WorldWideScience

Sample records for hot fusion reactions

  1. Analytical criterion for shock ignition of fusion reaction in hot spot

    International Nuclear Information System (INIS)

    Ribeyre, X.; Tikhonchuk, V. T.; Breil, J.; Lafon, M.; Vallet, A.; Bel, E. L.

    2013-01-01

    Shock ignition of DT capsules involves two major steps. First, the fuel is assembled by means of a low velocity conventional implosion. At stagnation, the central core has a temperature lower than the one needed for ignition. Then a second, strong spherical converging shock, launched from a high intensity laser spike, arrives to the core. This shock crosses the core, rebounds at the target center and increases the central pressure to the ignition conditions. In this work we consider this latter phase by using the Guderley self-similar solution for converging flows. Our model accounts for the fusion reaction energy deposition, thermal and radiation losses thus describing the basic physics of hot spot ignition. The ignition criterion derived from the analytical model is successfully compared with full scale hydrodynamic simulations. (authors)

  2. Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Colaïtis, A.; Ribeyre, X.; Le Bel, E.; Duchateau, G.; Nicolaï, Ph.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, Université de Bordeaux - CNRS - CEA, UMR 5107,351 Cours de la Libération, 33400 Talence (France)

    2016-07-15

    The effects of Hot Electrons (HEs) generated by the nonlinear Laser-Plasma Interaction (LPI) on the dynamics of Shock Ignition Inertial Confinement Fusion targets are investigated. The coupling between the laser beam, plasma dynamics and hot electron generation and propagation is described with a radiative hydrodynamics code using an inline model based on Paraxial Complex Geometrical Optics [Colaïtis et al., Phys. Rev. E 92, 041101 (2015)]. Two targets are considered: the pure-DT HiPER target and a CH-DT design with baseline spike powers of the order of 200–300 TW. In both cases, accounting for the LPI-generated HEs leads to non-igniting targets when using the baseline spike powers. While HEs are found to increase the ignitor shock pressure, they also preheat the bulk of the imploding shell, notably causing its expansion and contamination of the hotspot with the dense shell material before the time of shock convergence. The associated increase in hotspot mass (i) increases the ignitor shock pressure required to ignite the fusion reactions and (ii) significantly increases the power losses through Bremsstrahlung X-ray radiation, thus rapidly cooling the hotspot. These effects are less prominent for the CH-DT target where the plastic ablator shields the lower energy LPI-HE spectrum. Simulations using higher laser spike powers of 500 TW suggest that the CH-DT capsule marginally ignites, with an ignition window width significantly smaller than without LPI-HEs, and with three quarters of the baseline target yield. The latter effect arises from the relation between the shock launching time and the shell areal density, which becomes relevant in presence of a LPI-HE preheating.

  3. Synthesis and decay process of superheavy nuclei with Z=119-122 via hot-fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghahramany, N.; Ansari, A. [Shiraz University, Department of Physics and Biruni Observatory, College of Science, Shiraz (Iran, Islamic Republic of)

    2016-09-15

    In this research article attempts have been made to calculate the superheavy-nuclei synthesis characteristics including, the potential energy parameters, fusion probability, fusion and evaporation residue (ER) cross sections as well as, decay properties of compound nucleus and the residue nuclei formation probability for elements with Z=119-122 by using the hot-fusion reactions. It is concluded that, although a selection of double magic projectiles such as {sup 48}Ca with high binding energy, simplifies the calculations significantly due to spherical symmetric shape of the projectile, resulting in high evaporation residue cross section, unfortunately, nuclei with Z > 98 do not exist in quantities sufficient for constructing targets for the hot-fusion reactions. Therefore, practically our selection is fusion reactions with titanium projectile because the mass production of target nuclei for experimental purposes is more feasible. Based upon our findings, it is necessary, for new superheavy-nuclei production with Z > 119, to use neutron-rich projectiles and target nuclei. Finally, the maximal evaporation residue cross sections for the synthesis of superheavy elements with Z=119-122 have been calculated and compared with the previously founded ones in the literature. (orig.)

  4. Effect of deformations on the compactness of odd-Z superheavy nuclei formed in cold and hot fusion reactions

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2018-03-01

    Using the extended fragmentation theory, the compactness of hot and cold fusion reactions is analyzed for odd-Z nuclei ranging Z = 105- 117. The calculations for the present work are carried out at T = 0MeV and ℓ = 0 ħ, as the temperature and angular momentum effects remain silent while addressing the orientation degree of freedom (i.e. compact angle configuration). In the hot fusion, 48Ca (spherical) + actinide (prolate) reaction, the non-equatorial compact (nec) shape is obtained for Z = 113 nucleus. On the other hand, Z > 113 nuclei favor equatorial compact (ec) configuration. The distribution of barrier height (VB) illustrate that the ec-shape is obtained when the magnitude of quadrupole deformation of the nucleus is higher than the hexadecupole deformation. In other words, negligible or small -ve β4-deformations support ec configurations. On the other hand, large (+ve) magnitude of the β4-deformation suggests that the configuration appears for compact angle θc < 90 °, leading to nec structure. Similar deformation effects are observed for Bi-induced reactions, in which not belly-to-belly compact (nbbc) configurations are seen at θc = 42 °. In addition to the effect of β2 and β4-deformations, the exclusive role of octupole deformations (β3) is also analyzed. The β3-deformations do not follow the reflection symmetry as that of β2 and β4, leading to the possible occurrence of compact configuration within 0° to 180° angular range.

  5. Cold fusion and hot history

    International Nuclear Information System (INIS)

    Lewenstein, B.

    1996-01-01

    The history of cold fusion research following the announcement of the Pons-Fleischmann experiment is described in detail, including all the confusion, responses of scientists, personal impressions, personal quotations, reactions of the media, references to contemporary sources, etc. (P.A.). 5 figs

  6. Fusion dynamics in 40Ca induced reactions

    International Nuclear Information System (INIS)

    Prasad, E.; Hinde, D.J.; Williams, E.

    2017-01-01

    Synthesis of superheavy elements (SHEs) and investigation of their properties are among the most challenging research topics in modern science. A non-compound nuclear process called quasi fission is partly responsible for the very low production cross sections of SHEs. The formation and survival probabilities of the compound nucleus (CN) strongly depend on the competition between fusion and quasi fission. A clear understanding of these processes and their dynamics is required to make reliable predictions of the best reactions to synthesise new SHEs. All elements beyond Nh are produced using hot fusion reactions and beams of 48 Ca were used in most of these experiments. In this context a series of fission measurements have been carried out at the Australian National University (ANU) using 40;48 Ca beams on various targets ranging from 142 Nd to 249 Cf. Some of the 40 Ca reactions will be discussed in this symposium

  7. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  8. Cold versus hot fusion deuterium branching ratios

    International Nuclear Information System (INIS)

    Fox, H.; Bass, R.

    1995-01-01

    A major source of misunderstanding of the nature of cold nuclear fusion has been the expectation that the deuterium branching ratios occurring within a palladium lattice would be consistent with the gas-plasma branching ratios. This misunderstanding has led to the concept of the dead graduate student, the 1989's feverish but fruitless search for neutron emissions from cold fusion reactors, and the follow-on condemnation of the new science of cold fusion. The experimental facts are that in a properly loaded palladium lattice, the deuterium fusion produces neutrons at little above background, a greatly less-than-expected production of tritium (the tritium desert), and substantially more helium-4 than is observed in hot plasma physics. The experimental evidence is now compelling (800 reports of success from 30 countries) that cold nuclear fusion is a reality, that the branching ratios are unexpected, and that a new science is struggling to be recognized. Commercialization of some types of cold fusion devices has already begun

  9. Selected aspects of fusion reactions

    International Nuclear Information System (INIS)

    Lacroix, D.

    2003-01-01

    In this lecture, we present selected aspects of nuclear fusion. The importance of the initial geometry of the reaction and its relation to fusion barrier are first discussed. The effect of deformation leading to the notion of barrier distribution is then illustrated. After a brief overview of the advantages of macroscopic theories, the dynamics of nuclear system under large amplitude motion is reviewed. The di-nuclear concept is presented to understand the competition between fusion and quasi-fission. This concept is then generalized to account for the dissipative dynamics in multidimensional collective space. The last part of this lecture is devoted to new aspects encountered with radioactive beams specific properties of very extended neutron rich system, influence of pygmy or soft dipole resonances and charge exchange far from stability are discussed. (author)

  10. Measurement of inertial confinement fusion reaction rate

    International Nuclear Information System (INIS)

    Peng Xiaoshi; Wang Feng; Tang Daorun; Liu Shenye; Huang Tianxuan; Liu Yonggang; Xu Tao; Chen Ming; Mei Yu

    2011-01-01

    Fusion reaction rate is an important parameter for measuring compression during the implosion in inertial confinement fusion experiment. We have developed a system for fusion reaction history measurement with high temporal resolution. The system is composed of plastic scintillator and nose cone, optical system and streak camera. We have applied this system on the SG-III prototype for fusion reaction rate measuring. For the first time, fusion reaction rate history have been measured for deuterium-tritium filled targets with neutrons yields about 10 10 . We have analyzed possible influence factor during fusion reaction rate measuring. It indicates that the instrument measures fusion reaction bang time at temporal resolutions as low as 30 ps.(authors)

  11. On the existence of hot positronium reactions

    International Nuclear Information System (INIS)

    Lazzarini, E.

    1984-01-01

    The existence of hot Ps reactions is nowadays questioned; the controversy arises from the two models (the Ore gap and the spur theories) advanced in order to explain the mechanism of the positronium formation and of its inhibition in liquids by dissolution of certain compounds. The hypothesis of the hot Ps reactions was initially advanced as an additional statement for explaining the inhibition phenomenon within the framework of the Ore gap theory, but it is not considered necessary for the spur theory. The present paper is chiefly intended as a presentation of this particular aspect of Ps chemistry to hot atom chemists unspecialized in the field. The reader is assumed to be familiar with the basic physics and experimental methods used in positronium chemistry. Contents: positrons and positronium formation; inhibition and enhancement of Ps formation in solutions; positronium reactions in gases. (Auth.)

  12. Outline of cold nuclear fusion reaction

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1991-01-01

    In 2010, as the total supply capacity of primary energy, 666 million liter is anticipated under the measures of thorough energy conservation. The development of energy sources along the energy policy based on environment preservation, safety, the quantity of resources and economy is strongly demanded. The nuclear power generation utilizing nuclear fission has been successfully carried out. As the third means of energy production, the basic research and technical development have been actively advanced on the energy production utilizing nuclear fusion reaction. The main object of the nuclear fusion research being advanced now is D-D reaction and D-T reaction. In order to realize low temperature nuclear fusion reaction, muon nuclear fusion has been studied so far. The cold nuclear fusion reaction by the electrolysis of heavy water has been reported in 1989, and its outline is ixplained in this report. The trend of the research on cold nuclear fusion is described. But the possibility of cold nuclear fusion as an energy source is almost denied. (K.I.)

  13. Study of fusion reactions forming Cf nuclei

    International Nuclear Information System (INIS)

    Khuyagbaatar, J.; Hinde, D. J.; Du Rietz, R.; Carter, I. P.; Dasgupta, M.; Duellmann, C. E.; Evers, M.; Wakhle, A.; Williams, E.; Yakushev, A.

    2013-01-01

    The formation of a compound nucleus in different projectile and target combinations is a powerful method for investigating the fusion process. Recently, the dominance of quasi-fission over fusion-fission has been inferred for 34 S+ 208 Pb in comparison to 36 S+ 206 Pb; both reactions lead to the compound nucleus 242 Cf*.The mass and angle distributions of the fission fragments from these reactions were studied in order to further investigate the presence of quasi-fission. (authors)

  14. Fusion and reactions of exotic nuclei

    Directory of Open Access Journals (Sweden)

    Sánchez-Benítez A.M.

    2011-10-01

    Full Text Available Close to the drip lines, the scattering cross sections of halo nuclei show a different behaviour as compared to the tightly bound projectiles of the stability line. Several experiments carried out in the last decade have been dedicated to investigate the competition between transfer, breakup and fusion channels at energies around and below the Coulomb barrier. The rather complex scenario gives rise to conflicting conclusions concerning the effect of breakup and transfer on reaction dynamics and the sub-barrier fusion process. In this work we discuss recent experimental findings in fusion and reactions of 6He halo nucleus at energies around the Coulomb barrier.

  15. Incomplete fusion reactions in Ho

    Indian Academy of Sciences (India)

    model [9], promptly emitted particles (PEPs) model [10], exciton model [11], etc. During the past decade a large number of reports have appeared [12–14] showing the occurrence of incomplete fusion at beam energy just above the Coulomb barrier. Recoil range distribution (RRD) measurements are particularly attractive for ...

  16. A view on reactions of complete fusion

    International Nuclear Information System (INIS)

    Delchev, I.I.; Petkov, I.J.

    1978-11-01

    Complete fusion reactions are analysed within the framework of a theoretical model. Energy density interaction potentials are made use of and are renormalized for the purpose. A large number of heavy ion reactions are studied and the calculated critical angular moments are compared with experimental data

  17. Fusion reaction product diagnostics in ASDEX

    International Nuclear Information System (INIS)

    Bosch, H.S.

    1987-01-01

    A diagnostic method was developed to look for the charged fusion products from the D(D,p)T-reactions in the divertor tokamak ASDEX. With a semi-conductor detector it was possible to evaluate the ion temperature in thermal plasmas from the proton energy spectra as well as from the triton spectra. In lower-hybrid wave heated plasmas non-thermal (fast) ions were observed. These ions create fusion products with a characteristically different energy spectrum. (orig.)

  18. Verification of cold nuclear fusion reaction, (1)

    International Nuclear Information System (INIS)

    Yoshida, Zenko; Aratono, Yasuyuki; Hirabayashi, Takakuni

    1991-01-01

    Can cold nuclear fusion reaction occur as is expected? If it occurs, what extent is its reaction probability? At present after 2 years elapsed since its beginning, the clear solution of these questions is not yet obtained. In many reaction systems employing different means, the experiments to confirm the cold nuclear fusion reaction have been attempted. In order to confirm that the nuclear fusion reaction of deuterium mutually has occurred, the neutrons, He-3, protons, tritium or generated heat, which were formed by the reaction and released from the system, are measured. Since it is considered that the frequency of the occurrence at normal temperature of the reaction is very low, it is necessary to select the most suitable method upon evaluating the limit of detection peculiar to the measuring methods. The methods of measuring neutrons, protons, gamma ray and generated heat, and the reaction systems by electrolytic process and dry process are explained. The detection of plural kinds of the reaction products and the confirmation of synchronism of signals are important. (K.I.)

  19. Reaction mechanisms in heavy ion fusion

    Directory of Open Access Journals (Sweden)

    Lubian J.

    2011-10-01

    Full Text Available We discuss the reaction mechanisms involved in heavy ion fusion. We begin with collisions of tightly bound systems, considering three energy regimes: energies above the Coulomb barrier, energies just below the barrier and deep sub-barrier energies. We show that channel coupling effects may influence the fusion process at above-barrier energies, increasing or reducing the cross section predicted by single barrier penetration model. Below the Coulomb barrier, it enhances the cross section, and this effect increases with the system’s size. It is argued that this behavior can be traced back to the increasing importance of Coulomb coupling with the charge of the collision partners. The sharp drop of the fusion cross section observed at deep sub-barrier energies is addressed and the theoretical approaches to this phenomenon are discussed. We then consider the reaction mechanisms involved in fusion reactions of weakly bound systems, paying particular attention to the calculations of complete and incomplete fusion available in the literature.

  20. Fusion chain reaction - a chain reaction with charged particles

    International Nuclear Information System (INIS)

    Peres, A.; Shvarts, D.

    1975-01-01

    When a DT-plasma is compressed to very high density, the particles resulting from nuclear reactions give their energy mostly to D and T ions, by nuclear collisions, rather than to electrons as usual. Fusion can thus proceed as a chain reaction, without the need of thermonuclear temperatures. In this paper, we derive relations for the suprathermal ion population created by a fusion reaction. Numerical integration of these equations shows that a chain reaction can proceed in a cold infinite DT-plasma at densities above 8.4x10 27 ions.cm -3 . Seeding the plasma with a small amount of 6 Li reduces the critical density to 7.2x10 27 ions.cm -3 (140000times the normal solid density). (author)

  1. Effects of reaction channels in subbarrier fusion reactions

    International Nuclear Information System (INIS)

    Dasso, C.H.

    1984-01-01

    In this lecture we consider some aspects of fusion reactions between heavy ions at bombarding energies which are below or close to that of the Coulomb barrier. This problem has been traditionally confronted with simple barrier penetration calculations. So we start with a very brief review of what we can call the ''conventional'' procedure. (orig.)

  2. Study of Cold Fusion Reactions Using Collective Clusterization Approach

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2017-10-01

    Within the framework of the dynamical cluster decay model (DCM), the 1n evaporation cross-sections ({σ }1n) of cold fusion reactions (Pb and Bi targets) are calculated for {Z}{CN}=104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy {E}{CN}* =15+/- 1 {MeV}, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (B f ) and neutron separation energies ({S}1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β 2i-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the 1n cross-sections are addressed for {Z}{CN}=104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto {Z}{CN}=109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia ({I}{NS}) is also investigated at these energies. Supported by the Council of Scientific and Industrial Research (CSIR), in the Form of Research Project Grant No. 03(1341)/15/EMR-II, and to DST, New Delhi, for INSPIRE-Fellowship Grant No. DST/INSPIRE/03/2015/000199

  3. Neutrino reactions in hot and dense matter

    International Nuclear Information System (INIS)

    Lohs, Andreas

    2015-01-01

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  4. Neutrino reactions in hot and dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lohs, Andreas

    2015-04-13

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  5. A dynamical theory of incomplete fusion reactions: The breakup-fusion reaction approach

    International Nuclear Information System (INIS)

    Udagawa, T.

    1984-01-01

    A dynamical theory of partial fusion reactions is presented, which may fill the gap between direct and compound nuclear reaction theories. With the new theory one can calculate partial fusion taking place in three-body (and many more) channels reached via direct reactions, e.g., breakup and knockout reactions. The authors present first the results for the cross section for such reactions, taking as an example breakup followed by fusion. They then discuss a physical picture which emerges from their theory, namely that the partial fusion reactions, particularly of the massive-transfer type, take place in a so-called deep peripheral region. It is also shown that the deep peripheral character of such processes diminishes as the mass of the fused system decreases, so that the reactions essentially evolve to the usual peripheral character. Finally, comparisons are made of results of numerical calculations with experimental data, taking as an example the /sup 159/Tb(/sup 14/N,α) reaction with E/sub lab/ = 95 MeV

  6. Cold fusion reactions with 48Ca

    International Nuclear Information System (INIS)

    Gaeggeler, H.W.; Jost, D.T.; Tuerler, A.

    1989-04-01

    Cold fusion reactions with 48 Ca on the targets 208 Pb, 209 Bi, 197 Au, 184 W, 180 Hf are reported. The experiments were performed at the velocity filter SHIP of GSI. The maximum cross sections show a steep descent by about four orders of magnitude when going from 224 Th to 228 U as compound nuclei. Between uranium and einsteinium the cross sections stay rather low and increase by about two orders of magnitude for nobelium. For lawrencium the cross section decrease again. 7 figs., 1 tab., 38 refs

  7. Kinetics of chemical reactions initiated by hot atoms

    International Nuclear Information System (INIS)

    Firsova, L.P.

    1977-01-01

    Modern ideas about kinetics of chemical reactions of hot atoms are generalized. The main points of the phenomenological theories (''kinetic theory'' of Wolfgang-Estrup hot reactions and the theory of ''reactions integral probability'' of Porter) are given. Physico-chemical models of elastic and non-elastic collisions are considered which are used in solving Boltzmann integro-differential equations and stochastic equations in the Porter theory. The principal formulas are given describing probabilities or yields of chemical reactions, initiated with hot atoms, depending on the distribution functions of hot particles with respect to energy. Briefly described are the techniques and the results of applying the phenomenological theories for interpretation of the experimental data obtained during nuclear reactions with hot atoms, photochemical investigations, etc. 96 references are given

  8. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1992-01-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM

  9. Light particle revelation on incomplete fusion reactions

    International Nuclear Information System (INIS)

    Gillibert, A.

    1984-01-01

    Incomplete fusion reactions have been studied through light particles emission in the reaction 116 Sn + 16 O at 125 MeV (ALICE facility in Orsay). We measured energy angular distributions and correlations between any two of these particles (α particles, protons, neutrons), while γ multiplicity measurements provide us fuller informations. From collected data, the following pictures can be drawn: - the only fast particles observed are α particles, while protons and neutrons seem to come only from statistical evaporation; - outgoing channels where two α particles are emitted cannot be solely explained by the sequential emission of 8 Be → 2α: about half of the cross section proceeds from statistical evaporation of one α particle. Accordingly, 2αxn channels do not necessarily agree with high value of angular momentum in the entrance channel. From the study of experimental results in the yrast plane, we can assign a large width to the angular momentum distribution [fr

  10. Fusion enhancement in the reactions of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Bian Baoan; Zhang Fengshou; Zhou Hongyu

    2009-01-01

    The neutron-rich fusion reactions are investigated systematically using the improved isospin dependent quantum molecular dynamics model. By studying the systematic dependence of fusion barrier on neuron excess, we find the enhancement of the fusion cross sections for neutron-rich nuclear reactions that give the lowered static Coulomb barriers. The calculated fusion cross sections agree quantitatively with the experimental data. We further discuss the mechanism of the fusion enhancement of the cross sections for neutron-rich nuclear reactions by analyzing the dynamical lowering of the Coulomb barrier that is attributed to the enhancement of the N/Z ratio at the neck region.

  11. The role of chain carriers in fusion reaction kinetics

    International Nuclear Information System (INIS)

    Harms, A.A.; Krenciglowa, E.M.

    1980-01-01

    The role of chain carriers as contributors to multiplicative closed cycles in advanced fusion fuels is examined. Emphasis is placed on rate processes which can be used to characterize critical/supercritical/subcritical tendencies of arbitrary closed fusion cycles. Temporal trajectories for the chain carriers which describe both increasing and decreasing multiplicative processes have been found to exist and identified according to their fusion fuel cycle characteristics. Practical criteria to ensure the attainment of steady-state fusion reaction processes have been formulated in terms of fusion reaction rate relationships. (author)

  12. Nickel Chloride Promoted Glaser Coupling Reaction in Hot Water

    Institute of Scientific and Technical Information of China (English)

    Pin Hua LI; Lei WANG; Min WANG; Jin Can YAN

    2004-01-01

    A Glaser coupling reaction of terminal alkynes in the presence of nickel chloride without any organics and bases in hot water has been developed, which produces the corresponding homo-coupling products in good yields.

  13. Fusion Reactions and Matter-Antimatter Annihilation for Space Propulsion

    Science.gov (United States)

    2005-07-13

    FUSION REACTIONS AND MATTER- ANTIMATTER ANNIHILATION FOR SPACE PROPULSION Claude DEUTSCH LPGP (UMR-CNRS 8578), Bât. 210, UPS, 91405 Orsay...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE šFusion Reactions And Matter- Antimatter Annihilation For Space Propulsion 5a...which is possible with successful MCF or ICF. Appropriate vessel designs will be presented for fusion as well as for antimatter propulsion. In

  14. Fusion hindrance in reactions with very heavy ions: Border between normal and hindered fusion

    International Nuclear Information System (INIS)

    Shen Caiwan; Li Qingfeng; Boilley, David; Shen Junjie; Abe, Yasuhisa

    2011-01-01

    The fusion hindrance in heavy-ion collisions is studied in the framework of the two-center liquid drop model. It appears that the neck and the radial degrees of freedom might both be hampered by an inner potential barrier on their path between the contact configuration to the compound nucleus. Heavy-ion reactions with and without the two kinds of fusion hindrance are classified through systematic calculations. It is found that the number of reactions without radial fusion hindrance is much smaller than that without neck fusion hindrance, and for both kinds of fusion hindrance the number of reactions without fusion hindrance at small mass-asymmetry parameter α is smaller than that at large α. In the formation of a given compound nucleus, if a reaction with α c is not hindered, then other reactions with α>α c are also not hindered, as is well known experimentally.

  15. Role of hydrodynamic instability growth in hot-spot mass gain and fusion performance of inertial confinement fusion implosions

    International Nuclear Information System (INIS)

    Srinivasan, Bhuvana; Tang, Xian-Zhu

    2014-01-01

    In an inertial confinement fusion target, energy loss due to thermal conduction from the hot-spot will inevitably ablate fuel ice into the hot-spot, resulting in a more massive but cooler hot-spot, which negatively impacts fusion yield. Hydrodynamic mix due to Rayleigh-Taylor instability at the gas-ice interface can aggravate the problem via an increased gas-ice interfacial area across which energy transfer from the hot-spot and ice can be enhanced. Here, this mix-enhanced transport effect on hot-spot fusion-performance degradation is quantified using contrasting 1D and 2D hydrodynamic simulations, and its dependence on effective acceleration, Atwood number, and ablation speed is identified

  16. On fusion/fission chain reactions in the Fleischmann-Pons cold fusion experiment

    International Nuclear Information System (INIS)

    Anghaie, S.; Froelich, P.; Monkhorst, H.J.

    1990-01-01

    In this paper the possibility of fusion/fission chain reactions following d-d source reactions in electrochemical cold fusion experiments have been investigated. The recycling factors for the charged particles in fusion reactions with consumable nuclei deuteron, 6 Li nd 7 Li, are estimated. It is concluded that, based on the established nuclear fusion cross sections and electronic stopping power, the recycling factor is four to five orders of magnitude less than required for close to critical conditions. It is argued that the cross generation of charged particles by neutrons does not play a significant role in this process, even if increased densities at the surface of electrodes do occur

  17. Ion distribution in the hot spot of an inertial confinement fusion plasma

    Science.gov (United States)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  18. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers

    International Nuclear Information System (INIS)

    Liu Min; Wang, Ning; Li Zhuxia; Wu Xizhen; Zhao Enguang

    2006-01-01

    The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied

  19. Neutron detector for fusion reaction-rate measurements

    International Nuclear Information System (INIS)

    Lerche, R.A.; Phillion, D.W.; Tietbohl, G.L.

    1993-01-01

    We have developed a fast, sensitive neutron detector for recording the fusion reaction-rate history of inertial-confinement fusion (ICF) experiments. The detector is based on the fast rise-time of a commercial plastic scintillator (BC-422) and has a response 7 neutrons

  20. Physics of laser-plasma interaction for shock ignition of fusion reactions

    International Nuclear Information System (INIS)

    Tikhonchuk, V T; Colaïtis, A; Vallet, A; Llor Aisa, E; Duchateau, G; Nicolaï, Ph; Ribeyre, X

    2016-01-01

    The shock ignition scheme is an alternative approach, which aims to achieve ignition of fusion reactions in two subsequent steps: first, the target is compressed at a low implosion velocity and second, a strong converging shock is launched during the stagnation phase and ignites the hot spot. In this paper we describe the major elements of this scheme and recent achievements concerning the laser-plasma interaction, the crucial role of hot electrons in the shock generation, the shock amplification in the imploding shell and the ignition conditions. (paper)

  1. Quantum calculation of dipole excitation in fusion reaction

    International Nuclear Information System (INIS)

    Simenel, C.; Chomaz, Ph.; De France, G.

    2000-01-01

    The excitation of the giant dipole resonance by fusion is studied with N/Z asymmetry in the entrance channel. The TDHF solution exhibits a strong dipole vibration which can be associated with a giant vibration along the main axis of a fluctuating prolate shape. The consequences on the gamma-ray emission from hot compound nuclei are discussed. (author)

  2. How does the carbon fusion reaction happen in stars?

    Directory of Open Access Journals (Sweden)

    X. Tang

    2013-09-01

    Full Text Available The 12C + 12C fusion reaction is one of the most important reactions in the stellar evolution. Due to its compli-cated reaction mechanism, there is great uncertainty in the reaction rate which limits our understanding of vari-ous stellar objects, such as explosions on the surface of neutron stars, white dwarf (type Ia supernovae, and massive stellar evolution. In this paper, I will review the challenges in the study of carbon burning. I will also report recent re-sults from our studies: 1 an upper limit for the 12C + 12C fusion cross sections, 2 measurement of the 12C + 12C at deep sub-barrier energies, 3 a new measurement of the 12C(12C, n reaction. The outlook for the studies of the astrophysical heavy-ion fusion reactions will also be presented.

  3. How does the carbon fusion reaction happen in stars?

    International Nuclear Information System (INIS)

    Tang, X.; Bucher, B.; Fang, X.; Notani, M.; Tan, W.P.; Mooney, P.; Li, Y.; Esbensen, H.; Jiang, C.L.; Rehm, K.E.; Lin, C.J; Brown, E.

    2012-01-01

    The 12 C + 12 C fusion reaction is one of the most important reactions in the stellar evolution. Due to its complicated reaction mechanism, there is great uncertainty in the reaction rate which limits our understanding of various stellar objects, such as massive stellar evolution, explosions on neutron stars, and supernovae from accreting white dwarf stars. In this paper, I will review the challenges in the study of carbon burning. I will also report recent results from our studies: 1) an upper limit for the 12 C + 12 C fusion cross sections, 2) measurement of the 12 C + 12 C at deep sub-barrier energies, and 3) a new measurement of the 12 C( 12 C, n) reaction. The outlook for the studies of the astrophysical heavy-ion fusion reactions will also be presented

  4. Fusion reaction using low energy neutron-excess nucleus beam

    International Nuclear Information System (INIS)

    Fukuda, Tomokazu

    1994-01-01

    The present state and the plan of the experiment of measuring the fusion reaction near barriers by using neutron-excess nucleus beam, which has been advanced at RIKEN are reported. One of the purposes of this experiment is the feasibility investigation of the fusion reaction by using neutron-excess nuclei, which is indispensable for synthesizing superheavy elements. It is intended to systematically explore some enhancing mechanism in the neutron-excess nuclei which are unfavorable in beam intensity. This research can become the good means to prove the dynamic behavior of the neutrons on the surfaces of nuclei in reaction. The fusion reaction of 27 Al + Au was measured by using the stable nucleus beam of 27 Al, and the results are shown. In order to know the low energy fusion reaction of 11 Li and 11 Be which are typical halo nuclei, the identification by characteristic α ray of composite nuclei is carried out in 7,9,11 Li + 209 Bi and 9,10,11 Be + 208 Pb. A new detector having high performance, New MUSIC, is being developed. As the experiment by using this detector, the efficient measurement of the fusion reaction by using heavy neutron-excess nuclei up to Ni is considered. An example of 8 Li + α → 11 B + n reaction for celestial body physics is mentioned. (K.I.)

  5. Microscopic study on dynamic barrier in fusion reactions

    International Nuclear Information System (INIS)

    Wu Xizhen; Tian Junlong; Zhao Kai; Li Zhuxia; Wang Ning

    2004-01-01

    The authors briefly review the fusion process of very heavy nuclear systems and some theoretical models. The authors propose a microscopic transport dynamic model, i.e. the Improved Quantum Molecular Dynamic model, for describing fusion reactions of heavy systems, in which the dynamical behavior of the fusion barrier in heavy fusion systems has been studied firstly. The authors find that with the incident energy decreasing the lowest dynamic barrier is obtained which approaches to the adiabatic static barrier and with increase of the incident energy the dynamic barrier goes up to the diabatic static barrier. The authors also indicate that how the dynamical fusion barrier is correlated with the development of the configuration of fusion partners along the fusion path. Associating the single-particle potentials obtained at different stages of fusion with the Two Center Shell Model, authors can study the time evolution of the single particle states of fusion system in configuration space of single particle orbits along the fusion path. (author)

  6. MHD deceleration of fusion reaction products

    International Nuclear Information System (INIS)

    Chow, S.; Bohachevsky, I.O.

    1979-04-01

    The feasibility of magnetohydrodynamic (MHD) deceleration of fuel pellet debris ions exiting from an inertial confinement fusion (ICF) reactor cavity is investigated using one-dimensional flow equations. For engineering reasons, induction-type devices are emphasized; their performance characteristics are similar to those of electrode-type decelerators. Results of the analysis presented in this report indicate that MHD decelerators can be designed within conventional magnet technology to not only decelerate the high-energy fusion pellet debris ions but also to produce some net electric power in the process

  7. Laser induced photonuclear and fusion-reactions

    International Nuclear Information System (INIS)

    LoDato, V.A.

    1977-01-01

    The energy release from the fusion-fission pellets is demonstrated. It is shown that the coupling of the fusion-fission process is extremely efficient provided one can obtain the proper compression heating. The pellet of an outer core of (Li6D-Li6T) with an inner core of U238 is shown to be an efficient and practical fuel and can be ignited by the present generation of lasers to produce thermonuclear burn. The demonstration of the efficiency for photonuclear and photofission pellets is shown. However no suitable gamma ray source exists at present to initiate these processes. (orig.) [de

  8. Fusion, resonances and scattering in C reaction

    Indian Academy of Sciences (India)

    respectively. In each of these regions, we find some important features in the results ofσfus. ... draws attention in the astrophysical studies [2,7]. Here, Ecm and η .... We outline the concept of selective resonance tunneling for fusion in Ü3. In Ü4 ...

  9. Classical simulations of heavy-ion fusion reactions and weakly ...

    Indian Academy of Sciences (India)

    82, No. 5. — journal of. May 2014 physics pp. 879–891. Classical simulations of heavy-ion fusion reactions and weakly-bound projectile breakup reactions ... on the collision energy and the moment of inertia of the deformed nucleus. ... where each individual nucleus consists of a number of protons and neutrons, in some.

  10. Study of α-particle multiplicity in 16O+196Pt fusion-fission reaction

    International Nuclear Information System (INIS)

    Kapoor, K.; Kumar, A.; Bansal, N.

    2016-01-01

    Study of dynamics of fusion-fission reaction is one of the interesting parts of heavy-ion-induced nuclear reaction. Extraction of fission time scales using different probes is of central importance for understanding the dynamics of fusion-fission process. In the past, extensive theoretical and experimental efforts have been made to understand the various aspects of the heavy ion induced fusion-fission reactions. Compelling evidences have been obtained from the earlier studies that the fission decay of hot nuclei is protracted process i.e. slowed down relative to the expectations of the standard statistical model, and large dynamical delays are required due to this hindrance. Nuclear dissipation is assumed to be responsible for this delay and more light particles are expected to be emitted during the fission process. One of neutron multiplicity measurements have been performed for the 16,18 O+ 194,198 Pt populating the CN 210,212,214,216 Rn and observed fission delay due to nuclear viscosity. In order to have complete understanding for the dynamics of 212 Rn nucleus, we measured the charged particle multiplicity for 16 O+ 196 Pt system. Study of charged particles will give us more information about the emitter in comparison to neutrons as charged particles faces Coulomb barrier and are more sensitive probe for understanding the dynamics of fusion-fission reactions. In the present work, we are reporting some of the preliminary results of charged particle multiplicity

  11. Screening effects on 12C+12C fusion reaction

    Science.gov (United States)

    Koyuncu, F.; Soylu, A.

    2018-05-01

    One of the important reactions for nucleosynthesis in the carbon burning phase in high-mass stars is the 12C+12C fusion reaction. In this study, we investigate the influences of the nuclear potentials and screening effect on astrophysically interesting 12C+12C fusion reaction observables at sub-barrier energies by using the microscopic α–α double folding cluster (DFC) potential and the proximity potential. In order to model the screening effects on the experimental data, a more general exponential cosine screened Coulomb (MGECSC) potential including Debye and quantum plasma cases has been considered in the calculations for the 12C+12C fusion reaction. In the calculations of the reaction observables, the semi-classical Wentzel-Kramers-Brillouin (WKB) approach and coupled channel (CC) formalism have been used. Moreover, in order to investigate how the potentials between 12C nuclei produce molecular cluster states of 24Mg, the normalized resonant energy states of 24Mg cluster bands have been calculated for the DFC potential. By analyzing the results produced from the fusion of 12C+12C, it is found that taking into account the screening effects in terms of MGECSC is important for explaining the 12C+12C fusion data, and the microscopic DFC potential is better than the proximity potential in explaining the experimental data, also considering that clustering is dominant for the structure of the 24Mg nucleus. Supported by the Turkish Science and Research Council (TÜBİTAK) with (117R015)

  12. Cold fusion in symmetric 90Zr induced reactions

    International Nuclear Information System (INIS)

    Keller, J.G.; Schmidt, K.H.; Hessberger, F.P.; Muenzenberg, G.; Reisdorf, W.; Clerc, H.G.; Sahm, C.C.

    1985-08-01

    Excitation functions for evaporation residues were measured for the reactions 90 Zr+ 89 Y, 90 Zr, 92 Zr, 96 Zr, and 94 Mo. Deexcitation only by γ radiation was found for the compound nuclei 179 Au, 180 Hg, 182 Hg, and 184 Pb. The cross sections for this process were found to be considerably larger than predicted by a statistical-model calculation using standard parameters for the γ-strength function. Fusion probabilities as well as fusion-barrier distributions were deduced from the measured cross sections. There are strong nuclear structure effects in subbarrier fusion. For energies far below the fusion barrier the increase of the fusion probabilities with increasing energy is found to be much steeper than predicted by WKB calculations. As a by-product of this work new α-spectroscopic information could be obtained for neutron deficient isotopes between Ir and Pb. (orig.)

  13. Unichannel description of the fusion reactions

    International Nuclear Information System (INIS)

    Franzin, V.L.M.

    1987-01-01

    Using an effective one channel model which contains channel coupling effects through the presence of an inclusive energy - dependent polarization potential it was studied sub-barrier fusion of the systems A1 Ni+ A2 N1 and 16 O+ A Sm. The consistency of this method is checked by comparing this empirical polarization potential with the one determined from the explicit consideration of a specific channel coupling. (A.C.A.S.) [pt

  14. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation.

    Science.gov (United States)

    Weber, C R; Clark, D S; Cook, A W; Busby, L E; Robey, H F

    2014-05-01

    Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10-100.

  15. Process and device for energy production from thermonuclear fusion reactions

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, Bruno.

    1977-01-01

    An energy generating system is described using a fusion reaction. It includes several contrivances for confining a plasma in an area, a protective device around a significant part of each of these confinement contrivances, an appliance for introducing a fusion reaction fuel in each of the confinements so that the plasma may be formed. Each confinement can be separated from the protective device so that it may be replaced by another. The system is connected to the confinements, to the protective devices or to both. It enables the thermal energy to be extracted and transformed into another form, electric, mechanical or both [fr

  16. Cold fusion in symmetric 90Zr induced reactions

    International Nuclear Information System (INIS)

    Keller, J.G.

    1985-02-01

    At the velocity filter SHIP of the Society for Heavy Ion Research in Darmstadt cross sections for evaporation-residue-nucleus formation in the reactions 90 Zr+ 89 Y, sup(90,92,96)Zr, 94 Mo were measured. In four of the reactions leading to the compound nuclei 179 Au, 180 Hg, 182 Hg, and 184 Pb for the first time in reactions of two heavy partners with mass numbers >20 radiative capture, i.e. deexcitation only by emission of γ radiation, was observed. A comparison of the measured cross sections for radiative capture with evaporation calculations leads to the final conclusion that either the γ-strength in the different compound nuclei is very different, or that the energy or angular momentum dependence of the level-density is wrongly described by the Fermi gas model at energies between 5 and 20 MeV. From the cross sections for evaporation-residue-nucleus formation fusion probabilities for central collisions were derived. The fusion probabilities show a strong dependence of the sub-barrier fusion from the nuclear structure of the contributing reaction partners. The slope of the fusion probability below the classical fusion barrier cannot be consistently described even by newer models. Below the lowest fusion barrier the fusion probability decreases with decreasing energy remarkably faster that predicted by a WKB calculation. This indicates that either the shape of the barrier is different from that predicted by the potentials, or that the mass dependence of the tunnel effect is not correctly described by the WKB calculation. (orig.) [de

  17. Electron screening in molecular fusion reactions

    International Nuclear Information System (INIS)

    Shoppa, T.D.

    1996-01-01

    Recent laboratory experiments have measured fusion cross sections at center-of-mass energies low enough for the effects of atomic and molecular electrons to be important. To extract the cross section for bare nuclei from these data (as required for astrophysical applications), it is necessary to understand these screening effects. We study electron screening effects in the low-energy collisions of Z=1 nuclei with hydrogen molecules. Our model is based on a dynamical evolution of the electron wave functions within the TDHF scheme, while the motion of the nuclei is treated classically. We find that at the currently accessible energies the screening effects depend strongly on the molecular orientation. The screening is found to be larger for molecular targets than for atomic targets, due to the reflection symmetry in the latter. The results agree fairly well with data measured for deuteron collisions on molecular deuterium and tritium targets. (orig.)

  18. Effect of projectile on incomplete fusion reactions at low energies

    Directory of Open Access Journals (Sweden)

    Sharma Vijay R.

    2017-01-01

    Full Text Available Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n excess projectile 13C (as compared to 12C results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B and forward (F α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  19. Effect of projectile on incomplete fusion reactions at low energies

    Science.gov (United States)

    Sharma, Vijay R.; Shuaib, Mohd.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj K.; Kumar, R.; Singh, Devendra P.; Singh, B. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.; Prasad, R.

    2017-11-01

    Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF) is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n) excess projectile 13C (as compared to 12C) results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B) and forward (F) α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states

  20. Direct inner shell ionization accompanying heavy ion fusion reactions

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1987-07-01

    51 V+ 40 Ar (180 MeV) fusion reaction is studied by means of K X-ray-particle-γ-ray coincidences. K X-ray yields associated with various evaporation residues are determined separately for two ionization processes: the direct ionization by the projectile prior to the nuclear interaction and the postcollisional ionization due to the internal conversion of γ-rays. Implications for possible measurements of nuclear reaction times are discussed. 24 refs., 9 figs., 2 tabs. (author)

  1. Controlled Fusion with Hot-ion Mode in a Degenerate Plasma

    International Nuclear Information System (INIS)

    S. Son and N.J. Fisch

    2005-01-01

    In a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from the classical prediction, possibly enabling new regimes for controlled nuclear fusion, including the hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Previous calculations of these processes in dense plasmas are now corrected for partial degeneracy and relativistic effects, leading to an expanded regime of self-sustained fusion

  2. Spectroscopic study of 126I via incomplete fusion reaction

    International Nuclear Information System (INIS)

    Kanagalekar, B.A.; Das, Pragya; Kumar, Vinod; Kumar, R.; Singh, R.P.; Muralithar, S.; Bhowmik, R.K.

    2006-01-01

    The experiment at Inter University Accelerator Centre consisted of identifying the yrast high-spin states of 126 I using the incomplete fusion reaction 124 Sn ( 10 B, α4n) 126 I at beam energy of 70 MeV

  3. Labelling of macromoleculear carbohydrates by means of 'Hot Atom' reactions

    International Nuclear Information System (INIS)

    Lundqvist, H.; Malmborg, P.

    1976-01-01

    Radioactive labelling of polysaccharides have been performed using atoms with such high kinetic energy that they can break normally very stable bindings thus permitting labelling by substitution reactions. Such atoms can be produced in nuclear transformations. We have chosen to study the labelling efficiency of 'hot atoms' ( 77 Br, 123 I and 125 I) produced in radioactive decay (β + -decay and E.C.) of noble gas nuclides ( 77 Kr, 123 Xe and 125 Xe) which easily could be brought in close contact with the molecule to be labelled. Substances to be labelled have been starch particles and high molecular weight glycogen. (author)

  4. Competition between peripheral and central emission in incomplete fusion reactions

    International Nuclear Information System (INIS)

    Tricoire, H.

    1984-01-01

    In the frame of a classical model we show that the emission of fast particles in incomplete fusion reactions may occur either from a PEP emission which happens preferentially at low angular momenta or from an inertial emission with a maximum of the cross section located near the critical angular momentum for complete fusion. The competition of these mechanisms depends crucialy of the interaction between the particle to be emitted and the target nucleus. Numerical calculations are performed with various particle target potentials. Using a proximity potential, one gets results in good agreement with experimental data

  5. Many-body treatment of subbarrier fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Kondratyev, V. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Bonasera, A.

    1998-07-01

    The subbarrier fusion of heavy-ions at energies around the Coulomb barrier is studied by using semiclassical mean-field theory. The paths connecting entrance and exit subbarrier fusion reaction channels are found by incorporating the Wick transformation into the mean-field kinetic equation. The polarization and deformation of nuclei is shown to lower the barrier height. It is demonstrated that preequilibrium nucleon exchange in classically forbidden region gives rise to the nonlocal effects lowering the effective barrier further at small relative distance. (author)

  6. Application of the water gas shift reaction to fusion fuel exhaust streams

    International Nuclear Information System (INIS)

    McKay, A.M.; Cheh, C.H.; Glass, R.W.

    1983-10-01

    In a Fusion Fuel Clean Up (FCU) system, impurities will be removed from the fusion reactor exhaust and neutral beam line streams. Tritium in this impurity stream will be recovered and recycled to the fuel stream. In one flowsheet configuration of the Tritium Systems Test Assembly (TSTA), tritium is recovered from a simulated impurity stream via uranium hot metal beds and recycled to an isotope separation system. This study has shown, however, that the catalyzed water gas shift reaction, by which (H,D,T) 2 O and CO are converted to (H,D,T) 2 and CO 2 is a better method of (H,D,T) 2 O reduction than the hot metal beds. Catalytic reactors were designed, built and tested to provide data for the design of a prototype reactor to replace the hot metal beds in the FCU system. The prototype reactor contains only 10 g of catalyst and is expected to last at least 5 years. The reactor is small (1.3 cm OD x 13 cm long), operates at low temperatures (approximately 490 K) and will convert water to hydrogen, at a CO/H 2 O ratio of 1.5, with an efficiency of greater than 98 percent. Results show that the catalytic reactor is very stable even during upset conditions. Wide ranges of flow and a CO/H 2 O ratio variance from 1.3 upward have little effect on the conversion efficiency. Short term high temperature excursions do not affect the catalyst and lower temperatures will simply decrease the reaction rate resulting in lower conversions. The reactor appears to be unaffected by NO 2 , CO 2 , O 2 and N 2 in the feed stream at concentration levels expected in a fusion reactor exhaust stream

  7. Fusion yield rate recovery by escaping hot-spot fast ions in the neighboring fuel layer

    Science.gov (United States)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-02-01

    Free-streaming loss by fast ions can deplete the tail population in the hot spot of an inertial confinement fusion (ICF) target. Escaping fast ions in the neighboring fuel layer of a cryogenic target can produce a surplus of fast ions locally. In contrast to the Knudsen layer effect that reduces hot-spot fusion reactivity due to tail ion depletion, the inverse Knudsen layer effect increases fusion reactivity in the neighboring fuel layer. In the case of a burning ICF target in the presence of significant hydrodynamic mix which aggravates the Knudsen layer effect, the yield recovery largely compensates for the yield reduction. For mix-dominated sub-ignition targets, the yield reduction is the dominant process.

  8. Quasi-elastic scattering an alternative tool for mapping the fusion barriers for heavy-ion induced fusion reaction

    International Nuclear Information System (INIS)

    Behera, B.R.

    2016-01-01

    Heavy element synthesis through heavy-ion induced fusion reaction is an active field in contemporary nuclear physics. Exact knowledge of fusion barrier is one of the essential parameters for planning any experiments for heavy element production. Theoretically there are many models available to predict the exact barrier. Though these models are successful for predicting the fusion of medium mass nuclei, it somehow fails for predicting the exact location of barrier for fusion of heavy nuclei. Experimental determination of barrier for such reactions is required for future experiments for the synthesis of heavy elements. Traditionally fusion barrier is determined taking a double derivative of fusion excitation function. However, such method is difficult in case of fusion of heavy nuclei due to its very low fusion/capture cross section and its experimental complications. Alternatively fusion barrier can be determined by measuring the quasi-elastic cross section at backward angles. This method can be applied for determining the fusion barrier for the fusion of heavy nuclei. Experimental determination of fusion barrier by different methods and comparison of the fusion excitation function and quasi-elastic scattering methods for the determination of fusion barrier are reviewed. At IUAC, New Delhi recently a program has been started for the measurement of fusion barrier through quasi-elastic scattering methods. The experimental facility and the first results of the experiments carried out with this facility are presented. (author)

  9. Laser thermonuclear fusion with force confinement of hot plasma

    International Nuclear Information System (INIS)

    Korobkin, V.V.; Romanovsky, M.Y.

    1994-01-01

    The possibility of the utilization of laser radiation for plasma heating up to thermonuclear temperatures with its simultaneous confinement by ponderomotive force is investigated. The plasma is located inside a powerful laser beam with a tubelike section or inside a cavity of duct section, formed by several intersecting beams focused by cylindrical lenses. The impact of various physical processes upon plasma confinement is studied and the criteria of plasma confinement and maintaining of plasma temperature are derived. Plasma and laser beam stability is considered. Estimates of laser radiation energy necessary for thermonuclear fusion are presented

  10. Application of spin-polarized fuel to fusion reactions

    International Nuclear Information System (INIS)

    Wakuta, Y.; Nakao, Y.; Honda, T.; Honda, Y.; Nakashima, H.

    1990-01-01

    Studies on the application of the polarized fuel to the inertial fusion reaction have been carried out. It is shown that the use of the spin-polarized fuel D vector·T vector or D vector· 3 (He)vector reduces the irradiating laser power more than 50% compared with the use of the unpolarized fuel. The depolarization rate of the polarized fuel during the fusing process is found to be almost negligible. (author)

  11. Plasma fluctuations and confinement of fusion reaction products

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.

    1981-01-01

    The interaction between the fluctuations that can be excited in a magnetically confined plasma and the high-energy-particle population produced by fusion reactions is analyzed in view of its relevance to the process of thermonuclear ignition. The spectrum of the perturbations that, in the absence of fusion reaction products, would be described by the incompressible ideal magnetohydrodynamic approximation is studied considering finite value of the plasma pressure relative ot the magnetic pressure. The combined effects of the magnetic field curvature and shear are taken into account and the relevant spectrum is shown to consist of a continuous portion, that could be identified as a mixture of shear-Alfven and interchange oscillations, and a discrete unstable part corresponding to the so-called ballooning modes. The rate of diffusion of the fusion reaction products induced by oscillations in the continuous part of the spectrum, as estimated from the appropriate quasi-linear theory, is found to be significantly smaller than could be expected if normal modes (i.e., nonconvective solutions) were excited. However, a relatively wide intermediate region is identified where opalescent fluctuations, capable of achieving significant amplitudes and corresponding to a quasi-discrete spectrum, can be excited

  12. Fusion and direct reactions for strongly and weakly bound projectiles

    International Nuclear Information System (INIS)

    Hugi, M.; Lang, J.; Mueller, R.; Ungricht, E.; Bodek, K.; Jarczyk, L.; Kamys, B.; Magiera, A.; Strzalkowski, A.; Willim, G.

    1981-01-01

    The interaction of 6 Li, 9 Be and 12 C projectiles with a 28 Si target was investigated by measuring the angular distributions of the elasitcally scattered projectiles and of the emitted protons, deuterons and α-particles. The experiment was perfomred in order to deduce direct and compound nucleus process contributions to the total reaction cross section and to study the influence of the projectile structure on the relative importance of these two mechanisms. Optical model parameters and therefore the total reaction cross section are strongly influenced by the binding energy of the projectile. The parameters of the Glas-Mosel describing the fusion reaction vary smoothly with the atomic number. In the system 9 B + 28 Si around 50% of all reactions are direct processes even at energies near the Coulomb barrier, whereas in the other systeme the direct part amounts to 15% ( 12 C) and 30% ( 6 Li) only. (orig.)

  13. Hot-spot mix in ignition-scale inertial confinement fusion targets.

    Science.gov (United States)

    Regan, S P; Epstein, R; Hammel, B A; Suter, L J; Scott, H A; Barrios, M A; Bradley, D K; Callahan, D A; Cerjan, C; Collins, G W; Dixit, S N; Döppner, T; Edwards, M J; Farley, D R; Fournier, K B; Glenn, S; Glenzer, S H; Golovkin, I E; Haan, S W; Hamza, A; Hicks, D G; Izumi, N; Jones, O S; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Ma, T; MacFarlane, J J; MacKinnon, A J; Mancini, R C; McCrory, R L; Meezan, N B; Meyerhofer, D D; Nikroo, A; Park, H-S; Ralph, J; Remington, B A; Sangster, T C; Smalyuk, V A; Springer, P T; Town, R P J

    2013-07-26

    Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50)  ng and 4000(-2970,+17 160)  ng are observed.

  14. Fusion and quasifission studies for the 40Ca+186W,192Os reactions

    Science.gov (United States)

    Prasad, E.; Hinde, D. J.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.; Ramachandran, K.; Simenel, C.; Wakhle, A.

    2017-09-01

    Background: All elements above atomic number 113 have been synthesized using hot fusion reactions with calcium beams on statically deformed actinide target nuclei. Quasifission and fusion-fission are the two major mechanisms responsible for the very low production cross sections of superheavy elements. Purpose: To achieve a quantitative measurement of capture and quasifission characteristics as a function of beam energy in reactions forming heavy compound systems using calcium beams as projectiles. Methods: Fission fragment mass-angle distributions were measured for the two reactions 40Ca+186W and 40C+192Os, populating 226Pu and 232Cm compound nuclei, respectively, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Mass ratio distributions, angular distributions, and total fission cross sections were obtained from the experimental data. Simulations to match the features of the experimental mass-angle distributions were performed using a classical phenomenological approach. Results: Both 40Ca+186W and 40C+192Os reactions show strong mass-angle correlations at all energies measured. A maximum fusion probability of 60 -70 % is estimated for the two reactions in the energy range of the present study. Coupled-channels calculations assuming standard Woods-Saxon potential parameters overpredict the capture cross sections. Large nuclear potential diffuseness parameters ˜1.5 fm are required to fit the total capture cross sections. The presence of a weak mass-asymmetric quasifission component attributed to the higher angular momentum events can be reproduced with a shorter average sticking time but longer mass-equilibration time constant. Conclusions: The deduced above-barrier capture cross sections suggest that the dissipative processes are already occurring outside the capture barrier. The mass-angle correlations indicate that a compact shape is not achieved for deformation aligned collisions with lower capture barriers

  15. Improving hot-spot pressure for ignition in high-adiabat Inertial Confinement Fusion implosion

    OpenAIRE

    Kang, Dongguo; Zhu, Shaoping; Pei, Wenbing; Zou, Shiyang; Zheng, Wudi; Gu, Jianfa; Dai, Zhensheng

    2017-01-01

    A novel capsule target design to improve the hot-spot pressure in the high-adiabat implosion for inertial confinement fusion is proposed, where a layer of comparatively high-density material is used as a pusher between the fuel and the ablator. This design is based on our theoretical finding of the stagnation scaling laws, which indicates that the hot spot pressure can be improved by increasing the kinetic energy density $\\rho_d V_{imp}^2/2$ ($\\rho_d$ is the shell density when the maximum she...

  16. Constraining statistical-model parameters using fusion and spallation reactions

    Directory of Open Access Journals (Sweden)

    Charity Robert J.

    2011-10-01

    Full Text Available The de-excitation of compound nuclei has been successfully described for several decades by means of statistical models. However, such models involve a large number of free parameters and ingredients that are often underconstrained by experimental data. We show how the degeneracy of the model ingredients can be partially lifted by studying different entrance channels for de-excitation, which populate different regions of the parameter space of the compound nucleus. Fusion reactions, in particular, play an important role in this strategy because they fix three out of four of the compound-nucleus parameters (mass, charge and total excitation energy. The present work focuses on fission and intermediate-mass-fragment emission cross sections. We prove how equivalent parameter sets for fusion-fission reactions can be resolved using another entrance channel, namely spallation reactions. Intermediate-mass-fragment emission can be constrained in a similar way. An interpretation of the best-fit IMF barriers in terms of the Wigner energies of the nascent fragments is discussed.

  17. Measurement of proton capture reactions in the hot cycles: an evaluation of experimental methods

    Energy Technology Data Exchange (ETDEWEB)

    Leleux, P [Inst. de Physique Nucleaire, Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium)

    1998-06-01

    In the hot cycles, most of the proton capture reactions involve radioactive nuclei in the entrance and exit channels. This paper evaluates the specific methods that were designed to measure such reactions. (orig.)

  18. Transport effects with hot electrons in laser fusion. Final report, October 1, 1981-February 28, 1983

    International Nuclear Information System (INIS)

    Shkarofsky, I.P.

    1983-02-01

    Two explanations are offered which can account for heat inhibition found in laser-fusion experiments. The first explanation requires an anisotorpic electron velocity distribution with a higher temperature parallel to the surface than into the surface. This provides axial heat inhibition. Lateral heat inhibition is associated with azimuthal magnetic fields. The second explanation requires the presence of both hot suprathermal and thermal electrons. The hot electrons can cause the flux limiter to decrease substantially below the free-streaming limit in an intermediate range of collisionality. Conditions for this situation occur in the coronal region. We compare a Maxwellian distribution to an exp(-v 5 /v 5 /sub c/) variation for the cold electrons and find that the flux limiter decreases more for the latter case. The effects of collisions between cold and hot electrons is also looked into. The Cartesian tensor approach is used in the above investigations with various forms for the zeroth order electron velocity distribution function

  19. The effect of moderators on the reactions of hot hydrogen atoms with methane

    CERN Document Server

    Estrup, Peder J.

    1960-01-01

    The reaction of recoil tritium with methane has been examined in further detail. The previous hypothesis that this system involves a hot displacement reaction of high kinetic energy hydrogen to give CH$_{3}$T, CH$_{2}$T and HT is confirmed. The effect of moderator on this process is studied by the addition of noble gases. As predicted these gases inhibit the hot reaction action, their efficiency in this respect being He > Ne > A > Se. The data are quantitatively in accord with a theory of hot atom kinetics. The mechanism of the hot displacement process is briefly discussed.

  20. Evaluation of charged-particle reactions for fusion applications

    International Nuclear Information System (INIS)

    White, R.M.; Resler, D.A.; Warshaw, S.I.

    1991-01-01

    New evaluations of the total reaction cross sections for 2 H(d,n) 3 He, 2 H(d,p) 3 H, 3 H(t,2n) 4 He, 3 H(d,n) 4 He, and 3 He(d,p) 4 He have been completed. These evaluations are based on all known published data from 1946 to 1990 and include over 1150 measured data points from 67 references. The purpose of this work is to provide a consistent and well-documented set of cross sections for use in calculations relating to fusion energy research. A new thermonuclear data file, TDF, and a library of FORTRAN subprograms to read the file have been developed. Calculated from the new evaluations, the TDF file contains information on the Maxwellian-averaged reaction rates as a function of reaction and plasma temperature and the Maxwellian-averaged average energy of the interacting particles and reaction products. Routines are included that provide thermally-broadened spectral information for the secondary reaction products. 67 refs., 18 figs

  1. Detailed determination of the fusion nuclear radius in reactions involving weakly bound projectiles

    International Nuclear Information System (INIS)

    Gomez Camacho, A.; Aguilera, E. F.; Quiroz, E. M.

    2007-01-01

    A detailed determination of the fusion radius parameter is performed within the Distorted Wave Born Approximation for reactions involving weakly bound projectiles. Specifically, a simultaneous X 2- analysis of elastic and fusion cross section data is done using a Woods-Saxon potential with volume and surface parts. The volume part is assumed to be responsible for fusion reactions while the surface part for all other direct reactions. It is proved that in order to fit fusion data, particularly for energies below the Coulomb barrier where fusion is enhanced, it is necessary to have a value of around 1.4 fm for the fusion radial parameter of the fusion potential (W F ). This value is much higher than that frequently used in Barrier Penetration models (1.0 fm). The calculations are performed for reactions involving the weakly bound projectile 9 Be with several medium mass targets. (Author)

  2. Inertial confinement fusion reaction chamber and power conversion system study

    International Nuclear Information System (INIS)

    Maya, I.; Schultz, K.R.; Battaglia, J.M.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li 2 O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li 2 O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li 2 O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive

  3. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    International Nuclear Information System (INIS)

    Olson, R. E.; Leeper, R. J.

    2013-01-01

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ∼34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid” (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry

  4. Subsequent development of the normal temperature fusion reaction. Joon kakuyugo sonogo no shinten

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T. (Hokkaido University, Sapporo (Japan). Faculty of Engineering)

    1991-04-24

    This paper reports on a NATTOH model made public in May 1989 by T. Matsumoto who took notice of abnormality of the normal temperature fusion reaction. The NATTO model is based on a chain reaction by hydrogen with a hydrogen-catalyzed fusion reaction which is the normal temperature fusion reaction as an elementary process. If a high temperature fusion reaction is a small-size simulation of the fusion reaction rising on the surface of the sparkling star like the sun, the normal temperature fusion reaction can be a small-size simulation of the phenomena in the last years of the star in the far distance of the space. This gives reality to the normal temperature fusion reaction. The reaction mechanism of the normal temperature fusion reaction is almost being clarified by a NATTOH model. There remain problems on a possibility of generation of unknown radioactive rays and identification of radioactive wastes, but it seems that a prospect of commercialization can be talked about now. As for the utilization as energy, sea water may be used as it is. 10 ref., 5 figs.

  5. Process and apparatus for producing nuclear fusion reactions

    International Nuclear Information System (INIS)

    Maglich, B.C.; Nering, J.E.; Mazarakis, M.G.; Miller, R.A.

    1976-01-01

    A process is submitted for the production of fusion reactions between particles of like polarity. This process consists essentially in delimitating a pumped down space comprising a central axis and a central plane arranged radially, and perpendicular to this central axis, in developing in this space a magnetic field the intensity of which decreases when the radial distance increases from the central axis and of which the intensity increases from the central plane, along this central axis. Particles of the same polarity are produced according to a population distribution in which the density of the particles in the greatest vibrational state exceeds the density of the particles in the greatest vibrational state in a normal distribution. These particles are injected near the centre of the magnetic field, by radial injection towards the inside as from the periphery of the space, in the same plane as the central plane [fr

  6. Recent results on fusion and direct reactions with weakly bound stable nuclei

    International Nuclear Information System (INIS)

    Shrivastava, A.

    2011-01-01

    Recent measurements of fusion and direct reactions in case of weakly bound stable nuclei at extreme sub-barrier energies using a sensitive off beam technique are presented. First section deals with deep sub-barrier fusion cross-section measurement for 67 Li + 198 Pt followed by the study of fragment capture reaction of 7 Li + 198 Pt. Deviation in the slope of the fusion excitation function, as observed in case of medium heavy systems, is absent in the present asymmetric systems at these low energies. This study shows the absence of fusion hindrance, suggesting modifications in models that explain deep sub-barrier fusion data to incorporate weakly bound asymmetric systems

  7. Interaction of heavy ions beams with hot and dense plasmas. Application to inertial fusion

    International Nuclear Information System (INIS)

    Maynard, Gilles

    1987-01-01

    The subject of this work is the variation with time, on one of the energy and charge state of an heavy ion beam which through a plasma, and on another side, of a target used in ion inertial confinement fusion. We take in account projectile excitation, and higher order corrections to the Born stopping power formula are calculated. Comparison with experimental results in gas and solid are good. In hot plasma case, non-equilibrium charge states are described. We present an hydrodynamic simulation code of one dimension and three temperatures. We show that the shortening of the heavy ions beams with temperature reinforces the radiative transfer importance. (author) [fr

  8. Nuclear dynamics in heavy ion induced fusion-fission reactions

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    1992-01-01

    Heavy ion induced fission and fission-like reactions evolve through a complex nuclear dynamics encountered in the medium energy nucleus-nucleus collisions. In the recent years, measurements of the fragment-neutron and fragment-charged particle angular correlations in heavy ion induced fusion-fission reactions, have provided new information on the dynamical times of nuclear deformations of the initial dinuclear complex to the fission saddle point and the scission point. From the studies of fragment angular distributions in heavy ion induced fission it has been possible to infer the relaxation times of the dinuclear complex in the K-degree of freedom and our recent measurements on the entrance channel dependence of fragment anisotropies have provided an experimental signature of the presence of fissions before K-equilibration. This paper reviews recent experimental and theoretical status of the above studies with particular regard to the questions relating to dynamical times, nuclear dissipation and the effect of nuclear dissipation on the K-distributions at the fission saddle in completely equilibrated compound nucleus. (author). 19 refs., 9 figs

  9. First dedicated in-beam X-ray measurement in heavy-ion fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Berner, C. [Technische Universitaet Muenchen, Lehrstuhl E12 (Germany); RIKEN, Research Group for Superheavy Elements (Japan); Henning, W. [Argonne National Laboratory, Physics Division (United States); RIKEN, Research Group for Superheavy Elements (Japan); Muecher, D.; Gernhaeuser, R.; Hellgartner, S.; Maier, L. [Technische Universitaet Muenchen, Lehrstuhl E12 (Germany); Morita, K.; Morimoto, K.; Kaji, D.; Wakabayashi, Y.; Baba, H. [RIKEN, Research Group for Superheavy Elements (Japan); Lutter, R. [Ludwig-Maximilians-Universitaet, Muenchen (Germany)

    2016-07-01

    We report on an experiment aiming at in-beam X-ray spectroscopy of heavy and superheavy elements (SHE). The goal is to establish K-X-ray spectroscopy as a sensitive tool to identify SHE produced in fusion reactions. SHE, formed after cold or hot fusion, are usually identified via the alpha-decay products, which have to be connected to well-known elements. However, various theories predict spontaneous fission as the dominant decay mode for the daughter nuclides. Additionally, half-lives of these elements are expected to increase to values impeding the identification of SHE solely by their decay. The in-beam identification of the characteristic X-rays would precisely allow to identify the charge number of the produced SHE. Experiments were performed at the RIKEN Nishina Centre for Accelerator based Science by using the gas-filled magnet separator GARIS for superheavy element detection. A high-purity, low-energy planar germanium LEGe-detector was adapted to the GARIS system at the target place for the first time in order to measure the element-characteristic, prompt X-ray emission.

  10. The cross sections of fusion-evaporation reactions: the most promising route to superheavy elements beyond Z=118

    Science.gov (United States)

    Jadambaa, Khuyagbaatar

    2017-11-01

    The synthesis of superheavy elements beyond oganesson (Og), which has atomic number Z = 118, is currently one of the main topics in nuclear physics. An absence of sufficient amounts of target material with atomic numbers heavier than californium (Z = 98) forces the use of projectiles heavier than 48Ca (Z = 20), which has been successfully used for the discoveries of elements with Z = 114 - 118 in complete fusion reactions. Experimental cross sections of 48Ca with actinide targets behave very differently to "cold" and "hot" fusion-evaporation reactions, where doubly-magic lead and deformed actinides are used as targets, respectively. The known cross sections of these reactions have been analysed compared to calculated fission barriers. It has been suggested that observed discrepancies between the cross sections of 48Ca-induced and other fusionevaporation reactions originate from the shell structure of the compound nucleus, which lies in the island of the stability. Besides scarcely known data on other reactions involving heavier projectiles, the most promising projectile for the synthesis of the elements beyond Og seems to be 50Ti. However, detailed studies of 50Ti, 54Cr, 58Fe and 64Ni-induced reactions are necessary to be performed in order to fully understand the complexities of superheavy element formation.

  11. Pulsed fusion space propulsion: Computational Magneto-Hydro Dynamics of a multi-coil parabolic reaction chamber

    Science.gov (United States)

    Romanelli, Gherardo; Mignone, Andrea; Cervone, Angelo

    2017-10-01

    Pulsed fusion propulsion might finally revolutionise manned space exploration by providing an affordable and relatively fast access to interplanetary destinations. However, such systems are still in an early development phase and one of the key areas requiring further investigations is the operation of the magnetic nozzle, the device meant to exploit the fusion energy and generate thrust. One of the last pulsed fusion magnetic nozzle design is the so called multi-coil parabolic reaction chamber: the reaction is thereby ignited at the focus of an open parabolic chamber, enclosed by a series of coaxial superconducting coils that apply a magnetic field. The field, beside confining the reaction and preventing any contact between hot fusion plasma and chamber structure, is also meant to reflect the explosion and push plasma out of the rocket. Reflection is attained thanks to electric currents induced in conductive skin layers that cover each of the coils, the change of plasma axial momentum generates thrust in reaction. This working principle has yet to be extensively verified and computational Magneto-Hydro Dynamics (MHD) is a viable option to achieve that. This work is one of the first detailed ideal-MHD analysis of a multi-coil parabolic reaction chamber of this kind and has been completed employing PLUTO, a freely distributed computational code developed at the Physics Department of the University of Turin. The results are thus a preliminary verification of the chamber's performance. Nonetheless, plasma leakage through the chamber structure has been highlighted. Therefore, further investigations are required to validate the chamber design. Implementing a more accurate physical model (e.g. Hall-MHD or relativistic-MHD) is thus mandatory, and PLUTO shows the capabilities to achieve that.

  12. Design of a fusion reaction-history measurement system with high temporal resolution

    International Nuclear Information System (INIS)

    Peng Xiaoshi; Wang Feng; Liu Shenye; Jiang Xiaohua; Tang Qi

    2010-01-01

    In order to accurately measure the history of fusion reaction for experimental study of inertial confinement fusion, we advance the design of a fusion reaction-history measurement system with high temporal resolution. The diagnostic system is composed of plastic scintillator and nose cone, an optical imaging system and the system of optic streak camera. Analyzing the capability of the system indicated that the instrument measured fusion reaction history at temporal resolution as low as 55ps and 40ps correspond to 2.45MeV DD neutrons and 14.03MeV DT neutrons. The instrument is able to measure the fusion reaction history at yields 1.5 x 10 9 DD neutrons, about 4 x 10 8 DT neutrons are required for a similar quality signal. (authors)

  13. Potential design modifications for the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber

    International Nuclear Information System (INIS)

    Pitts, J.H.; Hovingh, J.; Meier, W.R.; Monsler, M.J.; Powell, E.G.; Walker, P.E.

    1979-01-01

    Generation of electric power from inertial confinement fusion requires a reaction chamber. One promising type, the High Yield Lithium Injection Fusion Energy (HYLIFE) chamber, includes a falling array of liquid lithium jets. These jets act as: (1) a renewable first wall and blanket to shield metal components from x-ray and neutron exposure, (2) a tritium breeder to replace tritium burned during the fusion process, and (3) an absorber and transfer medium for fusion energy. Over 90% of the energy produced in the reaction chamber is absorbed in the lithium jet fall. Design aspects are included

  14. Controlled thermonuclear fusion

    CERN Document Server

    Bobin, Jean Louis

    2014-01-01

    The book is a presentation of the basic principles and main achievements in the field of nuclear fusion. It encompasses both magnetic and inertial confinements plus a few exotic mechanisms for nuclear fusion. The state-of-the-art regarding thermonuclear reactions, hot plasmas, tokamaks, laser-driven compression and future reactors is given.

  15. Heavy ion fusion reactions: comparison among different models

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Carlson, B V; Hussein, M S

    1988-03-01

    A comparison among different ion fusion models is presented. In particular, the multistep aspects of the recently proposed Dinucleus Doorway Model are made explicit and the model is confronted with other compound nucleus limitation models. It is suggested that the latter models provide effective one-step descriptions of heavy ion fusion.

  16. Reaction studies of hot silicon, germanium and carbon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1990-01-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms? This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs

  17. FeCrAl and Zr alloys joined using hot isostatic pressing for fusion energy applications

    International Nuclear Information System (INIS)

    Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Jung, Yang Il; Park, Jung Hwan; Koo, Yang Hyun

    2016-01-01

    Highlights: • FeCrAl and Zr alloys were successfully joined by hot isostatic pressing (HIP). • The thickness of diffusion layer increased with an increase in HIP temperature. • Significant inter-diffusion was observed for HIP at 1150 °C. • Maximum joint strength was achieved at HIP temperature of 700 °C. - Abstract: FeCrAl and Zr alloys were joined by a hot isostatic pressing (HIP) method for fusion energy applications. The optimum conditions for the joining process were studied. The HIP temperatures were varied from 700 to 1050 °C. The mechanical properties of the HIPed samples were evaluated by four-point bending and tensile tests. The FeCrAl and Zr alloys HIPed at 700 °C showed higher joint strength than the other samples. The joint strength decreased with an increase in the HIP temperature from 700 to 950 °C and significantly dropped at 1050 °C. Transmission electron microscopy, scanning electron microscopy, and optical microscopy were used to characterize the joints and interface region of the HIPed samples. The joints appeared to be tightly bonded and no intermetallic compounds or gaps were observed at the interface for HIP temperatures up to 950 °C. A diffusion layer formed at the interface and its thickness increased with the HIP temperature. HIP at 1050 °C, on the other hand, resulted in significant inter-diffusion and formation of brittle inter-metallic compounds at the interface.

  18. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    Energy Technology Data Exchange (ETDEWEB)

    Melvin, J.; Lim, H.; Rana, V.; Glimm, J. [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600 (United States); Cheng, B.; Sharp, D. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-02-15

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.

  19. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    International Nuclear Information System (INIS)

    Melvin, J.; Lim, H.; Rana, V.; Glimm, J.; Cheng, B.; Sharp, D. H.; Wilson, D. C.

    2015-01-01

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results

  20. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    Science.gov (United States)

    Melvin, J.; Lim, H.; Rana, V.; Cheng, B.; Glimm, J.; Sharp, D. H.; Wilson, D. C.

    2015-02-01

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.

  1. Single-collision studies of hot atom energy transfer and chemical reaction

    International Nuclear Information System (INIS)

    Valentini, J.J.

    1991-01-01

    This report discusses research in the collision dynamics of translationally hot atoms, with funding with DOE for the project ''Single-Collision Studies of Hot Atom Energy Transfer and Chemical Reaction,'' Grant Number DE-FG03-85ER13453. The work reported here was done during the period September 9, 1988 through October 31, 1991. During this period this DOE-funded work has been focused on several different efforts: (1) experimental studies of the state-to-state dynamics of the H + RH → H 2 R reactions where RH is CH 4 , C 2 H 6 , or C 3 H 8 , (2) theoretical (quasiclassical trajectory) studies of hot hydrogen atom collision dynamics, (3) the development of photochemical sources of translationally hot molecular free radicals and characterization of the high resolution CARS spectroscopy of molecular free radicals, (4) the implementation of stimulated Raman excitation (SRE) techniques for the preparation of vibrationally state-selected molecular reactants

  2. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and 3 He ions, respectively. When the plasma was compressed, the d(d,n) 3 He fusion reaction rate increased a factor of five, and the 3 He(d,p) 4 He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling

  3. Reaching to a featured formula to deduce the energy of the heaviest particles producing from the controlled thermonuclear fusion reactions

    Science.gov (United States)

    Majeed, Raad H.; Oudah, Osamah N.

    2018-05-01

    Thermonuclear fusion reaction plays an important role in developing and construction any power plant system. Studying the physical behavior for the possible mechanism governed energies released by the fusion products to precise understanding the related kinematics. In this work a theoretical formula controlled the general applied thermonuclear fusion reactions is achieved to calculating the fusion products energy depending upon the reactants physical properties and therefore, one can calculate other parameters governed a given reaction. By using this formula, the energy spectrum of 4He produced from T-3He fusion reaction has been sketched with respect to reaction angle and incident energy ranged from (0.08-0.6) MeV.

  4. Effect of hot isostatic pressing on reaction-bonded silicon nitride

    Science.gov (United States)

    Watson, G. K.; Moore, T. J.; Millard, M. L.

    1984-01-01

    Specimens of nearly theoretical density have been obtained through the isostatic hot pressing of reaction-bonded silicon nitride under 138 MPa of pressure for two hours at 1850, 1950, and 2050 C. An amorphous phase that is introduced by the hot isostatic pressing partly accounts for the fact that while room temperature flexural strength more than doubles, the 1200 C flexural strength increases significantly only after pressing at 2050 C.

  5. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    International Nuclear Information System (INIS)

    Labaune, C.; Baccou, C.; Loisel, G.; Yahia, V.; Depierreux, S.; Goyon, C.; Rafelski, J.

    2013-01-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. (authors)

  6. Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility

    International Nuclear Information System (INIS)

    Wang Feng; Peng Xiao-Shi; Liu Shen-Ye; Xu Tao; Kang Dong-Guo

    2013-01-01

    A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of ∼ 30 ps at the Shen Guang-III (SG-III) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh-Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion

  7. Effects of successive critical distances in heavy ion fusion reactions

    International Nuclear Information System (INIS)

    Lee, S.M.; Nakagawa, T.; Matsuse, T.

    1984-01-01

    The concept of Successive Critical Distances is presented. It appears that whether the fusion cross section is limited by compound nucleus or entrance channel properties depends on the degree of asymmetry of the fusing nuclei. Only in the near to symmetry case does the Statistical Yrast Line emerge as a limiting factor. Otherwise, the critical angular momentum for fusion is restricted by a critical distance

  8. Origin of Power Laws for Reactions at Metal Surfaces Mediated by Hot Electrons

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2009-01-01

    A wide range of experiments have established that certain chemical reactions at metal surfaces can be driven by multiple hot-electron-mediated excitations of adsorbates. A high transient density of hot electrons is obtained by means of femtosecond laser pulses and a characteristic feature of such...... density functional theory and the delta self-consistent field method. With a simplifying assumption, the power law becomes exact and we obtain a simple physical interpretation of the exponent n, which represents the number of adsorbate vibrational states participating in the reaction....

  9. Semi empirical model for astrophysical nuclear fusion reactions of 1≤Z≤15

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Seenappa, L.; Sridhar, K.N.

    2017-01-01

    The fusion reaction is one of the most important reactions in the stellar evolution. Due to the complicated reaction mechanism of fusion, there is great uncertainty in the reaction rate which limits our understanding of various stellar objects. Low z elements are formed through many fusion reactions such as "4He+"1"2C→"1"6O, "1"2C+"1"2C→"2"0Ne+"4He, "1"2C+"1"2C→"2"3Na, "1"2C+"1"2C→"2"3Mg, "1"6O+"1"6O→"2"8Si+"4He, "1"2C+"1H→"1"3N and "1"3C+"4He→"1"6O. A detail study is required on Coulomb and nuclear interaction in formation of low Z elements in stars through fusion reactions. For astrophysics, the important energy range extends from 1 MeV to 3 MeV in the center of mass frame, which is only partially covered by experiments. In the present work, we have studied the basic fusion parameters such as barrier heights (V_B), positions (R_B), curvature of the inverted parabola (ħω_1) for fusion barrier, cross section and compound nucleus formation probability (P_C_N) and fusion process in the low Z element (1≤Z≤15) formation process. For each isotope, we have studied all possible projectile-target combinations. We have also studied the astrophysical S(E) factor for these reactions. Based on this study, we have formulated the semi empirical relations for barrier heights (V_B), positions (R_B), curvature of the inverted parabola and hence for the fusion cross section and astrophysical S(E) factor. The values produced by the present model compared with the experiments and data available in the literature. (author)

  10. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    International Nuclear Information System (INIS)

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H 2 /minus/> DH + H and the substitution reaction D + C 2 H 2 /minus/> C 2 HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs

  11. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  12. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  13. Light charged particle multiplicities in fusion and quasifission reactions

    Science.gov (United States)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.; Wieleczko, J. P.

    2018-01-01

    The light charged particle evaporation from the compound nucleus and from the complex fragments in the reactions 32S+100Mo, 121Sb+27Al, 40Ar+164Dy, and 40Ar+ nat Ag is studied within the dinuclear system model. The possibility to distinguish the reaction products from different reaction mechanisms is discussed.

  14. Light charged particle multiplicities in fusion and quasifission reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kalandarov, Sh.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute of Nuclear Physics, Tashkent (Uzbekistan); Adamian, G.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Tomsk Polytechnic University, Mathematical Physics Department, Tomsk (Russian Federation); Lacroix, D. [IN2P3-CNRS, Universite Paris-Sud, Institut de Physique Nucleaire, Orsay (France); Wieleczko, J.P. [GANIL, CEA et IN2P3-CNRS, Caen (France)

    2018-01-15

    The light charged particle evaporation from the compound nucleus and from the complex fragments in the reactions {sup 32}S + {sup 100}Mo, {sup 121}Sb + {sup 27}Al, {sup 40}Ar + {sup 164}Dy, and {sup 40}Ar + {sup nat}Ag is studied within the dinuclear system model. The possibility to distinguish the reaction products from different reaction mechanisms is discussed. (orig.)

  15. Fusion and nonfusion phenomena in the 6Li+40Ca reaction at 156 MeV

    International Nuclear Information System (INIS)

    Brzychczyk, J.; Freindl, L.; Grotowski, K.

    1982-01-01

    Reaction products from 6 Li-induced reactions on 40 Ca at 156 MeV have been studied using the dE x E identification as well as the inclusive γ-ray method. The complete fusion cross-section has been found to be σsub(f)=(77 +- 11)mb. The Z distribution of fusion evaporation residues is compared with statistical model predictions. The Z spectrum of reaction products shows a maximum at 15 6 Li break-up. (author)

  16. Fusion and nonfusion phenomena in the 6Li+40Ca reaction at 156 MeV

    International Nuclear Information System (INIS)

    Brzychczyk, J.; Freindl, L.; Grotowski, K.; Majka, Z.; Micek, S.; Planeta, R.; Uniwersytet Jagiellonski, Krakow; Albinska, M.; Buschmann, J.; Klewe-Nebenius, H.; Gils, H.J.; Rebel, H.; Zagromski, S.

    1984-01-01

    Reaction products from 6 Li-induced reactions on 40 Ca at 156 MeV have been studied using the dExE idenitification as well as the inclusive γ-ray method. The complete fusion cross section has been found to be sigmasub(F)=67 +- 20 mb. The Z-distribution of fusion evaporation residues is compared with statistical model predictions. The Z-spectrum of reaction products shows a maximum at 15 6 Li-break-up processes. (orig.)

  17. Recent developments in heavy-ion fusion reactions around the Coulomb barrier

    Directory of Open Access Journals (Sweden)

    Hagino K.

    2016-01-01

    Full Text Available The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we discuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as 12C+12C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion reactions of 58Ni+58Ni and 40Ca+58Ni systems, and discuss the role of anharmonicity of the low-lying vibrational motions.

  18. Variance-reduction technique for Coulomb-nuclear thermalization of energetic fusion products in hot plasmas

    International Nuclear Information System (INIS)

    DeVeaux, J.C.; Miley, G.H.

    1982-01-01

    A variance-reduction technique involving use of exponential transform and angular-biasing methods has been developed. Its purpose is to minimize the variance and computer time involved in estimating the mean fusion product (fp) energy deposited in a hot, multi-region plasma under the influence of small-energy transfer Coulomb collisions and large-energy transfer nuclear elastic scattering (NES) events. This technique is applicable to high-temperature D- 3 He, Cat. D and D-T plasmas which have highly energetic fps capable of undergoing NES. A first application of this technique is made to a D- 3 He Field Reversed Mirror (FRM) where the Larmor radius of the 14.7 MeV protons are typically comparable to the plasma radius (plasma radius approx. 2 fp gyroradii) and the optimistic fp confinement (approx. 45% of 14.7 MeV protons) previously predicted is vulnerable to large orbit perturbations induced by NES. In the FRM problem, this variance reduction technique is used to estimate the fractional difference in the average fp energy deposited in the closed-field region, E/sub cf/, with and without NES collisions

  19. Breakup-fusion analyses of light ion induced stripping reactions to both bound and unbound regions

    International Nuclear Information System (INIS)

    Lee, Y.J.

    1987-01-01

    The breakup-fusion theory developed recently by our group at the University of Texas has been very successful in explaining observed continuum spectra of particles emitted from breakup type reactions, such as (d,p), (h,p), (h,d), (α,p), and (α,t) reactions. The aim of the present work is to extend the breakup-fusion formalism to calculate the usual stripping reaction, in which a nucleon or a nucleon-cluster is transferred into abound orbit in the target nucleus. With this extension, it is now possible to calculate the spectra of particles emitted from stripping type reactions. We particularly explore the possibility of using the breakup-fusion theory as a spectroscopic tool to obtain information about single particle states in both bound and unbound regions. For this purpose, we extend the theory so as to include the spin-orbit interaction between the transferred particle and the target which has been neglected in all the breakup-fusion studies made in the past. We then apply the thus extended breakup-fusion theory to analyze data of (d,p) and (α,t) reactions. The results of the calculations fit the observed spectra very well and the BF method is shown indeed to be useful for extracting information about the single particle states observed as bumps in both the continuum and discrete regions

  20. Fusion reaction around the Coulomb barrier with neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Atsushi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-07-01

    Two fusion reactions with neutron-rich nuclei are reported in this work. On the first reaction: {sup 9,10,11}Be+{sup 209}Bi, the fusion cross sections around the coulomb barrier were measured by determing {alpha} disintegration from compound nucleus Fr. In the field of 10-100 mb, the same total fusion cross sections were obtained. The phenomenon {sup 11}Be(neutron halo nucleus) alone increased and decreased was not observed. The fusion cross sections of {sup 27,29,31}Al+{sup 197}Au system were determined by using 130 kcps and 30 kcps of beam strength of {sup 29,31}Al, respectively. The value of {sup 27}Al was reproduced by calculation, but that of {sup 29}Al increased around barrier which could not be explained by CCDEF calculation. (S.Y.)

  1. Energy dependence of fusion evaporation-residue cross sections in the 28Si+12C reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Mateja, J.F.; Beck, C.; Atencio, S.E.; Dennis, L.C.; Frawley, A.D.; Henderson, D.J.; Janssens, R.V.F.; Kemper, K.W.; Kovar, D.G.; Maguire, C.F.; Padalino, S.J.; Prosser, F.W.; Stephans, G.S.F.; Tiede, M.A.; Wilkins, B.D.; Zingarelli, R.A.

    1993-01-01

    Fusion evaporation-residue cross sections for the 28 Si+ 12 C reaction have been measured in the energy range 18≤E c.m. ≤136 MeV using time-of-flight techniques. Velocity distributions of mass-identified reaction products were used to identify evaporation residues and to determine the complete-fusion cross sections at high energies. The data are in agreement with previously established systematics which indicate an entrance-channel mass-asymmetry dependence of the incomplete-fusion evaporation-residue process. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with earlier measurements and the predictions of existing models

  2. Liquid-drop effects in sub-barrier fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, C E; Barbosa, V C; Canto, L F; Donangelo, R

    1988-01-28

    We introduce an operational measure for the enhancement of the fusion cross section at sub-barrier energies in terms of an asymptotic energy shift ..delta..E. It is shown that ..delta..E has a continuously growing trend with the size of the system. This trend is explained in terms of neck formation using the liquid-drop model. Deviations from this trend are attributed to strong coupling to specific channels.

  3. Elastic scattering and fusion studies in the reactions $^{10,11}$Be + $^{64}$Zn

    CERN Multimedia

    2002-01-01

    We propose to measure elastic scattering and fusion excitation functions for the reactions $^{10,11}$Be + $^{64}$Zn at 3.1 MeV/u . The aim of the experiment is to investigate possible effects of the halo structure of the $^{11}$Be nucleus on the reaction mechanisms at energy around the Coulomb barrier. For this purpose a comparison with the reaction induced by the $^{10}$Be nucleus is required.

  4. Fusion reaction spectra produced by anisotropic fast ions in the PLT tokamak

    International Nuclear Information System (INIS)

    Heidbrink, W.W.

    1984-02-01

    For beam-target fusion reactions, collimated measurements of the energy spectrum of one of the reaction products can provide information on the degree of anisotropy of the reacting beam ions. Measurements of the spectrum of 15 MeV protons produced by reactions between energetic 3 He ions and relatively cold deuterons during fast wave minority heating in the PLT tokamak indicate that the velocity distribution of fast 3 He ions is peaked perpendicular to the tokamak magnetic field

  5. The decay of hot nuclei formed in La-induced reactions at intermediate energies

    International Nuclear Information System (INIS)

    Libby, B.; Mignerey, A.C.; Madani, H.; Marchetti, A.A.; Colonna, M.; DiToro, M.

    1992-01-01

    The decay of hot nuclei formed in lanthanum-induced reactions utilizing inverse kinematics has been studied from E/A = 35 to 55 MeV. At each bombarding energy studied, the probability for the multiple emission of complex fragments has been found to be independent of target. Global features (total charge, source velocity) of the reaction La + Al at E/A = 45 MeV have been reproduced by coupling a dynamical model to study the collision stage of the reaction to a statistical model of nuclear decay

  6. Some introductory notes on the problem of nuclear energy by controlled fusion reactions

    International Nuclear Information System (INIS)

    Pedretti, E.

    1988-01-01

    Written for scientists and technologist interested in, but unfamiliar with nuclear energy by controlled fusion reactions, this ''sui generis'' review paper attempts to provide the reader, as shortly as possible, with a general idea of the main issues at stake in nuclear fusion research. With the purpose of keeping this paper within a reasonable length, the various subjects are only outlined in their essence, basic features, underlying principles, etc., without entering into details, which are left to the quoted literature. Due to the particular readership of this journal, vacuum problems and/or aspects of fusion research anyhow related with vacuum science and technology are evidentiated. After reviewing fusion reactions' cross sections, fusion by accelerators and muon catalyzed fusion are described, followed by mention of Lawson's criteria and of plasma confinement features. Then, inertial confinement fusion is dealt with, also including one example of laser system (Nova), one of accelerator facility (PBFA-II) and some guesses on the classified Centurion-Halite program. Magnetic confinement fusion research is also reviewed, in particulary reporting one example of linear machine (MFTF-B), two examples of toroidal machines other than Tokamak (ATF and Eta-Beta-II) and various examples of Tokamaks, including PBX and PBX-M; TFTR, JET, JT-60, T-15 and Tore-Supra (large machines); Alcator A, FT, Alcator C/MTX, Alcator C-Mod and T-14 (compact high field machines). Tokamaks under design for ignition experiments (Ignitor, CIT, Ignitex and NET) are also illustrated. Thermal conversion of fusion power and direct generation of electricity are mentioned; conceptual design of fusion power plants are considered and illustrated by four examples (STARFIRE, WILDCAT, MARS and CASCADE). The D 3 He fuel cycle is discussed as an alternative more acceptable than Deuterium-Tritium, and thw Candor proposal is reported. After recalling past experience of the fission power development, some

  7. Fusion cross-sections of 16O+16O reaction in pseudonucleon picture

    International Nuclear Information System (INIS)

    Mishra, R.C.; Waghmare, Y.R.

    1991-01-01

    Fusion cross-sections for 16 O+ 16 O reaction are calculated in classical equations of motion approach using the pseudonucleon picture. These calculated fusion cross-sections are very close to measured values than earlier calculated using the same NN interaction. The aim of the paper is to test the pseudonucleon picture. Use of this picture does not require one to consider the number of relative random orientations of the colliding clusters. (author). 22 refs., 2 tabs., 4 figs

  8. Stochastic semi-classical description of sub-barrier fusion reactions

    Directory of Open Access Journals (Sweden)

    Ayik Sakir

    2011-10-01

    Full Text Available A semi-classical method that incorporates the quantum effects of the low-lying vibrational modes is applied to fusion reactions. The quantum effect is simulated by stochastic sampling of initial zero-point fluctuations of the surface modes. In this model, dissipation of the relative energy into non-collective excitations of nuclei can be included straightforwardly. The inclusion of dissipation is shown to increase the agreement with the fusion cross section data of Ni isotopes.

  9. Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well

    Directory of Open Access Journals (Sweden)

    H. J. Huang

    2015-11-01

    Full Text Available The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC, or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.

  10. Energy dependence of fusion evaporation-residue cross sections in the 28Si+28Si reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Bauer, J.S.; Gosdin, C.H.; Trotter, R.S.; Kovar, D.G.; Beck, C.; Henderson, D.J.; Janssens, R.V.F.; Wilkins, B.D.; Rosner, G.; Chowdhury, P.; Ikezoe, H.; Kuhn, W.; Kolata, J.J.; Hinnefeld, J.D.; Maguire, C.F.; Mateja, J.F.; Prosser, F.W.; Stephans, G.S.F.

    1990-01-01

    Velocity distributions of mass-identified evaporation residues produced in the 28 Si+ 28 Si reaction have been measured at bombarding energies of 174, 215, 240, 309, 397, and 452 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate the complete-fusion and incomplete-fusion components. Angular distributions and total cross sections were extracted at all six bombarding energies. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with lower energy data and the predictions of existing models

  11. Coherent anti-Stokes Raman scattering (CARS) detection or hot atom reaction product internal energy distributions

    International Nuclear Information System (INIS)

    Quick, C.R. Jr.; Moore, D.S.

    1983-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is being utilized to investigate the rovibrational energy distributions produced by reactive and nonreactive collisions of translationally hot atoms with simple molecules. Translationally hot H atoms are produced by ArF laser photolysis of HBr. Using CARS we have monitored, in a state-specific and time-resolved manner, rotational excitation of HBr (v = 0), vibrational excitation of HBr and H 2 , rovibrational excitation of H 2 produced by the reaction H + HBr → H 2 + Br, and Br atom production by photolysis of HBr

  12. Effects of breakup of weakly bound projectile and neutron transfer on fusion reactions around Coulomb barrier

    International Nuclear Information System (INIS)

    Lin, C.J.; Zhang, H.Q.; Yang, F.; Ruan, M.; Liu, Z.H.; Wu, Y.W.; Wu, X.K.; Zhou, P.; Zhang, C.L.; Zhang, G.L.; An, G.P.; Jia, H.M.; Xu, X.X.

    2007-01-01

    The excitation functions of quasielastic and elastic scattering at backward angles have been measured for the systems of 16 O+ 152 Sm, 6,7 Li+ 208 Pb and 32 S+ 90,96 Zr. The barrier distributions are extracted from these measured excitation functions and compared with the corresponding fusion barrier distributions. Except some details, the barrier distributions derived from the data of fusion and quasielastic/elastic scattering are almost the same for the tightly bound reaction systems. For the reaction systems with weakly bound projectile, the barrier distributions extracted from quasielastic scattering are obviously different from the fusion barrier distributions. However, the barrier distributions extracted from the excitation functions of the quasielastic scattering plus breakup are almost the same as the one extracted from the complete fusion data. This result means that barrier distribution not only bears the information of nuclear structures but also contains the knowledge of reaction mechanisms. Our results show that the complete fusion of the weakly bound projectile with heavy target is suppressed at the above barrier energies as compared with the model predictions. In addition, the measured barrier distribution of 32 S+ 96 Zr is broaden and extends to lower energy than in the case of 32 S+ 90 Zr due to the coupling of neutron transfer with positive Q-values, which result in a significant enhancement of fusion cross sections at the subbarrier energies

  13. Recent developments in fusion and direct reactions with weakly bound nuclei

    International Nuclear Information System (INIS)

    Canto, L.F.; Gomes, P.R.S.; Donangelo, R.; Lubian, J.; Hussein, M.S.

    2015-01-01

    In this Report we give a balanced account of the experimental and theoretical advances acquired over the last decade in the field of near-barrier fusion reactions induced by weakly bound stable and unstable nuclei. The elastic scattering and breakup reactions of these systems are also extensively reviewed as they play an important role in the fusion process. We review several theoretical tools used in the description of the data. The concepts of Complete Fusion (CF), Incomplete Fusion (ICF) and Total Fusion (TF), which is the sum of CF and ICF, are discussed and recent work on the calculation of these quantities is reviewed. The Continuum Discretized Coupled Channels (CDCC) method and its semiclassical version are described in detail and their limitations are pointed out. More importantly, we describe the salient features of the conclusions reached from the more than 40 measurements made, over a decade, of near-barrier fusion, elastic scattering and breakup reactions, and confront these data with the CDCC or other methods appropriate for these processes at the energy regime in question.

  14. Description of heavy-ion fusion in terms of direct reaction theory

    International Nuclear Information System (INIS)

    Hong, S.W.

    1987-01-01

    A direct reaction description of the heavy-ion fusion, proposed by Udagawa, Kim and Tamura, has been successfully used in calculating the fusion cross sections and the spin distributions for a number of systems in the energy regions from the sub-barrier to the above-barrier region. A fusion potential is introduced in this theory and the radius of the fusion potential is treated as an adjustable parameter. The theory is thus a one-parameter theory. The results obtained by Udagawa, Kim and Tamura showed that the radius parameter ranges from 1.4 to 1.5 fm, which is much larger than the radius (1.0 fm) used in other models. A hard evidence is shown to demonstrate the necessity of the long-ranged fusion potential radius in the near-barrier region. In the above-barrier region, the use of the energy-dependent optical potential and the energy-dependent fusion potential radius is proved to be essential in reproducing the measured fusion cross sections. As a further application of the theory, the double folded potential model is utilized to provide the real part of the optical potential. The imaginary part of the optical potential is determined so that not only the elastic scattering but also the fusion cross sections can be reproduced

  15. Competition between fusion and quasi-fission in heavy ion induced reactions

    International Nuclear Information System (INIS)

    Back, B.B.

    1986-09-01

    Quantitative analyses of angular distributions and angle-mass correlations have been applied to the U + Ca reaction to obtain upper limit estimates for the cross sections for complete fusion near or below the interaction barrier. Extrapolating to the systems Ca + Cm and Ca + Es using the well established scaling properties of the extra push model, an estimate of the cross sections relevant to the efforts of synthesizing super-heavy elements in the region Z = 116 and N = 184 via heavy-ion fusion reactions are obtained. A simple evaporation calculation using properties of the super heavy elements shows that the failure to observe super-heavy elements with the Ca + Cm reaction is consistent with estimates of the complete fusion process. 33 refs., 9 figs., 1 tab

  16. Comparison of cross sections for C+O reactions in the second regime of complete fusion

    International Nuclear Information System (INIS)

    Beck, C.; Haas, F.; Freeman, R.M.; Heusch, B.; Coffin, J.P.; Guillaume, G.; Rami, F.; Wagner, P.

    1985-01-01

    Kinetic energy spectra, angular distributions, and elemental yield distributions have been measured for the 12 C + 16 O, 12 C + 18 O and 13 C + 17 O reaction products over an energy range from 2 to 7 times the Coulomb barrier energy. A careful kinematic analysis of the evaporation residues and comparisons with statistical model calculations show that fusion proceeds with full momentum transfer followed by a statistical decay of the compound nucleus. The competition between complete fusion process and peripheral reactions in the 12 C + 16 O system is less important than for the 12 C + 18 O and 13 C + 17 O reactions. The unexpectedly high 12 C + 16 O complete fusion cross sections are related to the possible occurence of a superdeformation of the 28 Si compound nucleus

  17. Quantum shielding effects on the Gamow penetration factor for nuclear fusion reaction in quantum plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-01-01

    The quantum shielding effects on the nuclear fusion reaction process are investigated in quantum plasmas. The closed expression of the classical turning point for the Gamow penetration factor in quantum plasmas is obtained by the Lambert W-function. The closed expressions of the Gamow penetration factor and the cross section for the nuclear fusion reaction in quantum plasmas are obtained as functions of the plasmon energy and the relative kinetic energy by using the effective interaction potential with the WKB analysis. It is shown that the influence of quantum screening suppresses the Sommerfeld reaction factor. It is also shown that the Gamow penetration factor increases with an increase of the plasmon energy. It is also shown that the quantum shielding effect enhances the deuterium formation by the proton-proton reaction in quantum plasmas. In addition, it is found that the energy dependences on the reaction cross section and the Gamow penetration factor are more significant in high plasmon-energy domains.

  18. Incomplete fusion reactions in 16O+159Tb system: Spin distribution measurements

    Directory of Open Access Journals (Sweden)

    Sharma Vijay R.

    2015-01-01

    Full Text Available In order to explore the reaction modes on the basis of their entry state spin population, an experiment has been done by employing particle-γ coincidence technique carried out at the Inter University Accelerator Centre, New Delhi. The preliminary analysis conclusively demonstrates, spin distribution for some reaction products populated via complete and/or incomplete fusion of 16O with 159Tb system found to be distinctly different. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states.

  19. Pre-compound neutron evaporation in heavy ion fusion reactions

    International Nuclear Information System (INIS)

    Ajay Kumar; Singh, Hardev; Rajesh Kumar; Govil, I.M.; Golda, K.S.; Rakesh Kumar; Datta, S.K.; Yogi, B.K.; Viesti, G.

    2007-01-01

    In the present investigation, exclusive neutron spectra have been measured in coincidence with the observed γ-rays characteristic to the residual nuclei 53 Fe, 55 Fe and 56 Co. In this new experimental study, we have followed the strategy of forming the compound nucleus 58 Ni at the same excitation energy through two different entrance channels viz the mass symmetric reaction 31 P + 27 Al and the mass asymmetric reaction 12 C + 46 Ti

  20. Effect of projectile structure on evaporation residue yields in incomplete fusion reactions

    CERN Document Server

    Babu, K S; Sudarshan, K; Shrivastava, B D; Goswami, A; Tomar, B S

    2003-01-01

    The excitation functions of heavy residues, representing complete and incomplete fusion products, produced in the reaction of sup 1 sup 2 C and sup 1 sup 3 C on sup 1 sup 8 sup 1 Ta have been measured over the projectile energy range of 5 to 6.5 MeV/nucleon by the recoil catcher method and off-line gamma-ray spectrometry. Comparison of the measured excitation functions with those calculated using the PACE2 code based on the statistical model revealed the occurrence of incomplete fusion reactions in the formation of alpha emission products. The fraction of incomplete fusion cross sections in the sup 1 sup 2 C + sup 1 sup 8 sup 1 Ta reaction was found to be higher, by a factor of approx 2, than that in the sup 1 sup 3 C + sup 1 sup 8 sup 1 Ta reaction. The results have been discussed in terms of the effect of alpha cluster structure of the projectile on incomplete fusion reactions.

  1. Influence of collective nonideal shielding on fusion reaction in partially ionized classical nonideal plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-04-01

    The collective nonideal effects on the nuclear fusion reaction process are investigated in partially ionized classical nonideal hydrogen plasmas. The effective pseudopotential model taking into account the collective and plasma shielding effects is applied to describe the interaction potential in nonideal plasmas. The analytic expressions of the Sommerfeld parameter, the fusion penetration factor, and the cross section for the nuclear fusion reaction in nonideal plasmas are obtained as functions of the nonideality parameter, Debye length, and relative kinetic energy. It is found that the Sommerfeld parameter is suppressed due to the influence of collective nonideal shielding. However, the collective nonideal shielding is found to enhance the fusion penetration factor in partially ionized classical nonideal plasmas. It is also found that the fusion penetration factors in nonideal plasmas represented by the pseudopotential model are always greater than those in ideal plasmas represented by the Debye-Hückel model. In addition, it is shown that the collective nonideal shielding effect on the fusion penetration factor decreases with an increase of the kinetic energy.

  2. Hot-spot dynamics and deceleration-phase Rayleigh-Taylor instability of imploding inertial confinement fusion capsules

    International Nuclear Information System (INIS)

    Betti, R.; Umansky, M.; Lobatchev, V.; Goncharov, V.N.; McCrory, R.L.

    2001-01-01

    A model for the deceleration phase of imploding inertial confinement fusion capsules is derived by solving the conservation equations for the hot spot. It is found that heat flux leaving the hot spot goes back in the form of internal energy and pdV work of the material ablated off the inner shell surface. Though the hot-spot temperature is reduced by the heat conduction losses, the hot-spot density increases due to the ablated material in such a way that the hot-spot pressure is approximately independent of heat conduction. For direct-drive National Ignition Facility-like capsules, the ablation velocity off the shell inner surface is of the order of tens μm/ns, the deceleration of the order of thousands μm/ns2, and the density-gradient scale length of the order a few μm. Using the well-established theory of the ablative Rayleigh-Taylor instability, it is shown that the growth rates of the deceleration phase instability are significantly reduced by the finite ablative flow and the unstable spectrum exhibits a cutoff for mode numbers of about l≅90

  3. Hot oxygen atoms: Their generation and chemistry. [Production by sputtering; reaction with butenes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrieri, R.A.; Chu, Yung Y.; Wolf, A.P.

    1987-01-01

    Oxygen atoms with energies between 1 and 10 eV have been produced through ion beam sputtering from metal oxide targets. Argon ion beams were used on Ta/sub 2/O/sub 5/ and V/sub 2/O/sub 5/. Results show that some control may be exerted over the atom's kinetic energy by changing the target. Reactions of the hot O(/sup 3/P) with cis- and trans-butenes were investigated. (DLC)

  4. Fusion barrier distributions in 28,30Si + 124Sn reactions

    International Nuclear Information System (INIS)

    Danu, L.S.; Nayak, B.K.; Biswas, D.C.; Saxena, A.; Thomas, R.G.; Mirgule, E.T.; Choudhury, R.K.

    2009-01-01

    The coupling of various degrees of freedom such as static deformation, inelastic excitation and nucleon transfer with the relative motion gives rise to a distribution of barrier in heavy ion induced fusion reactions. The barrier distribution is a fingerprint of the reaction characterizing the important channel couplings. The relative importance of various couplings in fusion reaction is of topical interest. In an earlier study with deformed projectiles 28,30 Si on 115 In target, it was observed that the barrier distributions get affected due to coulomb reorientation of the deformed projectile nuclei in the field of target nucleus thus giving rise to fusion hindrance at sub-barrier energies. In that study, we considered deformed projectile rotational and positive Q-value transfer channel couplings to relative motion in fusion for investigation of Coulomb reorientation and no inelastic coupling of the 115 In target was considered. In the present work, we have extended the measurements with 124 Sn target and inelastic coupling of target has been considered in the coupled channel calculations. The fusion barrier distributions for 28,30 Si + 124 Sn systems have been obtained by quasi-elastic scattering measurements at backward angles and the results compared with the predictions of coupled channel calculations

  5. Evaluation of early tissue reactions after lumbar intertransverse process fusion using CT in a rabbit

    International Nuclear Information System (INIS)

    Shinbo, Jun; Mainil-Varlet, Pierre; Watanabe, Atsuya; Pippig, Suzanne; Koener, Jens; Anderson, Suzanne E.

    2010-01-01

    The objective of the study was to evaluate tissue reactions such as bone genesis, cartilage genesis and graft materials in the early phase of lumbar intertransverse process fusion in a rabbit model using computed tomography (CT) imaging with CT intensity (Hounsfield units) measurement, and to compare these data with histological results. Lumbar intertransverse process fusion was performed on 18 rabbits. Four graft materials were used: autograft bone (n=3); collagen membrane soaked with recombinant human bone morphogenetic protein-2 (rhBMP-2) (n=5); granular calcium phosphate (n=5); and granular calcium phosphate coated with rhBMP-2 (n=5). All rabbits were euthanized 3 weeks post-operatively and lumbar spines were removed for CT imaging and histological examination. Computed tomography imaging demonstrated that each fusion mass component had the appropriate CT intensity range. CT also showed the different distributions and intensities of bone genesis in the fusion masses between the groups. Each component of tissue reactions was identified successfully on CT images using the CT intensity difference. Using CT color mapping, these observations could be easily visualized, and the results correlated well with histological findings. The use of CT intensity is an effective approach for observing and comparing early tissue reactions such as newly synthesized bone, newly synthesized cartilage, and graft materials after lumbar intertransverse process fusion in a rabbit model. (orig.)

  6. Search for entrance channel effects in fusion reactions via neutron evaporation

    International Nuclear Information System (INIS)

    Ajay Kumar; Kaur, J.; Kumar, A.; Singh, G.; Govil, I.M.; Rakesh Kumar; Datta, S.K.; Chatterjee, M.B.; Yogi, B.K.

    2001-01-01

    It is generally expected that the compound nuclei formed at the given excitation energies and the angular momenta follow a statistical decay pattern independent of a particular reaction that led to fusion. In order to search the entrance channel effects in the decay of compound nucleus, the reaction 16 O + 64 Zn at oxygen beam energy of 91 MeV and 95 MeV are investigated

  7. Collinear laser spectroscopy on In isotopes from heavy ion fusion reactions

    International Nuclear Information System (INIS)

    Ulm, G.

    1984-07-01

    Indium isotopes 107-111 were produced by 16 O-fusion reactions and investigated in a collinear laser geometry. The hyperfine structure and isotopic shifts are measured and the deduced magnetic dipole moments are in agreement with shell model calculations. The nuclear charge radii are determined from the isotopic shifts. (WL)

  8. Influence of hexadecapole deformations of the nuclear shape of subbarrier fusion reactions

    International Nuclear Information System (INIS)

    Fernandez Niello, J.

    1989-01-01

    A systematic study of the contribution of hexadecapole deformations to the enhancement of subbarrier fusion cross reactions is carried out. The analysis is based on calculations that cover the full range of values of hexadecapole deformations found in actual nuclear systems. The interplay of this shape degree of freedom with the presence of prolate quadrupole deformations is also contemplated. (Author) [es

  9. Excitation functions for some Ne induced reactions with Holmium: incomplete fusion vs complete fusion

    International Nuclear Information System (INIS)

    Agarwal, Avinash; Kumar, Munish; Sharma, Anjali; Rizvi, I.A.; Ahamad, Tauseef; Ghugre, S.S.; Sinha, A.K.; Chaubey, A.K.

    2010-01-01

    Reactions induced by 20 Ne are expected to be considerably more complex than those of 12 C, and 16 O. As a part of the ongoing program to understand CF and ICF reaction mechanisms, it is of great interest to see whether the same experimental technique yield similarly valuable information for 20 Ne induced reactions. In this present work an attempt has been made to measure the excitation functions for fifteen evaporation residues (ERs) identified in the interaction of 20 Ne + 165 Ho system in the energy range 4 -7 MeV/A

  10. D+D thermonuclear fusion reactions with polarized particles

    International Nuclear Information System (INIS)

    Kozma, P.

    1986-01-01

    Polarization measurements from the 2 H(d, n) 3 He and 2 H(d, p) 3 H thermonuclear reactions at deuteron energies below 1 MeV are anayzed. Results of analysis enable to discuss the existence of 4 He excited states in the vicinity of d+d threshold energy as well as to extrapolate total cross-sections σ tot (d+d) into the region of very low energies

  11. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  12. Spallation as a dominant source of pusher-fuel and hot-spot mix in inertial confinement fusion capsules

    Science.gov (United States)

    Orth, Charles D.

    2016-02-01

    We suggest that a potentially dominant but previously neglected source of pusher-fuel and hot-spot "mix" may have been the main degradation mechanism for fusion energy yields of modern inertial confinement fusion (ICF) capsules designed and fielded to achieve high yields—not hydrodynamic instabilities. This potentially dominant mix source is the spallation of small chunks or "grains" of pusher material into the fuel regions whenever (1) the solid material adjacent to the fuel changes its phase by nucleation and (2) this solid material spalls under shock loading and sudden decompression. We describe this mix mechanism, support it with simulations and experimental evidence, and explain how to eliminate it and thereby allow higher yields for ICF capsules and possibly ignition at the National Ignition Facility.

  13. Recent experimental results in sub- and near-barrier heavy-ion fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Montagnoli, Giovanna [Dipartimento di Fisica e Astronomia, Universita di Padova (Italy); INFN Sezione di Padova (Italy); Stefanini, Alberto M. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2017-08-15

    Recent advances obtained in the field of near and sub-barrier heavy-ion fusion reactions are reviewed. Emphasis is given to the results obtained in the last decade, and focus is mainly on the experimental work performed concerning the influence of transfer channels on fusion cross sections and the hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier fusion taught us that cross sections may strongly depend on the low-energy collective modes of the colliding nuclei, and, possibly, on couplings to transfer channels. The coupled-channels (CC) model has been quite successful in the interpretation of the experimental evidences. Fusion barrier distributions often yield the fingerprint of the relevant coupled channels. Recent results obtained by using radioactive beams are reported. At deep sub-barrier energies, the slope of the excitation function in a semi-logarithmic plot keeps increasing in many cases and standard CC calculations overpredict the cross sections. This was named a hindrance phenomenon, and its physical origin is still a matter of debate. Recent theoretical developments suggest that this effect, at least partially, may be a consequence of the Pauli exclusion principle. The hindrance may have far-reaching consequences in astrophysics where fusion of light systems determines stellar evolution during the carbon and oxygen burning stages, and yields important information for exotic reactions that take place in the inner crust of accreting neutron stars. (orig.)

  14. The fusion reactor wall is getting hot. A challenge towards the future for numerical modelling (4). Chap. 4. What is really happening in the wall?

    International Nuclear Information System (INIS)

    Murata, Isao; Konno, Chikara

    2008-01-01

    In fusion plasmas, a lot of fast neutrons with a kinetic energy of 14 MeV are generated through D-T fusion reactions. These neutrons travel deep into the first wall and are absorbed in the blanket through nuclear reactions. In the present chapter, the authors discuss what happens in the blanket with the help of computerized simulation. (T.I.)

  15. Low-energy nuclear reaction of the 14N+169Tm system: Incomplete fusion

    Science.gov (United States)

    Kumar, R.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Agarwal, Avinash; Appannababu, S.; Mukherjee, S.; Singh, B. P.; Ali, R.; Bhowmik, R. K.

    2017-11-01

    Excitation functions of reaction residues produced in the 14N+169Tm system have been measured to high precision at energies above the fusion barrier, ranging from 1.04 VB to 1.30 VB , and analyzed in the framework of the statistical model code pace4. Analysis of α -emitting channels points toward the onset of incomplete fusion even at slightly above-barrier energies where complete fusion is supposed to be one of the dominant processes. The onset and strength of incomplete fusion have been deduced and studied in terms of various entrance channel parameters. Present results together with the reanalysis of existing data for various projectile-target combinations conclusively suggest strong influence of projectile structure on the onset of incomplete fusion. Also, a strong dependence on the Coulomb effect (ZPZT) has been observed for the present system along with different projectile-target combinations available in the literature. It is concluded that the fraction of incomplete fusion linearly increases with ZPZT and is found to be more for larger ZPZT values, indicating significantly important linear systematics.

  16. Fusability and fissionability in 86Kr induced reactions near and below the fusion barrier

    International Nuclear Information System (INIS)

    Reisdorf, W.; Hessberger, F.P.; Hildenbrand, K.D.; Hofmann, S.; Muenzenberg, G.; Schmidt, K.H.; Schneider, W.F.W.; Suemmerer, K.; Wirth, G.; Kratz, J.V.; Schlitt, K.; Sahm, C.C.

    1985-04-01

    Evaporation-residue excitation functions for the reactions 86 Kr + sup(70,76)Ge, sup(92,100)Mo, sup(99,102,104)Ru have been measured using activation methods and the velocity filter SHIP. The data span the region from well below the fusion barrier up to and beyond the energy where limitation by fission competition takes place. The data are shown to be compatible with the concept of complete fusion followed by the statistical decay of the equilibrated compound nucleus. Information on both the fusion probability at and below the fusion threshold and the fissionability of the compound nuclei formed is extracted. The model dependence of the extracted fission barriers is discussed in detail. In analogy to studies involving lighter projectiles, strong correlations between the low-energy nuclear-structure properties of the nuclei and the subbarrier fusion probability are found. A relative shift of the fusion barrier to higher energies, that increases with the number of valence neutrons in the target nuclei, is observed. (orig.)

  17. Formation, separation and detection of evaporation residues produced in complete fusion reactions

    CERN Document Server

    Sagaidak, R N

    2015-01-01

    Some aspects of formation, separation and detection of evaporation residues (ERs) produced in complete fusion reactions induced by accelerated heavy ions are considered. These reactions allow to obtain heavy neutron-deficient nuclei and to study their properties. The statistical model analysis of the production cross sections for these nuclei obtained in a wide range of their neutron numbers allows to trace the changes in their macroscopic properties such as fission barriers. The fusion probability of massive projectile and target nuclei is of interest. Empirical estimates of this value allow to verify the predictions of theoretical models for the optimal ways of synthesis of unknown nuclei. Some peculiarities in the separation and detection of ERs in experiments are briefly considered by the example of the Ra ERs produced in the 12 C+Pb reactions. The reliable cross sections for ERs produced in very asymmetric projectile-target combination, such as 12 C+Pb, are important for the em...

  18. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.

    Science.gov (United States)

    Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

  19. Near threshold two meson production in hardonic fusion reactions

    International Nuclear Information System (INIS)

    Jahn, R.

    1991-01-01

    An approved and funded exclusive COSY experiment is presented, which focuses on near threshold two meson production via the reactions p+d→ 3 He + π + π - and p+d→ 3 He+K + K-. It takes advantage of the high quality of the cooled external COSY beam and the existing spectrometer BIG KARL. The setup consists of a vertex wall and a scintillator cylinder and endcap covering a 4π solid angle. The large efficiency and high resolution of this detection method will yield precision data on the low energy (T 0 (975). Existing inclusive data as well as first results of a very recent 'semi-exclusive' experiment performed at SATURNE will be also be presented

  20. Effects on nuclear fusion reaction on diffusion and thermal conduction in a magnetoplasma

    International Nuclear Information System (INIS)

    Sakai, Kazuo; Aono, Osamu.

    1976-12-01

    In spite of the well spread belief in the field of irreversible thermodynamics, vectorial phenomena couple thermodynamically with the scalar phenomena. Transport coefficients concerning the diffusion and the thermal conduction across a strong magnetic field are calculated in the presence of the deuteron-triton fusion reaction on the basis of the gas kinetic theory. When the reaction takes place, the diffusion increases and the thermal conduction decreases. Effects of the reaction exceed those of the Coulomb collision as the temperature is high enough. (auth.)

  1. A comparison of the radiological impact of energy production by fission and fusion reactions

    International Nuclear Information System (INIS)

    Rancillac, F.; Despres, A.

    1990-04-01

    The impacts of respectively a light water reactor and a planned fusion reactor, for which tritium-deuterium fusion reactions will act as energy source have been compared. The comparison is made on the basis of a generated capacity of 1 GWe.year, using the following criteria: fuel inventories, radioactive releases, collective effective dose equivalent commitments to the public and the volume of wastes. The accidental risk is not introduced. Fusion reactor parameters are still subject to uncertainties, which prevent accurate quantification of radionuclide releases (tritium apart) from the nuclear plant. Only orders of magnitude extrapolated from values for the NET tokamak are given. Despite these uncertainties, it would seem more interesting, from the dosimetric point of view, to use fusion reactors to produce electricity, although problems of radioactive releases, handling and long-term storage of radioactive waste would remain. Fusion reactors also generate generate high-level wastes with long-term exposure rates that are lower than those of light water reactors [fr

  2. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    International Nuclear Information System (INIS)

    Carnelli, P.F.F.; Almaraz-Calderon, S.; Rehm, K.E.; Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H.; Fernández Niello, J.; Henderson, D.; Jiang, C.L.; Lai, J.; Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C.; Paul, M.; Ugalde, C.

    2015-01-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15 C+ 12 C fusion reactions at energies around the Coulomb barrier

  3. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Carnelli, P.F.F. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Almaraz-Calderon, S. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rehm, K.E., E-mail: rehm@anl.gov [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fernández Niello, J. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Universidad Nacional de San Martín, Campus Miguelete, B1650BWA San Martín, Buenos Aires (Argentina); Henderson, D.; Jiang, C.L. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lai, J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel); Ugalde, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the {sup 10,13,15}C+{sup 12}C fusion reactions at energies around the Coulomb barrier.

  4. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments.

    Science.gov (United States)

    Rosenberg, M J; Solodov, A A; Myatt, J F; Seka, W; Michel, P; Hohenberger, M; Short, R W; Epstein, R; Regan, S P; Campbell, E M; Chapman, T; Goyon, C; Ralph, J E; Barrios, M A; Moody, J D; Bates, J W

    2018-02-02

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (∼500 to 700  μm), electron temperature (∼3 to 5 keV), and laser intensity (6 to 16×10^{14}  W/cm^{2}) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ∼0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ∼4×10^{14} to ∼6×10^{14}  W/cm^{2}. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

  5. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments

    Science.gov (United States)

    Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Seka, W.; Michel, P.; Hohenberger, M.; Short, R. W.; Epstein, R.; Regan, S. P.; Campbell, E. M.; Chapman, T.; Goyon, C.; Ralph, J. E.; Barrios, M. A.; Moody, J. D.; Bates, J. W.

    2018-01-01

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (˜500 to 700 μ m ), electron temperature (˜3 to 5 keV), and laser intensity (6 to 16 ×1014 W /cm2 ) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ˜0.7 % to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ˜4×10 14 to ˜6 ×1014 W /cm2 . These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

  6. Investigation of the influence of incomplete fusion on complete fusion of {sup 12}C-induced reactions at {approx} 4-7.2 MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Amanuel, F.K. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy); Zelalem, B.; Chaubey, A.K. [Addis Ababa University, Department of Physics, P.O.Box 1176, Addis Ababa (Ethiopia); Agarwal, Avinash [Bareilly College, Department of Physics, Bareilly (India); Rizvi, I.A.; Maheshwari, Anjana; Ahmed, Tauseef [Aligarh Muslim University, Department of Physics, Aligarh (India)

    2011-12-15

    In this paper, we present the results of our investigation of reaction dynamics leading to incomplete fusion of heavy ions at moderate excitation energies, especially the influence of incomplete fusion on complete fusion of {sup 12}C -induced reactions at specific energies {approx} 4-7.2M eV/nucleon. Excitation functions of various reaction products populated via complete and/or incomplete fusions of a {sup 12}C projectile with {sup 93}Nb, {sup 59}Co and {sup 52}Cr targets were measured at several specific energies {approx} 4-7.2 MeV/nucleon, using a recoil catcher technique, followed by off-line {gamma}-ray spectrometry. The measured excitation functions were compared with theoretical values obtained using the PACE4 statistical model code. For representative non-{alpha}-emitting channels in the {sup 12}C + {sup 93}Nb system, the experimentally measured excitation functions were, in general, found to be in good agreement with the theoretical predictions. However, for {alpha}-emitting channels in the {sup 12}C + {sup 93}Nb, {sup 12}C + {sup 59}Co, and {sup 12}C + {sup 52}Cr systems, the measured excitation functions were higher than the predictions of the theoretical model code, which may be credited to incomplete fusion reactions at these energies. An attempt was made to estimate the incomplete fusion fraction for the present systems, which revealed that the fraction was sensitive to the projectile energy and mass asymmetry of the entrance channel. (orig.)

  7. Spin distribution studies: a sensitive probe for in-complete fusion reaction dynamics

    International Nuclear Information System (INIS)

    Singh, Pushpendra P.; Singh, B.P.; Unnati; Sharma, Bhavna; Sharma, Manoj Kumar; Singh, D.; Afzal Ansari, M.; Prasad, R.; Rakesh Kumar; Golda, K.S.; Muralithar, S.; Singh, R.P.; Bhowmik, R.K.; Bhardwaj, H.D.

    2006-01-01

    With the view to get the conclusive information on critical angular momentum involvement for various degrees of incomplete fusion, an in-beam particle-gamma coincidence experiment has been performed in 16 O + 169 Tm system at ≅ 5.6 MeV/nucleon. Spin distributions for different reaction products have been measured by studying the relative population of different levels in a rotational band

  8. Fusion, reaction and break-up cross sections of weakly bound projectiles on 64Zn

    International Nuclear Information System (INIS)

    Gomes, P.R.S.; Padron, I.; Rodriguez, M.D.; Marti, G.V.; Anjos, R.M.; Lubian, J.; Veiga, R.; Liguori Neto, R.; Crema, E.; Added, N.; Chamon, L.C.; Fernandez Niello, J.O.; Capurro, O.A.; Pacheco, A.J.; Testoni, J.E.; Abriola, D.; Arazi, A.; Ramirez, M.; Hussein, M.S.

    2004-01-01

    We present new measurements and a general discussion of the behavior of the fusion, break-up and reaction cross sections of different projectiles on the same target 64 Zn, at near and above barrier energies. The projectiles are the tightly bound 16 O, the stable weakly bound 6 Li, 7 Li and 9 Be and the radioactive very weakly bound 6 He nuclei. We also compare the results with the ones for heavier targets

  9. Fusion reaction yield in focused discharges with variable energy and plasma fine structure

    International Nuclear Information System (INIS)

    Bortolotti, A.; Brzosko, J.S.; Chiara, P. De; Kilic, H.; Mezzetti, F.; Nardi, V.; Powell, C.; Wang, J.

    1992-01-01

    The same linear correlation between the distribution parameters (ΔT and Max ΔV) of the radial current density J between electrodes and the fusion reaction yield per pulse, Y, in the plasma focus (PF) pinch was quantitatively determined from different PF machines. Contact prints of current-sheath fragments (CSF) ejected from the pinch are obtained from 2.5-MeV-D + ions. CSF's show the same submillimetric fine structure of the pinch. (author) 3 refs., 2 tabs

  10. Complete fusion excitation function for the 16O + natS reaction

    International Nuclear Information System (INIS)

    Wang Sufang; Zheng Jiwen; Liu Guoxing

    1994-01-01

    The complete fusion excitation function for the 16 O + nat S reaction has been measured in the range of 50-75 MeV with a step of 1.0 MeV by using a position sensitive ΔE-E telescope system. The model parameters have been extracted from data analysis. The striking gross structure of the excitation function has been observed. The energies of peaks are at E CM 38,43 and 48 MeV respectively

  11. Reaction and fusion cross sections for 32S on 27Al and 48Ti

    International Nuclear Information System (INIS)

    Porto, F.; Sambataro, S.; Kusterer, K.; Liu Ken Pao; Doukellis, G.; Harney, H.L.

    1981-01-01

    Elastic scattering and evaporation residues have been measured for the system 32 S + 27 Al at Esub(c)sub(.)sub(m)sub(.) = 66.4, 73.2 MeV and 32 S + 48 Ti at Esub(c)sub(.)sub(m)sub(.) = 96.0 MeV. Reaction cross sections have been obtained by use of the optical theorem and are found to be about 60% larger than the fusion cross sections. (orig.)

  12. Cold fusion reaction ignition at cavitation effect on deuterium-containing media

    International Nuclear Information System (INIS)

    Lipson, A.G.; Deryagin, B.V.; Klyuev, V.A.

    1992-01-01

    A possibility to induce 'cold' nuclear fusion reactions in the process of ultrasound cavitation in heavy water is studied. Nonstationary neutron emission is detected under cavitation in D 2 O on titanium vibrator which has the tracks of cavitation erosion (the vibrator ran in D 2 O to 20 hours). Maximum excess over background (12σ) was recorded under cavitation impact on the suspension of LaNi 5 D x dispersed particle in D 2 O

  13. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  14. Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier

    International Nuclear Information System (INIS)

    Ray, M.; Mukherjee, A.; Pradhan, M. K.; Kshetri, Ritesh; Sarkar, M. Saha; Dasmahapatra, B.; Palit, R.; Majumdar, I.; Joshi, P. K.; Jain, H. C.

    2008-01-01

    Measurement of fusion cross sections for the 6,7 Li + 24 Mg reactions by the characteristic γ-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these γ-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The relatively large difference between total cross sections and measured fusion cross sections at higher energies is consistent with the fact that other channels, in particular breakup, open up with an increase of bombarding energy. The breakup channel, however, appears not to have any influence on fusion cross sections. The critical angular momenta (l cr ) deduced from the fusion cross sections are found to have an energy dependence similar to other Li-induced reactions

  15. Suprathermal fusion reactions in laser-imploded D-T pellets. Applicability to pellet diagnosis and necessity of nuclear data

    International Nuclear Information System (INIS)

    Tabaru, Y.; Nakao, Y.; Kudo, K.; Nakashima, H.

    1995-01-01

    The suprathermal fusion reaction is examined on the basis of coupled transport/hydrodynamic calculation. We also calculate the energy spectrum of neutrons bursting from DT pellet. Because of suprathermal fusion and rapid pellet expansion, these neutrons contain fast components whose maximum energy reachs about 40 MeV. The pellet ρR diagnosis by the detection of suprathermal fusion neutrons is discussed. (author)

  16. Reactions of hot nitrogen in water-ice at 77 K

    International Nuclear Information System (INIS)

    Roessler, K.; Schurwanz, K.

    1985-04-01

    The reactions of hot nitrogen atoms were studied in H 2 O-ice at 77 K. The nitrogen atoms were generated via the nuclear process 16 O(p,α) 13 N with 20 MeV protons from a cyclotron and by implantation of 250 keV 14 N + ions. The formation of chemical compounds of 13 N was studied over a wide dose range of the energy deposited by the protons from Dsup(*)=10 -2 to 26 eV per target molecule. The 13 N-labeled products and their yields as depending on the dose were determined via high performance liquid chromatography (HPLC) and radio-gaschromatography (GC). The reactions of implanted 14 N + ions were studied in H 2 O-ice at 6 K. The analysis of the products was achieved by optical low-temperature spectroscopy in the near UV, visible and infrared spectral regions. Primary (original hot) products of 13 N were: 13 NH 4 + with a radiochemical yield of 51%, 13 NO 2 - (37%), and 13 NO 3 - (9%) as detected after irradiation with the lowest proton dose applied of Dsup(*)=10 -2 eV. With increasing dose the 13 NH 4 + -yield rose to a broad maximum at 95%. Correspondingly the yields of nitrite and nitrate decreased. Applications of the studies are the preparation of 13 N-labeled precursor compounds for the fast synthesis of 13 N-radiopharmaceuticals and the laboratory simulations of chemical processes in the interplanetary and interstellar ice bodies. The ion implantation studies gave first information on the hot formation of nitrogen-oxygen compounds. NH-compounds could not be found in the spectra. This reflects the 13 N-product distribution at high doses in the nuclear recoil experiments. (orig./RB) [de

  17. Molecular resonances, fusion reactions and surface transparency of interaction between heavy ions

    International Nuclear Information System (INIS)

    Abe, Yasuhisa.

    1980-01-01

    A review of the Band Crossing Model is given, including recent results on the 16 O + 16 O system. Surface Transparency is discussed in the light of the recent development in our understanding of the fusion reaction mechanisms and by calculating the number of open channels available to direct reactions. The existence of the Molecular Resonance Region is suggested in several systems by the fact that Band Crossing Region overlaps with the Transparent Region. A systematic study predicts molecular resonances in the 14 C + 14 C and 12 C + 14 C systems as prominent as those observed in the 16 O + 16 O and 12 C + 16 O systems

  18. Estimation of the {alpha} particles and neutron distribution generated during a fusion reaction; Evaluation de la distribution des particules {alpha} et des neutrons issus de la reaction de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dellacherie, S.

    1997-12-01

    The respective distributions (or density probabilities) of {alpha} particles and neutrons have been modeled using a Monte-Carlo method for the thermonuclear fusion reaction D + T {yields} {alpha} + n + 17.6 MeV. (N.T.).

  19. Absorption-Fluctuation Theorem for Nuclear Reactions: Brink-Axel, Incomplete Fusion and All That

    International Nuclear Information System (INIS)

    Hussein, M. S.

    2008-01-01

    We discuss the connection between absorption, averages and fluctuations in nuclear reactions. The fluctuations in the entrance channel result in the compound-nucleus Hauser-Feshbach cross section, and the fluctuations in the intermediate channels result in modifications of multistep reaction cross sections, while the fluctuations in the final channel result in hybrid cross sections that can be used to describe incomplete fusion reactions. We discuss the latter in detail and comment on the validity of the assumptions used in the development of the Surrogate method. We also discuss the theory of multistep reactions with regards to intermediate state fluctuations and the energy dependence and non-locality of the intermediate-channel optical potentials

  20. SU-F-T-140: Assessment of the Proton Boron Fusion Reaction for Practical Radiation Therapy Applications Using MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Adam, D; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt to validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.

  1. Fusion evaporation residues and the distribution of reaction strength in 16O + 40Ca and 28Si + 28Si reactions

    International Nuclear Information System (INIS)

    Kolata, J.J.; Hinnefeld, J.; Kovar, D.G.

    1985-01-01

    In measurements performed previously at ANL, studying the two entrance channels 16 O + 40 Ca and 28 Si + 28 Si which form the same compound nucleus 56 Ni, it was found that at higher bombarding energies (E/sub Lab/ > 5-7 MeV/nucleon) the distributions of reaction strength was dramatically different. Although the total reaction cross section behaviors for the two entrance channels are similar, the total evaporation residue (ER) cross sections for 28 Si + 28 Si decrease rapidly with increasing bombarding energies and up to the highest energy studied show no evidence for incomplete fusion processes. For 16 O + 40 Ca the ER cross section remains constant at approximately 1 barn with increasing bombarding energy and shows evidence of increasing contributions from incomplete fusion. To better understand this apparent dependence on the mass asymmetry in the entrance channel, coincidence measurements between evaporation residue-like products and heavy ions on the opposite side of the beam were performed for the two systems at E/sub Lab/ = 8 MeV/nucleon

  2. Hot reactions of 13N in solid methane at 77 K

    International Nuclear Information System (INIS)

    Fiergolla, J.; Nebeling, B.; Roessler, K.

    1987-09-01

    The chemical reactions of recoil- 13 N were studied in solid methane at 77 K. 13 N was generated via the the nuclear reaction 12 C(d,n) 13 N. The radiation dose deliverd by the 8.5 MeV deuterons amounted to D * = 0.6 eV per target molecule. The products formed by high energy chemical processes (hot chemistry) were analyzed by radio-gaschromatography. 13 NH 3 with 52% and CH 3 13 NH 2 with 25% radiochemical yield were found to be the main products. HC 13 N was not formed, but CH 3 13 CN amounts to 4%. For the more complex products carbon chain prolongation is prefered over multiple methylation such as show the yields of 8% for C 2 H 5 13 NH 2 and 3% (CH 3 ) 2 13 NH. (CH 3 ) 3 N was not detected. The formation of 13 NH 3 is due to hydrogen abstraction, that of CH 3 13 NH 2 due to insertion of NH radical into the C-H bond of CH 4 . Another, however, less probable pathway could be the insertion of 13 N into methane. The methylamine radical may react with another methane molecule via hydrogen transfer to methylamine or attack to CH 4 to dimethylamine. The 13 N-products were formed with high radiochemical purity and can potentially be applied for the synthesis of 13 N-radiopharmaceuticals. The reactions studied bear also informations on chemical processes in space (e.g. solar wind interactions with comets or interplanetary dust). 13 N-high energy chemical products are, however, of a less exobiological significance then those formed by hot carbon atoms, e.g. in the 'mirror' system 11 C/NH 3 (s). (orig.) [de

  3. Cross-sections and average angular momenta in fusion reactions near the coulomb barrier

    International Nuclear Information System (INIS)

    Dasgupta, M.

    1992-01-01

    In recent years there has been an increasing interest in the study of heavy ion collisions near the Coulomb barrier. This has been triggered mainly by the observations of enhancements by factors of about one to two order of magnitude in sub-Coulomb barrier fusion (SBF) cross-sections between medium mass nuclei, as compared to predictions based on one-dimensional barrier penetration model (l-d BPM). Though, a considerable amount of work both theoretical and experimental has been done in this field, a complete understanding of the SBF phenomenon has not yet been achieved. The relation between fusion excitation function and angular momentum (l) distribution in SBF reactions is a topic of current interest. It is believed that l-distributions provide a more stringent test of SBF models that the excitation functions alone. Simultaneous measurement of l-distribution (or its moments) and fusion excitation function is expected to lead to a better understanding of the relationship between these two qualities. Such information has been obtained in experiments done at pelletron accelerator facility. In the present talk the measurement of fusion cross-sections and the method of determination of average l from partial evaporation residue cross-section has been elaborated. An analysis of the experimental data on the basis of some of the SBF models has been discussed briefly. (author). 13 refs

  4. Numerical simulation by a random particle method of Deuterium-Tritium fusion reactions in a plasma*

    Directory of Open Access Journals (Sweden)

    Charles Fréderique

    2013-01-01

    Full Text Available We propose and we justify a Monte-Carlo algorithm which solves a spatially homogeneous kinetic equation of Boltzmann type that models the fusion reaction between a deuterium ion and a tritium ion, and giving an α particle and a neutron. The proposed algorithm is validated with the use of explicit solutions of the kinetic model obtained by replacing the fusion cross-section by a Maxwellian cross section. On propose et on justifie un algorithme de type Monte-Carlo permettant de résoudre un modèle cinétique homogène en espace de type Boltzmann modélisant la réaction de fusion entre un ion deutérium et un ion tritium, et donnant une particule α et un neutron. L’algorithme proposé est par ailleurs validé via des solutions explicites du modèle cinétique obtenues en remplaçant la section efficace de fusion par une section efficace maxwellienne.

  5. Inertial confinement fusion reaction chamber and power conversion system study. Final report

    International Nuclear Information System (INIS)

    Maya, I.; Schultz, K.R.; Bourque, R.F.

    1985-10-01

    This report summarizes the results of the second year of a two-year study on the design and evaluation of the Cascade concept as a commercial inertial confinement fusion (ICF) reactor. We developed a reactor design based on the Cascade reaction chamber concept that would be competitive in terms of both capital and operating costs, safe and environmentally acceptable in terms of hazard to the public, occupational exposure and radioactive waste production, and highly efficient. The Cascade reaction chamber is a double-cone-shaped rotating drum. The granulated solid blanket materials inside the rotating chamber are held against the walls by centrifugal force. The fusion energy is captured in a blanket of solid carbon, BeO, and LiAlO 2 granules. These granules are circulated to the primary side of a ceramic heat exchanger. Primary-side granule temperatures range from 1285 K at the LiAlO 2 granule heat exchanger outlet to 1600 K at the carbon granule heat exchanger inlet. The secondary side consists of a closed-cycle gas turbine power conversion system with helium working fluid, operating at 1300 K peak outlet temperature and achieving a thermal power conversion efficiency of 55%. The net plant efficiency is 49%. The reference design is a plant producing 1500 MW of D-T fusion power and delivering 815 MW of electrical power for sale to the utility grid. 88 refs., 44 figs., 47 tabs

  6. Application of the high-spin isomer beams to the secondary fusion reaction and the measurement of g-factor

    International Nuclear Information System (INIS)

    Watanabe, H.; Asahi, K.; Kishida, T.; Ueno, H.; Sato, W.; Yoshimi, A.; Kobayashi, Y.; Kameda, D.; Miyoshi, H.; Fukuchi, T.; Wakabayashi, Y.; Sasaki, T.; Kibe, M.; Hokoiwa, N.; Odahara, A.; Cederwall, B.; Lagergren, K.; Podolyak, Zs.; Ishihara, M.; Gono, Y.

    2004-01-01

    A technique for providing high-spin isomers as probes of the fusion reaction and the measurement of g-factor has been worked out at RIKEN. In the study of the fusion reaction 12 C( 145m Sm,xn) 157-x Er, the γ rays emitted from the fusion-evaporation residue 154 Er have been successfully observed. The nuclear g-factor of the T 1/2 = 28 ns high-spin isomer in 149 Dy has been measured with the γ-ray TDPAD method

  7. Role of hexadecapole deformation of projectile 28Si in heavy-ion fusion reactions near the Coulomb barrier

    Science.gov (United States)

    Kaur, Gurpreet; Hagino, K.; Rowley, N.

    2018-06-01

    The vast knowledge regarding the strong influence of quadrupole deformation β2 of colliding nuclei in heavy-ion sub-barrier fusion reactions inspires a desire to quest the sensitivity of fusion dynamics to higher order deformations, such as β4 and β6 deformations. However, such studies have rarely been carried out, especially for deformation of projectile nuclei. In this article, we investigated the role of β4 of the projectile nucleus in the fusion of the 28Si+92Zr system. We demonstrated that the fusion barrier distribution is sensitive to the sign and value of the β4 parameter of the projectile, 28Si, and confirmed that the 28Si nucleus has a large positive β4. This study opens an indirect way to estimate deformation parameters of radioactive nuclei using fusion reactions, which is otherwise difficult because of experimental constraints.

  8. Roles of multi-step transfer in fusion process induced by heavy-ion reactions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1993-06-01

    In nucleus-nucleus collisions of the systems, 12 C+ 13 C and 13 C+ 16 O- 12 C+ 17 O, the effects of the multi-step transfers and inelastic excitations on the fusion cross sections are investigated in the framework of the coupled-reaction-channel (CRC) method. Strong CRC effects of the multi-step processes are observed. Namely, the valence neutron in 13 C or 17 O plays an important role in the enhancement of the fusion. The potential barrier is effectively lowered with the formation of the covalent molecule of the configuration, 12 C+n+ 12 C or 12 C+n+ 16 O. In the analyses of the system 12 C+ 13 C, however, it is still required to introduce core-core optical potential of lower barrier height in the state of the positive total parity. This could be due to the neck formation with the nucleons contained in two core nuclei. (author)

  9. Comparative studies for different proximity potentials applied to sub-barrier fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.L. [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Beihang University, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), Beijing (China); Qu, W.W. [Medical College of Soochow University, School of Radiation Medicine and Protection, Soochow (China); Guo, M.F.; Qian, J.Q. [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Zhang, H.Q. [China Institute of Atomic Energy, Beijing (China); Wolski, R. [Henryk Niewodniczanski Institute of Nuclear Physics PAS, Cracow (Poland)

    2016-02-15

    Coulomb barrier heights calculated by using 14 different versions of proximity potentials are studied and applied for experimental data of fusion in terms of a recently proposed energy scaling approach. The results show that the descriptions of proximity potentials 77 and 88 for the barrier heights seem to be closest to the values required by the systematics. On the basis of proximity potential 77, the parameterized formulas of the barrier height and radius are obtained. These formulas can calculate the barrier positions and barrier heights reasonably well within the error, respectively. Thus it provides a simple and direct way to calculate the barrier positions and barrier heights for heavy-ion fusion reactions. (orig.)

  10. Nuclear science experiments with a bright neutron source from fusion reactions on the OMEGA Laser System

    Science.gov (United States)

    Forrest, C. J.; Knauer, J. P.; Schroeder, W. U.; Glebov, V. Yu.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Sickles, M.; Stoeckl, C.; Szczepanski, J.

    2018-04-01

    Subnanosecond impulses of 1013 to 1014 neutrons, produced in direct-drive laser inertial confinement fusion implosions, have been used to irradiate deuterated targets at the OMEGA Laser System (Boehly et al., 1997). The target compounds include heavy water (D2O) and deuterated benzene (C6D6). Yields and energy spectra of neutrons from D(n,2n)p to study the breakup reaction have been measured at a forward angle of θlab = 3 .5∘ ± 3.5° with a sensitive, high-dynamic-range neutron time-of-flight spectrometer to infer the double-differential breakup cross section d2 σ/dE d Ω for 14-MeV D-T fusion neutrons.

  11. Gamma-ray emission spectrum from thermonuclear fusion reactions without intrinsic broadening

    DEFF Research Database (Denmark)

    Nocente, M.; Källne, J.; Salewski, Mirko

    2015-01-01

    First principle calculations of the gamma-ray energy spectrum arising from thermonuclear reactions without intrinsic broadening in fusion plasmas are presented, extending the theoretical framework needed to interpret measurements up to the accuracy level enabled by modern high resolution instrume......First principle calculations of the gamma-ray energy spectrum arising from thermonuclear reactions without intrinsic broadening in fusion plasmas are presented, extending the theoretical framework needed to interpret measurements up to the accuracy level enabled by modern high resolution...... instruments. An analytical formula for the spectrum from Maxwellian plasmas, which extends to higher temperatures than the results previously available in the literature, has been derived and used to discuss the assumptions and limitations of earlier models. In case of radio-frequency injection, numerical...... results based on a Monte Carlo method are provided, focusing in particular on improved relations between the peak shift and width from the reaction and the temperature of protons accelerated by radio-frequency heating.The results presented in this paper significantly improve the accuracy of diagnostic...

  12. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-01-01

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the 10 B(n,α) 7 Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented

  13. Application of SSNTDs for measurements of fusion reaction products in high-temperature plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Malinowska, A., E-mail: a.malinowska@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Szydlowski, A.; Malinowski, K. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Institute of Plasma Physics and Laser Microfusion (IPPLM), 00-908 Warsaw (Poland); Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Scholz, M.; Paduch, M.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion (IPPLM), 00-908 Warsaw (Poland); Jaskola, M.; Korman, A. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland)

    2009-10-15

    The paper describes the application of SSNTDs of the PM-355 type to diagnostics of reaction products emitted from high-temperature deuterium plasmas produced in Plasma Focus (PF) facilities. Acceleration processes occurring in plasma lead often to the generation of high-energy ion beams. Such beams induce nuclear reactions and contribute to the emission of fast neutrons, fusion protons and alpha particles from PF discharges with a deuterium gas. Ion measurements are of primary importance for understanding the mechanisms of the physical processes which drive the charged-particle acceleration. The main aim of the present studies was to perform measurements of spatial- and energy-distributions of fusion-reaction protons (about 3 MeV) within a PF facility. Results obtained from energy measurements were compared with the proton-energy spectra computed theoretically. The protons were measured by means of a set of ion pinhole cameras equipped with PM-355 detectors, which were placed at different angles relative to the electrode axis of the PF facility.

  14. Direct projectile break up its relation to the astrophysically revelant fusion reactions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Hussein, M.S.

    1990-05-01

    The break-up into two pieces of weakly bound nuclei passing by the Coulomb field of a large Z nucleus can provide useful information on the inverse fusion reactions which are important for the elemental formation in the stars. However, the nuclear interaction complicates considerably the extraction of such information. A study is made of the contributions of the Coulomb and nuclear interaction to the process, showing when the Coulomb break-up prevails and how a reliable separation of multipolarities can be done. (author)

  15. Dynamics of the fusion reaction in the dtμ- system

    International Nuclear Information System (INIS)

    Belyaev, V.B.; Revai, J.; Zubarev, A.L.

    1988-08-01

    A dynamical scheme based on the (td,αn) two-channel model is derived for the description of the fusion reaction in the dtμ - system. Special attention is paid to the correct specification of the final states. Several possibilities are pointed out for the systematic improvement of the sudden approximation for the sticking coefficient. It seems to be useful to outline a general formulation of these processes which would allow a clear comparison of existing approaches. The lack of satisfactory agreement between experimental and theoretical values of the sticking coefficient is a further argument in favour of the programme. (R.P.) 10 refs

  16. On experimental determination of characteristics of nuclear fusion reactions from mu-molecular resonance states

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Pen'kov, F.M.

    1997-01-01

    Charge-nonsymmetrical deuterium-helium muon complexes (dμHe) are studied. A method is proposed for experimentally determining the rates of nuclear fusion reactions in dμHe molecules in the J=1 and J=0 states (J is the orbital moment of the system) and the partial rates for radiative decay of these complexes in these states. Experiments are supposed to be carried out at meson factories with gaseous and cryogenic targets filled with a mixture of deuterium and helium

  17. Hot atom reactions involving multivalent and univalent species. Progress report, February 1976--January 1977

    International Nuclear Information System (INIS)

    Tang, Y.N.

    1977-01-01

    Multivalent hot atoms formed by the nuclear recoil method were studied: 31 Si, 32 P, and 11 C. For the recoil 31 Si reactions, we have completed the study on the reactivities of conjugated dienes towards monomeric 31 SiF 2 . The relative reactivities of 1,3-butadiene, trans-pentadiene, cis-pentadiene and 2-methyl-1,3-butadiene towards 31 SiF 2 have been measured as: 1.0:0.89:0.91:1.06 for singlet 31 SiF 2 ; and as 1.0:0.80:0.52:0.89 for the triplet. The large steric effect detected here between cis- and trans-pentadienes for their reactivities towards triplet 31 SiF 2 -donor indicates that a direct 1,4-addition process is possible for such 31 SiF 2 donating complexes. 2-methyl-1,1-diflorosilacyclopent-3-ene and its 3-methyl isomer were successfully synthesized by the co-pyrolysis technique. Experiments to evaluate the relative addition efficiencies of 31 SiH 2 towards various conjugated dienes; and to study to H- and F-abstraction mechanism by 31 Si atoms were begun. For recoil 32 P reactions, some progress has been made towards evaluating the mechanism of abstraction reactions by recoil 32 P atoms in PF 3 -PCl 3 system, and the moderator effect for recoil 32 P reactions with PF 3 -CH 4 mixtures. The possible formation of 32 PH, and the formation of 32 P atoms via the 32 S(n,p) 32 P process have also been explored. For recoil 11 C reactions, major progress has been obtained in the moderator studies of its reactions with 1,3-butadiene. With the successive addition of Ne as a moderator, the yield of acetylene- 11 C decreased, the yield of cyclopentene- 11 C increased while those of both 1,2,4-pentatriene- 11 C and cyclopentadiene- 11 C went through a minimum. Some progress for the identification of the last unknown 11 C-labeled product from this system has also been made

  18. Dynamic loadings of sodium-water reactions in LMFBR and fusion power designs

    Energy Technology Data Exchange (ETDEWEB)

    Chan, C. K.

    1977-07-01

    In liquid metal fast breeder reactor and lithium cooled fusion reactor, a sodium loop is being proposed to transfer heat from the primary coolant loop to the steam turbine cycle. Although by careful design and quality assurance programs, the probability for steam generator tube failure can be minimized, failure will still occur. The direct contact of sodium and water would cause a chemical reaction where hydrogen and sodium compounds are produced. This paper presents an evaluation of the potential hazards as a result of such a reaction. An analytical method is developed to investigate the extent of the reaction zone and the propagation of the pressure wave in the sodium system. In the calculation, the chemical reaction is assumed to be instantaneous, governed by the equation 2Na(l)+H/sub 2/O(l)..-->..Na/sub 2/O(l)+H/sub 2/(g)+31.4 K cal/gm. mole. Both the temperature and pressure rise in the reaction zone can be established from the energy balance and the equation of state for the gaseous product. As a consequence of the energy released, the chemical products suddenly expand with a high velocity. The expansion also generates a shock wave in both the water and the sodium systems. Results indicate that the reaction zone can expand in a rate of 1500 ft/sec and a shock wave with initial strength of 2300 atmospheres propagates with a speed of 8000 ft/sec into the sodium system. The propagating characteristics of the shock wave are obtained by solving the basic fluid equations. The shock wave decays rapidly, in the neighborhood of milliseconds, as soon as the reaction zone stops to expand. The decrease in the reaction zone pressure allows more water to react with the sodium and a second pulse is generated.

  19. Dynamic loadings of sodium-water reactions in LMFBR and fusion power designs

    International Nuclear Information System (INIS)

    Chan, C.K.

    1977-01-01

    In liquid metal fast breeder reactor and lithium cooled fusion reactor, a sodium loop is being proposed to transfer heat from the primary coolant loop to the steam turbine cycle. Although by careful design and quality assurance programs, the probability for steam generator tube failure can be minimized, failure will still occur. The direct contact of sodium and water would cause a chemical reaction where hydrogen and sodium compounds are produced. This paper presents an evaluation of the potential hazards as a result of such a reaction. An analytical method is developed to investigate the extent of the reaction zone and the propagation of the pressure wave in the sodium system. In the calculation, the chemical reaction is assumed to be instantaneous, governed by the equation 2Na(l)+H 2 O(l)→Na 2 O(l)+H 2 (g)+31.4 K cal/gm. mole. Both the temperature and pressure rise in the reaction zone can be established from the energy balance and the equation of state for the gaseous product. As a consequence of the energy released, the chemical products suddenly expand with a high velocity. The expansion also generates a shock wave in both the water and the sodium systems. Results indicate that the reaction zone can expand in a rate of 1500 ft/sec and a shock wave with initial strength of 2300 atmospheres propagates with a speed of 8000 ft/sec into the sodium system. The propagating characteristics of the shock wave are obtained by solving the basic fluid equations. The shock wave decays rapidly, in the neighborhood of milliseconds, as soon as the reaction zone stops to expand. The decrease in the reaction zone pressure allows more water to react with the sodium and a second pulse is generated

  20. Study of the role of complete fusion in the reaction of 48Ca and 56Fe with cerium and terbium

    International Nuclear Information System (INIS)

    Morrissey, D.J.

    1978-05-01

    48 Ca and 56 Fe beams from the Super HILAC accelerator were used to irradiate thick metal foils of cerium and terbium. Product gamma ray activities were detected offline and individual products were identified by half-life, gamma ray energy and gamma ray abundances. The production cross sections were iteratively fit to charge and mass dispersions to allow correction for parent decay and calculation of mass yields. From the mass yield curves contributions from quasielastic transfer, deep inelastic transfer and complete fusion reaction mechanisms were interred. Complete fusion was made up on contributions from both evaporation residue and fusion-fission products for the 48 Ca induced reactions. However, only fusion-fission products were detected in the 56 Fe induced reactions. Critical angular momenta for fusion were found to be 82 +- 8 h for 48 Ca + 159 Tb and 34 +- 5 h for 56 Fe + 140 Ce, which can be compared with 53 +- 8 h for 12 C + 197 Au (Natowitz, 1970) and 86 +- 5 h for 40 Ar + 165 Ho (Hanappe, 1973). All of these reactions lead to essentially the same compound nucleus and seem to show the dramatic decline in complete fusion for heavy ions larger than 40 Ar. The prediction of this decline was found to be beyond the model calculations of Bass and the critical distance approach of Glas and Mosel

  1. Low-energy d+d fusion reactions via the Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A., E-mail: tumino@lns.infn.it [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Universita degli Studi di Enna ' Kore' , Enna (Italy); Spitaleri, C. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Mukhamedzhanov, A.M. [Cyclotron Institute Texas A and M University, College Station, TX (United States); Typel, S. [Excellence Cluster Universe, Technische Universitaet Muenchen, Garching (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH - Theorie, Darmstadt (Germany); Aliotta, M. [School of Physics and Astronomy, University of Edinburgh, Edinburgh, Scotland (United Kingdom); Scottish Universities Physics Alliance (United Kingdom); Burjan, V. [Nuclear Physics Institute of ASCR, Rez near Prague (Czech Republic); Gimenez del Santo, M. [Departamento de Fisica Nuclear, Universitade de Sao Paulo, Sao Paulo (Brazil); Kiss, G.G. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); ATOMKI, Debrecen (Hungary); Kroha, V.; Hons, Z. [Nuclear Physics Institute of ASCR, Rez near Prague (Czech Republic); La Cognata, M.; Lamia, L. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Mrazek, J. [Nuclear Physics Institute of ASCR, Rez near Prague (Czech Republic); Pizzone, R.G. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy); Piskor, S. [Nuclear Physics Institute of ASCR, Rez (Czech Republic); Rapisarda, G.G.; Romano, S.; Sergi, M.L.; Sparta, R. [Laboratori Nazionali del Sud, INFN, and Dipartimento di Fisica e Astronomia, Universita di Catania, Catania (Italy)

    2011-06-06

    The bare nucleus S(E) factors for the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions have been measured for the first time via the Trojan Horse Method off the proton in {sup 3}He from 1.5 MeV down to 2 keV. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre-Main-Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from available direct data with new S(0) values of 57.4{+-}1.8 MeVb for {sup 3}H+p and 60.1{+-}1.9 MeVb for {sup 3}He+n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors.

  2. Low-energy d+d fusion reactions via the Trojan Horse Method

    International Nuclear Information System (INIS)

    Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A.M.; Typel, S.; Aliotta, M.; Burjan, V.; Gimenez del Santo, M.; Kiss, G.G.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Mrazek, J.; Pizzone, R.G.; Piskor, S.; Rapisarda, G.G.; Romano, S.; Sergi, M.L.; Sparta, R.

    2011-01-01

    The bare nucleus S(E) factors for the 2 H(d,p) 3 H and 2 H(d,n) 3 He reactions have been measured for the first time via the Trojan Horse Method off the proton in 3 He from 1.5 MeV down to 2 keV. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre-Main-Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from available direct data with new S(0) values of 57.4±1.8 MeVb for 3 H+p and 60.1±1.9 MeVb for 3 He+n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors.

  3. Magnetic quadrupoles lens for hot spot proton imaging in inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Teng, J. [Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Gu, Y.Q., E-mail: yqgu@caep.cn [Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); Chen, J.; Zhu, B.; Zhang, B.; Zhang, T.K.; Tan, F.; Hong, W.; Zhang, B.H. [Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, X.Q. [Academy of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China)

    2016-08-01

    Imaging of DD-produced protons from an implosion hot spot region by miniature permanent magnetic quadrupole (PMQ) lens is proposed. Corresponding object-image relation is deduced and an adjust method for this imaging system is discussed. Ideal point-to-point imaging demands a monoenergetic proton source; nevertheless, we proved that the blur of image induced by proton energy spread is a second order effect therefore controllable. A proton imaging system based on miniature PMQ lens is designed for 2.8 MeV DD-protons and the adjust method in case of proton energy shift is proposed. The spatial resolution of this system is better than 10 μm when proton yield is above 10{sup 9} and the spectra width is within 10%.

  4. Achievement of solid-state plasma fusion ('Cold-Fusion')

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Zhang, Yue-Chang

    1995-01-01

    Using a 'QMS' (Quadrupole Mass Spectrometer), the authors detected a significantly large amount (10 20 -10 21 [cm -3 ]) of helium ( 2 4 He), which was concluded to have been produced by a deuterium nuclear reaction within a host solid. These results were found to be fully repeatable and supported the authors' proposition that solid state plasma fusion ('Cold Fusion') can be generated in energetic deuterium Strongly Coupled Plasma ('SC-plasma'). This fusion reaction is thought to be sustained by localized 'Latticequake' in a solid-state media with the deuterium density equivalent to that of the host solid. While exploring this basic proposition, the characteristic differences when compared with ultra high temperature-state plasma fusion ('Hot Fusion') are clarified. In general, the most essential reaction product in both types of the deuterium plasma fusion is considered to be helium, irrespective of the 'well-known and/or unknown reactions', which is stored within the solid-state medium in abundance as a 'Residual Product', but which generally can not enter into nor be released from host-solid at a room temperature. Even measuring instruments with relatively poor sensitivity should be able to easily detect such residual helium. An absence of residual helium means that no nuclear fusion reaction has occurred, whereas its presence provides crucial evidence that nuclear fusion has, in fact, occurred in the solid. (author)

  5. Some thoughts on a simple mechanism for the 2H + 2H → 4He cold fusion reaction

    International Nuclear Information System (INIS)

    Park, A.E.

    1993-01-01

    A speculative mechanism for the creation of 4 He using cold fusion is proposed. The nuclear transformation can be made by the fusion of two excited rotating ground states of deuterium into a highly excited rotating ground state of 4 He. Under compression and relatively stable conditions, the formation of such a bound, stretched-out pnnp state of 4 He would be favored (with respect to Coulomb repulsion) over other nuclear ground states without as much angular momentum. The reaction likely occurs at the surface of palladium. A more descriptive name for this reaction is compressed-rotational-shielded (CRS) fusion. Potential experimental conditions for enhancing the initiation of CRS fusion are discussed. 8 refs., 2 figs

  6. Complete and incomplete fusion dynamics of {sup 6,7}Li + {sup 159}Tb reactions near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Manjeet Singh [Thapar University, School of Physics and Materials Science, Patiala (India); Indus Degree College, Department of Physics, Kinana, Jind, Haryana (India); Grover, Neha; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India)

    2017-01-15

    The complete fusion (CF) and incomplete fusion (ICF) cross-sections are estimated for {sup 6,} {sup 7}Li + {sup 159}Tb reactions using the energy-dependent Woods-Saxon potential model (EDWSP model) and dynamical cluster-decay model (DCM). The CF data of the {sup 6}Li + {sup 159}Tb({sup 7}Li + {sup 159}Tb) reaction at above barrier energies is suppressed with reference to expectations of the EDWSP model by 25% (20%) which is smaller than the reported data by ∝ 9% (6%). This suppression is correlated with the projectile breakup effect. The projectiles {sup 6,7}Li are loosely bound systems, which may break up into charged fragments prior to reaching the fusion barrier and subsequently one of the fragment is captured by the target leading to the suppression of fusion data at above barrier energies. The sum of CF and ICF, which is termed as total fusion cross-section (TF), removes the discrepancies between theoretical predictions and the above barrier complete fusion data and hence is adequately explained via the EDWSP model over a wide range of energy spread across the Coulomb barrier. In addition to fusion, the decay mechanism of {sup 6}Li + {sup 159}Tb reaction is studied within the framework of the dynamical cluster-decay model (DCM). The breakup of the projectile ({sup 6}Li) in the entrance channel indicates the presence of ICF, which is investigated further using the collective clusterization approach of DCM. The present theoretical analysis suggests that a larger barrier modification is needed to address the fusion data of chosen reactions in the below barrier energy region. (orig.)

  7. Origin of a maximum of the astrophysical S factor in heavy-ion fusion reactions at deep subbarrier energies

    Science.gov (United States)

    Hagino, K.; Balantekin, A. B.; Lwin, N. W.; Thein, Ei Shwe Zin

    2018-03-01

    The hindrance phenomenon of heavy-ion fusion cross sections at deep subbarrier energies often accompanies a maximum of an astrophysical S factor at a threshold energy for fusion hindrance. We argue that this phenomenon can naturally be explained when the fusion excitation function is fitted with two potentials, with a larger (smaller) logarithmic slope at energies lower (higher) than the threshold energy. This analysis clearly suggests that the astrophysical S factor provides a convenient tool to analyze the deep subbarrier hindrance phenomenon, even though the S factor may have a strong energy dependence for heavy-ion systems unlike that for astrophysical reactions.

  8. Neutron-induced reactions relevant for Inertial-Cofinement Fusion Experiments

    Science.gov (United States)

    Boswell, Melissa; Devlin, Mathew; Fotiadis, Nikolaos; Merrill, Frank; Nelson, Ronald; Tonchev, Anton

    2014-09-01

    The typical ignition experiment at the National Ignition Facility ablatively implodes a plastic capsule filled with DT fuel, generating a high flux of 14-MeV neutrons from the d(t,n) α reaction. There is some spread in the energy of these primary 14-MeV neutrons, which is mainly attributable to Doppler shifting from the relative thermal motion of the burning DT fuel. Neutrons created during this reaction have 5--10% chance of scattering before escaping the fuel assembly, losing some fraction of their energy in the scattering process. Neutrons emerging with an energy greater than the reaction energy are generated by a two-step process where neutrons first transfer momentum to a deuteron or tritium ion, these enhanced energy ions then fuse in flight to produce higher energy neutrons; some of these neutrons have energies in excess of 30 MeV. Measuring the fluencies of both the low- and high-energy neutrons is a powerful mechanism for studying the properties of the fuel assembly, and the various parameters important to inertial confinement fusion. We have developed a number of tools to measure the spectral characteristics of the NIF neutron spectrum. Most of these methods rely on exploiting the energy dependence of (n, γ), (n,2n), (n,3n) and (n,p) reactions on a variety o.

  9. Resonances and fusion in heavy ion reactions: new models and developments

    International Nuclear Information System (INIS)

    Cindro, N.

    1982-01-01

    Several aspects of the problem of the resonant behaviour of heavy-ion induced reactions are discussed. First, the problem is set in its relation to fundamental nuclear physics and our understanding of nuclear structure. It is suggested that, if the resonant behaviour of heavy-ion reactions is indeed due to the presence of particular configurations in the composite systems, these configurations must have a very specific nature which prevents their mixing with the adjacent states or else other conditons (e.g. low level density) should be met. Further on, the problem of resonant behaviour observed in back-angle elastic scattering and in forward-angle reaction data is discussed. Collisions between heavy ions leading to the composite systems 36 Ar and 40 Ca are used to discuss the apparent lack of correlation between these two sets of data. A way to understand it, based on the fragmentation of broad resonances, is suggested. In the third part the relation between structure in the fusion cross section excitation functions and that in reaction channel cross sections is discussed. Finally, in the fourth part, the orbiting-cluster model of heavy-ion resonances is briefly described and its predictions discussed. Based on this model a list is given of colliding heavy-ion systems where resonances are expected. (author)

  10. Analytical criterion for shock ignition of fusion reaction in hot spot

    OpenAIRE

    Ribeyre X.; Tikhonchuk V.T.; Breil J.; Lafon M.; Vallet A.; Bel E. Le

    2013-01-01

    Shock ignition of DT capsules involves two major steps. First, the fuel is assembled by means of a low velocity conventional implosion. At stagnation, the central core has a temperature lower than the one needed for ignition. Then a second, strong spherical converging shock, launched from a high intensity laser spike, arrives to the core. This shock crosses the core, rebounds at the target center and increases the central pressure to the ignition conditions. In this work we consider this latt...

  11. Chemical reactions involved in the initiation of hot corrosion of IN-738

    Science.gov (United States)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1984-01-01

    Sodium-sulfate-induced hot corrosion of preoxidized IN-738 was studied at 975 C with special emphasis placed on the processes occurring during the long induction period. Thermogravimetric tests were run for predetermined periods of time, and then one set of specimens was washed with water. Chemical analysis of the wash solutions yielded information about water soluble metal salts and residual sulfate. A second set of samples was cross sectioned dry and polished in a nonaqueous medium. Element distributions within the oxide scale were obtained from electron microprobe X-ray micrographs. Evolution of SO was monitored throughout the thermogravimetric tests. Kinetic rate studies were performed for several pertinent processes; appropriate rate constants were obtained from the following chemical reactions; Cr203 + 2 Na2S04(1) + 3/2 02 yields 2 Na2Cr04(1) + 2 S03(g)n TiO2 + Na2S04(1) yields Na20(T102)n + 503(g)n T102 + Na2Cro4(1) yields Na2(T102)n + Cr03(g).

  12. Moderation and absorption effects on hot replacement reactions of 38Cl atoms in mixtures of ortho-dichlorobenzene and hexafluorobenzene

    International Nuclear Information System (INIS)

    Berei, K.; Gado, J.; Kereszturi, A.; Szatmary, Z.; Vass, Sz.

    1989-10-01

    Conditions are given for the equivalence of the Estrup-Wolfgang description of the hot atom reaction kinetics with the first-order Hurwitz approximation in the neutron slowing down theory. Conclusions are drawn for the applicability of this approach for describing hot atom replacement processes in reactive mixtures. Analytical and numerical calculations were carried out to explain an unusual concentration dependence of 38 Cl-for-Cl substitution, found experimentally in liquid binary mixtures of ortho-dichlorobenzene and hexafluorobenzene. (author) 39 refs.; 4 figs.; 2 tabs

  13. Reaction-rate coefficients, high-energy ions slowing-down, and power balance in a tokamak fusion reactor plasma

    International Nuclear Information System (INIS)

    Tone, Tatsuzo

    1978-07-01

    Described are the reactivity coefficient of D-T fusion reaction, slowing-down processes of deuterons injected with high energy and 3.52 MeV alpha particles generated in D-T reaction, and the power balance in a Tokamak reactor plasma. Most of the results were obtained in the first preliminary design of JAERI Experimental Fusion Reactor (JXFR) driven with stationary neutral beam injection. A manual of numerical computation program ''BALTOK'' developed for the calculations is given in the appendix. (auth.)

  14. Mission to Mars by catalyzed nuclear reactions of the commercialized cold fusion power

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2016-01-01

    The chemical compound source is deficient to reach to the power as much as the journey to Mars, unless the massive equipment is installed like the nuclear fusion reactor. However, there is very significant limitations of making up the facility due to the propellant power. Therefore, the light and cheap energy source, Low energy nuclear reactions (LENRs), powered rocket has been proposed. In this paper, the power conditions by LENRs are analyzed. After the successful Apollo mission to Moon of the National Aeronautics and Space Administration (NASA) in the U.S. government, the civilian companies have proposed for the manned mission to Mars for the commercial journey purposes. The nuclear power has been a critical issue for the energy source in the travel, especially, by the LENR of LENUCO, Champaign, USA. As the velocity of the rocket increases, the mass flow rate decreases. It could be imaginable to take the reasonable velocity of spacecraft. The energy of the travel system is and will be created for the better one in economical and safe method. There is the imagination of boarding pass for spacecraft ticket shows the selected companies of cold fusion products. In order to solve the limitations of the conventional power sources like the chemical and solar energies, it is reasonable to design LENR concept. Since the economical and safe spacecraft is very important in the long journey on and beyond the Mars orbit, a new energy source, LENR, should be studied much more

  15. Mission to Mars by catalyzed nuclear reactions of the commercialized cold fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Yonsei University, Wonju (Korea, Republic of)

    2016-05-15

    The chemical compound source is deficient to reach to the power as much as the journey to Mars, unless the massive equipment is installed like the nuclear fusion reactor. However, there is very significant limitations of making up the facility due to the propellant power. Therefore, the light and cheap energy source, Low energy nuclear reactions (LENRs), powered rocket has been proposed. In this paper, the power conditions by LENRs are analyzed. After the successful Apollo mission to Moon of the National Aeronautics and Space Administration (NASA) in the U.S. government, the civilian companies have proposed for the manned mission to Mars for the commercial journey purposes. The nuclear power has been a critical issue for the energy source in the travel, especially, by the LENR of LENUCO, Champaign, USA. As the velocity of the rocket increases, the mass flow rate decreases. It could be imaginable to take the reasonable velocity of spacecraft. The energy of the travel system is and will be created for the better one in economical and safe method. There is the imagination of boarding pass for spacecraft ticket shows the selected companies of cold fusion products. In order to solve the limitations of the conventional power sources like the chemical and solar energies, it is reasonable to design LENR concept. Since the economical and safe spacecraft is very important in the long journey on and beyond the Mars orbit, a new energy source, LENR, should be studied much more.

  16. Possibilities of achieving fusion reaction with a 4{pi} focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Barsanti, G; Barsella, B; Camerini, M; Federighi, U; Musumeci, L; Talini, N [CAMEN., Leghorn (Italy)

    1958-07-01

    The 4{pi} focusing by means of an electromagnetic field is analysed. The following points considered: (a) The general solutions of system for equations of motion of a mass m with charge +e valid for arbitrary initial conditions. This is necessary for the consideration of imperfectly focused primary trajectories, of the effect of collisions in the vicinity of the origin and of ions produced in the neutral gas which diffuses into the reaction chamber. (b) Investigation of the primary ion injection system, of the density of the ions in the chamber and of the energy balance as a matter of principle. (c) The experimental apparatus needed for 4{pi} focusing of deuterons and a sketch of a fusion reactor.

  17. Study of heavy ion fusion reaction of 58Ni + 24Mg at 11 MeV/nucleon

    International Nuclear Information System (INIS)

    Shea, J.Y.

    1991-01-01

    This thesis presents a study of the heavy ion fusion reaction in which a 58 Ni projectile bombards a 24 Mg target at 11 MeV/nucleon. The incident projectile energy was purposefully chosen so as the system studied to be at the onset of the more complex and interesting phenomenon of incomplete fusion. The physics motivation is to probe the central collision of a heavy, energetic, and asymmetric system by means of both inclusive and exclusive experimental measurements. The experiment was performed at HHIRF (Holifield Heavy Ion Research Facility) by using the coupled accelerators at Oak Ridge National Laboratory. The reaction products were measured by the new open-quotes HILI-Ringclose quotes large solid angle detector system at Oak Ridge National Laboratory. The thesis discusses the physics motivation and the systematics of heavy ion fusion reactions. Details of the design and construction of a new CsI(T1) Ring detector is given. Since this is the first such study performed on the Heavy Ion Light Ion (HILI) detector, an extensive discussion of the calibration procedures and the data reduction methods are given. The fusion reaction data were analyzed in both inclusive and exclusive modes with the result that a valuable new perspective on the deconvolution of the reaction mechanism has been achieved

  18. Evaporation residue cross sections for the {sup 100}Mo + {sup 116}Cd reaction -- energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    In this experiment we tried to measure the evaporation residue cross section over a wide range of beam energies for the {sup 100}Mo + {sup 116}Cd reaction using the FMA. However, because of longer-than-estimated runs needed at each beam energy, and the difficulty of bending evaporation residues at the higher energies in the FMA, data were taken only at beam energies of E{sub beam} = 460, 490, and 521 MeV, which correspond to excitation energies of E{sub exc} = 62, 78, and 95 MeV, respectively. By comparing to results for the {sup 32}S + {sup 184}W reactions measured recently, we expect to demonstrate a strong entrance channel effect related to the hindrance of complete fusion in near-symmetric heavy systems (a fusion hindrance factor of the order 7-10 is expected on the basis of the Extra-Push Model). The data are being analyzed.

  19. Indirect Study of the 16O+16O Fusion Reaction Toward Stellar Energies by the Trojan Horse Method

    Directory of Open Access Journals (Sweden)

    Hayakawa S.

    2016-01-01

    Full Text Available The 16O+16O fusion reaction is important in terms of the explosive oxygen burning process during late evolution stage of massive stars as well as understanding of the mechanism of low-energy heavy-ion fusion reactions. We aim to determine the excitation function for the most major exit channels, α+28Si and p+31P, toward stellar energies indirectly by the Trojan Horse Method via the 16O(20Ne, α28Siα and 16O(20Ne, p31Pα three-body reactions. We report preliminary results involving reaction identification, and determination of the momentum distribution of α-16O intercluster motion in the projectile 20Ne nucleus.

  20. Study of incomplete fusion reaction dynamics in 13C +165 Ho system and its dependence on various entrance channel parameters

    Science.gov (United States)

    Tali, Suhail A.; Kumar, Harish; Ansari, M. Afzal; Ali, Asif; Singh, D.; Ali, Rahbar; Giri, Pankaj K.; Linda, Sneha B.; Parashari, Siddharth; Kumar, R.; Singh, R. P.; Muralithar, S.

    2018-02-01

    The excitation functions for the evaporation residues populated in the interaction of 13C +165 Ho system have been measured at projectile energies ≈ 4-7 MeV/nucleon. Stacked foil activation technique followed by off-line γ-ray spectroscopy have been employed in the present work. The experimentally measured cross-sections are analyzed in the frame work of statistical model code PACE4, which takes into account only the complete fusion reaction cross-sections. The evaporation residues populated via xn and pxn channels were found to be in good agreement with the PACE4 predictions, while a significant enhancement in the measured cross-sections over PACE4 predictions is observed in case of α-emitting channels, which may be attributed to the incomplete fusion process. For the better understanding of incomplete fusion dynamics, the incomplete fusion fraction has also been deduced and its sensitivity with various entrance channel parameters like: projectile energy, mass-asymmetry, projectile structure in terms of Qα-value and Coulomb effect has been studied in the present work. The incomplete fusion fraction is found to increase with increasing the projectile energy and a strong projectile structure dependent mass-asymmetry systematic is also observed. The incomplete fusion fraction is also found to be small for more negative Qα-value projectile (13C) induced reactions as compared to less negative Qα-value projectiles (12C, 16O and 20Ne) induced reactions with the same target nucleus 165Ho. An interesting trend is obtained on further investigation of incomplete fusion dependence on Coulomb effect (ZPZT).

  1. Fusion dynamics of 2020Ne + 20882Pb reaction using static and energy dependent Woods-Saxon potential

    International Nuclear Information System (INIS)

    Gautam, Manjeet Singh; Kaur, Amandeep; Sharma, Manoj K.

    2015-01-01

    The present work compares the theoretical predictions based on static Woods-Saxon potential and the EDWSP model along with one dimensional Wong formula. For 20 20 Ne + 208 82 Pb reaction, the theoretical calculations obtained by using static Woods-Saxon potential are substantially smaller than that of experimental data at below barrier energies and explain the fusion data at above barrier energies only. On the other hand, the EDWSP model based calculations adequately describe the observed fusion enhancement of 20 20 Ne + 208 82 Pb reaction in whole range of energy spread across the Coulomb barrier. Furthermore, a wide range of the diffuseness parameter ranging from 0.96 fm to 0.85 fm is required to address the sub-barrier fusion data

  2. Dynamical Dipole and Equation of State in N/Z Asymmetric Fusion Reactions

    Directory of Open Access Journals (Sweden)

    Giaz Agnese

    2014-03-01

    Full Text Available In heavy ion reactions, in the case of N/Z asymmetry between projectile and target, the process leading to complete fusion is expected to produce pre-equilibrium dipole γ-ray emission. It is generated during the charge equilibration process and it is known as Dynamical Dipole. A new measurement of the dynamical dipole emission was performed by studying 16O + 116Sn at 12 MeV/u. These data, together with those measured at 8.1 MeV/u and 15.6 MeV/u for the same reaction, provide the dependence on the Dynamical Dipole total emission yield with beam energy and they can be compared with theoretical expectations. The experimental results show a weak increase of the Dynamical Dipole total yield with beam energies and are in agreement with the prediction of a theoretical model based on the Boltzmann–Nordheim–Vlasov (BNV approach. The measured trend with beam energy does not confirm the rise and fall behavior previously reported for the same fused compound but with a much higher dipole moment.

  3. Disentangling effects of breakup coupling and incomplete fusion in 6Li + 232Th reaction

    International Nuclear Information System (INIS)

    Jha, V.; Parkar, V.V.; Mohanty, A.K.; Kailas, S.

    2014-01-01

    A component of fusion that is very important but quite difficult to evaluate is the incomplete fusion (ICF), in which only a part of the nucleus fuses with the target. ICF occurs together with the usual complete fusion (CF), in which the whole projectile fuses or all the projectile fragments after breakup fuse with the target nucleus. The ICF leads to the flux removal from the fusion channel and its calculation is essential for a comprehensive description of the fusion process. In the present work, a recently developed method of calculating the ICF cross-section (σ ICF ) is used in a novel way to disentangle the ICF effect on the fusion process from those due to breakup couplings. The total fusion cross-section σ TF and σ ICF for the 6 Li + 232 Th system are calculated at energies above and below the Coulomb barrier, where the measured fusion-fission data is available

  4. Calculations of Excitation Functions of Some Structural Fusion Materials for ( n, t) Reactions up to 50 MeV Energy

    Science.gov (United States)

    Tel, E.; Durgu, C.; Aktı, N. N.; Okuducu, Ş.

    2010-06-01

    Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, the working out the systematics of ( n, t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. In this study, ( n, t) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn, and 56Fe have been investigated. The new calculations on the excitation functions of 27Al( n, t)25Mg, 51V( n, t)49Ti, 52Cr( n, t)50V, 55Mn( n, t)53Cr and 56Fe( n, t)54Mn reactions have been carried out up to 50 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, we have calculated ( n, t) reaction cross-sections by using new evaluated semi-empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results are discussed and compared with the experimental data taken from the literature.

  5. The decay of hot nuclei formed in La-induced reactions at E/A=45 MeV

    International Nuclear Information System (INIS)

    Libby, B.

    1993-01-01

    The decay of hot nuclei formed in the reactions 139 La + 27 Al, 51 V, nat Cu, and 139 La were studied by the coincident detection of up to four complex fragments (Z > 3) emitted in these reactions. Fragments were characterized as to their atomic number, energy and in- and out-of-plane angles. The probability of the decay by an event of a given complex fragment multiplicity as a function of excitation energy per nucleon of the source is nearly independent of the system studied. Additionally, there is no large increase in the proportion of multiple fragment events as the excitation energy of the source increases past 5 MeV/nucleon. This is at odds with many prompt multifragmentation models of nuclear decay. The reactions 139 La + 27 Al, 51 V, nat Cu were also studied by combining a dynamical model calculation that simulates the early stages of nuclear reactions with a statistical model calculation for the latter stages of the reactions. For the reaction 139 La + 27 Al, these calculations reproduced many of the experimental features, but other features were not reproduced. For the reaction 139 La + 51 V, the calculation failed to reproduce somewhat more of the experimental features. The calculation failed to reproduce any of the experimental features of the reaction 139 La + nat Cu, with the exception of the source velocity distributions

  6. Proceedings of the symposium on the many facets of heavy ion fusion reactions

    International Nuclear Information System (INIS)

    1986-01-01

    The topics of the symposium are sub- and near-barrier fusion, limitations to fusion, compound nucleus decay and spectroscopy, incomplete fusion processes, and fragmentation and liquid-gas phase transition. Separate abstracts were prepared for 54 papers in these proceedings

  7. The existence and characterization of self-sustaining multiplicative fusion and fission reaction chains

    International Nuclear Information System (INIS)

    Harms, A.A.; Heindler, M.

    1980-01-01

    The mathematical-physical similarities and differences between fusion and fission multiplication processes are investigated. It is shown that advanced fusion cycles can sustain excursion tendencies which are essentially analogous to conventional fission cycles. The result that fission excursions are unbounded and that fusion excursions eventually attain an asymptote represents a significant distinction between these fundamental self-sustaining nuclear multiplicative chains. (Auth.)

  8. Smooth transition from sudden to adiabatic states in heavy-ion fusion reactions at deep-subbarrier incident energies

    International Nuclear Information System (INIS)

    Takatoshi, Ichikawa; Kouichi, Hagino; Akira, Iwamoto

    2011-01-01

    We propose a novel extension of the standard coupled-channel (CC) model in order to account for the steep falloff of fusion cross sections at deep-subbarrier incident energies. We introduce a damping factor in the coupling potential in the CC model, simulating smooth transitions from sudden to adiabatic states in deep- subbarrier fusion reactions. The CC model extended with the damping factor can reproduce well not only the steep falloff of the fusion cross section but also the saturation of the logarithmic derivatives for the fusion cross sections at deep-subbarrier energies for the 16 O+ 208 Pb, 64 Ni+ 64 Ni, and 58 Ni+ 58 Ni reactions at the deep-subbarrier energies. The important point in our model is that the transition takes place at different places for each Eigen channel. We conclude that the smooth transition from the two-body to the adiabatic one-body potential is responsible for the steep falloff of the fusion cross section

  9. A classical approach in simple nuclear fusion reaction 1H2+1H3 using two-dimension granular molecular dynamics model

    International Nuclear Information System (INIS)

    Viridi, S.; Kurniadi, R.; Waris, A.; Perkasa, Y. S.

    2012-01-01

    Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between 1 H 2 and 1 H 3 is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary 2 He 4 nucleus.

  10. Fusion enhancement/suppression and irreversibility in reactions induced by weakly bound nuclei

    International Nuclear Information System (INIS)

    Gomes, P.R.S.; Lubian, J.; Canto, L.F.; Chamon, L.C.; Crema, E.; Hussein, M.S.

    2011-01-01

    We show that halo effects enhance fusion cross sections of weakly bound systems, comparing with the situation when there is no-halo. We introduce dimensionless fusion functions and energy variable quantity to investigate systematical trends in the fusion cross sections of weakly bound nuclei at near-barrier energies. We observe very clearly complete fusion suppression at energies above the barrier due to dynamic effects of the breakup on fusion. We explain this suppression in terms of the repulsive polarization potential produced by the breakup. (author)

  11. On the implementation of a chain nuclear reaction of thermonuclear fusion on the basis of the p+11B process

    Science.gov (United States)

    Belyaev, V. S.; Krainov, V. P.; Zagreev, B. V.; Matafonov, A. P.

    2015-07-01

    Various theoretical and experimental schemes for implementing a thermonuclear reactor on the basis of the p+11B reaction are considered. They include beam collisions, fusion in degenerate plasmas, ignition upon plasma acceleration by ponderomotive forces, and the irradiation of a solid-state target from 11B with a proton beam under conditions of a Coulomb explosion of hydrogen microdrops. The possibility of employing ultra-short high-intensity laser pulses to initiate the p+11B reaction under conditions far from thermodynamic equilibrium is discussed. This and some other weakly radioactive thermonuclear reactions are promising owing to their ecological cleanness—there are virtually no neutrons among fusion products. Nuclear reactions that follow the p+11B reaction may generate high-energy protons, sustaining a chain reaction, and this is an advantage of the p+11B option. The approach used also makes it possible to study nuclear reactions under conditions close to those in the early Universe or in the interior of stars.

  12. Production of proton-rich nuclei around Z = 84-90 in fusion-evaporation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peng-Hui [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Feng, Zhao-Qing; Li, Jun-Qing; Jin, Gen-Ming [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Niu, Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Henan Normal University, Institute of Particle and Nuclear Physics, Xinxiang (China); Guo, Ya-Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); Zhang, Hong-Fei [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China)

    2017-05-15

    Within the framework of the dinuclear system model, production cross sections of proton-rich nuclei with charged numbers of Z = 84-90 are investigated systematically. Possible combinations with the {sup 28}Si, {sup 32}S, {sup 40}Ar bombarding the target nuclides {sup 165}Ho, {sup 169}Tm, {sup 170-174}Yb, {sup 175,176}Lu, {sup 174,} {sup 176-180}Hf and {sup 181}Ta are analyzed thoroughly. The optimal excitation energies and evaporation channels are proposed to produce the proton-rich nuclei. The systems are feasible to be constructed in experiments. It is found that the neutron shell closure of N = 126 is of importance during the evaporation of neutrons. The experimental excitation functions in the {sup 40}Ar induced reactions can be nicely reproduced. The charged particle evaporation is comparable with neutrons in cooling the excited proton-rich nuclei, in particular for the channels with α and proton evaporation. The production cross section increases with the mass asymmetry of colliding systems because of the decrease of the inner fusion barrier. The channels with pure neutron evaporation depend on the isotopic targets. But it is different for the channels with charged particles and more sensitive to the odd-even effect. (orig.)

  13. Coupled-channels analyses for 9,11Li + 208Pb fusion reactions with multi-neutron transfer couplings

    Science.gov (United States)

    Choi, Ki-Seok; Cheoun, Myung-Ki; So, W. Y.; Hagino, K.; Kim, K. S.

    2018-05-01

    We discuss the role of two-neutron transfer processes in the fusion reaction of the 9,11Li + 208Pb systems. We first analyze the 9Li + 208Pb reaction by taking into account the coupling to the 7Li + 210Pb channel. To this end, we assume that two neutrons are directly transferred to a single effective channel in 210Pb and solve the coupled-channels equations with the two channels. By adjusting the coupling strength and the effective Q-value, we successfully reproduce the experimental fusion cross sections for this system. We then analyze the 11Li + 208Pb reaction in a similar manner, that is, by taking into account three effective channels with 11Li + 208Pb, 9Li + 210Pb, and 7Li + 212Pb partitions. In order to take into account the halo structure of the 11Li nucleus, we construct the potential between 11Li and 208Pb with a double folding procedure, while we employ a Woods-Saxon type potential with the global Akyüz-Winther parameters for the other channels. Our calculation indicates that the multiple two-neutron transfer process plays a crucial role in the 11Li + 208Pb fusion reaction at energies around the Coulomb barrier.

  14. Reaction studies of hot silicon and germanium radicals. Period covered: September 1, 1977--August 31, 1978

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1978-01-01

    The experimental approach to attaining the goals of this research program is briefly outlined and the progress made in the last year is reviewed in sections entitled: primary steps in the reaction of recoiling silicon and germanium atoms and the identification of reactive intermediates; thermally induced silylene and germylene reactions; the role of ionic reactions in the chemistry of recoiling silicon atoms and other ion-molecule reactions studies; and silicon free radical chemistry

  15. Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kreitcberg, Alena, E-mail: alena.kreitcberg.1@ens.etsmtl.ca [École de technologie supérieure, 110 Notre-Dame Street West, Montreal, Quebec H3C 1K3 Canada (Canada); Brailovski, Vladimir, E-mail: vladimir.brailovski@etsmtl.ca [École de technologie supérieure, 110 Notre-Dame Street West, Montreal, Quebec H3C 1K3 Canada (Canada); Turenne, Sylvain, E-mail: sylvain.turenne@polymtl.ca [École Polytechnique de Montréal, 2900 boul. Édouard-Montpetit, Montreal, Quebec H3T 1J4 Canada (Canada)

    2017-03-24

    The effect of different heat treatments and hot isostatic pressing on the microstructure and mechanical properties of laser powder bed fusion IN625 alloy was studied. The heat treatments were: stress relief annealing, recrystallization annealing and low-temperature solution treatment. The resulting microstructure and crystallographic textures were studied using optical and scanning electron microscopy. The mechanical properties of the as-built and post-treated IN625 alloy were obtained after tensile testing at room temperature and at 760 °C (1400 °F), and compared to those of an annealed wrought alloy of the same composition.

  16. Nuclear structure effects in fusion-fission of compound systems 20,21,22Ne formed in 10,11B+10,11B reactions

    International Nuclear Information System (INIS)

    Singh, BirBikram; Kaur, Manpreet; Kaur, Varinderjit; Gupta, Raj K.

    2014-01-01

    The dynamical cluster-decay model (DCM) of Gupta and collaborators has been successfully applied to the decay of number of hot and rotating compound nuclei in different mass regions, formed in low-energy heavy ion reactions. Recently, its application to the binary symmetric decay (BSD) of very light mass compound systems 20,21,22 Ne formed in 10,11 B+ 10,11 B reactions at E lab =48 MeV is extended, as the experimental data for σ BSD Expt . is available, namely, for 20 Ne (∼ 270 mb), 21 Ne ( 22 Ne ( BSD DCM for the BSD of the three Ne systems is calculated, comprising fusion-fission σ ff and deep inelastic scattering/orbiting σorb contributions (evaluated empirically here) from compound nucleus CN and non-compound nucleus nCN processes, respectively. The significant observation from this study is that, of the total σ BSD DCM , σ ff contribution is very strong for the decay of 20 Ne (=195.270 mb; >70%), followed by 21 Ne (=65.723 mb; ∼50%) and 22 Ne (=8.677 mb; almost 10%). This means that the process of collective clusterization within the DCM is playing very strong role for the decay of 20 Ne

  17. The cross sections of fusion-evaporation reactions: the most promising route to superheavy elements beyond Z=118

    Directory of Open Access Journals (Sweden)

    Jadambaa Khuyagbaatar

    2017-01-01

    Full Text Available The synthesis of superheavy elements beyond oganesson (Og, which has atomic number Z = 118, is currently one of the main topics in nuclear physics. An absence of sufficient amounts of target material with atomic numbers heavier than californium (Z = 98 forces the use of projectiles heavier than 48Ca (Z = 20, which has been successfully used for the discoveries of elements with Z = 114 - 118 in complete fusion reactions. Experimental cross sections of 48Ca with actinide targets behave very differently to “cold” and “hot” fusion-evaporation reactions, where doubly-magic lead and deformed actinides are used as targets, respectively. The known cross sections of these reactions have been analysed compared to calculated fission barriers. It has been suggested that observed discrepancies between the cross sections of 48Ca-induced and other fusionevaporation reactions originate from the shell structure of the compound nucleus, which lies in the island of the stability. Besides scarcely known data on other reactions involving heavier projectiles, the most promising projectile for the synthesis of the elements beyond Og seems to be 50Ti. However, detailed studies of 50Ti, 54Cr, 58Fe and 64Ni-induced reactions are necessary to be performed in order to fully understand the complexities of superheavy element formation.

  18. Extricate of incomplete fusion reactions at 4-7 MeV/A System:19F+159Tb

    International Nuclear Information System (INIS)

    Unnati; Mandal, S.K.; Yadav, A.; Singh, D.P.; Goswami, S.; Singh, B.P.; Sharma, M.K.

    2015-01-01

    Probing of heavy ion interactions and extricating of incomplete fusion (ICF) reactions at low energy regime is a topic of current interest. The main points of such studies is to explore the effect of various entrance channel parameters, viz., (i) the projectile energy, (ii) the mass asymmetry of interacting partners, and (iii) the input angular momenta imparted into the system. It is also pointed out that a separation of CF (Complete Fusion) from ICF is important for meaningful interpretation towards the splitting of nuclei. Further, considerable efforts are being employed to synthesize super heavy nuclei, the presence of various competing channels may add complexity to the synthesis of super heavy nuclei and obstruct the formation of such nuclei. Although, it is now possible to investigate reaction mechanism involved in formation of such nuclei but experimental studies are limited

  19. Estimates of fission barrier heights for neutron-deficient Po to Ra nuclei produced in fusion reactions

    Directory of Open Access Journals (Sweden)

    Sagaidak Roman

    2017-01-01

    Full Text Available The cross section data for fission and evaporation residue production in fusion reactions leading to nuclei from Po to Ra have been considered in a systematic way in the framework of the conventional barrier-passing (fusion model coupled with the statistical model. The cross section data obtained in very asymmetric projectile-target combinations can be described within these models rather well with the adjusted model parameters. In particular, one can scale and fix the macroscopic (liquid-drop fission barrier heights (FBHs for nuclei involved in the de-excitation of compound nuclei produced in the reactions. The macroscopic FBHs for nuclei from Po to Ra have been derived in the framework of such analysis and compared with the predictions of various theoretical models.

  20. Experimental investigation of the confinement of d(3He,p)α and d(d,p)t fusion reaction products in JET

    DEFF Research Database (Denmark)

    Bonheure, Georges; Hult, M.; Gonzalez de Orduna, R.

    2012-01-01

    In ITER, magnetic fusion will explore the burning plasma regime. Because such burning plasma is sustained by its own fusion reactions, alpha particles need to be confined (Hazeltine 2010 Fusion Eng. Des. 7–9 85). New experiments using d(3He,p)α and d(d,p)t fusion reaction products were performed...... in JET. Fusion product loss was measured from MHD-quiescent plasmas with a charged particle activation probe installed at a position opposite to the magnetic field ion gradient drift (see figure 1)—1.77 m above mid-plane—in the ceiling of JET tokamak. This new kind of escaping ion detector (Bonheure et...... al 2008 Fusion Sci. Technol. 53 806) provides for absolutely calibrated measurements. Both the mechanism and the magnitude of the loss are dealt with by this research. Careful analysis shows measured loss is in quantitative agreement with predictions from the classical orbit loss model. However...

  1. Consistent analysis of peripheral reaction channels and fusion for the 16,18O+58Ni systems

    International Nuclear Information System (INIS)

    Alves, J.J.S.; Gomes, P.R.S.; Lubian, J.; Chamon, L.C.; Pereira, D.; Anjos, R.M.; Rossi, E.S.; Silva, C.P.; Alvarez, M.A.G.; Nobre, G.P.A.; Gasques, L.R.

    2005-01-01

    We have measured elastic scattering and peripheral reaction channel cross sections for the 16,18 O+ 58 Ni systems at ELab=46 MeV. The data were analyzed through extensive coupled-channel calculations. It was investigated the consistency of the present analysis with a previous one at sub-barrier energies. Experimental fusion cross sections for these systems are also compared with the corresponding predictions of the coupled-channel calculations

  2. Reaction studies of hot silicon and germanium radicals. Progress report, September 1, 1978-August 31, 1979

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1979-01-01

    The experimental approach to attaining the goals of this research program is briefly outlined and the progress made in the last year is reviewed in sections entitled: (a) Primary steps in the reaction of recoiling silicon and germanium atoms and the identification of reactive intermediates; (b) Thermally induced silylene and germylene reactions; (c) Silicon free radical chemistry; (d) The role of ionic reactions in the chemistry of recoiling silicon atoms

  3. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    Science.gov (United States)

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  4. A survey of selected neutron-activation reactions with short-lived products of importance to fusion reactor technology

    International Nuclear Information System (INIS)

    Ward, R.C.; Gomes, I.C.; Smith, D.L.

    1994-11-01

    The status of the cross sections for production of short-lived radioactivities in the intense high-energy neutron fields associated with D-T fusion reactors is investigated. The main concerns relative to these very radioactive isotopes are with radiation damage to sensitive components such as superconducting magnets, the decay-heat problem and the safety of personnel during operation of the facility. The present report surveys the status of nuclear data required to assess these problems. The study is limited to a few high-priority nuclear reactions which appear to be of critical concern in this context. Other reactions of lesser concern are listed but are not treated in the present work. Among the factors that were considered in defining the relevant reactions and setting priorities are: quantities of the elemental materials in a fusion reactor, isotopic abundances within elemental categories, the decay properties of the induced radioactive byproducts, the reaction cross sections, and the nature of the decay radiations. Attention has been focused on radioactive species with half lives in the range from about 1 second to 15 minutes. Available cross-section and reaction-product decay information from the literature has been compiled and included in the report. Uncertainties have been estimated by examining several sets of experimental as well as evaluated data. Comments on the general status of data for various high-priority reactions are offered. On the basis of this investigation, it has been found that the nuclear data are in reasonably good shape for some of the most important reactions but are unacceptable for others. Based on this investigation, the reactions which should be given the greatest attention are: 16 O(n,p) 16 N, 55 Mn(n,p) 55 Cr, 57 Fe(n,p) 57 Mn, 186 W(n,2n) 185m W, and 207 Pb(n,n') 207m Pb. However, the development of fusion power would benefit from an across-the-board refinement in these nuclear data so that a more accurate quantitative

  5. Influence of the entrance channel in the fusion reaction 318 MeV 74Ge+74Ge

    International Nuclear Information System (INIS)

    Zhu, L.H.; Cinausero, M.; Angelis, G. de; De Poli, M.; Fioretto, E.; Gadea, A.; Napoli, D.R.; Prete, G.; Lucarelli, F.

    1998-01-01

    Entrance channel effects in the fusion of heavy ions have been studied by using the 74 Ge+ 74 Ge reaction at 318 MeV. The population of the yrast superdeformed band in 144 Gd shows an increase when compared with the results obtained in the more asymmetric 48 Ti+ 100 Mo reaction at 215 MeV. The relative yields of the different evaporation residues produced in the 74 Ge+ 74 Ge and in the 48 Ti+ 100 Mo reactions are very similar, with the exception of the 145,144 Gd residual nuclei (3n and 4n decay channels) which are populated with a larger yield in the symmetric reaction. Statistical model calculations reproduce qualitatively such effect if a fission delay is explicitly taken into account. Effects related to fusion barrier fluctuations seem to be important in determining the spin distributions of the compound nucleus. The spectra of the high energy γ-rays emitted in the 74 Ge+ 74 Ge reaction have been measured as a function of the γ-ray multiplicity as well as in coincidence with selected evaporation residues. They are reproduced by standard statistical model calculations with GDR parameters taken from systematics, demonstrating that, in agreement with dynamical model prediction, the emission of γ-rays from the dinucleus formed in the earlier stage of the collision is unimportant. (orig.)

  6. Cluster correlation effects in 12C+12C and 14N+10B fusion-evaporation reactions

    Directory of Open Access Journals (Sweden)

    Morelli L.

    2015-01-01

    Full Text Available The decay of highly excited states of 24Mg is studied in fusion evaporation events completely detected in charge in the reactions 12C+12C and 14N+10B at 95 and 80 MeV incident energy respectively. The comparison of light charged particles measured spectra with statistical model predictions suggests that the dominant reaction mechanism is compound nucleus (CN formation and decay. However, in both reactions, a discrepancy with statistical expectations is found for α particles detected in coincidence with Carbon, Oxigen and Neon residues. The comparison between the two reactions shows that this discrepancy is only partly explained by an entrance channel effect. Evidence for cluster correlations in excited 24Mg CN is suggested by the comparison between the measured and calculated branching ratios for the channels involving α particles.

  7. In Situ Apparatus to Study Gas-Metal Reactions and Wettability at High Temperatures for Hot-Dip Galvanizing Applications

    Science.gov (United States)

    Koltsov, A.; Cornu, M.-J.; Scheid, J.

    2018-02-01

    The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.

  8. The Effects of Heat Stress on Selective Attention and Reaction Time among Workers of a Hot Industry: Application of Computerized Version of Stroop Test

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2015-04-01

    .Conclusion: According to the findings in present study, heat stress causes an increase in reaction time and a decrease in selective attention. Thus, heat can be assumed as a stressor in hot work environments and the heat should be taken into account while design of job and tasks which needed selective attention or reaction time.

  9. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    Energy Technology Data Exchange (ETDEWEB)

    Harca, I. M. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna, Russia and Faculty of Physics, University of Bucharest - P.O. Box MG 11, RO 77125, Bucharest-Magurele (Romania); Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna (Russian Federation); Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D. [IPN, CNRS/IN2P3, Univ. Paris-Sud, 91405 Orsay (France); Chubarian, G. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Hanappe, F. [Universite Libre de Bruxelles (ULB), Bruxelles (Belgium); Piot, J.; Schmitt, C. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Trzaska, W. H. [Accelerator Laboratory of University of Jyväskylä (JYFL), Jyväskylä (Finland); Vardaci, E. [Dipartamento di Scienze Fisiche and INFN (INFN-Na), Napoli (Italy)

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  10. Dispersion relation approach to sub-barrier heavy ion fusion reactions

    International Nuclear Information System (INIS)

    Franzin, V.L.M.; Hussein, M.S.

    1986-07-01

    With the aid of an inverse dispersion relation, which gives the imaginary part of the fusion inclusive polarization potential (IPP) in terms of the principal part integral involving the real part of the IPP, the sub-barrier fusion of heavy ions is discussed. The system 16 O+ A Sm is taken as an example. The reactive content of the extracted IPP is analysed within the coupled channels theory. (Author) [pt

  11. Discrimination and competition between complete fusion and deep inelastic reactions induced by heavy ions

    International Nuclear Information System (INIS)

    Hanappe, F.; Tamain, B.

    1977-01-01

    One tries to find a way to discriminate between fission following fusion and deep inelastic processes with large mass transfer. Fragment analysis (kinetic energy, mass, charge distributions) gives generally no answer. The deexcitation properties of the fragments (gamma ray, charged particles and neutron emission) are difficult to interpret, and only recent results concerning neutron emission show different patterns for both processes. The reasons for which a system evolves towards deep inelastic processes rather than fusion are discussed

  12. Development of Portable Pulsed Neutron Generators Utilizing a D-T or D-D Fusion Reaction

    International Nuclear Information System (INIS)

    Nishimura, Kazuya; Miake, Yoshinobu; Kato, Michio; Rintsu, Yukou

    2001-01-01

    Prototypes of sealed neutron tubes in a D-T or D-D fusion reaction for logging while drilling (LWD) were developed; then operational tests were performed to check their functional properties. One of the prototypes passed most of the specified conditions for using LWD. Further studies were needed to put a sealed neutron tube into practical use. For applications to other fields, such as an in situ calibration source for neutron detector efficiencies and an in situ calibration source for fusion systems, a sealed neutron tube is needed to have higher-intensity neutron output and a long life. Thus, the performance of the ion source used in the neutron tube is improved to obtain high gas utilization efficiencies or low-pressure operation with high ionization efficiencies. The characteristics of the new ion sources used in the foregoing sealed neutron tube are discussed in terms of preliminary tests. The aforementioned performances are obtained

  13. Reaction studies of hot silicon and germanium radicals. Progress report, February 1, 1982-July 31, 1984

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1984-01-01

    The experimental approach toward attaining the goals of this research program is briefly outlined, and the progress made in the 1982 to 1984 period is reviewed in sections entitled: (1) Recoil atom experiments, (2) Studies of thermally and photochemically generated silicon and germanium radicals, and (3) Ion-molecule reaction studies

  14. Effect of addition of water-soluble salts on the hydrogen generation of aluminum in reaction with hot water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2016-01-01

    Aluminum powder was ball milled for different durations of time with different weight percentages of water-soluble salts (NaCl and KCl). The hydrogen generation of each mixture in reaction with hot water was measured. A scanning electron microscope (SEM) as well as energy-dispersive spectroscopy (EDS) were used to investigate the morphology, surfaces and cross sections of the produced particles. The results show that the presence of salts in the microstructure of the aluminum considerably increases the hydrogen generation rate. At shorter milling times, the salt covers the aluminum particles and becomes embedded in layers within the aluminum matrix. At higher milling durations, salt and aluminum phases form composite particles. A higher percentage of the second phase significantly decreases the milling time needed for activation of the aluminum particles. Based on the EDS results from cross sections of the milled particles, a mechanism for improvement of the hydrogen generation rate in the presence of salts is suggested. - Highlights: • Milling and water soluble salts have a synergic effect on hydrogen generation. • Salt and aluminum form composite particles by milling. • Salt is dissolved in water leaving aluminum with much fresh surfaces for the reaction. • The chemical effect of salt on the reaction is negligible compared to its structural effect.

  15. Hot atom reactions involving multivalent and univalent species. Progress report, February 1979-January 1980

    International Nuclear Information System (INIS)

    Tang, Y.N.

    1980-01-01

    The major progress during this period was in the study of recoil 31 Si and recoil 11 C reactions and in the initiation of the studies on the interaction of molecular tritium on solid surfaces. For the recoil 31 Si systems, heterogeneous hydrogenation experiments have been designed to positively confirm that a major unknown product, derived from the interaction of 31 Si atoms with 1,3-butadiene, is 1-silacyclopenta-2,4-diene. This compound has been shown to be very sensitive to γ-ray irradiation and to be thermally unstable at a temperature higher than 100 0 C. Another recoil 31 Si experiment was designed to review the mechanism of the 31 Si abstraction reactions. From the fact that high yields of [ 31 Si]-1-fluorosilacyclopent-3-ene were obtained as a product from a mixture of PH 3 and PF 3 together with 1,3-butadiene, the stepwise abstraction mechanism is definitely much more predominant than the possible simultaneous abstraction. Other recoil 31 Si works involved a detailed systematic composition study of 31 SiF 2 reactions with 1,3-butadiene, some neon moderator studies, and the continuation of the studies on the reactions of 31 SiF 2 and 31 SiH 2 with conjugated hexadienes. By using 2- 14 C-propanone and 1,3- 14 C-propanone, the mechanism of solvent-free oxidative cleavage of propanone by KMnO 4 was elucidated. Information thus derived was used to degradate the 11 C-labelled propadiene derived from the reactions of recoil 11 C atoms with ethylene. Results indicate that 73% of the 11 C-labelled propadiene was center-labelled. This value was observed to change with additives. Various mechanistic studies on the heterogeneous interactions of molecular T 2 on solid surfaces such as Pd supported on active carbon have been initiated

  16. A study of the decay modes of hot systems formed in the Ar + Au and Ar + Th reactions

    International Nuclear Information System (INIS)

    Lott, B.; Cramer, B.; Ingold, G.; Jahnke, U.; Schwinn, E.; Doubre, H.; Galin, J.; Guerreau, D.; Jiang, D.X.; Morjean, M.; Piasecki, E.; Pouthas, J.; Sokolov, A.; Gatty, B.; Jacquet, D.

    1990-01-01

    Decay channels of hot systems formed in Ar + Au and Ar + Th reactions have been investigated by measuring the associated neutron multiplicity with a 4π liquid scintillator detector. The presented results show that, in contrast with the conclusion of the folding angle method, fission remains very probable as a deexcitation channel for hot systems even at 44 MeV/u, but its cross section decreases when the bombarding energy increases from 32 MeV/u to 44 MeV/u. On the opposite, the heavy residue production increases in this incident energy domain. The average IMF multiplicity per central collision is shown to be large, minimum values of 1.0 and 1.2 have been found for E inc = 44 and 77 MeV/u respectively. The possible link between the previously observed saturation in the thermal energy deposited in the system and the increasing probability for this system to avoid fissioning for increasing bombarding energies is discussed. A possible explanation could be found in an important non equilibrium emission of light particles or IMFs

  17. Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion

    Energy Technology Data Exchange (ETDEWEB)

    Lavery, N.P., E-mail: N.P.Lavery@swansea.ac.uk [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Cherry, J.; Mehmood, S. [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Davies, H. [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Girling, B.; Sackett, E. [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Brown, S.G.R. [Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom); Sienz, J. [Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EP (United Kingdom)

    2017-05-02

    The microstructure and mechanical properties of 316L steel have been examined for parts built by a powder bed laser fusion process, which uses a laser to melt and build parts additively on a layer by layer basis. Relative density and porosity determined using various experimental techniques were correlated against laser energy density. Based on porosity sizes, morphology and distributions, the porosity was seen to transition between an irregular, highly directional porosity at the low laser energy density and a smaller, more rounded and randomly distributed porosity at higher laser energy density, thought to be caused by keyhole melting. In both cases, the porosity was reduced by hot isostatic pressing (HIP). High throughput ultrasound based measurements were used to calculate elasticity properties and show that the lower porosities from builds with higher energy densities have higher elasticity moduli in accordance with empirical relationships, and hot isostatic pressing improves the elasticity properties to levels associated with wrought/rolled 316L. However, even with hot isostatic pressing the best properties were obtained from samples with the lowest porosity in the as-built condition. A finite element stress analysis based on the porosity microstructures was undertaken, to understand the effect of pore size distributions and morphology on the Young's modulus. Over 1–5% porosity range angular porosity was found to reduce the Young's modulus by 5% more than rounded porosity. Experimentally measured Young's moduli for samples treated by HIP were closer to the rounded trends than the as-built samples, which were closer to angular trends. Tensile tests on specimens produced at optimised machine parameters displayed a high degree of anisotropy in the build direction and test variability for as-built parts, especially between vertical and horizontal build directions. The as-built properties were generally found to have a higher yield stress, but

  18. Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion

    International Nuclear Information System (INIS)

    Lavery, N.P.; Cherry, J.; Mehmood, S.; Davies, H.; Girling, B.; Sackett, E.; Brown, S.G.R.; Sienz, J.

    2017-01-01

    The microstructure and mechanical properties of 316L steel have been examined for parts built by a powder bed laser fusion process, which uses a laser to melt and build parts additively on a layer by layer basis. Relative density and porosity determined using various experimental techniques were correlated against laser energy density. Based on porosity sizes, morphology and distributions, the porosity was seen to transition between an irregular, highly directional porosity at the low laser energy density and a smaller, more rounded and randomly distributed porosity at higher laser energy density, thought to be caused by keyhole melting. In both cases, the porosity was reduced by hot isostatic pressing (HIP). High throughput ultrasound based measurements were used to calculate elasticity properties and show that the lower porosities from builds with higher energy densities have higher elasticity moduli in accordance with empirical relationships, and hot isostatic pressing improves the elasticity properties to levels associated with wrought/rolled 316L. However, even with hot isostatic pressing the best properties were obtained from samples with the lowest porosity in the as-built condition. A finite element stress analysis based on the porosity microstructures was undertaken, to understand the effect of pore size distributions and morphology on the Young's modulus. Over 1–5% porosity range angular porosity was found to reduce the Young's modulus by 5% more than rounded porosity. Experimentally measured Young's moduli for samples treated by HIP were closer to the rounded trends than the as-built samples, which were closer to angular trends. Tensile tests on specimens produced at optimised machine parameters displayed a high degree of anisotropy in the build direction and test variability for as-built parts, especially between vertical and horizontal build directions. The as-built properties were generally found to have a higher yield stress, but lower upper

  19. Evaporation residue cross sections for the {sup 64}Ni + {sup 144,154}Sm reaction -- Energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    The fission hindrance of hot nuclei was deduced recently from an enhanced emission of GDR {gamma} rays, neutrons and charged particles prior to scission of heavy nuclei. In the most recent experiments addressing this topic, namely new measurements of the pre-scission {gamma} rays and evaporation residues from the {sup 32}S + {sup 184}W reaction, a rather sharp transition from negligible to full one-body dissipation occurs over the excitation energy region E{sub exc} = 60-100 MeV. However, the cross section does not appear to level out or start to decline again at the upper end of the energy range as expected in this interpretation. It is therefore clearly desirable to extend the excitation energy range to look for such an effect in order to either corroborate or refute this interpretation.

  20. Exploring incomplete fusion fraction in 6,7Li induced nuclear reactions

    Science.gov (United States)

    Parkar, V. V.; Jha, V.; Kailas, S.

    2017-11-01

    We have included breakup effects explicitly to simultaneously calculate the measured cross-sections of the complete fusion, incomplete fusion, and total fusion for 6,7Li projectiles on various targets using the Continuum Discretized Coupled Channels method. The breakup absorption cross-sections obtained with different choices of short range imaginary potentials are utilized to evaluate the individual α-capture and d/t-capture cross-sections and compare with the measured data. It is interesting to note, while in case of 7Li projectile the cross-sections for triton-ICF/triton-capture is far more dominant than α-ICF/α-capture at all energies, similar behavior is not observed in case of 6Li projectile for the deuteron-ICF/deuteron-capture and α-ICF/α-capture. Both these observations are also corroborated by the experimental data for all the systems studied.

  1. Exploring incomplete fusion fraction in 6,7Li induced nuclear reactions

    Directory of Open Access Journals (Sweden)

    Parkar V. V.

    2017-01-01

    Full Text Available We have included breakup effects explicitly to simultaneously calculate the measured cross-sections of the complete fusion, incomplete fusion, and total fusion for 6,7Li projectiles on various targets using the Continuum Discretized Coupled Channels method. The breakup absorption cross-sections obtained with different choices of short range imaginary potentials are utilized to evaluate the individual α-capture and d/t-capture cross-sections and compare with the measured data. It is interesting to note, while in case of 7Li projectile the cross-sections for triton-ICF/triton-capture is far more dominant than α-ICF/α-capture at all energies, similar behavior is not observed in case of 6Li projectile for the deuteron-ICF/deuteron-capture and α-ICF/α-capture. Both these observations are also corroborated by the experimental data for all the systems studied.

  2. Gross resonance-like structure of the complete fusion excitation function for the 16O + 28Si reaction

    International Nuclear Information System (INIS)

    Zheng Jiwen; Zheng Pingzi; Liu Guoxing

    1993-01-01

    The complete fusion excitation function for the 16 O + 28 Si reaction is measured in the incident energy range from 50 to 90 MeV with step of 1.0 MeV using a position sensitive ΔE-E telescope system. The striking gross resonance-like structure is observed when E c.m. c.m. 34.5, 38.5 and 43.0 MeV respectively. The structure vanishes gradually when E c.m. > 46.0 MeV

  3. Yrast spectroscopy in {sup 49-51}Ti via fusion-evaporation reaction induced by a radioactive beam

    Energy Technology Data Exchange (ETDEWEB)

    Niikura, M.; Ideguchi, E.; Michimasa, S.; Ota, S.; Shimoura, S.; Wakabayashi, Y. [University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Aoi, N.; Baba, H.; Fukuchi, T.; Ichikawa, Y.; Kubo, T.; Kurokawa, M.; Ohnishi, T.; Suzuki, H.; Yoshida, K. [RIKEN Nishina Center, Wako, Saitama (Japan); Iwasaki, H.; Onishi, T.K.; Suzuki, D. [University of Tokyo, Department of Physics, Tokyo (Japan); Liu, M.; Zheng, Y. [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2009-12-15

    In-beam {gamma} -ray spectroscopy of high-spin states in {sup 49-51}Ti was performed via the fusion-evaporation reaction using a radioactive beam. By excitation function and {gamma} - {gamma} coincidence analysis, yrast high-spin levels up to I=(21/2{sup -}),(11{sup +}),(17/2{sup -}) in {sup 49-51}Ti were determined. The levels were compared with full-pf -shell model calculation. The level structure indicates the persistency of the N=28 shell gap at yrast states in {sup 49-51}Ti. (orig.)

  4. Hot atom reactions involving multivalent and univalent species. Progress report, February 1979-January 1980

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Y.N.

    1980-01-01

    The major progress during this period was in the study of recoil /sup 31/Si and recoil /sup 11/C reactions and in the initiation of the studies on the interaction of molecular tritium on solid surfaces. For the recoil /sup 31/Si systems, heterogeneous hydrogenation experiments have been designed to positively confirm that a major unknown product, derived from the interaction of /sup 31/Si atoms with 1,3-butadiene, is 1-silacyclopenta-2,4-diene. This compound has been shown to be very sensitive to ..gamma..-ray irradiation and to be thermally unstable at a temperature higher than 100/sup 0/C. Another recoil /sup 31/Si experiment was designed to review the mechanism of the /sup 31/Si abstraction reactions. From the fact that high yields of (/sup 31/Si)-1-fluorosilacyclopent-3-ene were obtained as a product from a mixture of PH/sub 3/ and PF/sub 3/ together with 1,3-butadiene, the stepwise abstraction mechanism is definitely much more predominant than the possible simultaneous abstraction. Other recoil /sup 31/Si works involved a detailed systematic composition study of /sup 31/SiF/sub 2/ reactions with 1,3-butadiene, some neon moderator studies, and the continuation of the studies on the reactions of /sup 31/SiF/sub 2/ and /sup 31/SiH/sub 2/ with conjugated hexadienes. By using 2-/sup 14/C-propanone and 1,3-/sup 14/C-propanone, the mechanism of solvent-free oxidative cleavage of propanone by KMnO/sub 4/ was elucidated. Information thus derived was used to degradate the /sup 11/C-labelled propadiene derived from the reactions of recoil /sup 11/C atoms with ethylene. Results indicate that 73% of the /sup 11/C-labelled propadiene was center-labelled. This value was observed to change with additives. Various mechanistic studies on the heterogeneous interactions of molecular T/sub 2/ on solid surfaces such as Pd supported on active carbon have been initiated.

  5. Fusion reaction cross-sections using the Wong model within Skyrme energy density based semiclassical extended Thomas Fermi approach

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Raj, E-mail: rajkumarfzr@gmail.com [Department of Physics, Panjab University, Chandigarh-160014 (India); School of Physics and Material Science, Thapar University, Patiala-147004 (India); Sharma, Manoj K. [School of Physics and Material Science, Thapar University, Patiala-147004 (India); Gupta, Raj K. [Department of Physics, Panjab University, Chandigarh-160014 (India)

    2011-11-15

    First, the nuclear proximity potential, obtained by using the semiclassical extended Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), is shown to give more realistic barriers in frozen density approximation, as compared to the sudden approximation. Then, taking advantage of the fact that, in ETF method, different Skyrme forces give different barriers (height, position and curvature), we use the l-summed extended-Wong model of Gupta and collaborators (2009) under frozen densities approximation for calculating the cross-sections, where the Skyrme force is chosen with proper barrier characteristics, not-requiring additional 'barrier modification' effects (lowering or narrowing, etc.), for a best fit to data at sub-barrier energies. The method is applied to capture cross-section data from {sup 48}Ca + {sup 238}U, {sup 244}Pu, and {sup 248}Cm reactions and to fusion-evaporation cross-sections from {sup 58}Ni + {sup 58}Ni, {sup 64}Ni + {sup 64}Ni, and {sup 64}Ni + {sup 100}Mo reactions, with effects of deformations and orientations of nuclei included, wherever required. Interestingly, whereas the capture cross-sections in Ca-induced reactions could be fitted to any force, such as SIII, SV and GSkI, by allowing a small change of couple of units in deduced l{sub max}-values at below-barrier energies, the near-barrier data point of {sup 48}Ca + {sup 248}Cm reaction could not be fitted to l{sub max}-values deduced for below-barrier energies, calling for a check of data. On the other hand, the fusion-evaporation cross-sections in Ni-induced reactions at sub-barrier energies required different Skyrme forces, representing 'modifications of the barrier', for the best fit to data at all incident center-of-mass energies E{sub c.m.}'s, displaying a kind of fusion hindrance at sub-barrier energies. This barrier modification effect is taken into care here by using different Skyrme forces for reactions belonging to different regions of

  6. Control of a laser inertial confinement fusion-fission power plant

    Science.gov (United States)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  7. Theoretical Investigation of the Interfacial Reactions during Hot-Dip Galvanizing of Steel

    Science.gov (United States)

    Mandal, G. K.; Balasubramaniam, R.; Mehrotra, S. P.

    2009-03-01

    In the modern galvanizing line, as soon as the steel strip enters the aluminum-containing zinc bath, two reactions occur at the strip and the liquid-zinc alloy interface: (1) iron rapidly dissolves from the strip surface, raising the iron concentration in the liquid phase at the strip-liquid interface; and (2) aluminum forms a stable aluminum-iron intermetallic compound layer at the strip-coating interface due to its greater affinity toward iron. The main objective of this study is to develop a simple and realistic mathematical model for better understanding of the kinetics of galvanizing reactions at the strip and the liquid-zinc alloy interface. In the present study, a model is proposed to simulate the effect of various process parameters on iron dissolution in the bath, as well as, aluminum-rich inhibition layer formation at the substrate-coating interface. The transient-temperature profile of the immersed strip is predicted based on conductive and convective heat-transfer mechanisms. The inhibition-layer thickness at the substrate-coating interface is predicted by assuming the cooling path of the immersed strip consists of a series of isothermal holds of infinitesimal time-step. The influence of galvanizing reaction is assessed by considering nucleation and growth mechanisms at each hold time, which is used to estimate the total effect of the immersion time on the formation mechanism of the inhibition layer. The iron- dissolution model is developed based on well established principles of diffusion taking into consideration the area fraction covered by the intermetallic on the strip surface during formation of the inhibition layer. The model can be effectively used to monitor the dross formation in the bath by optimizing the process parameters. Theoretical predictions are compared with the findings of other researchers. Simulated results are in good agreement with the theoretical and experimental observation carried out by other investigators.

  8. A Simulation Study for Radiation Treatment Planning Based on the Atomic Physics of the Proton-Boron Fusion Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunmi; Yoon, Do-Kun; Shin, Han-Back; Jung, Joo-Young; Kim, Moo-Sub; Kim, Kyeong-Hyeon; Jang, Hong-Seok; Suh, Tae Suk [the Catholic University of Korea, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this research is to demonstrate, based on a Monte Carlo simulation code, the procedure of radiation treatment planning for proton-boron fusion therapy (PBFT). A discrete proton beam (60 - 120 MeV) relevant to the Bragg peak was simulated using a Monte Carlo particle extended (MCNPX, Ver. 2.6.0, National Laboratory, Los Alamos NM, USA) simulation code. After computed tomography (CT) scanning of a virtual water phantom including air cavities, the acquired CT images were converted using the simulation source code. We set the boron uptake regions (BURs) in the simulated water phantom to achieve the proton-boron fusion reaction. Proton sources irradiated the BUR, in the phantom. The acquired dose maps were overlapped with the original CT image of the phantom to analyze the dose volume histogram (DVH). We successfully confirmed amplifications of the proton doses (average: 130%) at the target regions. From the DVH result for each simulation, we acquired a relatively accurate dose map for the treatment. A simulation was conducted to characterize the dose distribution and verify the feasibility of proton boron fusion therapy (PBFT). We observed a variation in proton range and developed a tumor targeting technique for treatment that was more accurate and powerful than both conventional proton therapy and boron-neutron capture therapy.

  9. Study of the role of complete fusion in the reaction of /sup 48/Ca and /sup 56/Fe with cerium and terbium. [Cross sections, yield curves, tables

    Energy Technology Data Exchange (ETDEWEB)

    Morrissey, D.J.

    1978-05-01

    /sup 48/Ca and /sup 56/Fe beams from the Super HILAC accelerator were used to irradiate thick metal foils of cerium and terbium. Product gamma ray activities were detected offline and individual products were identified by half-life, gamma ray energy and gamma ray abundances. The production cross sections were iteratively fit to charge and mass dispersions to allow correction for parent decay and calculation of mass yields. From the mass yield curves contributions from quasielastic transfer, deep inelastic transfer and complete fusion reaction mechanisms were interred. Complete fusion was made up on contributions from both evaporation residue and fusion-fission products for the /sup 48/Ca induced reactions. However, only fusion-fission products were detected in the /sup 56/Fe induced reactions. Critical angular momenta for fusion were found to be 82 +- 8 h for /sup 48/Ca + /sup 159/Tb and 34 +- 5 h for /sup 56/Fe + /sup 140/Ce, which can be compared with 53 +- 8 h for /sup 12/C + /sup 197/Au (Natowitz, 1970) and 86 +- 5 h for /sup 40/Ar + /sup 165/Ho (Hanappe, 1973). All of these reactions lead to essentially the same compound nucleus and seem to show the dramatic decline in complete fusion for heavy ions larger than /sup 40/Ar. The prediction of this decline was found to be beyond the model calculations of Bass and the critical distance approach of Glas and Mosel.

  10. Systematic study of sub-barrier fusion enhancement in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, C E; Aleixo, A N; Barbosa, V C; Canto, L F; Donangelo, R [Universidade Federal Rural do Rio de Janeiro (Brazil). Dept. de Fisica

    1989-08-14

    A systematic study of the heavy-ion fusion-cross-section enhancement at sub-barrier energies is carried out. The asymptotic energy shift introduced in a previous paper as a measure of this enhancement is considered from a theoretical point of view. It is claimed that this energy shift is composed of two terms: One of them is related to the bulk properties of nuclear matter, and the other corresponds to deviations depending on the specific nuclear structure of the collision partners. We show that the former can be approximately described by the neck-formation model for fusion and the latter is frequently a consequence of static deformation or vibrational excitation of the projectile and/or the target. A comparison of the neck-formation effects with those arising from neutron flow suggests that there is a connection between these two mechanisms. (orig.).

  11. Hot nuclei production and deexcitation in heavy ions induced reactions on medium mass targets in the 10-84 MeV/nucleon energy domain

    International Nuclear Information System (INIS)

    Lleres, A.

    1988-01-01

    Velocity, angular distributions and total cross sections for heavy residues produced in the reactions 12 C, 14 N, 20 Ne, 40 Ar + 124 Sn have been measured in the 10-84 MeV/nucleon incident energy range using catchers technique in association with off-line gamma-activity spectroscopy. The observed reaction products are interpreted as evaporation residues from equilibrated systems formed by complete or incomplete fusion of the projectile and target nuclei. From the velocities and residual masses measured at forward angles, the linear momentum transfers and excitation energies associated with the intermediate systems are estimated using simple fusion-evaporation models and are next compared to the predictions of the preequilibrium and Fermi jets models. Energy, angular, charge and charge correlation distributions for intermediate mass fragments emitted in the reaction 32 S + nat Ag at 30 MeV/nucleon were also measured using gaseous and silicon detectors. The energy and angular distributions indicate that both equilibrated and non-equilibrated emitting sources are present. The equilibrium emission is attributed to the deexcitation of systems produced by incomplete fusion of the projectile and target nuclei. The charge correlation distributions are consistent with an asymmetric fission decay process. The linear momentum transfer and excitation energy associated with the equilibrated source are estimated using a simple fusion-fission model [fr

  12. Neutron and Proton Diffusion in Fusion Reactions for the Synthesis of Superheavy Nuclei

    International Nuclear Information System (INIS)

    Ming-Hui, Huang; Zai-Guo, Gan; Zhao-Qing, Feng; Xiao-Hong, Zhou; Jun-Qing, Li

    2008-01-01

    The restriction of the one dimensional (1D) master equation (ME) with the mass number of the projectile-like fragment as a variable is studied, and a two-dimensional (2D) master equation with the neutron and proton numbers as independent variables is set up, and solved numerically. Our study showed that the 2D ME can describe the fusion process well in all projectile-target combinations. Therefore the possible channels to synthesize super-heavy nuclei can be studied correctly in wider possibilities. The available condition for employing 1D ME is pointed out

  13. Neutron spectra and level density parameters from 16O + 12C fusion reaction

    International Nuclear Information System (INIS)

    Kasagi, J.; Remington, B.; Galonsky, A.; Haas, F.; Racca, R.; Prosser, F.W.

    1985-01-01

    Residues following 16 O + 12 C fusion were identified by their characteristic γ-rays. For several transitions in 23 Mg, 25 Mg, and 26 Al coincident neutron spectra were measured at six angles. Through use of the evaporation code CASCADE, comparisons were made of these spectra with predictions of the statistical model at five 16 O projectile energies between 43.2 and 56.0 MeV. The results require an excitation energy dependence for the effective radius parameter r 0 which determines the spin cutoff factor

  14. Complete isotopic distributions of fragments produced in transfer- and fusion-induced reactions

    International Nuclear Information System (INIS)

    Delaune, O.; Caamano, M.; Farget, F.; Tarasov, O. B.; Derkx, X.; Schmidt, K. H.; Audouin, L.; Amthor, A. M.; Bacri, C. O.; Barreau, G.; Bastin, B.; Bazin, D.; Benlliure, J.; Blank, B.; Caceres, L.; Casarejos, E.; Fernandez-Dominguez, B.; Gaudefroy, L.; Golabek, C.; Grevy, S.; Jurado, B.; Kamalou, O.; Lemasson, A.; Lukyanov, S. M.; Mittig, W.; Morrissey, D. J.; Navin, A.; Pereira, J.; Perrot, L.; Rejmund, M.; Roger, T.; Saint-Laurent, M. G.; Savajols, H.; Schmitt, C.; Sherrill, B. M.; Stodel, C.; Thomas, J. C.; Villari, A. C. C.

    2013-01-01

    Two fission experiments have been performed at GANIL using 238 U beams at different energies and light targets. Different fissioning systems were produced with centre of mass energies from 10 to 240 MeV and their decay by fission was investigated with GANIL spectrometers. Fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of the fusion-fission mechanism. (authors)

  15. Coupled-channel calculation for cross section of fusion and barrier distribution of {}^{16,17,18}O + {}^{16}O reactions

    Science.gov (United States)

    Fereidonnejad, R.; Sadeghi, H.; Ghambari, M.

    2018-03-01

    In this work, the effect of multi-phonon excitation on heavy-ion fusion reactions has been studied and fusion barrier distributions of energy intervals near and below the Coulomb barrier have been studied for 16,17,18O + 16O reactions. The structure and deformation of nuclear projectiles have been studied. Given the adaptation of computations to experimental data, our calculations predict the behavior of reactions in intervals of energy in which experimental measurements are not available. In addition the S-factor for these reactions has been calculated. The results showed that the structure and deformation of a nuclear projectile are important factors. The S-factor, obtained in the coupled-channel calculations for the {}^{16}O + {}^{16}O, {}^{17}O +{}^{16}O and {}^{18}O +{}^{16}O reactions, showed good agreement with the experimental data and had a maximum value at an energy near 5, 4.5 and 4 MeV, respectively.

  16. Applications of solid-state nuclear track detectors (SSNTDs) for fast ion and fusion reaction product measurements in TEXTOR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, A.; Malinowski, K.; Malinowska, A. [Association EURTOM-IPPLM Warsaw, The Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Wassenhove, G. Van [EURATOM-Belgium State Association, LPP, ERM/KMS, Trilateral Euregio Cluster, B-1000 Brussels (Belgium); Schweer, B. [Association EURATOM-FZJ, Institutte of Plasma Physicx, Juelich (Germany)

    2011-07-01

    Full text of publication follows: The paper reports on measurements of fusion reaction protons which were performed on TEXTOR facility in January 2009. The basic experimental scheme was similar to that applied in the previous measurements [1, 2]. The main experimental tool equipment was a small ion pinhole camera which was equipped with a PM-355 detector sample and was attached to a water cooled manipulator. The camera was placed below the plasma ring in the direction of ion drifts, at a distance of 4.4 cm from LCFS. However, in the described experiment it was aligned at an angle to the mayor TEXTOR radius (contrary to previous experiments), so that the input pinhole was oriented first at {gamma} = 45 degrees (shots 108799 - 108818) and then {gamma} = 600 (shots 108832 - 108847). The discharges were executed with one neutral beam of the total power 0.6 - 1.0 MW. In the first series (Nos 108799 - 108818) the plasma was additionally heated by ICRH of frequency 38 MHz. The irradiated detector samples were subjected to the same interrupted etching procedure as the samples used in the CR-39/PM-355 detector calibration measurements [1, 2]. After that, track density distributions and track diameter histograms were measured under an optical microscope. By the use of the calibration curves, it was possible to distinguish craters produced by protons from other craters and to convert the obtained histograms into proton energy spectra. The craters induced by lower energy ions appeared to be concentrated in narrower areas, whereas higher energy ions were registered in a more diffused detector fields. The paper shows again that the CR-39/PM-355 detector is an useful diagnostic tool for tokamak experiments, for measurement of charged ions. References: [1] A. Szydlowski, A. Malinowska, M. Jaskola, A. Korman, M.J. Sadowski, G. Van Wassenhove, B. Schweer and the TEXTOR team, A. Galkowski, 'Application of Solid State Nuclear Track Detectors in TEXTOR Experiment for Measurements

  17. Breakout from the hot CNO cycle: the {sup 15}O({alpha},{gamma}) and {sup 18}Ne({alpha},p) reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bradfield-Smith, W; Laird, A M; Davinson, T; Pietro, A di; Ostrowski, A N; Shotter, A C; Woods, P J [Dept. of Physics and Astronomy, Univ. of Edinburgh (United Kingdom); Cherubini, S; Galster, W; Graulich, J S; Leleux, P; Michel, L; Ninane, A; Vervier, J [Inst. de Physique Nucleaire, UCL, Louvain-la-Neuve (Belgium); Aliotta, M; Cali, D; Cappussello, F; Cunsolo, A; Spitaleri, C [INFN, Catania (Italy); Gorres, J; Wiescher, M [Notre Dame Univ. (United States); Rahighi, J [Van de Graaf Lab., Tehran (Iran, Islamic Republic of); Hinnefeld, J [Indiana Univ., South Bend (United States)

    1998-06-01

    One of the most important reactions which determines the rate of breakout from the hot CNO cycle is the {sup 15}O({alpha},{gamma}){sup 19}Ne. The reaction {sup 18}Ne({alpha},p){sup 21}Na may also provide an alternative breakout route. Experiments are being undertaken at Louvain-La-Neuve using the radioactive {sup 18}Ne beam to study these reactions by measurement of {alpha}({sup 18}Ne,p){sup 21}Na and d({sup 18}Ne,p){sup 19}Ne{sup *} {yields} {sup 15}O + {alpha} (orig.)

  18. Stripping of two protons and one alpha particle transfer reactions for 16 O + A Sm and their influence on the fusion cross section

    International Nuclear Information System (INIS)

    Maciel, A.M.M.; Gomes, P.R.S.

    1995-01-01

    Transfer cross section angular distribution data for the stripping of two protons and one alpha particle are studied for the 16 O + A Sm systems (A=144, 148, 150, 152 and 154), at near barrier energies. A semiclassical formalism is used to derive the corresponding transfer form factors. For only one channel the analysis shows evidences that the transfer reaction mechanism at backward angles - corresponding to small distances, may behave as a multi-step process leading to fusion. Simplified coupled channel calculations including transfer channels are performed for the study of the sub-barrier of these systems. The influence of short distance transfer reactions on the fusion is discussed. (author)

  19. Ceramic containers for spent nuclear fuel. II. Reactions between TiO2 and the steel canning during hot isostatic processing

    International Nuclear Information System (INIS)

    Bergman, B.; Forberg, S.

    1984-01-01

    Rutile was selected for some practical studies of processing and properties of ceramic containers. Hot isostatic pressing at 1280 0 C has resulted in reaction zones between the TiO 2 powder and the steel canning. The phases ilmenite, pseudobrookite, rutile, and iron have been identified by x-ray diffraction and by microprobe analysis. The microstructures have been interpreted by classical metallographic methods, and some microstructures obtained by hot pressing and rapid cooling have also been examined for purposes of comparison. Some implications of the microstructures have been discussed in terms of microcracking and slow crack growth. 13 refs., 7 figs

  20. Experimental Investigation of the ^{19}Ne(p,γ)^{20}Na Reaction Rate and Implications for Breakout from the Hot CNO Cycle.

    Science.gov (United States)

    Belarge, J; Kuvin, S A; Baby, L T; Baker, J; Wiedenhöver, I; Höflich, P; Volya, A; Blackmon, J C; Deibel, C M; Gardiner, H E; Lai, J; Linhardt, L E; Macon, K T; Need, E; Rasco, B C; Quails, N; Colbert, K; Gay, D L; Keeley, N

    2016-10-28

    The ^{19}Ne(p,γ)^{20}Na reaction is the second step of a reaction chain which breaks out from the hot CNO cycle, following the ^{15}O(α,γ)^{19}Ne reaction at the onset of x-ray burst events. We investigate the spectrum of the lowest proton-unbound states in ^{20}Na in an effort to resolve contradictions in spin-parity assignments and extract reliable information about the thermal reaction rate. The proton-transfer reaction ^{19}Ne(d,n)^{20}Na is measured with a beam of the radioactive isotope ^{19}Ne at an energy around the Coulomb barrier and in inverse kinematics. We observe three proton resonances with the ^{19}Ne ground state, at 0.44, 0.66, and 0.82 MeV c.m. energies, which are assigned 3^{+}, 1^{+}, and (0^{+}), respectively. In addition, we identify two resonances with the first excited state in ^{19}Ne, one at 0.20 MeV and one, tentatively, at 0.54 MeV. These observations allow us for the first time to experimentally quantify the astrophysical reaction rate on an excited nuclear state. Our experiment shows an efficient path for thermal proton capture in ^{19}Ne(p,γ)^{20}Na, which proceeds through ground state and excited-state capture in almost equal parts and eliminates the possibility for this reaction to create a bottleneck in the breakout from the hot CNO cycle.

  1. Study of the angular momentum distribution of compound nuclei obtained from fusion reactions close to the Coulomb barrier

    International Nuclear Information System (INIS)

    Romain, P.

    1990-03-01

    The effect of the mass asymmetry of the input channel on the compound nuclei spin distribution. The 16 O + 144 Nd and 80 Se + 80 Se reactions produce the same 160 Er compound nucleus in the 38 to 68 MeV energy range. In certain cases, the incident energies required to form the compound nucleus, at the same excitation energies, are very close to the Coulomb barrier. In the experimental device, the 'Chateau de Cristal' multidetector and additional sensors are used. The angular momentum distribution of the different evaporation products are measured by gamma spectrometry techniques. The fusion cross sections are measured by the time-of-flight technique. Theoretical predictions and experimental results concerning the distribution of the compound nucleus angular momentum are compared [fr

  2. Effects of rotation on the stability of nuclei under fission and the possibility of fusion in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Kumar, K.

    1975-06-01

    The two-center shell model for fission is extended to include the effects of nuclear rotation or angular momentum J. The principle of minimization of total nuclear energy with respect to a constraint on J leads to an effective potential energy which depends on J as well as moment of inertia. This effective potential energy is minimized with respect to nuclear shape variables, neutron pairing energy gap, and proton pairing energy gap for each J value. The resulting potential minima, fission barriers, and moments of inertia are quite sensitive to J. Results are given for 208 82 Pb, 240 94 Pu, and for a super-heavy nucleus, 298 114 X. Microscopic calculations of the critical angular momentum (at which the fission barrier vanishes) are compared with the rotating liquid drop calculations of Cohen, Plasil, and Swiatecki. The influence of these results on the possibility of fusion in heavy-ion reactions is discussed. (5 figures, 6 tables) (U.S.)

  3. The role of fusion reaction products in the stability of EBT reactors

    International Nuclear Information System (INIS)

    Wojtowicz, D.; Kammash, T.

    1985-01-01

    The potential of the EBT plasma confinement device as a fusion reactor depends critically on its ability to support a sufficiently large power density which in turn means a large enough beta defined as the ratio of the plasma pressure to magnetic field pressure. The maximum allowable beta is generally dictated by the stability of the system to hydromagnetic (MHD) modes. In this paper we examine the stability of such modes for a D-T plasma and assess the effect of the alpha particles on these instabilities. We find that the alphas have the most destabilizing effect, as reflected in the drop of the ion beta, at the instant of birth and that recovery of stability is achieved as the alphas approach equilibration with the ions of the plasma. In short, there appears to be no serious adverse effects on the reactor beta resulting from alpha-induced instabilities

  4. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  5. Fabrication of advanced targets for laser driven nuclear fusion reactions through standard microelectronics technology approaches.

    Czech Academy of Sciences Publication Activity Database

    Picciotto, A.; Crivellari, M.; Bellutti, P.; Barozzi, M.; Kucharik, M.; Krása, Josef; Swidlovsky, A.; Malinowska, A.; Velyhan, Andriy; Ullschmied, Jiří; Margarone, Daniele

    2017-01-01

    Roč. 12, October (2017), č. článku P10001. ISSN 1748-0221 Grant - others:OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Nuclear instruments and methods for hot plasma diagnostics * Plasma generation (laserproduced, RF, x ray-produced) * Plasma diagnostics - charged-particle spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: 2.11 Other engineering and technologies; 2.11 Other engineering and technologies (FZU-D) Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/12/10/P10001/meta

  6. Sensitivity of fusion and quasi-elastic barrier distributions of {sub 16}O+{sub 144}Sm reaction on the coupling radius parameter

    Energy Technology Data Exchange (ETDEWEB)

    Zamrun, Muhammad; Usman, Ida; Variani, Viska Inda [Department of Physics, Haluoleo University, Kendari, Sulawesi Tengagra, 93232 (Indonesia); Kassim, Hasan Abu [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    We study the heavy-ion collision at sub-barrier energies of {sub 16}O+{sub 144}Sm system using full order coupled-channels formalism. We especially investigate the sensitivity of fusion and quasi-elastic barrier distributions for this system on the coupling radius parameter. We found that the coupled-channels calculations of the fusion and the quasi-elastic barrier distributions are sensitive to the coupling radius for this reaction in contrast to the fusion and quasi-elastic cross section. Our study indicates that the larger coupling radius, i.e., r{sub coup}=1.20, is required by the experimental quasi-elastic barrier distribution. However, the experimental fusion barrier distribution compulsory the small value, i.e., r{sub coup}=1.06.

  7. Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Chen, Jiming; Lian, Youyun; Wu, Jihong; Xu, Zengyu; Zhang, Nianman; Wang, Quanming; Duan, Xuro [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Wang, Zhanhong; Zhong, Jinming [Northwest Rare Metal Material Research Institute, CNMC, Ningxia Orient Group Co. Ltd.,No.119 Yejin Road, Shizuishan City, Ningxia,753000 (China)

    2013-11-15

    Beryllium and tungsten have been selected as the plasma facing materials of the ITER first wall (FW) and divertor chamber, respectively. China, as a participant in ITER, will share the manufacturing tasks of ITER first-wall mockups with the European Union and Russia. Therefore ITER-grade beryllium has been developed in China and a kind of vacuum hot-pressed (VHP) beryllium, CN-G01, was characterized for both physical, and thermo-mechanical properties and high heat flux performance, which indicated an equivalent performance to U.S. grade S-65C beryllium, a reference grade beryllium of ITER. Consequently CN-G01 beryllium has been accepted as the armor material of ITER-FW blankets. In addition, a modification of tungsten by TiC dispersion strengthening was investigated and a W–TiC alloy with TiC content of 0.1 wt.% has been developed. Both surface hardness and recrystallization measurements indicate its re-crystallization temperature approximately at 1773 K. Deuterium retention and thermal desorption behaviors of pure tungsten and the TiC alloy were also measured by deuterium ion irradiation of 1.7 keV energy to the fluence of 0.5–5 × 10{sup 18} D/cm{sup 2}; a main desorption peak at around 573 K was found and no significant difference was observed between pure tungsten and the tungsten alloy. Further characterization of the tungsten alloy is in progress.

  8. FENDL/C-1.0. Charged-particle reaction data library for fusion applications Version 1.0 of November 1991. Summary documentation

    International Nuclear Information System (INIS)

    Pashchenko, A.B.

    1995-01-01

    This document describes the FENDL/C-1.0 charged-particle reaction data library which is a sublibrary of FENDL, the evaluated nuclear data library for fusion applications. This file contains evaluated data in ENDF-6 format for the D(d,n), D(d,p), T(d,n), T(t,2n), He-3(d,p) reactions. The processed information, i.e. Maxwellian-averaged reaction rates, and related quantities, calculated from reaction cross-sections, are also included. The data are available from the Nuclear Data Section online via INTERNET by FTP command, or on magnetic tape upon request. (author). 1 tab

  9. Oscillations of the fusion cross-sections in the O+ O reaction

    Indian Academy of Sciences (India)

    consistent accounting for the dynamical deformations of the colliding nuclei within the ... MVC is grateful to the Dmitry Zimin Foundation 'Dynasty' for financial support. ... [5] P Fröbrich and R Lipperheide, Theory of nuclear reactions, in: Oxford ...

  10. Isospin dependence of physical observables in Incomplete Fusion reactions at 25 MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, I., E-mail: ilombardo@lns.infn.i [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN Laboratori Nazionali del Sud, Catania (Italy); Agodi, C.; Alba, R. [INFN Laboratori Nazionali del Sud, Catania (Italy); Amorini, F. [INFN, Sezione di Catania, Catania (Italy); Dipartimento di Fisica, Universita di Catania, Catania (Italy); Anzalone, A. [INFN Laboratori Nazionali del Sud, Catania (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Cardella, G. [INFN, Sezione di Catania, Catania (Italy); Cavallaro, S. [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN Laboratori Nazionali del Sud, Catania (Italy); Chatterjee, M.B. [Saha Institute of Nuclear Physics, Kolkata (India); Coniglione, R. [INFN Laboratori Nazionali del Sud, Catania (Italy); DeFilippo, E. [INFN, Sezione di Catania, Catania (Italy); DiPietro, A.; Figuera, P. [INFN Laboratori Nazionali del Sud, Catania (Italy); Geraci, E.; Giuliani, G.; Grassi, L. [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN, Sezione di Catania, Catania (Italy); Grzeszczuk, A. [Institute of Physics, University of Silesia, Katowice (Poland); LaGuidara, E. [INFN, Sezione di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Lanzalone, G. [INFN Laboratori Nazionali del Sud, Catania (Italy); Libera Universita Kore, Enna (Italy); LeNeindre, N. [LPC Caen, CNRS-IN2P3, ENSICAEN, Universite de Caen, Caen (France)

    2010-03-01

    Isospin dependence of dynamical and thermodynamical physical quantities observed in the reactions {sup 40}Ca + {sup 40,48}Ca and {sup 40}Ca + {sup 46}Ti at 25 MeV/nucleon has been analyzed by means of the CHIMERA multi-detector.

  11. Coupled reactions by coupled enzymes : alcohol to lactone cascade with alcohol dehydrogenase-cyclohexanone monooxygenase fusions

    NARCIS (Netherlands)

    Aalbers, Friso S; Fraaije, Marco W

    2017-01-01

    The combination of redox enzymes for redox-neutral cascade reactions has received increasing appreciation. An example is the combination of an alcohol dehydrogenase (ADH) with a cyclohexanone monooxygenase (CHMO). The ADH can use NADP(+) to oxidize cyclohexanol to form cyclohexanone and NADPH. Both

  12. Small suppression of the complete fusion of {sup 6}Li + {sup 28}Si reaction at near barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Mandira [Bose Institute, Department of Physics, Kolkata (India); Lubian, J. [Universidade Federal Fluminense, Instituto de Fisica, Niteroi, Rio de Janeiro (Brazil)

    2017-11-15

    The incomplete fusion cross section of the {sup 6}Li + {sup 28}Si weakly bound system at above barrier energies was deduced from the measured γ-ray cross sections. The complete fusion cross section was estimated from the measured total fusion and incomplete fusion cross section and is found to be 85-100% of the total fusion cross section. The coupled channel calculation has been performed considering ground and first excited states of {sup 28}Si target. The fusion cross section estimated from coupled channel calculation shows good agreement with measured total fusion cross section at higher energies. The suppression of about 15% of the fusion cross section predicted by coupled channel calculation shows good agreement with the complete fusion cross section. The effect of the channel couplings on the elastic scattering angular distribution is also investigated. (orig.)

  13. Development of manufacturing technology of radial plate in superconducting coil for fusion reactor by diffusion bonding by Hot Isostatic Pressing (HIP)

    International Nuclear Information System (INIS)

    Takano, Katsutoshi; Koizumi, Norikiyo; Masuo, Hiroshi; Natsume, Yoshihisa

    2014-01-01

    The radial plates (RPs), which is used in Toroidal field (TF) coil in ITER, are quite large, such as 13 m tall and 9 m wide, but thin, such as 10 cm thick, and are made of stainless steel. Even though they are very large structures, they require very high manufacturing tolerances and high mechanical strength at 4 K. The similar requirements will be required in the next generation fusion reactor. Therefore, the authors intend to develop efficient manufacturing methods in parallel with ITER TF coil RP manufacture. The authors therefore performed trial manufacture of the RP segments using a diffusion bonding method, namely Hot Isostatic Pressing (HIP). As a result of trials, it was clarified that even when HIPping is applied, the mechanical characteristic of base metal is not deteriorated. The machining period can be reduced by about 1/3 compared with the traditional manufacturing method. On the other hand, mechanical strength at 4 K is degraded due to weak bonding, that is no grain growth through joint, by HIPping. However, additional test indicates promising possibility of much better joint by higher temperature and joint surface treated HIPpings. These results justified that RP segment manufacturing is not only possible, but it is a technically valid manufacturing method that satisfies all requirements. (author)

  14. Controlled thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    Controlled production of energy by fusion of light nuclei has been the goal of a large portion of the physics community since the 1950's. In order for a fusion reaction to take place, the fuel must be heated to a temperature of 100 million degrees Celsius. At this temperature, matter can exist only in the form of an almost fully ionized plasma. In order for the reaction to produce net power, the product of the density and energy confinement time must exceed a minimum value of 10 20 sec m -3 , the so-called Lawson criterion. Basically, two approaches are being taken to meet this criterion: inertial confinement and magnetic confinement. Inertial confinement is the basis of the laser fusion approach; a fuel pellet is imploded by intense laser beams from all sides and ignites. Magnetic confinement devices, which exist in a variety of geometries, rely upon electromagnetic forces on the charged particles of the plasma to keep the hot plasma from expanding. Of these devices, the most encouraging results have been achieved with a class of devices known as tokamaks. Recent successes with these devices have given plasma physicists confidence that scientific feasibility will be demonstrated in the next generation of tokamaks; however, an even larger effort will be required to make fusion power commercially feasible. As a result, emphasis in the controlled thermonuclear research program is beginning to shift from plasma physics to a new branch of nuclear engineering which can be called fusion engineering, in which instrumentation and control engineers will play a major role. Among the new problem areas they will deal with are plasma diagnostics and superconducting coil instrumentation

  15. Hesitant birth of cold fusion

    International Nuclear Information System (INIS)

    Bockris, J.O.

    1992-01-01

    John O'M. Bockris, a distinguished chemistry professor at Texas A ampersand M University, finds the reaction to the announcement of the discovery of cold fusion curious. Two years earlier, he notes, there had been a comparable announcement concerning the discovery of high-temperature superconductivity; it received favorable press coverage for months. The cold-fusion announcement, on the other hand, was met with dour skepticism. When other researchers failed in efforts to duplicate the findings of Martin Fleischmann and B. Stanley Pons, Bockris says, the two scientists were held up to ridicule. Bockris says he found a deep emotional opposition to cold fusion, even within his own department and university. This opposition is fueled in large part, he believes, by big science and the hot fusion lobby. A key indicator of cold fusion is the presence of tritium, Brockis claims. At Texas A ampersand M, large amounts of tritium have been found in some experiments; this also has occurred in experiments at more than 40 laboratories in nine countries, he says. Excess heat production is more difficult to attain, he acknowledges. The cold-fusion controversy has uncovered some unflattering characteristics of the scientific community, Bockris says. Among them are: scientists are no less driven by emotion that business people or politicians; research funding decisions serve to perpetuate the goals of politically powerful interest groups; and ideas have great inertia once planted in a scientist's mind

  16. Dynamical fission life-times deduced from gamma-ray emission observed in the fusion-fission reaction : Ne-20 on Bi-209.

    NARCIS (Netherlands)

    vanderPloeg, H; Bacelar, JCS; Buda, A; Dioszegi, [No Value; vantHof, G; vanderWoude, A

    1996-01-01

    The gamma-ray emission spectra between 4 and 20 MeV have been measured for the fusion-fission reactions Ne-20 on Bi-209 --> Np-229* at beam energies 150, 186 and 220 MeV. In addition for the latter experiment the angular dependence of the gamma-ray emission with respect to the spin axis has been

  17. Analysis of complete fusion excitation functions for 7Li+152Sm, 197Au and 209Bi reactions at around barrier energies

    International Nuclear Information System (INIS)

    Kharab, Rajesh; Chahal, Rajiv; Kumar, Rajiv

    2017-01-01

    In the present work we have analyzed the fusion excitation function for CF process using the simple Wong’s formula in conjunction with the energy dependent Woods-Saxon potential (EDWSP) in near barrier energy region for 7 Li+ 152 Sm, 197 Au and 209 Bi reactions

  18. Isotopic resolution of fission fragments from 238U + 12C transfer and fusion reactions

    International Nuclear Information System (INIS)

    Caamano, M.; Rejmund, F.; Derkx, X.; Schmidt, K. H.; Andouin, L.; Bacri, C. O.; Barreau, G.; Benlliure, J.; Casarejos, E.; Fernandez-Dominguez, B.; Gaudefroy, L.; Golabek, C.; Jurado, B.; Lemasson, A.; Navin, A.; Rejmund, M.; Roger, T.; Shrivastava, A.; Schmitt, C.; Taieb, J.

    2010-01-01

    Recent results from an experiment at GANIL, performed to investigate the main properties of fission-fragment yields and energy distributions in different fissioning nuclei as a function of the excitation energy, in a neutron-rich region of actinides, are presented. Transfer reactions in inverse kinematics between a 238 U beam and a 12 C target produced different actinides, within a range of excitation energy below 30 MeV. These fissioning nuclei are identified by detecting the target-like recoil, and their kinetic and excitation energy are determined from the reconstruction of the transfer reaction. The large-acceptance spectrometer VAMOS was used to identify the mass, atomic number and charge state of the fission fragments in flight. As a result, the characteristics of the fission-fragment isotopic distributions of a variety of neutron-rich actinides are observed for the first time over the complete range of fission fragments. (authors)

  19. Automatic reduction of the hydrocarbon reaction mechanisms in fusion edge plasmas

    International Nuclear Information System (INIS)

    Dauwe, A.; Tytgadt, M.; Reiter, D.; Baelmans, M.

    2006-11-01

    For predictions of the tritium inventory in future fusion devices like ITER, the amount of eroded carbon and the hydrogen concentrations in co-deposited hydrocarbon layers have to be predicted quantitatively. Predictions about the locations of co-deposited layers are also necessary in order to design deposition diagnostics and layer removal methods. This requires a detailed physical understanding of the erosion and carbon migration processes, and computer simulations. For accurate simulation the multi-species code EIRENE would require to include over 50 participating species. Because such a calculation is computationally prohibitive current codes are being reduced, typically in an ad hoc fashion. In this work the potential of the mathematically sound method of intrinsic low dimensional manifolds (ILDM) for computational speed-up of the hydrocarbon transport problem simulation is thoroughly investigated. It is basically the Monte Carlo implementation of EIRENE that makes this task so challenging. As the method can substantially ameliorate the results in comparison to the conventional reduction mechanisms a step towards ILDM-reduced kinetics is conceived and tested. (orig.)

  20. Enhancement of deuteron-fusion reactions in metals and experimental implications

    International Nuclear Information System (INIS)

    Huke, A.; Heide, P.; Czerski, K.; Ruprecht, G.; Targosz, N.; Zebrowski, W.

    2008-01-01

    Recent measurements of the reaction 2 H(d,p) 3 H in metallic environments at very low energies performed by different experimental groups point to an enhanced electron screening effect. However, the resulting screening energies differ strongly for diverse host metals and different experiments. Here, we present new experimental results and investigations of interfering processes in the irradiated targets. These measurements inside metals set special challenges and pitfalls that make them and the data analysis particularly error prone. There are multiparameter collateral effects that are crucial for the correct interpretation of the observed experimental yields. They mainly originate from target surface contaminations owing to residual gases in the vacuum as well as from inhomogeneities and instabilities in the deuteron density distribution in the targets. To address these problems an improved differential analysis method beyond the standard procedures has been implemented. Profound scrutiny of the other experiments demonstrates that the observed unusual changes in the reaction yields are mainly due to deuteron density dynamics simulating the alleged screening energy values. The experimental results are compared with different theoretical models of the electron screening in metals. The Debye-Hueckel model that has been previously proposed to explain the influence of the electron screening on both nuclear reactions and radioactive decays can be clearly excluded

  1. The influence of transfer reactions on the sub-barrier fusion enhancement in the systems {sup 58.64}Ni +, {sup 92,100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Jiang, C.L.; Esbensen, H. [and others

    1995-08-01

    High resolution experiments performed during the past few years demonstrated that the various reaction modes occurring in heavy ion collisions can strongly influence each other. This interrelation of the different reaction modes brings a nuclear structure dependence to the fusion and deep-inelastic channels that were previously described in the framework of pure statistical models. In order to fully understand the interrelation between these reaction channels, a complete set of measurements including elastic and inelastic scattering, few-nucleon transfer and fusion is required. In continuation of our earlier measurements of the fusion cross sections in the system {sup 58,64}Ni + {sup 92,100}Mo we finished the studies of the quasielastic process in these systems. The experiments were done in inverse reaction kinematics using the split-pole spectrograph with its hybrid focal-plane detector for particle identification. The experiments with {sup 100}Mo beams were performed previously. First test runs with {sup 92}Mo showed the possible interference with {sup 98}Mo ions which could be eliminated by using the 13{sup +} charge state from the ECR source. The data from these experiments were completely analyzed. The smallest transfer cross sections are observed for the systems {sup 64}Ni + {sup 100}Mo and {sup 58}Ni + {sup 92}Mo, i.e., the most neutron-rich and neutron-deficient systems, respectively. For the other systems, {sup 64}Ni + {sup 92}Mo and {sup 58}Ni + {sup 100}Mo, the transfer cross sections at energies close to the barrier are about of equal magnitude. This observation does not correlate with the deviation of the experimental fusion cross sections from the coupled-channels predictions. While for {sup 58}Ni + {sup 100}Mo discrepancies between the experimental and theoretical fusion cross sections are observed, the system {sup 64}Ni + {sup 92}Mo which shows about the same transfer yields, is quite well described by the coupled-channels calculations.

  2. Fusion barrier distributions from capture and quasi-elastic excitation functions measured in reaction 36S, 48Ca, 64Ni+238U

    International Nuclear Information System (INIS)

    Kozulin, E. M.

    2009-01-01

    The subbarrier fusion enhancement in reactions with heavy ions were explained by taking into account coupling between relative motion and intrinsic degrees of freedom of interacting nuclei. The coupling of reaction channels manifests itself in the potential barrier between interacting nuclei giving rise to a distribution of fusion barrier instead of single barrier.Capture and quasi-elastic scattering excitation functions at backward angles were measured for 3 6S , 4 8C a, 6 4N i+2 38U reactions systems at energies close and below the Coulomb barrier (i.e. when the influence of the shell effects on the fusion and characteristics of the decay of the composite system is considerable). Representations of the barrier distributions were extracted from both capture and quasi-elastic data. The experimental representations of barrier distributions were compared with coupled-channel calculations using CCFULL code. The major part of these experiments has been performed at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Dubna); at the TANDEM-ALPI accelerator of the LNL (INFN, Legnaro, Italy) and at the Accelerator Laboratory of University of Jyvaeskylae (JYFL, Finland) using a time-of-flight spectrometer of fission fragments CORSET (CORrelation SET-up.) The extraction of the masses and Total Kinetic Energy (TKE) of the binary reaction products is based upon the analysis of the two-body velocity In the case of the fusion-fission and quasi-fission processes, the observed peculiarities of mass and energy distributions of the fragments, the ratio between the fusion-fission and quasi-fission cross sections are determined deformations of interaction nuclei and angular momentum carried in the di-nuclear system and the shell structure of the formed fragments. In this work, the high-precision capture and quasi-elastic scattering excitation function data are presented.The influence of projectile and target excitations and nucleon transfer on fusion barrier

  3. ACT-XN: Revised version of an activation calculation code for fusion reactor analysis. Supplement of the function for the sequential reaction activation by charged particles

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Sato, Satoshi; Nishitani, Takeo; Konno, Chikara; Hori, Jun-ichi; Kawasaki, Hiromitsu

    2007-09-01

    The ACT-XN is a revised version of the ACT4 code, which was developed in the Japan Atomic Energy Research Institute (JAERI) to calculate the transmutation, induced activity, decay heat, delayed gamma-ray source etc. for fusion devices. The ACT4 code cannot deal with the sequential reactions of charged particles generated by primary neutron reactions. In the design of present experimental reactors, the activation due to sequential reactions may not be of great concern as it is usually buried under the activity by primary neutron reactions. However, low activation material is one of the important factors for constructing high power fusion reactors in future, and unexpected activation may be produced through sequential reactions. Therefore, in the present work, the ACT4 code was newly supplemented with the calculation functions for the sequential reactions and renamed the ACT-XN. The ACT-XN code is equipped with functions to calculate effective cross sections for sequential reactions and input them in transmutation matrix. The FISPACT data were adopted for (x,n) reaction cross sections, charged particles emission spectra and stopping powers. The nuclear reaction chain data library were revised to cope with the (x,n) reactions. The charged particles are specified as p, d, t, 3 He(h) and α. The code was applied to the analysis of FNS experiment for LiF and Demo-reactor design with FLiBe, and confirmed that it reproduce the experimental values within 15-30% discrepancies. In addition, a notice was presented that the dose rate due to sequential reaction cannot always be neglected after a certain period cooling for some of the low activation material. (author)

  4. Conservation of fusion reaction optimum yield in focused discharges with variable voltage and energy but constant geometry

    International Nuclear Information System (INIS)

    Bilbao, L.; Bortolotti, A.; Brzosko, J.; DeChiara, P.; Kilic, H.; Mezzetti, F.; Nardi, V.; Powell, C.; Wang, J.

    1992-01-01

    The D-D fusion reaction yield per pulse, Y n , of focused discharges is monitored by changing the capacitor bank voltage Vo by a factor 2 without any change of construction parameters and of the filling gas pressure of two plasma focus machines PF1 (C1 congruent 50 microfarad, L1 congruent 20 nanohenry) and PF2 (C2 = 1.2Cl, L2 = 2L1). The interval Δ = 1 ± (ΔW)/W of the capacitor bank energy values W on which the scaling Y n ∼ W 2 applies is greater for PF2, where the corresponding variation ΔI2 of the peak electrode current I2 is smaller (in agreement with Lw/C2 > L1/C1) than for PF1. Suitable figure of merit (in terms of ΔI, ΔW, L, C, etc.) are used for determining the relative importance of (i), the induced variations of the pinch fine structure and of (ii), the variations of the insulator surface at the PF breech, with bearing on the initial stage of the current sheath formation. Schlieren and magnetic probe data monitor the current sheath structure and propagation speed. The D + ion emission from the pinch is monitored in the energy interval 50 keV to 25 MeV for clarifying the links between the pinch fine structure and the set of leading macroscopic parameters of the PF discharges

  5. Reactions with Weakly Bound Nuclei, at near Barrier Energies, and the Breakup and Transfer Influences on the Fusion and Elastic Scattering

    International Nuclear Information System (INIS)

    Gomes, P. R. S.; Lubian, J.; Mendes-Junior, D. R.; Faria, P. N. de; Linares, R.; Sigaud, L.; Rangel, J.; Ferreira, J. L.; Paes, B.; Cardozo, E. N.; Cortes, M. R.; Canto, L. F.; Ermamatov, M. J.; Otomar, D. R.; Ferioli, E.; Lotti, P.; Hussein, M. S.

    2016-01-01

    We present a brief review of the reaction mechanisms involved in collisions of weakly bound projectiles with tightly bound targets, at near-barrier energies. We discuss systematic behaviors of the data, with emphasis in fusion, breakup, nucleon transfer and elastic scattering. The dependence of the breakup cross section on the charge and mass of the target is discussed, and the influence of the breakup channel on complete fusion is investigated. For this purpose, we compare reduced fusion cross sections with a benchmark universal curve. The behaviors observed in the comparisons are explained in terms of polarization potentials and of nucleon transfer followed by breakup. The influence of the breakup process on elastic scattering is also discussed. Some apparent contradictions between results of different authors are explained and some perspectives of the field are presented. (author)

  6. Reaction mechanisms and kinetics of processing glucose, xylose and glucose-xylose mixtures under hot compressed water conditions for predicting bio-crude composition

    DEFF Research Database (Denmark)

    Grigoras, Ionela; Toor, Saqib Sohail; Rosendahl, Lasse Aistrup

    Mechanisms for bio-crude formation during the conversion of glucose, xylose and glucose-xylose mixtures as biomass model compounds under hot compressed water conditions are investigated. Studies in literature have shown that the diverse products formed at the early stages of glucose or xylose...... conversion are 5-HMF, erythrose, glyceraldehyde, dihydroxyacetone, pyruvaldehyde, and saccharinic acids resulted through reactions such as dehydration, retro-aldol condensation and isomerization. However, these compounds are mostly water soluble compounds and lack the final steps towards formation of water...... insoluble components at longer reaction times. The effects of pressure, pH, catalyst and reaction time on the main products are examined thoroughly. The possible routes for the formation of oil compounds are developed....

  7. Evidence for different fission behavior of hot nuclei formed in central and peripheral collisions of 40Ar + 209Bi reaction at 25 MeV/u

    International Nuclear Information System (INIS)

    Wu Enjiu; Zheng Jiwen; Xiao Zhigang; Zhang Chun; Tan Jilian; Yin Shuzhi; Wang Sufang; Jin Genming; Yin Xu; Song Mingtao; Jin Weiyang; Peng Xingping; Li Zuyu; Wu Heyu; He Zhiyong; Jiang Dongxing; Qian Xing

    1999-01-01

    Correlated fission fragments from the reaction of 25 MeV/u 40 Ar + 209 Bi and their further correlation with α particles have been studied for peripheral and central collisions simultaneously. The excitation energy at scission deduced from post scission multiplicity is about 172.5 MeV. The fission timescale deduced from prescission multiplicity is about 4 x 10 -21 s. Systematic analysis of the mass and energy distributions of fission fragments as a function of the initial temperature of hot fissioning nuclei reveals the existence of different fission behavior of hot nuclei formed in central and peripheral collisions. Experimental data demonstrate the change of fission behavior at T∼4 MeV

  8. Binding of cholesterol and inhibitory peptide derivatives with the fusogenic hydrophobic sequence of F-glycoprotein of HVJ (Sendai virus): possible implication in the fusion reaction

    International Nuclear Information System (INIS)

    Asano, K.; Asano, A.

    1988-01-01

    Specificity of the binding of sterols and related compounds with purified F-protein (fusion protein) of the HVJ (Sendai virus) was studied by binding competition with [ 3 H] cholesterol. Requirement for cholesterol or the A/B ring trans structure and nonrequirement for the 3-hydroxyl group were found in this binding. Binding of 125 I-labeled Z-Phe-Tyr, an inhibitory peptide of viral membrane-cell membrane fusion, was studied by using purified proteins and virions. F-Protein and virions showed a specific binding with the peptide, whereas the result was negative with hemagglutinin and neuraminidase protein. Thermolysin-truncated F-protein (an F-protein derivative deprived of a 2.5-kDa fragment from the N-terminal of the F 1 subunit and without fusogenic activity) exhibited a considerably diminished binding ability both to cholesterol and to inhibitory peptides. Therefore, the N-terminal hydrophobic sequence that was previously assigned as fusogenic seems to be the binding site of these molecules. In support of this, the binding of cholesterol with F-protein was inhibited by Z-Phe-Tyr and other fusion inhibitory peptides, whereas it was not affected with non-fusion-inhibitory Z-Gly-Phe. These results are discussed in relation to the notion that the binding of the N-terminal portion of the F 1 subunit of F-protein with cholesterol in the target cell membranes facilitiates the fusion reaction

  9. Stripping of two protons and one alpha particle transfer reactions for {sup 16} O + {sup A} Sm and their influence on the fusion cross section

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, A.M.M.; Gomes, P.R.S

    1995-12-31

    Transfer cross section angular distribution data for the stripping of two protons and one alpha particle are studied for the {sup 16} O + {sup A} Sm systems (A=144, 148, 150, 152 and 154), at near barrier energies. A semiclassical formalism is used to derive the corresponding transfer form factors. For only one channel the analysis shows evidences that the transfer reaction mechanism at backward angles - corresponding to small distances, may behave as a multi-step process leading to fusion. Simplified coupled channel calculations including transfer channels are performed for the study of the sub-barrier of these systems. The influence of short distance transfer reactions on the fusion is discussed. (author) 16 refs., 5 figs., 5 tabs.

  10. Fusion measurements in light and medium mass heavy-ion reactions. Progress report, June 1, 1980-May 31, 1981

    International Nuclear Information System (INIS)

    Prosser, F.W.

    1981-01-01

    The data obtained for fusion residues from the 16 18 O + 24 26 Mg systems have been analyzed and are being compared to each other and to predictions from the fusion-evaporation code CASCADE. Analysis of data obtained for a small step excitation curve for the 16 O + 24 Mg system has been started to determine the possible presence of structure in the fusion cross section. Additional data for the fusion cross sections of these systems have been obtained at energies from 100 to 140 MeV at the ATLAS facility and are being analyzed. Initial measurements of the fusion-fission cross sections for 58 Ni beams, at energies up to 320 MeV on targets from 116 Sn to 170 Yb have been made. Analysis is in progress and additional experiments are planned. A collaboration is planned at Notre Dame for experiments to determine the entry line for fusion in the 12 C + 16 O system, both for the interest in this system and for preparation for additional experiments at higher energies at Michigan State when the new facility there becomes available. These experiments should lead to information about the importance of incomplete fusion in this system. Experiments to test the limitation on fusion cross sections predicted by the rotating liquid drop model are planned as higher energies become available at ATLAS and MSU

  11. Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses

    Czech Academy of Sciences Publication Activity Database

    Hora, H.; Korn, Georg; Giuffrida, Lorenzo; Margarone, Daniele; Picciotto, A.; Krása, Josef; Jungwirth, Karel; Ullschmied, Jiří; Lalousis, P.; Eliezer, S.; Miley, G. H.; Moustaizis, S.; Mourou, G.

    2015-01-01

    Roč. 33, č. 4 (2015), s. 607-619 ISSN 0263-0346 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : fusion energy without radiation problem * boron fusion by lasers * non-linear force-driven block ignition Subject RIV: BL - Plasma and Gas Discharge Physics; BH - Optics, Masers, Lasers (UFP-V) Impact factor: 1.649, year: 2015

  12. Advanced fuels for nuclear fusion reactors

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1974-01-01

    Should magnetic confinement of hot plasma prove satisfactory at high β (16 πnkT//sub B 2 / greater than 0.1), thermonuclear fusion fuels other than D.T may be contemplated for future fusion reactors. The prospect of the advanced fusion fuels D.D and 6 Li.D for fusion reactors is quite promising provided the system is large, well reflected and possesses a high β. The first generation reactions produce the very active, energy-rich fuels t and 3 He which exhibit a high burnup probability in very hot plasmas. Steady state burning of D.D can ensue in a 60 kG field, 5 m reactor for β approximately 0.2 and reflectivity R/sub mu/ = 0.9 provided the confinement time is about 38 sec. The feasibility of steady state burning of 6 Li.D has not yet been demonstrated but many important features of such systems still need to be incorporated in the reactivity code. In particular, there is a need for new and improved nuclear cross section data for over 80 reaction possibilities

  13. Moderator design studies for a new neutron reference source based on the D–T fusion reaction

    International Nuclear Information System (INIS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-01-01

    The radioactive isotope Californium-252 ( 252 Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D 2 O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252 Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D–T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252 Cf. To be viable, the 14 MeV D–T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2–5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered. - Highlights: • D–T generator neutron calibration field replacement for D 2 O-moderated 252 Cf. • Determination of representative nuclear power plant workplace neutron spectrum. • Simulations to assess moderating materials to soften 14

  14. Spectator invariance test in the study of the Trojan Horse Method 6,7Li fusion reactions via the Trojan Horse Method

    Directory of Open Access Journals (Sweden)

    Li C.

    2011-10-01

    Full Text Available Fusion reactions play a crucial role for several astrophysical scenarios. At the low energies typical of such environments direct measurements of reaction cross sections are very difficult, and even sometimes impossible. In such cases the use of indirect methods can give a substantial help. The Trojan Horse Method (THM is based on the quasi-free break-up of a nucleus, which can be described in terms of a cluster structure. In such applications the independence of THM results with different break-up schemes, was tested using the quasi free3 He(6Li,ααH and 3He(7Li,αα2H reactions. Results were then compared with the direct behaviours obtained from available data as well as with the cross sections extracted from previous indirect investigations of the same binary reactions using a different nuclide as a Trojan Horse nucleus.

  15. The abundant excess heat production during low energy nuclear reaction in the nano scale solid state the cold fusion, 14 years' legacy

    International Nuclear Information System (INIS)

    Woo, Tae Ho; Miley, George H.; Lipson, Andrei; Kim, Sung O.; Luo, Nie; Castano, Carlos H.

    2002-01-01

    The quite abundant excess heat and radioactive materials are found during the solid state reaction. This phenomenon has done during the Low Energy Nuclear Reaction (LENR) in the nano scale molecular structure electrodes and Hydrogen compound electrolytes. The Palladium (or Nickel) and Platinum are incorporated as the electrode and the Light Water (H 2 O) as the electrolyte. The excess heat was produced up to 40% in year 2001. The Alpha particles are also detected. The computer code, Coherent Lattice Accelerator Inter-Ionic Reaction Enhancer (CLAIRE) Code System, is constructed for the simulation. The 0.1 A of the distance between two the Hydrogen ion (proton) and Palladium nucleus is the critical point for the nuclear fusion reaction

  16. The abundant excess heat production during low energy nuclear reaction in the nano scale solid state the cold fusion, 14 years' legacy

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho; Miley, George H.; Lipson, Andrei; Kim, Sung O.; Luo, Nie; Castano, Carlos H. [The University of Illinois, Urbana (United States)

    2002-05-01

    The quite abundant excess heat and radioactive materials are found during the solid state reaction. This phenomenon has done during the Low Energy Nuclear Reaction (LENR) in the nano scale molecular structure electrodes and Hydrogen compound electrolytes. The Palladium (or Nickel) and Platinum are incorporated as the electrode and the Light Water (H{sub 2}O) as the electrolyte. The excess heat was produced up to 40% in year 2001. The Alpha particles are also detected. The computer code, Coherent Lattice Accelerator Inter-Ionic Reaction Enhancer (CLAIRE) Code System, is constructed for the simulation. The 0.1 A of the distance between two the Hydrogen ion (proton) and Palladium nucleus is the critical point for the nuclear fusion reaction.

  17. Nuclear fusion

    International Nuclear Information System (INIS)

    Al-zaelic, M.M.

    2013-01-01

    Nuclear fusion can be relied on to solve the global energy crisis if the process of limiting the heat produced by the fusion reaction (Plasma) is successful. Currently scientists are progressively working on this aspect whereas there are two methods to limit the heat produced by fusion reaction, the two methods are auto-restriction using laser beam and magnetic restriction through the use of magnetic fields and research is carried out to improve these two methods. It is expected that at the end of this century the nuclear fusion energy will play a vital role in overcoming the global energy crisis and for these reasons, acquiring energy through the use of nuclear fusion reactors is one of the most urge nt demands of all mankind at this time. The conclusion given is that the source of fuel for energy production is readily available and inexpensive ( hydrogen atoms) and whole process is free of risks and hazards, especially to general health and the environment . Nuclear fusion importance lies in the fact that energy produced by the process is estimated to be about four to five times the energy produced by nuclear fission. (author)

  18. Synthesis of superheavy elements by cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S [Gesellschaft fuer Schwerionenforschung (GSI), Helmholtzzentrum fuer Schwerionenforschung Gmbh (Germany)

    2009-12-31

    The nuclear shell model predicts that the next doubly magic shell-closure beyond {sup 208}Pb is at the proton number Z=114, 120, or 126 and at the neutron number N=172 or 184. The outstanding aim of experimental investigations is the exploration of this region of spherical 'Super Heavy Elements' (SHEs). Using cold fusion reactions which are based on lead and bismuth targets, the new elements from 107 to 112 were synthesized at GSI in Darmstadt, Germany. Some of these results were confirmed at RIKEN in Wako, Japan, where also a relatively neutron-deficient isotope of element 113 was synthesized. In hot fusion reactions of {sup 48}Ca projectiles with actinide targets, a more neutron-rich isotope of element 112 and the new elements from 113 to 116 and even 118 were produced at FLNR in Dubna, Russia. Recently, part of these hot fusion data, which represent the first identification of nuclei located on the predicted island of SHEs, were confirmed in two independent experiments. The decay data reveal that for the heaviest elements, the dominant decay mode is alpha emission rather than fission. The decay properties as well as reaction cross-sections are compared with results of theoretical studies.

  19. The controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2014-01-01

    After some generalities on particle physics, and on fusion and fission reactions, the author outlines that the fission reaction is easier to obtain than the fusion reaction, evokes the fusion which takes place in stars, and outlines the difficulty to manage and control this reaction: one of its application is the H bomb. The challenge is therefore to find a way to control this reaction and make it a steady and continuous source of energy. The author then presents the most promising way: the magnetic confinement fusion. He evokes its main issues, the already performed experiments (tokamak), and gives a larger presentation of the ITER project. Then, he evokes another way, the inertial confinement fusion, and the two main experimental installations (National Ignition Facility in Livermore, and the Laser Megajoule in Bordeaux). Finally, he gives a list of benefits and drawbacks of an industrial nuclear fusion

  20. Observed side feeding in incomplete fusion dynamics in 16O + 160Gd reaction at energy ∼5.6 MeV/A: Spin distribution measurements

    Science.gov (United States)

    Ali, Rahbar; Afzal Ansari, M.; Singh, D.; Kumar, Rakesh; Singh, D. P.; Sharma, M. K.; Gupta, Unnati; Singh, B. P.; Shidling, P. D.; Negi, Dinesh; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2017-12-01

    Spin distributions of various residues populated via complete fusion (CF) and incomplete fusion (ICF) reactions in the interaction of 16O with 160Gd at the projectile energy Eproj ∼ 5.6 MeV/A have been studied. The experimentally measured spin distributions of the residues associated with the ICF reactions are found to be distinctly different from those populated via the CF reactions. An attempt has been made to extract the side-feeding pattern from the spin distributions of CF and ICF reaction products. It has been observed that the CF products are strongly fed over a broad spin range. But, no side-feeding takes place in the low observed spins as low partial waves are strongly hindered in the fast α-emission channels (associated with ICF) in the forward direction. It has also been observed that the mean input angular momentum for direct α-emitting (ICF) channels is relatively higher than evaporation α-emitting (CF) channels, and it increases with direct α-multiplicity in forward direction.

  1. Study of fusion cross-sections of 16O + 208Pb and 28Si + 208Pb reactions by effective soft-core nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Ghodsi, O. N.; Mahmodi, M.; Ariai, J.; O. N. Ghodsi)

    2007-01-01

    In this paper, the cross-sections of fusion reactions 16 O + 208 Pb, 28 Si + 208 Pb, 40 C + 40 Ca, 40 Ca + 48 Ca, 58 Ni + 58 Ni, and 16 O + 154 Sm at bombarding energies above and near the fusion barrier have been investigated. The fusion cross-sections have been studied by means of the Monte Carlo method and effective soft-core nucleon-nucleon interaction. One adjustable parameter was used in these calculations. This parameter can change the strength and repulsive parts of soft-core potential values. It has to be adjusted, so that the analytical results are in acceptable agreement with the experimental data. In our calculations, we have taken the range of the nucleon-nucleon soft-core interaction to be constant and equal to that of the M3Y-Raid potential. Results show that the higher values for the diffusion parameter in the Woods-Saxon potential obtained from a careful analysis of 16 O + 208 Pb and 28 Si + 208 Pb reactions are due to the many particle effects on the nucleon-nucleon potential. (author)

  2. Study of fusion cross-sections of 16O + 208Pb and 28Si + 208Pb reactions by effective soft-core nucleon-nucleon interaction

    Directory of Open Access Journals (Sweden)

    Ghodsi Omid N.

    2007-01-01

    Full Text Available In this paper, the cross-sections of fusion reactions 16O + 208Pb, 28Si + 208Pb, 40C + + 40Ca, 40Ca + 48Ca, 58Ni + 58Ni, and 16O + 154Sm at bombarding energies above and near the fusion barrier have been investigated. The fusion cross-sections have been studied by means of the Monte Carlo method and effective soft-core nucleon-nucleon interaction. One adjustable parameter was used in these calculations. This parameter can change the strength and repulsive parts of soft-core potential values. It has to be adjusted, so that the analytical results are in acceptable agreement with the experimental data. In our calculations, we have taken the range of the nucleon-nucleon soft-core interaction to be constant and equal to that of the M3Y-Raid potential. Results show that the higher values for the diffusion parameter in the Woods-Saxon potential obtained from a careful analysis of 16O + 208Pb and 28Si + 208Pb reactions are due to the many particle effects on the nucleon-nucleon potential.

  3. Fusion reactors - types - problems

    International Nuclear Information System (INIS)

    Schmitter, K.H.

    1979-07-01

    A short account is given of the principles of fusion reactions and of the expected advantages of fusion reactors. Descriptions are presented of various Tokamak experimental devices being developed in a number of countries and of some mirror machines. The technical obstacles to be overcome before a fusion reactor could be self-supporting are discussed. (U.K.)

  4. Experimental Determination of the Possible Deuterium - Deuterium Fusion Reaction Originated in a Single Cavitation Bubble Luminescence System Using CDCL3 and D2 O

    International Nuclear Information System (INIS)

    Barbaglia, Mario; Florido, Pablo; Mayer, Roberto; Bonetto, Fabian

    2003-01-01

    We focus this work on the measurement of the possible Deuterium - Deuterium reaction in a SCBL (Single Cavitation Bubble Luminescence) system.We measure the possible reaction at the bubble generation time and at the bubble collapse time. We use a Nd:YAG laser and CDCl 3 and D 2 O as a medium to generate the bubble. Since CDCl 3 accommodation coefficient is best than that of D 2 O, it is expected a greater collapse force than using D 2 O.To benefit the bubble collapse violence, we diminish the temperature of the liquids.To avoid false neutron detection, we developed a measuring system with high background reject using the characteristic experiment times.No neutrons attributable to Deuterium - Deuterium fusion reaction were measured

  5. Quasiclassical Studies of Eley-Rideal and Hot Atom Reactions on Surface: H(D)→D(H)+Cu(111)

    International Nuclear Information System (INIS)

    Vurdu, C.D.

    2004-01-01

    Randomly distributed hydrogen adsorbates on the surface of Cu(1 1 1) are used to form 0.50, 0.25 and 0.15 monolayers of coverages to simulate D(H)→H(D) + Cu(111) system at 30 K and 94 K surface temperatures. The interaction of this system is mimicked by a LEPS function which is parameterized by using the energy points which were calculated by a density-functional theory method and the generalized gradient approximation for the exchange-correlation energy for various configurations of one a,nd two hydrogen atoms on the Cu(111) surface. Our results on H 2 , D 2 , and HD formations via Eley-Redial and hot-atom mechanisms will be presented at these temperatures. Probabilities for the rotational, vibrational, total and translational energy distributions of the products are calculated. In addition traping onto the surface, inelastic reflection of the incident projectile and penetration of the adsorbate or projectile atom into the slab is analyzed. Hot-atom pathways for product formations are shown to make significant contributions

  6. Barriers to fusion

    International Nuclear Information System (INIS)

    Berriman, A.C.; Butt, R.D.; Dasgupta, M.; Hinde, D.J.; Morton, C.R.; Newton, J.O.

    1999-01-01

    The fusion barrier is formed by the combination of the repulsive Coulomb and attractive nuclear forces. Recent research at the Australian National University has shown that when heavy nuclei collide, instead of a single fusion barrier, there is a set of fusion barriers. These arise due to intrinsic properties of the interacting nuclei such deformation, rotations and vibrations. Thus the range of barrier energies depends on the properties of both nuclei. The transfer of matter between nuclei, forming a neck, can also affect the fusion process. High precision data have been used to determine fusion barrier distributions for many nuclear reactions, leading to new insights into the fusion process

  7. Incomplete fusion analysis of the 7Li-induced reaction on 93Nb within 3-6.5 MeV/nucleon

    Science.gov (United States)

    Kumar, Deepak; Maiti, Moumita

    2017-10-01

    Background: It is understood from the recent experimental studies that prompt/resonant breakup, and transfer followed by breakup in the weakly bound Li,76-induced reactions play a significant role in the complete-incomplete fusion (CF-ICF), suppression/enhancement in the fusion cross section around the Coulomb barrier. Purpose: Investigation of ICF over CF by measuring cross sections of the populated residues, produced via different channels in the 7Li-induced reaction on a natNb target within the 3-6.5 MeV/nucleon energy region. Method: The 7Li beam was allowed to hit the self-supporting 93Nb targets, backed by the aluminium (Al) foil alternately, within 3-6.5 MeV/nucleon energy. Populated residues were identified by offline γ -ray spectrometry. Measured excitation functions of different channels were compared with different equilibrium and pre-equilibrium models. Result: The enhancement in cross sections in the proton (˜20 -30 MeV) and α -emitting channels, which may be ascribed to ICF, was observed in the measured energy range when compared to the Hauser-Feshbach and exciton model calculations using empire, which satisfactorily reproduces the neutron channels, compared to the Weisskopf-Ewing model and hybrid Monte Carlo calculations. The increment of the incomplete fusion fraction was observed with rising projectile energy. Conclusion: Contrary to the alice14, experimental results are well reproduced by the empire throughout the measured energy range. The signature of ICF over CF indicates that the breakup/transfer processes are involved in the weakly bound 7Li-induced reaction on 93Nb slightly above the Coulomb barrier.

  8. Fission dynamics of superheavy nuclei formed in uranium induced reactions

    International Nuclear Information System (INIS)

    Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.

    2017-01-01

    The compound nuclear system follows symmetric fission if the competing processes such as quasi-elastic, deep inelastic, quasi-fission etc are absent. The contribution of quasi fission events towards the fusion-fission mechanism depends on the entrance channel asymmetry of reaction partners, deformations and orientations of colliding nuclei beside the dependence on energy and angular momentum. Usually the 209 Bi and 208 Pb targets are opted for the production of superheavy nuclei with Z CN =104-113. The nuclei in same mass/charge range can also be synthesized using actinide targets + light projectiles (i.e. asymmetric reaction partners) via hot fusion interactions. These actinide targets are prolate deformed which prefer the compact configurations at above barrier energies, indicating the occurrence of symmetric fission events. Here an attempt is made to address the dynamics of light superheavy system (Z CN =104-106), formed via hot fusion interactions involving actinide targets

  9. Reaction and devitrification of a prototype nuclear-waste-storage glass with hot magnesium-rich brine

    International Nuclear Information System (INIS)

    Komarneni, S.; Freeborn, W.P.; Scheetz, B.E.; White, W.B.; McCarthy, G.J.

    1982-10-01

    PNL 76-68, a prototype nuclear waste storage glass, was reacted under hydrothermal conditions at 100, 200, and 300 C with NBT-6a (Ca-Mg-K-Na-Cl) brine. Reaction products were identified, the state of the residual glass determined, and the concentrations of various elements remaining in the solutions analyzed. Solid products formed by reaction of the glass and brine talc (hydrated magnesium silicate), powellite (CaMoO 4 ), hematite (Fe 2 O 3 ) and rarely an unidentified uranium-containing phase. Glass fragments were leached to depths of 300 to 500 μm, depending on time and temperature. Most elements were extracted, but the silicate framework remained intact. Distinct diffusion fronts due to K/Na exchange and Mg/Zn exchange were identified. A complex compositional layering develops in the outer reaction rind. The concentration of silica in brine solution was lower by an order of magnitude than the concentration of silica in deionized water reacted under similar conditions. The concentration of cesium, strontium, uranium, rare earths, and other alkali and alkaline earth elements in solution increases exponentially with temperature of reaction. Behavior of the transition metals is more complex. In general the extraction of elements from the glass by hydrothermal brine leads to concentrations in solution that are from 10 to 100 times higher than the concentrations obtained by deionized water extraction under similar conditions of temperature and pressure

  10. Fusion events

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The fusion reactions between low energy heavy ions have a very high cross section. First measurements at energies around 30-40 MeV/nucleon indicated no residue of either complete or incomplete fusion, thus demonstrating the disappearance of this process. This is explained as being due to the high amount o energies transferred to the nucleus, what leads to its total dislocation in light fragments and particles. Exclusive analyses have permitted to mark clearly the presence of fusion processes in heavy systems at energies above 30-40 MeV/nucleon. Among the complete events of the Kr + Au reaction at 60 MeV/nucleon the majority correspond to binary collisions. Nevertheless, for the most considerable energy losses, a class of events do occur for which the detected fragments appears to be emitted from a unique source. These events correspond to an incomplete projectile-target fusion followed by a multifragmentation. Such events were singled out also in the reaction Xe + Sn at 50 MeV/nucleon. For the events in which the energy dissipation was maximal it was possible to isolate an isotropic group of events showing all the characteristics of fusion nuclei. The fusion is said to be incomplete as pre-equilibrium Z = 1 and Z = 2 particles are emitted. The cross section is of the order of 25 mb. Similar conclusions were drown for the systems 36 Ar + 27 Al and 64 Zn + nat Ti. A cross section value of ∼ 20 mb was determined at 55 MeV/nucleon in the first case, while the measurement of evaporation light residues in the last system gave an upper limit of 20-30 mb for the cross section at 50 MeV/nucleon

  11. Study on the Formation of Reaction Phase to Si Addition in Boron Steel Hot-Dipped in Al–7Ni Alloy

    Directory of Open Access Journals (Sweden)

    Jung-Gil Yun

    2017-11-01

    Full Text Available In order to reduce the intermetallic compounds formed during the application of an Al–7Ni wt % hot-dip multifunctional coating on boron steel, developed for Tailor Welded Blanks (TWB and hot stamping, 2–6 wt % Si was added to the coating to change the reaction layer. The coating was run at 690 °C for 120 s. Al9FeNi phases were formed on the steel interface, Fe2Al5 was formed on the steel, FeAl3 was generated between the existing layers, and flake-type Al2Fe3Si3 was formed in the Fe2Al5 phase, depending on the Si content. In addition, as Si was added to the coating, the thickness of the Fe2Al5 phase decreased and the thickness of the Al9FeNi phase and Al2Fe3Si3 increased. The decrease in the thickness of the Fe2Al5 phase was mainly due to the effect of the Si solid solution and the Al2Fe3Si3 formation in the Fe2Al5 phase. The reason for the growth of Al9FeNi is that the higher the Si content in the coating, the more the erosion of the interface of the steel material due to the coating solution. Therefore, the outflow of Fe into the coating liquid increased.

  12. I. The properties of hot Ca-like fragments from the 40Ca+40Ca reaction at 35 AMeV

    International Nuclear Information System (INIS)

    Planeta, R.; Gawlikowicz, W.; Wieloch, A.

    2001-01-01

    The creation of hot Ca-like fragments was investigated in the 40 Ca + 40 Ca reaction at 35 AMeV. Using the AMPHORA 4π detector system, the primary projectile-like fragment was reconstructed and its properties were determined. Both primary and secondary distributions are compared with the predictions of a Monte Carlo code describing a heavy-ion collision as a two-step process. Some of the nucleons which are identified as participants in the first step are transferred in the second step to these final states, which correspond on the average to the maximum value of entropy (thermodynamic probability). The model allows for competition between mean-field effects and nucleon-nucleon interactions in the overlap zone of the interacting nuclei. The analysis presented here suggests a thermalized source picture of the decay of the projectile-like fragment. The validity of the reconstruction procedure for projectile-like fragments is discussed. (orig.)

  13. Pulsed fusion space propulsion : Computational Magneto-Hydro Dynamics of a multi-coil parabolic reaction chamber

    NARCIS (Netherlands)

    Romanelli, G; Mignone, Andrea; Cervone, A.

    2017-01-01

    Pulsed fusion propulsion might finally revolutionise manned space exploration by providing an affordable and relatively fast access to interplanetary destinations. However, such systems are still in an early development phase and one of the key areas requiring further investigations is the

  14. Properties and decay modes of hot nuclei produced in the reaction: 36Ar on 58Ni and detected with INDRA device

    International Nuclear Information System (INIS)

    Nalpas, L.

    1997-01-01

    Hot nuclei are formed in heavy ion collisions covering the Fermi energy domain. According to the excitation energy deposited into these nuclei, several de-excitation processes can be observed, in particular the emission of complex fragments (Z ≥ 3) which remains poorly understood. The GANIL facility offers the possibility to cover the excitation function for the Ar on Ni reaction over a broad energy range from 32 to 95 MeV/u where the hot nuclei evolve from classical 'evaporation' to complete 'vaporization' into light particles (neutrons, isotopes of H, He). The study of reaction mechanisms shows that from peripheral to central collisions the total cross section is dominated by binary dissipative collisions. Both partners coming from well-characterized events with the INDRA detector are reconstructed using the 'Minimum Spanning Tree' method. Thus excitation energy up to 20 MeV/A are reached in the most violent collisions at the highest bombarding energy. The deposited energy is not shared in the mass ratio between the quasi-projectile and the quasi-target, the quasi-projectile being hotter. For total excitation energies ranging roughly from 2 to 8 MeV/A, the proportion of 'multifragmentation' events increases to reach a plateau at about 10 MeV/A due to the rising probability to have complete 'vaporization' of the system above 8 MeV/A. The steady increase of the temperature extracted from the double isotopic He-Li ratios with excitation energy for the quasi-projectile suggests a progressive evolution of the de-excitation processes as predicted by statistical models. No signal of first order liquid-gas phase transition is seen in our data. (author)

  15. Unexpected heterogeneity of BCR-ABL fusion mRNA detected by polymerase chain reaction in Philadelphia chromosome-positive acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Hooberman, A.L.; Carrino, J.J.; Leibowitz, D.; Rowley, J.D.; Le Beau, M.M.; Arlin, Z.A.; Westbrook, C.A.

    1989-01-01

    The Philadelphia (Ph 1 ) chromosome results in a fusion of portions of the BCR gene from chromosome 22 and the ABL gene from chromosome 9, producing a chimeric BCR-ABL mRNA and protein. In lymphoblastic leukemias, there are two molecular subtypes of the Ph 1 chromosome, one with a rearrangement of the breakpoint cluster region (bcr) of the BCR gene, producing the same 8.5-kilobase BCR-ABL fusion mRNA seen in chronic myelogenous leukemia (CML), and the other, without a bcr rearrangement, producing a 7.0-kilobase BCR-ABL fusion mRNA that is seen only in acute lymphoblastic leukemia (ALL). The authors studied the molecular subtype of the Ph 1 chromosome in 11 cases of Ph 1 -positive ALL, including 2 with a previous diagnosis of CML, using a sensitive method to analyze the mRNA species based on the polymerase chain reaction (PCR). They observed unexpected heterogeneity in BCR-ABL mRNA in this population. They conclude that the PCR gives additional information about the Ph 1 chromosome gene products that cannot be obtained by genomic analysis, but that it cannot be used as the sole means of detection of this chromosomal abnormality in ALL because of the high incidence of false negative results

  16. Kinetic advantage of controlled intermediate nuclear fusion

    International Nuclear Information System (INIS)

    Guo Xiaoming

    2012-01-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  17. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.

    1989-01-01

    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  18. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  19. Plasma physics and controlled fusion research during half a century

    International Nuclear Information System (INIS)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas

  20. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue.

    Science.gov (United States)

    Fritsch, Michael K; Bridge, Julia A; Schuster, Amy E; Perlman, Elizabeth J; Argani, Pedram

    2003-01-01

    Pediatric small round cell tumors still pose tremendous diagnostic problems. In difficult cases, the ability to detect tumor-specific gene fusion transcripts for several of these neoplasms, including Ewing sarcoma/peripheral primitive neuroectodermal tumor (ES/PNET), synovial sarcoma (SS), alveolar rhabdomyosarcoma (ARMS), and desmoplastic small round cell tumor (DSRCT) using reverse transcriptase-polymerase chain reaction (RT-PCR), can be extremely helpful. Few studies to date, however, have systematically examined several different tumor types for the presence of multiple different fusion transcripts in order to determine the specificity and sensitivity of the RT-PCR method, and no study has addressed this issue for formalin-fixed material. The objectives of this study were to address the specificity, sensitivity, and practicality of such an assay applied strictly to formalin-fixed tissue blocks. Our results demonstrate that, for these tumors, the overall sensitivity for detecting each fusion transcript is similar to that reported in the literature for RT-PCR on fresh or formalin-fixed tissues. The specificity of the assay is very high, being essentially 100% for each primer pair when interpreting the results from visual inspection of agarose gels. However, when these same agarose gels were examined using Southern blotting, a small number of tumors also yielded reproducibly detectable weak signals for unexpected fusion products, in addition to a strong signal for the expected fusion product. Fluorescence in situ hybridization (FISH) studies in one such case indicated that a rearrangement that would account for the unexpected fusion was not present, while another case was equivocal. The overall specificity for each primer pair used in this assay ranged from 94 to 100%. Therefore, RT-PCR using formalin-fixed paraffin-embedded tissue sections can be used to detect chimeric transcripts as a reliable, highly sensitive, and highly specific diagnostic assay. However, we

  1. Clustering effects in fusion evaporation reactions with light even-even N = Z nuclei. The {sup 24}Mg and {sup 28}Si cases

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, L., E-mail: luca.morelli@bo.infn.it; D’Agostino, M.; Bruno, M. [Dipartimento di Fisica e Astronomia dell’Università and INFN, Bologna (Italy); Baiocco, G. [Dipartimento di Fisica dell’Università and INFN, Pavia (Italy); Gulminelli, F. [CNRS, LPC, Caen, France and ENSICAEN, Caen (France); Cinausero, M.; Gramegna, F.; Marchi, T. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy); Degerlier, M. [University of Nevsehir, Physics Department, Nevsehir (Turkey); Fabris, D. [INFN, Sezione di Padova, Padova (Italy); Barlini, S.; Bini, M.; Casini, G.; Gelli, N.; Olmi, A.; Pasquali, G.; Piantelli, S. [Dipartimento di Fisica e Astronomia dell’Università and INFN, Firenze (Italy)

    2015-10-15

    In the recent years, cluster structures have been evidenced in many ground and excited states of light nuclei [1, 2]. Within the currently ongoing experimental campaign by the NUCL-EX collaboration we have measured the {sup 12}C+{sup 12}C and {sup 14}N+{sup 10}B reactions at 95 MeV and 80 MeV respectively, and compared experimental data corresponding to complete fusion of target and projectile into an excited {sup 24}Mg nucleus to the results of a pure statistical model[3, 4]. We found clear deviations from the statstical model in the decay pattern: emission channels involving multiple α particles are more probable than expected from a purely statistical behavior. To continue the investigation on light systems, we have recentely measured the {sup 16}O+{sup 12}C reaction at three different beam energies, namely E{sub beam} = 90, 110 and 130 MeV.

  2. Study of 16O(12C,α20Ne)α for the investigation of carbon-carbon fusion reaction via the Trojan Horse Method

    International Nuclear Information System (INIS)

    Rapisarda, G.G.; Spitaleri, C; Kiss, G.G.; La Cognata, M.; Pizzone, R.G.; Romano, S.; Tumino, A.; Bordeanu, C.; Nita, C.; Pantelica, D.; Petrascu, H.; Velisa, G.; Hons, Z.; Mrazek, J.; Szücs, T.; Trache, L.

    2016-01-01

    Carbon-carbon fusion reaction represents a nuclear process of great interest in astrophysics, since the carbon burning is connected with the third phase of massive stars (M > 8 M ☉ ) evolution. In spite of several experimental works, carbon-carbon cross section has been measured at energy still above the Gamow window moreover data at low energy present big uncertainty. In this paper we report the results about the study of the 16 O( 12 C,α 20 Ne)α reaction as a possible three-body process to investigate 12 C( 12 C,α) 20 Ne at astrophysical energy via Trojan Horse Method (THM). This study represents the first step of a program of experiments aimed to measure the 12 C+ 12 C cross section at astrophysical energy using the THM. (paper)

  3. $\\gamma$ -spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li

    CERN Multimedia

    We propose an experiment with MINIBALL coupled to T-REX to investigate n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li. The nuclei of interest will be populated by transfer of a triton into $^{94}$Kr, forming the excited $^{97}$Rb nucleus, followed by the emission of an alpha particle, which will be detected in the Si telescopes of T-REX. The $^{97}$Rb product will evaporate 1 or 2 (with the highest probability) neutrons leading to $^{96}$Rb or $^{95}$Rb, respectively. The aim of the experiment is twofold: \\\\ i) to perform a $\\gamma$- spectroscopy study of $^{95,96}$Rb nuclei with N=58,59, the structure of which is of particular interest in investigating the transition towards stable deformation at N=60, \\\\ ii) to acquire experience in using incomplete fusion reactions with the weakly bound $^{7}$Li target, in order to perform, at a later stage with HIE-ISOLDE, similar measurements induced by n-rich radioactive beams of Sn and Hg, for which at least 5 MeV/nucleon are need...

  4. Hot-Fire Testing of 100 LB(sub F) LOX/LCH4 Reaction Control Engine at Altitude Conditions

    Science.gov (United States)

    Marshall, William M.; Kleinhenz, Julie E.

    2010-01-01

    Liquid oxygen/liquid methane (LO2/LCH4 ) has recently been viewed as a potential green propulsion system for both the Altair ascent main engine (AME) and reaction control system (RCS). The Propulsion and Cryogenic Advanced Development Project (PCAD) has been tasked by NASA to develop these green propellant systems to enable safe and cost effective exploration missions. However, experience with LO2/LCH4 as a propellant combination is limited, so testing of these systems is critical to demonstrating reliable ignition and performance. A test program of a 100 lb f reaction control engine (RCE) is underway at the Altitude Combustion Stand (ACS) of the NASA Glenn Research Center, with a focus on conducting tests at altitude conditions. These tests include a unique propellant conditioning feed system (PCFS) which allows for the inlet conditions of the propellant to be varied to test warm to subcooled liquid propellant temperatures. Engine performance, including thrust, c* and vacuum specific impulse (I(sub sp,vac)) will be presented as a function of propellant temperature conditions. In general, the engine performed as expected, with higher performance at warmer propellant temperatures but better efficiency at lower propellant temperatures. Mixture ratio effects were inconclusive within the uncertainty bands of data, but qualitatively showed higher performance at lower ratios.

  5. Temperature and excitation energy of hot nuclei in the reaction of 40Ar+197Au at 25 MeV/nucleon

    International Nuclear Information System (INIS)

    Wu, H.; Jin, G.; Li, Z.; Dai, G.; Qi, Y.; He, Z.; Luo, Q.; Duan, L.; Wen, W.; Zhang, B.

    1997-01-01

    The coincidence measurements between heavy fission fragments and light charged particles with Z ≤2 were carried out for the 40 Ar+ 197 Au reaction at 25 MeV/nucleon, to study the properties of hot nuclei in heavy ion induced reactions. The linear momentum transfers (LMTs) were deduced from the folding angle and the time-of-flight difference between two fission fragments of heavy residues. The relationship of the nuclear temperature (slope parameter of the energy spectrum) and the excitation energy was determined independently from the measurement of the kinetic energy spectra in the frames of the emitting sources and from the LMT analysis. Both the temperature and the excitation energy increase with decreasing impact parameter, which suggests that a plateau temperature of 5.5 MeV is reached at an excitation energy of 3.1 MeV/nucleon. The result was also compared with various statistical models that explain the plateau by the multifragmentation process, where the excitation energy is assumed to be stored in compression and expansion effects. (orig.)

  6. The importance of a hot-sequential mechanism in triplet-state formation by charge recombination in reaction centers of bacterial photosynthesis

    International Nuclear Information System (INIS)

    Saito, K.; Mukai, K.; Sumi, H.

    2006-01-01

    In photosynthesis, pigment-excitation energies in the antenna system produced by light harvesting are transferred among antenna pigments toward the core antenna, where they are captured by the reaction center and initially fixed in the form of a charge separation. Primary charge separation between an oxidized special pair (P + ) and a reduced bacteriopheohytin (H - ) is occasionally intervened by recombination, and a spin-triplet state ( 3 P*) is formed on P in the bacterial reaction center. The 3 P* state is harmful to bio-organisms, inducing the formation of the highly damaging singlet oxygen species. Therefore, understanding the 3 P*-formation mechanism is important. The 3 P* formation is mediated by a state |m> of intermediate charge separation between P and the accessory chlorophyll, which is located between P and H. It will be shown theoretically in the present work that at room temperature, not only the mechanism of superexchange by quantum-mechanical virtual mediation at |m>, but also a hot-sequential mechanism contributes to the mediation. In the latter, although |m> is produced as a real state, the final state 3 P* is quickly formed during thermalization of phonons in the protein matrix in |m>. In the former, the final state is formed more quickly before dephasing-thermalization of phonons in |m>. 3 P* is unistep formed from the charge-separated state in the both mechanisms

  7. Excitation energy distributions in fusion reactions induced by Ar projectiles at 50 and 70 MeV/u

    International Nuclear Information System (INIS)

    Vient, E.; Badala, A.; Barbera, R.; Bizard, G.; Bougault, R.; Brou, R.; Cussol, D.; Colin, J.; Durand, D.; Drouet, A.; Horn, D.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Leflecher, C.; Louvel, M.; Patry, J.P.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Eudes, P.; Guilbault, F.; Lebrun, C.; Oubahadou, A.

    1992-01-01

    In the present experiment, we have studied the Ar+Ag system at two bombarding energies: 50 and 70 MeV/u. We have first focused on the standard decay of the corresponding hot nuclei, i.e. on the formation of evaporated residues, which have been detected in coincidence with most of the decay charged particles (use of a 4 π device). From this very complete knowledge of the events, it has been possible to determine the excitation energy distribution of the initial hot nuclei. In a second step of the analysis, we have extended the triggering conditions to more complicated events including multi-fragment emission. In section 2 of this paper, we describe the experimental set up. Section 3 is devoted to the results involving an evaporation residue. Section 4 is devoted to triggering conditions based on the multiplicity detected in the 4 π device. Section 5 is a summary of the results

  8. Characterization of incomplete fusion in the reactions Ar + KCl at 32,40,52 and 74 MeV/u; Caracterisation de la fusion incomplete dans les reactions Ar + KCl a 32,40,52 et 74 Mev/u

    Energy Technology Data Exchange (ETDEWEB)

    Bisquer, E [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; [Universite Claude Bernard, 69 - Lyon (France)

    1996-12-20

    Heavy ion collisions at intermediate energies (10 to 100 A.MeV) have been investigated and gave evidence to the persistence of so-called low energy mechanisms such as incomplete fusion. This thesis aims at determining the energy threshold beyond which such a mechanism does not occur any more. First we investigated the so-called conventional incomplete fusion. This mechanism is well known from low energy studies: a thermalized compound nucleus is formed which further de-excites by evaporating particles. Residues will be therefore detected in coincidence with mainly light particles. Ar + KCl at incident energies of 32, 40, 52 and 74 A.MeV has been selected for this analysis. These experiments have been performed using the INDRA multidetector in GANIL (Caen). The detection performance of INDRA allowed to use new analysis methods via global variables. In a first step, global variables have been compared in order to find the one that is the most appropriate to our study. Then incomplete fusion events have been extracted from raw events recorded at incident energies of 32, 40 and 52 A.MeV. It turned out that the contribution of this mechanisms was very weak at 52. A.MeV. It turned out that the contribution of this mechanism was very weak at 52 A.MeV and even zero at 74 A.MeV. We then investigated events in which three fragments were detected which could possibly sign multifragmentation. We did not find instantaneous multifragmentation with any expansion contribution. We also performed BNV simulations in order to compare our experimental results to model predictions, solving in a semi-classical way the Vlasov transport equation. A good agreement has been obtained on the size of the compound nucleus formed. However the excitation energy has not been reproduced, as the code seems to overestimate the energy taken away by preequilibrium particles. Incomplete fusion decreases as a function of energy but is not replaced by instantaneous multifragmentation with any expansion

  9. Nuclear fusion

    International Nuclear Information System (INIS)

    Huber, H.

    1978-01-01

    A comprehensive survey is presented of the present state of knowledge in nuclear fusion research. In the first part, potential thermonuclear reactions, basic energy balances of the plasma (Lawson criterion), and the main criteria to be observed in the selection of appropriate thermonuclear reactions are dealt with. This is followed by a discussion of the problems encountered in plasma physics (plasma confinement and heating, transport processes, plasma impurities, plasma instabilities and plasma diagnostics) and by a consideration of the materials problems involved, such as material of the first wall, fuel inlet and outlet, magnetic field generation, as well as repair work and in-service inspections. Two main methods have been developed to tackle these problems: reactor concepts using the magnetic pinch (stellarator, Tokamak, High-Beta reactors, mirror machines) on the one hand, and the other concept using the inertial confinement (laser fusion reactor). These two approaches and their specific problems as well as past, present and future fusion experiments are treated in detail. The last part of the work is devoted to safety and environmental aspects of the potential thermonuclear aspects of the potential thermonuclear reactor, discussing such problems as fusion-specific hazards, normal operation and potential hazards, reactor incidents, environmental pollution by thermal effluents, radiological pollution, radioactive wastes and their disposal, and siting problems. (orig./GG) [de

  10. Reaction

    African Journals Online (AJOL)

    abp

    19 oct. 2017 ... Reaction to Mohamed Said Nakhli et al. concerning the article: "When the axillary block remains the only alternative in a 5 year old child". .... Bertini L1, Savoia G, De Nicola A, Ivani G, Gravino E, Albani A et al ... 2010;7(2):101-.

  11. Incomplete fusion studies

    International Nuclear Information System (INIS)

    Singh, B.P.

    2011-01-01

    In order to study the incomplete fusion reaction dynamics at energies ≅ 4-7 MeV/nucleon, several experiments have been carried out using accelerator facilities available in India. The measurements presented here cover a wide range of projectile-target combinations and enhance significantly our knowledge about incomplete fusion reaction dynamics. Here, the three sets of measurements have been presented; (i) excitation functions, (ii) forward recoil range distributions and (iii) the spin distributions. The first evidence of these reactions has been obtained from the measurement and analysis of excitation functions for xn/αxn/2αxn-channels. The measured excitation functions have been analyzed within the framework of compound nucleus model. The results obtained indicate the occurrence of fusion incompleteness at low beam energies. However, in order to determine the relative contribution of complete and incomplete fusion reaction processes, the recoil range distributions of the heavy residues have also been measured and analyzed within the framework of breakup fusion model which confirmed the fusion incompleteness in several heavy ion reactions involving α-emitting reaction channels. Further, in order to study the role of l-values in these reactions the spin distributions of the residues populated in case of complete and incomplete channels have been measured and are found to be distinctly different. The analysis of the data on spin distribution measurements indicate that the mean values of driving input angular momenta associated with direct-α-emitting (incomplete fusion) channels are higher than that observed for fusion-evaporation xn or α-emitting (complete fusion) channels, and is found to increase with direct α-multiplicity in the forward cone. One of the important conclusions drawn in the present work is that, there is significant incomplete fusion contribution even at energies slightly above the barrier. Further, the projectile structure has been found to

  12. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  13. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  14. The initial stages of the reaction between ZrCo and hydrogen studied by hot-stage microscopy

    International Nuclear Information System (INIS)

    Bloch, J.; Brill, M.; Ben-Eliahu, Y.; Gavra, Z.

    1998-01-01

    The development of hydride phase on the surface of ZrCo under 1 bar of hydrogen was investigated at temperatures between 75 and 300 C. Both surface modifications of the parent alloy and the nucleation and growth of hydride phase were observed. Surface modifications included: grain boundary outgrowth, intra-granular precipitation in the form of fine lamellar hydride phase and micro cracks. It is suggested that the surface modifications result from a combination of hydrogen solubility and the parent metal ductility. These modifications were enhanced near areas which had been previously transformed. The nucleation was self catalyzed, with new nuclei preferentially formed at the vicinity of growing former nuclei. All this suggested that the transport of hydrogen through the hydride phase is faster than its transfer through the surface passivation layer. The growth rate of the nuclei was similar to that of uranium. The activation energy for the growth was E a =24±3 kJ/mol. The results were compared with several other metal-hydrogen systems. It is suggested that the important physical factors controlling the mechanism of the initial hydriding reaction are hydrogen solubility and the brittleness of the parent metal/alloy. These parameters are responsible to the different changes observed during the initial hydriding stages which include: surface modifications, cracking, nucleation and growth. (orig.)

  15. Nuclear X-ray emission after fusion of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Christian; Muecher, Dennis; Gernhaeuser, Roman; Faestermann, Thomas [Technische Universitaet Muenchen, Lehrstuhl E12 (Germany); Henning, Walter [Technische Universitaet Muenchen, Lehrstuhl E12 (Germany); Argonne National Laboratory (United States); Morita, Kosuke; Morimoto, Kouji; Kaji, Daija [RIKEN, Research Group for Superheavy Elements (Japan)

    2015-07-01

    The goal is to establish in-beam K-X-ray spectroscopy as a sensitive tool to identify super heavy elements (SHEs) produced in fusion reactions via their proton number. SHEs, formed after cold or hot fusion, are usually identified via the alpha-decay products, which have to be connected to well-known elements. In case of hot fusion, the daughter nuclei quickly undergo spontaneous fission, so that the identification of the produced SHEs is difficult. Using the hot fusion approach in our first test experiments, the resultant products will be analysed by the gas-filled GARIS separator at the RILAC facility at RIKEN. As the X-ray detector is required to have superior energy and timing resolution to best identify the rare events at highest masses and to supress random coincidences as sufficient as possible, we chose a thin and planar geometry, which also reduces the damage caused by fast neutrons. We show first measurements using the MINIBALL Ge array at Munich. Additionally we report on our feasibility studies and on first tests using the new detector at high count rates together with a powerful DAQ system and transistor reset preamplifiers.

  16. Characterization of incomplete fusion in the reactions Ar + KCl at 32,40,52 and 74 MeV/u

    International Nuclear Information System (INIS)

    Bisquer, E.

    1996-01-01

    Heavy ion collisions at intermediate energies (10 to 100 A.MeV) have been investigated and gave evidence to the persistence of so-called low energy mechanisms such as incomplete fusion. This thesis aims at determining the energy threshold beyond which such a mechanism does not occur any more. First we investigated the so-called conventional incomplete fusion. This mechanism is well known from low energy studies: a thermalized compound nucleus is formed which further de-excites by evaporating particles. Residues will be therefore detected in coincidence with mainly light particles. Ar + KCl at incident energies of 32, 40, 52 and 74 A.MeV has been selected for this analysis. These experiments have been performed using the INDRA multidetector in GANIL (Caen). The detection performance of INDRA allowed to use new analysis methods via global variables. In a first step, global variables have been compared in order to find the one that is the most appropriate to our study. Then incomplete fusion events have been extracted from raw events recorded at incident energies of 32, 40 and 52 A.MeV. It turned out that the contribution of this mechanisms was very weak at 52. A.MeV. It turned out that the contribution of this mechanism was very weak at 52 A.MeV and even zero at 74 A.MeV. We then investigated events in which three fragments were detected which could possibly sign multifragmentation. We did not find instantaneous multifragmentation with any expansion contribution. We also performed BNV simulations in order to compare our experimental results to model predictions, solving in a semi-classical way the Vlasov transport equation. A good agreement has been obtained on the size of the compound nucleus formed. However the excitation energy has not been reproduced, as the code seems to overestimate the energy taken away by preequilibrium particles. Incomplete fusion decreases as a function of energy but is not replaced by instantaneous multifragmentation with any expansion

  17. X-ray bang-time and fusion reaction history at ∼ ps resolution using RadOptic detection

    International Nuclear Information System (INIS)

    Vernon, S.P.; Lowry, M.E.; Baker, K.L.; Bennett, C.V.; Celeste, J.R.; Cerjan, C.; Haynes, S.; Hernandez, V.J.; Hsing, W.W.; London, R.A.; Moran, B.; von Wittenau, A.S.; Steele, P.T.; Stewart, R.E.

    2012-01-01

    We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility. This technology will enable x-ray bang-time and fusion burn-history measurements with ∼ ps resolution.

  18. Ninth international symposium on hot atom chemistry. Abstracts

    International Nuclear Information System (INIS)

    1977-01-01

    Abstracts of the papers presented at the Symposium are compiled. The topics considered were chemical dynamics of high energy reactions, hot atom chemistry in organic compounds of tritium, nitrogen, oxygen, and halogens, theory and chemical dynamics of hot atom reactions as determined by beam studies, solid state reactions of recoil atoms and implanted ions, hot atom chemistry in energy-related research, hot atom chemistry in inorganic compounds of oxygen and tritium, hot positronium chemistry, applied hot atom chemistry in labelling, chemical effects of radioactive decay, decay-induced reactions and excitation labelling, physical methods in hot atom chemistry, and hot atom reactions in radiation and stratospheric chemistry

  19. The IGNITEX fusion project

    International Nuclear Information System (INIS)

    Carrera, R.

    1987-01-01

    The author discusses the recently proposed fusion ignition experiment, IGNITEX. He emphasizes the basic ideas of this concept rather than the specific details of the physics and engineering aspects of the experiment. This concept is a good example of the importance of maintaining an adequate balance between the basic scientific progress in fusion physics and the new technologies that are becoming available in order to make fusion work. The objective of the IGNITEX project is to produce and control ignited plasmas for scientific study in the simplest and least expensive way possible. Being able to study this not-yet-produced regime of plasma operation is essential to fusion research. Two years after the fission nuclear reaction was discovered, a non-self-sustained fission reaction was produced in a laboratory, and in one more year a self-sustained reaction was achieved at the University of Chicago. However, after almost forty years of fusion research, a self-sustained fusion reaction has yet not been produced in a laboratory experiment. This fact indicates the greater difficulty of the fusion experiment. Because of the difficulty involved in the production of a self-sustained fusion reaction, it is necessary to propose such an experiment with maximum ignition margins, maximum simplicity, and minimum financial risk

  20. Studies of 4He emission in both fusion-like and inelastic reactions of 340-MeV 40Ar + 238U

    International Nuclear Information System (INIS)

    Kildir, M.; Logan, D.; Kaplan, M.; Zisman, M.S.; Guerreau, D.; Alexander, J.M.; Vaz, L.C.

    1982-01-01

    The fission-fragment angular correlation technique has been used in conjunction with a position-sensitive avalanche detector to identify the fusion-like and inelastic collisions of 340-MeV 40 Ar + 238 U. For each of these two reaction types, we have characterized the correlated 4 He emission by measuring three-fold coincidences between two fission fragments and the light charged particle. We find an abundance of both evaporation-like and direct 4 He emission, each of which is associated with both fusion-fission and sequential-fission processes. Several comparison tests of both the coincidence and singles data strongly indicate that very little 4 He emission is due to evaporation from accelerated fission fragments in this system. The evaporative 4 He emission appears instead to have a strong contribution originating from the composite system prior to fission. The forward angle 4 He emissions, characterized by prominent forward-peaking and relatively high energies, suggest an origin associated with the very early stages of the collision

  1. Formation and decay of hot nuclei in the 64Zn + 48Ti reactions from 35 to 79 MeV/u

    International Nuclear Information System (INIS)

    Steckmeyer, J.C.

    1995-01-01

    The 4π plastic multidetector of NAUTILUS has been used to detect charged products of the collisions in the reactions of 64 Zn with 48 Ti from 35 to 79 MeV/u. Well measured events were selected and sorted as a function of the impact parameter. The primary mass of the fast source as well as its excitation energy have been carefully reconstructed from the characteristics of the disintegration products after separation of both the pre-equilibrium and the target emission. The isotropic emission of particles in the frame of the primary hot nucleus suggests that thermal equilibrium has been achieved. The excitation energy increases from peripheral to central collisions, with values reaching more than 10 MeV/u at the highest bombarding energy. Experimental multiplicities and relative velocity distributions of intermediate mass fragments will be compared to theoretical predictions of both statistical and dynamical models. Differences between data and calculations suggest the existence of a radial expansion of the hottest nuclei

  2. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  3. Nuclear fusion power

    International Nuclear Information System (INIS)

    Dinghee, D.A.

    1983-01-01

    In this chapter, fusion is compared with other inexhaustible energy sources. Research is currently being conducted both within and outside the USA. The current confinement principles of thermonuclear reactions are reveiwed with the discussion of economics mainly focusing on the magnetic confinement concepts. Environmental, health and safety factors are of great concern to the public and measures are being taken to address them. The magnetic fusion program logic and the inertial fusion program logic are compared

  4. FENDL/C-2.0. Charged-particle reaction data library for fusion applications. Version 1 of March 1997. Data extracted from ENDF/B-6 evaluations. Summary documentation

    International Nuclear Information System (INIS)

    Pashchenko, A.B.; Wienke, H.

    1997-01-01

    This document describes the FENDL/C-2.0 charged-particle reaction data library which is a sublibrary of FENDL-2, the evaluated nuclear data library for fusion applications. This file contains evaluated data in ENDF-6 format for the D(d,n), D(d,p), T(d,n), T(t,2n), He-3(d,p) reactions. The processed information, i.e. Maxwellian-averaged reaction rates, and related quantities, calculated from reaction cross-sections, are also included. The data are available from the Nuclear Data Section online via INTERNET by FTP command, or on magnetic tape upon request. (author)

  5. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  6. Development of a novel algorithm and production of new nuclear data libraries for the treatment of sequential (x,n) reactions in fusion material activation calculations

    International Nuclear Information System (INIS)

    Cierjacks, S.W.; Oblozinsky, P.; Kelzenberg, S.; Rzehorz, B.

    1993-01-01

    A new algorithm and three major nuclear data libraries were developed for the kinematically complete treatment of sequential (x,n) reactions in fusion material activation calculations. The new libraries include data for virtually all isotopes with Z ≤ 84 (A ≤ 210) and half-lives exceeding 1 day; primary neutron energies E n 3 He, and α with energies E x < 24 MeV. While production cross sections of charged particles for primary (n,x) reactions can be deduced from the European activation file, the KFKSPEC data file was created for the corresponding normalized charged-particle spectra. The second data file, KFKXN, contains cross sections for secondary (x,n) reactions. The third data file, KFKSTOP, has a complete set of differential ranges for all five aforementioned light charged particles and all elements from hydrogen to uranium. The KFKSPEC and KFKXN libraries are based essentially on nuclear model calculations using the statistical evaporation model superimposed with the pre-equilibrium contribution as implemented in the Lawrence Livermore National Laboratory ALICE code. The KFKSPEC library includes 633 isotopes, of which 55 are in their isomeric states, and contains 63,300 spectra of the (n,x) type with almost 1.5 million data points. The KFKXN library also includes 633 isotopes and contains all (x,n) and partly (x,2n) cross sections for 4431 reactions with ∼ 106,000 data points. The KFKSTOP library is considered complete and has 11,040 data points. 42 refs., 2 figs., 4 tabs

  7. Systematic of fusion incompleteness in 20Ne induced reactions at energy 4-7 MeV/nucleon

    International Nuclear Information System (INIS)

    Ali, Sabir; Ahmad, Tauseef; Kumar, Kamal

    2016-01-01

    In the present work, a study of fusion incompleteness using the 20 Ne projectile over 51 V, 55 Mn and 59 Co and targets has been carried out. The experiment involving 20 N e+ 51 V system was performed at VECC, Kolkata, India. The targets of thickness range 1.19-1.50 rug/cm 2 of spectroscopically pure 51 V (purity 99.99%) were prepared by depositing on aluminum backing of thickness range 1.47-1.64 mg/cm 2 by the vacuum evaporation technique at the target lab of VECC. A stack of six 51 V targets was irradiated for ≈ 11 hrs by 20 Ne 6+ beam at ≈145 MeV. The irradiation of the stack covered the desired energy range of 82-145 MeV. The beam current was ≈ 40 nA during the irradiation hours. The energy of the 20 Ne ion beam incident on each target foil was calculated using stopping power software SRIM. The overall error in the present work is estimated to be ≤20%

  8. Novel real-time polymerase chain reaction assay for simultaneous detection of recurrent fusion genes in acute myeloid leukemia.

    Science.gov (United States)

    Dolz, Sandra; Barragán, Eva; Fuster, Óscar; Llop, Marta; Cervera, José; Such, Esperanza; De Juan, Inmaculada; Palanca, Sarai; Murria, Rosa; Bolufer, Pascual; Luna, Irene; Gómez, Inés; López, María; Ibáñez, Mariam; Sanz, Miguel A

    2013-09-01

    The recent World Health Organization classification recognizes different subtypes of acute myeloid leukemia (AML) according to the presence of several recurrent genetic abnormalities. Detection of these abnormalities and other molecular changes is of increasing interest because it contributes to a refined diagnosis and prognostic assessment in AML and enables monitoring of minimal residual disease. These genetic abnormalities can be detected using single RT-PCR, although the screening is still labor intensive and costly. We have developed a novel real-time RT-PCR assay to simultaneously detect 15 AML-associated rearrangements that is a simple and easily applicable method for use in clinical diagnostic laboratories. This method showed 100% specificity and sensitivity (95% confidence interval, 91% to 100% and 92% to 100%, respectively). The procedure was validated in a series of 105 patients with AML. The method confirmed all translocations detected using standard cytogenetics and fluorescence in situ hybridization and some additional undetected rearrangements. Two patients demonstrated two molecular rearrangements simultaneously, with BCR-ABL1 implicated in both, in addition to RUNX1-MECOM in one patient and PML-RARA in another. In conclusion, this novel real-time RT-PCR assay for simultaneous detection of multiple AML-associated fusion genes is a versatile and sensitive method for reliable screening of recurrent rearrangements in AML. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  9. Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions

    International Nuclear Information System (INIS)

    Oganessian, Y T; Utyonkov, V K; Lobanov, Y V; Abdullin, F S; Polyakov, A N; Sagaidak, R N; Shirokovsky, I V; Tsyganov, Y S; Voinov, A A; Gulbekian, G G; Bogomolov, S L; Gikal, B N; Mezentsev, A N; Iliev, S; Subbotin, V G; Sukhov, A M; Subotic, K; Zagrebaev, V I; Vostokin, G K; Itkis, M G; Moody, K J; . Patin, J B; Shaughnessy, D A; Stoyer, M A; Stoyer, N J; Wilk, P A; Kenneally, J M; Landrum, J H; Wild, J F; Lougheed, R W

    2006-01-01

    The decay properties of 290 116 and 291 116, and the dependence of their production cross sections on the excitation energies of the compound nucleus, 293 116, have been measured in the 245 Cm( 48 Ca,xn) 293-x 116 reaction. These isotopes of element 116 are the decay daughters of element 118 isotopes, which are produced via the 249 Cf+ 48 Ca reaction. They performed the element 118 experiment at two projectile energies, corresponding to 297 118 compound nucleus excitation energies of E* = 29.2 ± 2.5 and 34.4 ± 2.3 MeV. During an irradiation with a total beam dose of 4.1 x 10 19 48 Ca projectiles, three similar decay chains consisting of two or three consecutive α decays and terminated by a spontaneous fission (SF) with high total kinetic energy of about 230 MeV were observed. The three decay chains originated from the even-even isotope 294 118 (E α = 11.65 ± 0.06 MeV, T α = 0.89 -0.31 +1.07 ms) produced in the 3n-evaporation channel of the 249 Cf+ 48 Ca reaction with a maximum cross section of 0.5 -0.3 +1.6 pb

  10. Study of transfer induced fission and fusion-fission reactions for 28 Si + 232 Th system at 340 MeV

    International Nuclear Information System (INIS)

    Prete, G.; Rizzi, V.; Fioretto, E.; Cinausero, M.; Shetty, D.V.; Pesente, S.; Brondi, A.; La Rana, G.; Moro, R.; Vardaci, E.; Boiano, A.; Ordine, A.; Gelli, N.; Lucarelli, F.; Bortignon, P.F.; Saxena, A.; Nayak, B.K.; Biswas, D.C.; Choudhury, R.K.; Kapoor, R.S.

    2001-01-01

    and fusion-fission reactions. We have extracted the ratio of yield of transfer induced fission events to the singles yield of transfer products observed at grazing angle for different Z of ejectiles (PLF). It is seen that transfer induced fission yield increases with increasing Z transfer up to DZ = 4 and then becomes flat and starts to decrease for higher Z-transfers. This may indicate the onset of other processes which inhibit the fission; projectile break-up may be responsible for lowering the transfer of excitation energy and angular momentum to the fissioning system or the evaporation of charged particles may promptly reduce the excitation energy of the compound system which survive fission. This has been investigated looking at PLF in coincidence with protons, a particles, fission and target-like fragments. We have also analyzed the neutron energy spectra for the fusion-fission reaction obtained after correcting for the neutron detector efficiency. Fourteen laboratory neutron energy spectra for various fission-neutron correlation angles were simultaneously fitted with three moving sources. The results show a post- and pre-scission temperature of about 1.0 MeV and 2.24 MeV respectively, comparable to that observed in others low energy measurements and consistent with the compound nuclear excitation energy of 218 MeV, assuming a level density parameter a =A/8 MeV-1. (Author)

  11. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1991-01-01

    The research program of our group touches five areas of nuclear physics: (1) Nuclear structure studies at high spin; (2) Studies at the interface between structure and reactions; (3) Production and study of hot nuclei; (4) Incomplete fusion and fragmentation reactions; and (5) Development and use of novel techniques and instrumentation in the above areas of research. The papers from these areas are discussed in this report

  12. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  13. Towards fusion power

    International Nuclear Information System (INIS)

    Venkataraman, G.

    1975-01-01

    An attempt has been made to present general but broad review of the recent developments in the field of plasma physics and its application to fusion power. The first chapter describes the fusion reactions and fusion power systems. The second chapter deals in detail with production and behaviour of plasma, screening, oscillations, instability, energy losses, temperature effects, etc. Magnetic confinements, including pinch systems, toroidal systems such as Tokamac and stellarator, minor machine, etc. are discussed in detail in chapter III. Laser produced plasma, laser implosion and problems associated with it and future prospects are explained in chapter IV. Chapter V is devoted entirely to the various aspects of hybrid systems. The last chapter throws light on problems of fusion technology, such as plasma heating, vacuum requirements, radiation damage, choice of materials, blanket problems, hazards of fusion reactions, etc. (K.B.)

  14. Some fusion perspectives

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1977-01-01

    Some of the concepts of nuclear fusion reactions, advanced fusion fuels, environmental impacts, etc., are explored using the following general outline: I. Principles of Fusion (Nuclear Fuels and Reactions, Lawson Condition, n tau vs T, Nuclear Burn Characteristics); II. Magnetic Mirror Possibilities (the Ion Layer and Electron Layer, Exponential Build-up at MeV energies, Lorentz trapping at GeV energies); III. Pellet Fuel Fusion Prospects (Advanced Pellet Fuel Fusion Prospects, Burn Characteristics and Applications, Excitation-heating Prospects for Runaway Ion Temperatures). Inasmuch as the outline is very skeletal, a significant research and development effort may be in order to evaluate these prospects in more detail and hopefully ''harness the H-bomb'' for peaceful applications, the author concludes. 28 references

  15. Dynamics of complete and incomplete fusion in heavy ion collisions

    Science.gov (United States)

    Bao, Xiao Jun; Guo, Shu Qing; Zhang, Hong Fei; Li, Jun Qing

    2018-02-01

    In order to study the influence of the strong Coulomb and nuclear interactions on the dynamics of complete and incomplete fusion, we construct a new four-variable master equation (ME) so that the deformations as well as the nucleon transfer are viewed as consistently governed by MEs in the potential energy surface of the system. The calculated yields of quasifission fragments and evaporation residue cross section (ERCS) are in agreement with experimental data of hot fusion reactions. Comparing cross sections by theoretical results and experimental data, we find the improved dinuclear sysytem model also describes the transfer cross sections reasonably. The production cross sections of new neutron-rich isotopes are estimated by the multinucleon transfer reactions.

  16. Li depletion effects on Li2TiO3 reaction with H2 in thermo-chemical environment relevant to breeding blanket for fusion power plants

    International Nuclear Information System (INIS)

    Alvani, Carlo; Casadio, Sergio; Contini, Vittoria; Giorgi, Rossella; Mancini, Maria Rita; Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2005-07-01

    This is a report of the Working Group in the Subtask on Solid Breeder Blankets under the Implementing Agreement on a Co-operative Programme on Nuclear Technology of Fusion Reactors (International Energy Agency (IEA)). This Working Group (Task F and WG-F) was performed from 2000 to 2004 by a collaboration of European Union (EU) and Japan (JA). In this report, lithium depletion effects on the reaction of lithium titanate (Li 2 TiO 3 ) with hydrogen (H 2 ) in thermo-chemical environment were discussed. The reaction of Li 2 TiO 3 ceramics with H 2 was studied in a thermo-chemical environment simulating (excepting irradiation) that of the hottest pebble-bed zone of breeding-blanket actually designed for fusion power plants. This 'reduction' as performed at 900degC in Ar+0.1%H, purge gas (He+0.1%H 2 being the designed reference') was found to be enhanced by TiO 2 doping of the specimens of simulate 6 Li-burn-up expected to reach 20% at their end-of-life. The reaction rates, however, were so slow to be not significantly extrapolated to the breeder material service time (years). In Ar+3%H 2 , faster reaction rates allowed a better identification of the process evolution (kinetics) by Temperature-Programmed Reduction' (TPR) and 'Oxidation' (TPO), and combined TG-DTA thermal analysis. The reduction of pure Li 4/5 TiO 12/5 spinel phase to Li 4/5 TiO 12/5-y was found to reach in one day the steady state at the O-vacancy concentration y=0.2. Complimentary microscopy (SEM) and spectroscopy (XRD, XPS) techniques were used to characterize the reaction products among which the presence of the orthorhombic Li v TiO 2 (0 ≤ v ≤ 1/2) and Li 2 TiO 3 could be diagnosed. So that the complete spinel reduction to Li 1/2 TiO 2 was obtained according to a scheme involving the Li 1/2 TiO 2 -Li 4/5 TiO 12/5 spinel phase solid solution for which y=3v/(10-5v). The reduction rate of pure meta-titanate to Li 2 TiO 3-x was found much lower (x approx. = 0.01) and even possibly due to the presence

  17. Inertial fusion with hypervelocity impact

    International Nuclear Information System (INIS)

    Olariu, S.

    1998-01-01

    The physics of the compression and ignition processes in inertial fusion is to a certain extent independent of the nature of the incident energy pulse. The present strategy in the field of inertial fusion is to study several alternatives of deposition of the incident energy, and, at the same time, of conducting studies with the aid of available incident laser pulses. In a future reactor based on inertial fusion, the laser beams may be replaced by ion beams, which have a better energy efficiency. The main projects in the field of inertial fusion are the National Ignition Facility (NIF) in USA, Laser Megajoule (LMJ) in France, Gekko XII in Japan and Iskra V in Russia. NIF will be constructed at Lawrence Livermore National Laboratory, in California. LMJ will be constructed near Bordeaux. In the conventional approach to inertial confinement fusion, both the high-density fuel mass and the hot central spot are supposed to be produced by the deposition of the driver energy in the outer layers of the fuel capsule. Alternatively, the driver energy could be used only to produce the radial compression of the fuel capsule to high densities but relatively low temperatures, while the ignition of fusion reactions in the compressed capsule should be effected by a synchronized hypervelocity impact. Using this arrangement, it was supposed that a 54 μm projectile is incident with a velocity of 3 x 10 6 m s -1 upon a large-yield deuterium-tritium target at rest. The collision of the incident projectile and of the large-yield target takes place inside a high-Z cavity. A laser or heavy-ion pulse is converted at the walls of the cavity into X-rays, which compresses the incident projectile and the large-yield target in high-density states. The laser pulse and the movement of the incident projectile are synchronized such that the collision should take place when the densities are the largest. The collision converts the kinetic energy of the incident projectile into thermal energy, the

  18. ALKALI FUSION OF ROSETTA ZIRCON

    International Nuclear Information System (INIS)

    DAHER, A.

    2008-01-01

    The decomposition of Rosetta zircon by fusion with different types of alkalis has been investigated. These alkalis include sodium hydroxide, potassium hydroxide and eutectic mixture of both. The influences of the reaction temperature, zircon to alkalis ratio, fusion time and the stirring of the reactant on the fusion reaction have been evaluated. The obtained results favour the decomposition of zircon with the eutectic alkalis mixture by a decomposition efficiency of 96% obtained at 500 0 C after one hour

  19. Fusion Revisits CERN

    CERN Multimedia

    2001-01-01

    It's going to be a hot summer at CERN. At least in the Main Building, where from 13 July to 20 August an exhibition is being hosted on nuclear fusion, the energy of the Stars. Nuclear fusion is the engine driving the stars but also a potential source of energy for mankind. The exhibition shows the different nuclear fusion techniques and research carried out on the subject in Europe. Inaugurated at CERN in 1993, following collaboration between Lausanne's CRPP-EPFL and CERN, with input from Alessandro Pascolini of Italy's INFN, this exhibition has travelled round Europe before being revamped and returning to CERN. 'Fusion, Energy of the Stars', from 13 July onwards, Main Building

  20. Temperature dependence of liquid lithium film formation and deuterium retention on hot W samples studied by LID-QMS. Implications for future fusion reactors

    Science.gov (United States)

    de Castro, A.; Sepetys, A.; González, M.; Tabarés, F. L.

    2018-04-01

    Liquid metal (LM) divertor concepts explore an alternative solution to the challenging power/particle exhaust issues in future magnetic fusion reactors. Among them, lithium (Li) is the most promising material. Its use has shown important advantages in terms of improved H-mode plasma confinement and heat handling capabilities. In such scenario, a possible combination of tungsten (W) on the first wall and liquid Li on the divertor could be an acceptable solution, but several issues related to material compatibility remain open. In particular, the co-deposition of Li and hydrogen isotopes on W components could increase the associated tritium retention and represent a safety risk, especially if these co-deposits can uncontrollably grow in remote/plasma shadowed zones of the first wall. In this work, the retention of Li and deuterium (D) on tungsten at different surface temperature (200 °C-400 °C) has been studied by exposing W samples to Li evaporation under several D2 gaseous environments. Deuterium retention in the W-Li films has been quantified by using laser induced desorption-mass spectrometry (LID-QMS). Additional techniques as thermal desorption spectroscopy, secondary ion mass spectrometry, profilemetry and flame atomic emission spectroscopy were implemented to corroborate the retention results and for the qualitative and quantitative characterization of the films. The results showed a negligible (below LID sensibility) D uptake at T surface  =  225 °C, when the W-Li layer is exposed to simultaneous Li evaporation and D2 gas exposition (0.67 Pa). Pre-lithiated samples were also exposed to higher D2 pressures (133.3 Pa) at different temperatures (200 °C-400 °C). A non-linear drastic reduction in the D retention with increasing temperatures was found on the W-Li films, presenting a D/Li atomic ratio at 400 °C lower than 0.1 at.% on a thin film of  ≈100 nm thick. These results bode well (in terms of tritium inventory) for the potential

  1. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    Directory of Open Access Journals (Sweden)

    K. Nishio

    2015-09-01

    Full Text Available Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E⁎(Hg180=33–66 MeV and E⁎(Hg190=48–71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses A¯L/A¯H=79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of A¯L/A¯H=83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  2. 48Ca+249Bk fusion reaction leading to element Z = 117: long-lived α-decaying 270Db and discovery of 266Lr.

    Science.gov (United States)

    Khuyagbaatar, J; Yakushev, A; Düllmann, Ch E; Ackermann, D; Andersson, L-L; Asai, M; Block, M; Boll, R A; Brand, H; Cox, D M; Dasgupta, M; Derkx, X; Di Nitto, A; Eberhardt, K; Even, J; Evers, M; Fahlander, C; Forsberg, U; Gates, J M; Gharibyan, N; Golubev, P; Gregorich, K E; Hamilton, J H; Hartmann, W; Herzberg, R-D; Heßberger, F P; Hinde, D J; Hoffmann, J; Hollinger, R; Hübner, A; Jäger, E; Kindler, B; Kratz, J V; Krier, J; Kurz, N; Laatiaoui, M; Lahiri, S; Lang, R; Lommel, B; Maiti, M; Miernik, K; Minami, S; Mistry, A; Mokry, C; Nitsche, H; Omtvedt, J P; Pang, G K; Papadakis, P; Renisch, D; Roberto, J; Rudolph, D; Runke, J; Rykaczewski, K P; Sarmiento, L G; Schädel, M; Schausten, B; Semchenkov, A; Shaughnessy, D A; Steinegger, P; Steiner, J; Tereshatov, E E; Thörle-Pospiech, P; Tinschert, K; Torres De Heidenreich, T; Trautmann, N; Türler, A; Uusitalo, J; Ward, D E; Wegrzecki, M; Wiehl, N; Van Cleve, S M; Yakusheva, V

    2014-05-02

    The superheavy element with atomic number Z=117 was produced as an evaporation residue in the (48)Ca+(249)Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope (294)117 and its decay products. A hitherto unknown α-decay branch in (270)Db (Z = 105) was observed, which populated the new isotope (266)Lr (Z = 103). The identification of the long-lived (T(1/2) = 1.0(-0.4)(+1.9) h) α-emitter (270)Db marks an important step towards the observation of even more long-lived nuclei of superheavy elements located on an "island of stability."

  3. New approach to description of fusion-fission dynamics in super-heavy element formation

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.

    2002-01-01

    A new mechanism of the fusion-fission process for a heavy nuclear system is proposed, which takes place in the (A 1 , A 2 ) space, where A 1 and A 2 are two nuclei, surrounded by a certain number of shared nucleons ΔA. The nuclei A 1 and A 2 gradually lose (or acquire) their individualities with increasing (or decreasing) a number of collectivized nucleons ΔA. The driving potential in the (A 1 , A 2 ) space is derived, which allows the calculation of both the probability of the compound nucleus formation and the mass distribution of fission and quasi-fission fragments in heavy ion fusion reactions. The cross sections of super-heavy element formation in the 'hot' and 'cold' fusion reactions have been calculated up to Z CN =118. (author)

  4. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  5. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  6. The decay of hot nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs

  7. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  8. Reactions of Hot Tritium Atoms with Amino Acids; Reactions entre Atomes Chauds de Tritium et Acides Amines; Reaktsii goryachikh atomov tritiya s aminokislotami; Reacciones de Atomos de Tritio Calientes con Aminoacidos

    Energy Technology Data Exchange (ETDEWEB)

    Simonov, E. F.; Nesmejanov, An. N. [Moskovskij Gosudarstvennyj Universitet, Moskva, SSSR (Russian Federation)

    1965-04-15

    In the existing literature there is a lack of systematic data on the interaction of tritium recoil atoms with amino acids, yet such data, in conjunction with results already obtained for organic acids and amines, could help in determining the mechanism of hot reactions in relation to the structure of compounds (chain length, functional substitutes). A study was made of the yields from the reaction of hot tritium atoms: (1) with amino acids having lengthened chains, and (2) with amino acids having a carbon chain of constant length, but with various functional substitutes. For this purpose mixtures of lithium carbonate and the acids under study were irradiated for 15 min with a slow neutron flux of 0.87 x 10{sup 13} cm{sup 2}/s. Analysis was carried out on a gas chromatography unit with interchangeable columns (molecular sieves, and liquid petrolatum on kieselguhr) and with paper chromatography. Although the data obtained for the radiation survival capacity of amino acids as a function of carbon chain length were at variance with a basic tenet of radiation chemistry according to which the conservation of molecules increases in proportion to the length of their chains, the data can be explained in terms of an intramolecular transfer of energy along the carbon chain from the collision site of the hot atom to the hydroxyl group, and subsequent ''de-excitation''; on the other hand, although the energy, of tritium recoil atoms is greater than that of the chemical bond, the latter nevertheless exerts an influence on the radiation conservation of molecules with a carbon chain of constant length but with various substitutes. (author) [French] Les etudes publiees jusqu'a present ne contiennent guere de renseignements systematiques sur les interactions entre atomes de tritium de recul et acides amines. Pourtant, ces donnees, completees par celles dont on dispose sur les acides organiques et les amines, pourraient aider a definir le mecanisme des reactions chaudes en fonction

  9. Membrane fusion and exocytosis.

    Science.gov (United States)

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  10. Evaluation of the 46Ti(n,2n)45Ti and 54Fe(n,2n)53m+gFe reaction cross sections for neutron dosimetry in fusion facilities

    International Nuclear Information System (INIS)

    Badikov, S.A.; Ignatyuk, A.V.; Zolotarev, K.I.; Pashchenko, A.B.

    1993-11-01

    The reaction cross-sections of 46 Ti(n,2n) 45 Ti and 54 Fe(n,2n) 53m+g Fe, which are important for fusion reactor neutron dosimetry, were evaluated using a generalized least squares method. The experimental cross-section data of all measurements performed up to January 1993, were critically reviewed. The evaluated cross-section data are presented in analytical form and in ENDF-6 format, including covariance data. (author)

  11. Nuclear structure and fusion at the barrier

    International Nuclear Information System (INIS)

    Reisdorf, W.

    1985-01-01

    A comparative study of measured fusion excitation functions in the vicinity of the barrier reveals nuclear structure effects, due in particular to the coupling of the fusion process to direct-reaction channels. (orig.)

  12. Decomposition of incomplete fusion

    International Nuclear Information System (INIS)

    Sobotka, L.B.; Sarantities, D.G.; Stracener, D.W.; Majka, Z.; Abenante, V.; Semkow, T.M.; Hensley, D.C.; Beene, J.R.; Halbert, M.L.

    1989-01-01

    The velocity distribution of fusion-like products formed in the reaction 701 MeV 28 Si+ 100 Mo is decomposed into 26 incomplete fusion channels. The momentum deficit of the residue per nonevaporative mass unit is approximately equal to the beam momentum per nucleon. The yields of the incomplete fusion channels correlate with the Q-value for projectile fragmentation rather than that for incomplete fusion. The backward angle multiplicities of light particles and heavy ions increase with momentum transfer, however, the heavy ion multiplicities also depend on the extent of the fragmentation of the incomplete fusion channel. These data indicate that at fixed linear momentum transfer, increased fragmentation of the unfused component is related to a reduced transferred angular momentum. 22 refs., 6 figs., 1 tab

  13. Dynamics of Db isotopes formed in reactions induced by 238U, 248Cm, and 249Bk across the Coulomb barrier

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Kaur, Amandeep; Sharma, Manoj K.

    2018-05-01

    The dynamical cluster decay model is employed to investigate the decay of *265Db and *267Db nuclei, formed in the 27Al+238U , 18O+249Bk , and 19F+248Cm hot fusion reactions at energies around the Coulomb barrier. First, the fission dynamics of the 27Al+238U reaction is explored by investigating the fragmentation and preformation yield of the reaction. The symmetric mass distribution of the fission fragments is observed for *265Db nucleus, when static β2 i deformations are used within hot optimum orientation approach. However, the mass split gets broaden for the use of β2 i-dynamical hot configuration of the fragments and becomes clearly asymmetric for the cold-static-deformed approach. Within the application of cold orientations of fragments, a new fission channel is observed at mass asymmetry η =0.29 . In addition to 238U-induced reaction, the work is carried out to address the fission and neutron evaporation cross sections of *267Db nucleus formed via 19F+248Cm and 18O+249Bk reactions, besides a comprehensive analysis of fusion and capture processes. Higher fusion cross sections and compound nucleus formation probabilities (PCN) are obtained for the 18O+249Bk reaction, as larger mass asymmetry in the entrance channel leads to reduced Coulomb factor. Finally, the role of sticking (IS) and nonsticking (INS) moments of inertia is analyzed for the 4 n and 5 n channels of *267Db nuclear system.

  14. Summary on inertial confinement fusion

    International Nuclear Information System (INIS)

    Meyer-Ter-Vehn, J.

    1995-01-01

    Highlights on inertial confinement during the fifteenth international conference on plasma physics and controlled nuclear fusion are briefly summarized. Specifically the following topics are discussed: the US National Ignition Facility presently planned by the US Department of Energy; demonstration of diagnostics for hot spot formation; declassification of Hohlraum target design; fusion targets, in particular, the Hohlraum target design for the National Ignition Facility (NIF), Hohlraum experiments, direct drive implosions, ablative Rayleigh-Taylor instabilities, laser imprinting (of perturbations by the laser on the laser target surface), hot spot formation and mixing, hot spot implosion experiments at Lawrence Livermore National Laboratory, Livermore, USA, time resolving hot spot dynamics at the Institute of Laser Engineering (ILE), Osaka, Japan, laser-plasma interaction

  15. Energy from inertial fusion

    International Nuclear Information System (INIS)

    1995-03-01

    This book contains 22 articles on inertial fusion energy (IFE) research and development written in the framework of an international collaboration of authors under the guidance of an advisory group on inertial fusion energy set up in 1991 to advise the IAEA. It describes the actual scientific, engineering and technological developments in the field of inertial confinement fusion (ICF). It also identifies ways in which international co-operation in ICF could be stimulated. The book is intended for a large audience and provides an introduction to inertial fusion energy and an overview of the various technologies needed for IFE power plants to be developed. It contains chapters on (i) the fundamentals of IFE; (ii) inertial confinement target physics; (iii) IFE power plant design principles (requirements for power plant drivers, solid state laser drivers, gas laser drivers, heavy ion drivers, and light ion drivers, target fabrication and positioning, reaction chamber systems, power generation and conditioning and radiation control, materials management and target materials recovery), (iv) special design issues (radiation damage in structural materials, induced radioactivity, laser driver- reaction chamber interfaces, ion beam driver-reaction chamber interfaces), (v) inertial fusion energy development strategy, (vi) safety and environmental impact, (vii) economics and other figures of merit; (viii) other uses of inertial fusion (both those involving and not involving implosions); and (ix) international activities. Refs, figs and tabs

  16. What have fusion reactor studies done for you today?

    International Nuclear Information System (INIS)

    Kulchinski, G.L.

    1985-01-01

    The University of Wisconsin examines the fusion program and puts into perspective what return is being made on investments in fusion reactor studies. Illustations show financial support for fusion research from the four major programs, FY'82 expenditures on fusion research, and the total expenditures on fusion research since 1951. Topics discussed include the estimated number of scientists conducting fusion research, the conceptual design study of a fusion reactor, scoping study of a reactor, the chronology of fusion reactor design studies, published fusion reactor studies 1967-1983, conceptual fusion reactor design studies, STARFIRE reference design, MARS central cell, HYLIFE reaction chamber, and selected contributions of reactor design studies to base programs

  17. Cold fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1991-01-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of ∼1 kW/cm 3 Pd, as compared to 50 W/cm 3 of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given

  18. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  19. Energy by nuclear fusion

    International Nuclear Information System (INIS)

    Buende, R.; Daenner, W.; Herold, H.; Raeder, J.

    1976-12-01

    This report reviews the state of knowledge in a number of fields of fusion research up to autumn 1976. Section 1 gives a very brief presentation of the elementary fusion reactions, the energies delivered by them and the most basic energy balances leading to Lawson-type diagrams. Section 2 outlines the reserves and cost of lithium and deuterium, gives estimates of the total energy available from DT fusion and comments on production technology, availlability and handling of the fuels. In section 3 a survey is given of the different concepts of magnetic confinement (stellarators, tokamaks, toroidal pinches, mirror machines, two-component plasmas), of confinement by walls, gas blankets and imploding liners and, finally, of the concepts of interial confinement (laser fusion, beam fusion). The reactors designed or outlined on the basis of the tokamak, high-β, mirror, and laser fusion concepts are presented in section 4, which is followed in section 5 by a discussion of the key problems of fusion power plants. The present-day knowledge of the cost structure of fusion power plants and the sensitivity of this structure with respect to the physical and technical assumptions made is analysed in section 6. Section 7 and 8 treat the aspects of safety and environment. The problems discussed include the hazard potentials of different designs (radiological, toxicological, and with respect to stored energies), release of radioactivity, possible kinds of malfunctioning, and the environmental impact of waste heat, radiation and radioactive waste (orig.) [de

  20. Fusion reactor wastes

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-01-01

    The fusion reactor currently is being developed as a clean source of electricity with an essentially infinite source of fuel. These reactors are visualized as using a fusion reaction to generate large quantities of high temperature energy which can be used as process heat or for the generation of electricity. The energy would be created primarily as the kinetic energy of neutrons or other reaction products. Neutron energy could be converted to high-temperature heat by moderation and capture of the neutrons. The energy of other reaction products could be converted to high-temperature heat by capture, or directly to electricity by direct conversion electrostatic equipment. An analysis to determine the wastes released as a result of operation of fusion power plants is presented

  1. Civilian applications of particle-beam-initiated inertial confinement fusion technology

    International Nuclear Information System (INIS)

    Varnado, S.G.; Mitchiner, J.L.

    1977-05-01

    Electrical power generation by controlled fusion may provide a partial solution to the world's long-term energy supply problem. Achievement of a fusion reaction requires the confinement of an extremely hot plasma for a time long enough to allow fuel burnup. Inertial confinement of the plasma may be possible through the use of tightly focused, relativistic electron or ion beams to compress a fuel pellet. The Sandia Particle Beam Fusion program is developing the particle-beam accelerators necessary to achieve fuel ignition. In this report we review the status of the particle-beam fusion technology development program and identify several potential civilian applications for this technology. We describe program objectives, discuss the specific accelerators presently under development, and briefly review the results of beam-focusing and target-irradiation experiments. Then we identify and discuss applications for the beam technology and for the fusion neutrons. The applications are grouped into near-term, intermediate-term, and long-term categories. Near-term applications for the beam technology include electron-beam (e-beam) pumping of gas lasers and several commercial applications. Intermediate-term applications (pellet gain less than 50) include hybrid reactors for electrical power production and fissile fuel breeding, pure fusion reactors for electrical power production, and medical therapy using ion accelerators. In the long term, complex, high-gain pellets may be used in pure fusion reactors

  2. Effects of magnetization on fusion product trapping and secondary neutron spectra

    International Nuclear Information System (INIS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.

    2015-01-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux

  3. Neutrons and fusion

    International Nuclear Information System (INIS)

    Maynard, C.W.

    1976-01-01

    The production of energy from fusion reactions does not require neutrons in the fundamental sense that they are required in a fission reactor. Nevertheless, the dominant fusion reaction, that between deuterium and tritium, yields a 14 MeV neutron. To contrast a fusion reactor based on this reaction with the fission case, 3 x 10 20 such neutrons produced per gigawatt of power. This is four times as many neutrons as in an equivalent fission reactor and they carry seven times the energy of the fission neutrons. Thus, they dominate the energy recovery problem and create technological problems comparable to the original plasma confinement problem as far as a practical power producing device is concerned. Further contrasts of the fusion and fission cases are presented to establish the general role of neutrons in fusion devices. Details of the energy deposition processes are discussed and those reactions necessary for producing additional tritium are outlined. The relatively high energy flux with its large intensity will activate almost any materials of which the reactor may be composed. This activation is examined from the point of view of decay heat, radiological safety, and long-term storage. In addition, a discussion of the deleterious effects of neutron interactions on materials is given in some detail; this includes the helium and hydrogen producing reactions and displacement rate of the lattice atoms. The various materials that have been proposed for structural purposes, for breeding, reflecting, and moderating neutrons, and for radiation shielding are reviewed from the nuclear standpoint. The specific reactions of interest are taken up for various materials and finally a report is given on the status and prospects of data for fusion studies

  4. Peaceful Uses of Fusion

    Science.gov (United States)

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  5. Fusion-fission dynamics and perspectives of future experiments

    International Nuclear Information System (INIS)

    Zagrebaev, V.I.; Itkis, M.G.; Oganessian, Yu.Ts.

    2003-01-01

    The paper is focused on reaction dynamics of superheavy-nucleus formation and decay at beam energies near the Coulomb barrier. The aim is to review the things we have learned from recent experiments on fusion-fission reactions leading to the formation of compound nuclei with Z ≥ 102 and from their extensive theoretical analysis. Major attention is paid to the dynamics of formation of very heavy compound nuclei taking place in strong competition with the process of fast fission (quasifission). The choice of collective degrees of freedom playing a fundamental role and finding the multidimensional driving potential and the corresponding dynamic equation regulating the whole process are discussed. A possibility of deriving the fission barriers of superheavy nuclei directly from performed experiments is of particular interest here. In conclusion, the results of a detailed theoretical analysis of available experimental data on the 'cold' and 'hot' fusion-fission reactions are presented. Perspectives of future experiments are discussed along with additional theoretical studies in this field needed for deeper understanding of the fusion-fission processes of very heavy nuclear systems

  6. Hot nuclei production in Ar+Ag reactions at 50 and 70 MeV/u: limits of decay standard mode

    International Nuclear Information System (INIS)

    Vient, E.

    1992-04-01

    The experiment discussed in this thesis is devoted to the study of hot nuclei produced in the Ar + Ag collisions at 50 and 70 MeV per nucleon. Special emphasis has been given to the standard decay of these nuclei, i.e. to the sequential evaporation process leading to a heavy residue. The experimental set up has been triggered by a residue detector and all the evaporated light charged particles have been detected in a large area set up covering nearly the whole space. It has been possible to sort all the detected particles and to isolate those evaporated from the initial hot nuclei, the initial characteristics of which have been reconstructed. Two important features have been stressed: - A shot nuclei can sustain an excitation energy of 6 MeV/a and a temperature of 8 MeV without disintegrating completely. - The distributions of excitation energy stored at 50 and 70 MeV/nucleon are similar. This result can refled either an entrance channel property or a hot nuclei behaviour. Further results obtained in this work give arguments supporting the first interpretation

  7. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  8. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  9. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  10. Atomic data for fusion

    International Nuclear Information System (INIS)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research

  11. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through...... individual fusion events using time-lapse and antagonists of CD47 and syncytin-1. All time-lapse recordings have been studied by two independent observers. A total of 1808 fusion events were analyzed. The present study shows that CD47 and syncytin-1 have different roles in osteoclast fusion depending...... broad contact surfaces between the partners' cell membrane while syncytin-1 mediate fusion through phagocytic-cup like structure. J. Cell. Physiol. 9999: 1-8, 2016. © 2016 Wiley Periodicals, Inc....

  12. Cell fusion by ionizing radiation

    International Nuclear Information System (INIS)

    Khair, M.B.

    1993-08-01

    The relevance and importance of cell fusion are illustrated by the notion that current interest in this phenomenon is shared by scientists in quite varied disciplines. The diversity of cellular membrane fusion phenomena could provoke one to think that there must be a multitude of mechanisms that can account for such diversity. But, in general, the mechanism for the fusion reaction itself could be very similar in many, or even all, cases. Cell fusion can be induced by several factors such as virus Sendai, polyethylene glycol, electric current and ionizing radiation. This article provides the reader with short view of recent progress in research on cell fusion and gives some explanations about fusion mechanisms. This study shows for the first time, the results of the cell fusion induced by ionizing radiations that we have obtained in our researches and the work performed by other groups. (author). 44 refs

  13. The fusion-fission hybrid

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    As the history of the development of fusion energy shows, a sustained controlled fusion reaction is much more difficult to produce than rapid uncontrolled release of fusion energy. Currently, the ''magnetic bottle'' technique shows sufficient progress that it might applied for the commercial fuel production of /sup 233/U, suitable for use in fission reactors, by developing a fusion-fission hybrid. Such a device would consist of a fusion chamber core surrounded by a region containing cladded uranium pellets cooled by helium, with lithium salts also present to produce tritium to refuel the fusion process. Successful development of this hybrid might be possible within 10 y, and would provide both experience and funds for further development of controlled fusion energy

  14. Designing an Epithermal Neutron Beam for Boron Neutron Capture Therapy for the Fusion Reactions 2H(d,n)3He and 3H(d,n)4He1

    International Nuclear Information System (INIS)

    Verbeke, J.M.; Costes, S.V.; Bleuel, D.; Vujic, J.; Leung, K.N.

    1998-01-01

    A beam shaping assembly has been designed to moderate high energy neutrons from the fusion reactions 2 H(d,N) 3 He and 3 H(d,n) 4 He for use fin boron neutron capture therapy. The low neutron yield of the 2 H(d,n) 3 He reaction led to unacceptably long treatment times. However, a 160 mA deuteron beam of energy 400 keV led to a treatment time of 120 minutes with the reaction 3 H(d,n) 4 He. Equivalent doses of 9.6 Gy-Eq and 21.9 Gy-Eq to the skin and to a 8 cm deep tumor respectively have been computed

  15. Neutron-capture reactions by stable and unstable neutron-rich nuclei and their relevance for nucleosynthesis in hot and explosive astrophysical scenarios

    International Nuclear Information System (INIS)

    Hofinger, R.

    1997-10-01

    This thesis deals on the one hand with neutron-capture reactions by carbon-, nitrogen-, oxygen- and sulfur-isotopes, and on the other hand with the two-step processes 4 He(2n, γ) 6 He and 9 Li(2n, γ) 11 Li. Some of the involved carbon-, nitrogen- and oxygen-isotopes possess neutron-halos characterized by the unexpected large radial extension of the nuclear matter density distribution. Special attention is paid to the halo properties in the calculation of the direct neutron capture cross section. For the determination of the nuclear structure, models are used, when no experimental information is available. The results for the reaction rates are compared to previously used rates. The rates obtained in this work are partly orders of magnitude higher than the previously used reaction rates. The reaction rates for the two-step processes are on the one hand calculated assuming a two-step process, on the other hand from genuine three-body models for the process of photodisintegration of the nuclei 6 He and 11 Li. It turns out that the calculations assuming a trio-step process underestimate the reaction rates by orders of magnitude. The influence of the reaction rate for the reaction 4 He(2n, γ) 6 He and the formation of 12 C is examined in a nuclear reaction network under conditions which are typical for the α- process in supernovae of type II. It turns out that under these conditions the influence of the reaction 4 He(2n, γ) 6 He is negligible on the formation of 12 C. (author)

  16. Perspectives of fusion power

    International Nuclear Information System (INIS)

    Jensen, V.O.

    1984-01-01

    New and practically inexhaustible sources of energy must be developed for the period when oil, coal and uranium will become scarce and expensive. Nuclear fusion holds great promise as one of these practically inexhaustible energy sources. Based on the deuteriumtritium reaction with tritium obtained from naturally occuring lithium, which is also widely available in Europe, the accessible energy resources in the world are 3.10 12 to 3.10 16 toe; based on the deuterium-deuterium reaction, the deuterium content of the oceans corresponds to 10 20 toe. It is presently envisaged that in order to establish fusion as a large-scale energy source, three major thresholds must be reached: - Scientific feasibility, - Technical feasibility, i.e. the proof that the basic technical problems of the fusion reactor can be solved. - Commercial feasibility, i.e. proof that fusion power reactors can be built on an industrial scale, can be operated reliably and produce usable energy at prices competitive with other energy sources. From the above it is clear that the route to commercial fusion will be long and costly and involve the solution of extremely difficult technical problems. In view of the many steps which have to be taken, it appears unlikely that commercial fusion power will be in general use within the next 50 years and by that time world-wide expenditure on research, development and demonstration may well have exceeded 100 Bio ECU. (author)

  17. Laser-induced nuclear fusion

    International Nuclear Information System (INIS)

    Jablon, Claude

    1977-01-01

    Research programs on laser-induced thermonuclear fusion in the United States, in Europe and in USSR are reviewed. The principle of the fusion reactions induced is explained, together with the theoretical effects of the following phenomena: power and type of laser beams, shape and size of the solid target, shock waves, and laser-hydrodynamics coupling problems [fr

  18. The status of cold fusion

    Science.gov (United States)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  19. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP)

  20. Material for fusion reactor

    International Nuclear Information System (INIS)

    Abhishek, Anuj; Ranjan, Prem

    2011-01-01

    To make nuclear fusion power a reality, the scientists are working restlessly to find the materials which can confine the power generated by the fusion of two atomic nuclei. A little success in this field has been achieved, though there are still miles to go. Fusion reaction is a special kind of reaction which must occur at very high density and temperature to develop extremely large amount of energy, which is very hard to control and confine within using the present techniques. As a whole it requires the physical condition that rarely exists on the earth to carry out in an efficient manner. As per the growing demand and present scenario of the world energy, scientists are working round the clock to make effective fusion reactions to real. In this paper the work presently going on is considered in this regard. The progress of the Joint European Torus 2010, ITER 2005, HiPER and minor works have been studied to make the paper more object oriented. A detailed study of the technological and material requirement has been discussed in the paper and a possible suggestion is provided to make a contribution in the field of building first ever nuclear fusion reactor

  1. Fusion power

    International Nuclear Information System (INIS)

    Hancox, R.

    1981-01-01

    The principles of fusion power, and its advantages and disadvantages, are outlined. Present research programmes and future plans directed towards the development of a fusion power reactor, are summarized. (U.K.)

  2. Cold nuclear fusion device

    International Nuclear Information System (INIS)

    Ogino, Shinji.

    1991-01-01

    Selection of cathode material is a key to the attainment of cold nuclear fusion. However, there are only few reports on the cathode material at present and an effective development has been demanded. The device comprises an anode and a cathode and an electrolytic bath having metal salts dissolved therein and containing heavy water in a glass container. The anode is made of gold or platinum and the cathode is made of metals of V, Sr, Y, Nb, Hf or Ta, and a voltage of 3-25V is applied by way of a DC power source between them. The metal comprising V, Sr, Y, Nb, Hf or Ta absorbs deuterium formed by electrolysis of heavy water effectively to cause nuclear fusion reaction at substantially the same frequency and energy efficiency as palladium and titanium. Accordingly, a cold nuclear fusion device having high nuclear fusion generation frequency can be obtained. (N.H.)

  3. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  4. Progress in hot pressing

    International Nuclear Information System (INIS)

    Brodhag, C.; Thevenot, F.

    1988-01-01

    An experimental technique is described to study hot pressing of ceramics under conditions of controlled temperature and pressure during both the heating and final sintering stages. This method gives a better control of the final microstructure of the material. Transformation mechanisms can be studied during initial heating stage (impurity degasing, reaction, phase transformation, mechanical behavior of intergranular phase...) using computer control and graphical data representations. Some examples will be given for different systems studied in our laboratory: B (α, β, amorphous), B 12 O 2 (reaction of B + B 2 O 3 ), Si 3 N 4 ( + additives), TiN, Al 2 O 3 + AlON,ZrC

  5. Fusion: introduction

    International Nuclear Information System (INIS)

    Decreton, M.

    2006-01-01

    The article gives an overview and introduction to the activities of SCK-CEN's research programme on fusion. The decision to construct the ITER international nuclear fusion experiment in Cadarache is highlighted. A summary of the Belgian contributions to fusion research is given with particular emphasis on studies of radiation effects on diagnostics systems, radiation effects on remote handling sensing systems, fusion waste management and socio-economic studies

  6. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  7. Fusion Canada

    International Nuclear Information System (INIS)

    1987-07-01

    This first issue of a quarterly newsletter announces the startup of the Tokamak de Varennes, describes Canada's national fusion program, and outlines the Canadian Fusion Fuels Technology Program. A map gives the location of the eleven principal fusion centres in Canada. (L.L.)

  8. Fusion reactor in which the hydrogen plasma is heated, confined, and stabilized by oscillating magnetic fields in the center of a spherical or toroidal reaction vessel

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The two most difficult problems in the tests for controlled nuclear fusion are heating of the plasma to fusion temperature as well as the safe confinement in a magnetic field. According to the invention, low-resistance, low-inductive, iron-free AC compression coils are provided for dealing with these two problems the coils being arranged on the reactor vessel in such a way that both effective heating and a sufficient enclosure time are possible. It is of essential importance in this connection that the coils are fed with a relatively rectangular alternating current, which is variable with respect to frequency and power. (orig./GG) [de

  9. Plasma nuclear fusion method

    International Nuclear Information System (INIS)

    Yamazaki, Shunpei; Miyanaga, Shoji; Wakaizumi, Kazuhiro; Takemura, Yasuhiko.

    1990-01-01

    Nuclear fusion reactions are attained by plasma gas phase reactions using magnetic fields and microwaves, and the degree of the reactions is controlled. That is, deuterium (D 2 ) is introduced into a plasma container by utilizing the resonance of microwaves capable of generating plasmas at high density higher by more than 10 - 10 3 times as compared with the high frequency and magnetic fields, and an electric energy is applied to convert gaseous D 2 into plasmas and nuclear fusion is conducted. Further, the deuterium ions in the plasmas are attracted to a surface of a material causing nuclear fusion under a negatively biased electric field from the outside (typically represented by Pd or Ti). Then, deuterium nuclei (d) or deuterium ions collide to the surface of the cathode on the side of palladium to conduct nuclear reaction at the surface or the inside (vicinity) thereof. However, a DC bias is applied as an external bias with the side of the palladium being negative. The cold nuclear fusion was demonstrated by placing a neutron counter in the vicinity of the container and confirming neutrons generated there. (I.S.)

  10. An electrolytic route to fusion?

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A patent has been granted by the Swedish Patent Authority for a new process to initiate and control energy generation through fusion reactions of hydrogen. According to the patent-holder, the Swedish company AB Technology Development, the fusion power process could be available for commercial applications within 4-5 years if laboratory and pilot plant tests prove successful. The new process employs a high voltage discharge in heavy water to create conditions under which, according to the patent holder, a high probability of fusion is achieved without the extraordinary high temperatures required in a conventional fusion reactor. (author)

  11. Gas to liquid to solid transition in halogen hot atom chemistry. 6. Product formation routes and chemical selectivity of high energy iodine reactions with butyne isomers

    International Nuclear Information System (INIS)

    Garmestani, S.K.; Firouzbakht, M.L.; Rack, E.P.

    1979-01-01

    Reactions of recoil produced iodine-128 with isomers of butyne were studied in gaseous, high pressure, and condensed phase conditions, with rare gas additives and in the presence and absence of radical scavengers (I 2 and O 2 ). It was found that recoil iodine-128 reactions were initiated by thermal electronically excited I + species for both 1-butyne and 2-butyne systems. While the diverse and complex nature of the reactions cannot be explained by simple chemical parameters, comparisons among the alkyne systems demonstrate preferential attack of iodine at the triple bond resulting, mainly, in electronically excited intermediates. A comparison of the various product formation routes results in the characterization of general traits common to the alkynes. 6 figures, 4 tables

  12. Hot nuclei, limiting temperatures and excitation energies

    International Nuclear Information System (INIS)

    Peter, J.

    1986-09-01

    Hot fusion nuclei are produced in heavy ion collisions at intermediate energies (20-100 MeV/U). Information on the maximum excitation energy per nucleon -and temperatures- indicated by the experimental data is compared to the predictions of static and dynamical calculations. Temperatures around 5-6 MeV are reached and seem to be the limit of formation of thermally equilibrated fusion nuclei

  13. Fusion barrier distributions and fission anisotropies

    International Nuclear Information System (INIS)

    Hinde, D.J.; Morton, C.R.; Dasgupta, M.; Leigh, J.R.; Lestone, J.P.; Lemmon, R.C.; Mein, J.C.; Newton, J.O.; Timmers, H.; Rowley, N.; Kruppa, A.T.

    1995-01-01

    Fusion excitation functions for 16,17 O+ 144 Sm have been measured to high precision. The extracted fusion barrier distributions show a double-peaked structure interpreted in terms of coupling to inelastic collective excitations of the target. The effect of the positive Q-value neutron stripping channel is evident in the reaction with 17 O. Fission and evaporation residue cross-sections and excitation functions have been measured for the reaction of 16 O+ 208 Pb and the fusion barrier distribution and fission anisotropies determined. It is found that the moments of the fusion l-distribution determined from the fusion and fission measurements are in good agreement. ((orig.))

  14. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  15. Experimental investigation of the confinement of d(He-3,p)alpha and d(d,p)t fusion reaction products in JET

    Czech Academy of Sciences Publication Activity Database

    Bonheure, G.; Hult, M.; González de Orduña, R.; Arnold, D.; Dombrowski, H.; Laubenstein, M.; Wieslander, E.; Vidmar, T.; Vermaercke, P.; Von Thun, C.P.; Reich, M.; Jachmich, S.; Murari, A.; Popovichev, S.; Mlynář, Jan; Salmi, A.; Asunta, O.; Garcia-Munoz, M.; Pinches, S.; Koslowski, R.; Nielsen, S.K.

    2012-01-01

    Roč. 52, č. 8 (2012), s. 083004 ISSN 0029-5515 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * activation * diagnostics * fusion * confinement Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.734, year: 2012 http://iopscience.iop.org/0029-5515/52/8/083004?fromSearchPage=true

  16. Nuclear physics for nuclear fusion

    International Nuclear Information System (INIS)

    Li Xingzhong; Liu Bin; Wei Qingming; Ren Xianzhe

    2004-01-01

    The D-T fusion cross-section is calculated using quantum mechanics with the model of square nuclear potential well and Coulomb potential barrier. The agreement between ENDF data and the theoretically calculated results is well in the range of 0.2-280 keV. It shows that the application of Breit-Wigner formula is not suitable for the case of the light nuclei fusion reaction. When this model is applied to the nuclear reaction between the charged particles confined in a lattice, it explains the 'abnormal phenomena'. It implies a prospect of nuclear fusion energy without strong nuclear radiations

  17. Fusion - 2050 perspective (in Polish)

    CERN Document Server

    Romaniuk, R S

    2013-01-01

    The results of strongly exothermic reaction of thermonuclear fusion between nuclei of deuterium and tritium are: helium nuclei and neutrons, plus considerable kinetic energy of neutrons of over 14 MeV. DT nuclides synthesis reaction is probably not the most favorable one for energy production, but is the most advanced technologically. More efficient would be possibly aneutronic fusion. The EU by its EURATOM agenda prepared a Road Map for research and implementation of Fusion as a commercial method of thermonuclear energy generation in the time horizon of 2050.The milestones on this road are tokomak experiments JET, ITER and DEMO, and neutron experiment IFMIF. There is a hope, that by engagement of the national government, and all research and technical fusion communities, part of this Road Map may be realized in Poland. The infrastructure build for fusion experiments may be also used for material engineering research, chemistry, biomedical, associated with environment protection, power engineering, security, ...

  18. The Effect of Cooling Vest on Heat Strain Indexes and Reaction Time While Wearing Chemical-Microbial-Radioactive Protective Clothing in Hot and Dry Laboratory Conditions

    Directory of Open Access Journals (Sweden)

    Dehghan

    2016-09-01

    Full Text Available Background Heat is a harmful factor in workplaces that causes physiologic and cognitive changes in workers. Objectives The purpose of this study was to investigate the effect of cooling vest on heat strain and reaction time while wearing chemical-biological-nuclear protective clothes. Methods Twelve male students with mean age of 25 ± 2 and body mass index (BMI of 23 ± 1.5 were recruited in the experiment. Each student ran on a treadmill with a speed of 2.4 km/hour in the climate chamber at 35°C and 30% relative humidity. physiological strain index score, oral temperature, heart rate, reaction time and number of errors were measured at the end of the two levels and analyzed by the SPSS software. Results Wilcoxon test showed that the differences of physiological strain index score (P = 0.02, oral temperature (P = 0.02, reaction time (P = 0.02, heart Rate (P = 0.02 and errors (P = 0.03 with and without the cooling vest were significant. The mean physiological strain index score without cooling vest was 4.038 ± 0.882 and with the cooling vest was 1.42 ± 0.435. The mean reaction time without and with the cooling vest was 0.769 ± 0.0972 and 0.539 ± 0.977, respectively. Conclusions The results of the study showed that the cooling vest reduces the physiological strain, reaction time and errors rate of workers.

  19. Muon nuclear fusion and low temperature nuclear fusion

    International Nuclear Information System (INIS)

    Nagamine, Kanetada

    1990-01-01

    Low temperature (or normal temperature) nuclear fusion is one of the phenomena causing nuclear fusion without requiring high temperature. In thermal nuclear fusion, the Coulomb barrier is overcome with the help of thermal energy, but in the low temperature nuclear fusion, the Coulomb barrier is neutralized by the introduction of the particles having larger mass than electrons and negative charges, at this time, if two nuclei can approach to the distance of 10 -13 cm in the neutral state, the occurrence of nuclear fusion reaction is expected. As the mass of the particles is heavier, the neutral region is smaller, and nuclear fusion is easy to occur. The particles to meet this purpose are the electrons within substances and muons. The research on muon nuclear fusion became suddenly active in the latter half of 1970s, the cause of which was the discovery of the fact that the formation of muons occurs resonantly rapidly in D-T and D-D systems. Muons are the unstable elementary particles having the life of 2.2 μs, and they can have positive and negative charges. In the muon catalyzed fusion, the muons with negative charge take part. The principle of the muon catalyzed fusion, its present status and future perspective, and the present status of low temperature nuclear fusion are reported. (K.I.)

  20. Cold-fusion as safe and hazardless energy-source of the 21st century

    International Nuclear Information System (INIS)

    Gupta, R.C.; Gupta, Sushant

    2012-01-01

    Out of the two processes for nuclear-energy; nuclear-fission is plagued with problem of nuclear-radiation hazard, whereas though nuclear-fusion is safe but almost impossible to be done on earth specially at room- temperature. In 1989, two scientists Fleischmann and Pons in USA proposed a table-top, room temperature electrolysis-experiment of heavy-water with palladium-electrode; this is commonly called cold-fusion wherein nuclear-fusion is said to be taking place. This created a big storm and controversy in the scientific community. Initially the cold-fusion was heavily criticized and several objections (such as: non-reproducibility, non-observation of telltale signature of nuclear-reaction) were raised. The research-work of McKubre and others have clarified the objections and have established that for cold-fusion to take place certain threshold conditions (such as purity of electrode, current-density, deuterium to palladium loading ratio) needs to be satisfied. In due course of time, the Truth prevailed and the cold-fusion got more and more support by many scientists in several countries including India (BARC historic role has been appreciated worldwide). Biggest objection, however, was lack of a proper theory for how Coulomb-repulsion is overcome in cold-fusion. A possible explanation for how the Coulomb-repulsion is overcome, is given in this paper; which is based on a new-found Gupta-Dinu effect, which is a natural outcome of special-relativity via modification in Lorentz force formula. The recent nuclear-accidents have raised international-opinion against nuclear-fission, whereas sin-like hot-fusion on earth is not possible. Now it seems that ultimately it is the cold-fusion which will provide hazardless neat and cheap energy for the 21 st century and India could play a leading role in this direction. (author)

  1. Concepts for fusion fuel production blankets

    International Nuclear Information System (INIS)

    Gierszewski, P.

    1986-06-01

    The fusion blanket surrounds the burning hydrogen core of the fusion reactor. It is in this blanket that most of the energy released by the DT fusion reaction is converted into useable product, and where tritium fuel is produced to enable further operation of the reactor. Blankets will involve new materials, conditions and processes. Several recent fusion blanket concepts are presented to illustrate the range of ideas

  2. Can 250+ fusions per muon be achieved?

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Nuclear fusion of hydrogen isotopes can be induced by negative muons (μ) in reactions such as: μ - + d + t → α + n + μ - . This reaction is analagous to the nuclear fusion reaction achieved in stars in which hydrogen isotopes (such as deuterium, d, and tritium, t) at very high temperatures first penetrate the Coulomb repulsive barrier and then fuse together to produce an alpha particle (α) and a neutron (n), releasing energy. The muon in general reappears after inducing fusion so that the reaction can be repeated many (N) times. Thus, the muon may serve as an effective catalyst for nuclear fusion. Muon-catalozed fusion is unique in that it proceeds rapidly in deuterium-tritium mixtures at relatively cold temperatures, e.g., room temperature. The need for plasma temperatures to initiate fusion is overcome by the presence of the muon

  3. Nuclear fusion: power for the next century

    International Nuclear Information System (INIS)

    1980-05-01

    The basis of fusion reactions is outlined, with special reference to deuterium and tritium (from lithium, by neutron reaction) as reactants, and the state of research worldwide is indicated. The problems inherent in fusion reactions are discussed, plasma is defined, and the steps to be taken to generate electricity from controlled nuclear fusion are stated. Methods of plasma heating and plasma confinement are considered, leading to a description of the tokamak plasma confinement system. Devices under construction include the JET (Joint European Torus) Undertaking in the UK. Plans and possibilities for fusion reactors are discussed. (U.K.)

  4. Fusion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Lackner, Karl; Tran, Minh Quang [eds.

    2012-09-15

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  5. Advanced fusion reactor

    International Nuclear Information System (INIS)

    Tomita, Yukihiro

    2003-01-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p- 6 Li and p- 11 B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D- 3 He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D- 3 He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of 3 He per a year. On the other hand, 1 million tons of 3 He is estimated to be in the moon. The 3 He of about 10 23 kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  6. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  7. Status of fusion technology

    International Nuclear Information System (INIS)

    Mohan, Ashok

    1978-01-01

    The current status of fusion technology is surveyed. Limited reserves of fossil fuel and dangers of proliferation from nuclear reactors have brought into focus the need to develop an optional energy source. Fusion is being looked upon as an optional energy source which is free from environmental hazards unlike fossil fuels and nuclear reactors. Investments in R and D of fusion energy have increased rapidly in USA, Japan, USSR and European countries. Out of the various fusion fuels known, a mixture of D and T is widely chosen. The main problem in fusion technology is the confinement of plasma for a time sufficient to start the fusion reaction. This can be done magnetically or inertially. The three approaches to magnetic confinement are : (1) tokamak, (2) mirror and (3) pinch. Inertial confinement makes use of lasers or electron beams or ion beams. Both the methods of confinement i.e. magnetic and inertial have problems which are identified and their nature is discussed. (M.G.B.)

  8. Gas to liquid to solid transition in halogen hot atom chemistry. II. Systematics of bromine reactions activated by radiative neutron capture and isomeric transition with halomethanes

    International Nuclear Information System (INIS)

    Berg, M.E.; Grauer, W.M.; Helton, R.W.; Rack, E.P.

    1975-01-01

    Bromine reactions activated by 79 Br(n,γ) 80 Br, 81 Br(n,γ)/sup 82m/Br + 82 Br, and /sup 82m/Br(I.T.) 82 Br nuclear transformations were studied in halomethanes as functions of mole fraction of Br 2 , phase, density, and intermolecular distance. Gas phase systematics coupled with the density and mole fraction of Br 2 studies demonstrate the existence of systematic trends in the condensed phases as evidenced by the Richardson--Wolfgang effect. A definitive difference due to activation that is independent of system and suggests the importance of caging at higher densities is shown by the variation of total and individual organic product yields with density. The study of total organic product yield vs. intermolecular distance provides both a means of separating cage and molecular reactions and suggests the importance of molecular properties in the caging event. (U.S.)

  9. High convergence, indirect drive inertial confinement fusion experiments at Nova

    International Nuclear Information System (INIS)

    Lerche, R.A.; Cable, M.D.; Hatchett, S.P.; Caird, J.A.; Kilkenny, J.D.; Kornblum, H.N.; Lane, S.M.; Laumann, C.; Murphy, T.J.; Murray, J.; Nelson, M.B.; Phillion, D.W.; Powell, H.; Ress, D.

    1996-01-01

    High convergence, indirect drive implosion experiments have been done at the Nova Laser Facility. The targets were deuterium and deuterium/tritium filled, glass microballoons driven symmetrically by x rays produced in a surrounding uranium hohlraum. Implosions achieved convergence ratios of 24:1 with fuel densities of 19 g/cm 3 ; this is equivalent to the range required for the hot spot of ignition scale capsules. The implosions used a shaped drive and were well characterized by a variety of laser and target measurements. The primary measurement was the fuel density using the secondary neutron technique (neutrons from the reaction 2 H( 3 H,n) 4 He in initially pure deuterium fuel). Laser measurements include power, energy and pointing. Simultaneous measurement of neutron yield, fusion reaction rate, and x-ray images provide additional information about the implosion process. Computer models are in good agreement with measurement results. copyright 1996 American Institute of Physics

  10. Intense fusion neutron sources

    International Nuclear Information System (INIS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-01-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10 15 -10 21 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10 20 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  11. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  12. Observation of stars produced during cold fusion

    International Nuclear Information System (INIS)

    Matsumoto, T.

    1992-01-01

    It has been indicated tht multiple-neutron nuclei such as quad-neutrons can be emitted during cold fusion. These multiple-neutrons might bombard the nuclei of materials outside a cold fusion cell to cause nuclear reactions. In this paper, observations of nuclear emulsions that were irradiated during a cold fusion experiment with heavy water and palladium foil are described. Various traces, like stars, showing nuclear reactions caused by the multiple-neutrons have been clearly observed

  13. HOT 2017

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis.......HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis....

  14. Fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  15. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Schultz, K.R.; Smith, A.C. Jr.

    1978-01-01

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  16. Cold fusion in perspective

    International Nuclear Information System (INIS)

    Sanford, L.

    1989-01-01

    Since early April a great deal of excitement has been created over the Fleischmann/Pons cold fusion experiment, which if it performs as advertised, could turn out to be mankind's best hope of heading off the energy crisis scheduled for early in the next century. Dozens of groups around the world are now attempting to duplicate the experiment to see if Fleischmann and Pons' discovery is an experimental mistake, an unknown electrochemical effect or a new kind of fusion reaction. This article puts the experiment into the perspective of today and looks at how it might affect the energy scene tomorrow if it should turn out to be commercially exploitable. (author)

  17. Fusion research in the European Community

    International Nuclear Information System (INIS)

    Wolf, G.H.

    1988-01-01

    Centering around the European joint project Joint European Torus (JET), in the framework of which hot fusion plasmas are already brought close to thermonuclear ignition, the individual research centres in Europe have taken over different special tasks. In Germany research concentrates above all on the development of super-conductive magnets, the stage of plasma-physical fundamentals or the investigation of the interaction between the plasma boundary layer and the material of the vessel wall. On this basis the development stage following JET, the Next European Torus (NET), is planned, with its main aim being the production and maintenance of a thermonuclear burning plasma, i.e. a plasma which maintains its active state from the gain of energy of its own fusion reactions. In the framework of a contractually agreed cooperation between the European Community, Japan, the USSR and the USA, the establishment of an international study group (with seat in Garching) was decided upon, which is to develop the concept of an 'International Thermonuclear Experimental Reactor (ITER)' jointly supported by these countries. The results of the studies presented show that the differences in the design data of ITER and NET are negligible. (orig./DG) [de

  18. Muon-catalyzed fusion: A new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  19. Muon-catalyzed fusion: a new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  20. Fusion Implementation

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    2002-01-01

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans

  1. The Physics of Inertial Fusion

    International Nuclear Information System (INIS)

    Lebedev, S

    2004-01-01

    The growing effort in inertial confinement fusion (ICF) research, with the upcoming new MJ class laser facilities, NIF in USA and LMJ in France, and the upgraded MJ z-pinch ZR facility in the USA, makes the appearance of this book by Atzeni and Meyer-ter-Vehn very timely. This book is an excellent introduction for graduate or masters level students and for researchers just entering the field. It is written in a very pedagogical way with great attention to the basic understanding of the physical processes involved. The book should also be very useful to researchers already working in the field as a reference containing many key formulas from different relevant branches of physics; experimentalists will especially appreciate the presence of 'ready-to-use' numerical formulas written in convenient practical units. The book starts with a discussion of thermonuclear reactions and conditions required to achieve high gain in ICF targets, emphasizing the importance of high compression of the D-T fuel, and compares the magnetic confinement fusion and inertial confinement fusion approaches. The next few chapters discuss in detail the basic concepts of ICF: the hydrodynamics of a spherically imploding capsule, ignition and energy gain. This is followed by a thorough discussion of the physics of thermal waves, ablative drive and hydrodynamic instabilities, with primary focus on the Rayleigh--Taylor instability. The book also contains very useful chapters discussing the properties of hot dense matter (ionization balance, equation of state and opacity) and the interaction of laser and energetic ion beams with plasma. The book is based on and reflects the research interests of the authors and, more generally, the European activity in this area. This could explain why, in my opinion, some topics are covered in less detail than they deserve, e.g. the chapter on hohlraum physics is too brief. On the other hand, the appearance in the book of an interesting chapter on the concept of

  2. Impact parameter selected nuclear temperatures of hot nuclei from excited state populations for 40Ar+197Au reactions at E/A=25MeV

    International Nuclear Information System (INIS)

    Li Zuyu; He Zhiyong; Duan Limin; Jin Genming; Wu Heyu; Zhang Baoguo; Wen Wanxin; Qi Yujin; Luo Qingzheng; Dai Guangxi; Wang Hongwei

    1997-01-01

    Nuclear temperatures extracted from excited state populations were measured as a function of linear momentum transfer (LMT) for 40 Ar+ 197 Au reactions at 25MeV/nucleon. The emission temperatures increased slightly with increasing linear momentum transfer or decreasing impact parameter. Taking into account the corrections of detection efficiency and sequential feeding from higher-lying states, a temperature of T∼4MeV was deduced for central collisions. For peripheral collisions the extracted temperatures increased with the energy of the particles. (orig.)

  3. Study of the decay of hot nuclear systems formed in Au-induced reactions at E/A=60 MeV

    International Nuclear Information System (INIS)

    Delis, D.N.; Colonna, N.; Sui, Q.; Tso, K.

    1993-01-01

    Multifragment production was measured for the 197 Au + 12 C, 27 Al, 51 V, 63 Cu and 197 Au reactions at E/A= 60 MeV. Comparison of experimental observables to calculations with a dynamical code coupled to a statistical model indicates agreement with some features of the experimental data. Furthermore the logarithms of the branching ratios for binary, ternary, quaternary, and quinary decays plotted as a function of E -1/2 show a linear dependence that ,strongly suggests a statistical competition between the various multifraigment channels. Finally, by utilizing the momentum tensor, the shape of the most central events in momentum space has been determined

  4. Review for 'Nattoh' model and experimental findings during cold fusion

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki

    1993-01-01

    A review is described for the Nattoh model that provides the framework of the mechanisms of cold fusion. The model classifies the reactions into two categories: fundamental and associated reactions. The former involves the new 'hydrogen-catalyzed' fusion reaction and the chain-reactions of hydrogens. And extremely exciting physics are involved in the latter. Furthermore experimental findings are described. (author)

  5. Magneized target fusion: An overview of the concept

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.

    1994-01-01

    Magnetized target fusion (MTF) seeks to take advantage of the reduction of thermal conductivity through the application of a strong magneticfield and thereby ease the requirements for reaching fusion conditions in a thermonuclear (TN) fusion fuel. A potentially important benefit of the strong field in the partial trapping of energetic charged particles to enhance energy deposition by the TN fusion reaction products. The essential physics is described. MTF appears to lead to fusion targets that require orders of magnitude less power and intensity for fusion ignition than currently proposed (unmagnetized) inertial confinement fusion (ICF) targets do, making some very energetic pulsed power drivers attractive for realizing controlled fusion

  6. Electron Shock Ignition of Inertial Fusion Targets

    International Nuclear Information System (INIS)

    Shang, W. L.; Betti, R.; Hu, S. X.; Woo, K.; Hao, L.

    2017-01-01

    Here, it is shown that inertial fusion targets designed with low implosion velocities can be shock ignited using laser–plasma interaction generated hot electrons (hot-e) to obtain high-energy gains. These designs are robust to multimode asymmetries and are predicted to ignite even for significantly distorted implosions. Electron shock ignition requires tens of kilojoules of hot-e, which can only be produced on a large laser facility like the National Ignition Facility, with the laser to hot-e conversion efficiency greater than 10% at laser intensities ~10 16 W/cm 2 .

  7. Study of the fusion process in 28Si + 28Si and 28Si + 12C reactions: search for deformation effects in the 56Ni and 40Ca compound nuclei

    International Nuclear Information System (INIS)

    Rousseau, M.

    2000-12-01

    The initial purpose of this work was to find likely deformed configurations in light nuclei with alpha sub-structure, through the study of light particle emission during the decay of 56 Ni and 40 Ca nuclei produced in the 28 Si + 28 Si and 28 Si + 12 C reactions respectively. The first chapter is an introduction and this work is presented as a contribution to the study of fusion-fission processes that have been recently discovered in light heavy ion reactions. The second chapter is dedicated to experimental methods and particularly to the ICARE multi-detector that operates on a Vivitron Tandem accelerator. In the third chapter we present and discuss experimental observables, we show that most experimental data can be interpreted as the consequence of the formation of a completely balanced (in all its freedom degrees) system (the compound nucleus) that de-excites through the statistical emission of light particles. In the chapter 4 we interpret the energy spectra and angular correlation for both reactions in the framework of the statistical model through the use of codes based on the Hauser-Feshbach method. We show that it is necessary to introduce a dependence in terms of angular moment for the moment of inertia to fit well experimental data. Important disagreements concerning the 28 Si + 12 C reactions back the idea of a significant emission of 8 Be cluster in the exit channel 32 S + 8 Be. We show that this emission is due to an alpha transfer. (A.C.)

  8. Cold nuclear fusion. Germany 2012

    Energy Technology Data Exchange (ETDEWEB)

    Petrescu, Florian Ion

    2012-07-01

    Nuclear fusion is the process by which two or more atomic nuclei join together, or ''fuse'', to form a single heavier nucleus. During this process, matter is not conserved because some of the mass of the fusing nuclei is converted to energy which is released. The binding energy of the resulting nucleus is greater than the binding energy of each of the nuclei that fused to produce it. Fusion is the process that powers active stars. Creating the required conditions for fusion on Earth is very difficult, to the point that it has not been accomplished at any scale for protium, the common light isotope of hydrogen that undergoes natural fusion in stars. In nuclear weapons, some of the energy released by an atomic bomb (fission bomb) is used for compressing and heating a fusion fuel containing heavier isotopes of hydrogen, and also sometimes lithium, to the point of ''ignition''. At this point, the energy released in the fusion reactions is enough to briefly maintain the reaction. Fusion-based nuclear power experiments attempt to create similar conditions using far lesser means, although to date these experiments have failed to maintain conditions needed for ignition long enough for fusion to be a viable commercial power source.

  9. Low-Energy Nuclear Reactions of Protons in Host Metals at Picometre Distance

    International Nuclear Information System (INIS)

    Heinrich Hora; George H. Miley; Jak C. Kelly

    2000-01-01

    A review is given for the explanation of the measurements of Miley (et al.) of a fully reproducible generation of nuclei of the whole periodic table by protons in host metals during a several-weeks reaction. Similar low-energy nuclear reactions (LENR) were observed by other groups. The fact that the heavy nuclides are not due to pollution can be seen from the fact that such very rare elements as thulium and terbium were detected by unique K-shell X-ray spectra. The nuclear reaction energy goes into the heavy nuclei as measured from much bigger traces in CR39 than from alphas. The fact that any reaction of the protons results in stable daughter nuclei is confirmed by the fact that the highest energy gain is resulting with stable reaction products. This has been explained in Ref. 2, and the energy gain for the heavy element generation by a compound reaction was discussed. The explanation is based on the model of the authors from 1989 to assume free motion of the protons contrary to localized crystalline states. A relation of the reaction time U on distance d of the reacting nuclei by a power law with an exponent 34.8 was derived. Based on few reproducible D-D reactions, a reaction time near the range of megaseconds and a reaction distance of nanometers was concluded. A splendid confirmation of the picometre-megasecond reactions was achieved by Li (et al.) from his direct quantum mechanical calculations of the hot fusion D-T reactions based on a one-step selective resonance tunneling model. Li (et al.) were able for the first time to derive the cross sections of the hot fusion. Li's application to picometre distance showed megasecond reaction times with no neutron or gamma emission. Because of the imaginary part in the Schroedinger potential, the problem of the level width is reduced by damping

  10. Confirmation Of Super Heavy Element Production In 48Ca Induced Fusion Reactions A Handshake Of Physics And Chemistry For Element 112

    International Nuclear Information System (INIS)

    Hofmann, S.; Ackermann, D.; Burkhard, H. G.; Heinz, S.; Hessberger, F. P.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Mann, R.; Muenzenberg, G.; Schoett, H. J.; Sulignano, B.; Antalic, S.; Saro, S.; Streicher, B.; Venhart, M.; Yeremin, A. V.; Comas, V. F.; Heredia, J. A.

    2008-01-01

    The production of 283 112 in 48 Ca induced nuclear reactions was investigated using physical and chemical separation techniques. In the reaction 48 Ca on 238 U, four events were registered at the SHIP velocity filter. The mean atomic mass of the evaporation residues (EVR)

  11. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    An outline is given of the present position of research into controlled fusion. After a brief reminder of the nuclear reactions of fusion and the principle of their use as a source of energy, the results obtained by the method of magnetic confinement are summarized. Among the many solutions that have been imagined and tried out to achieve a magnetic containing vessel capable of holding the thermonuclear plasma, the devices of the Tokamak type have a good lead and that is why they are described in greater detail. An idea is then given of the problems that arise when one intends conceiving the thermonuclear reactor based on the principle of the Tokamaks. The last section deals with fusion by lasers which is a new and most attractive alternative, at least from the viewpoint of basis physics. The report concludes with an indication of the stages to be passed through to reach production of energy on an industrial scale [fr

  12. Fusion devices

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included

  13. Static and dynamical properties of hot nuclei

    International Nuclear Information System (INIS)

    Suraud, E.

    1990-01-01

    We briefly review our understanding of the formation of excited/hot nuclei in heavy-ion collisions at some tens of MeV/A. We recall the major theoretical frameworks used for describing as well the entrance channel of the reaction as the structure properties of hot nuclei. We finally focus on multifragmentation within insisting upon the theoretical challenge it does represent

  14. Hot atom chemistry of carbon

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1975-01-01

    The chemistry of energetic carbon atoms is discussed. The experimental approach to studies that have been carried out is described and the mechanistic framework of hot carbon atom reactions is considered in some detail. Finally, the direction that future work might take is examined, including the relationship of experimental to theoretical work. (author)

  15. Formation and decay of hot nuclei

    International Nuclear Information System (INIS)

    Planeta, R.

    1999-01-01

    Multifragmentation of excited nuclei of the 40 Ca + 40 Ca reaction at 35 MeV/nucleon has been studied using the multidetector system AMPHORA.Using special gating and reconstruction procedures we have observed projectile - like fragments, PLF, with different degrees of excitation, and also highly excited composite systems, CS, from incomplete fusion. This reconstruction procedure was verified by the Monte Carlo computer code of Sosin which describes the collision of heavy ions as a random walk transfer of nucleons. Agreement between the experimental data and the predictions of the code have strongly supported the thermalized character of the created hot sources. To investigate their decay characteristics we have used the conventional reduced velocity correlation method and also two signatures based on special features of particle emission from the 'freeze out volume'. They are: (i) - the distribution of the squared momentum of the heaviest emitted fragment; (ii) - the focusing of fragments by the Coulomb field of the decaying system. For the PLF, both methods, the reduced velocity correlation, and the distribution of the squared momentum of the heaviest emitted fragment, support the binary sequential decay, BSD, scenario below 3 MeV/nucleon excitation energy and prompt multifragmentation, PM, for higher excitations. For CS which has about twice the PLF electric charge the Coulomb focusing effect could be also observed. In that case all three signatures indicate prompt multifragmentation of the system contained inside the 'freeze-out' volume. Consistency of all these observations show that both the distribution of the squared momentum of the heaviest emitted fragment and the Coulomb focusing effect can be used as signatures of spinodal decomposition of 'hot' nuclear systems. (author)

  16. Study of fusion and nucleon transfer channels in the Au-197 + He-6 reaction in an energy range of He-6 to 20 Mev/A

    Czech Academy of Sciences Publication Activity Database

    Skobelev, N. K.; Penionzhkevich, Y. E.; Kulko, A. A.; Demekhina, N. A.; Kroha, Václav; Kugler, Andrej; Lukyanov, S.; Mrázek, Jaromír; Sobolev, Yu. G.; Maslov, V. A.; Muzychka, Yu. A.; Voskoboynik, E. I.; Fomichev, A. S.

    2013-01-01

    Roč. 10, č. 3 (2013), s. 248-255 ISSN 1547-4771 Institutional support: RVO:61389005 Keywords : nuclear reactions * gamma activity * cross section Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  17. Fusion, magnetic confinement

    International Nuclear Information System (INIS)

    Berk, H.L.

    1992-01-01

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or 3 He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied

  18. Phosphite effect on hot and sweet pepper reaction to Phytophthora capsici Efeito do fosfito na reação de pimentão e pimenteira a Phytophthora capsici

    Directory of Open Access Journals (Sweden)

    Fernando Cesar Sala

    2004-10-01

    Full Text Available Phosphite has been recommended to enhance plant resistance against Phytophthora. This work evaluated the response of hot and sweet pepper (Capsicum annuum L. to Phytophthora capsici from juvenile up to the adult stage following treatment with phosphite. Sweet pepper hybrids considered to be resistant to P. capsici, like Reinger, Nathalie and Athenas, were evaluated. The susceptible checks were hybrid Magali R and cvs. Myr 10 and Ikeda. Hot pepper Criollo de Morelos 328, CM 334, BGH 3756, BGH 5122, CNPH 294 and Locorte were used as referential resistant lines. Phosphite did not have an effect on the hot pepper resistant lines because of their genetic homozygozity, while no protection was observed for the Athenas hybrid claimed to be resistant. Heterozygous hybrids recognized as resistant, like Reinger and Nathalie, showed higher survival following phosphite treatment, and their reaction was equivalent to the resistant cvs. CM 328 and CM 334, except for the fruiting stage. Depending of the hybrid heterozygous genotype, phosphite possibly acts through indirect phytoalexin induction through the inhibited pathogen.Fosfito tem sido recomendado para aumentar o sistema de resistência de plantas atacadas por fitopatógenos. Este trabalho avaliou a ação do fosfito nas reações de pimentão e pimenteiras (Capsicum annuum L. a Phytophthora capsici na fase juvenil até a fase adulta, tratadas com fosfito. Os híbridos de pimentão considerados resistentes a P. capsici foram Reinger, Nathalie e Athenas, enquanto que o híbrido Magali R e as cvs. Myr 10 e Ikeda constituíram as referenciais suscetíveis. As linhagens de pimenta Criollo de Morelos 328, CM 334, BGH 3756, BGH 5122, CNPH 294 e Locorte, foram usadas como padrão referencial de resistência ao patógeno. O fosfito não afetou a reação das linhagens resistentes devido sua homozigosidade genética. Não houve ação protetora do fosfito nos hospedeiros suscetíveis, inclusive no híbrido Athenas

  19. Peaceful fusion

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [IANUS, TU Darmstadt (Germany)

    2014-07-01

    Like other intense neutron sources fusion reactors have in principle a potential to be used for military purposes. Although the use of fissile material is usually not considered when thinking of fusion reactors (except in fusion-fission hybrid concepts) quantitative estimates about the possible production potential of future commercial fusion reactor concepts show that significant amounts of weapon grade fissile materials could be produced even with very limited amounts of source materials. In this talk detailed burnup calculations with VESTA and MCMATH using an MCNP model of the PPCS-A will be presented. We compare different irradiation positions and the isotopic vectors of the plutonium bred in different blankets of the reactor wall with the liquid lead-lithium alloy replaced by uranium. The technical, regulatory and policy challenges to manage the proliferation risks of fusion power will be addressed as well. Some of these challenges would benefit if addressed at an early stage of the research and development process. Hence, research on fusion reactor safeguards should start as early as possible and accompany the current research on experimental fusion reactors.

  20. Detection of alveolar rhabdomyosarcoma in pleural fluid with immunocytochemistry on cell block and determination of PAX/FKHR fusion mRNA by reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Sawangpanich, Ruchchadol; Larbcharoensub, Noppadol; Jinawath, Artit; Pongtippan, Atcharaporn; Anurathapan, Usanarat; Hongeng, Suradej

    2011-11-01

    Alveolar rhabdomyosarcoma is a primitive malignant round cell neoplasm, which shows skeletal muscle differentiation. Although their histopathologic and immunohistochemical findings are well known, the cytology, immunocytochemistry and molecular study on pleural effusion have not been well documented. To apply molecular method in the diagnosis and monitoring of alveolar rhabdomyosarcoma. The case of a 14-year-old Thai male, who presented with dyspnea and left pleural effusion. Computed tomography of the chest and abdomen showed a huge heterogeneous enhancing mass at the left retroperitoneum. Pleural fluid cytology showed malignant small round blue cells. Immunocytochemical stains on cell block material showed positive reactivity to vimentin, sarcomeric actin, desmin, MyoD1, myogenin, and CD56 in round cell tumor Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated PAX/FKHR fusion transcript. The patient received chemotherapeutic regimen for advanced-stage rhabdomyosarcoma. Finally, he succumbed to the disease, thirteen months after the diagnosis. Immunocytochemistry on cell block in conjunction with determination of PAX/FKHR fusion mRNA by RT-PCR is a molecular method in the diagnosis and monitoring of alveolar rhabdomyosarcoma inpleural fluid.

  1. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1992-01-01

    Classical dynamical calculations of the heavy ion induced fission processes have been performed for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus. As a result prescission lifetimes were obtained and compared with the experimental values. The comparison between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. (orig.)

  2. Antimatter Driven P-B11 Fusion Propulsion System

    Science.gov (United States)

    Kammash, Terry; Martin, James; Godfroy, Thomas

    2002-01-01

    One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing thc plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement propenies of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enter the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.

  3. Hyperenhanced Li - Li Chemonuclear Fusion

    International Nuclear Information System (INIS)

    Ikegami, Hidetsugu

    2006-01-01

    A new fusion scheme, the Li - Li chemonuclear fusion is presented, where nuclear fusion reactions are linked to atomic fusion reactions. Lithium ions are implanted on a surface of metallic Li liquid at an energy of nuclear stopping (several keV/amu). The ions collide slowly with liquid Li atoms without electronic excitation and lead to the Li - Li chemonuclear fusion through the formation of united atoms or quasi-C atoms at their turning points. Inside the quasi-atoms twin nuclei are confined within respective sub-pm scale spheres of zero-point oscillation and form themselves into ultradense intermediate nuclear complexes. Their density is million times as large as the solar interior density and close to densities of white dwarfs or white-dwarf progenitors of supernovae. This confinement of nuclear complexes is enormously prolonged towards the pycno-nuclear reactions induced by the zero-point oscillation under the presence of thermodynamic force specified by the Gibbs energy change in the quasi-atom formation in the liquid. Resulted rate enhancement of nuclear fusion by a factor of 10 48 has been anticipated. The enhancement is also argued in connection with the Bose-Einstein condensation

  4. Clustering effects in fusion evaporation reactions with light even-even N=Z nuclei. The 24Mg and 28Si cases

    Directory of Open Access Journals (Sweden)

    Morelli L.

    2016-01-01

    Inclusive variables are in general well reproduced by the model. We found clear deviations from the statistical model if we select emission channels involving multiple α particles which are more probable than expected from a purely statistical behavior. Data from 12C+12C reaction have been analyzed in order to study the decay of the Hoyle state of 12C* with two different selections: peripheral binary collisions and 6α decay channel in central events. To continue the investigation on light systems, we have recently measured the 16O+12C reaction at three different beam energies, namely Ebeam = 90, 110 and 130 MeV. Preliminary results are presented.

  5. Cold fusion

    International Nuclear Information System (INIS)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik

    1995-02-01

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4 He, 3 He, 3 H, which are not rich in quantity basically. An experiment where plenty of 4 He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  6. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  7. Laser fusion

    International Nuclear Information System (INIS)

    Ashby, D.E.T.F.

    1976-01-01

    A short survey is given on laser fusion its basic concepts and problems and the present theoretical and experimental methods. The future research program of the USA in this field is outlined. (WBU) [de

  8. Phenomenological nuclear reaction description in deuterium-saturated palladium and synthesized structure in dense deuterium gas under γ-quanta irradiation

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Wisniewski, R.

    2012-01-01

    The observed phenomena on the changes of chemical compositions in our previous reports allowed us to develop a phenomenological nuclear fusion-fission model with taking into consideration the elastic and inelastic scattering of photoprotons and photoneutrons, heating of surrounding deuterium nuclei, following D-D fusion reactions and fission of middle-mass nuclei by 'hot' protons, deuterons and various-energy neutrons. Such chain processes could produce the necessary number of neutrons, 'hot' deuterons for explanation of the observed experimental results. The developed approach can be a basis for creation of deuterated nuclear fission reactors (DNFR) with high-density deuterium gas and so-called deuterated metals. Also, the developed approach can be used for the study of nuclear reactions in high-density deuterium or tritium gases and deuterated metals

  9. Inertial confinement fusion

    International Nuclear Information System (INIS)

    Nuckolls, J.H.; Wood, L.L.

    1988-01-01

    Edward Teller has been a strong proponent of harnessing nuclear explosions for peaceful purposes. There are two approaches: Plowshare, which utilizes macro- explosions, and inertial confinement fusion, which utilizes microexplosions. The development of practical fusion power plants is a principal goal of the inertial program. It is remarkable that Teller's original thermonuclear problem, how to make super high yield nuclear explosions, and the opposite problem, how to make ultra low yield nuclear explosions, may both be solved by Teller's radiation implosion scheme. This paper reports on the essential physics of these two thermonuclear domains, which are separated by nine orders of magnitude in yield, provided by Teller's similarity theorem and its exceptions. Higher density makes possible thermonuclear burn of smaller masses of fuel. The leverage is high: the scale of the explosion diminishes with the square of the increase in density. The extraordinary compressibility of matter, first noticed by Teller during the Los Alamos atomic bomb program, provides an almost incredible opportunity to harness fusion. The energy density of thermonuclear fuels isentropically compressed to super high-- -densities---even to ten thousand times solid density---is small compared to the energy density at thermonuclear ignition temperatures. In small masses of fuel imploded to these super high matter densities, the energy required to achieve ignition may be greatly reduced by exploiting thermonuclear propagation from a relatively small hot spot

  10. Fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The efforts of the Chemical Technology Division in fusion energy include the areas of fuel handling, processing, and containment. Current studies are concerned largely with the development of vacuum pumps for fusion reactors and experiments and with development and evaluation of techniques for recovering tritium from solid or liquid breeding blankets. In addition, a small effort is devoted to support of the ORNL design of a major Tokamak experiment, The Next Step (TNS)

  11. Laser fusion

    International Nuclear Information System (INIS)

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  12. Fusion Power measurement at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bertalot, L.; Barnsley, R.; Krasilnikov, V.; Stott, P.; Suarez, A.; Vayakis, G.; Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-07-01

    Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also to the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)

  13. Experimental Cross Sections for Reactions of Heavy Ions and 208Pb, 209Bi, 238U, and 248Cm Targets

    International Nuclear Information System (INIS)

    Patin, Joshua B.

    2002-01-01

    The study of the reactions between heavy ions and 208 Pb, 209 Bi, 238 U, and 248 Cm targets was performed to look at the differences between the cross sections of hot and cold fusion reactions. Experimental cross sections were compared with predictions from statistical computer codes to evaluate the effectiveness of the computer code in predicting production cross sections. Hot fusion reactions were studied with the MG system, catcher foil techniques and the Berkeley Gas-filled Separator (BGS). 3n- and 4n-exit channel production cross sections were obtained for the 238 U( 18 O,xn) 256-x Fm, 238 U( 22 Ne,xn) 260-x No, and 248 Cm( 15 N,xn) 263-x Lr reactions and are similar to previous experimental results. The experimental cross sections were accurately modeled by the predictions of the HIVAP code using the Reisdorf and Schaedel parameters and are consistent with the existing systematics of 4n exit channel reaction products. Cold fusion reactions were examined using the BGS. The 208 Pb( 48 Ca,xn) 256-x No, 208 Pb( 50 Ti,xn) 258-x Rf, 208 Pb( 51 V,xn) 259-x Db, 209 Bi( 50 Ti,xn) 259-x Db, and 209 Bi( 51 V,xn) 260-x Sg reactions were studied. The experimental production cross sections are in agreement with the results observed in previous experiments. It was necessary to slightly alter the Reisdorf and Schaedel parameters for use in the HIVAP code in order to more accurately model the experimental data. The cold fusion experimental results are in agreement with current 1n- and 2n-exit channel systematics

  14. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    Bart, G.; Blanc, J.Y.; Duwe, R.

    2003-01-01

    The European Working Group on ' Hot Laboratories and Remote Handling' is firmly established as the major contact forum for the nuclear R and D facilities at the European scale. The yearly plenary meetings intend to: - Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research; - Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling; - Promote normalization and co-operation, e.g., by looking at mutual complementarities; - Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The 41. plenary meeting was held in CEA Saclay from September 22 to 24, 2003 in the premises and with the technical support of the INSTN (National Institute for Nuclear Science and Technology). The Nuclear Energy Division of CEA sponsored it. The Saclay meeting was divided in three topical oral sessions covering: - Post irradiation examination: new analysis methods and methodologies, small specimen technology, programmes and results; - Hot laboratory infrastructure: decommissioning, refurbishment, waste, safety, nuclear transports; - Prospective research on materials for future applications: innovative fuels (Generation IV, HTR, transmutation, ADS), spallation source materials, and candidate materials for fusion reactor. A poster session was opened to transport companies and laboratory suppliers. The meeting addressed in three sessions the following items: Session 1 - Post Irradiation Examinations. Out of 12 papers (including 1 poster) 7 dealt with surface and solid state micro analysis, another one with an equally complex wet chemical instrumental analytical technique, while the other four papers (including the poster) presented new concepts for digital x-ray image analysis; Session 2 - Hot laboratory infrastructure (including waste theme) which was

  15. International fusion research

    International Nuclear Information System (INIS)

    Pease, R.S.

    1983-01-01

    Nuclear energy of the light elements deuterium and lithium can be released if the 100 MK degree temperature required for deuterium-tritium thermonuclear fusion reactions can be achieved together with sufficient thermal insulation for a net energy yield. Progress of world-wide research shows good prospect for these physical conditions being achieved by the use of magnetic field confinement and of rapidly developing heating methods. Tokamak systems, alternative magnetic systems and inertial confinement progress are described. International co-operation features a number of bilateral agreements between countries: the Euratom collaboration which includes the Joint European Torus, a joint undertaking of eleven Western European nations of Euratom, established to build and operate a major confinement experiment; the development of co-operative projects within the OECD/IEA framework; the INTOR workshop, a world-wide study under IAEA auspices of the next major step in fusion research which might be built co-operatively; and assessments of the potential of nuclear fusion by the IAEA and the International Fusion Research Council. The INTOR (International Tokamak Reactor) studies have outlined a major plant of the tokamak type to study the engineering and technology of fusion reactor systems, which might be constructed on a world-wide basis to tackle and share the investment risks of the developments which lie ahead. This paper summarizes the recent progress of research on controlled nuclear fusion, featuring those areas where international co-operation has played an important part, and describes the various arrangements by which this international co-operation is facilitated. (author)

  16. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  17. Inertial fusion science in Europe

    International Nuclear Information System (INIS)

    Bigot, B.

    2006-01-01

    Europe has built significant laser facilities to study inertial confinement fusion since the beginning of this science. The goal is to understand the processes of ignition and propagation of thermonuclear combustion. Three routes toward fusion are pursued, each of which has advantages and difficulties. The conventional routes are using a central hot spot created by the same compression and heating laser beams, either with indirect or direct drive. A more recent route, 'fast ignition', has been actively studied since the 90's, increasing the need for very high energy lasers to create the hot spot; some European lasers of this kind are already functioning, others are under construction or planned. Among European facilities, Laser Mega Joule (LMJ), which is under construction, will be the most powerful tool at the end of the decade, along with NIF in the Usa, to study and obtain fusion. LMJ is designed not only to obtain fusion but also to carry out experiments on all laser-plasma physics themes thanks to its flexibility. This facility, mainly dedicated to defence programmes, will be accessible to the academic research community. On all these facilities, numerous results are and will be obtained in the fields of High Energy Density Physics and Ultra High Intensity. (author)

  18. Properties and decay modes of hot nuclei produced in the reaction: {sup 36}Ar on {sup 58}Ni and detected with INDRA device; Proprietes et modes de desexcitation des noyaux chauds observes dans la reaction {sup 36}Ar sur {sup 58}Ni avec le detecteur INDRA

    Energy Technology Data Exchange (ETDEWEB)

    Nalpas, L [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee; [Paris-11 Univ., 91 - Orsay (France)

    1997-01-01

    Hot nuclei are formed in heavy ion collisions covering the Fermi energy domain. According to the excitation energy deposited into these nuclei, several de-excitation processes can be observed, in particular the emission of complex fragments (Z {>=} 3) which remains poorly understood. The GANIL facility offers the possibility to cover the excitation function for the Ar on Ni reaction over a broad energy range from 32 to 95 MeV/u where the hot nuclei evolve from classical `evaporation` to complete `vaporization` into light particles (neutrons, isotopes of H, He). The study of reaction mechanisms shows that from peripheral to central collisions the total cross section is dominated by binary dissipative collisions. Both partners coming from well-characterized events with the INDRA detector are reconstructed using the `Minimum Spanning Tree` method. Thus excitation energy up to 20 MeV/A are reached in the most violent collisions at the highest bombarding energy. The deposited energy is not shared in the mass ratio between the quasi-projectile and the quasi-target, the quasi-projectile being hotter. For total excitation energies ranging roughly from 2 to 8 MeV/A, the proportion of `multifragmentation` events increases to reach a plateau at about 10 MeV/A due to the rising probability to have complete `vaporization` of the system above 8 MeV/A. The steady increase of the temperature extracted from the double isotopic He-Li ratios with excitation energy for the quasi-projectile suggests a progressive evolution of the de-excitation processes as predicted by statistical models. No signal of first order liquid-gas phase transition is seen in our data. (author) 124 refs.

  19. $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

    CERN Document Server

    Fornal, B; Bednarczyk, P; Cieplicka, N; Krolas, W; Maj, A; Leoni, S; Benzoni, G; Blasi, N; Bottoni, S; Bracco, A; Camera, F; Crespi, F; Million, B; Morales, A; Wieland, O; Rusek, K; Lunardi, S; Mengoni, D; Recchia, F; Ur, CA; Valiente-Dobon, J; de France, G; Clement, E; Elseviers, J; Flavigny, F; Huyse, M; Raabe, R; Sambi, S; Van Duppen, P; Sferrazza, M; Simpson, G; Georgiev, G; Sotty, C; Blazhev, A; German, R; Siebeck, B; Seidlitz, M; Reiter, P; Warr, N; Boenig, S; Ilieva, S; Kroell, T; Scheck, M; Thurauf, M; Gernhaeuser, R; Mucher, D; Janssens, R; Carpenter, MP; Zhu, S; Marginean, NM; Balabanski, D; Kowalska, M

    2012-01-01

    $\\gamma$- spectroscopy of n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li: Introduction to HIE-ISOLDE studies of n-rich Sb and Tl isotopes with Sn and Hg radioactive beams.

  20. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    Science.gov (United States)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely