinching of galactic dark matter halos

    International Nuclear Information System (INIS)

    Gustafsson, Michael; Fairbairn, Malcolm; Sommer-Larsen, Jesper

    2006-01-01

    High resolution cosmological N-body simulations of four galaxy-scale dark matter halos are compared to corresponding N-body/hydrodynamical simulations containing dark matter, stars and gas. The simulations without baryons share features with others described in the literature in that the dark matter density slope continuously decreases towards the center, with a density ρ DM ∝r -1.3±0.2 , at about 1% of the virial radius for our Milky Way sized galaxies. The central cusps in the simulations which also contain baryons steepen significantly, to ρ DM ∝r -1.9±0.2 , with an indication of the inner logarithmic slope converging. Models of adiabatic contraction of dark matter halos due to the central buildup of stellar/gaseous galaxies are examined. The simplest and most commonly used model, by Blumenthal et al., is shown to overestimate the central dark matter density considerably. A modified model proposed by Gnedin et al. is tested and it is shown that, while it is a considerable improvement, it is not perfect. Moreover, it is found that the contraction parameters in their model not only depend on the orbital structure of the dark-matter-only halos but also on the stellar feedback prescription which is most relevant for the baryonic distribution. Implications for dark matter annihilation at the galactic center are discussed and it is found that, although our simulations show a considerable reduced dark matter halo contraction as compared to the Blumenthal et al. model, the fluxes from dark matter annihilation are still expected to be enhanced by at least a factor of a hundred, as compared to dark-matter-only halos. Finally, it is shown that, while dark-matter-only halos are typically prolate, the dark matter halos containing baryons are mildly oblate with minor-to-major axis ratios of c/a=0.73±0.11, with their flattening aligned with the central baryonic disks

  4. Hydrogen sulfide removal from hot coal gas by various mesoporous silica supported Mn2O3 sorbents

    International Nuclear Information System (INIS)

    Zhang, Z.F.; Liu, B.S.; Wang, F.; Wang, W.S.; Xia, C.; Zheng, S.; Amin, R.

    2014-01-01

    Graphical abstract: - Highlights: • Mn 2 O 3 /KIT-1 presented the best desulfurization performance at 600–850 °C. • High sulfur capacity of Mn 2 O 3 /KIT-1 correlated closely with 3-D channel of KIT-1. • Desulfurization character depended strongly on framework structure of sorbents. • High steam content suppressed greatly the occurrence of sulfidation reaction. - Abstract: A series of 50 wt% Mn 2 O 3 sorbents was prepared using various mesoporous silica, MCM-41, HMS, and KIT-1 as support. The influence of textural parameters of mesoporous silica, especially type of channel on the desulfurization performance of Mn 2 O 3 sorbents was investigated at 600–850 °C using hot coal gas containing 0.33 vol.% H 2 S. The fresh and used sorbents were characterized by means of N 2 -adsorption, x-ray diffraction (XRD), high resolution transmission microscopy (HRTEM) and H 2 temperature- programmed reduction (H 2 -TPR) techniques. The results confirmed that the manganese oxide was dispersed highly in regular pore channel of the mesoporous supports due to high surface area. Compared with the Mn 2 O 3 /diatomite, all mesoporous silica supported Mn 2 O 3 sorbents exhibited high breakthrough sulfur capacity and a sharp deactivation rate after the breakthrough point. Compared to Mn 2 O 3 /MCM-41 and Mn 2 O 3 /HMS sorbent, the Mn 2 O 3 /KIT-1 showed better desulfurization performance because of the 3D wormhole-like channel. The high sulfur capacity of the Mn 2 O 3 /KIT-1 sorbent was maintained during the eight consecutive desulfurization-regeneration cycles. The Mn 2 O 3 /KIT-1 still presented high desulfurization activity when hot coal gas contained low steam (<5%)

  5. Evaluation of an all-ceramic tubesheet assembly for a hot gas filter

    Energy Technology Data Exchange (ETDEWEB)

    Bitner, J.L. [Mallett Technology, Inc., Canonsburg, PA (United States); Mallett, R.H. [Mallett Technology, Inc., Research Triangle Park, NC (United States); Eggerstedt, P.M. [Industrial Filter and Pump Mfg. Co., Cicero, IL (United States); Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    A 10-inch thick, all-ceramic tubesheet design is evaluated for differential pressure and thermal conditions. Primary stresses from differential pressure are well within a safe allowable. The calculated peak thermal stresses at local discontinuities approach the modules of rupture for the ceramic material. Kiln tests were performed to demonstrate differential temperatures between hot center and cooler rim do not cause failures or visible tensile cracks. There appear to be mitigating mechanisms and design features in the Industrial Filter and Pump (IF and P) Mfg. Co. all-ceramic tubesheet design concept that add forgiveness in accommodating differential pressure and thermal loading stresses. A material characterization program on the ceramic materials is recommended.

  6. Reinforcement of the bio-gas conversion from pyrolysis of wheat straw by hot caustic pre-extraction.

    Science.gov (United States)

    Zhang, Lilong; Chen, Keli; He, Liang; Peng, Lincai

    2018-01-01

    Pyrolysis has attracted growing interest as a versatile means to convert biomass into valuable products. Wheat straw has been considered to be a promising biomass resource due to its low price and easy availability. However, most of the products obtained from wheat straw pyrolysis are usually of low quality. Hot soda extraction has the advantage of selective dissolution of lignin whilst retaining the carbohydrates. This can selectively convert biomass into high-quality desired products and suppress the formation of undesirable products. The aim of this study was to investigate the pyrolysis properties of wheat straw under different hot caustic pretreatment conditions. Compared with the untreated straw, a greater amount of gas was released and fewer residues were retained in the extracted wheat straw, which was caused by an increase in porosity. When the NaOH loading was 14%, the average pore size of the extracted straw increased by 12% and the cumulative pore volume increased by 157% compared with the untreated straw. The extracted straw obtained from the 14% NaOH extraction was clearly selective for pyrolysis products. On one hand, many lignin pyrolysis products disappeared, and only four main lignin-unit-pyrolysis products were retained. On the other hand, polysaccharide pyrolysis products were enriched. Both propanone and furfural have outstanding peak intensities that could account for approximately 30% of the total pyrolysis products. However, with the excessive addition of NaOH (i.e. > 22% w/w) during pretreatment, the conversion of bio-gas products decreased. Thermogravimetric and low-temperature nitrogen-adsorption analysis showed that the pore structure had been seriously destroyed, leading to the closing of the release paths of the bio-gas and thus increasing the re-polymerisation of small bio-gas molecules. After suitable extraction (14% NaOH loading extraction), a considerable amount (25%) of the soluble components dissolved out of the straw. This

  7. Photoionization in the halo of the Galaxy

    Science.gov (United States)

    Bregman, Joel N.; Harrington, J. Patrick

    1986-01-01

    The ionizing radiation field in the halo is calculated and found to be dominated in the 13.6-45 eV range by light from O-B stars that escapes the disk, by planetary nebulae at 45-54 eV, by quasars and the Galactic soft X-ray background at 54-2000 eV, and by the extragalactic X-ray background at higher energies. Photoionization models are calculated with this radiation field incident on halo clouds of constant density for a variety of densities, for normal and depleted abundances, and with variations of the incident spectrum. For species at least triply ionized, such as Si IV, C IV, N V, and O VI, the line ratios are determined by intervening gas with the greatest volume, which is not necessarily the greatest mass component. Column densities from doubly ionized species like Si III should be greater than from triply ionized species. The role of photoionized gas in cosmic ray-supported halos and Galactic fountains is discussed. Observational tests of photoionization models are suggested.

  8. Advanced fuels for gas turbines: Fuel system corrosion, hot path deposit formation and emissions

    International Nuclear Information System (INIS)

    Seljak, Tine; Širok, Brane; Katrašnik, Tomaž

    2016-01-01

    Highlights: • Technical feasibility analysis of alternative fuels requires a holistic approach. • Fuel, combustion, corrosion and component functionality are strongly related. • Used approach defines design constraints for microturbines using alternative fuels. - Abstract: To further expand the knowledge base on the use of innovative fuels in the micro gas turbines, this paper provides insight into interrelation between specific fuel properties and their impact on combustion and emission formation phenomena in micro gas turbines for stationary power generation as well as their impact on material corrosion and deposit formation. The objective of this study is to identify potential issues that can be related to specific fuel properties and to propose counter measures for achieving stable, durable, efficient and low emission operation of the micro gas turbine while utilizing advanced/innovative fuels. This is done by coupling combustion and emission formation analyses to analyses of material degradation and degradation of component functionality while interpreting them through fuel-specific properties. To ensure sufficiently broad range of fuel properties to demonstrate the applicability of the method, two different fuels with significantly different properties are analysed, i.e. tire pyrolysis oil and liquefied wood. It is shown that extent of required micro gas turbine adaptations strongly correlates with deviations of the fuel properties from those of the baseline fuel. Through the study, these adaptations are supported by in-depth analyses of impacts of fuel properties on different components, parameters and subsystems and their quantification. This holistic approach is further used to propose methodologies and innovative approaches for constraining a design space of micro gas turbine to successfully utilize wide spectra of alternative/innovative fuels.

  9. Summary of the 2014 Beam-Halo Monitoring Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan

    2015-09-25

    Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurements with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.

  10. Origin of warm and hot gas emission from low-mass protostars: Herschel-HIFI observations of CO J = 16-15

    DEFF Research Database (Denmark)

    Kristensen, Lars Egstrøm; Van Dishoeck, E. F.; Mottram, J. C.

    2017-01-01

    Context. Through spectrally unresolved observations of high-J CO transitions, Herschel Photodetector Array Camera and Spectrometer (PACS) has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. The excitation and physical origin of this gas is still...... in cooling molecular H2-poor gas just prior to the onset of H2 formation. High spectral resolution observations of highly excited CO transitions uniquely shed light on the origin of warm and hot gas in low-mass protostellar objects....... not understood. Aims. We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components within protostellar systems using spectrally resolved Herschel-HIFI data. Methods. Observations are presented of the highly excited CO...

  11. WLAN Hot Spot services for the automotive and oil industries :a business analysis Or : "Refuel the car with petrol and information, both ways at the gas station"

    NARCIS (Netherlands)

    L-F. Pau (Louis-François); M.H.P. Oremus

    2003-01-01

    textabstractWhile you refuel for gas ,why not refuel for information or download vehicle data ? This paper analyzes in extensive detail the user segmentation by vehicle usage , service offering , and full business models from WLAN hot spot services delivered to vehicles (private, professional ,

  12. Generation of a Circumstellar Gas Disk by Hot Jupiter WASP-12b

    Science.gov (United States)

    Debrecht, Alex; Carroll-Nellenback, Jonathan; Frank, Adam; Fossati, Luca; Blackman, Eric G.; Dobbs-Dixon, Ian

    2018-05-01

    Observations of transiting extra-solar planets provide rich sources of data for probing the in-system environment. In the WASP-12 system, a broad depression in the usually-bright MgII h&k lines has been observed, in addition to atmospheric escape from the extremely hot Jupiter WASP-12b. It has been hypothesized that a translucent circumstellar cloud is formed by the outflow from the planet, causing the observed signatures. We perform 3D hydrodynamic simulations of the full system environment of WASP-12, injecting a planetary wind and stellar wind from their respective surfaces. We find that a torus of density high enough to account for the lack of MgII h&k line core emission in WASP-12 can be formed in approximately 13 years. We also perform synthetic observations of the Lyman-alpha spectrum at different points in the planet's orbit, which demonstrate that significant absorption occurs at all points in the orbit, not just during transits, as suggested by the observations.

  13. VOF Simulations of Countercurrent Gas-Liquid Flow in a PWR Hot Leg

    Directory of Open Access Journals (Sweden)

    Michio Murase

    2012-12-01

    Full Text Available In order to evaluate flow patterns and CCFL (countercurrent flow limitation characteristics in a PWR hot leg under reflux condensation, numerical simulations have been done using a two-fluid model and a VOF (volume of fluid method implemented in the CFD software, FLUENT6.3.26. The two-fluid model gave good agreement with CCFL data under low pressure conditions but did not give good results under high pressure steam-water conditions. On the other hand, the VOF method gave good agreement with CCFL data for tests with a rectangular channel but did not give good results for calculations in a circular channel. Therefore, in this paper, the computational grid and schemes were improved in the VOF method, numerical simulations were done for steam-water flows at 1.5 MPa under PWR full-scale conditions with the diameter of 0.75 m, and the calculated results were compared with the UPTF data at 1.5 MPa. As a result, the calculated flow pattern was found to be similar to the flow pattern observed in small-scale air-water tests, and the calculated CCFL characteristics agreed well with the UPTF data at 1.5 MPa except in the region of a large steam volumetric flux.

  14. HALOE test and evaluation software

    Science.gov (United States)

    Edmonds, W.; Natarajan, S.

    1987-01-01

    Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.

  15. Optimizing hot-ion production from a gas-injected washer gun

    International Nuclear Information System (INIS)

    McCarrick, M.J.; Ellis, R.F.; Booske, J.H.; Koepke, M.

    1987-01-01

    This paper reports the results of a study to maximize the ion temperature of the plasma generated by a gas-injected washer gun. We characterize the gun discharge and the plasma output as a function of the controllable gun parameters. For hydrogen we find a maximum ion temperature of 100 eV with typical densities ranging from 2 x 10 11 to 5 x 10 12 cm -3 . A primary feature of the pulsed gun discharge is the observation of large amplitude rf fluctuations on the cathode voltage. The fluctuation amplitude varies with discharge current and with the quantity of injected gas. We show that the scaling of the fluctuation level with gun parameters is in agreement with that expected of an unstable beam-plasma system. We find a linear relation between the square of the fluctuation amplitude and the product of the plasma density times the ion temperature of the plasma output nT/sub i/, suggesting a stochastic wave-induced heating mechanism

  16. Gas Sensors Built with Nanomaterials and Provided with a Heating Double Purpose Hot-plate

    Directory of Open Access Journals (Sweden)

    Cristian L. ARRIETA

    2017-01-01

    Full Text Available Pure or doped SnO2, has been used to build resistive type gas sensors from several decades. This subject has been retaken using pure or doped nanocrystalline SnO2 to build the sensors, finding considerable advantages in devices performance. The sensors working temperature (Tw decreases from (350-450 0C to (180-200 0C in comparison with that of devices built with microcrystalline conventional material. Sensitivity of sensors built with nanocrystalline material in comparison with that of devices built with conventional microcrystalline material, increases from 30 % to 37 %. In this work, SnO2 is synthesized using two different modified techniques based on gel-combustion and reactive oxidation and results of both syntheses are compared. Nanomaterials are characterised with X-ray diffraction (XRD, High Resolution Transmission Electron Microscopy (HRTEM and Field Emission Electron Scanning Microscopy (FESEM and absorption techniques (BET. An electronic system, already patented by the authors, enables to alternatively measure the sensor resistivity (which is proportional to the adsorbed gas concentration and set a constant working temperature, thus contributing to considerably save energy.

  17. observations of hot molecular gas emission from embedded low-mass protostars

    DEFF Research Database (Denmark)

    Visser, R.; Kristensen, L. E.; Bruderer, S.

    2012-01-01

    Aims. Young stars interact vigorously with their surroundings, as evident from the highly rotationally excited CO (up to Eu/k = 4000 K) and H2O emission (up to 600 K) detected by the Herschel Space Observatory in embedded low-mass protostars. Our aim is to construct a model that reproduces...... the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a power-law density structure and a bipolar outflow cavity. Three heating mechanisms are considered: passive heating...... such as luminosity and envelope mass. Results. The bulk of the gas in the envelope, heated by the protostellar luminosity, accounts for 3–10% of the CO luminosity summed over all rotational lines up to J = 40–39; it is best probed by low-J CO isotopologue lines such as C18O 2–1 and 3–2. The UV-heated gas and the C...

  18. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  19. THE HOT INTERSTELLAR MEDIUM OF THE INTERACTING GALAXY NGC 4490

    International Nuclear Information System (INIS)

    Richings, A. J.; Fabbiano, G.; Wang Junfeng; Roberts, T. P.

    2010-01-01

    We present an analysis of the hot interstellar medium (ISM) in the spiral galaxy NGC 4490, which is interacting with the irregular galaxy NGC 4485, using ∼100 ks of Chandra ACIS-S observations. The high angular resolution of Chandra enables us to remove discrete sources and perform spatially resolved spectroscopy for the star-forming regions and associated outflows, allowing us to look at how the physical properties of the hot ISM such as temperature, hydrogen column density, and metal abundances vary throughout these galaxies. We find temperatures of >0.41 keV and 0.85 +0.59 -0.12 keV, electron densities of >1.87η -1/2 x 10 -3 cm -3 and 0.21 +0.03 -0.04 η -1/2 x 10 -3 cm -3 , and hot gas masses of >1.1η 1/2 x 10 7 M sun and ∼3.7η 1/2 x 10 7 M sun in the plane and halo of NGC 4490, respectively, where η is the filling factor of the hot gas. The abundance ratios of Ne, Mg, and Si with respect to Fe are found to be consistent with those predicted by theoretical models of type II supernovae (SNe). The thermal energy in the hot ISM is ∼5% of the total mechanical energy input from SNe, so it is likely that the hot ISM has been enriched and heated by type II SNe. The X-ray emission is anticorrelated with the Hα and mid-infrared emission, suggesting that the hot gas is bounded by filaments of cooler ionized hydrogen mixed with warm dust.

  20. Characterization of gas metal arc welded hot rolled DP600 steel

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, K.; Ramazani, A.; Yang, L.; Prahl, U.; Bleck, W. [RWTH Aachen University, Institute for Ferrous Metallurgy (IEHK) (Germany); Reisgen, U.; Schleser, M.; Abdurakhmanov, A. [RWTH Aachen University, Welding and Joining Institute (ISF) (Germany)

    2011-12-15

    Dual-phase (DP) steels are suitable candidates for automotive applications due to their high strength and ductility. These advanced mechanical properties result from the special microstructure of the DP steel with 5{proportional_to}20% martensite phase in a soft ferrite matrix. However, during welding, which is an important process in automotive industry, this special microstructure is destroyed. In this research the characterization of Gas Metal Arc (GMA) welded joining zones was performed by optical microscopy and hardness mapping. Tensile tests were also performed keeping the welded portion in the gauge length. Scanning Electron Microscopy (SEM) was used for the fracture investigation. From the characterization and tensile tests, the soften zones were found, which are caused by the tempered martensite and larger ferrite grain size than that in base metal. Furthermore, GMA welding make a large Heat Affected Zone (HAZ). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Tortorelli, P.F.; Judkins, R.R.; DeVan, J.H.; Wright, I.G. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-11-01

    The product gas resulting from the partial oxidation of Carboniferous materials in a gasifier is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials can occur. The objective of this task was to establish the potential risks of carbon deposition and metal dusting in advanced coal gasification processes by examining the current state of knowledge regarding these phenomena, making appropriate thermochemical calculations for representative coal gasifiers, and addressing possible mitigation methods. The paper discusses carbon activities, iron-based phase stabilities, steam injection, conditions that influence kinetics of carbon deposition, and influence of system operating parameters on carbon deposition and metal dusting.

  2. Bose-Einstein condensation in an ultra-hot gas of pumped magnons.

    Science.gov (United States)

    Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard

    2014-03-11

    Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.

  3. The origin of the mass, disk-to-halo mass ratio, and L-V relation of spiral galaxies

    International Nuclear Information System (INIS)

    Ashman, K.M.

    1990-01-01

    A model is presented in which spiral galaxies only form when t(c) is roughly equal to t(f) in a hot component of the protogalactic gas. This assumption, along with a disk stability criterion, predicts a range of spiral galaxy masses roughly consistent with observation. The nature of the cooling function for a primordial plasma implies that in less massive galaxies, more gas must fragment in the halo to preserve t(c) roughly equal to t(f). Consequently, less gas survives to form the disk, so that the disk-to-halo mass ratio increases with disk mass and hence galaxy luminosity. The canonical L proportional to V exp 4 relation can be reproduced by the model, and the apparent change in the slope of this relation also arises naturally. In the hierarchical clustering scenario, the model requires that all spirals formed at about the same epoch. These results support earlier claims that much of the dark matter observed in the universe is baryonic and probably formed during protogalactic collapse. 38 refs

  4. Dissipative dark matter halos: The steady state solution. II.

    Science.gov (United States)

    Foot, R.

    2018-05-01

    Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.

  5. Observation and analysis of halo current in EAST

    Science.gov (United States)

    Chen, Da-Long; Shen, Biao; Qian, Jin-Ping; Sun, You-Wen; Liu, Guang-Jun; Shi, Tong-Hui; Zhuang, Hui-Dong; Xiao, Bing-Jia

    2014-06-01

    Plasma in a typically elongated cross-section tokamak (for example, EAST) is inherently unstable against vertical displacement. When plasma loses the vertical position control, it moves downward or upward, leading to disruption, and a large halo current is generated helically in EAST typically in the scrape-off layer. When flowing into the vacuum vessel through in-vessel components, the halo current will give rise to a large J × B force acting on the vessel and the in-vessel components. In EAST VDE experiment, part of the eddy current is measured in halo sensors, due to the large loop voltage. Primary experimental data demonstrate that the halo current first lands on the outer plate and then flows clockwise, and the analysis of the information indicates that the maximum halo current estimated in EAST is about 0.4 times the plasma current and the maximum value of TPF × Ih/IP0 is 0.65, furthermore Ih/Ip0 and TPF × Ih/Ip0 tend to increase with the increase of Ip0. The test of the strong gas injection system shows good success in increasing the radiated power, which may be effective in reducing the halo current.

  6. The Energy Efficiency of Hot Water Production by Gas Water Heaters with a Combustion Chamber Sealed with Respect to the Room

    Directory of Open Access Journals (Sweden)

    Grzegorz Czerski

    2014-08-01

    Full Text Available This paper presents investigative results of the energy efficiency of hot water production for sanitary uses by means of gas-fired water heaters with the combustion chamber sealed with respect to the room in single-family houses and multi-story buildings. Additionally, calculations were made of the influence of pre-heating the air for combustion in the chimney and air supply system on the energy efficiency of hot water production. CFD (Computational Fluid Dynamics software was used for calculation of the heat exchange in this kind of system. The studies and calculations have shown that the use of gas water heaters with a combustion chamber sealed with respect to the room significantly increases the efficiency of hot water production when compared to traditional heaters. It has also been proven that the pre-heating of combustion air in concentric chimney and air supply ducts essentially improves the energy efficiency of gas appliances for hot water production.

  7. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  8. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  9. Aerosol release from a hot sodium pool and behaviour in inert gas atmosphere

    International Nuclear Information System (INIS)

    Sauter, H.; Schuetz, W.

    1986-01-01

    In the KfK-NALA program, experiments were carried out on the subject of aerosol release from a contaminated sodium pool into inert gas atmosphere under various conditions. Besides the determination of retention factors for fuel and fission products, the sodium aerosol system was investigated and characterized, concerning aerosol generation (evaporation rate), particle size, mass concentration, and deposition behaviour. Pool temperatures were varied between 700 and 1000 K at different geometrical and convective conditions. Technical scale experiments with a 531-cm 2 pool surface area were performed at natural convection in a 2.2-m 3 heated vessel, as well as additional small scale experiments at forced convection and 38.5-cm 2 pool surface area. A best-fit formula is given for the specific evaporation rate into a 400 K argon atmosphere. Approximately, the very convenient relation (dm/dt) (kg/m 2 /h) = 0.1 p (mm Hg) was found. The sodium aerosol diameter lay between 0.6 μm, less than 1 sec after production, and 2.5 μm at maximum concentration. The deposition behaviour was characterized by very small quantities ( 80%) on the bottom cover of the vessel. In the model theoretic studies with the PARDISEKO code, calculations were performed of the mass concentration, particle diameter and deposition behaviour. Agreement with the experimental values could not be achieved until a modulus was introduced to allow for turbulent deposition. (author)

  10. EVIDENCE FOR THE DIRECT DETECTION OF THE THERMAL SPECTRUM OF THE NON-TRANSITING HOT GAS GIANT HD 88133 b

    KAUST Repository

    Piskorz, Danielle

    2016-11-23

    We target the thermal emission spectrum of the non-transiting gas giant HD 88133 b with high-resolution near-infrared spectroscopy, by treating the planet and its host star as a spectroscopic binary. For sufficiently deep summed flux observations of the star and planet across multiple epochs, it is possible to resolve the signal of the hot gas giant\\'s atmosphere compared to the brighter stellar spectrum, at a level consistent with the aggregate shot noise of the full data set. To do this, we first perform a principal component analysis to remove the contribution of the Earth\\'s atmosphere to the observed spectra. Then, we use a cross-correlation analysis to tease out the spectra of the host star and HD 88133 b to determine its orbit and identify key sources of atmospheric opacity. In total, six epochs of Keck NIRSPEC L-band observations and three epochs of Keck NIRSPEC K-band observations of the HD 88133 system were obtained. Based on an analysis of the maximum likelihood curves calculated from the multi-epoch cross-correlation of the full data set with two atmospheric models, we report the direct detection of the emission spectrum of the non-transiting exoplanet HD 88133 b and measure a radial projection of the Keplerian orbital velocity of 40 +/- 15 km s(-1), a true mass of 1.02(-0.28)(+0.61) M-J, a nearly face-on orbital inclination of 15(-5)(+60), and an atmosphere opacity structure at high dispersion dominated by water vapor. This, combined with 11 years of radial velocity measurements of the system, provides the most up-to-date ephemeris for HD 88133.

  11. X-ray emission of the hot gas and of accelerated particles in supernova remnants

    International Nuclear Information System (INIS)

    Acero, F.

    2008-09-01

    The current observations seem to support the theory that the shock wave of supernova remnants accelerate electrons (representing about 1% of cosmic rays) of the interstellar medium up to energies of about 10 15 eV. However there is still no solid evidence that supernova remnants also accelerate protons (major component of cosmic rays). The X-ray observations of those supernova remnants with the satellite XMM-Newton can provide crucial information on the acceleration mechanisms and on this population of accelerated particles. This thesis presents the X-ray analysis of the supernova remnants RX J1713.7-3946 and SN 1006 for which it has been shown that they accelerate electrons efficiently. As a result, these objects are very good targets to compare the theoretical models of acceleration to the observation. For the first object, I constructed through new XMM-Newton observations, the first high-angular resolution mosaic of the entire supernova remnant. I then compared the X- and gamma-ray emission of this object in order to understand the nature of the gamma-ray emission. This spectral and morphological comparison allowed me to discuss the two possible origins of the gamma-ray radiation (issued by electrons or by protons). For SN 1006, I studied the density of the ambient medium in which the shock wave propagates. This density is a key parameter for the hydrodynamical evolution of the remnant and for studying a future gamma-ray emission. The study of X-ray emission of the gas heated by the shock wave allowed me to better estimate of the value of the density so far poorly constrained for this object. (author)

  12. X-ray haloes around supernova remnants

    International Nuclear Information System (INIS)

    Morfill, G.E.; Aschenbach, B.

    1984-01-01

    Recent observations of the Cas-A supernova remnant have shown X-ray emissions not only from the interior, but also from a fainter 'halo' extending beyond what is normally regarded as the outer boundary, or shock front. The authors suggest that this may be due to the diffusion of energetic, charged particles out of the remnant giving rise to precursor structure of the type predicted by the theory of diffusive shock acceleration. If this is the case we are seeing thermal emission from ambient gas heated by compression and wave dissipation. (author)

  13. X-ray haloes around supernova remnants

    Energy Technology Data Exchange (ETDEWEB)

    Morfill, G.E.; Aschenbach, B. (Max-Planck-Institut fuer Physik und Astrophysik, Garching (Germany, F.R.). Inst. fuer Extraterrestrische Physik); Drury, L.O' C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))

    1984-09-27

    Recent observations of the Cas-A supernova remnant have shown X-ray emissions not only from the interior, but also from a fainter 'halo' extending beyond what is normally regarded as the outer boundary, or shock front. The authors suggest that this may be due to the diffusion of energetic charged particles out of the remnant giving rise to precursor structure of the type predicted by the theory of diffusive shock acceleration. If this is the case we are seeing thermal emission from ambient gas heated by compression and wave dissipation.

  14. The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth

    Science.gov (United States)

    Zentner, Andrew R.

    I review the excursion set theory with particular attention toward applications to cold dark matter halo formation and growth, halo abundance, and halo clustering. After a brief introduction to notation and conventions, I begin by recounting the heuristic argument leading to the mass function of bound objects given by Press and Schechter. I then review the more formal derivation of the Press-Schechter halo mass function that makes use of excursion sets of the density field. The excursion set formalism is powerful and can be applied to numerous other problems. I review the excursion set formalism for describing both halo clustering and bias and the properties of void regions. As one of the most enduring legacies of the excursion set approach and one of its most common applications, I spend considerable time reviewing the excursion set theory of halo growth. This section of the review culminates with the description of two Monte Carlo methods for generating ensembles of halo mass accretion histories. In the last section, I emphasize that the standard excursion set approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and open excursion set theory to new applications. One such assumption is that the height of the barriers that define collapsed objects is a constant function of scale. I illustrate the implementation of the excursion set approach for barriers of arbitrary shape. One such application is the now well-known improvement of the excursion set mass function derived from the "moving" barrier for ellipsoidal collapse. I also emphasize that the statement that halo accretion histories are independent of halo environment in the excursion set approach is not a general prediction of the theory. It is a simplifying assumption. I review the method for constructing correlated random walks of the density field in the more general case. I construct a simple toy model to illustrate that excursion set

  15. PROBING THE STRUCTURE AND KINEMATICS OF THE TRANSITION LAYER BETWEEN THE MAGELLANIC STREAM AND THE HALO IN H I

    International Nuclear Information System (INIS)

    Nigra, Lou; Stanimirović, Snežana; Gallagher, John S. III; Wood, Kenneth; Nidever, David; Majewski, Steven

    2012-01-01

    The Magellanic Stream (MS) is a nearby laboratory for studying the fate of cool gas streams injected into a gaseous galactic halo. We investigate properties of the boundary layer between the cool MS gas and the hot Milky Way halo with 21 cm H I observations of a relatively isolated cloud having circular projection in the northern MS. Through averaging and modeling techniques, our observations, obtained with the Robert C. Byrd Green Bank Telescope, reach unprecedented 3σ sensitivity of ∼1 × 10 17 cm –2 , while retaining the telescope's 9.'1 resolution in the essential radial dimension. We find an envelope of diffuse neutral gas with FWHM of 60 km s –1 , associated in velocity with the cloud core having FWHM of 20 km s –1 , extending to 3.5 times the core radius with a neutral mass seven times that of the core. We show that the envelope is too extended to represent a conduction-dominated layer between the core and the halo. Its observed properties are better explained by a turbulent mixing layer driven by hydrodynamic instabilities. The fortuitous alignment of the NGC 7469 background source near the cloud center allows us to combine UV absorption and H I emission data to determine a core temperature of 8350 ± 350 K. We show that the H I column density and size of the core can be reproduced when a slightly larger cloud is exposed to Galactic and extragalactic background ionizing radiation. Cooling in the large diffuse turbulent mixing layer envelope extends the cloud lifetime by at least a factor of two relative to a simple hydrodynamic ablation case, suggesting that the cloud is likely to reach the Milky Way disk.

  16. Change On The S-Z Effect Induced By The Cooling Flow CF On The Hot Electronic Gas At The Center OF The Clusters Of Galaxies

    Directory of Open Access Journals (Sweden)

    Enkelejd Caca

    2015-06-01

    Full Text Available ABSTRACT Building more accurate profiles for temperature and density of hot electronic gas concentrated in the center of clusters of galaxies is a constant problem in survey of Sunyeav Zeldovich effect SZ. An effect that consists in the inverse Compton effect of the hot electronic gas interacting with Cosmic Microwave Back- ground CMB photons passing through Intra Cluster Medium ICM. So far the Isothermal model is used for temperature profiling in the calculation of the inverse Compton effect but based on the recent improved observations from satellites which showed that the hot electronic gas presents a feature called Cooling Flow CF. Temperatures in this model differs towards the edges of the Clusters of Galaxies leading to a change on the Compton parameter in comparison with Isothermal model. In this paper are processed data provided by X-ray satellite Chandra. The X-ray analysis is based on two models for the electron density and temperature profile. A sample of 12 clusters of galaxies are analyzed and by building the temperature profiles using CF model the differences on the Compton parameter are 10-100 in comparison with Isothermal model. Therefore to increase the accuracy of evaluation of the Compton parameter we should take into account the change of the electronic gas tempera- ture change that affect changes in both CMB spectrum and temperature from SZ effect.

  17. El halo de la memoria

    OpenAIRE

    GAVINO ROSELLÓ, AARÓN

    2017-01-01

    The halo effect is one of the most classic cognitive biases of psychology, and one that we can observe frequently in everyday life. It consists in the realization of an erroneous generalization from a single characteristic or quality of an object or a person, that is, we make a previous judgment from which, we generalize the rest of characteristics. The halo effect manifests itself as continuous in our life. For example, if someone is very handsome or attractive we attribute another series...

  18. Effect of Al Hot-Dipping on High-Temperature Corrosion of Carbon Steel in N2/0.1% H2S Gas

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Abro

    2016-02-01

    Full Text Available High-temperature corrosion of carbon steel in N2/0.1% H2S mixed gas at 600–800 °C for 50–100 h was studied after hot-dipping in the aluminum molten bath. Hot-dipping resulted in the formation of the Al topcoat and the Al-Fe alloy layer firmly adhered on the substrate. The Al-Fe alloy layer consisted primarily of a wide, tongue-like Al5Fe2 layer and narrow Al3Fe layer. When corroded at 800 °C for 100 h, the Al topcoat partially oxidized to the protective but non-adherent α-Al2O3 layer, and the interdiffusion converted the Al-Fe alloy layer to an (Al13Fe4, AlFe3-mixed layer. The interdiffusion also lowered the microhardness of the hot-dipped steel. The α-Al2O3 layer formed on the hot-dipped steel protected the carbon steel against corrosion. Without the Al hot-dipping, the carbon steel failed by forming a thick, fragile, and non-protective FeS scale.

  19. Neutron halos in hypernuclei

    CERN Document Server

    Lue, H F; Meng, J; Zhou, S G

    2003-01-01

    Properties of single-LAMBDA and double-LAMBDA hypernuclei for even-N Ca isotopes ranging from the proton dripline to the neutron dripline are studied using the relativistic continuum Hartree-Bogolyubov theory with a zero-range pairing interaction. Compared with ordinary nuclei, the addition of one or two LAMBDA-hyperons lowers the Fermi level. The predicted neutron dripline nuclei are, respectively, sup 7 sup 5 subLAMBDA Ca and sup 7 sup 6 sub 2 subLAMBDA Ca, as the additional attractive force provided by the LAMBDA-N interaction shifts nuclei from outside to inside the dripline. Therefore, the last bound hypernuclei have two more neutrons than the corresponding ordinary nuclei. Based on the analysis of two-neutron separation energies, neutron single-particle energy levels, the contribution of continuum and nucleon density distribution, giant halo phenomena due to the pairing correlation, and the contribution from the continuum are suggested to exist in Ca hypernuclei similar to those that appear in ordinary ...

  20. Toward a Combined SAGE II-HALOE Aerosol Climatology: An Evaluation of HALOE Version 19 Stratospheric Aerosol Extinction Coefficient Observations

    Science.gov (United States)

    Thomason, L. W.

    2012-01-01

    Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.

  1. The CGM of Massive Galaxies: Where Cold Gas Goes to Die?

    Science.gov (United States)

    Howk, Jay

    2017-08-01

    We propose to survey the cold HI content and metallicity of the circumgalactic medium (CGM) around 50 (45 new, 5 archival) z 0.5 Luminous Red Galaxies (LRGs) to directly test a fundamental prediction of galaxy assembly models: that cold, metal-poor accretion does not survive to the inner halos of very massive galaxies. Accretion and feedback through the CGM play key roles in our models of the star formation dichotomy in galaxies. Low mass galaxies are thought to accrete gas in cold streams, while high mass galaxies host hot, dense halos that heat incoming gas and prevent its cooling, thereby quenching star formation. HST/COS has provided evidence for cold, metal-poor streams in the halos of star-forming galaxies (consistent with cold accretion). Observations have also demonstrated the presence of cool gas in the halos of passive galaxies, a potential challenge to the cold/hot accretion model. Our proposed observations will target the most massive galaxies and address the origin of the cool CGM gas by measuring the metallicity. This experiment is enabled by our novel approach to deriving metallicities, allowing the use of much fainter QSOs. It cannot be done with archival data, as these rare systems are not often probed along random sight lines. The H I column density (and metallicity) measurements require access to the UV. The large size of our survey is crucial to robustly assess whether the CGM in these galaxies is unique from that of star-forming systems, a comparison that provides the most stringent test of cold-mode accretion/quenching models to date. Conversely, widespread detections of metal-poor gas in these halos will seriously challenge the prevailing theory.

  2. Hot gas path component

    Science.gov (United States)

    Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Porter, Christopher Donald; Schick, David Edward

    2017-09-12

    Various embodiments of the disclosure include a turbomachine component. and methods of forming such a component. Some embodiments include a turbomachine component including: a first portion including at least one of a stainless steel or an alloy steel; and a second portion joined with the first portion, the second portion including a nickel alloy including an arced cooling feature extending therethrough, the second portion having a thermal expansion coefficient substantially similar to a thermal expansion coefficient of the first portion, wherein the arced cooling feature is located within the second portion to direct a portion of a coolant to a leakage area of the turbomachine component.

  3. Halo modelling in chameleon theories

    Energy Technology Data Exchange (ETDEWEB)

    Lombriser, Lucas; Koyama, Kazuya [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Li, Baojiu, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: baojiu.li@durham.ac.uk [Institute for Computational Cosmology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom)

    2014-03-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.

  4. Halo modelling in chameleon theories

    International Nuclear Information System (INIS)

    Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu

    2014-01-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations

  5. Fluorosis: halo effect

    International Nuclear Information System (INIS)

    Diaz Madriz, Jose Esteban; Granados Quesada, Maria Pamela; Lopez Chacon, Angelica Maria; Monge Cantillo, Carol Paola; Munoz Aguero, Geiner Andres; Vargas Vargas, Jorge Andres

    2013-01-01

    The halo effect was determined from the consumption of potatoes from Tierra Blanca de Cartago and Palmira de Zarcero. Seminars were held to get to know the topic of fluorosis. A mini health fair was held to explain the effects of fluoride in a population affected by it. Samples of water and forest type potato were collected in the area of Zarcero and San Juan de Chicoa. Measurements of the samples were made in the Chemistry Laboratory of the Universidad de Costa Rica. 20 mg of potato from each zone and 80 ml of distilled water were weighed and then liquefied. Each shake was dispensed in 2 clean test tubes and 7 samples were obtained, of which, 2 test tubes contained the liquefied 1, 2 tubes the liquefied 2, 1 tube with the Rio Reventado water centrifuged. 1 tube with Zarcero irrigation water and 1 tube with distilled water, for the subsequent analysis of fluoride concentration. The samples were taken to the LAMBDA Chemical Laboratory, where the ion chromatography test was performed on each of the samples. A concentration of fluorides of 0.73 ppm was obtained in the water of the Rio Reventado, while a concentration of less than 0.60 ppm was obtained in the water collected in Zarcero. The highest concentration of fluoride was presented in the potato from the area of Palmira de Zarcero with 2.41 ppm compared to that obtained in Cartago, with a lower concentration of 1.34 ppm. The maximum recommended concentration was exceeded in both results. A concentration less than 0.02 ppm was obtained in the analysis of distilled water as a control test [es

  6. The hot gas cleaning with multifunctional sorbent technique at 1-20 bar pressure; Kaasujen kuumapuhdistus multifunktionaalisella sorbenttitekniikalla 1-20 bar:n paineessa

    Energy Technology Data Exchange (ETDEWEB)

    Jaanu, K.; Orjala, M.; Paakkinen, K.; Rantanen, J. [VTT Energy, Espoo (Finland)

    1996-12-01

    The aim of the research was to study the simultaneous hot gas cleanup of alkali metals and selected heavy metals under pressure of 1-20 bar using multifunctional sorbent technology, to investigate effects of it on sulfur and nitrogen emissions and to improve the total efficiency of the hot gas cleanup method by reducing the concentrations of harmful components to the level required by the gas turbines. The research has started in the year 1993. The optimization of the test facility at 900 deg C and 20 bar has been accomplished, as targeted. The main topics have been the alkali metals. The main targets of the year 1994 was to concentrate on the research of sorbent effectiveness to remove the impurities like alkalies etc. from the flue gas. Furthermore researches on kinetics and mechanisms were started. The results showed that the developed multifunctional sorbent are highly effective to remove alkalies from the flue gas. Also a mechanism for alkali and lead sorption was proposed. The main topics for 1995 were scheduled to be the completion of the kinetic and mechanical studies and the modelling and the estimation of the data for the pilot scale unit. The kinetic data for one sorbent has been completed and a model for that has also been developed. The measured and calculated results are indicating that the developed multifunctional sorption process is highly effective to remove alkalies and heavy metals such as lead and cadmium from high-temperature combustion gases. The tests are carried out mainly using the pressurized entrained flow reactor of VTT Energy, located in Jyvaeskylae, and in the university of Arizona, where the tests are conducted under atmospheric pressure. Some comparisons of the results might be made with those of Aabo Akademi during the future modelling. 3. The results are applied to purification of the hot gases in boilers, power and process industry. (Abstract Truncated)

  7. Painting galaxies into dark matter halos using machine learning

    Science.gov (United States)

    Agarwal, Shankar; Davé, Romeel; Bassett, Bruce A.

    2018-05-01

    We develop a machine learning (ML) framework to populate large dark matter-only simulations with baryonic galaxies. Our ML framework takes input halo properties including halo mass, environment, spin, and recent growth history, and outputs central galaxy and halo baryonic properties including stellar mass (M*), star formation rate (SFR), metallicity (Z), neutral (H I) and molecular (H_2) hydrogen mass. We apply this to the MUFASA cosmological hydrodynamic simulation, and show that it recovers the mean trends of output quantities with halo mass highly accurately, including following the sharp drop in SFR and gas in quenched massive galaxies. However, the scatter around the mean relations is under-predicted. Examining galaxies individually, at z = 0 the stellar mass and metallicity are accurately recovered (σ ≲ 0.2 dex), but SFR and H I show larger scatter (σ ≳ 0.3 dex); these values improve somewhat at z = 1, 2. Remarkably, ML quantitatively recovers second parameter trends in galaxy properties, e.g. that galaxies with higher gas content and lower metallicity have higher SFR at a given M*. Testing various ML algorithms, we find that none perform significantly better than the others, nor does ensembling improve performance, likely because none of the algorithms reproduce the large observed scatter around the mean properties. For the random forest algorithm, we find that halo mass and nearby (˜200 kpc) environment are the most important predictive variables followed by growth history, while halo spin and ˜Mpc scale environment are not important. Finally we study the impact of additionally inputting key baryonic properties M*, SFR, and Z, as would be available e.g. from an equilibrium model, and show that particularly providing the SFR enables H I to be recovered substantially more accurately.

  8. Construction of new tie-in in the Bolivia-Brazil Gas Pipeline (GASBOL) using hot tapping techniques; Derivacao do Gasoduto Bolivia-Brasil com a tecnica de hot-tapping

    Energy Technology Data Exchange (ETDEWEB)

    Frisoli, Caetano [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil); Frota, Cristiane Souto; Leite Filho, Ismael Casono; Lobao Filho, Jesualdo Pereira; Saavedra, Marcelo Curto [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    To supply 2,4 MM m3/d of natural gas to Tres Lagoas thermo electric plant, it was necessary to install a new delivery point of 12'' in the 32'' trunk line of Bolivia-Brazil gas pipeline. The most efficient method for executing new delivery points and maintenance repairs in pipelines is using the 'hot-tapping' technique, because there is no need to stop flow and blow down lines. This paper shows the project, specifications, planning and a detailed job execution to support this new city-gate, using a T split sleeve welded in the pipeline, explaining all the activities. Complex and innovative aspects related to the welding and inspection processes, executed in a API 5L X70 pipe at 92 kgf/cm{sup 2}, are also reported. (author)

  9. Oxygen and coke oven gas (COG) consumption optimization at hot stove of Usiminas blast furnace 3; Otimizacao do consumo de oxigenio e GCO nos regeneradores do alto forno 3 da Usiminas

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Marco Antonio; Bastos, Moises Hofer [Usiminas, Ipatinga, MG (Brazil)

    2001-07-01

    This paper presents the model developed for determination of the correlation between oxygen and coke oven gas (COG) consumption in the hot stove at Usiminas blast furnace 3, the applicability and results obtained. (author)

  10. Hot gas in the cold dark matter scenario: X-ray clusters from a high-resolution numerical simulation

    Science.gov (United States)

    Kang, Hyesung; Cen, Renyue; Ostriker, Jeremiah P.; Ryu, Dongsu

    1994-01-01

    A new, three-dimensional, shock-capturing hydrodynamic code is utilized to determine the distribution of hot gas in a standard cold dark matter (CDM) model of the universe. Periodic boundary conditions are assumed: a box with size 85 h(exp -1) Mpc having cell size 0.31 h(exp -1) Mpc is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, sigma(sub 8) = 1.05, omega(sub b) = 0.06, and assuming h = 0.5, we find the X-ray-emitting clusters and compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. We find that most of the total X-ray emissivity in our box originates in a relatively small number of identifiable clusters which occupy approximately 10(exp -3) of the box volume. This standard CDM model, normalized to COBE, produces approximately 5 times too much emission from clusters having L(sub x) is greater than 10(exp 43) ergs/s, a not-unexpected result. If all other parameters were unchanged, we would expect adequate agreement for sigma(sub 8) = 0.6. This provides a new and independent argument for lower small-scale power than standard CDM at the 8 h(exp -1) Mpc scale. The background radiation field at 1 keV due to clusters in this model is approximately one-third of the observed background, which, after correction for numerical effects, again indicates approximately 5 times too much emission and the appropriateness of sigma(sub 8) = 0.6. If we have used the observed ratio of gas to total mass in clusters, rather than basing the mean density on light-element nucleosynthesis, then the computed luminosity of each cluster would have increased still further, by a factor of approximately 10. The number density of clusters increases to z approximately 1, but the luminosity per typical cluster decreases, with the result that evolution in the number density of bright

  11. The Hot ISM of Normal Galaxies

    Science.gov (United States)

    Fabbiano, Giuseppina

    1999-01-01

    X-ray observations of galaxies have shown the presence of hot ISM and gaseous halos. The most spectacular examples am in early-type galaxies (E and S0), and in galaxies hosting intense starforming regions. This talk will review the observational evidence and highlight the outstanding issues in our understanding of this gaseous component, with emphasis on our present understanding of the chemical composition of these hot halos. It will address how Chandra, XMM, and future X-ray missions can address these studies.

  12. Large scale features of the hot component of the interstellar medium

    International Nuclear Information System (INIS)

    Garmire, G.P.

    1983-01-01

    The interstellar medium contains identifiable hot plasma clouds occupying up to about 35% of the volume of the local galactic disc. The temperature of these clouds is not uniform but ranges from 10 5 up to 4 x 10 6 K. Besides the high temperature which places the emission spectrum in the soft X-ray band, the implied pressure of the hot plasma compared to the cooler gas reveals the importance of this component in determining the motions and evolution of the cooler gas in the disc, as well as providing a source of hot gas which may extend above the galactic disc to form a corona. The author presents data from the A-2 soft X-ray experiment on the HEAO-1 spacecraft concerning the large scale features of this gas. These features are interpreted in terms of the late phases of supernovae expansion, multiple supernovae and the possible creation of a hot halo surrounding the region of the galactic nucleus. (Auth.)

  13. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    Science.gov (United States)

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    2018-03-01

    Secondary halo bias, commonly known as `assembly bias', is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalo properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. This results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.

  14. Halo vest effect on balance.

    Science.gov (United States)

    Richardson, J K; Ross, A D; Riley, B; Rhodes, R L

    2000-03-01

    To determine the effect of a halo vest, a cervical orthosis, on clinically relevant balance parameters. Subjects performed unipedal stance (with eyes open and closed, on both firm and soft surfaces) and functional reach, with and without the application of a halo vest. A convenience sample of 12 healthy young subjects, with an equal number of men and women. Seconds for unipedal stance (maximum 45); inches for functional reach. Both unipedal stance times and functional reach (mean +/- standard deviation) were significantly decreased with the halo vest as compared to without it (29.1+/-5.8 vs. 32.8+/-6.4 seconds, p = .002; 12.9+/-1.4 vs. 15.1+/-2.1 inches, prisk for a fall, which could have devastating consequences.

  15. The effect of gas dynamics on semi-analytic modelling of cluster galaxies

    Science.gov (United States)

    Saro, A.; De Lucia, G.; Dolag, K.; Borgani, S.

    2008-12-01

    We study the degree to which non-radiative gas dynamics affect the merger histories of haloes along with subsequent predictions from a semi-analytic model (SAM) of galaxy formation. To this aim, we use a sample of dark matter only and non-radiative smooth particle hydrodynamics (SPH) simulations of four massive clusters. The presence of gas-dynamical processes (e.g. ram pressure from the hot intra-cluster atmosphere) makes haloes more fragile in the runs which include gas. This results in a 25 per cent decrease in the total number of subhaloes at z = 0. The impact on the galaxy population predicted by SAMs is complicated by the presence of `orphan' galaxies, i.e. galaxies whose parent substructures are reduced below the resolution limit of the simulation. In the model employed in our study, these galaxies survive (unaffected by the tidal stripping process) for a residual merging time that is computed using a variation of the Chandrasekhar formula. Due to ram-pressure stripping, haloes in gas simulations tend to be less massive than their counterparts in the dark matter simulations. The resulting merging times for satellite galaxies are then longer in these simulations. On the other hand, the presence of gas influences the orbits of haloes making them on average more circular and therefore reducing the estimated merging times with respect to the dark matter only simulation. This effect is particularly significant for the most massive satellites and is (at least in part) responsible for the fact that brightest cluster galaxies in runs with gas have stellar masses which are about 25 per cent larger than those obtained from dark matter only simulations. Our results show that gas dynamics has only a marginal impact on the statistical properties of the galaxy population, but that its impact on the orbits and merging times of haloes strongly influences the assembly of the most massive galaxies.

  16. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  17. Effects of internal gas pressure and microstructure on the mechanisms of hot-pressing and swelling in ceramics. Progress report, June 1, 1976--March 31, 1977

    International Nuclear Information System (INIS)

    Solomon, A.A.

    1977-02-01

    The low temperature isostatic pressurization system has been completed, operated successfully and calibrated. The new high temperature TD tungsten vessel and MoSi 2 element furnace system has also been designed and is presently under construction. Porous CoO single crystals have been grown using a ''skull melting'' process. Automated quantitative microscopy techniques are being developed using the KONTRON system to examine porosity evaluation during hot-pressing and sintering. Initial sintering experiments under variable isostatic pressures from 100 μm Hg to 2000 psi reveal no significant effect of ambient pressure. Nor were differences observed in sintering kinetics when either Helium or Argon were used as the pressurizing gas. Swelling experiments, conducted by reducing the ambient pressure after pore closure, revealed dramatic changes in density. The densification rates also appeared to depend on history, suggesting that mechanical deformation may play a dominant role in hot-pressing, at least during transients

  18. Simulation of halo particles with Simpsons

    International Nuclear Information System (INIS)

    Machida, Shinji

    2003-01-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle

  19. Simulation of halo particles with Simpsons

    Science.gov (United States)

    Machida, Shinji

    2003-12-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle.

  20. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    CMS Collaboration

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will describ...

  1. Net sputtering rate due to hot ions in a Ne-Xe discharge gas bombarding an MgO layer

    International Nuclear Information System (INIS)

    Ho, S.; Tamakoshi, T.; Ikeda, M.; Mikami, Y.; Suzuki, K.

    2011-01-01

    An analytical method is developed for determining net sputtering rate for an MgO layer under hot ions with low energy ( h i , above a threshold energy of sputtering, E th,i , multiplied by a yield coefficient. The threshold energy of sputtering is determined from dissociation energy required to remove an atom from MgO surface multiplied by an energy-transfer coefficient. The re-deposition rate of the sputtered atoms is calculated by a diffusion simulation using a hybridized probabilistic and analytical method. These calculation methods are combined to analyze the net sputtering rate. Maximum net sputtering rate due to the hot neon ions increases above the partial pressure of 4% xenon as E h Ne becomes higher and decreases near the partial pressure of 20% xenon as ion flux of neon decreases. The dependence due to the hot neon ions on partial pressure and applied voltage agrees well with experimental results, but the dependence due to the hot xenon ions deviates considerably. This result shows that the net sputtering rate is dominated by the hot neon ions. Maximum E h Ne (E h Ne,max = 5.3 - 10.3 eV) is lower than E th,Ne (19.5 eV) for the MgO layer; therefore, weak sputtering due to the hot neon ions takes place. One hot neon ion sputters each magnesium and each oxygen atom on the surface and distorts around a vacancy. The ratio of the maximum net sputtering rate is approximately determined by number of the ions at E h i,max multiplied by an exponential factor of -E th,i /E h i,max .

  2. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.

    Science.gov (United States)

    Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C

    2014-02-28

    Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Non-Gaussian halo assembly bias

    International Nuclear Information System (INIS)

    Reid, Beth A.; Verde, Licia; Dolag, Klaus; Matarrese, Sabino; Moscardini, Lauro

    2010-01-01

    The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f NL , offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ∼ 23% and ∼ 48% for galaxies at z = 1 selected by stellar mass and star formation rate, respectively

  4. Halo Mitigation Using Nonlinear Lattices

    CERN Document Server

    Sonnad, Kiran G

    2005-01-01

    This work shows that halos in beams with space charge effects can be controlled by combining nonlinear focusing and collimation. The study relies on Particle-in-Cell (PIC) simulations for a one dimensional, continuous focusing model. The PIC simulation results show that nonlinear focusing leads to damping of the beam oscillations thereby reducing the mismatch. It is well established that reduced mismatch leads to reduced halo formation. However, the nonlinear damping is accompanied by emittance growth causing the beam to spread in phase space. As a result, inducing nonlinear damping alone cannot help mitigate the halo. To compensate for this expansion in phase space, the beam is collimated in the simulation and further evolution of the beam shows that the halo is not regenerated. The focusing model used in the PIC is analysed using the Lie Transform perturbation theory showing that by averaging over a lattice period, one can reuduce the focusing force to a form that is identical to that used in the PIC simula...

  5. Estimating the tumble rates of galaxy halos

    International Nuclear Information System (INIS)

    Simonson, G.F.; Tohline, J.E.

    1983-01-01

    It has previously been demonstrated that cold gas in a static spheroidal galaxy will damp to a preferred plane, in which the angular momentum vector of the gas is aligned with the symmetry axis of the potential, through dissipative processes. We show now that, if the same galaxy rigidly tumbles about a nonsymmetry axis, the preferred orientation of the gas can become a permanently and smoothly warped sheet, in which rings of gas at large radii may be fully orthogonal to those near the galaxy's core. Detailed numerical orbit calculations closely match an analytic prediction made previously for the structure of the warp. This structure depends primarily on the eccentricity, density profile, and tumble rate of the spheroid. We show that the tumble rate can now be determined for a galaxy containing a significantly warped disk. Ordinary observations used in conjunction with graphs such as those we present, yield at least firm lower limits to the tumble periods of these objects. We have applied this method to the two peculiar systems NGC 5128 and NGC 2685 and found that, if they are prolate systems supporting permanently warped gaseous disks, they must tumble with periods near 5 x 10 9 yr and 2 x 10 9 yr respectively. In a preliminary investigation, we also find that the massive, unseen halos surrounding spiral galaxies must tumble with periods longer than or on the same order as those of the elliptical galaxies

  6. Experimental Investigations of the Energy and Environmental Indices of Operation of a Low-Capacity Combined Gas Producer and Hot-Water Boiler

    Science.gov (United States)

    Bodnar, L. A.; Stepanov, D. V.; Dovgal‧, A. N.

    2015-07-01

    It has been shown that the introduction of combined gas producers and boilers on renewable energy sources is a pressing issue. A structural diagram of a low-capacity combined gas producer and boiler on renewable energy sources has been given; a bench and procedures for investigation and processing of results have been developed. Experimental investigations of the energy and environmental indices of a 40-kW combined gas producer and hotwater boiler burning wood have been carried out. Results of the experimental investigations have been analyzed. Distinctive features have been established and a procedure of thermal calculation of the double furnace of a lowcapacity combined gas producer and boiler burning solid fuel has been proposed. The calculated coefficients of heat transfer from the gases in the convection bank have been compared with the obtained experimental results. A calculation dependence for the heat transfer from the gases in convection banks of low-capacity hot-water boilers has been proposed. The quantities of harmful emissions from the combined gas producer and boiler on renewable energy sources have been compared with the existing Ukrainian and foreign standards. It has been established that the environmental efficiency of the boiler under study complies with most of the standard requirements of European countries.

  7. Tree Coring as a Complement to Soil Gas Screening to Locate PCE and TCE Source Zones and Hot Spots

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen; Trapp, Stefan; Rehne Jensen, Pernille

    2015-01-01

    ) or trichloroethylene (TCE) to evaluate their ability to locate source zones and contaminant hot spots. One test site represented a relatively homogeneous sandy soil and aquifer, and the second a more heterogeneous geology with both sandy and less permeable clay till layers overlying a chalk aquifer. Tree cores from...

  8. FASHIONABLY LATE? BUILDING UP THE MILKY WAY'S INNER HALO

    International Nuclear Information System (INIS)

    Morrison, Heather L.; Harding, Paul; Helmi, Amina

    2009-01-01

    Using a sample of 246 metal-poor stars (RR Lyraes, red giants, and red horizontal branch stars) which is remarkable for the accuracy of its six-dimensional kinematical data, we find, by examining the distribution of stellar orbital angular momenta, a new component for the local halo which has an axial ratio c/a ∼ 0.2, a similar flattening to the thick disk. It has a small prograde rotation but is supported by velocity anisotropy, and contains more intermediate-metallicity stars (with -1.5 < [Fe/H] < -1.0) than the rest of our sample. We suggest that this component was formed quite late, during or after the formation of the disk. It formed either from the gas that was accreted by the last major mergers experienced by the Galaxy, or by dynamical friction of massive infalling satellite(s) with the halo and possibly the stellar disk or thick disk. The remainder of the halo stars in our sample, which are less closely confined to the disk plane, exhibit a clumpy distribution in energy and angular momentum, suggesting that the early, chaotic conditions under which the inner halo formed were not violent enough to erase the record of their origins. The clumpy structure suggests that a relatively small number of progenitors were responsible for building up the inner halo, in line with theoretical expectations. We find a difference in mean binding energy between the RR Lyrae variables and the red giants in our sample, suggesting that more of the RR Lyraes in the sample belong to the outer halo, and that the outer halo may be somewhat younger, as first suggested by Searle and Zinn. We also find that the RR Lyrae mean rotation is more negative than the red giants, which is consistent with the recent result of Carollo et al. that the outer halo has a retrograde rotation and with the difference in kinematics seen between RR Lyraes and blue horizontal branch stars by Kinman et al. (2007).

  9. The halo current in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Pautasso, G.; Giannone, L.; Gruber, O.; Herrmann, A.; Maraschek, M.; Schuhbeck, K.H.

    2011-01-01

    Due to the complexity of the phenomena involved, a self-consistent physical model for the prediction of the halo current is not available. Therefore the ITER specifications of the spatial distribution and evolution of the halo current rely on empirical assumptions. This paper presents the results of an extensive analysis of the halo current measured in ASDEX Upgrade with particular emphasis on the evolution of the halo region, on the magnitude and time history of the halo current, and on the structure and duration of its toroidal and poloidal asymmetries. The effective length of the poloidal path of the halo current in the vessel is found to be rather insensitive to plasma parameters. Large values of the toroidally averaged halo current are observed in both vertical displacement events and centred disruptions but last a small fraction of the current quench; they coincide typically with a large but short-lived MHD event.

  10. The halo current in ASDEX Upgrade

    Science.gov (United States)

    Pautasso, G.; Giannone, L.; Gruber, O.; Herrmann, A.; Maraschek, M.; Schuhbeck, K. H.; ASDEX Upgrade Team

    2011-04-01

    Due to the complexity of the phenomena involved, a self-consistent physical model for the prediction of the halo current is not available. Therefore the ITER specifications of the spatial distribution and evolution of the halo current rely on empirical assumptions. This paper presents the results of an extensive analysis of the halo current measured in ASDEX Upgrade with particular emphasis on the evolution of the halo region, on the magnitude and time history of the halo current, and on the structure and duration of its toroidal and poloidal asymmetries. The effective length of the poloidal path of the halo current in the vessel is found to be rather insensitive to plasma parameters. Large values of the toroidally averaged halo current are observed in both vertical displacement events and centred disruptions but last a small fraction of the current quench; they coincide typically with a large but short-lived MHD event.

  11. Brown dwarfs as dark galactic halos

    International Nuclear Information System (INIS)

    Adams, F.C.; Walker, T.P.

    1990-01-01

    The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF. 30 refs

  12. INTERACTION BETWEEN DARK MATTER SUB-HALOS AND A GALACTIC GASEOUS DISK

    International Nuclear Information System (INIS)

    Kannan, Rahul; Macciò, Andrea V.; Walter, Fabian; Pasquali, Anna; Moster, Benjamin P.

    2012-01-01

    We investigate the idea that the interaction of dark matter (DM) sub-halos with the gaseous disks of galaxies can be the origin for the observed holes and shells found in their neutral hydrogen (H I) distributions. We use high-resolution hydrodynamic simulations to show that pure DM sub-halos impacting a galactic disk are not able to produce holes; on the contrary, they result in high-density regions in the disk. However, sub-halos containing a small amount of gas (a few percent of the total DM mass of the sub-halo) are able to displace the gas in the disk and form holes and shells. The sizes and lifetimes of these holes depend on the sub-halo gas mass, density, and impact velocity. A DM sub-halo, of mass 10 8 M ☉ and a gas mass fraction of ∼3%, is able to create a kiloparsec-scale hole with a lifetime similar to those observed in nearby galaxies. We also register an increase in the star formation rate at the rim of the hole, again in agreement with observations. Even though the properties of these simulated structures resemble those found in observations, we find that the number of predicted holes (based on mass and orbital distributions of DM halos derived from cosmological N-body simulations) falls short compared to the observations. Only a handful of holes are produced per gigayear. This leads us to conclude that DM halo impact is not the major channel through which these holes are formed.

  13. OVII and Temperature Limits on the Local Hot Bubble

    Science.gov (United States)

    Pirtle, Robert; Petre, N.; McCammon, D.; Morgan, K.; Sauter, P.; Clavadetscher, K.; Fujimoto, R.; Hagihara, T.; Masui, K.; Mitsuda, K.; Takei, Y.; Wang, Q. D.; Yamasaki, N. Y.; Yao, Y.; Yoshino, T.

    2013-01-01

    The observed ¼-keV (ROSAT R12 band) X-ray background originates largely in a region of hot ionized gas roughly 100 pc in extent surrounding the Sun known as the Local Hot Bubble (LHB). The observed flux is quite uniform at low latitudes (|b| factors of 2 - 3. Charge exchange between highly charged ions in the Solar wind and interstellar neutral H and He moving through interplanetary space might provide a very roughly isotropic contribution about equal to the low- latitude flux (Koutroumpa et al. 2008), but cannot produce the enhancements. Correlations with the interstellar absorbing column show that some of these bright regions are apparently due to clumps of hot gas in the Galactic halo, while many of them show no correlation and must be due to extensions of the LHB (Kuntz & Snowden 2000, Bellm & Vaillancourt 2005). Global fits of simple plasma emission spectra give temperatures near 1.0 x 106 K for both LHB and halo emission, but the possibility of a substantial contamination by charge exchange could distort this result in unknown ways. Thermal excitation of O VII is strongly temperature dependent in this range, so we have tried to correlate O VII fluxes measured with Suzaku with variations in ¼-keV intensity from the ROSAT R12 band map to determine the temperature. We take eleven O VII intensity measurements from Yoshino et al. (2009), one from Masui et al. (2009), and an additional eighteen from archival Suzaku pointings and correlate these with the R12 band local and halo intensities as separated by Kunzt & Snowden (2000). The lack of detectable correlation in both cases strongly limits any O VII production by the material producing the enhancements, and upper limits to the temperatures are set. This work was supported in part by the National Science Foundation's REU program through NSF Award AST-1004881 and by NASA grant NNX09AF09G. *present address: Department of Physics, Lewis & Clark College, Portland, OR. This work was supported in part by the National

  14. Reionization histories of Milky Way mass halos

    International Nuclear Information System (INIS)

    Li, Tony Y.; Wechsler, Risa H.; Abel, Tom; Alvarez, Marcelo A.

    2014-01-01

    We investigate the connection between the reionization era and the present-day universe by examining the mass reionization histories of z = 0 dark matter halos. In a 600 3 Mpc 3 volume, we combine a dark matter N-body simulation with a three-dimensional seminumerical reionization model. This tags each particle with a reionization redshift, so that individual present-day halos can be connected to their reionization histories and environments. We find that the vast majority of present-day halos with masses larger than ∼ few × 10 11 M ☉ reionize earlier than the rest of the universe. We also find significant halo-to-halo diversity in mass reionization histories, and find that in realistic inhomogeneous models, the material within a given halo is not expected to reionize at the same time. In particular, the scatter in reionization times within individual halos is typically larger than the scatter among halos. From our fiducial reionization model, we find that the typical 68% scatter in reionization times within halos is ∼115 Myr for 10 12±0.25 M ☉ halos, decreasing slightly to ∼95 Myr for 10 15±0.25 M ☉ halos. We find a mild correlation between reionization history and environment: halos with shorter reionization histories are typically in more clustered environments, with the strongest trend on a scale of ∼20 Mpc. Material in Milky Way mass halos with short reionization histories is preferentially reionized in relatively large H II regions, implying reionization mostly by sources external to the progenitors of the present-day halo. We investigate the impact on our results of varying the reionization model parameters, which span a range of reionization scenarios with varying timing and morphology.

  15. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  16. Layer texture of hot-rolled BCC metals and its significance for stress-corrosion cracking of main gas pipelines

    Science.gov (United States)

    Perlovich, Yu. A.; Isaenkova, M. G.; Krymskaya, O. A.; Morozov, N. S.

    2016-10-01

    Based on data of X-ray texture analysis of hot-rolled BCC materials it was shown that the layerwise texture inhomogeneity of products is formed during their manufacturing. The effect can be explained by saturation with interstitial impurities of the surface layer, resulting in dynamical deformation aging (DDA). DDA prevents the dislocation slip under rolling and leads to an increase of lattice parameters in the external layer. The degree of arising inhomogeneity correlates with the tendency of hot-rolled sheets and obtained therefrom tubes to stress-corrosion cracking under exploitation, since internal layers have a compressive effect on external layers, and prevents opening of corrosion cracks at the tube surface.

  17. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  18. Dipole-dipole interactions in a hot atomic vapor and in an ultracold gas of Rydberg atoms

    Science.gov (United States)

    Sautenkov, V. A.; Saakyan, S. A.; Bronin, S. Ya; Klyarfeld, A. B.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    In our paper ideal and non-ideal gas media of neutral atoms are analyzed. The first we discuss a dipole broadening of atomic transitions in excited dilute and dense metal vapors. Then the theoretical studies of the dipole-dipole interactions in dense ultracold gas of Rydberg atoms are considered. Possible future experiments on a base of our experimental arrangement are suggested.

  19. A general explanation on the correlation of dark matter halo spin with the large-scale environment

    Science.gov (United States)

    Wang, Peng; Kang, Xi

    2017-06-01

    Both simulations and observations have found that the spin of halo/galaxy is correlated with the large-scale environment, and particularly the spin of halo flips in filament. A consistent picture of halo spin evolution in different environments is still lacked. Using N-body simulation, we find that halo spin with its environment evolves continuously from sheet to cluster, and the flip of halo spin happens both in filament and nodes. The flip in filament can be explained by halo formation time and migrating time when its environment changes from sheet to filament. For low-mass haloes, they form first in sheets and migrate into filaments later, so their mass and spin growth inside filament are lower, and the original spin is still parallel to filament. For high-mass haloes, they migrate into filaments first, and most of their mass and spin growth are obtained in filaments, so the resulted spin is perpendicular to filament. Our results well explain the overall evolution of cosmic web in the cold dark matter model and can be tested using high-redshift data. The scenario can also be tested against alternative models of dark matter, such as warm/hot dark matter, where the structure formation will proceed in a different way.

  20. The LAMOST stellar spectroscopic survey and the Galactic halo

    International Nuclear Information System (INIS)

    Liu Chao; Deng Licai

    2015-01-01

    The formation and evolution of galaxies is an extremely important and fundamental question in modern astrophysics. Among the galaxies, the Milky Way is a very special sample not only because we live in it, but also because it is the only one in which we can carefully and individually observe its member stars. It has been confirmed that the Galactic halo, including both the stellar spheroid and the dark matter halo, contains fairly complicated structures, from which the overall shape, formation, and evolutionary history of our Galaxy can be unveiled. Moreover, some very rare and special stars in the Milky Way can be used as tracers to indirectly detect the core region of the Galaxy around the central super-massive black hole, which is also a hot topic of astrophysics. The LAMOST survey of the Milky Way will collect millions of stellar spectra at low wavelength resolution, making it the largest of such projects throughout the world. Its data base is very suitable for the study of the structure and evolution of the Milky Way. In this article, we report our on-going studies on the Galactic halo with LAMOST data, and present some early scientific results. (authors)

  1. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.

    Science.gov (United States)

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-12-03

    Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.

  2. Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web

    Science.gov (United States)

    Tojeiro, Rita; Eardley, Elizabeth; Peacock, John A.; Norberg, Peder; Alpaslan, Mehmet; Driver, Simon P.; Henriques, Bruno; Hopkins, Andrew M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Thomas, Peter; Tonini, Chiara; Wild, Vivienne

    2017-09-01

    We present evidence for halo assembly bias as a function of geometric environment (GE). By classifying Galaxy and Mass Assembly (GAMA) galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with GE is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of GE. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star formation rate (SFR) and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous SFR is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star formation and chemical enrichment histories, which approximately mimic GAMA's typical signal-to-noise ratio and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.

  3. The Mass and Absorption Columns of Galactic Gaseous Halos

    Science.gov (United States)

    Qu, Zhijie; Bregman, Joel N.

    2018-01-01

    The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.

  4. Toward a combined SAGE II-HALOE aerosol climatology: an evaluation of HALOE version 19 stratospheric aerosol extinction coefficient observations

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2012-09-01

    Full Text Available Herein, the Halogen Occultation Experiment (HALOE aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 μm is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 μm is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 μm aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40 μm aerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 μm channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived

  5. Localization of the Hot Spot in the Gap of Pebble Bed of Very High Temperature Gas Cooled Reactor(VHTGR)

    International Nuclear Information System (INIS)

    Lee, Sa Ya; Hong, Sung Je; Lee, Jae Young

    2010-01-01

    Pebble Bed Reactor(PBR) has been investigated intensively due to its benefits in management, but its complicated flow geometry requests reliable analytical methods. Hassan and Lee et al. have been made three dimensional computational methods. Hassan also measured local velocity fields with Particle Tracking Velocimetry(PTV), in small sized packed bed using liquid coolant, and Lee et al. measured flow field in the 2-dimensional wind tunnel with a hot wire system. In the present study, we develop the scaled up wind tunnel of pebble bed to use air as coolant in the same Reynolds number condition, as 21614, of the PBMR-250MWth. In order to measure the local surface temperature, the heating system and temperature measurement system were installed and heat transfer analogy was performed. The local surface temperature data shows that the predicted hot spots by Lee et al. at the top and bottom of the pebble by the velocity field measurement are reasonable, but the heat conduction is prior than contact effect at contact points

  6. Halo scale predictions of symmetron modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Clampitt, Joseph; Jain, Bhuvnesh; Khoury, Justin, E-mail: clampitt@sas.upenn.edu, E-mail: bjain@physics.upenn.edu, E-mail: jkhoury@sas.upenn.edu [Center for Particle Cosmology and Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd St., Philadelphia, PA 19104 (United States)

    2012-01-01

    We offer predictions of symmetron modified gravity in the neighborhood of realistic dark matter halos. The predictions for the fifth force are obtained by solving the nonlinear symmetron equation of motion in the spherical NFW approximation. In addition, we compare the three major known screening mechanisms: Vainshtein, Chameleon, and Symmetron around such dark matter halos, emphasizing the significant differences between them and highlighting observational tests which exploit these differences. Finally, we demonstrate the host halo environmental screening effect (''blanket screening'') on smaller satellite halos by solving for the modified forces around a density profile which is the sum of satellite and approximate host components.

  7. Unbound particles in dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

  8. Hot Gas Conditioning: Recent Progress with Larger-Scale Biomass Gasification Systems; Update and Summary of Recent Progress

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D. J.

    2001-09-01

    As a result of environmental and policy considerations, there is increasing interest in using renewable biomass resources as feedstock for power, fuels, and chemicals and hydrogen. Biomass gasification is seen as an important technology component for expanding the use of biomass. Advanced biomass gasification systems provide clean products that can be used as fuel or synthesis gases in a variety of environmentally friendly processes. Advanced end-use technologies such as gas turbines or synthesis gas systems require high quality gases with narrowly defined specifications. Other systems such as boilers may also have fuel quality requirements, but they will be substantially less demanding. The gas product from biomass gasifiers contains quantities of particulates, tars, and other constituents that may exceed these specified limits. As a result, gas cleaning and conditioning will be required in most systems. Over the past decade, significant research and development activities have been conducted on the topic of gas cleanup and conditioning. This report provides an update of efforts related to large-scale biomass gasification systems and summarizes recent progress. Remaining research and development issues are also summarized.

  9. Mass models for disk and halo components in spiral galaxies

    International Nuclear Information System (INIS)

    Athanassoula, E.; Bosma, A.

    1987-01-01

    The mass distribution in spiral galaxies is investigated by means of numerical simulations, summarizing the results reported by Athanassoula et al. (1986). Details of the modeling technique employed are given, including bulge-disk decomposition; computation of bulge and disk rotation curves (assuming constant mass/light ratios for each); and determination (for spherical symmetry) of the total halo mass out to the optical radius, the concentration indices, the halo-density power law, the core radius, the central density, and the velocity dispersion. Also discussed are the procedures for incorporating galactic gas and checking the spiral structure extent. It is found that structural constraints limit disk mass/light ratios to a range of 0.3 dex, and that the most likely models are maximum-disk models with m = 1 disturbances inhibited. 19 references

  10. Weldability Characteristics of Sintered Hot-Forged AISI 4135 Steel Produced through P/M Route by Using Pulsed Current Gas Tungsten Arc Welding

    Science.gov (United States)

    Joseph, Joby; Muthukumaran, S.; Pandey, K. S.

    2016-01-01

    Present investigation is an attempt to study the weldability characteristics of sintered hot-forged plates of AISI 4135 steel produced through powder metallurgy (P/M) route using matching filler materials of ER80S B2. Compacts of homogeneously blended elemental powders corresponding to the above steel were prepared on a universal testing machine (UTM) by taking pre-weighed powder blend with a suitable die, punch and bottom insert assembly. Indigenously developed ceramic coating was applied on the entire surface of the compacts in order to protect them from oxidation during sintering. Sintered preforms were hot forged to flat, approximately rectangular plates, welded by pulsed current gas tungsten arc welding (PCGTAW) processes with aforementioned filler materials. Microstructural, tensile and hardness evaluations revealed that PCGTAW process with low heat input could produce weldments of good quality with almost nil defects. It was established that PCGTAW joints possess improved tensile properties compared to the base metal and it was mainly attributed to lower heat input, resulting in finer fusion zone grains and higher fusion zone hardness. Thus, the present investigation opens a new and demanding field in research.

  11. Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap.

    Science.gov (United States)

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Da Riva, E; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Georgiopoulou, E; Giomataris, I; Gninenko, S; Gómez, H; Gómez Marzoa, M; Gruber, E; Guthörl, T; Hartmann, R; Hauf, S; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Lang, P M; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Shilon, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2014-03-07

    The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10)  GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  12. Cross-correlation of the cosmic microwave background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources

    International Nuclear Information System (INIS)

    Afshordi, Niayesh; Loh, Yeong-Shang; Strauss, Michael A.

    2004-01-01

    We cross-correlate the cosmic microwave background temperature anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP) with the projected distribution of extended sources in the Two Micron All Sky Survey (2MASS). By modeling the theoretical expectation for this signal, we extract the signatures of dark energy [integrated Sachs-Wolfe effect (ISW)], hot gas [thermal Sunyaev-Zeldovich (SZ) effect], and microwave point sources in the cross-correlation. Our strongest signal is the thermal SZ, at the 3.1-3.7σ level, which is consistent with the theoretical prediction based on observations of x-ray clusters. We also see the ISW signal at the 2.5σ level, which is consistent with the expected value for the concordance ΛCDM cosmology, and is an independent signature of the presence of dark energy in the Universe. Finally, we see the signature of microwave point sources at the 2.7σ level

  13. Search for Solar Axions by the CERN Axion Solar Telescope with 3 He Buffer Gas: Closing the Hot Dark Matter Gap

    CERN Document Server

    Arik, M.; Barth, K.; Belov, A.; Borghi, S.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Cetin, S.A.; Collar, J.I.; Da Riva, E.; Dafni, T.; Davenport, M.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Friedrich, P.; Galán, J.; García, J.A.; Gardikiotis, A.; Garza, J.G.; Gazis, E.N.; Geralis, T.; Georgiopoulou, E.; Giomataris, I.; Gninenko, S.; Gómez, H.; Gómez Marzoa, M.; Gruber, E.; Guthörl, T.; Hartmann, R.; Hauf, S.; Haug, F.; Hasinoff, M.D.; Hoffmann, D.H.H.; Iguaz, F.J.; Irastorza, I.G.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Königsmann, K.; Kotthaus, R.; Krčmar, M.; Kuster, M.; Lakić, B.; Lang, P.M.; Laurent, J.M.; Liolios, A.; Ljubičić, A.; Lozza, V.; Luzón, G.; Neff, S.; Niinikoski, T.; Nordt, A.; Papaevangelou, T.; Pivovaroff, M.J.; Raffelt, G.; Riege, H.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Shilon, I.; Silva, P.S.; Solanki, S.K.; Stewart, L.; Tomás, A.; Tsagri, M.; van Bibber, K.; Vafeiadis, T.; Villar, J.; Vogel, J.K.; Yildiz, S.C.; Zioutas, K.

    2014-01-01

    The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.

  14. Search for Solar Axions by the CERN Axion Solar Telescope with He3 Buffer Gas: Closing the Hot Dark Matter Gap

    Science.gov (United States)

    Arik, M.; Aune, S.; Barth, K.; Belov, A.; Borghi, S.; Bräuninger, H.; Cantatore, G.; Carmona, J. M.; Cetin, S. A.; Collar, J. I.; Da Riva, E.; Dafni, T.; Davenport, M.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Friedrich, P.; Galán, J.; García, J. A.; Gardikiotis, A.; Garza, J. G.; Gazis, E. N.; Geralis, T.; Georgiopoulou, E.; Giomataris, I.; Gninenko, S.; Gómez, H.; Gómez Marzoa, M.; Gruber, E.; Guthörl, T.; Hartmann, R.; Hauf, S.; Haug, F.; Hasinoff, M. D.; Hoffmann, D. H. H.; Iguaz, F. J.; Irastorza, I. G.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Königsmann, K.; Kotthaus, R.; Krčmar, M.; Kuster, M.; Lakić, B.; Lang, P. M.; Laurent, J. M.; Liolios, A.; Ljubičić, A.; Luzón, G.; Neff, S.; Niinikoski, T.; Nordt, A.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Riege, H.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Shilon, I.; Silva, P. S.; Solanki, S. K.; Stewart, L.; Tomás, A.; Tsagri, M.; van Bibber, K.; Vafeiadis, T.; Villar, J.; Vogel, J. K.; Yildiz, S. C.; Zioutas, K.; CAST Collaboration

    2014-03-01

    The CERN Axion Solar Telescope has finished its search for solar axions with He3 buffer gas, covering the search range 0.64 eV≲ma≲1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ≲3.3×10-10 GeV-1 at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  15. Effects of internal gas pressure and microstructure on the mechanisms of hot-pressing and swelling in ceramics. Final report, June 1, 1979-May 31, 1980

    International Nuclear Information System (INIS)

    Solomon, A.A.

    1980-08-01

    The results of the study of the effects of internal and external gas pressures on ceramics are summarized. The new experimental systems for studying these phenomena are described. The study has shown that the rate of volume change in ZnO is linearly related to the total pressure driving force. Swelling and hot-pressing can be described on a consistent basis in terms of this driving force. For ZnO, Ni and UO 2 the rate of volume change is dependent on bulk diffusion. The porosity evolution during swelling is described and the resintering phenomenon is identified. Various models for pore growth and shrinkage are considered and related to the behavior of the different systems

  16. Effects of internal gas pressure and microstructure on the mechanisms of hot-pressing and swelling in ceramics. Progress report, June 1, 1975--March 31, 1976

    International Nuclear Information System (INIS)

    Solomon, A.A.

    1976-02-01

    Pressurization system components for studying the hot-pressing and swelling behavior of CoO were built. A vacuum furnace was modified so that dimensional changes can be continuously monitored during sintering under high vacuum. Chracterization of the CoO starting powders was initiated. A technique was developed to form geometrically uniform pellet compacts of high green density using low pressure punch and die pressing followed by high pressure isostatic compaction to obtain uniform green density. Preliminary sintering experiments were carried out at 1 atm in air, inert gas, and under vacuum with specimen deflection continuously monitored. Resulting microstructures were characterized using mercury porosimetry and quantitative optical microscopy. Drastic differences in sintering rates in vacuum and air were observed

  17. The Hot-gas screw-type engine - Simulation as a basis for construction. Pt. 3; Die Heissgasschraubenmaschine - simulationsgestuetzte Auslegung. T. 3

    Energy Technology Data Exchange (ETDEWEB)

    Kauder, K.; Unwerth, T. von [Dortmund Univ. (Germany). FG Fluidenergiemaschinen

    1998-12-31

    In this paper new results of the research regarding the design of the first experimental plant for a hot-gas screw-type machine are reported. Target of the development is the verification of operating behaviour as well as the thermal and mechanical behaviour of the screw-type motor parts. The selection and dimensioning of the plant components is described with a main focus on the construction of the thermally high-loaded hot-gas screw-type engine. Its manufacturing tolerances are based on simulations, with which the mechanical deformations of the rotors and the casing respective the resulting clearance-heights can be calculated. With inclusion of an efficient cooling method for the motor parts, for the, in the article documented, projected nominal working condition with a material-depending limit for the entrance temperature at {theta}{sub E,} {sub M}=600 C, a pressure ratio {pi}=6 and a male rotor peripheral speed u{sub HR}=120 ms{sup -1}, each rotor should be decreased by 0.07 mm. (orig.) [Deutsch] Es wird ueber neue Forschungsergebnisse im Hinblick auf die konstruktive Realisierung der ersten Versuchsanlage einer Heissgasschraubenmaschine berichtet. Ziel der daran durchgefuehrten Untersuchungen ist die Verifikation des Betriebsverhaltens sowie des thermischen und mechanischen Bauteilverhaltens des Heissgasschraubenmotors. Nachzulesen ist die Auswahl und Dimensionierung der Anlagenkomponenten, wobei ein Hauptaugenmerk auf der Auslegung des thermisch hoch belasteten Schraubenmotors liegt. Dessen Dimensionierung liegen Simulationsrechnungen zugrunde, mit deren Hilfe die mechanischen Verformungen der Rotoren und des Gehaeuses respektive der daraus resultierenden Spalthoehen a priori angegeben werden koennen. Fuer den hier dokumentierten, angestrebten Nennbetriebszustand mit einer werkstoffbedingt begrenzten Motoreintrittstemperatur von {theta}{sub E,} {sub M}=600 C, einem Druckverhaeltnis von {pi}=6 und einer Hauptrotorumfangsgeschwindigkeit von u{sub HR}=120 ms

  18. EVIDENCE FOR THE DIRECT DETECTION OF THE THERMAL SPECTRUM OF THE NON-TRANSITING HOT GAS GIANT HD 88133 b

    KAUST Repository

    Piskorz, Danielle; Benneke, Bjö rn; Crockett, Nathan R.; Lockwood, Alexandra C.; Blake, Geoffrey A.; Barman, Travis S.; Bender, Chad F.; Bryan, Marta L.; Carr, John S.; Fischer, Debra A.; Howard, Andrew W.; Isaacson, Howard; Johnson, John A.

    2016-01-01

    We target the thermal emission spectrum of the non-transiting gas giant HD 88133 b with high-resolution near-infrared spectroscopy, by treating the planet and its host star as a spectroscopic binary. For sufficiently deep summed flux observations

  19. Analytic modeling of axisymmetric disruption halo currents

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Kellman, A.G.

    1999-01-01

    Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in

  20. THE PSEUDO-EVOLUTION OF HALO MASS

    International Nuclear Information System (INIS)

    Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud

    2013-01-01

    A dark matter halo is commonly defined as a spherical overdensity of matter with respect to a reference density, such as the critical density or the mean matter density of the universe. Such definitions can lead to a spurious pseudo-evolution of halo mass simply due to redshift evolution of the reference density, even if its physical density profile remains constant over time. We estimate the amount of such pseudo-evolution of mass between z = 1 and 0 for halos identified in a large N-body simulation, and show that it accounts for almost the entire mass evolution of the majority of halos with M 200ρ-bar ≲ 10 12 h -1 M ☉ and can be a significant fraction of the apparent mass growth even for cluster-sized halos. We estimate the magnitude of the pseudo-evolution assuming that halo density profiles remain static in physical coordinates, and show that this simple model predicts the pseudo-evolution of halos identified in numerical simulations to good accuracy, albeit with significant scatter. We discuss the impact of pseudo-evolution on the evolution of the halo mass function and show that the non-evolution of the low-mass end of the halo mass function is the result of a fortuitous cancellation between pseudo-evolution and the absorption of small halos into larger hosts. We also show that the evolution of the low-mass end of the concentration-mass relation observed in simulations is almost entirely due to the pseudo-evolution of mass. Finally, we discuss the implications of our results for the interpretation of the evolution of various scaling relations between the observable properties of galaxies and galaxy clusters and their halo masses.

  1. UARS Halogen Occultation Experiment (HALOE) Level 2 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HALOE home page on the WWW is http://haloe.gats-inc.com/home/index.php The Halogen Occultation Experiment (HALOE) on NASA's Upper Atmosphere Research Satellite...

  2. Halo star streams in the solar neighborhood

    NARCIS (Netherlands)

    Kepley, Amanda A.; Morrison, Heather L.; Helmi, Amina; Kinman, T. D.; Van Duyne, Jeffrey; Martin, John C.; Harding, Paul; Norris, John E.; Freeman, Kenneth C.

    2007-01-01

    We have assembled a sample of halo stars in the solar neighborhood to look for halo substructure in velocity and angular momentum space. Our sample ( 231 stars) includes red giants, RR Lyrae variable stars, and red horizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than -1.0. It was

  3. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes

  4. THE UNORTHODOX ORBITS OF SUBSTRUCTURE HALOS

    NARCIS (Netherlands)

    Ludlow, Aaron D.; Navarro, Julio F.; Springel, Volker; Jenkins, Adrian; Frenk, Carlos S.; Helmi, Amina

    2009-01-01

    We use a suite of cosmological N-body simulations to study the properties of substructure halos (subhalos) in galaxy-sized cold dark matter halos. We extend prior work on the subject by considering the whole population of subhalos physically associated with the main system. These are defined as

  5. Efimov effect in 2-neutron halo nuclei

    Indian Academy of Sciences (India)

    This paper presents an overview of our theoretical investigations in search of Efimov states in light 2-neutron halo nuclei. The calculations have been carried out within a three-body formalism, assuming a compact core and two valence neutrons forming the halo. The calculations provide strong evidence for the occurrence ...

  6. Photon Doppler Velocimeter to Measure Entrained Additive Manufactured Bulk Metal Powders in Hot Subsonic and Supersonic Oxygen Gas

    Science.gov (United States)

    Tylka, Jonathan

    2016-01-01

    Parts produced by additive manufacturing, particularly selective laser melting (SLM), have been shown to silt metal particulate even after undergoing stringent precision aerospace cleaning processes (Lowrey 2016). As printed parts are used in oxygen systems with increased pressures, temperatures, and gas velocity, the risk of ignition by particle impact, the most common direct ignition source of metals in oxygen, substantially increases. The White Sands Test Facility (WSTF), in collaboration with Marshall Space Flight Center (MSFC), desires to test the ignitability of SLM metals by particle impact in heated oxygen. The existing test systems rely on gas velocity calculations to infer particle velocity in both subsonic and supersonic particle impact systems. Until now, it was not possible to directly measure particle velocity. To increase the fidelity of planned SLM ignition studies, it is necessary to validate that the Photon Doppler Velocimetry(PDV) test system can accurately measure particle velocity.

  7. Recent results from the chemistry of recoiling carbon and silicon atoms: The interplay between hot atom chemistry and gas kinetics

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Ferrieri, R.A.; Wolf, A.P.

    1990-01-01

    Recent results from the chemistry of recoiling carbon and silicon atoms illustrate the power of an experimental approach to the solution of complex mechanistic problems that combines the study of the reactions of recoiling atoms with conventional gas kinetic techniques. Included will be the reactions of 11 C atoms with anisole, addressing the question whether an aromatic pi-electron system can compete as a reactive site with carbon-hydrogen bonds

  8. Baryonic distributions in galaxy dark matter haloes - II. Final results

    Science.gov (United States)

    Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.

    2018-06-01

    Re-creating the observed diversity in the organization of baryonic mass within dark matter haloes represents a key challenge for galaxy formation models. To address the growth of galaxy discs in dark matter haloes, we have constrained the distribution of baryonic and non-baryonic matter in a statistically representative sample of 44 nearby galaxies defined from the Extended Disk Galaxy Exploration Science (EDGES) Survey. The gravitational potentials of each galaxy are traced using rotation curves derived from new and archival radio synthesis observations of neutral hydrogen (H I). The measured rotation curves are decomposed into baryonic and dark matter halo components using 3.6 μm images for the stellar content, the H I observations for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. The H I kinematics are supplemented with optical integral field spectroscopic (IFS) observations to measure the central ionized gas kinematics in 26 galaxies, including 13 galaxies that are presented for the first time in this paper. Distributions of baryonic-to-total mass ratios are determined from the rotation curve decompositions under different assumptions about the contribution of the stellar component and are compared to global and radial properties of the dominant stellar populations extracted from optical and near-infrared photometry. Galaxies are grouped into clusters of similar baryonic-to-total mass distributions to examine whether they also exhibit similar star and gas properties. The radial distribution of baryonic-to-total mass in a galaxy does not appear to correlate with any characteristics of its star formation history.

  9. Halo formation in three-dimensional bunches

    International Nuclear Information System (INIS)

    Gluckstern, R.L.; Fedotov, A.V.; Kurennoy, S.; Ryne, R.

    1998-01-01

    We have constructed, analytically and numerically, a class of self-consistent six-dimensional (6D) phase space stationary distributions. Stationary distributions allow us to study the halo development mechanism without it being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the formation of longitudinal and transverse halos in 3D axisymmetric beam bunches. We find that the longitudinal halo forms first for comparable longitudinal and transverse mismatches because the longitudinal tune depression is more severe than the transverse one for elongated bunches. Of particular importance is the result that, due to the coupling between longitudinal and transverse motion, a longitudinal or transverse halo is observed for a mismatch less than 10% if the mismatch in the other plane is large. copyright 1998 The American Physical Society

  10. Imbalance in the Local Galactic halo?

    International Nuclear Information System (INIS)

    Croswell, K.; Latham, D.W.; Carney, B.W.; North Carolina Univ., Chapel Hill)

    1987-01-01

    In a kinematically biased sample of 119 single halo stars, 65 percent of the stars are traveling away from the plane of the Galaxy. Halo spectroscopic binaries do not show this imbalance. Other kinematically biased halo surveys exhibit the same effect. Combining these samples with those of the authors' results in 223 halo stars, 63 percent of which are heading away from the plane of the Galaxy. The probability that the first result could be obtained from a symmetric w velocity distribution is 0.2 percent; the probability that the second result could be so obtained is 0.02 percent. Single halo stars traveling away from the disk appear to have a larger w velocity dispersion than those traveling toward it. Selection effects are analyzed and rejected as the cause of the observed asymmetry. Possible mechanisms for producing the imbalance are discussed, but each has serious difficulties accounting for the observations. 28 references

  11. Influence of Gas Atmosphere Dew Point on the Selective Oxidation and the Reactive Wetting During Hot Dip Galvanizing of CMnSi TRIP Steel

    Science.gov (United States)

    Cho, Lawrence; Lee, Seok Jae; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.

    2013-01-01

    The selective oxidation and reactive wetting of intercritically annealed Si-bearing CMnSi transformation-induced plasticity steels were investigated by high-resolution transmission electron microscopy. In a N2 + 10 pct H2 gas atmosphere with a dew point (DP) ranging from 213 K to 278 K (-60 °C to 5 °C), a continuous layer of selective oxides was formed on the surface. Annealing in a higher DP gas atmosphere resulted in a thinner layer of external oxidation and a greater depth of internal oxidation. The hot dipping was carried out in a Zn bath containing 0.22 mass pct Al, and the bath temperature was 733 K (460 °C). Coarse and discontinuous Fe2Al5- x Zn x grains and Fe-Zn intermetallics (ζ and δ) were observed at the steel/coating interface after the hot dip galvanizing (HDG) of panels were annealed in a low DP atmosphere 213 K (-60 °C). The Fe-Zn intermetallics were formed both in areas where the Fe2Al5- x Zn x inhibition layer had not been formed and on top of non-stoichiometric Fe-Al-Zn crystals. Poor wetting was observed on panels annealed in a low DP atmosphere because of the formation of thick film-type oxides on the surface. After annealing in higher DP gas atmospheres, i.e., 263 K and 278 K (-10 °C and 5 °C), a continuous and fine-grained Fe2Al5- x Zn x layer was formed. No Fe-Zn intermetallics were formed. The small grain size of the inhibition layer was attributed to the nucleation of the Fe2Al5- x Zn x grains on small ferrite sub-surface grains and the presence of granular surface oxides. A high DP atmosphere can therefore significantly contribute to the decrease of Zn-coating defects on CMnSi TRIP steels processed in HDG lines.

  12. High-precision multiwavelength eclipse photometry of the ultra-hot gas giant exoplanet WASP-103 b

    Science.gov (United States)

    Delrez, L.; Madhusudhan, N.; Lendl, M.; Gillon, M.; Anderson, D. R.; Neveu-VanMalle, M.; Bouchy, F.; Burdanov, A.; Collier-Cameron, A.; Demory, B.-O.; Hellier, C.; Jehin, E.; Magain, P.; Maxted, P. F. L.; Queloz, D.; Smalley, B.; Triaud, A. H. M. J.

    2018-02-01

    We present 16 occultation and three transit light curves for the ultra-short period hot Jupiter WASP-103b, in addition to five new radial velocity measurements. We combine these observations with archival data and perform a global analysis of the resulting extensive data set, accounting for the contamination from a nearby star. We detect the thermal emission of the planet in both the z΄ and KS bands, the measured occultation depths being 699±110 ppm (6.4σ) and 3567_{-350}^{+400} ppm (10.2σ), respectively. We use these two measurements, together with recently published HST/WFC3 data, to derive joint constraints on the properties of WASP-103b's dayside atmosphere. On one hand, we find that the z΄ band and WFC3 data are best fit by an isothermal atmosphere at 2900 K or an atmosphere with a low H2O abundance. On the other hand, we find an unexpected excess in the KS band measured flux compared to these models, which requires confirmation with additional observations before any interpretation can be given. From our global data analysis, we also derive a broad-band optical transmission spectrum that shows a minimum around 700 nm and increasing values towards both shorter and longer wavelengths. This is in agreement with a previous study based on a large fraction of the archival transit light curves used in our analysis. The unusual profile of this transmission spectrum is poorly matched by theoretical spectra and is not confirmed by more recent observations at higher spectral resolution. Additional data, in both emission and transmission, are required to better constrain the atmospheric properties of WASP-103b.

  13. Detection of a westward hotspot offset in the atmosphere of hot gas giant CoRoT-2b

    Science.gov (United States)

    Dang, Lisa; Cowan, Nicolas B.; Schwartz, Joel C.; Rauscher, Emily; Zhang, Michael; Knutson, Heather A.; Line, Michael; Dobbs-Dixon, Ian; Deming, Drake; Sundararajan, Sudarsan; Fortney, Jonathan J.; Zhao, Ming

    2018-03-01

    Short-period planets exhibit day-night temperature contrasts of hundreds to thousands of kelvin. They also exhibit eastward hotspot offsets whereby the hottest region on the planet is east of the substellar point1; this has been widely interpreted as advection of heat due to eastward winds2. We present thermal phase observations of the hot Jupiter CoRoT-2b obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. These measurements show the most robust detection to date of a westward hotspot offset of 23 ± 4°, in contrast with the nine other planets with equivalent measurements3-10. The peculiar infrared flux map of CoRoT-2b may result from westward winds due to non-synchronous rotation11 or magnetic effects12,13, or partial cloud coverage, that obscure the emergent flux from the planet's eastern hemisphere14-17. Non-synchronous rotation and magnetic effects may also explain the planet's anomalously large radius12,18. On the other hand, partial cloud coverage could explain the featureless dayside emission spectrum of the planet19,20. If CoRoT-2b is not tidally locked, then it means that our understanding of star-planet tidal interaction is incomplete. If the westward offset is due to magnetic effects, our result represents an opportunity to study an exoplanet's magnetic field. If it has eastern clouds, then it means that a greater understanding of large-scale circulation on tidally locked planets is required.

  14. "Hot spots" of N and C impact nitric oxide, nitrous oxide and nitrogen gas emissions from a UK grassland soil.

    Science.gov (United States)

    Loick, Nadine; Dixon, Elizabeth; Abalos, Diego; Vallejo, Antonio; Matthews, Peter; McGeough, Karen; Watson, Catherine; Baggs, Elizabeth M; Cardenas, Laura M

    2017-11-01

    Agricultural soils are a major source of nitric- (NO) and nitrous oxide (N 2 O), which are produced and consumed by biotic and abiotic soil processes. The dominant sources of NO and N 2 O are microbial nitrification and denitrification, and emissions of NO and N 2 O generally increase after fertiliser application. The present study investigated the impact of N-source distribution on emissions of NO and N 2 O from soil and the significance of denitrification, rather than nitrification, as a source of NO emissions. To eliminate spatial variability and changing environmental factors which impact processes and results, the experiment was conducted under highly controlled conditions. A laboratory incubation system (DENIS) was used, allowing simultaneous measurement of three N-gases (NO, N 2 O, N 2 ) emitted from a repacked soil core, which was combined with 15 N-enrichment isotopic techniques to determine the source of N emissions. It was found that the areal distribution of N and C significantly affected the quantity and timing of gaseous emissions and 15 N-analysis showed that N 2 O emissions resulted almost exclusively from the added amendments. Localised higher concentrations, so-called hot spots, resulted in a delay in N 2 O and N 2 emissions causing a longer residence time of the applied N-source in the soil, therefore minimising NO emissions while at the same time being potentially advantageous for plant-uptake of nutrients. If such effects are also observed for a wider range of soils and conditions, then this will have major implications for fertiliser application protocols to minimise gaseous N emissions while maintaining fertilisation efficiency.

  15. Rhapsody-G simulations I: the cool cores, hot gas and stellar content of massive galaxy clusters

    International Nuclear Information System (INIS)

    Hahn, Oliver; Martizzi, Davide; Wu, Hao-Yi

    2017-01-01

    We present the rhapsody-g suite of cosmological hydrodynamic zoom simulations of 10 massive galaxy clusters at the M vir ~10 15 M ⊙ scale. These simulations include cooling and subresolution models for star formation and stellar and supermassive black hole feedback. The sample is selected to capture the whole gamut of assembly histories that produce clusters of similar final mass. We present an overview of the successes and shortcomings of such simulations in reproducing both the stellar properties of galaxies as well as properties of the hot plasma in clusters. In our simulations, a long-lived cool-core/non-cool-core dichotomy arises naturally, and the emergence of non-cool cores is related to low angular momentum major mergers. Nevertheless, the cool-core clusters exhibit a low central entropy compared to observations, which cannot be alleviated by thermal active galactic nuclei feedback. For cluster scaling relations, we find that the simulations match well the M 500 –Y 500 scaling of Planck Sunyaev–Zeldovich clusters but deviate somewhat from the observed X-ray luminosity and temperature scaling relations in the sense of being slightly too bright and too cool at fixed mass, respectively. Stars are produced at an efficiency consistent with abundance-matching constraints and central galaxies have star formation rates consistent with recent observations. In conclusion, while our simulations thus match various key properties remarkably well, we conclude that the shortcomings strongly suggest an important role for non-thermal processes (through feedback or otherwise) or thermal conduction in shaping the intracluster medium.

  16. X-ray surveys - Weighting the dark matter haloes of X-ray AGN: towards a physical description of the accretion history of the Universe

    Science.gov (United States)

    Georgakakis, Antonis; Mountrichas, G.; Fanidakis, N.; Finoguenov, A.; Aegis Collaboration

    2012-09-01

    The masses of the dark matter haloes in which AGN live is powerful diagnostic of the conditions under which supermassive black holes form and evolve across cosmic time. A new clustering estimation method will be presented which requires spectroscopy only for the AGN and uses photometric redshift probability density functions for galaxies to determine the projected real-space AGN/galaxy cross-correlation function. Our method is superior to traditional AGN clustering estimators (e.g. auto-correlation function) because (i) random errors are significantly suppressed when counting AGN/galaxy pairs, (ii) the impact of sample variance is minimized, and (iii) the requirements for spectroscopy are minimal; only spectroscopic redshift measurements for the AGN are needed. This method is applied to the combined AEGIS, COSMOS and ECDFS fields to infer the bias and dark matter halo mass of moderate luminosity (Lx~10^43 erg/s/cm^2) X-ray AGN at z~1 (total of 400). Predictions from the GALFORM semi-analytic model will be compared to the observations to show that a combination of hot and cold-gas accretion (the latter triggered by disk instabilities in spirals rather than mergers) reproduce well the clustering properties of X-ray AGN over a range of redshifts and luminosities.

  17. DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Michael J.; Harris, Gretchen L. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Harris, William E., E-mail: mjhudson@uwaterloo.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2014-05-20

    We combine a new, comprehensive database for globular cluster populations in all types of galaxies with a new calibration of galaxy halo masses based entirely on weak lensing. Correlating these two sets of data, we find that the mass ratio η ≡ M {sub GCS}/M {sub h} (total mass in globular clusters, divided by halo mass) is essentially constant at (η) ∼ 4 × 10{sup –5}, strongly confirming earlier suggestions in the literature. Globular clusters are the only known stellar population that formed in essentially direct proportion to host galaxy halo mass. The intrinsic scatter in η appears to be at most 0.2 dex; we argue that some of this scatter is due to differing degrees of tidal stripping of the globular cluster systems between central and satellite galaxies. We suggest that this correlation can be understood if most globular clusters form at very early stages in galaxy evolution, largely avoiding the feedback processes that inhibited the bulk of field-star formation in their host galaxies. The actual mean value of η also suggests that about one-fourth of the initial gas mass present in protogalaxies collected into giant molecular clouds large enough to form massive, dense star clusters. Finally, our calibration of (η) indicates that the halo masses of the Milky Way and M31 are (1.2 ± 0.5) × 10{sup 12} M {sub ☉} and (3.9 ± 1.8) × 10{sup 12} M {sub ☉}, respectively.

  18. Halo assembly bias and the tidal anisotropy of the local halo environment

    Science.gov (United States)

    Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.

    2018-05-01

    We study the role of the local tidal environment in determining the assembly bias of dark matter haloes. Previous results suggest that the anisotropy of a halo's environment (i.e. whether it lies in a filament or in a more isotropic region) can play a significant role in determining the eventual mass and age of the halo. We statistically isolate this effect, using correlations between the large-scale and small-scale environments of simulated haloes at z = 0 with masses between 1011.6 ≲ (m/h-1 M⊙) ≲ 1014.9. We probe the large-scale environment, using a novel halo-by-halo estimator of linear bias. For the small-scale environment, we identify a variable αR that captures the tidal anisotropy in a region of radius R = 4R200b around the halo and correlates strongly with halo bias at fixed mass. Segregating haloes by αR reveals two distinct populations. Haloes in highly isotropic local environments (αR ≲ 0.2) behave as expected from the simplest, spherically averaged analytical models of structure formation, showing a negative correlation between their concentration and large-scale bias at all masses. In contrast, haloes in anisotropic, filament-like environments (αR ≳ 0.5) tend to show a positive correlation between bias and concentration at any mass. Our multiscale analysis cleanly demonstrates how the overall assembly bias trend across halo mass emerges as an average over these different halo populations, and provides valuable insights towards building analytical models that correctly incorporate assembly bias. We also discuss potential implications for the nature and detectability of galaxy assembly bias.

  19. Dark matter haloes: a multistream view

    Science.gov (United States)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-09-01

    Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.

  20. Effective field theory description of halo nuclei

    Science.gov (United States)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.

    2017-10-01

    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  1. Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories

    International Nuclear Information System (INIS)

    González-Samaniego, A.; Avila-Reese, V.; Rodríguez-Puebla, A.; Valenzuela, O.; Colín, P.

    2014-01-01

    We present zoom-in N-body/hydrodynamics resimulations of dwarf galaxies formed in isolated cold dark matter (CDM) halos with the same virial mass (M v ≈ 2.5 × 10 10 M ☉ ) at redshift z = 0. Our goals are to (1) study the mass assembly histories (MAHs) of the halo, stellar, and gaseous components; and (2) explore the effects of the halo MAHs on the stellar/baryonic assembly of simulated dwarfs. Overall, the dwarfs are roughly consistent with observations. More specific results include: (1) the stellar-to-halo mass ratio remains roughly constant since z ∼ 1, i.e., the stellar MAHs closely follow halo MAHs. (2) The evolution of the galaxy gas fractions, f g , are episodic, showing that the supernova-driven outflows play an important role in regulating f g —and hence, the star formation rate (SFR)—however, in most cases, a large fraction of the gas is ejected from the halo. (3) The star formation histories are episodic with changes in the SFRs, measured every 100 Myr, of factors of 2-10 on average. (4) Although the dwarfs formed in late assembled halos show more extended SF histories, their z = 0 specific SFRs are still below observations. (5) The inclusion of baryons most of the time reduces the virial mass by 10%-20% with respect to pure N-body simulations. Our results suggest that rather than increasing the strength of the supernova-driven outflows, processes that reduce the star formation efficiency could help to solve the potential issues faced by CDM-based simulations of dwarfs, such as low values of the specific SFR and high stellar masses.

  2. Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories

    Energy Technology Data Exchange (ETDEWEB)

    González-Samaniego, A.; Avila-Reese, V.; Rodríguez-Puebla, A.; Valenzuela, O. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510 México D. F. (Mexico); Colín, P. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, A.P. 72-3 (Xangari), Morelia, Michoacán 58089 (Mexico)

    2014-04-10

    We present zoom-in N-body/hydrodynamics resimulations of dwarf galaxies formed in isolated cold dark matter (CDM) halos with the same virial mass (M{sub v} ≈ 2.5 × 10{sup 10} M {sub ☉}) at redshift z = 0. Our goals are to (1) study the mass assembly histories (MAHs) of the halo, stellar, and gaseous components; and (2) explore the effects of the halo MAHs on the stellar/baryonic assembly of simulated dwarfs. Overall, the dwarfs are roughly consistent with observations. More specific results include: (1) the stellar-to-halo mass ratio remains roughly constant since z ∼ 1, i.e., the stellar MAHs closely follow halo MAHs. (2) The evolution of the galaxy gas fractions, f{sub g} , are episodic, showing that the supernova-driven outflows play an important role in regulating f{sub g} —and hence, the star formation rate (SFR)—however, in most cases, a large fraction of the gas is ejected from the halo. (3) The star formation histories are episodic with changes in the SFRs, measured every 100 Myr, of factors of 2-10 on average. (4) Although the dwarfs formed in late assembled halos show more extended SF histories, their z = 0 specific SFRs are still below observations. (5) The inclusion of baryons most of the time reduces the virial mass by 10%-20% with respect to pure N-body simulations. Our results suggest that rather than increasing the strength of the supernova-driven outflows, processes that reduce the star formation efficiency could help to solve the potential issues faced by CDM-based simulations of dwarfs, such as low values of the specific SFR and high stellar masses.

  3. Halo carbon stars associated with dwarf spheroidal galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Bergh, S.; Lafontaine, A.

    1984-11-01

    Star counts have been performed for rings centered on the carbon star at 1 69 degrees, b + 55 degrees at a distance of 60 kpc. The counts were performed in order to determine whether halo carbon stars might be situated in dwarf spheroidal galaxies which are too star-poor to have been recognized as galaxies. The counts were made on a IIIa-J plate baked in forming gas that was exposed for 40 minutes through a 2C filter with the Palomar 1.2-m Schmidt telescope. It is shown that the carbon star is not situated in a dwarf spheroidal galaxy brighter than M(V) 5.7.

  4. Hydrogen sulfide removal from hot coal gas by various mesoporous silica supported Mn{sub 2}O{sub 3} sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.F.; Liu, B.S., E-mail: bingsiliu@tju.edu.cn; Wang, F.; Wang, W.S.; Xia, C.; Zheng, S.; Amin, R.

    2014-09-15

    Graphical abstract: - Highlights: • Mn{sub 2}O{sub 3}/KIT-1 presented the best desulfurization performance at 600–850 °C. • High sulfur capacity of Mn{sub 2}O{sub 3}/KIT-1 correlated closely with 3-D channel of KIT-1. • Desulfurization character depended strongly on framework structure of sorbents. • High steam content suppressed greatly the occurrence of sulfidation reaction. - Abstract: A series of 50 wt% Mn{sub 2}O{sub 3} sorbents was prepared using various mesoporous silica, MCM-41, HMS, and KIT-1 as support. The influence of textural parameters of mesoporous silica, especially type of channel on the desulfurization performance of Mn{sub 2}O{sub 3} sorbents was investigated at 600–850 °C using hot coal gas containing 0.33 vol.% H{sub 2}S. The fresh and used sorbents were characterized by means of N{sub 2}-adsorption, x-ray diffraction (XRD), high resolution transmission microscopy (HRTEM) and H{sub 2} temperature- programmed reduction (H{sub 2}-TPR) techniques. The results confirmed that the manganese oxide was dispersed highly in regular pore channel of the mesoporous supports due to high surface area. Compared with the Mn{sub 2}O{sub 3}/diatomite, all mesoporous silica supported Mn{sub 2}O{sub 3} sorbents exhibited high breakthrough sulfur capacity and a sharp deactivation rate after the breakthrough point. Compared to Mn{sub 2}O{sub 3}/MCM-41 and Mn{sub 2}O{sub 3}/HMS sorbent, the Mn{sub 2}O{sub 3}/KIT-1 showed better desulfurization performance because of the 3D wormhole-like channel. The high sulfur capacity of the Mn{sub 2}O{sub 3}/KIT-1 sorbent was maintained during the eight consecutive desulfurization-regeneration cycles. The Mn{sub 2}O{sub 3}/KIT-1 still presented high desulfurization activity when hot coal gas contained low steam (<5%)

  5. Isospin quantum number and structure of the excited states in halo nuclei. Halo-isomers

    International Nuclear Information System (INIS)

    Izosimov, I.N.

    2015-01-01

    It has been shown that isobar-analog (IAS), double isobar-analog (DIAS), configuration (CS), and double configuration states (DCS) can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo-like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in 6-8 Li, 8-10 Be, 8,10,11 B, 10-14 C, 13-17 N, 15-17,19 O, and 17 F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure, but the excited state may have one.

  6. Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico

    Science.gov (United States)

    Peiffer, L.; Bernard-Romero, R.; Mazot, A.; Taran, Y. A.; Guevara, M.; Santoyo, E.

    2014-09-01

    The Acoculco caldera has been recognized by the Mexican Federal Electricity Company (CFE) as a Hot Dry Rock Geothermal System (HDR) and could be a potential candidate for developing an Enhanced Geothermal System (EGS). Apart from hydrothermally altered rocks, geothermal manifestations within the Acoculco caldera are scarce. Close to ambient temperature bubbling springs and soil degassing are reported inside the caldera while a few springs discharge warm water on the periphery of the caldera. In this study, we infer the origin of fluids and we characterize for the first time the soil degassing dynamic. Chemical and isotopic (δ18O-δD) analyses of spring waters indicate a meteoric origin and the dissolution of CO2 and H2S gases, while gas chemical and isotopic compositions (N2/He, 3He/4He, 13C, 15N) reveal a magmatic contribution with both MORB- and arc-type signatures which could be explained by an extension regime created by local and regional fault systems. Gas geothermometry results are in agreement with temperature measured during well drilling (260 °C-300 °C). Absence of well-developed water reservoir at depth impedes re-equilibration of gases upon surface. A multi-gas flux survey including CO2, CH4 and H2S measurements was performed within the caldera. Using the graphical statistical analysis (GSA) approach, CO2 flux measurements were classified in two populations. Population A, representing 95% of measured fluxes is characterized by low values (mean: 18 g m- 2 day- 1) while the remaining 5% fluxes belonging to Population B are much higher (mean: 5543 g m- 2 day- 1). This low degassing rate probably reflects the low permeability of the system, a consequence of the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks. An attempt to interpret the origin and transport mechanism of these fluxes is proposed by means of flux ratios as well as by numerical modeling. Measurements with CO2/CH4 and CO2/H2S flux ratios similar to mass ratios

  7. Data report of ROSA/LSTF experiment SB-HL-12. 1% hot leg break LOCA with SG depressurization and gas inflow

    International Nuclear Information System (INIS)

    Takeda, Takeshi

    2016-01-01

    An experiment SB-HL-12 was conducted on February 24, 1998 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment SB-HL-12 simulated a 1% hot leg small-break loss-of-coolant accident in a pressurized water reactor under assumptions of total failure of high pressure injection system and non-condensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of emergency core cooling system (ECCS). Steam generator (SG) secondary-side depressurization by fully opening the relief valves in both SGs as an accident management (AM) action was initiated immediately after maximum surface temperature of simulated fuel rod reached 600 K. Auxiliary feedwater injection into the secondary-side of both SGs was started immediately after the initiation of AM action. After the onset of AM action due to first core uncovery by core boil-off, the primary pressure decreased following the SG secondary-side pressure, causing core mixture level swell. The fuel rod surface temperature then increased up to 635 K. Second core uncovery by core boil-off took place before loop seal clearing (LSC) induced by steam condensation on ACC coolant injected into cold legs. The core liquid level recovered rapidly after the LSC. The fuel rod surface temperature then increased up to 696 K. The pressure difference became larger between the primary and SG secondary sides after the ACC tanks started to discharge nitrogen gas, which resulted in no actuation of LPI system of ECCS during the experiment. Third core uncovery by core boil-off occurred during the reflux condensation in the SG U-tubes under nitrogen gas inflow. The core power was automatically decreased by the LSTF core protection system when the maximum fuel rod surface temperature exceeded 908 K. The obtained data would be useful to define the conditions for counterpart testing of other integral test facilities to address scaling problems through thermal

  8. Is ram-pressure stripping an efficient mechanism to remove gas in galaxies?

    Science.gov (United States)

    Quilis, Vicent; Planelles, Susana; Ricciardelli, Elena

    2017-07-01

    We study how the gas in a sample of galaxies (M* > 109 M⊙) in clusters, obtained in a cosmological simulation, is affected by the interaction with the intracluster medium (ICM). The dynamical state of each elemental parcel of gas is studied using the total energy. At z ˜ 2, the galaxies in the simulation are evenly distributed within clusters, later moving towards more central locations. In this process, gas from the ICM is accreted and mixed with the gas in the galactic halo. Simultaneously, the interaction with the environment removes part of the gas. A characteristic stellar mass around M* ˜ 1010 M⊙ appears as a threshold marking two differentiated behaviours. Below this mass, galaxies are located at the external part of clusters and have eccentric orbits. The effect of the interaction with the environment is marginal. Above, galaxies are mainly located at the inner part of clusters with mostly radial orbits with low velocities. In these massive systems, part of the gas, strongly correlated with the stellar mass of the galaxy, is removed. The amount of removed gas is subdominant compared with the quantity of retained gas, which is continuously influenced by the hot gas coming from the ICM. The analysis of individual galaxies reveals the existence of a complex pattern of flows, turbulence and a constant fuelling of gas to the hot corona from the ICM, which could mean that the global effect of the interaction of galaxies with their environment is substantially less dramatic than previously expected.

  9. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  10. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  11. DISCOVERY OF A GIANT RADIO HALO IN A NEW PLANCK GALAXY CLUSTER PLCKG171.9-40.7

    Energy Technology Data Exchange (ETDEWEB)

    Giacintucci, Simona [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Kale, Ruta; Venturi, Tiziana [INAF-Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Wik, Daniel R.; Markevitch, Maxim, E-mail: simona@astro.umd.edu [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-03-20

    We report the discovery of a giant radio halo in a new, hot, X-ray luminous galaxy cluster recently found by Planck, PLCKG171.9-40.7. The radio halo was found using Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz, and in the 1.4 GHz data from an NRAO Very Large Array Sky Survey pointing that we have reanalyzed. The diffuse radio emission is coincident with the cluster X-ray emission, and has an extent of {approx}1 Mpc and a radio power of {approx}5 Multiplication-Sign 10{sup 24} W Hz{sup -1} at 1.4 GHz. Its integrated radio spectrum has a slope of {alpha} Almost-Equal-To 1.8 between 235 MHz and 1.4 GHz, steeper than that of a typical giant halo. The analysis of the archival XMM-Newton X-ray data shows that the cluster is hot ({approx}10 keV) and disturbed, consistent with X-ray-selected clusters hosting radio halos. This is the first giant radio halo discovered in one of the new clusters found by Planck.

  12. Remapping simulated halo catalogues in redshift space

    OpenAIRE

    Mead, Alexander; Peacock, John

    2014-01-01

    We discuss the extension to redshift space of a rescaling algorithm, designed to alter the effective cosmology of a pre-existing simulated particle distribution or catalogue of dark matter haloes. The rescaling approach was initially developed by Angulo & White and was adapted and applied to halo catalogues in real space in our previous work. This algorithm requires no information other than the initial and target cosmological parameters, and it contains no tuned parameters. It is shown here ...

  13. On physical scales of dark matter halos

    International Nuclear Information System (INIS)

    Zemp, Marcel

    2014-01-01

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

  14. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  15. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jounghun [Astronomy Program, Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747 (Korea, Republic of); Zhao, Gong-Bo [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China); Li, Baojiu [Institute of Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Koyama, Kazuya, E-mail: jounghun@astro.snu.ac.kr [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  16. Herschel Observations of EXtra-Ordinary Sources: H2S as a Probe of Dense Gas and Possibly Hidden Luminosity Toward the Orion KL Hot Core

    Science.gov (United States)

    Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Black, J. H.; Blake, G. A.; Kleshcheva, M.

    2014-02-01

    We present Herschel/HIFI observations of the light hydride H2S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the Herschel Observations of EXtra-Ordinary Sources GT (guaranteed time) key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H2 32S, H2 34S, and H2 33S, respectively. We only analyze emission from the so-called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H2S follow straight lines given the uncertainties and yield T rot = 141 ± 12 K. This indicates H2S is in local thermodynamic equilibrium and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E up >~ 1000 K) are likely populated primarily by radiation pumping. We derive a column density, N tot(H2 32S) = 9.5 ± 1.9 × 1017 cm-2, gas kinetic temperature, T kin = 120+/- ^{13}_{10} K, and constrain the H2 volume density, n_H_2 >~ 9 × 10 7 cm-3, for the H2S emitting gas. These results point to an H2S origin in markedly dense, heavily embedded gas, possibly in close proximity to a hidden self-luminous source (or sources), which are conceivably responsible for Orion KL's high luminosity. We also derive an H2S ortho/para ratio of 1.7 ± 0.8 and set an upper limit for HDS/H2S of <4.9 × 10 -3. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  17. GALAXIES IN X-RAY GROUPS. II. A WEAK LENSING STUDY OF HALO CENTERING

    Energy Technology Data Exchange (ETDEWEB)

    George, Matthew R.; Ma, Chung-Pei [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Leauthaud, Alexie; Bundy, Kevin [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Finoguenov, Alexis [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Rykoff, Eli S. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Tinker, Jeremy L. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Massey, Richard [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Mei, Simona, E-mail: mgeorge@astro.berkeley.edu [Bureau des Galaxies, Etoiles, Physique, Instrumentation (GEPI), University of Paris Denis Diderot, F-75205 Paris Cedex 13 (France)

    2012-09-20

    Locating the centers of dark matter halos is critical for understanding the mass profiles of halos, as well as the formation and evolution of the massive galaxies that they host. The task is observationally challenging because we cannot observe halos directly, and tracers such as bright galaxies or X-ray emission from hot plasma are imperfect. In this paper, we quantify the consequences of miscentering on the weak lensing signal from a sample of 129 X-ray-selected galaxy groups in the COSMOS field with redshifts 0 < z < 1 and halo masses in the range 10{sup 13}-10{sup 14} M{sub Sun }. By measuring the stacked lensing signal around eight different candidate centers (such as the brightest member galaxy, the mean position of all member galaxies, or the X-ray centroid), we determine which candidates best trace the center of mass in halos. In this sample of groups, we find that massive galaxies near the X-ray centroids trace the center of mass to {approx}< 75 kpc, while the X-ray position and centroids based on the mean position of member galaxies have larger offsets primarily due to the statistical uncertainties in their positions (typically {approx}50-150 kpc). Approximately 30% of groups in our sample have ambiguous centers with multiple bright or massive galaxies, and some of these groups show disturbed mass profiles that are not well fit by standard models, suggesting that they are merging systems. We find that halo mass estimates from stacked weak lensing can be biased low by 5%-30% if inaccurate centers are used and the issue of miscentering is not addressed.

  18. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    International Nuclear Information System (INIS)

    Stewart, K.

    2009-01-01

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z ∼ 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M DM ∼ 10 11 - 10 13 M · . These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M star ∼ 10 10 M · (M DM ∼ 10 11.5 M · ) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M star ∼ 10 11 M · (M DM ∼ 10 13 M · the fraction of baryons amassed in mergers is even higher, ∼ 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a limit on the fraction of a galaxy's cold baryons that can originate in cold flows or from hot halo cooling

  19. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R.; Bullock, James S.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC; Maller, Ariyeh H.; /New York City Coll. Tech.

    2009-08-03

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z {approx} 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M{sub DM} {approx} 10{sup 11} - 10{sup 13} M{sub {circle_dot}}. These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M{sub star} {approx} 10{sup 10} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 11.5} M{sub {circle_dot}}) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M{sub star} {approx} 10{sup 11} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 13} M{sub {circle_dot}} the fraction of baryons amassed in mergers is even higher, {approx} 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a

  20. Revealing the Cosmic Web-dependent Halo Bias

    Science.gov (United States)

    Yang, Xiaohu; Zhang, Youcai; Lu, Tianhuan; Wang, Huiyuan; Shi, Feng; Tweed, Dylan; Li, Shijie; Luo, Wentao; Lu, Yi; Yang, Lei

    2017-10-01

    Halo bias is the one of the key ingredients of the halo models. It was shown at a given redshift to be only dependent, to the first order, on the halo mass. In this study, four types of cosmic web environments—clusters, filaments, sheets, and voids—are defined within a state-of-the-art high-resolution N-body simulation. Within these environments, we use both halo-dark matter cross correlation and halo-halo autocorrelation functions to probe the clustering properties of halos. The nature of the halo bias differs strongly between the four different cosmic web environments described here. With respect to the overall population, halos in clusters have significantly lower biases in the {10}11.0˜ {10}13.5 {h}-1 {M}⊙ mass range. In other environments, however, halos show extremely enhanced biases up to a factor 10 in voids for halos of mass ˜ {10}12.0 {h}-1 {M}⊙ . Such a strong cosmic web environment dependence in the halo bias may play an important role in future cosmological and galaxy formation studies. Within this cosmic web framework, the age dependency of halo bias is found to be only significant in clusters and filaments for relatively small halos ≲ {10}12.5 {h}-1 {M}⊙ .

  1. GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY

    International Nuclear Information System (INIS)

    Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi; Busha, Michael T.; Klypin, Anatoly A.; Primack, Joel R.

    2013-01-01

    We present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consistency of halo properties (mass, position, and velocity) across time steps. Our algorithm has demonstrated the ability to improve both the completeness (through detecting and inserting otherwise missing halos) and purity (through detecting and removing spurious objects) of both merger trees and halo catalogs. In addition, our method is able to robustly measure the self-consistency of halo finders; it is the first to directly measure the uncertainties in halo positions, halo velocities, and the halo mass function for a given halo finder based on consistency between snapshots in cosmological simulations. We use this algorithm to generate merger trees for two large simulations (Bolshoi and Consuelo) and evaluate two halo finders (ROCKSTAR and BDM). We find that both the ROCKSTAR and BDM halo finders track halos extremely well; in both, the number of halos which do not have physically consistent progenitors is at the 1%-2% level across all halo masses. Our code is publicly available at http://code.google.com/p/consistent-trees. Our trees and catalogs are publicly available at http://hipacc.ucsc.edu/Bolshoi/.

  2. Halo Intrinsic Alignment: Dependence on Mass, Formation Time, and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Qianli; Kang, Xi; Wang, Peng; Luo, Yu [Purple Mountain Observatory, the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China); Yang, Xiaohu; Jing, Yipeng [Center for Astronomy and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Huiyuan [Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Mo, Houjun, E-mail: kangxi@pmo.ac.cn [Astronomy Department and Center for Astrophysics, Tsinghua University, Beijing 10084 (China)

    2017-10-10

    In this paper we use high-resolution cosmological simulations to study halo intrinsic alignment and its dependence on mass, formation time, and large-scale environment. In agreement with previous studies using N -body simulations, it is found that massive halos have stronger alignment. For the first time, we find that for a given halo mass older halos have stronger alignment and halos in cluster regions also have stronger alignment than those in filaments. To model these dependencies, we extend the linear alignment model with inclusion of halo bias and find that the halo alignment with its mass and formation time dependence can be explained by halo bias. However, the model cannot account for the environment dependence, as it is found that halo bias is lower in clusters and higher in filaments. Our results suggest that halo bias and environment are independent factors in determining halo alignment. We also study the halo alignment correlation function and find that halos are strongly clustered along their major axes and less clustered along the minor axes. The correlated halo alignment can extend to scales as large as 100 h {sup −1} Mpc, where its feature is mainly driven by the baryon acoustic oscillation effect.

  3. Self-consistent beam halo studies ampersand halo diagnostic development in a continuous linear focusing channel

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1994-01-01

    Beam halos are formed via self-consistent motion of the beam particles. Interactions of single particles with time-varying density distributions of other particles are a major source of halo. Aspects of these interactions are studied for an initially equilibrium distribution in a radial, linear, continuous focusing system. When there is a mismatch, it is shown that in the self-consistent system, there is a threshold in space-charge and mismatch, above which a halo is formed that extends to ∼1.5 times the initial maximum mismatch radius. Tools are sought for characterizing the halo dynamics. Testing the particles against the width of the mismatch driving resonance is useful for finding a conservative estimate of the threshold. The exit, entering and transition times, and the time evolution of the halo, are also explored using this technique. Extension to higher dimensions is briefly discussed

  4. THE H I MASS DENSITY IN GALACTIC HALOS, WINDS, AND COLD ACCRETION AS TRACED BY Mg II ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia); Churchill, Christopher W., E-mail: gkacprzak@astro.swin.edu.au, E-mail: cwc@nmsu.edu [New Mexico State University, Las Cruces, NM 88003 (United States)

    2011-12-20

    It is well established that Mg II absorption lines detected in background quasar spectra arise from gas structures associated with foreground galaxies. The degree to which galaxy evolution is driven by the gas cycling through halos is highly uncertain because their gas mass density is poorly constrained. Fitting the Mg II equivalent width (W) distribution with a Schechter function and applying the N(H I)-W correlation of Menard and Chelouche, we computed {Omega}(H I){sub MgII} {identical_to} {Omega}(H I){sub halo} = 1.41{sup +0.75}{sub -0.44} Multiplication-Sign 10{sup -4} for 0.4 {<=} z {<=} 1.4. We exclude damped Ly{alpha}'s (DLAs) from our calculations so that {Omega}(H I){sub halo} comprises accreting and/or outflowing halo gas not locked up in cold neutral clouds. We deduce that the cosmic H I gas mass density fraction in galactic halos traced by Mg II absorption is {Omega}(H I){sub halo}/{Omega}(H I){sub DLA} {approx_equal} 15% and {Omega}(H I){sub halo}/{Omega}{sub b} {approx_equal} 0.3%. Citing several lines of evidence, we propose that infall/accretion material is sampled by small W whereas outflow/winds are sampled by large W, and find that {Omega}(H I){sub infall} is consistent with {Omega}(H I){sub outflow} for bifurcation at W = 1.23{sup +0.15}{sub -0.28} Angstrom-Sign ; cold accretion would then comprise no more than {approx}7% of the total H I mass density. We discuss evidence that (1) the total H I mass cycling through halos remains fairly constant with cosmic time and that the accretion of H I gas sustains galaxy winds, and (2) evolution in the cosmic star formation rate depends primarily on the rate at which cool H I gas cycles through halos.

  5. Smooth halos in the cosmic web

    International Nuclear Information System (INIS)

    Gaite, José

    2015-01-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness

  6. MAPPING THE GALACTIC HALO. VIII. QUANTIFYING SUBSTRUCTURE

    International Nuclear Information System (INIS)

    Starkenburg, Else; Helmi, Amina; Van Woerden, Hugo; Morrison, Heather L.; Harding, Paul; Frey, Lucy; Oravetz, Dan; Mateo, Mario; Dohm-Palmer, R. C.; Olszewski, Edward W.; Sivarani, Thirupathi; Norris, John E.; Freeman, Kenneth C.; Shectman, Stephen A.

    2009-01-01

    We have measured the amount of kinematic substructure in the Galactic halo using the final data set from the Spaghetti project, a pencil-beam high-latitude sky survey. Our sample contains 101 photometrically selected and spectroscopically confirmed giants with accurate distance, radial velocity, and metallicity information. We have developed a new clustering estimator: the '4distance' measure, which when applied to our data set leads to the identification of one group and seven pairs of clumped stars. The group, with six members, can confidently be matched to tidal debris of the Sagittarius dwarf galaxy. Two pairs match the properties of known Virgo structures. Using models of the disruption of Sagittarius in Galactic potentials with different degrees of dark halo flattening, we show that this favors a spherical or prolate halo shape, as demonstrated by Newberg et al. using the Sloan Digital Sky Survey data. One additional pair can be linked to older Sagittarius debris. We find that 20% of the stars in the Spaghetti data set are in substructures. From comparison with random data sets, we derive a very conservative lower limit of 10% to the amount of substructure in the halo. However, comparison to numerical simulations shows that our results are also consistent with a halo entirely built up from disrupted satellites, provided that the dominating features are relatively broad due to early merging or relatively heavy progenitor satellites.

  7. Smooth halos in the cosmic web

    Energy Technology Data Exchange (ETDEWEB)

    Gaite, José, E-mail: jose.gaite@upm.es [Physics Dept., ETSIAE, IDR, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, E-28040 Madrid (Spain)

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  8. Sanitary hot water; Eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Cegibat, the information-recommendation agency of Gaz de France for building engineering professionals, has organized this conference meeting on sanitary hot water to present the solutions proposed by Gaz de France to meet its clients requirements in terms of water quality, comfort, energy conservation and respect of the environment: quantitative aspects of the hot water needs, qualitative aspects, presentation of the Dolce Vita offer for residential buildings, gas water heaters and boilers, combined solar-thermal/natural gas solutions, key-specifications of hot water distribution systems, testimony: implementation of a gas hot water reservoir and two accumulation boilers in an apartment building for young workers. (J.S.)

  9. Halo mass dependence of H I and O VI absorption: evidence for differential kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Nigel L.; Churchill, Christopher W.; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian [New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia); Charlton, Jane; Muzahid, Sowgat [The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-09-10

    We studied a sample of 14 galaxies (0.1 < z < 0.7) using HST/WFPC2 imaging and high-resolution HST/COS or HST/STIS quasar spectroscopy of Lyα, Lyβ, and O VI λλ1031, 1037 absorption. The galaxies, having 10.8 ≤ log (M {sub h}/M {sub ☉}) ≤ 12.2, lie within D = 300 kpc of quasar sightlines, probing out to D/R {sub vir} = 3. When the full range of M {sub h} and D/R {sub vir} of the sample are examined, ∼40% of the H I absorbing clouds can be inferred to be escaping their host halo. The fraction of bound clouds decreases as D/R {sub vir} increases such that the escaping fraction is ∼15% for D/R {sub vir} < 1, ∼45% for 1 ≤ D/R {sub vir} < 2, and ∼90% for 2 ≤ D/R {sub vir} < 3. Adopting the median mass log M {sub h}/M {sub ☉} = 11.5 to divide the sample into 'higher' and 'lower' mass galaxies, we find a mass dependency for the hot circumgalactic medium kinematics. To our survey limits, O VI absorption is found in only ∼40% of the H I clouds in and around lower mass halos as compared to ∼85% around higher mass halos. For D/R {sub vir} < 1, lower mass halos have an escape fraction of ∼65%, whereas higher mass halos have an escape fraction of ∼5%. For 1 ≤ D/R {sub vir} < 2, the escape fractions are ∼55% and ∼35% for lower mass and higher mass halos, respectively. For 2 ≤ D/R {sub vir} < 3, the escape fraction for lower mass halos is ∼90%. We show that it is highly likely that the absorbing clouds reside within 4R {sub vir} of their host galaxies and that the kinematics are dominated by outflows. Our finding of 'differential kinematics' is consistent with the scenario of 'differential wind recycling' proposed by Oppenheimer et al. We discuss the implications for galaxy evolution, the stellar to halo mass function, and the mass-metallicity relationship of galaxies.

  10. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  11. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  12. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  13. Stability of BEC galactic dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, F.S.; Lora-Clavijo, F.D.; González-Avilés, J.J.; Rivera-Paleo, F.J., E-mail: guzman@ifm.umich.mx, E-mail: fadulora@ifm.umich.mx, E-mail: javiles@ifm.umich.mx, E-mail: friverap@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán (Mexico)

    2013-09-01

    In this paper we show that spherically symmetric BEC dark matter halos, with the sin r/r density profile, that accurately fit galactic rotation curves and represent a potential solution to the cusp-core problem are unstable. We do this by introducing back the density profiles into the fully time-dependent Gross-Pitaevskii-Poisson system of equations. Using numerical methods to track the evolution of the system, we found that these galactic halos lose mass at an approximate rate of half of its mass in a time scale of dozens of Myr. We consider this time scale is enough as to consider these halos are unstable and unlikely to be formed. We provide some arguments to show that this behavior is general and discuss some other drawbacks of the model that restrict its viability.

  14. Chemical enrichment in halo planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Peimbert, S; Rayo, J F; Peimbert, M [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    Photoelectric spectrophotometry of emission lines in the 3400-7400 A region is presented for the planetary nebulae 108-76/sup 0/1(BB1). From these observations the relative abundances of H, He, C, N, O and Ne are derived. The abundances of the halo PN (BB1, H4-1 and K648) are compared to those predicted by stellar evolution theory under the assumption that the envelope has the chemical composition of the matter located between the H burning shell and the surface. The observed He/H and C/O values are higher than predicted which implies that halo PN contain matter from deeper layers than the H burning shell. Furthermore, the O/Ar, N/Ar and Ne/Ar values in halo PN are higher than in the solar neighbourhood, at least part of this enrichment is produced by the PN progenitors.

  15. Galaxy halo occupation at high redshift

    Science.gov (United States)

    Bullock, James S.; Wechsler, Risa H.; Somerville, Rachel S.

    2002-01-01

    We discuss how current and future data on the clustering and number density of z~3 Lyman-break galaxies (LBGs) can be used to constrain their relationship to dark matter haloes. We explore a three-parameter model in which the number of LBGs per dark halo scales like a power law in the halo mass: N(M)=(M/M1)S for M>Mmin. Here, Mmin is the minimum mass halo that can host an LBG, M1 is a normalization parameter, associated with the mass above which haloes host more than one observed LBG, and S determines the strength of the mass-dependence. We show how these three parameters are constrained by three observable properties of LBGs: the number density, the large-scale bias and the fraction of objects in close pairs. Given these three quantities, the three unknown model parameters may be estimated analytically, allowing a full exploration of parameter space. As an example, we assume a ΛCDM cosmology and consider the observed properties of a recent sample of spectroscopically confirmed LBGs. We find that the favoured range for our model parameters is Mmin~=(0.4-8)×1010h- 1Msolar, M1~=(6-10)×1012h- 1Msolar, and 0.9acceptable if the allowed range of bg is permitted to span all recent observational estimates. We also discuss how the observed clustering of LBGs as a function of luminosity can be used to constrain halo occupation, although because of current observational uncertainties we are unable to reach any strong conclusions. Our methods and results can be used to constrain more realistic models that aim to derive the occupation function N(M) from first principles, and offer insight into how basic physical properties affect the observed properties of LBGs.

  16. DARK MATTER HALO MERGERS: DEPENDENCE ON ENVIRONMENT

    International Nuclear Information System (INIS)

    Hester, J. A.; Tasitsiomi, A.

    2010-01-01

    This paper presents a study of the specific major merger rate as a function of group membership, local environment, and redshift in a very large, 500 h -1 Mpc, cosmological N-body simulation, the Millennium Simulation. The goal is to provide environmental diagnostics of major merger populations in order to test simulations against observations and provide further constraints on major merger driven galaxy evolution scenarios. A halo sample is defined using the maximum circular velocity, which is both well defined for subhalos and closely correlated with galaxy luminosity. Subhalos, including the precursors of major mergers, are severely tidally stripped. Major mergers between subhalos are therefore rare compared to mergers between subhalos and their host halos. Tidal stripping also suppresses dynamical friction, resulting in long major merger timescales when the more massive merger progenitor does not host other subhalos. When other subhalos are present, however, major merger timescales are several times shorter. This enhancement may be due to inelastic unbound collisions between subhalos, which deplete their orbital angular momentum and lead to faster orbital decay. Following these results, we predict that major mergers in group environments are dominated by mergers involving the central galaxy, that the specific major merger rate is suppressed in groups when all group members are considered together, and that the frequency of fainter companions is enhanced for major mergers and their remnants. We also measure an 'assembly bias' in the specific major merger rate in that major mergers of galaxy-like halos are slightly suppressed in overdense environments while major mergers of group-like halos are slightly enhanced. A dynamical explanation for this trend is advanced which calls on both tidal effects and interactions between bound halos beyond the virial radii of locally dynamically dominant halos.

  17. Some Like it Hot: Linking Diffuse X-Ray Luminosity, Baryonic Mass, and Star Formation Rate in Compact Groups of Galaxies

    Science.gov (United States)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Hornschemeier, Ann E.; Mulchaey, John S.; Walker, Lisa May; Brandt, Willian N.; Charlton, Jane C.; Johnson, Kelsey E.; Tzanavaris, Panayiotis

    2014-01-01

    We present an analysis of the diffuse X-ray emission in 19 compact groups (CGs) of galaxies observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in L(x-T) and (L(x-sigma), even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify Hickson CGs 19, 22, 40, and 42, and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and Hi masses are great than or equal to 10(sup (11.3) solar mass are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 micron star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due togas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.

  18. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  19. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    Bradshaw, F.W.

    1996-01-01

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  20. Radio halo sources in clusters of galaxies

    International Nuclear Information System (INIS)

    Hanisch, R.J.

    1986-01-01

    Radio halo sources remain one of the most enigmatic of all phenomena related to radio emission from galaxies in clusters. The morphology, extent, and spectral structure of these sources are not well known, and the models proposed to explain them suffer from this lack of observational detail. However, recent observations suggest that radio halo sources may be a composite of relic radio galaxies. The validity of this model could be tested using current and planned high resolutions, low-frequency radio telescopes. 31 references

  1. Blazars with arcminute-scale radio halos

    International Nuclear Information System (INIS)

    Ulvestad, J.S.; Antonucci, R.R.J.; Space Telescope Science Institute, Baltimore, MD)

    1986-01-01

    About 10-arcsec resolution 20-cm wavelength maps are presented for three nearby BL Lac objects: Mkn 180, whose halo has a linear size of 85 kpc, 2155-304, with a halo about 375 kpc across, and 1727 + 502, whose one-sided diffuse emission extends to a distance of about 145 kpc from its radio core. Little evidence is found for strong radio variability in the cores of the three blazars; these and other results obtained are consistent with the assertion that the three objects should be classified as normal low luminosity double radio galaxies with optically dull nuclei, if seen from other directions. 20 references

  2. Structure study in the 19C halo

    International Nuclear Information System (INIS)

    Angelique, J.C.; Le Brun, C.; Liegard, E.; Marques, F.M.; Orr, N.A.

    1997-01-01

    The halo nuclei are nuclei which have one or more neutrons (or protons) with very weak binding energy what results in a spatial extension beyond the core containing the other nucleons. This important spatial extension is related via the Heisenberg principle to a narrow momentum distribution which signs the halo structure of the nucleus under consideration. To extend our understanding of this phenomenon an experiment has been carried out with the DEMON multidetector in the frame of the collaboration E133. The subject was the study of 19 C, a nucleus susceptible of having a neutron halo due to the low binding energy of its last neutron (S n = 240 ± 100 keV). The 19 C secondary beam was produced by fragmentation of a primary 40 Ar beam in a carbon target between the two solenoids of SISSI and than directed to a GANIL experimental room. A silicon detector telescope was used to detect the charged particles issued from the reaction of 19 C nuclei with the tantalum target while the DEMON detection modular assembly separated by four meters from the target allowed the neutron detection between 0 and 42 degrees. The first results of this analysis are favorable to a halo structure for this nucleus for the reaction channel in which the 18 C core is destroyed. We have compared the angular distribution of the neutrons of 19 C with those obtained from the breakup reactions of other exotic nuclei ( 21 N, 22 O and 24 F) but having no halo structure. A net different behavior of these nuclei indicate a clear difference in structure. Actually, the 19 C distribution corresponds to the superposition of a broad distribution and narrow distribution. The last one having width of 42 ± 12 MeV/c, compatible with an important spatial extension, corresponds to neutrons coming from the halo. It is argued that the model in which the halo neutron moves on a s orbital cannot described the structure of 19 C halo. A more adequate description would be a mixture of s and d orbitals which would also

  3. Dark energy and extended dark matter halos

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  4. RESOLVE AND ECO: THE HALO MASS-DEPENDENT SHAPE OF GALAXY STELLAR AND BARYONIC MASS FUNCTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Norris, Mark A. [Department of Physics and Astronomy, University of North Carolina, 141 Chapman Hall CB 3255, Chapel Hill, NC 27599 (United States); Berlind, Andreas A., E-mail: keckert@physics.unc.edu [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2016-06-20

    In this work, we present galaxy stellar and baryonic (stars plus cold gas) mass functions (SMF and BMF) and their halo mass dependence for two volume-limited data sets. The first, RESOLVE-B, coincides with the Stripe 82 footprint and is extremely complete down to baryonic mass M {sub bary} ∼ 10{sup 9.1} M {sub ⊙}, probing the gas-rich dwarf regime below M {sub bary} ∼ 10{sup 10} M {sub ⊙}. The second, ECO, covers a ∼40× larger volume (containing RESOLVE-A) and is complete to M {sub bary} ∼ 10{sup 9.4} M {sub ⊙}. To construct the SMF and BMF we implement a new “cross-bin sampling” technique with Monte Carlo sampling from the full likelihood distributions of stellar or baryonic mass. Our SMFs exhibit the “plateau” feature starting below M {sub star} ∼ 10{sup 10} M {sub ⊙} that has been described in prior work. However, the BMF fills in this feature and rises as a straight power law below ∼10{sup 10} M {sub ⊙}, as gas-dominated galaxies become the majority of the population. Nonetheless, the low-mass slope of the BMF is not as steep as that of the theoretical dark matter halo MF. Moreover, we assign group halo masses by abundance matching, finding that the SMF and BMF, separated into four physically motivated halo mass regimes, reveal complex structure underlying the simple shape of the overall MFs. In particular, the satellite MFs are depressed below the central galaxy MF “humps” in groups with mass <10{sup 13.5} M {sub ⊙} yet rise steeply in clusters. Our results suggest that satellite destruction and stripping are active from the point of nascent group formation. We show that the key role of groups in shaping MFs enables reconstruction of a given survey’s SMF or BMF based on its group halo mass distribution.

  5. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  6. Stable hydrostatic equilibrium configurations of the galaxy and implications for its halo

    International Nuclear Information System (INIS)

    Bloemen, J.B.G.M.

    1987-01-01

    Using a variety of observations, it is shown that the gaseous, magnetic field, and cosmic-ray components in the local region of the Galaxy may be in a large-scale hydrostatic equilibrium that is stable against Parker-type instabilities. Lower limits for the density of the halo are derived as a function of its scale height. The temperature of the hot medium in the disk and at large distances from the plane is found to be typically about a million K in a stable equilibrium, whereas around z roughly 1-3 kpc the temperature could be only 200,000-300,000 K. The scale height of the sum of cosmic-ray and magnetic field pressures in a stable hydrostatic equilibrium state is found to be only weakly dependent on the scale height of the gaseous halo. 109 references

  7. Dynamical or static radio halo - Is there a galactic wind

    International Nuclear Information System (INIS)

    Lerche, I.; Schlickeiser, R.

    1981-01-01

    The effect of a galactic wind on a radio halo can be best observed at frequencies smaller than about 1 GHz. At higher frequencies static halo models predict the same features as dynamical halo models. External galaxies, which exhibit a break by 0.5 in their high frequency nonthermal integral flux spectrum, are the best candidates for studying the influence of galactic winds on the formation of relativistic electron haloes around these systems. Several such cases are presented

  8. Interactions between massive dark halos and warped disks

    NARCIS (Netherlands)

    Kuijken, K; Persic, M; Salucci, P

    1997-01-01

    The normal mode theory for warping of galaxy disks, in which disks are assumed to be tilted with respect to the equator of a massive, flattened dark halo, assumes a rigid, fixed halo. However, consideration of the back-reaction by a misaligned disk on a massive particle halo shows there to be strong

  9. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    Science.gov (United States)

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.

  10. Binary White Dwarfs in the Galactic Halo

    NARCIS (Netherlands)

    van Oirschot, Pim; Nelemans, Gijs; Helmi, Amina; Starkenburg, Else; Pols, Onno; Brown, Anthony G. A.

    We use the stellar population synthesis code SeBa (Portegies Zwart & Verbunt (1996), Toonen, Nelemans & Portegies Zwart (2012)) to study the halo white dwarf population. Here we assume a Kroupa initial mass function and compare 4 models, varying two parameters: the star formation (SF) history of the

  11. Numerical experiments on galactic halo formation

    International Nuclear Information System (INIS)

    Quinn, P.J.; Salmon, J.K.; Zurek, W.H.

    1986-01-01

    We have used a hybrid N-body-FFT approach to solving Poisson's equation in a cosmological setting. Using this method, we have explored the connection between the form of the initial Gaussian density perturbations that by today have grown into galaxies and the internal properties of the individual galactic halos that are formed. 19 refs., 4 figs

  12. Reflection halo twins : subsun and supersun

    NARCIS (Netherlands)

    Konnen, Gunther P.; van der Werf, Siebren Y.

    2011-01-01

    From an aircraft, a short distinct vertical structure is sometimes seen above the setting sun. Such a feature can be understood as a halo, which is the counterpart of the well-known subsun. Whereas the latter arises from reflections off basal faces of plate-oriented ice crystals illuminated from

  13. Cosmology and cluster halo scaling relations

    NARCIS (Netherlands)

    Araya-Melo, Pablo A.; van de Weygaert, Rien; Jones, Bernard J. T.

    2009-01-01

    We explore the effects of dark matter and dark energy on the dynamical scaling properties of galaxy clusters. We investigate the cluster Faber-Jackson (FJ), Kormendy and Fundamental Plane (FP) relations between the mass, radius and velocity dispersion of cluster-sized haloes in cosmological N-body

  14. THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS

    International Nuclear Information System (INIS)

    Richardson, Jonathan; Chatterjee, Suchetana; Nagai, Daisuke; Zheng Zheng; Shen Yue

    2012-01-01

    We present an estimate of the projected two-point correlation function (2PCF) of quasars in the Sloan Digital Sky Survey (SDSS) over the full range of one- and two-halo scales, 0.02 h –1 Mpc p –1 Mpc. This was achieved by combining data from SDSS DR7 on large scales and Hennawi et al. (with appropriate statistical corrections) on small scales. Our combined clustering sample is the largest spectroscopic quasar clustering sample to date, containing ∼48, 000 quasars in the redshift range 0.4 ∼ sat = (7.4 ± 1.4) × 10 –4 , be satellites in dark matter halos. At z ∼ 1.4, the median masses of the host halos of central and satellite quasars are constrained to be M cen = 4.1 +0.3 –0.4 × 10 12 h –1 M ☉ and M sat = 3.6 +0.8 –1.0 × 10 14 h –1 M ☉ , respectively. To investigate the redshift evolution of the quasar-halo relationship, we also perform HOD modeling of the projected 2PCF measured by Shen et al. for SDSS quasars with median redshift 3.2. We find tentative evidence for an increase in the mass scale of quasar host halos—the inferred median mass of halos hosting central quasars at z ∼ 3.2 is M cen = 14.1 +5.8 –6.9 × 10 12 h –1 M ☉ . The cutoff profiles of the mean occupation functions of central quasars reveal that quasar luminosity is more tightly correlated with halo mass at higher redshifts. The average quasar duty cycle around the median host halo mass is inferred to be f q = 7.3 +0.6 –1.5 × 10 –4 at z ∼ 1.4 and f q = 8.6 +20.4 –7.2 × 10 –2 at z ∼ 3.2. We discuss the implications of our results for quasar evolution and quasar-galaxy co-evolution.

  15. THE MAGELLANIC STREAM: BREAK-UP AND ACCRETION ONTO THE HOT GALACTIC CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Tepper-García, Thor; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph S. [Mount Stromlo Observatory, Australia National University, Woden, ACT 2611 (Australia)

    2015-11-10

    The Magellanic H i Stream (≈2 × 10{sup 9} M{sub ⊙} [d/55 kpc]{sup 2}) encircling the Galaxy at a distance d is arguably the most important tracer of what happens to gas accreting onto a disk galaxy. Recent observations reveal that the Stream’s mass is in fact dominated (3:1) by its ionized component. Here we revisit the origin of the mysterious Hα recombination emission observed along much of its length that is overly bright (∼150–200 mR) for the known Galactic ultraviolet (UV) background (≈20–40 mR [d/55 kpc]{sup −2}). In an earlier model, we proposed that a slow shock cascade was operating along the Stream due to its interaction with the extended Galactic hot corona. We find that for a smooth coronal density profile, this model can explain the bright Hα emission if the coronal density satisfies 2 × 10{sup −4} < (n/cm{sup −3}) < 4 × 10{sup −4} at d = 55 kpc. But in view of updated parameters for the Galactic halo and mounting evidence that most of the Stream must lie far beyond the Magellanic Clouds (d > 55 kpc), we revisit the shock cascade model in detail. At lower densities, the H i gas is broken down by the shock cascade but mostly mixes with the hot corona without significant recombination. At higher densities, the hot coronal mass (including the other baryonic components) exceeds the baryon budget of the Galaxy. If the Hα emission arises from the shock cascade, the upper limit on the smooth coronal density constrains the Stream’s mean distance to ≲75 kpc. If, as some models indicate, the Stream is even further out, either the shock cascade is operating in a regime where the corona is substantially mass-loaded with recent gas debris, or an entirely different ionization mechanism is responsible.

  16. Characteristic time for halo current growth and rotation

    Energy Technology Data Exchange (ETDEWEB)

    Boozer, Allen H., E-mail: ahb17@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2015-10-15

    A halo current flows for part of its path through the plasma edge and for part through the chamber walls and during tokamak disruptions can be as large as tenths of the plasma current. The primary interest in halo currents is the large force that they can exert on machine components particularly if the toriodal rotation of the halo current resonates with a natural oscillation frequency of the tokamak device. Halo currents arise when required to slow down the growth of a kink that is too unstable to be stabilized by the chamber walls. The width of the current channel in the halo plasma is comparable to the amplitude of the kink, and the halo current grows linearly, not exponentially, in time. The current density in the halo is comparable to that of the main plasma body. The rocket force due to plasma flowing out of the halo and recombining on the chamber walls can cause the non-axisymmetric magnetic structure produced by the kink to rotate toroidally at a speed comparable to the halo speed of sound. Gerhardt's observations of the halo current in NSTX shot 141 687 [Nucl. Fusion 53, 023005 (2013)] illustrate many features of the theory of halo currents and are discussed as a summary of the theory.

  17. ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS

    Energy Technology Data Exchange (ETDEWEB)

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2012-08-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  18. ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS

    International Nuclear Information System (INIS)

    Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.

    2012-01-01

    We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.

  19. Research Progresses of Halo Streams in the Solar Neighborhood

    Science.gov (United States)

    Xi-long, Liang; Jing-kun, Zhao; Yu-qin, Chen; Gang, Zhao

    2018-01-01

    The stellar streams originated from the Galactic halo may be detected when they pass by the solar neighborhood, and they still keep some information at their birth times. Thus, the investigation of halo streams in the solar neighborhood is very important for understanding the formation and evolution of our Galaxy. In this paper, the researches of halo streams in the solar neighborhood are briefly reviewed. We have introduced the methods how to detect the halo streams and identify their member stars, summarized the progresses in the observation of member stars of halo streams and in the study of their origins, introduced in detail how to analyze the origins of halo streams in the solar neighborhood by means of numerical simulation and chemical abundance, and finally discussed the prospects of the LAMOST and GAIA in the research of halo streams in the solar neighborhood.

  20. The gaseous haloes of evolving galaxies: a probe using the linear sizes of radio sources

    International Nuclear Information System (INIS)

    Subramanian, K.; Swarup, G.

    1990-01-01

    As galaxies form and evolve, their gaseous haloes are expected to undergo corresponding evolution. We examine here whether observations of the linear sizes of radio sources can be used to probe such evolution. For this purpose we first represent the gas density at various stages of galaxy formation and evolution by means of simple model density profiles, and then work out the expected linear sizes (l) of radio sources in these models. (author)

  1. Mass measurement of halo nuclides and beam cooling with the mass spectrometer Mistral

    International Nuclear Information System (INIS)

    Bachelet, C.

    2004-12-01

    Halo nuclides are a spectacular drip-line phenomenon and their description pushes nuclear theories to their limits. The most critical input parameter is the nuclear binding energy; a quantity that requires excellent measurement precision, since the two-neutron separation energy is small at the drip-line by definition. Moreover halo nuclides are typically very short-lived. Thus, a high accuracy instrument using a quick method of measurement is necessary. MISTRAL is such an instrument; it is a radiofrequency transmission mass spectrometer located at ISOLDE/CERN. In July 2003 we measured the mass of the Li 11 , a two-neutron halo nuclide. Our measurement improves the precision by a factor 6, with an error of 5 keV. Moreover the measurement gives a two-neutron separation energy 20% higher than the previous value. This measurement has an impact on the radius of the nucleus, and on the state of the two valence neutrons. At the same time, a measurement of the Be 11 was performed with an uncertainty of 4 keV, in excellent agreement with previous measurements. In order to measure the mass of the two-neutron halo nuclide Be 14 , an ion beam cooling system is presently under development which will increase the sensitivity of the spectrometer. The second part of this work presents the development of this beam cooler using a gas-filled Paul trap. (author)

  2. Dark-matter halo mergers as a fertile environment for low-mass Population III star formation

    DEFF Research Database (Denmark)

    Bovino, S.; Latif, M. A.; Grassi, Tommaso

    2014-01-01

    While Population III (Pop III) stars are typically thought to be massive, pathways towards lower mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter haloes. The mergers can lead to a high ioni...

  3. Using artificial neural networks to constrain the halo baryon fraction during reionization

    Science.gov (United States)

    Sullivan, David; Iliev, Ilian T.; Dixon, Keri L.

    2018-01-01

    Radiative feedback from stars and galaxies has been proposed as a potential solution to many of the tensions with simplistic galaxy formation models based on Λcold dark matter, such as the faint end of the ultraviolet (UV) luminosity function. The total energy budget of radiation could exceed that of galactic winds and supernovae combined, which has driven the development of sophisticated algorithms that evolve both the radiation field and the hydrodynamical response of gas simultaneously, in a cosmological context. We probe self-feedback on galactic scales using the adaptive mesh refinement, radiative transfer, hydrodynamics, and N-body code RAMSES-RT. Unlike previous studies which assume a homogeneous UV background, we self-consistently evolve both the radiation field and gas to constrain the halo baryon fraction during cosmic reionization. We demonstrate that the characteristic halo mass with mean baryon fraction half the cosmic mean, Mc(z), shows very little variation as a function of mass-weighted ionization fraction. Furthermore, we find that the inclusion of metal cooling and the ability to resolve scales small enough for self-shielding to become efficient leads to a significant drop in Mc when compared to recent studies. Finally, we develop an artificial neural network that is capable of predicting the baryon fraction of haloes based on recent tidal interactions, gas temperature, and mass-weighted ionization fraction. Such a model can be applied to any reionization history, and trivially incorporated into semi-analytical models of galaxy formation.

  4. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    Science.gov (United States)

    Ayala, Raul E.

    1993-01-01

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  5. Circum-Galactic Medium in the Halo of Quasars

    Directory of Open Access Journals (Sweden)

    Riccardo Ottolina

    2017-12-01

    Full Text Available The properties of circum-galactic gas in the halo of quasar host galaxies are investigated analyzing Mg II 2800 and C IV 1540 absorption-line systems along the line of sight close to quasars. We used optical spectroscopy of closely aligned pairs of quasars (projected distance ≤ 200 kpc, but at very different redshift obtained at the VLT and Gran Telescopio Canarias to investigate the distribution of the absorbing gas for a sample of quasars at z ~1. Absorption systems of EW ≥0.3 associated with the foreground quasars are revealed up to 200 kpc from the centre of the host galaxy, showing that the structure of the absorbing gas is patchy with a covering fraction quickly decreasing beyond 100 kpc. In this contribution we use optical and near-IR images obtained at VLT to investigate the relations between the properties of the circum-galactic medium of the host galaxies and of the large scale galaxy environments of the foreground quasars.

  6. HOT 2017

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis.......HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis....

  7. Gravitational lens effect and pregalactic halo objects

    International Nuclear Information System (INIS)

    Bontz, R.J.

    1979-01-01

    The changes in flux, position, and size of a distant extended (galaxy, etc.) source that result from the gravitational lens action of a massive opaque object are discussed. The flux increase is described by a single function of two parameters. One of these parameters characterizes the strength of the gravitational lens, the other describes the alignment of source and lens object. This function also describes the relative intensity of the images formed by lens. ( A similar formalism is discussed by Bourassa et al. for a point source). The formalism is applied to the problem of the galactic halo. It appears that a massive (10 1 2 M/sub sun/) spherical halo surrounding the visible part of the galaxy is consistent with the observable properties of extragalactic sources

  8. Magnetic spiral arms in galaxy haloes

    Science.gov (United States)

    Henriksen, R. N.

    2017-08-01

    We seek the conditions for a steady mean field galactic dynamo. The parameter set is reduced to those appearing in the α2 and α/ω dynamo, namely velocity amplitudes, and the ratio of sub-scale helicity to diffusivity. The parameters can be allowed to vary on conical spirals. We analyse the mean field dynamo equations in terms of scale invariant logarithmic spiral modes and special exact solutions. Compatible scale invariant gravitational spiral arms are introduced and illustrated in an appendix, but the detailed dynamical interaction with the magnetic field is left for another work. As a result of planar magnetic spirals `lifting' into the halo, multiple sign changes in average rotation measures forming a regular pattern on each side of the galactic minor axis, are predicted. Such changes have recently been detected in the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES) survey.

  9. Structure and reactions of quantum halos

    International Nuclear Information System (INIS)

    Jensen, A.S.; Riisager, K.; Fedorov, D.V.; Garrido, E.

    2004-01-01

    This article provides an overview of the basic principles of the physics of quantum halo systems, defined as bound states of clusters of particles with a radius extending well into classically forbidden regions. Exploiting the consequences of this definition, the authors derive the conditions for occurrence in terms of the number of clusters, binding energy, angular momentum, cluster charges, and excitation energy. All these quantities must be small. The article discusses the transitions between different cluster divisions and the importance of thresholds for cluster or particle decay, with particular attention to the Efimov effect and the related exotic states. The pertinent properties can be described by the use of dimensionless variables. Then universal and specific properties can be distinguished, as shown in a series of examples selected from nuclear, atomic, and molecular systems. The neutron dripline is especially interesting for nuclei and negative ions for atoms. For molecules, in which the cluster division comes naturally, a wider range of possibilities exists. Halos in two dimensions have very different properties, and their states are easily spatially extended, whereas Borromean systems are unlikely and spatially confined. The Efimov effect and the Thomas collapse occur only for dimensions between 2.3 and 3.8 and thus not for 2. High-energy reactions directly probe the halo structure. The authors discuss the reaction mechanisms for high-energy nuclear few-body halo breakup on light, intermediate, and heavy nuclear targets. For light targets, the strong interaction dominates, while for heavy targets, the Coulomb interaction dominates. For intermediate targets these processes are of comparable magnitude. As in atomic and molecular physics, a geometric impact-parameter picture is very appropriate. Finally, the authors briefly consider the complementary processes involving electroweak probes available through beta decay, electromagnetic transitions, and

  10. Total dissociation cross section of halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Formanek, J. [Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni; Lombard, R.J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1996-10-01

    Calculations of the total dissociation cross section is performed in the impact parameter representation. The case of {sup 11}Be and {sup 11}Li loosing one and two neutron(s), respectively, by collision on a {sup 12}C target, which remains in its ground state are discussed. The results are found to depend essentially on the rms radius of the halo wave function. (author). 12 refs.

  11. The Halo B2B Studio

    Science.gov (United States)

    Gorzynski, Mark; Derocher, Mike; Mitchell, April Slayden

    Research underway at Hewlett-Packard on remote communication resulted in the identification of three important components typically missing in existing systems. These missing components are: group nonverbal communication capabilities, high-resolution interactive data capabilities, and global services. Here we discuss some of the design elements in these three areas as part of the Halo program at HP, a remote communication system shown to be effective to end-users.

  12. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.

    1989-01-01

    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  13. The Extended Baryonic Halo of NGC 3923

    Directory of Open Access Journals (Sweden)

    Bryan W. Miller

    2017-07-01

    Full Text Available Galaxy halos and their globular cluster systems build up over time by the accretion of small satellites. We can learn about this process in detail by observing systems with ongoing accretion events and comparing the data with simulations. Elliptical shell galaxies are systems that are thought to be due to ongoing or recent minor mergers. We present preliminary results of an investigation of the baryonic halo—light profile, globular clusters, and shells/streams—of the shell galaxy NGC 3923 from deep Dark Energy Camera (DECam g and i-band imaging. We present the 2D and radial distributions of the globular cluster candidates out to a projected radius of about 185 kpc, or ∼ 37 R e , making this one of the most extended cluster systems studied. The total number of clusters implies a halo mass of M h ∼ 3 × 10 13 M ⊙ . Previous studies had identified between 22 and 42 shells, making NGC 3923 the system with the largest number of shells. We identify 23 strong shells and 11 that are uncertain. Future work will measure the halo mass and mass profile from the radial distributions of the shell, N-body models, and line-of-sight velocity distribution (LOSVD measurements of the shells using the Multi Unit Spectroscopic Explorer (MUSE.

  14. How do stars affect ψDM halos?

    Science.gov (United States)

    Chan, James H. H.; Schive, Hsi-Yu; Woo, Tak-Pong; Chiueh, Tzihong

    2018-04-01

    Wave dark matter (ψDM) predicts a compact soliton core and a granular halo in every galaxy. This work presents the first simulation study of an elliptical galaxy by including both stars and ψDM, focusing on the systematic changes of the central soliton and halo granules. With the addition of stars in the inner halo, we find the soliton core consistently becomes more prominent by absorbing mass from the host halo than that without stars, and the halo granules become "non-isothermal", "hotter" in the inner halo and "cooler" in the outer halo, as opposed to the isothermal halo in pure ψDM cosmological simulations. Moreover, the composite (star+ψDM) mass density is found to follow a r-2 isothermal profile near the half-light radius in most cases. Most striking is the velocity dispersion of halo stars that increases rapidly toward the galactic center by a factor of at least 2 inside the half-light radius caused by the deepened soliton gravitational potential, a result that compares favorably with observations of elliptical galaxies and bulges in spiral galaxies. However in some rare situations we find a phase segregation turning a compact distribution of stars into two distinct populations with high and very low velocity dispersions; while the high-velocity component mostly resides in the halo, the very low-velocity component is bound to the interior of the soliton core, resembling stars in faint dwarf spheroidal galaxies.

  15. Self-consistent construction of virialized wave dark matter halos

    Science.gov (United States)

    Lin, Shan-Chang; Schive, Hsi-Yu; Wong, Shing-Kwong; Chiueh, Tzihong

    2018-05-01

    Wave dark matter (ψ DM ), which satisfies the Schrödinger-Poisson equation, has recently attracted substantial attention as a possible dark matter candidate. Numerical simulations have, in the past, provided a powerful tool to explore this new territory of possibility. Despite their successes in revealing several key features of ψ DM , further progress in simulations is limited, in that cosmological simulations so far can only address formation of halos below ˜2 ×1011 M⊙ and substantially more massive halos have become computationally very challenging to obtain. For this reason, the present work adopts a different approach in assessing massive halos by constructing wave-halo solutions directly from the wave distribution function. This approach bears certain similarities with the analytical construction of the particle-halo (cold dark matter model). Instead of many collisionless particles, one deals with one single wave that has many noninteracting eigenstates. The key ingredient in the wave-halo construction is the distribution function of the wave power, and we use several halos produced by structure formation simulations as templates to determine the wave distribution function. Among different models, we find the fermionic King model presents the best fits and we use it for our wave-halo construction. We have devised an iteration method for constructing the nonlinear halo and demonstrate its stability by three-dimensional simulations. A Milky Way-sized halo has also been constructed, and the inner halo is found to be flatter than the NFW profile. These wave-halos have small-scale interferences both in space and time producing time-dependent granules. While the spatial scale of granules varies little, the correlation time is found to increase with radius by 1 order of magnitude across the halo.

  16. FORMATION RATES OF POPULATION III STARS AND CHEMICAL ENRICHMENT OF HALOS DURING THE REIONIZATION ERA

    International Nuclear Information System (INIS)

    Trenti, Michele; Stiavelli, Massimo

    2009-01-01

    The first stars in the universe formed out of pristine primordial gas clouds that were radiatively cooled to a few hundreds of degrees kelvin either via molecular or atomic (Lyman-α) hydrogen lines. This primordial mode of star formation was eventually quenched once radiative and/or chemical (metal enrichment) feedbacks marked the transition to Population II stars. In this paper, we present a model for the formation rate of Population III stars based on Press-Schechter modeling coupled with analytical recipes for gas cooling and radiative feedback. Our model also includes a novel treatment for metal pollution based on self-enrichment due to a previous episode of Population III star formation in progenitor halos. With this model, we derive the star formation history of Population III stars, their contribution to the reionization of the universe and the time of the transition from Population III star formation in minihalos (M ∼ 10 6 M sun , cooled via molecular hydrogen) to that in more massive halos (M ∼> 2 x 10 7 M sun , where atomic hydrogen cooling is also possible). We consider a grid of models highlighting the impact of varying the values for the free parameters used, such as star formation and feedback efficiency. The most critical factor is the assumption that only one Population III star is formed in a halo. In this scenario, metal-free stars contribute only to a minor fraction of the total number of photons required to reionize the universe. In addition, metal-free star formation is primarily located in minihalos, and chemically enriched halos become the dominant locus of star formation very early in the life of the universe-at redshift z ∼ 25-even assuming a modest fraction (0.5%) of enriched gas converted in stars. If instead multiple metal-free stars are allowed to form out of a single halo, then there is an overall boost of Population III star formation, with a consequent significant contribution to the reionizing radiation budget. In addition

  17. The Halo of NGC 2438 scrutinized

    Science.gov (United States)

    Oettl, Silvia; Kimeswenger, Stefan

    2015-08-01

    Haloes and multiple shells around planetary nebulae trace the mass-loss history of the central star. The haloes provide us with information about abundances, ionization or kinematics. Detailed investigations of these haloes can be used to study the evolution of the old stellar population in our galaxy and beyond.Different observations show structures in the haloes like radial rays, blisters and rings (e.g., Ramos-Larios et al. 2012, MNRAS 423, 3753 or Matsuura et al. 2009, ApJ, 700, 1067). The origin of these features has been associated with ionization shadows (Balick 2004, AJ, 127, 2262). They can be observed in regions, where dense knots are opaque to stellar ionizing photons. In this regions we can see leaking UV photons.In this work, we present a detailed investigation of the multiple shell PN NGC 2438. We derive a complete data set of the main nebula. This allows us to analize the physical conditions from photoionization models, such as temperature, density and ionization, and clumping.Data from ESO (3.6m telescope - EFOSC1 - direct imaging and long slit spectroscopy) and from SAAO (spectroscopic observations using a small slit) were available. These data were supplemented by imaging data from the HST archive and by archival VLA observations. The low-excitation species are found to be dominated by clumps. The emission line ratios show no evidence for shocks. We find the shell in ionization equilibrium: a significant amount of UV radiation infiltrates the inner nebula. Thus the shell still seems to be ionized.The photoionization code CLOUDY was used to model the nebular properties and to derive a more accurate distance and ionized mass. The model supports the hypothesis that photoionization is the dominant process in this nebula, far out into the shell.If we want to use extragalactic planetary nebulae as probes of the old stellar population, we need to assess the potential impact of a halo on the evolution. Also the connection of observations and models must

  18. Orbit elements and kinematics of the halo stars and the old disk population: evidence for active phases in the evolution of the Galaxy

    International Nuclear Information System (INIS)

    Marsakov, V.A.; Suchkov, A.A.

    1978-01-01

    The distributions of orbits eccentricities and of angular momenta for the halo stars and for the old disk population are considered. The distributions have gaps separating the halo from the disk and diving the halo population into three groups. From the point of view of star formation during the collapse at the earliy stages of evolution the gaps evidence that threre were in the Galaxy long periods of suppression of star formation. The kinematics and the orbit elements of the halo stars and of the old disk population allow to conclude that there was no significant relaxation in the halo; the halo subsystems are not stationary, they perform radial oscillations with respect to the galactic centre; the velocity dispersion in the galactic rotation direction for the halo stars having the same age does not exceed 20-40 km/s; the dispersion of the velocity component along the galactic radius is symmetrically higher for the subsystems with a greater eccentrically and reaches 215 km/s for the stars with the greatest eccentricaities; the sing of the angular momentum in the protogalactic gas cloud probably changed at some distance form the galactic centre

  19. Nuclear halo and its related reactions

    International Nuclear Information System (INIS)

    Zhang Huanqiao

    2005-01-01

    In order to search proton halo, the reaction cross sections of 27,28 P, 29 S and the corresponding isotones on Si target were measured at intermediate energies. The measured reaction cross sections of the N=12 and 13 isotones show an abrupt increase at Z=15. The experimental results for the isotones with Z=14 as well as 28 P can be well described by the modified Glauber theory of the optical limit approach. The enhancement of the reaction cross sections for 28 P could be explained in the modified Glauber theory with an enlarged core. Theoretical analysis with the modified Glauber theory of the optical limit and few-body approaches underpredicted the experimental data of 27 P. Our theoretical analysis shows that an enlarged core together with proton halo is probably the mechanism responsible for the enhancement of the cross sections for the reaction of 27 P+ 28 Si. In addition, we find from the experimental results that 29 S may have a moderate proton halo structure. Except the nuclei near or at drop-lines, halo may appear in the excited states of stable nuclei. By means of the asymptotic normalization coefficients (ANC's) extracted from transfer reactions of 11 B(d, p) 12 B, 12 C(d, p) 13 C, and H( 6 He, n) 6 Li, we have verified that the second ( Jπ = 2 - ) and third (Jπ = 1 - ) excited states in 12 B and the first (Jπ =1/2 + ) excited state in 13 C are the neutron halo states, while the second excited state (3.56 MeV, Jπ = 0 + ) in 6 Li is a proton-neutron halo state. We have proposed a procedure to extract the probability for valence particle being out of the binding potential from the measured nuclear asymptotic normalization coefficients. With this procedure, available data regarding the nuclear halo candidates are systematically analyzed and a number of halo nuclei are confirmed. Based on these results we have got a much relaxed condition for nuclear halo occurrence. Furthermore, we have presented the scaling laws for the dimensionless quantity 2 >/R 2 of

  20. THE TILT OF THE HALO VELOCITY ELLIPSOID AND THE SHAPE OF THE MILKY WAY HALO

    International Nuclear Information System (INIS)

    Smith, Martin C.; Wyn Evans, N.; An, Jin H.

    2009-01-01

    A sample of ∼1800 halo subdwarf stars with radial velocities and proper motions is assembled from Bramich et al.'s light-motion catalog of 2008. This is based on the repeated multiband Sloan Digital Sky Survey photometric measurements in Stripe 82. Our sample of halo subdwarfs is extracted via a reduced proper motion diagram and distances are obtained using photometric parallaxes, thus giving full phase-space information. The tilt of the velocity ellipsoid with respect to the spherical polar coordinate system is computed and found to be consistent with zero for two of the three tilt angles, and very small for the third. We prove that if the inner halo is in a steady state and the triaxial velocity ellipsoid is everywhere aligned in spherical polar coordinates, then the potential must be spherically symmetric. The detectable, but very mild, misalignment with spherical polars is consistent with the perturbative effects of the Galactic disk on a spherical dark halo. Banana orbits are generated at the 1:1 resonance (in horizontal and vertical frequencies) by the disk. They populate Galactic potentials at the typical radii of our subdwarf sample, along with the much more dominant short-axis tubes. However, on geometric grounds alone, the tilt cannot vanish for the banana orbits and this leads to a slight, but detectable, misalignment. We argue that the tilt of the stellar halo velocity ellipsoid therefore provides a hitherto largely neglected but important line of argument that the Milky Way's dark halo, which dominates the potential, must be nearly spherical.

  1. Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers

    Science.gov (United States)

    Yuan, Chengchao; Mészáros, Peter; Murase, Kohta; Jeong, Donghui

    2018-04-01

    The merger of dark matter halos and the gaseous structures embedded in them, such as protogalaxies, galaxies, and groups and clusters of galaxies, results in strong shocks that are capable of accelerating cosmic rays (CRs) to ≳10 PeV. These shocks will produce high-energy neutrinos and γ-rays through inelastic pp collisions. In this work, we study the contributions of these halo mergers to the diffuse neutrino flux and to the nonblazar portion of the extragalactic γ-ray background. We formulate the redshift dependence of the shock velocity, galactic radius, halo gas content, and galactic/intergalactic magnetic fields over the dark matter halo distribution up to a redshift z = 10. We find that high-redshift mergers contribute a significant amount of the CR luminosity density, and the resulting neutrino spectra could explain a large part of the observed diffuse neutrino flux above 0.1 PeV up to several PeV. We also show that our model can somewhat alleviate tensions with the extragalactic γ-ray background. First, since a larger fraction of the CR luminosity density comes from high redshifts, the accompanying γ-rays are more strongly suppressed through γγ annihilations with the cosmic microwave background and the extragalactic background light. Second, mildly radiative-cooled shocks may lead to a harder CR spectrum with spectral indices of 1.5 ≲ s ≲ 2.0. Our study suggests that halo mergers, a fraction of which may also induce starbursts in the merged galaxies, can be promising neutrino emitters without violating the existing Fermi γ-ray constraints on the nonblazar component of the extragalactic γ-ray background.

  2. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing

    Science.gov (United States)

    Shin, Tae-hyeon; Clampitt, Joseph; Jain, Bhuvnesh; Bernstein, Gary; Neil, Andrew; Rozo, Eduardo; Rykoff, Eli

    2018-04-01

    We study the ellipticity of galaxy cluster haloes as characterized by the distribution of cluster galaxies and as measured with weak lensing. We use Monte Carlo simulations of elliptical cluster density profiles to estimate and correct for Poisson noise bias, edge bias and projection effects. We apply our methodology to 10 428 Sloan Digital Sky Survey clusters identified by the redMaPPer algorithm with richness above 20. We find a mean ellipticity =0.271 ± 0.002 (stat) ±0.031 (sys) corresponding to an axis ratio = 0.573 ± 0.002 (stat) ±0.039 (sys). We compare this ellipticity of the satellites to the halo shape, through a stacked lensing measurement using optimal estimators of the lensing quadrupole based on Clampitt and Jain (2016). We find a best-fitting axis ratio of 0.56 ± 0.09 (stat) ±0.03 (sys), consistent with the ellipticity of the satellite distribution. Thus, cluster galaxies trace the shape of the dark matter halo to within our estimated uncertainties. Finally, we restack the satellite and lensing ellipticity measurements along the major axis of the cluster central galaxy's light distribution. From the lensing measurements, we infer a misalignment angle with an root-mean-square of 30° ± 10° when stacking on the central galaxy. We discuss applications of halo shape measurements to test the effects of the baryonic gas and active galactic nucleus feedback, as well as dark matter and gravity. The major improvements in signal-to-noise ratio expected with the ongoing Dark Energy Survey and future surveys from Large Synoptic Survey Telescope, Euclid, and Wide Field Infrared Survey Telescope will make halo shapes a useful probe of these effects.

  3. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    AM Girbik; PA Dilorenzo

    2006-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  4. The “Building Blocks” of Stellar Halos

    Directory of Open Access Journals (Sweden)

    Kyle A. Oman

    2017-08-01

    Full Text Available The stellar halos of galaxies encode their accretion histories. In particular, the median metallicity of a halo is determined primarily by the mass of the most massive accreted object. We use hydrodynamical cosmological simulations from the apostle project to study the connection between the stellar mass, the metallicity distribution, and the stellar age distribution of a halo and the identity of its most massive progenitor. We find that the stellar populations in an accreted halo typically resemble the old stellar populations in a present-day dwarf galaxy with a stellar mass ∼0.2–0.5 dex greater than that of the stellar halo. This suggests that had they not been accreted, the primary progenitors of stellar halos would have evolved to resemble typical nearby dwarf irregulars.

  5. Problems of gas control and fueling in the Tara tandem mirror

    International Nuclear Information System (INIS)

    Post, R.S.; Horne, S.; Brau, K.; Casey, J.; Golovato, S.; Sevillano, E.; Shuy, G.; Smith, D.K.

    1986-10-01

    Control of the edge neutral pressure is critical for successful thermal barrier operation of tandem mirrors. High neutral pressures lead to substantial charge exchange losses of plasma ions as well as creating a population of cold ions and electrons which may be electrostatically trapped in the negative and positive confining potentials in the end cells. The primary sources of neutral gas in Tara are central cell and transition gas injection, and neutral beam injection in the plugs. In the central cell, the region of ionization is separated from the mirror-trapped hot ion region. Gettering in the region of hot ions, controls reflux and reduces the central cell gas contribution to the plug. During end plugging, the plasma stream from the central cell which is used to fuel the minimum B anchor cells is cut off, so that gas fueling must be supplied in the transition region. The beamlines and dumps use LN/Ti pumps, baffling and bakeable dumps and scrapers to limit gas penetration to the plug plasma. Gettering of the plug wall and geometric considerations are used to control reflux from charge exchange. Monte-Carlo simulations are used to analyze the plug and central cell reflux. A new central cell configuration employing a midplane magnetic divertor is now being evaluated. The halo plasma produced in the diverted magnetic flux will be used to improve shielding of the core plasma from charge exchange

  6. THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    González-Samaniego, A.; Avila-Reese, V. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México, D.F., México (Mexico); Colín, P. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, A.P. 72-3 (Xangari), Morelia, Michoacán 58089, México (Mexico)

    2016-03-10

    By means of N-body + hydrodynamic zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses M{sub v} = (2–3) × 10{sup 10} h{sup −1} M{sub ⊙} at z = 0, both in a warm dark matter (WDM) and cold dark matter (CDM) cosmology. The half-mode mass in the WDM power spectrum of our simulations is M{sub f} = 2 × 10{sup 10} h{sup −1} M{sub ⊙}. In the dark matter (DM) only simulations halo density profiles are well described by the Navarro–Frenk–White parametric fit in both cosmologies, though the WDM halos have concentrations lower by factors of 1.5–2.0 than their CDM counterparts. In the hydrodynamic simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase space density profiles of the WDM halos but not of the CDM ones. The density slope, measured at ≈0.02R{sub v}, α{sub 0.02}, becomes shallow in periods of 2–5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global star formation (SF), M{sub s}/M{sub v} ratio, gas outflow, and internal specific angular momentum histories. We do not find any clear trends, but when α{sub 0.02} is shallower than −0.5, M{sub s}/M{sub v} is always between 0.25% and 1%. We conclude that the main reason for the formation of the shallow core is the presence of strong gas mass fluctuations inside the inner halo, which are a consequence of the feedback driven by a very bursty and sustained SF history in shallow gravitational potentials. Our WDM halos, which assemble late and are less concentrated than the CDM ones, obey these conditions. There are also (rare) CDM systems with extended mass assembly histories that obey these conditions and form shallow cores. The dynamical heating and expansion processes behind the DM core flattening apply also to the stars in such a way that the stellar age and metallicity gradients of the

  7. The HI Distribution Observed toward a Halo Region of the Milky Way

    Directory of Open Access Journals (Sweden)

    Ericson López

    2017-08-01

    Full Text Available We use observations of the neutral atomic hydrogen (HI 21-cm emission line to study the spatial distribution of the HI gas in a 80° × 90° region of the Galaxy halo. The HI column densities in the range of 3–11 × 10 20 cm − 2 have been estimated for some of the studied regions. In our map—obtained with a spectral sensitivity of ∼2 K—we do not detect any HI 21-cm emission line above 2 σ at Galactic latitudes higher than ∼46°. This report summarizes our contribution presented at the conference on the origin and evolution of barionic Galaxy halos.

  8. On the evolution of globular clusters and the origin of galactic halo stars

    International Nuclear Information System (INIS)

    Surdin, V.G.

    1978-01-01

    Evolution of globular clusters of galactic halo is considered. It is shown that evolution of massive globular clusters with a greater degree of probability takes place under the effect of dynamic friction, which brings about the cluster fall on the center of galactic and their destruction by tidal forces. Evolution of small massive cluster takes place under the effect of dissipation. All the other reasons, causing the destruction of globular clusters (gravitational tidal forces, mutual cluster collision, outflow of gas from red gigant atmospheres, the change of the radius of the cluster orbit at the expense of the change of the galaxy mass inside the cluster orbit) play a secondary role. The whole mass of the stars lost by globular clusters does not exceed 10 7 M sun. It is concluded that the origin of the star population of galactic halo field can not be explained by destruction of already formed only astral globular clusters

  9. Haloes, molecules and multi-neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Marques Moreno, F.M

    2003-01-01

    Away from the equilibrium between protons and neutrons within stable nuclei, many exotic nuclei exist. Most of the known nuclear properties evolve smoothly with exoticism, but some extreme proton-neutron combinations have revealed during the last decade completely new concepts. They will be illustrated through three examples: the extended and dilute halo formed by very weakly bound neutrons, the molecular-like neutron orbitals found in nuclei exhibiting a clustering, and the recently revived debate on the possible existence of neutral nuclei. The different experimental results will be reviewed, and we will see how several properties of these new phenomena can be well understood within relatively simple theoretical approaches. (author)

  10. Sub-Coulomb fusion with halo nuclei

    International Nuclear Information System (INIS)

    Fekou-Youmbi, V.; Sida, J.L.; Alamanos, N.; Auger, F.; Bazin, D.; Borcea, C.; Cabot, C.; Cunsolo, A.; Foti, A.; Gillibert, A.; Lepine, A.; Lewitowicz, M.; Liguori-Neto, R.; Mittig, W.; Pollacco, E.; Roussel-Chomaz, P.; Volant, C.; Yong Feng, Y.

    1995-01-01

    The nuclear structure of halo nuclei may have strong influence on the fusion cross section at sub-barrier energies. The actual theoretical debate is briefly reviewed and sub-barrier fusion calculations for the system 11 Be+ 238 U are presented. An experimental program on sub-barrier fusion for the systems 7,9,10,11 Be+ 238 U is underway at GANIL. First results with 9 Be and 11 Be beams were obtained using the F.U.S.ION detector. Relative fission cross sections are presented. ((orig.))

  11. Project ECHO: Electronic Communications from Halo Orbit

    Science.gov (United States)

    Borrelli, Jason; Cooley, Bryan; Debole, Marcy; Hrivnak, Lance; Nielsen, Kenneth; Sangmeister, Gary; Wolfe, Matthew

    1994-01-01

    The design of a communications relay to provide constant access between the Earth and the far side of the Moon is presented. Placement of the relay in a halo orbit about the L2 Earth-Moon Lagrange point allows the satellite to maintain constant simultaneous communication between Earth and scientific payloads on the far side of the Moon. The requirements of NASA's Discovery-class missions adopted and modified for this design are: total project cost should not exceed $150 million excluding launch costs, launch must be provided by Delta-class vehicle, and the satellite should maintain an operational lifetime of 10 to 15 years. The spacecraft will follow a transfer trajectory to the L2 point, after launch by a Delta II 7925 vehicle in 1999. Low-level thrust is used for injection into a stationkeeping-free halo orbit once the spacecraft reaches the L2 point. The shape of this halo orbit is highly elliptical with the maximum excursion from the L2 point being 35000 km. A spun section and despun section connected through a bearing and power transfer assembly (BAPTA) compose the structure of the spacecraft. Communications equipment is placed on the despun section to provide for a stationary dual parabolic offset-feed array antenna system. The dual system is necessary to provide communications coverage during portions of maximum excursion on the halo orbit. Transmissions to the NASA Deep Space Network 34 m antenna include six channels (color video, two voice, scientific data from lunar payloads, satellite housekeeping and telemetry and uplinked commands) using the S- and X-bands. Four radioisotope thermoelectric generators (RTG's) provide a total of 1360 W to power onboard systems and any two of the four Hughes 13 cm ion thrusters at once. Output of the ion thrusters is approximately 17.8 mN each with xenon as the propellant. Presence of torques generated by solar pressure on the antenna dish require the addition of a 'skirt' extending from the spun section of the satellite

  12. Convergence properties of halo merger trees; halo and substructure merger rates across cosmic history

    Science.gov (United States)

    Poole, Gregory B.; Mutch, Simon J.; Croton, Darren J.; Wyithe, Stuart

    2017-12-01

    We introduce GBPTREES: an algorithm for constructing merger trees from cosmological simulations, designed to identify and correct for pathological cases introduced by errors or ambiguities in the halo finding process. GBPTREES is built upon a halo matching method utilizing pseudo-radial moments constructed from radially sorted particle ID lists (no other information is required) and a scheme for classifying merger tree pathologies from networks of matches made to-and-from haloes across snapshots ranging forward-and-backward in time. Focusing on SUBFIND catalogues for this work, a sweep of parameters influencing our merger tree construction yields the optimal snapshot cadence and scanning range required for converged results. Pathologies proliferate when snapshots are spaced by ≲0.128 dynamical times; conveniently similar to that needed for convergence of semi-analytical modelling, as established by Benson et al. Total merger counts are converged at the level of ∼5 per cent for friends-of-friends (FoF) haloes of size np ≳ 75 across a factor of 512 in mass resolution, but substructure rates converge more slowly with mass resolution, reaching convergence of ∼10 per cent for np ≳ 100 and particle mass mp ≲ 109 M⊙. We present analytic fits to FoF and substructure merger rates across nearly all observed galactic history (z ≤ 8.5). While we find good agreement with the results presented by Fakhouri et al. for FoF haloes, a slightly flatter dependence on merger ratio and increased major merger rates are found, reducing previously reported discrepancies with extended Press-Schechter estimates. When appropriately defined, substructure merger rates show a similar mass ratio dependence as FoF rates, but with stronger mass and redshift dependencies for their normalization.

  13. Subhalo demographics in the Illustris simulation: effects of baryons and halo-to-halo variation

    Science.gov (United States)

    Chua, Kun Ting Eddie; Pillepich, Annalisa; Rodriguez-Gomez, Vicente; Vogelsberger, Mark; Bird, Simeon; Hernquist, Lars

    2017-12-01

    We study the abundance of subhaloes in the hydrodynamical cosmological simulation Illustris, which includes both baryons and dark matter in a cold dark matter volume 106.5 Mpc a side. We compare Illustris to its dark-matter only (DMO) analogue, Illustris-Dark and quantify the effects of baryonic processes on the demographics of subhaloes in the host mass range 1011-3 × 1014 M⊙. We focus on both the evolved (z = 0) subhalo cumulative mass functions (SHMF) and the statistics of subhaloes ever accreted, i.e. infall SHMF. We quantify the variance in subhalo abundance at fixed host mass and investigate the physical reasons responsible for such scatter. We find that in Illustris, baryonic physics impacts both the infall and z = 0 subhalo abundance by tilting the DMO function and suppressing the abundance of low-mass subhaloes. The breaking of self-similarity in the subhalo abundance at z = 0 is enhanced by the inclusion of baryonic physics. The non-monotonic alteration of the evolved subhalo abundances can be explained by the modification of the concentration-mass relation of Illustris hosts compared to Illustris-Dark. Interestingly, the baryonic implementation in Illustris does not lead to an increase in the halo-to-halo variation compared to Illustris-Dark. In both cases, the normalized intrinsic scatter today is larger for Milky Way-like haloes than for cluster-sized objects. For Milky Way-like haloes, it increases from about eight per cent at infall to about 25 per cent at the current epoch. In both runs, haloes of fixed mass formed later host more subhaloes than early formers.

  14. Image-Processing-Based Study of the Interfacial Behavior of the Countercurrent Gas-Liquid Two-Phase Flow in a Hot Leg of a PWR

    Directory of Open Access Journals (Sweden)

    Gustavo A. Montoya

    2012-01-01

    Full Text Available The interfacial behavior during countercurrent two-phase flow of air-water and steam-water in a model of a PWR hot leg was studied quantitatively using digital image processing of a subsequent recorded video images of the experimental series obtained from the TOPFLOW facility, Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR, Dresden, Germany. The developed image processing technique provides the transient data of water level inside the hot leg channel up to flooding condition. In this technique, the filters such as median and Gaussian were used to eliminate the drops and the bubbles from the interface and the wall of the test section. A Statistical treatment (average, standard deviation, and probability distribution function (PDF of the obtained water level data was carried out also to identify the flow behaviors. The obtained data are characterized by a high resolution in space and time, which makes them suitable for the development and validation of CFD-grade closure models, for example, for two-fluid model. This information is essential also for the development of mechanistic modeling on the relating phenomenon. It was clarified that the local water level at the crest of the hydraulic jump is strongly affected by the liquid properties.

  15. Periportal halo on CT: spectrum of causes

    International Nuclear Information System (INIS)

    Volpacchio, Mariano; Baltazar, Alberto D.; Santamarina, Mario G.; Casetta, Liliana; Cione, Rodrigo; Sanchez, Gimena; Vallejos, Nancy

    2003-01-01

    Purpose: A periportal hypodense halo is a relatively frequent CT finding. This halo is attributed to the presence of edema or ecstatic lymphatic channels. In our series we illustrate the CT appearance of periportal edema and analyze its causes. Material and Methods: In a retrospective study we analyze a 78 patients series who showed periportal edema on e.v. contrast-enhanced abdominal CTs. The different causes of hepatic periportal edema (demonstrated on CT exams), were established by clinical, laboratory, surgical and anatomo-pathologic correlation. Results: In this study, 49 cases were diagnosed as having congestive heart failure (62,8%), 14 patients had viral hepatitis (18%), 5 patients had recently undergone orthotopic liver transplantation (6.4%), 3 patients had a diagnosis of infectious cholangitis (3.8%), 3 patients had abdominal trauma (3.8%), 2 patients had neoplastic disease (2.6%) and 2 patients had toxic hepatitis (2.6%). Conclusion: Periportal edema is a frequent and nonspecific finding associated with systemic diseases as well as liver specific entities. The integration of CT findings and clinical picture of periportal edema leads to a confident diagnosis of the main cause in most patients. (author)

  16. Halo's production in vitro on brachytherapy experiments

    International Nuclear Information System (INIS)

    Cuperschmid, Ethel M.; Sarmento, Eduardo V.; Campos, Tarcisio P.R.

    2011-01-01

    Since earlier of 1960, one of the most significant contributions of radiation biology has been the theory of cell killing as a function of increasing doses of a cytotoxic agent, as well as the demonstration of repair of sublethal or potentially lethal damage after irradiation. The impact of cellular and molecular radiobiology, by exploitation of cellular mechanisms related to apoptosis, may be the cell killing with irradiation by including changes other than unrepaired DNA damage. Based on the understanding of the tumor microenvironment and how growth factors and proteins produced by irradiated cells may alter cellular processes, improved combined-modality strategies may emerge. This effect was show since 1960's, but here we propose to demonstrate this phenomenon in Brachytherapy. The present goal is to verify the macroscopic response through the production and analysis of clonogenic control based on halos generation by radioactive seeds of Ho-165 and Sm-153, aiming to study the effect of this type of irradiation. Confluent cell culture flasks with HeLa cell line were subjected to radiation in a period up to five half-lives of radionuclide, respectively. Devices were introduced which set the polymer-ceramic Ho-165 and Sm-153 seeds in the vials. After a period of exposure, the flasks were stained with violet Gensiana. The results showed the formation of halos control of confluent cancer cells. This paper will describe these experiments in the current stage of the research and report the implications of this new way of therapy for cancer treatment. (author)

  17. Hot and Dry Cleaning of Biomass-Gasified Gas Using Activated Carbons with Simultaneous Removal of Tar, Particles, and Sulfur Compounds

    Directory of Open Access Journals (Sweden)

    Kinya Sakanishi

    2012-05-01

    Full Text Available This study proposes a gas-cleaning process for the simultaneous removal of sulfur compounds, tar, and particles from biomass-gasified gas using Fe-supported activated carbon and a water-gas shift reaction. On a laboratory scale, the simultaneous removal of H2S and COS was performed under a mixture of gases (H2/CO/CO2/CH4/C2H4/N2/H2S/COS/steam. The reactions such as COS + H2 → H2S + CO and COS + H2O → H2S + CO2 and the water-gas shift reaction were promoted on the Fe-supported activated carbon. The adsorption capacity with steam was higher than that without steam. On a bench scale, the removal of impurities from a gas derived from biomass gasification was investigated using two activated filters packed with Fe-supported activated carbon. H2S and COS, three- and four-ring polycyclic aromatic hydrocarbons (PAHs, and particles were removed and a water-gas shift reaction was promoted through the first filter at 320–350 °C. The concentrations of H2S and COS decreased to less than 0.1 ppmv. Particles and the one- and two-ring PAHs, except for benzene, were then removed through the second filter at 60–170 °C. The concentration of tar and particles decreased from 2428 to 102 mg Nm−3 and from 2244 to 181 mg Nm−3, respectively.

  18. Remarks on the spherical scalar field halo in galaxies

    International Nuclear Information System (INIS)

    Nandi, Kamal K.; Valitov, Ildar; Migranov, Nail G.

    2009-01-01

    Matos, Guzman, and Nunez proposed a model for the galactic halo within the framework of scalar field theory. We argue that an analysis involving the full metric can reveal the true physical nature of the halo only when a certain condition is maintained. We fix that condition and also calculate its impact on observable parameters of the model.

  19. Double folding model analysis of elastic scattering of halo nucleus ...

    Indian Academy of Sciences (India)

    carried out which provide valuable insight for improving our understanding of nuclear reactions. One of the interesting aspects is to understand the effect of the halo structure, on elastic scattering cross-sections at near-Coulomb barrier energies in reactions induced by neutron halo nuclei and weakly bound radioactive ...

  20. The prolate dark matter halo of the Andromeda galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kohei; Chiba, Masashi, E-mail: k.hayasi@astr.tohoku.ac.jp, E-mail: chiba@astr.tohoku.ac.jp [Astronomical Institute, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan)

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  1. Collisionless analogs of Riemann S ellipsoids with halo

    International Nuclear Information System (INIS)

    Abramyan, M.G.

    1987-01-01

    A spheroidal halo ensures equilibrium of the collisionless analogs of the Riemann S ellipsoids with oscillations of the particles along the direction of their rotation. Sequences of collisionless triaxial ellipsoids begin and end with dynamically stable members of collisionless embedded spheroids. Both liquid and collisionless Riemann S ellipsoids with weak halo have properties that resemble those of bars of SB galaxies

  2. A two-point correlation function for Galactic halo stars

    NARCIS (Netherlands)

    Cooper, A. P.; Cole, S.; Frenk, C. S.; Helmi, A.

    2011-01-01

    We describe a correlation function statistic that quantifies the amount of spatial and kinematic substructure in the stellar halo. We test this statistic using model stellar halo realizations constructed from the Aquarius suite of six high-resolution cosmological N-body simulations, in combination

  3. The edges of dark matter halos: theory and observations

    OpenAIRE

    More, Surhud

    2017-01-01

    I discuss recent theoretical advances which have led us to suggest a physical definition for the boundary of dark matter halos. We propose using the "splashback radius" which corresponds to the apocenter of recently infalling material as a physical boundary for dark matter halos. We also present how the splashback radius can be detected in observations.

  4. The Edges Of Dark Matter Halos: Theory And Observations

    Science.gov (United States)

    More, Surhud

    2017-06-01

    I discuss recent theoretical advances which have led us to suggest a physical definition for the boundary of dark matter halos. We propose using the "splashback radius" which corresponds to the apocenter of recently infalling material as a physical boundary for dark matter halos. We also present how the splashback radius can be detected in observations.

  5. Accurate mass and velocity functions of dark matter haloes

    Science.gov (United States)

    Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Klypin, Anatoly

    2017-08-01

    N-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four orders of magnitude in halo mass from ˜1011M⊙ with 8783 874 distinct haloes and 532 533 subhaloes. The total volume used is ˜515 Gpc3, more than eight times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (function. We also model the subhalo mass function and its relation to the distinct halo mass function. The set of models obtained provides a complete and precise framework for the description of haloes in the concordance Planck cosmology. Finally, we provide precise analytical fits of the Vmax maximum velocity function up to redshift z publicly available in the Skies and Universes data base.

  6. The f ( R ) halo mass function in the cosmic web

    Energy Technology Data Exchange (ETDEWEB)

    Braun-Bates, F. von; Winther, H.A.; Alonso, D.; Devriendt, J., E-mail: francesca.vonbraun-bates@physics.ox.ac.uk, E-mail: hans.a.winther@physics.ox.ac.uk, E-mail: david.alonso@physics.ox.ac.uk, E-mail: julien.devriendt@physics.ox.ac.uk [Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom)

    2017-03-01

    An important indicator of modified gravity is the effect of the local environment on halo properties. This paper examines the influence of the local tidal structure on the halo mass function, the halo orientation, spin and the concentration-mass relation. We use the excursion set formalism to produce a halo mass function conditional on large-scale structure. Our simple model agrees well with simulations on large scales at which the density field is linear or weakly non-linear. Beyond this, our principal result is that f ( R ) does affect halo abundances, the halo spin parameter and the concentration-mass relationship in an environment-independent way, whereas we find no appreciable deviation from \\text(ΛCDM) for the mass function with fixed environment density, nor the alignment of the orientation and spin vectors of the halo to the eigenvectors of the local cosmic web. There is a general trend for greater deviation from \\text(ΛCDM) in underdense environments and for high-mass haloes, as expected from chameleon screening.

  7. The prolate dark matter halo of the Andromeda galaxy

    International Nuclear Information System (INIS)

    Hayashi, Kohei; Chiba, Masashi

    2014-01-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  8. Influence of halo doping profiles on MOS transistor mismatch

    NARCIS (Netherlands)

    Andricciola, P.; Tuinhout, H.

    2009-01-01

    Halo implants are used in modern CMOS technology to reduce the short channel effect. However, the lateral non-uniformity of the channel doping has been proven to degenerate the mismatch performance. With this paper we want to discuss the influence of the halo profile on MOS transistor mismatch. The

  9. Comments on "Design of Entrained-Flow and Moving-, Packed-, and Fluidized-Bed Sorption Systems: Grain-Model Kinetics for Hot Coal-Gas Desulfurization with Limestone"

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Trnka, Otakar

    2002-01-01

    Roč. 41, - (2002), s. 1914-1915 ISSN 0888-5885 Institutional research plan: CEZ:AV0Z4072921 Keywords : hydrogen sulfide * calcium oxide * coal gas Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.247, year: 2002

  10. THE EFFECTS OF ANGULAR MOMENTUM ON HALO PROFILES

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Erik W; Rosenberg, Leslie J [Physics Department, University of Washington, Seattle, WA 98195-1580 (United States); Quinn, Thomas R, E-mail: lentze@phys.washington.edu, E-mail: ljrosenberg@phys.washington.edu, E-mail: trq@astro.washington.edu [Astronomy Department, University of Washington, Seattle, WA 98195-1580 (United States)

    2016-05-10

    The near universality of DM halo density profiles provided by N -body simulations proved to be robust against changes in total mass density, power spectrum, and some forms of initial velocity dispersion. Here we study the effects of coherently spinning up an isolated DM-only progenitor on halo structure. Halos with spins within several standard deviations of the simulated mean ( λ ≲ 0.20) produce profiles with negligible deviations from the universal form. Only when the spin becomes quite large ( λ ≳ 0.20) do departures become evident. The angular momentum distribution also exhibits a near universal form, which is also independent of halo spin up to λ ≲ 0.20. A correlation between these epidemic profiles and the presence of a strong bar in the virialized halo is also observed. These bar structures bear resemblance to the radial orbit instability in the rotationless limit.

  11. Phase models of galaxies consisting of disk and halo

    International Nuclear Information System (INIS)

    Osipkov, L.P.; Kutuzov, S.A.

    1987-01-01

    A method of finding the phase density of a two-component model of mass distribution is developed. The equipotential surfaces and the potential law are given. The equipotentials are lenslike surfaces with a sharp edge in the equatorial plane, which provides the existence of an imbedded thin disk in halo. The equidensity surfaces of the halo coincide with the equipotentials. Phase models for the halo and the disk are constructed separately on the basis of spatial and surface mass densities by solving the corresponding integral equations. In particular the models for the halo with finite dimensions can be constructed. The even part of the phase density in respect to velocities is only found. For the halo it depends on the energy integral as a single argument

  12. Fragmentation inside atomic cooling haloes exposed to Lyman-Werner radiation

    Science.gov (United States)

    Regan, John A.; Downes, Turlough P.

    2018-04-01

    Supermassive stars born in pristine environments in the early Universe hold the promise of being the seeds for the supermassive black holes observed as high redshift quasars shortly after the epoch of reionisation. H2 suppression is thought to be crucial in order to negate normal Population III star formation and allow high accretion rates to drive the formation of supermassive stars. Only in the cases where vigorous fragmentation is avoided will a monolithic collapse be successful, giving rise to a single massive central object. We investigate the number of fragmentation sites formed in collapsing atomic cooling haloes subject to various levels of background Lyman-Werner flux. The background Lyman-Werner flux manipulates the chemical properties of the gas in the collapsing halo by destroying H2. We find that only when the collapsing gas cloud shifts from the molecular to the atomic cooling regime is the degree of fragmentation suppressed. In our particular case, we find that this occurs above a critical Lyman-Werner background of J ˜ 10 J21. The important criterion being the transition to the atomic cooling regime rather than the actual value of J, which will vary locally. Once the temperature of the gas exceeds T ≳ 104 K and the gas transitions to atomic line cooling, then vigorous fragmentation is strongly suppressed.

  13. Bimodal Formation Time Distribution for Infall Dark Matter Halos

    Science.gov (United States)

    Shi, Jingjing; Wang, Huiyuan; Mo, H. J.; Xie, Lizhi; Wang, Xiaoyu; Lapi, Andrea; Sheth, Ravi K.

    2018-04-01

    We use a 200 {h}-1 {Mpc} a-side N-body simulation to study the mass accretion history (MAH) of dark matter halos to be accreted by larger halos, which we call infall halos. We define a quantity {a}nf}\\equiv (1+{z}{{f}})/(1+{z}peak}) to characterize the MAH of infall halos, where {z}peak} and {z}{{f}} are the accretion and formation redshifts, respectively. We find that, at given {z}peak}, their MAH is bimodal. Infall halos are dominated by a young population at high redshift and by an old population at low redshift. For the young population, the {a}nf} distribution is narrow and peaks at about 1.2, independent of {z}peak}, while for the old population, the peak position and width of the {a}nf} distribution both increase with decreasing {z}peak} and are both larger than those of the young population. This bimodal distribution is found to be closely connected to the two phases in the MAHs of halos. While members of the young population are still in the fast accretion phase at z peak, those of the old population have already entered the slow accretion phase at {z}peak}. This bimodal distribution is not found for the whole halo population, nor is it seen in halo merger trees generated with the extended Press–Schechter formalism. The infall halo population at {z}peak} are, on average, younger than the whole halo population of similar masses identified at the same redshift. We discuss the implications of our findings in connection to the bimodal color distribution of observed galaxies and to the link between central and satellite galaxies.

  14. What sets the central structure of dark matter haloes?

    Science.gov (United States)

    Ogiya, Go; Hahn, Oliver

    2018-02-01

    Dark matter (DM) haloes forming near the thermal cut-off scale of the density perturbations are unique, since they are the smallest objects and form through monolithic gravitational collapse, while larger haloes contrastingly have experienced mergers. While standard cold dark matter (CDM) simulations readily produce haloes that follow the universal Navarro-Frenk-White (NFW) density profile with an inner slope, ρ ∝ r-α, with α = 1, recent simulations have found that when the free-streaming cut-off expected for the CDM model is resolved, the resulting haloes follow nearly power-law density profiles of α ∼ 1.5. In this paper, we study the formation of density cusps in haloes using idealized N-body simulations of the collapse of proto-haloes. When the proto-halo profile is initially cored due to particle free-streaming at high redshift, we universally find ∼r-1.5 profiles irrespective of the proto-halo profile slope outside the core and large-scale non-spherical perturbations. Quite in contrast, when the proto-halo has a power-law profile, then we obtain profiles compatible with the NFW shape when the density slope of the proto-halo patch is shallower than a critical value, αini ∼ 0.3, while the final slope can be steeper for αini ≳ 0.3. We further demonstrate that the r-1.5 profiles are sensitive to small-scale noise, which gradually drives them towards an inner slope of -1, where they become resilient to such perturbations. We demonstrate that the r-1.5 solutions are in hydrostatic equilibrium, largely consistent with a simple analytic model, and provide arguments that angular momentum appears to determine the inner slope.

  15. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    International Nuclear Information System (INIS)

    Dinerstein, H.L.; Lester, D.F.

    1990-01-01

    Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon

  16. Lorenz curve and Gini coefficient reveal hot spots and hot moments for nitrous oxide emissions

    Science.gov (United States)

    Identifying hot spots and hot moments of N2O emissions in the landscape is critical for monitoring and mitigating the emission of this powerful greenhouse gas. We propose a novel use of the Lorenz curve and Gini coefficient (G) to quantify the heterogeneous distribution of N2O emissions from a lands...

  17. CEMP Stars in the Halo and Their Origin in Ultra-Faint Dwarf Galaxies

    Science.gov (United States)

    Beers, Timothy C.

    2018-06-01

    The very metal-poor (VMP; [Fe/H] 3.0) stars provide a direct view of Galactic chemical and dynamical evolution; detailed spectroscopic studies of these objects are the best way to identify and distinguish between various scenarios for the enrichment of early star-forming gas clouds soon after the Big Bang. It has been recognized that a large fraction of VMP (15-20%) and EMP stars (30-40%) possess significant over-abundances of carbon relative to iron, [C/Fe] > +0.7. This fraction rises to at least 80% for stars with [Fe/H] 3.0 belong to the CEMP-no sub-class, characterized by the lack of strong enhancements in the neutron-capture elements (e.g., [Ba/Fe] < 0.0). The CEMP-no abundance signature is commonly observed among stars ultra-faint dwarf spheroidal galaxies such as SEGUE-1. In addition, kinematic studies of CEMP-no stars strongly suggest an association with the outer-halo population of the Galaxy, which was likely formed from the accretion of low-mass mini-halos. These observations, and other lines of evidence, indicate that the CEMP-no stars of the Milky Way were born in low-mass dwarf galaxies, and later subsumed into the halo.

  18. Effects of deformations and orientations on neutron-halo structure of light-halo nuclei

    International Nuclear Information System (INIS)

    Sawhney, Gudveen; Gupta, Raj K.; Sharma, Manoj K.

    2013-01-01

    The availability of radioactive nuclear beams have enabled to study the structure of nuclei far from the stability line, which in turn led to the discovery of neutron-halo nuclei. These nuclei, located near the neutron drip-line exhibit a high probability of presence of one or two loosely bound neutrons at a large distance from the rest of nucleons. The fragmentation behavior is studied for 13 cases of 1n-halo nuclei, which include 11 Be, 14 B, 15 C, 17 C, 19 C, 22 N, 22 O, 23 O, 24 O, 24 F, 26 F, 29 Ne and 31 Ne, using the cluster-core model (CCM) extended to include the deformations and orientations of nuclei

  19. [Halos and multifocal intraocular lenses: origin and interpretation].

    Science.gov (United States)

    Alba-Bueno, F; Vega, F; Millán, M S

    2014-10-01

    To present the theoretical and experimental characterization of the halo in multifocal intraocular lenses (MIOL). The origin of the halo in a MIOL is the overlaying of 2 or more images. Using geometrical optics, it can be demonstrated that the diameter of each halo depends on the addition of the lens (ΔP), the base power (P(d)), and the diameter of the IOL that contributes to the «non-focused» focus. In the image plane that corresponds to the distance focus, the halo diameter (δH(d)) is given by: δH(d)=d(pn) ΔP/P(d), where d(pn) is the diameter of the IOL that contributes to the near focus. Analogously, in the near image plane the halo diameter (δH(n)) is: δH(n)=d(pd) ΔP/P(d), where d(pd) is the diameter of the IOL that contributes to the distance focus. Patients perceive halos when they see bright objects over a relatively dark background. In vitro, the halo can be characterized by analyzing the intensity profile of the image of a pinhole that is focused by each of the foci of a MIOL. A comparison has been made between the halos induced by different MIOL of the same base power (20D) in an optical bench. As predicted by theory, the larger the addition of the MIOL, the larger the halo diameter. For large pupils and with MIOL with similar aspheric designs and addition (SN6AD3 vs ZMA00), the apodized MIOL has a smaller halo diameter than a non-apodized one in distance vision, while in near vision the size is very similar, but the relative intensity is higher in the apodized MIOL. When comparing lenses with the same diffractive design, but with different spherical-aspheric base design (SN60D3 vs SN6AD3), the halo in distance vision of the spherical MIOL is larger, while in near vision the spherical IOL induces a smaller halo, but with higher intensity due to the spherical aberration of the distance focus in the near image. In the case of a trifocal-diffractive IOL (AT LISA 839MP) the most noticeable characteristic is the double-halo formation due to the 2 non

  20. THE OVERDENSITY AND MASSES OF THE FRIENDS-OF-FRIENDS HALOS AND UNIVERSALITY OF HALO MASS FUNCTION

    International Nuclear Information System (INIS)

    More, Surhud; Kravtsov, Andrey V.; Dalal, Neal; Gottloeber, Stefan

    2011-01-01

    The friends-of-friends algorithm (hereafter FOF) is a percolation algorithm which is routinely used to identify dark matter halos from N-body simulations. We use results from percolation theory to show that the boundary of FOF halos does not correspond to a single density threshold but to a range of densities close to a critical value that depends upon the linking length parameter, b. We show that for the commonly used choice of b = 0.2, this critical density is equal to 81.62 times the mean matter density. Consequently, halos identified by the FOF algorithm enclose an average overdensity which depends on their density profile (concentration) and therefore changes with halo mass, contrary to the popular belief that the average overdensity is ∼180. We derive an analytical expression for the overdensity as a function of the linking length parameter b and the concentration of the halo. Results of tests carried out using simulated and actual FOF halos identified in cosmological simulations show excellent agreement with our analytical prediction. We also find that the mass of the halo that the FOF algorithm selects crucially depends upon mass resolution. We find a percolation-theory-motivated formula that is able to accurately correct for the dependence on number of particles for the mock realizations of spherical and triaxial Navarro-Frenk-White halos. However, we show that this correction breaks down when applied to the real cosmological FOF halos due to the presence of substructures. Given that abundance of substructure depends on redshift and cosmology, we expect that the resolution effects due to substructure on the FOF mass and halo mass function will also depend on redshift and cosmology and will be difficult to correct for in general. Finally, we discuss the implications of our results for the universality of the mass function.

  1. Hot Surface Ignition of A Composite Fuel Droplet

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available The present study examines the characteristics of conductive heating (up to ignition temperature of a composite fuel droplet based on coal, liquid petroleum products, and water. In this paper, we have established the difference between heat transfer from a heat source to a fuel droplet in case of conductive (hot surface and convective (hot gas heat supply. The Leidenfrost effect influences on heat transfer characteristics significantly due to the gas gap between a composite fuel droplet and a hot surface.

  2. SIMULATIONS OF RECOILING MASSIVE BLACK HOLES IN THE VIA LACTEA HALO

    International Nuclear Information System (INIS)

    Guedes, J.; Madau, P.; Diemand, J.; Kuhlen, M.; Zemp, M.

    2009-01-01

    The coalescence of a massive black hole (MBH) binary leads to the gravitational-wave recoil of the system and its ejection from the galaxy core. We have carried out N-body simulations of the motion of a M BH = 3.7 x 10 6 M sun MBH remnant in the 'Via Lactea I' simulation, a Milky Way-sized dark matter halo. The black hole receives a recoil velocity of V kick = 80, 120, 200, 300, and 400 km s -1 at redshift 1.5, and its orbit is followed for over 1 Gyr within a 'live' host halo, subject only to gravity and dynamical friction against the dark matter background. We show that, owing to asphericities in the dark matter potential, the orbit of the MBH is highly nonradial, resulting in a significantly increased decay timescale compared to a spherical halo. The simulations are used to construct a semi-analytic model of the motion of the MBH in a time-varying triaxial Navarro-Frenk-White dark matter halo plus a spherical stellar bulge, where the dynamical friction force is calculated directly from the velocity dispersion tensor. Such a model should offer a realistic picture of the dynamics of kicked MBHs in situations where gas drag, friction by disk stars, and the flattening of the central cusp by the returning black hole are all negligible effects. We find that MBHs ejected with initial recoil velocities V kick ∼> 500 km s -1 do not return to the host center within a Hubble time. In a Milky Way-sized galaxy, a recoiling hole carrying a gaseous disk of initial mass ∼M BH may shine as a quasar for a substantial fraction of its 'wandering' phase. The long decay timescales of kicked MBHs predicted by this study may thus be favorable to the detection of off-nuclear quasar activity.

  3. Universal Dark Halo Scaling Relation for the Dwarf Spheroidal Satellites

    Science.gov (United States)

    Hayashi, Kohei; Ishiyama, Tomoaki; Ogiya, Go; Chiba, Masashi; Inoue, Shigeki; Mori, Masao

    2017-07-01

    Motivated by a recently found interesting property of the dark halo surface density within a radius, {r}\\max , giving the maximum circular velocity, {V}\\max , we investigate it for dark halos of the Milky Way’s and Andromeda’s dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky-Way-sized dark halos and find that the values of their surface densities, {{{Σ }}}{V\\max }, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the universal relation, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us with important clues for understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most subhalos evolve generally along the {r}\\max \\propto {V}\\max sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature for understanding the nature of the universality of {{{Σ }}}{V\\max }.

  4. DARK MATTER SUB-HALO COUNTS VIA STAR STREAM CROSSINGS

    International Nuclear Information System (INIS)

    Carlberg, R. G.

    2012-01-01

    Dark matter sub-halos create gaps in the stellar streams orbiting in the halos of galaxies. We evaluate the sub-halo stream crossing integral with the guidance of simulations to find that the linear rate of gap creation, R U , in a typical cold dark matter (CDM) galactic halo at 100 kpc is R U ≅0.0066 M-hat 8 -0.35 kpc -1 Gyr -1 , where M-hat 8 (≡ M-hat /10 8 M ☉ ) is the minimum mass halo that creates a visible gap. The relation can be recast entirely in terms of observables, as R U ≅0.059w -0.85 kpc -1 Gyr -1 , for w in kpc, normalized at 100 kpc. Using published data, the density of gaps is estimated for M31's NW stream and the Milky Way Pal 5 stream, Orphan stream, and Eastern Banded Structure. The estimated rates of gap creation all have errors of 50% or more due to uncertain dynamical ages and the relatively noisy stream density measurements. The gap-rate-width data are in good agreement with the CDM-predicted relation. The high density of gaps in the narrow streams requires a total halo population of 10 5 sub-halos above a minimum mass of 10 5 M ☉ .

  5. Historic halo displays as weather indicator: Criteria and examples

    Science.gov (United States)

    Neuhäuser, Dagmar L.; Neuhäuser, Ralph

    2016-04-01

    There are numerous celestial signs reported in historic records, many of them refer to atmospheric ("sub-lunar") phenomena, such as ice halos and aurorae. In an interdisciplinary collaboration between astrophysics and cultural astronomy, we noticed that celestial observations including meteorological phenomena are often misinterpreted, mostly due to missing genuine criteria: especially ice crystal halos were recorded frequently in past centuries for religious reasons, but are mistaken nowadays often for other phenomena like aurorae. Ice halo displays yield clear information on humidity and temperature in certain atmospheric layers, and thereby indicate certain weather patterns. Ancient so-called rain makers used halo observations for weather forecast; e.g., a connection between certain halo displays and rain a few day later is statistically significant. Ice halos exist around sun and moon and are reported for both (they can stay for several days): many near, middle, and far eastern records from day- and night-time include such observations with high frequency. (Partly based on publications on halos by D.L. Neuhäuser & R. Neuhäuser, available at http://www.astro.uni-jena.de/index.php/terra-astronomy.html)

  6. The Herschel-PACS Legacy of Low-mass Protostars: The Properties of Warm and Hot Gas Components and Their Origin in Far-UV Illuminated Shocks

    Science.gov (United States)

    Karska, Agata; Kaufman, Michael J.; Kristensen, Lars E.; van Dishoeck, Ewine F.; Herczeg, Gregory J.; Mottram, Joseph C.; Tychoniec, Łukasz; Lindberg, Johan E.; Evans, Neal J., II; Green, Joel D.; Yang, Yao-Lun; Gusdorf, Antoine; Itrich, Dominika; Siódmiak, Natasza

    2018-04-01

    Recent observations from Herschel allow the identification of important mechanisms responsible both for the heating of the gas that surrounds low-mass protostars and for its subsequent cooling in the far-infrared. Shocks are routinely invoked to reproduce some properties of the far-IR spectra, but standard models fail to reproduce the emission from key molecules, e.g., H2O. Here, we present the Herschel Photodetector Array Camera and Spectrometer (PACS) far-IR spectroscopy of 90 embedded low-mass protostars (Class 0/I). The Herschel-PACS spectral maps, covering ∼55–210 μm with a field of view of ∼50″, are used to quantify the gas excitation conditions and spatial extent using rotational transitions of H2O, high-J CO, and OH, as well as [O I] and [C II]. We confirm that a warm (∼300 K) CO reservoir is ubiquitous and that a hotter component (760 ± 170 K) is frequently detected around protostars. The line emission is extended beyond ∼1000 au spatial scales in 40/90 objects, typically in molecular tracers in Class 0 and atomic tracers in Class I objects. High-velocity emission (≳90 km s‑1) is detected in only 10 sources in the [O I] line, suggesting that the bulk of [O I] arises from gas that is moving slower than typical jets. Line flux ratios show an excellent agreement with models of C-shocks illuminated by ultraviolet (UV) photons for pre-shock densities of ∼105 cm‑3 and UV fields 0.1–10 times the interstellar value. The far-IR molecular and atomic lines are a unique diagnostic of feedback from UV emission and shocks in envelopes of deeply embedded protostars.

  7. Chemical Cartography. I. A Carbonicity Map of the Galactic Halo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun; Kim, Young Kwang [Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134 (Korea, Republic of); Beers, Timothy C.; Placco, Vinicius; Yoon, Jinmi [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Carollo, Daniela [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Masseron, Thomas [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Jung, Jaehun, E-mail: youngsun@cnu.ac.kr [Department of Astronomy, Space Science, and Geology, Chungnam National University, Daejeon 34134 (Korea, Republic of)

    2017-02-10

    We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H] = −1.5 and −2.2, respectively. From consideration of the absolute carbon abundances for our sample, A (C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP- s stars (those with strong overabundances of elements associated with the s -process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP- s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP- s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.

  8. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering

    Energy Technology Data Exchange (ETDEWEB)

    White, S D.M.; Rees, M J [Cambridge Univ. Inst. of Astronomy (UK)

    1978-05-01

    It is suggested that most of the material in the Universe condensed at an early epoch into small 'dark' objects. Irrespective of their nature, these objects must subsequently have undergone hierarchical clustering, whose present scale is inferred from the large-scale distribution of galaxies. As each stage of the hierarchy forms and collapses, relaxation effects wipe out its substructure, and to a self-similar distribution of bound masses. The entire luminous content of galaxies, however, results from the cooling and fragmentation of residual gas within the transient potential wells provided by the dark matter. Every galaxy thus forms as a concentrated luminous core embedded in an extensive dark halo. The observed sizes of galaxies and their survival through later stages of the hierarchy seem inexplicable without invoking substantial dissipation; this dissipation allows the galaxies to become sufficiently concentrated to survive the disruption of their halos in groups and clusters of galaxies. A specific model is proposed in which ..cap omega.. approximately equals 0.2, the dark matter makes up 80 per cent of the total mass, and half the residual gas has been converted into luminous galaxies by the present time. This model is consistent with the inferred proportions of dark matter and gas in rich clusters, with the observed luminosity density of the Universe and with the observed radii of galaxies; further, it predicts the characteristic luminosities of bright galaxies can give a luminosity function of the observed shape.

  9. Controlling beam halo-chaos via backstepping design

    International Nuclear Information System (INIS)

    Gao Yuan; Kong Feng

    2008-01-01

    A backstepping control method is proposed for controlling beam halo-chaos in the periodic focusing channels (PFCs) of high-current ion accelerator. The analysis and numerical results show that the method, via adjusting an exterior magnetic field, is effective to control beam halo chaos with five types of initial distribution ion beams, all statistical quantities of the beam halo-chaos are largely reduced, and the uniformity of ion beam is improved. This control method has an important value of application, for the exterior magnetic field can be easily adjusted in the periodical magnetic focusing channels in experiment

  10. Is there a composition gradient in the halo

    International Nuclear Information System (INIS)

    Kraft, R.P.; Trefzger, C.F.; Suntzeff, N.

    1979-01-01

    In the inner halo (galactocentric distance R < approximately 8 kpc), the Basel RGU photometry should allow the derivation of the shapes and dimensions of the iso-abundance contours. For the outer halo to R approximately 30 kpc, the authors review techniques based on Δs-measurements of RR Lyraes (Lick) and intermediate band-pass photometry of globular-cluster giants (Searle and Zinn, Palomar). Both methods suggest little change in mean [Fe/H] between 10 and 30 kpc; however, both may be biased against the discovery of very metal-poor objects. The conclusion that the outer halo has no abundance gradient may be somewhat premature. (Auth.)

  11. Mass measurement of halo nuclides and beam cooling with the mass spectrometer Mistral; Mesure de masse de noyaux a halo et refroidissement de faisceaux avec l'experience MISTRAL

    Energy Technology Data Exchange (ETDEWEB)

    Bachelet, C

    2004-12-01

    Halo nuclides are a spectacular drip-line phenomenon and their description pushes nuclear theories to their limits. The most critical input parameter is the nuclear binding energy; a quantity that requires excellent measurement precision, since the two-neutron separation energy is small at the drip-line by definition. Moreover halo nuclides are typically very short-lived. Thus, a high accuracy instrument using a quick method of measurement is necessary. MISTRAL is such an instrument; it is a radiofrequency transmission mass spectrometer located at ISOLDE/CERN. In July 2003 we measured the mass of the Li{sup 11}, a two-neutron halo nuclide. Our measurement improves the precision by a factor 6, with an error of 5 keV. Moreover the measurement gives a two-neutron separation energy 20% higher than the previous value. This measurement has an impact on the radius of the nucleus, and on the state of the two valence neutrons. At the same time, a measurement of the Be{sup 11} was performed with an uncertainty of 4 keV, in excellent agreement with previous measurements. In order to measure the mass of the two-neutron halo nuclide Be{sup 14}, an ion beam cooling system is presently under development which will increase the sensitivity of the spectrometer. The second part of this work presents the development of this beam cooler using a gas-filled Paul trap. (author)

  12. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    Science.gov (United States)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  13. Acoustic sensors for fission gas characterization: R and D skills devoted to innovative instrumentation in MTR, non-destructive devices in hot lab facilities and specific transducers for measurements of LWR rods in nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Ferrandis, J.Y.; Leveque, G.; Rosenkrantz, E.; Augereau, F.; Combette, P. [University Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France)

    2015-07-01

    irradiation. The instrumented fuel rod incorporating the ultrasonic gas composition sensor was finally irradiated during 2 weeks in nominal conditions. Neutronics calculation will be performed in order to calculate the thermal and fast neutron fluence and the gamma dose absorbed by acoustic sensor. A first evaluation gives a thermal fluence about 4,5.10{sup 19} n/cm{sup 2}, a fast neutrons fluence about 4,5.1018 n/cm{sup 2} and a total gamma dose up to 0,25 MGy The maximal temperature during the irradiation test was about 150 C. Although the ultrasonic sensor appears to be damaged, the optimization of the electrical attack parameters and the development of a new signal processing maintain the measurement feasibility up the end of the irradiation campaign. It was the first time that the composition of fission gas has been monitored all along an irradiation experiment in a MTR, giving access to the gas release kinetics. New researches involve thick film transducers produced by screen-printing process in order to propose piezoelectric structures for harsh temperature and irradiation measurements. The second project consists in the development of a non-destructive device that can be directly applied on a LWR fuel rod. The problem to be solved relates to the measurement of the fission gas pressure and composition in a fuel rod using a non-destructive method. Fuel rod internal pressure is one of the safety criteria applied in nuclear power analyses. This criterion must be verified in order to avoid any fuel-cladding gap reopening risk and therefore any local clad ballooning. Apart from the safety implications, this parameter is also a fuel behaviour indicator and reflects the overall fuel performance in operation, but also during shipping and long-term storage. Rod internal pressure is one criterion amongst others, like cladding corrosion, against which the acceptable fuel burn-up limit is set. A sensor has been achieved in 2007. A full-scale hot cell test of the internal gas

  14. The immitigable nature of assembly bias: the impact of halo definition on assembly bias

    Science.gov (United States)

    Villarreal, Antonio S.; Zentner, Andrew R.; Mao, Yao-Yuan; Purcell, Chris W.; van den Bosch, Frank C.; Diemer, Benedikt; Lange, Johannes U.; Wang, Kuan; Campbell, Duncan

    2017-11-01

    Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by spherical overdensity parameter, Δ. We summarize the strength of concentration-, shape-, and spin-dependent halo clustering as a function of halo mass and halo definition. Concentration-dependent clustering depends strongly on mass at all Δ. For conventional halo definitions (Δ ∼ 200 - 600 m), concentration-dependent clustering at low mass is driven by a population of haloes that is altered through interactions with neighbouring haloes. Concentration-dependent clustering can be greatly reduced through a mass-dependent halo definition with Δ ∼ 20 - 40 m for haloes with M200 m ≲ 1012 h-1M⊙. Smaller Δ implies larger radii and mitigates assembly bias at low mass by subsuming altered, so-called backsplash haloes into now larger host haloes. At higher masses (M200 m ≳ 1013 h-1M⊙) larger overdensities, Δ ≳ 600 m, are necessary. Shape- and spin-dependent clustering are significant for all halo definitions that we explore and exhibit a relatively weaker mass dependence. Generally, both the strength and the sense of assembly bias depend on halo definition, varying significantly even among common definitions. We identify no halo definition that mitigates all manifestations of assembly bias. A halo definition that mitigates assembly bias based on one halo property (e.g. concentration) must be mass dependent. The halo definitions that best mitigate concentration-dependent halo clustering do not coincide with the expected average splashback radii at fixed halo mass.

  15. Effect of ion velocity on creation of point defects halos of latent tracks in LiF

    Czech Academy of Sciences Publication Activity Database

    Volkov, A.E.; Schwartz, K.; Medvedev, Nikita; Trautmann, C.

    2017-01-01

    Roč. 407, Sep (2017), s. 80-85 ISSN 0168-583X R&D Projects: GA MŠk LG15013; GA MŠk(CZ) LM2015083 Institutional support: RVO:68378271 Keywords : swift heavy ion * electronic stopping * track * LiF * color centers * defect halo Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.109, year: 2016

  16. Projection Of The Stellar To Halo Mass Relation Into The Scaling Relations Of A Disc Galaxy Population

    Science.gov (United States)

    Mancillas, Brisa; Ávila-Reese, Vladimir; Rodríguez-Puebla, Aldo; Valls-Gabaud, David

    2017-06-01

    Several pieces of evidence suggest that disk formation is the generic process of assembly of galaxies, while the spheroidal component arises from the merging/interactions of disks as well as from their secular evolution. To understand galaxy formation and evolution, a cosmological framework is required. The current cosmological paradigm is summarized in the so-called Λ-cold dark matter model (ΛCDM). The statistical connection between the masses of the observed galaxies and those of the simulated CDM halos in large volumes leads us to the galaxy-halo mass relation, which summarizes the main astrophysical processes of galaxy formation and evolution (gas heating and cooling, SF, SN- and AGN-driven feedback, etc.). An important question is how this relation constrained by semi-empirical methods (e.g., Rodriguez-Puebla et al. 2014) is "projected" into the disk galaxy scaling relations and other galaxy correlations. To explore this question, we generate a synthetic catalog of thousands of disk/halo systems by means of an extended Mo, Mao & White (1998) model, and by using as input the baryonic-to-halo mass relation, fbar(Mh), of local disk galaxy as recently constrained by Calette et al. (2015).

  17. Gas to liquid to solid transition in halogen hot atom chemistry. 6. Product formation routes and chemical selectivity of high energy iodine reactions with butyne isomers

    International Nuclear Information System (INIS