WorldWideScience

Sample records for hot dense medium

  1. Propagation of monochromatic light in a hot and dense medium

    Science.gov (United States)

    Masood, Samina S.

    2017-12-01

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.

  2. Propagation of monochromatic light in a hot and dense medium

    Energy Technology Data Exchange (ETDEWEB)

    Masood, Samina S. [University of Houston Clear Lake, Department of Physical and Applied Sciences, Houston, TX (United States)

    2017-12-15

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe. (orig.)

  3. Charmonium propagation through a dense medium

    Directory of Open Access Journals (Sweden)

    Kopeliovich B.Z.

    2015-01-01

    Full Text Available Attenuation of a colourless c̄c dipole propagating with a large momentum through a hot medium originates from two sources, Debye screening (melting, and inelastic collisions with surrounding scattering centres (absorption. The former never terminates completely production of a bound charmonium in heavy ion collisions, even at very high temperatures. The latter, is controlled my the magnitude of the dipole cross section, related to the transport coefficient, which is the rate of transverse momentum broadening in the medium. A novel procedure of Lorentz boosting of the Schrödinger equation is developed, which allows to calculate the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. A novel mechanism of charmonium regeneration in a dense medium is proposed.

  4. Hadrons in dense matter. Proceedings

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2000-03-01

    The following topics were dealt with: Elementary hadronic reactions, Delta dynamics in nuclei, in-medium s-wave ππ-correlations, strangeness in hot and dense matter, medium modifications of vector mesons and dilepton production, medium modifications of charmonium, thermal properties of hot and dense hadronic matter, nuclear matter, spectral functions and QCD sum rules

  5. Hadrons in hot and dense medium

    International Nuclear Information System (INIS)

    Mallik, S.

    2004-01-01

    We review chiral perturbation theory in some detail and construct interaction terms involving the Goldstone and the different non-Goldstone fields, in presence of external (classical) fields coupled to currents. The ensemble average of the two-point functions of the currents can now be expanded in terms of Feynman diagrams. We evaluate the one-loop diagrams in the neighbourhood of the respective poles to find the effective couplings and masses of the particles in medium. We also describe the virial formula for the self-energy of a particle in medium, giving its pole position. It proves useful if the scattering amplitude of the particle with particles in medium is known experimentally. (author)

  6. Effective Field Theories for Hot and Dense Matter

    Directory of Open Access Journals (Sweden)

    Blaschke D.

    2010-10-01

    Full Text Available The lecture is divided in two parts. The first one deals with an introduction to the physics of hot, dense many-particle systems in quantum field theory [1, 2]. The basics of the path integral approach to the partition function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanfield approximation while QCD bound states in the medium are treated in the rainbow-ladder approximation (Gaussian fluctuations. Special emphasis is devoted to the discussion of the Mott effect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the influence of compression and heating of the system. Three examples are given: (1 the QCD model phase diagram with chiral symmetry ¨ restoration and color superconductivity [3], (2 the Schrodinger equation for heavy-quarkonia [4], and (2 Pions [5] as well as Kaons and D-mesons in the finite-temperature Bethe-Salpeter equation [6]. We discuss recent applications of this quantum field theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu–Jona-Lasinio model [9] for thermodynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann–Oakes–Renner relation are generalized to finite temperatures. The effect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is discussed. An outlook is given to effects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanfield description.

  7. Thermodynamic instabilities in hot and dense nuclear matter

    Directory of Open Access Journals (Sweden)

    Lavagno A.

    2016-01-01

    Full Text Available We study the presence of thermodynamic instabilities in a hot and dense nuclear medium where a nuclear phase transition can take place. Similarly to the low density nuclear liquid-gas phase transition, we show that such a phase transition is characterized by pure hadronic matter with both mechanical instability (fluctuations on the baryon density that by chemical-diffusive instability (fluctuations on the strangeness concentration. The analysis is performed by requiring the global conservation of baryon number and zero net strangeness in the framework of an effective relativistic mean field theory with the inclusion of the Δ(1232-isobars, hyperons and the lightest pseudoscalar and vector meson degrees of freedom. It turns out that in this situation hadronic phases with different values of strangeness content may coexist, altering significantly meson-antimeson ratios.

  8. Holographic Renormalization in Dense Medium

    International Nuclear Information System (INIS)

    Park, Chanyong

    2014-01-01

    The holographic renormalization of a charged black brane with or without a dilaton field, whose dual field theory describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space

  9. Neutrinos and Nucleosynthesis in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, George [Univ. of California, San Diego, CA (United States)

    2016-01-14

    The Topical Collaboration for Neutrinos and Nucleosynthesis in Hot and Dense matter brought together researchers from a variety of nuclear science specialties and a number of institutions to address nuclear physics and neutrino physics problems associated with dense matter and the origin of the elements. See attached final technical reports for (1) the UCSD award and (2) a copy of the report for the whole TC

  10. DENSE MEDIUM CYCLONE OPTIMIZATON

    Energy Technology Data Exchange (ETDEWEB)

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  11. Stark broadening in hot, dense laser-produced plasmas

    International Nuclear Information System (INIS)

    Tighe, R.J.; Hooper, C.F. Jr.

    1976-01-01

    Broadened Lyman-α x-ray lines from neon X and argon XVIII radiators, which are immersed in a hot, dense deuterium or deuterium-tritium plasma, are discussed. In particular, these lines are analyzed for several temperature-density cases, characteristic of laser-produced plasmas; special attention paid to the relative importance of ion, electron, and Doppler effects. Static ion microfield distribution functions are tabulated

  12. Dry processing versus dense medium processing for preparing thermal coal

    CSIR Research Space (South Africa)

    De Korte, GJ

    2013-10-01

    Full Text Available of the final product. The separation efficiency of dry processes is, however, not nearly as good as that of dense medium and, as a result, it is difficult to effectively beneficiate coals with a high near-dense content. The product yield obtained from some raw...

  13. Medium dependence of vector meson properties in heavy ion collisions

    International Nuclear Information System (INIS)

    Faessler, Amand; Fuchs, Christian

    2007-01-01

    Heavy ion collisions produce dense and hot nuclear matter. Dileptons give information about this hot and dense phase. The dileptons are produced by vector mesons. Theoretical calculation of dilepton production in the DLS (Berkeley), the HADES (GSI) experiments and the CERES, HELIOS and NA60 data from CERN give information about possible modifications of the vector meson properties in hot and dense nuclear matter. Here the description in relativistic quantum molecular dynamics of heavy ion collisions and dilepton production are presented and compared with data. (authors) Key words: heavy ion collisions; dense and hot nuclear matter; dileptons; medium dependence

  14. Leeuwpan fine coal dense medium plant

    CSIR Research Space (South Africa)

    Lundt, M

    2010-11-01

    Full Text Available Beneficiation 2010, 4–6 May 2010. 671The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 110 NOVEMBER 2010 L Leeuwpan fine coal dense medium plant mixed with magnetite in the launder and enters... with production. Plant equipment operational changes Cyclone spigot changes In an attempt to lower the cut-point density, the spigot on the L 672 NOVEMBER 2010 VOLUME 110 The Journal of The Southern African Institute of Mining and Metallurgy Figure 1...

  15. Dense Medium Machine Processing Method for Palm Kernel/ Shell ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Cracked palm kernel is a mixture of kernels, broken shells, dusts and other impurities. In ... machine processing method using dense medium, a separator, a shell collector and a kernel .... efficiency, ease of maintenance and uniformity of.

  16. Anomalous properties of hot dense nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Ferrante, G; Zarcone, M; Uryupin, S A

    2005-01-01

    A concise overview of a number of anomalous properties of hot dense nonequilibrium plasmas is given. The possibility of quasistationary megagauss magnetic field generation due to Weibel instability is discussed for plasmas created in atom tunnel ionization. The collisionless absorption and reflection of a test electromagnetic wave normally impinging on the plasma with two-temperature bi-maxwellian electron velocity distribution function are studied. Due to the wave magnetic field influence on the electron kinetics in the skin layer the wave absorption and reflection significantly depend on the degree of the electron temperature anisotropy. The linearly polarized impinging wave during reflection transforms into an elliptically polarized one. The problem of transmission of an ultrashort laser pulse through a layer of dense plasma, formed as a result of ionization of a thin foil, is considered. It is shown that the strong photoelectron distribution anisotropy yields an anomalous penetration of the wave field through the foil

  17. Coherent neutrino interactions in a dense medium

    International Nuclear Information System (INIS)

    Kiers, K.; Weiss, N.

    1997-01-01

    Motivated by the effect of matter on neutrino oscillations (the MSW effect) we study in more detail the propagation of neutrinos in a dense medium. The dispersion relation for massive neutrinos in a medium is known to have a minimum at nonzero momentum p∼G F ρ/√(2). We study in detail the origin and consequences of this dispersion relation for both Dirac and Majorana neutrinos both in a toy model with only neutral currents and a single neutrino flavor and in a realistic open-quotes standard modelclose quotes with two neutrino flavors. We find that for a range of neutrino momenta near the minimum of the dispersion relation, Dirac neutrinos are trapped by their coherent interactions with the medium. This effect does not lead to the trapping of Majorana neutrinos. copyright 1997 The American Physical Society

  18. Warm-hot gas in X-ray bright galaxy clusters and the H I-deficient circumgalactic medium in dense environments

    Science.gov (United States)

    Burchett, Joseph N.; Tripp, Todd M.; Wang, Q. Daniel; Willmer, Christopher N. A.; Bowen, David V.; Jenkins, Edward B.

    2018-04-01

    We analyse the intracluster medium (ICM) and circumgalactic medium (CGM) in seven X-ray-detected galaxy clusters using spectra of background quasi-stellar objects (QSOs) (HST-COS/STIS), optical spectroscopy of the cluster galaxies (MMT/Hectospec and SDSS), and X-ray imaging/spectroscopy (XMM-Newton and Chandra). First, we report a very low covering fraction of H I absorption in the CGM of these cluster galaxies, f_c = 25^{+25}_{-15} {per cent}, to stringent detection limits (N(H I) detect O VI in any cluster, and we only detect BLA features in the QSO spectrum probing one cluster. We estimate that the total column density of warm-hot gas along this line of sight totals to ˜ 3 per cent of that contained in the hot T > 107 K X-ray emitting phase. Residing at high relative velocities, these features may trace pre-shocked material outside the cluster. Comparing gaseous galaxy haloes from the low-density `field' to galaxy groups and high-density clusters, we find that the CGM is progressively depleted of H I with increasing environmental density, and the CGM is most severely transformed in galaxy clusters. This CGM transformation may play a key role in environmental galaxy quenching.

  19. Dense Medium Plasma Water Purification Reactor (DMP WaPR), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Dense Medium Plasma Water Purification Reactor offers significant improvements over existing water purification technologies used in Advanced Life Support...

  20. Probing hot dense matter with jet energy loss

    International Nuclear Information System (INIS)

    Levai, P.; Barnafoeldi, G.G.; Gyulassy, M.; Vitev, I.; Fai, G.; Zhang, Y.

    2002-01-01

    We study, in a pQCD calculation augmented by nuclear effects, the jet energy loss needed to reproduce the π 0 spectra in Au+Au collisions at large p T , measured by PHENIX at RHIC. The transverse width of the parton momentum distributions (intrinsic k T ) is used phenomenologically to obtain a reliable baseline pp result. Jet quenching is applied to the nuclear spectra (including shadowing and multiscattering) to fit the data. Latest results on fluctuating gluon radiation are considered to measure the opacity of the produced hot dense matter at RHIC energy. (orig.)

  1. Diffusion constant in hot and dense hadronic matter. A hadro-molecular-dynamic calculation

    International Nuclear Information System (INIS)

    Sasaki, N.; Miyamura, O.; Muroya, S.; Nonaka, C.

    2002-01-01

    We evaluate baryon/charge diffusion constant of dense and hot hadronic matter based on the molecular dynamical method by using a hadronic collision generator which describes nuclear collisions at energies 10 1-2 GeV/A and satisfies detailed balance at low temperatures (T ≤ 200 MeV). For the hot and dense hadronic matter of the temperature range, T = 100 - 200 MeV and baryon number density, n B =0.16 fm -3 - 0.32 fm -3 , charge diffusion constant D gradually increases from 0.5 fmc to 2 fmc with temperature and is almost independent of baryon number density. Based on the obtained diffusion constant we make simple discussions on the diffusion of charge fluctuation in ultrarelativistic nuclear collisions. (author)

  2. Neutrino interactions in hot and dense matter

    International Nuclear Information System (INIS)

    Reddy, S.; Prakash, M.; Lattimer, J.M.

    1998-01-01

    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star. copyright 1998 The American Physical Society

  3. Ultra-dense hot low Z line transition opacity simulations

    International Nuclear Information System (INIS)

    Sauvan, P.; Minguez, E.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Martel, P.; Angelo, P.; Schott, R.; Philippe, F.; Leboucher-Dalimier, E.; Mancini, R.; Calisti, A.

    2002-01-01

    In this work two atomic physics models (the IDEFIX code using the dicenter model and the code based on parametric potentials ANALOP) have been used to calculate the opacities for bound-bound transitions in hot ultra-dense, low Z plasmas. These simulations are in connection with experiments carried out at LULI during the last two years, focused on bound-bound radiation. In this paper H-like opacities for aluminum and fluorine plasmas have been simulated, using both theoretical models, in a wide range of densities and temperatures higher than 200 eV

  4. Heavy Scalar, Vector, and Axial-Vector Mesons in Hot and Dense Nuclear Medium

    Directory of Open Access Journals (Sweden)

    Arvind Kumar

    2014-01-01

    Full Text Available In this work we shall investigate the mass modifications of scalar mesons (D0; B0, vector mesons (D*; B*, and axial-vector mesons (D1; B1 at finite density and temperature of the nuclear medium. The above mesons are modified in the nuclear medium through the modification of quark and gluon condensates. We will find the medium modification of quark and gluon condensates within chiral SU(3 model through the medium modification of scalar-isoscalar fields σ and ζ at finite density and temperature. These medium modified quark and gluon condensates will further be used through QCD sum rules for the evaluation of in-medium properties of the above mentioned scalar, vector, and axial vector mesons. We will also discuss the effects of density and temperature of the nuclear medium on the scattering lengths of the above scalar, vector, and axial-vector mesons. The study of the medium modifications of the above mesons may be helpful for understanding their production rates in heavy-ion collision experiments. The results of present investigations of medium modifications of scalar, vector, and axial-vector mesons at finite density and temperature can be verified in the compressed baryonic matter (CBM experiment of FAIR facility at GSI, Germany.

  5. Probing properties of hot and dense QCD matter with heavy flavor in the PHENIX experiment at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2015-01-01

    Full Text Available Hadrons carrying heavy quarks, i.e. charm or bottom, are important probes of the hot and dense medium created in relativistic heavy ion collisions. Heavy quarkantiquark pairs are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. Heavy quark production has been studied by the PHENIX experiment at RHIC via measurements of single leptons from semi-leptonic decays in both the electron channel at mid-rapidity and in the muon channel at forward rapidity. A large suppression and azimuthal anisotropy of single electrons have been observed in Au + Au collisions at 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. The PHENIX experiment has also measured J/ψ production at 200 GeV in p + p, d + Au, Cu + Cu and Au + Au collisions, both at mid- and forward-rapidities, and additionally Cu + Au and U + U at forward-rapidities. In the most energetic collisions, more suppression is observed at forward rapidity than at central rapidity. This can be interpreted either as a sign of quark recombination, or as a hint of additional cold nuclear matter effects. The centrality dependence of nuclear modification factor, RAA(pT, for J/ψ in U + U collisions at √sNN = 193 GeV shows a similar trend to the lighter systems, Au + Au and Cu + Cu, at similar energy 200 GeV.

  6. Interaction of graphite with a hot, dense deuterium plasma

    International Nuclear Information System (INIS)

    Desko, J.C. Jr.

    1980-01-01

    The erosion of ATJ-S graphite caused by a hot, dense deuterium plasma has been investigated experimentally. The plasma was produced in an electromagnetic shock tube. Plasma characteristics were typically: ion temperature approx. = 800 eV (approx. 1 x 10 7 0 K), number density approx. = 10 16 /cm 3 , and transverse magnetic field approx. = 1 tesla. The energetic ion flux, phi, to the sample surfaces was approx. 10 23 ions/cm 2 -sec for a single pulse duration of approx. 0.1 usec. Sample surfaces were metallographically prepared and examined with a scanning electron microscope before and after exposure

  7. Hot ductility of medium carbon steel with vanadium

    International Nuclear Information System (INIS)

    Lee, Chang-Hoon; Park, Jun-Young; Chung, JunHo; Park, Dae-Bum; Jang, Jin-Young; Huh, Sungyul; Ju Kim, Sung; Kang, Jun-Yun; Moon, Joonoh; Lee, Tae-Ho

    2016-01-01

    Hot ductility of medium carbon steel containing 0.52 wt% of carbon and 0.11 wt% of vanadium was investigated using a hot tensile test performed up to fracture. The hot ductility was evaluated by measuring the reduction of area of the fractured specimens, which were strained at a variety of test temperatures in a range of 600–1100 °C at a strain rate of 2×10"−"3/s. The hot ductility was excellent in a temperature range of 950–1100 °C, followed by a decrease of the hot ductility below 950 °C. The hot ductility continued to drop as the temperature was lowered to 600 °C. The loss of hot ductility in a temperature range of 800–950 °C, which is above the Ae_3 temperature, was due to V(C,N) precipitation at austenite grain boundaries. The further decline of hot ductility between 700 °C and 750 °C resulted from the transformation of ferrite films decorating austenite grain boundaries. The hot ductility continued to decrease at 650 °C or less, owing to ferrite films and the pearlite matrix, which is harder than ferrite. The pearlite was transformed from austenite due to relatively high carbon content.

  8. Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma

    OpenAIRE

    Liu, Wei; Hsu, Scott C.

    2010-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a uniform hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER and NSTX (National Spherical Torus Experiment). Unmagnetized dense plasma jet injection is similar to compact toroid injection but with much higher plasma density and total mass, and consequently lower required injection velocit...

  9. Characterisation of Ferrosilicon Dense Medium Separation Material

    International Nuclear Information System (INIS)

    Waanders, F. B.; Mans, A.

    2003-01-01

    Ferrosilicon is used in the dense medium separation of iron ore at Kumba resources, Sishen, South Africa. Due to high cost and losses that occur during use, maximum recovery by means of magnetic separation is aimed for. The purpose of this project was to determine the characteristics of the unused Fe-Si and then to characterise the changes that occur during storage and use thereof. Scanning electron microscopy was used to determine the composition of each sample, whilst Moessbauer spectroscopy yielded a two-sextet spectrum with hyperfine magnetic field strengths of 20 and 31 T, respectively, for the fresh samples. Additional hematite oxide peaks appeared in the Moessbauer spectra after use of the Fe-Si over a length of time, but this did not result in a dramatic degradation of the medium. No definite changes occurred during correct storage methods. It was, however, found that the biggest loss of Fe-Si was due to the abrasion of the particles, which resulted in the formation of an oxihydroxide froth, during the process.

  10. Characterization of hot dense plasma with plasma parameters

    Science.gov (United States)

    Singh, Narendra; Goyal, Arun; Chaurasia, S.

    2018-05-01

    Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.

  11. 16. Hot dense plasma atomic processes

    International Nuclear Information System (INIS)

    Werner, Dappen; Totsuji, H.; Nishii, Y.

    2002-01-01

    This document gathers 13 articles whose common feature is to deal with atomic processes in hot plasmas. Density functional molecular dynamics method is applied to the hydrogen plasma in the domain of liquid metallic hydrogen. The effects of the density gradient are taken into account in both the electronic kinetic energy and the exchange energy and it is shown that they almost cancel with each other, extending the applicability of the Thomas-Fermi-Dirac approximation to the cases where the density gradient is not negligible. Another article reports about space and time resolved M-shell X-ray measurements of a laser-produced gas jet xenon plasma. Plasma parameters have been measured by ion acoustic and electron plasma waves Thomson scattering. Photo-ionization becomes a dominant atomic process when the density and the temperature of plasmas are relatively low and when the plasma is submitted to intense external radiation. It is shown that 2 plasmas which have a very different density but have the same ionization parameters, are found in a similar ionization state. Most radiation hydrodynamics codes use radiative opacity data from available libraries of atomic data. Several articles are focused on the determination of one group Rosseland and Planck mean analytical formulas for several single elements used in inertial fusion targets. In another paper the plasma density effect on population densities, effective ionization, recombination rate coefficients and on emission lines from carbon and Al ions in hot dense plasma, is studied. The last article is devoted to a new atomic model in plasmas that considers the occupation probability of the bound state and free state density in the presence of the plasma micro-field. (A.C.)

  12. DS Mesons in Asymmetric Hot and Dense Hadronic Matter

    Directory of Open Access Journals (Sweden)

    Divakar Pathak

    2015-01-01

    Full Text Available The in-medium properties of DS mesons are investigated within the framework of an effective hadronic model, which is a generalization of a chiral SU(3 model, to SU(4, in order to study the interactions of the charmed hadrons. In the present work, the DS mesons are observed to experience net attractive interactions in a dense hadronic medium, hence reducing the masses of the DS+ and DS- mesons from the vacuum values. While this conclusion holds in both nuclear and hyperonic media, the magnitude of the mass drop is observed to intensify with the inclusion of strangeness in the medium. Additionally, in hyperonic medium, the mass degeneracy of the DS mesons is observed to be broken, due to opposite signs of the Weinberg-Tomozawa interaction term in the Lagrangian density. Along with the magnitude of the mass drops, the mass splitting between DS+ and DS- mesons is also observed to grow with an increase in baryonic density and strangeness content of the medium. However, all medium effects analyzed are found to be weakly dependent on isospin asymmetry and temperature. We discuss the possible implications emanating from this analysis, which are all expected to make a significant difference to observables in heavy ion collision experiments, especially the upcoming Compressed Baryonic Matter (CBM experiment at the future Facility for Antiproton and Ion Research (FAIR, GSI, where matter at high baryonic densities is planned to be produced.

  13. Bulk viscosity of hot dense Quark matter in the PNJL model

    International Nuclear Information System (INIS)

    Xiao Shisong; Guo Panpan; Zhang Le; Hou Defu

    2014-01-01

    Starting from the Kubo formula and the QCD low energy theorem, we study the the bulk viscosity of hot dense quark matter in the PNJL model from the equation of state. We show that the bulk viscosity has a sharp peak near the chiral phase transition, and that the ratio of bulk viscosity over entropy rises dramatically in the vicinity of the phase transition. These results agree with those from the lattice and other model calculations. In addition, we show that the increase of chemical potential raises the bulk viscosity. (authors)

  14. Dense transient pinches and pulsed power technology: research and applications using medium and small devices

    International Nuclear Information System (INIS)

    Soto, Leopoldo; Pavez, Cristian; Moreno, Jose; Cardenas, Miguel; Zambra, Marcelo; Tarifeno, Ariel; Huerta, Luis; Tenreiro, Claudio; Giordano, Jose Luis; Lagos, Miguel; Escobar, Rodrigo; Ramos, Jorge; Altamirano, Luis; Retamal, Cesar; Silva, Patricio

    2008-01-01

    The Plasma Physics and Plasma Technology Group of the Chilean Nuclear Energy Commission (CCHEN) has, since about ten years ago, used plasma production devices to study dense hot plasmas, particularly Z-pinches and plasma foci (PFs). In the case of Z-pinches, the studies include studies on the dynamics and stability of gas-embedded Z-pinches at currents of thermonuclear interest, and preliminary studies on wire arrays. For PF research, the aim of the work has been to characterize the physics of these plasmas and also to carry out the design and construction of smaller devices-in terms of both input energy and size-capable of providing dense hot plasmas. In addition, taking advantage of the experience in pulsed power technology obtained from experimental researches in dense transient plasmas, an exploratory line of pulsed power applications is being developed. In this paper, a brief review listing the most important results achieved by the Plasma Physics and Plasma Technology Group of the CCHEN is presented, including the scaling studies, PF miniaturization and diagnostics and research on Z-pinches at currents of thermonuclear interest. Then, exploratory applications of pulsed power are presented, including nanoflashes of radiation for radiography and substances detection, high pulsed magnetic fields generation and rock fragmentation.

  15. Modelling the Multiphase Flow in Dense Medium Cyclones

    Directory of Open Access Journals (Sweden)

    Kaiwei Chu

    2010-12-01

    Full Text Available Dense medium cyclone (DMC is widely used in mineral industry to separate solids by density. It is simple in design but the flow pattern within it is complex due to the size and density distributions of the feed and process medium solids, and the turbulent vortex formed. Recently, the so-called combined computational fluid dynamics (CFD and discrete element method (DEM (CFD-DEM was extended from two-phase flow to model the flow in DMCs at the University of New South Wales (UNSW. In the CFD-DEM model, the flow of coal particles is modelled by DEM and that of medium flow by CFD, allowing consideration of medium-coal mutual interaction and particle-particle collisions. In the DEM model, Newton's laws of motion are applied to individual particles, and in the CFD model the local-averaged Navier-Stokes equations combined with the volume of fluid (VOF and mixture multiphase flow models are solved. The application to the DMC studies requires intensive computational effort. Therefore, various simplified versions have been proposed, corresponding to the approaches such as Lagrangian particle tracking (LPT method where dilute phase flow is assumed so that the interaction between particles can be ignored, one-way coupling where the effect of particle flow on fluid flow is ignored, and the use of the concept of parcel particles whose properties are empirically determined. In this paper, the previous works on the modelling of DMCs at UNSW are summarized and the features and applicability of the models used are discussed.

  16. Energy level broadening effect on the equation of state of hot dense Al and Au plasma

    International Nuclear Information System (INIS)

    Hou Yong; Jin Fengtao; Yuan Jianmin

    2007-01-01

    In the hot dense matter regime, the isothermal equation of state (EOS) of Al and Au is calculated using an average-atom (AA) model in which the broadening of energy levels of atoms and ions are accounted for by using with a Gaussian distribution of the density of states. The distribution of bound electrons in the energy bands is determined by the continuum Fermi-Dirac distribution. With a self-consistent field average atoms scheme, it is shown that the energy-level broadening has a significant effect on the isothermal equation of state (EOS) of Al and Au in the hot dense matter regime. The jumps in the equation of state (EOS) induced by pressure ionization of the one-electron orbital with the increase in density, which often occur in the normal average-atom model and have been avoided by generally introducing the pseudo-shape resonance states, disappear naturally

  17. X-ray Spectroscopy of Hot Dense Plasmas: Experimental Limits, Line Shifts and Field Effects

    International Nuclear Information System (INIS)

    Renner, Oldrich; Sauvan, Patrick; Dalimier, Elisabeth; Riconda, Caterina; Rosmej, Frank B.; Weber, Stefan; Nicolai, Philippe; Peyrusse, Olivier; Uschmann, Ingo; Hoefer, Sebastian; Kaempfer, Tino; Loetzsch, Robert; Zastrau, Ulf; Foerster, Eckhart; Oks, Eugene

    2008-01-01

    High-resolution x-ray spectroscopy is capable of providing complex information on environmental conditions in hot dense plasmas. Benefiting from application of modern spectroscopic methods, we report experiments aiming at identification of different phenomena occurring in laser-produced plasma. Fine features observed in broadened profiles of the emitted x-ray lines and their satellites are interpreted using theoretical models predicting spectra modification under diverse experimental situations.

  18. Diamonds in dense molecular clouds - A challenge to the standard interstellar medium paradigm

    Science.gov (United States)

    Allamandola, L. J.; Sandford, S. A.; Tielens, A. G. G. M.; Herbst, T. M.

    1993-01-01

    Observations of a newly discovered infrared C-H stretching band indicate that interstellar diamond-like material appears to be characteristic of dense clouds. In sharp contrast, the spectral signature of dust in the diffuse interstellar medium is dominated by -CH2- and -CH3 groups. This dichotomy in the aliphatic organic component between the dense and diffuse media challenges standard assumptions about the processes occurring in, and interactions between, these two media. The ubiquity of this interstellar diamond-like material rules out models for meteoritic diamond formation in unusual circumstellar environments and implies that the formation of the diamond-like material is associated with common interstellar processes or stellar types.

  19. Interstellar depletions and the filling factor of the hot interstellar medium

    International Nuclear Information System (INIS)

    Dwek, E.; Scalo, J.M.

    1979-01-01

    We have examined theoretically the evolution of refractory interstellar grain abundances and corresponding metal deplections in the solar neighborhood. The calculations include a self-consistent treatment of red-giant winds, planetary nebulae, protostellar nebulae, and suprnovae as sources of grains and star formation, and of encounters with supernova blast waves as sinks. We find that in the standard two-phase model for the interstellar medium (ISM), grain destruction is very efficient, and the abundance of refractory grains should be negligible, contrary to observations. In a cloudy three-phase ISM most grains reside in the warm and cold phases of the medium. Supernova blast waves expand predominantly in the hot and tenuous phase of the medium and are showed down as they propagate through a cloud. In order to obtain significant (approx.3) depletions of metals presubably locked up in refractory grain cores, the destruction of grains that reside in the clouds must be minimal. This requires that (a) the density contrast between the cloud and intercloud medium be sufficiently high, and (b) the filling factor of the hot and tenuous gas of the interstellar medium, which presumably gives rise to the O VI absorption and soft X-ray emission, be nearly unity. Much larger depletions (> or approx. =10) must reflect accretion of mantles within interstellar clouds

  20. A calculation of baryon diffusion constant in hot and dense hadronic matter based on an event generator URASiMA

    International Nuclear Information System (INIS)

    Sasaki, N.; Miyamura, O.; Nonaka, C.; Muroya, S.

    2000-01-01

    We evaluate thermodynamical quantities and transport coefficient of a dense and hot hadronic matter based on an event generator URASiMA (Ultra-Relativistic AA collision Simulator based on Multiple Scattering Algorithm). The statistical ensembles in equilibrium with fixed temperature and chemical potential are generated by imposing periodic boundary condition to the simulation of URASiMA, where energy density and baryon number density is conserved. Achievement of the thermal equilibrium and the chemical equilibrium are confirmed by the common value of slope parameter in the energy distributions and the saturation of the numbers of contained particles, respectively. By using the generated ensembles, we investigate the temperature dependence and the chemical potential dependence of the baryon diffusion constant of a dense and hot hadronic matter. (author)

  1. Dense medium ore concentrates of Bois-Noirs; Minerais des bois noirs, concentres de milieu dense

    Energy Technology Data Exchange (ETDEWEB)

    Le Bris, J; Leduc, M

    1959-01-20

    The chemical treatment of uranium concentrates of Bois-Noirs ore obtained by heavy medium are discussed. The first part deals with sulfuric acid attack on the concentrate, and the second part with the separation of the solution from residues by filtration. A third part deals with this separation by decantation. The fourth part deals with the carbonation of the pickling solutions obtained. (author) [French] Le present rapport est relatif a l'etude du traitement chimique de concentres uraniferes de minerais des Bois-Noirs obtenus par milieu dense. Une premiere partie est consacree a l'attaque sulfurique des concentres, une deuxieme partie a Ia separation de Ia solution d'attaque des residus par decantation. Une quatrieme partie a la carbonatation des solutions d'attaque obtenues. (auteur)

  2. A comparison of two atomic models for the radiative properties of dense hot low Z plasmas

    International Nuclear Information System (INIS)

    Minguez, E.; Sauvan, P.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Florido, R.; Martel, P.; Angelo, P.; Schott, R.; Philippe, F.; Leboucher-Dalimier, E.; Mancini, R.

    2003-01-01

    In this work, two different atomic models (ANALOP based on parametric potentials and IDEFIX based on the dicenter model) are used to calculate the opacities for bound-bound transitions in hot dense, low Z plasmas, and the results are compared to each other. In addition, the ANALOP code has been used to compute free-bound cross sections for hydrogen-like ions

  3. Plastic scintillators in coincidence for the study of multi-particle production of sea level cosmic rays in dense medium

    Science.gov (United States)

    Chuang, L. S.; Chan, K. W.; Wada, M.

    1985-01-01

    Cosmic ray particles at sea level penetrate a thick layer of dense medium without appreciable interaction. These penetrating particles are identified with muons. The only appreciable interaction of muons are by knock on processes. A muon may have single, double or any number of knock on with atoms of the material so that one, two, three or more particles will come out from the medium in which the knock on processes occur. The probability of multiparticle production is expected to decrease with the increase of multiplicity. Measurements of the single, double, and triple particles generated in a dense medium (Fe and Al) by sea level cosmic rays at 22.42 N. Lat. and 114.20 E. Long. (Hong Kong) are presented using a detector composed of two plastic scintillators connected in coincidence.

  4. Large scale features of the hot component of the interstellar medium

    International Nuclear Information System (INIS)

    Garmire, G.P.

    1983-01-01

    The interstellar medium contains identifiable hot plasma clouds occupying up to about 35% of the volume of the local galactic disc. The temperature of these clouds is not uniform but ranges from 10 5 up to 4 x 10 6 K. Besides the high temperature which places the emission spectrum in the soft X-ray band, the implied pressure of the hot plasma compared to the cooler gas reveals the importance of this component in determining the motions and evolution of the cooler gas in the disc, as well as providing a source of hot gas which may extend above the galactic disc to form a corona. The author presents data from the A-2 soft X-ray experiment on the HEAO-1 spacecraft concerning the large scale features of this gas. These features are interpreted in terms of the late phases of supernovae expansion, multiple supernovae and the possible creation of a hot halo surrounding the region of the galactic nucleus. (Auth.)

  5. Dissociation of 1P states in hot QCD Medium Using Quasi-Particle Model

    Science.gov (United States)

    Nilima, Indrani; Agotiya, Vineet Kumar

    2018-03-01

    We extend the analysis of a very recent work [1] to study the dissociation phenomenon of 1P states of the charmonium and bottomonium spectra (χc and χb) in a hot QCD medium using Quasi-Particle Model. This study employed a medium modified heavy quark potential which has quite different form in the sense that it has a lomg range Coulombic tail in addition to the Yukawa term even above the deconfinement temperature. Then we study the flavor dependence of their binding energies and explore the nature of dissociation temperatures by employing the Quasi-Particle debye mass for pure gluonic and full QCD case. Interestingly, the dissociation temperatures obtained by employing EoS1 and EoS2 with the Γ criterion, is closer to the upper bound of the dissociation temperatures which are obtained by the dissolution of a given quarkonia state by the mean thermal energy of the quasi-partons in the hot QCD/QGP medium.

  6. The dynamics of the water droplet impacting onto hot solid surfaces at medium Weber numbers

    Science.gov (United States)

    Mitrakusuma, Windy H.; Kamal, Samsul; Indarto; Dyan Susila, M.; Hermawan; Deendarlianto

    2017-10-01

    The effects of the wettability of a droplet impacting onto a hot solid surface under medium Weber numbers were studied experimentally. The Weber numbers used in the present experiment were 52.1, 57.6, and 63.1. Three kinds of solid surfaces with different wettability were used. These were normal stainless steel (NSS), TiO2 coated NSS, and TiO2 coated NSS radiated with ultraviolet rays. The surface temperatures were varied from 60 to 200 °C. The image of side the view and 30° from horizontal were taken to explain the spreading and the interfacial behavior of a single droplet during impact the hot solid surfaces. It was found that under medium Weber numbers, the surface wettability plays an important role on the droplet spreading and evaporation time during the impact on the hot solid surfaces. The higher the wettability, the larger the droplet spreading on the hot surface, and the lower the evaporation time.

  7. Excitation of hydrogen atom by ultrashort laser pulses in optically dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Calisti, A. [Aix Marseille Universite, CNRS, PIIM, Marseille (France); Astapenko, V.A. [Moscow Institute of Physics and Technology, Dolgoprudnyi (Russian Federation); Lisitsa, V.S. [Moscow Institute of Physics and Technology, Dolgoprudnyi (Russian Federation); Russian Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation)

    2017-10-15

    The features of excitation of a hydrogen atom by ultrashort laser pulses (USP) with a Gaussian envelope in optically dense plasma at a Lyman-beta transition are studied theoretically. The problem is of interest for diagnostics of optically dense media. USP have two doubtless advantages over conventional laser excitation: (a) the USP carrier frequency is shifted to the region of short wavelengths allowing exciting atoms from the ground state and (b) the wide spectrum of USP allows them to penetrate into optically dense media to much longer distances as compared with monochromatic radiation. As actual realistic cases, two examples are considered: hot rarefied plasma (the coronal limit) and dense cold plasma (the Boltzmann equilibrium). Universal expressions for the total probability of excitation of the transition under consideration are obtained in view of absorption of radiation in a medium. As initial data for the spectral form of a line, the results of calculations by methods of molecular dynamics are used. The probability of excitation of an atom is analysed for different values of problem parameters: the pulse duration, the optical thickness of a medium, and the detuning of the pulse carrier frequency from the eigenfrequency of an electron transition. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. THE HOT INTERSTELLAR MEDIUM OF THE INTERACTING GALAXY NGC 4490

    International Nuclear Information System (INIS)

    Richings, A. J.; Fabbiano, G.; Wang Junfeng; Roberts, T. P.

    2010-01-01

    We present an analysis of the hot interstellar medium (ISM) in the spiral galaxy NGC 4490, which is interacting with the irregular galaxy NGC 4485, using ∼100 ks of Chandra ACIS-S observations. The high angular resolution of Chandra enables us to remove discrete sources and perform spatially resolved spectroscopy for the star-forming regions and associated outflows, allowing us to look at how the physical properties of the hot ISM such as temperature, hydrogen column density, and metal abundances vary throughout these galaxies. We find temperatures of >0.41 keV and 0.85 +0.59 -0.12 keV, electron densities of >1.87η -1/2 x 10 -3 cm -3 and 0.21 +0.03 -0.04 η -1/2 x 10 -3 cm -3 , and hot gas masses of >1.1η 1/2 x 10 7 M sun and ∼3.7η 1/2 x 10 7 M sun in the plane and halo of NGC 4490, respectively, where η is the filling factor of the hot gas. The abundance ratios of Ne, Mg, and Si with respect to Fe are found to be consistent with those predicted by theoretical models of type II supernovae (SNe). The thermal energy in the hot ISM is ∼5% of the total mechanical energy input from SNe, so it is likely that the hot ISM has been enriched and heated by type II SNe. The X-ray emission is anticorrelated with the Hα and mid-infrared emission, suggesting that the hot gas is bounded by filaments of cooler ionized hydrogen mixed with warm dust.

  9. Experimental investigation into the application of a magnetic dense medium cyclone in a production environment / Ilana Katinka Myburgh

    OpenAIRE

    Myburgh, Ilana Katinka

    2001-01-01

    The magnetic dense medium cyclone project was undertaken at Koingnaas Mine on a 250 mm diameter cyclone during 1998 and a 510 mm cyclone during 2000. The aim of the project was to evaluate the performance of a magnetic DM cyclone in a production environment. Previous test work on magnetic DM cyclones were conducted during 1995 and 1996 on small (100 mm) cyclones in a laboratory environment, with medium feed only. Solenoid position, magnetic field strength and medium inlet de...

  10. Proceedings of RIKEN BNL Research Center Workshop: P- and CP-odd Effects in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, A.; Fukushima, K.; Kharzeev, D.; Warringa, H.; Voloshin, S.

    2010-04-26

    This volume contains the proceedings of the RBRC/CATHIE workshop on 'P- and CP-odd Effects in Hot and Dense Matter' held at the RIKEN-BNL Research Center on April 26-30, 2010. The workshop was triggered by the experimental observation of charge correlations in heavy ion collisions at RHIC, which were predicted to occur due to local parity violation (P- and CP-odd fluctuations) in hot and dense QCD matter. This experimental result excited a significant interest in the broad physics community, inspired a few alternative interpretations, and emphasized the need for a deeper understanding of the role of topology in QCD vacuum and in hot and dense quark-gluon matter. Topological effects in QCD are also closely related to a number of intriguing problems in condensed matter physics, cosmology and astrophysics. We therefore felt that a broad cross-disciplinary discussion of topological P- and CP-odd effects in various kinds of matter was urgently needed. Such a discussion became the subject of the workshop. Specific topics discussed at the workshop include the following: (1) The current experimental results on charge asymmetries at RHIC and the physical interpretations of the data; (2) Quantitative characterization of topological effects in QCD matter including both analytical (perturbative and non-perturbative using gauge/gravity duality) and numerical (lattice-QCD) calculations; (3) Topological effects in cosmology of the Early Universe (including baryogenesis and dark energy); (4) Topological effects in condensed matter physics (including graphene and superfiuids); and (5) Directions for the future experimental studies of P- and CP-odd effects at RHIC and elsewhere. We feel that the talks and intense discussions during the workshop were extremely useful, and resulted in new ideas in both theory and experiment. We hope that the workshop has contributed to the progress in understanding the role of topology in QCD and related fields. We thank all the speakers and

  11. Proceedings of RIKEN BNL Research Center Workshop: P- and CP-odd Effects in Hot and Dense Matter

    International Nuclear Information System (INIS)

    Deshpande, A.; Fukushima, K.; Kharzeev, D.; Warringa, H.; Voloshin, S.

    2010-01-01

    This volume contains the proceedings of the RBRC/CATHIE workshop on 'P- and CP-odd Effects in Hot and Dense Matter' held at the RIKEN-BNL Research Center on April 26-30, 2010. The workshop was triggered by the experimental observation of charge correlations in heavy ion collisions at RHIC, which were predicted to occur due to local parity violation (P- and CP-odd fluctuations) in hot and dense QCD matter. This experimental result excited a significant interest in the broad physics community, inspired a few alternative interpretations, and emphasized the need for a deeper understanding of the role of topology in QCD vacuum and in hot and dense quark-gluon matter. Topological effects in QCD are also closely related to a number of intriguing problems in condensed matter physics, cosmology and astrophysics. We therefore felt that a broad cross-disciplinary discussion of topological P- and CP-odd effects in various kinds of matter was urgently needed. Such a discussion became the subject of the workshop. Specific topics discussed at the workshop include the following: (1) The current experimental results on charge asymmetries at RHIC and the physical interpretations of the data; (2) Quantitative characterization of topological effects in QCD matter including both analytical (perturbative and non-perturbative using gauge/gravity duality) and numerical (lattice-QCD) calculations; (3) Topological effects in cosmology of the Early Universe (including baryogenesis and dark energy); (4) Topological effects in condensed matter physics (including graphene and superfiuids); and (5) Directions for the future experimental studies of P- and CP-odd effects at RHIC and elsewhere. We feel that the talks and intense discussions during the workshop were extremely useful, and resulted in new ideas in both theory and experiment. We hope that the workshop has contributed to the progress in understanding the role of topology in QCD and related fields. We thank all the speakers and

  12. Survival of high pT light and heavy flavors in a dense medium

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.

    2011-01-01

    This talk presents an attempt at a critical overview of the current status of modeling for high-p T processes in nuclei. In particular, it includes discussion of the space-time development of hadronization of highly virtual light and heavy partons, and the related time scales; the role of early production and subsequent attenuation of pre-hadrons in a dense medium. We identify several challenging problems within the current interpretation of high-p T processes and propose solutions for some of them.

  13. Incoherent and coherent backscattering of light by a layer of densely packed random medium

    Energy Technology Data Exchange (ETDEWEB)

    Tishkovets, Victor P. [Institute of Radio Astronomy of NASU, 4 Chervonopraporna Street, Kharkiv 61002 (Ukraine)], E-mail: tishkovets@ira.kharkov.ua

    2007-12-15

    The problem of light scattering by a layer of densely packed discrete random medium is considered. The theory of light scattering by systems of nonspherical particles is applied to derive equations corresponding to incoherent (diffuse) and interference parts of radiation reflected from the medium. A solution of the system of linear equations describing light scattering by a system of particles is represented by iteration. It is shown that the symmetry properties of the T-matrices and of the translation coefficients for the vector Helmholtz harmonics lead to the reciprocity relation for an arbitrary iteration. This relation is applied to consider the backscattering enhancement phenomenon. Equations expressing the incoherent and interference parts of reflected light from statistically homogeneous and isotropic plane-parallel layer of medium are given. In the exact backscattering direction the relation between incoherent and interference parts is identical to that of sparse media.

  14. The effective charge of heavy ions in hot, dense plasma, special attention being given to dielectronic recombination

    International Nuclear Information System (INIS)

    Peter, T.

    1985-11-01

    This work investigates the effective charge Zsub(eff) of heavy ion beams when passing through hot, dense matter. Major new results concern the temperature and high density effects on Zsub(eff), the importance of dielectronic recombination in the process where free electrons are captured by the projectile, and the corresponding shell oscillations in Zsub(eff), as well as the derivation of approximate scaling relations for Zsub(eff). (orig./GG) [de

  15. Bulk and shear viscosities of hot and dense hadron gas

    International Nuclear Information System (INIS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-01-01

    We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons

  16. Propagation of an attosecond pulse in a dense two-level medium

    International Nuclear Information System (INIS)

    Song Xiaohong; Gong Shangqing; Yang Weifeng; Xu Zhizhan

    2004-01-01

    We investigate the propagation of attosecond pulse in a dense two-level medium by using an iterative predictor-corrector finite-difference time-domain method. We find when attosecond pulse is considered, that the standard area theorem will break down even for small area pulses: ideal self-induced transparency cannot occur even for a 2π pulse, while the pulses whose areas are not integer multiples of 2π, such as 1.8π and 2.2π pulses, cannot evolve to 2π pulses as predicted by the standard area theorem. Significantly higher spectra components can occur on all these small area propagating pulses due to strong carrier reshaping. Furthermore, these higher spectral components dependent sensitively on the pulse area: the larger the pulse area is, the more evident are these higher spectral components

  17. Hot gas in the interstellar medium, from supernova remnants to the diffuse coronal phase

    International Nuclear Information System (INIS)

    Ballet, Jean

    1988-01-01

    This research thesis addresses the study of the hot interstellar medium and of its main component, supernovae remnants. The author studied the hypothesis according to which ions observed in the interstellar medium are produced during the evaporation of cold clouds in the coronal phase. He shows that effects of ionisation delay are important and modify by a factor 10 the total quantity of ions predicted by the model. The study of the influence on ionisation of hot electrons penetrating cold layers revealed that this effect is rather weak. Then, based on the observation of the Kepler supernovae remnants by means of EXOSAT, and on the use of a hydrodynamics code coupled with a step-by-step calculation of ionisation of elements, the author studied the evolution of young supernovae remnants: propagation of the main shock in the interstellar medium, and of the backlash in the matter ejected by the star. The author also studied the X emission of an older supernovae remnant (the Cygnus Loop) by analysing three EXOSAT observations of this remnant. Results of Fabry-Perot spectrophotometry have been used to study optic lines [fr

  18. Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies

    Science.gov (United States)

    Li, Jiang-Tao; Bregman, Joel N.; Wang, Q. Daniel; Crain, Robert A.; Anderson, Michael E.

    2018-03-01

    The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these “missing baryons” may be stored in a hot tenuous circumgalactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev–Zel’dovich (SZ) signals claimed that ∼(1–50)% of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%–20% of the virial radius). Here, we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of ≈200 kpc (or ≈130 kpc above the 1σ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for (8 ± 4)% of the baryonic mass expected for the halos. Including the stars, the baryon fraction is (27 ± 16)%, or (39 ± 20)% by assuming a flattened density profile at r ≳ 130 kpc. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the “missing baryons.”

  19. Non-Metallic Inclusions and Hot-Working Behaviour of Advanced High-Strength Medium-Mn Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available The work addresses the production of medium-Mn steels with an increased Al content. The special attention is focused on the identification of non-metallic inclusions and their modification using rare earth elements. The conditions of the thermomechanical treatment using the metallurgical Gleeble simulator and the semi-industrial hot rolling line were designed for steels containing 3 and 5% Mn. Hot-working conditions and controlled cooling strategies with the isothermal holding of steel at 400°C were selected. The effect of Mn content on the hot-working behaviour and microstructure of steel was addressed. The force-energetic parameters of hot rolling were determined. The identification of structural constituents was performed using light microscopy and scanning electron microscopy methods. The addition of rare earth elements led to the total modification of non-metallic inclusions, i.e., they replaced Mn and Al forming complex oxysulphides. The Mn content in a range between 3 and 5% does not affect the inclusion type and the hot-working behaviour. In contrast, it was found that Mn has a significant effect on a microstructure.

  20. Focus talk on interactions between jets and medium

    International Nuclear Information System (INIS)

    Ruppert, Joerg

    2006-01-01

    The energy and momentum lost by a hard parton propagating through hot and dense matter has to be redistributed during the nuclear medium evolution. Apart from heating the medium, there is the possibility that collective modes are excited leading to the emergence of Mach cones or Cherenkov radiation. Recent two-particle correlation measurements by STAR [F. Wang [STAR Collaboration], J. Phys. G 30, S1299 (2004) [arXiv:nucl-ex/0404010]; C. Gagliardi, these proceedings] and PHENIX [S. S. Adler et al. [PHENIX Collaboration], arXiv:nucl-ex/0507004; N. Ajitanand, these proceedings] at RHIC indicate that such phenomena may play an important role in understanding the jet-medium interactions. Possible collective modes are discussed and it is demonstrated that Mach cones as created by colorless or colored sound are a possible explanation of the hardronic two-particle correlation data

  1. Cosmic-ray self-confinement in the hot phase of the interstellar medium

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Kulsrud, R.M.

    1981-01-01

    Until a few years ago, it was believed that the interstellar medium was mostly filled by a neutral gas, of density approximately 0.1 cm -3 and a temperature of several thousand degrees. Kulsrud and Cesarsky (1971) showed that, in such a medium, cosmic rays of energy >approximately100 GeV are not confined at all, because the waves are damped very rapidly by the effect of the collisions between the neutral and the charged particles in the medium. The case of streaming in HII regions was considered by Wentzel (1974) and Skilling (1975), and did not lead either to a satisfactory solution. At present, the authors think that a substantial fraction of the interstellar medium is filled with a hot (approximately 10 6 K) and diffuse 'coronal gas' (10 -3 cm -3 ). The strength of the magnetic field in such regions is unknown; it is probably lower than the normal interstellar value, 2.5 μG, by a factor which may be in the range 3-30. (Auth.)

  2. Studying dense plasmas with coherent XUV pulses

    International Nuclear Information System (INIS)

    Stabile, H.

    2006-12-01

    The investigation of dense plasma dynamic requires the development of diagnostics able to ensure the measurement of electronic density with micro-metric space resolution and sub-nanosecond, or even subpicosecond, time resolution (indeed this must be at least comparable with the characteristic tune scale of plasma evolution). In contrast with low-density plasmas, dense plasmas cannot be studied using optical probes in the visible domain, the density range accessible being limited to the critical density (N c equals 1.1*10 21 λ -2 (μm) ∼ 10 21 cm -3 for infrared). In addition, light is reflected even at smaller densities if the medium exhibits sharp density gradients. Hence probing of dense plasmas, for instance those produced by laser irradiation of solids, requires using shorter wavelength radiation. Thanks to their physical properties, high order harmonics generated in rare gases are particularly adapted to the study of dense plasmas. Indeed, they can naturally be synchronized with the generating laser and their pulse duration is very short, which makes it possible to use them in pump-probe experiments. Moreover, they exhibit good spatial and temporal coherencies. Two types of diagnostics were developed during this thesis. The first one was used to study the instantaneous creation of hot-solid-density plasma generated by focusing a femtosecond high-contrast laser on an ultra-thin foil (100 nm) in the 10 18 W/cm 2 intensity regime. The use of high order harmonics, providing a probe beam of sufficiently short wavelengths to penetrate such a medium, enables the study of its dynamics on the 100 fs time scale. The second one uses the harmonics beam as probe beam (λ equals 32 nm) within an interferometric device. This diagnostic was designed to ensure a micro-metric spatial resolution and a temporal resolution in the femtosecond range. The first results in presence of plasma created by irradiation of an aluminum target underline the potentialities of this new

  3. Proceedings of RIKEN BNL research center workshop, equilibrium and non-equilibrium aspects of hot, dense QCD, Vol. 28

    International Nuclear Information System (INIS)

    De Vega, H.J.; Boyanovsky, D.

    2000-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation ∼2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision

  4. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    De Vega, H.J.; Boyanovsky, D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  5. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    DE VEGA,H.J.; BOYANOVSKY,D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  6. Phase structure of hot and/or dense QCD with the Schwinger-Dyson equation

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Satoshi [Nagoya Univ., Nagoya, Aichi (Japan)

    2002-09-01

    We investigate the phase structure of the hot and/or dense QCD using the Schwinger-Dyson equation (SDE) with the improved ladder approximation in the Landau gauge. We solve the coupled SDE for the Majorana masses of the quark and antiquark (separately from the SDE for the Dirac mass) in the finite temperature and/or chemical potential region. The resultant phase structure is rather different from those by other analyses. In addition to this analysis we investigate the phase structure with the different two types of the SDE, in one of which the Majorana mass gap of the antiquark is neglected, while in the other of which the Majorana mass gap of the quark and that of the antiquark are set to be equal. The effect of the Debye mass of the gluon on the phase structure is also investigated. (author)

  7. Absorption of X-rays in the interstellar medium

    International Nuclear Information System (INIS)

    Ride, S.K.; Stanford Univ., Calif.; Walker, A.B.C. Jr.; Stanford Univ., Calif.

    1977-01-01

    In order to interpret soft X-ray spectra of cosmic X-ray sources, it is necessary to know the photoabsorption cross-section of the intervening interstellar material. Current models suggest that the interstellar medium contains two phases which make a substantial contribution to the X-ray opacity: cool, relatively dense clouds that exist in pressure equilibrium with hot, tenuous intercloud regions. We have computed the soft X-ray photoabsorption cross-section (per hydrogen atom) of each of these two phases. The calculation are based on a model of the interstellar medium which includes chemical evolution of the galaxy, the formation of molecules and grains, and the ionization structure of each of each phase. These cross-sections of clouds and of intercloud regions can be combined to yield the total soft X-ray photoabsorption cross-section of the interstellar medium. By choosing the appropriate linear combination of cloud and intercloud cross-sections, we can tailor the total cross-section to a particular line-of-sight. This approach, coupled with our interstellar model, enables us to better describe a wide range of interstellar features such as H II regions, dense (molecular) clouds, or the ionized clouds which may surround binary X-ray sources. (orig.) [de

  8. Intense, ultrashort light and dense, hot matter

    Indian Academy of Sciences (India)

    tiphoton and tunneling ionization, the physics of plasma formed in dense matter is .... A typical Gaussian laser pulse of 100 fs dura- .... J range) – and finally it is compressed back to its .... bond-hardening, molecular orientation and reori-.

  9. New approximation for calculating free-free absorption in hot dense plasmas

    International Nuclear Information System (INIS)

    Perrot, F.

    1996-01-01

    We propose a model for calculating free-free absorption (inverse bremmstrahlung) in hot dense plasmas. This model writes the total Gaunt factor as the product of a static factor and a dynamic factor. The treatment of the static part is based on a relation between the absorption cross section and the elastic scattering cross section, which is exact for very low frequencies and becomes asymptotically correct when the Born approximation is valid. Generalizing this relation provides an expression of the absorption cross section Q(k,k'), which depends on the initial and final wave vectors k and k', as an integral of a unique function S * (k). The calculation of nondiagonal matrix elements (k ''not='' k') is thus avoided. The analytical summation of the high angular momenta in the partial wave expansion of the cross section makes possible to apply the model in the limit of weak electron screening. The collective effects are accounted for in a dynamic Gaunt factor and in an index of refraction different from unity. Numerical results for the Gaunt factor in cesium are presented and discussed. An application to the mean opacities of carbon is also shown. (Author)

  10. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    Science.gov (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  11. Ionic structures and transport properties of hot dense W and U plasmas

    Science.gov (United States)

    Hou, Yong; Yuan, Jianmin

    2016-10-01

    We have combined the average-atom model with the hyper-netted chain approximation (AAHNC) to describe the electronic and ionic structure of uranium and tungsten in the hot dense matter regime. When the electronic structure is described within the average-atom model, the effects of others ions on the electronic structure are considered by the correlation functions. And the ionic structure is calculated though using the hyper-netted chain (HNC) approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution in the temperature-depended density functional theory. And electronic and ionic structures are determined self-consistently. On the basis of the ion-ion pair potential, we perform the classical (CMD) and Langevin (LMD) molecular dynamics to simulate the ionic transport properties, such as ionic self-diffusion and shear viscosity coefficients, through the ionic velocity correlation functions. Due that the free electrons become more and more with increasing the plasma temperature, the influence of the electron-ion collisions on the transport properties become more and more important.

  12. Hot granules medium pressure forming process of AA7075 conical parts

    Science.gov (United States)

    Dong, Guojiang; Zhao, Changcai; Peng, Yaxin; Li, Ying

    2015-05-01

    High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing flexible mould forming process, the heat resistance of the medium and pressurizing device makes the application of aluminum alloy plate thermoforming restricted. To solve this problem, the existing medium is replaced by the heat-resisting solid granules and the general pressure equipments are applied. Based on the pressure-transfer performance test of the solid granules medium, the feasibility that the assumption of the extended Drucker-Prager linear model can be used in the finite element analysis is proved. The constitutive equation, the yield function and the theoretical forming limit diagram(FLD) of AA7075 sheet are established. Through the finite element numerical simulation of hot granules medium pressure forming(HGMF) process, not only the influence laws of the process parameters, such as forming temperature, the blank-holder gap and the diameter of the slab, on sheet metal forming performance are discussed, but also the broken area of the forming process is analyzed and predicted, which are coincided with the technological test. The conical part whose half cone angle is 15° and relative height H/d 0 is 0.57, is formed in one process at 250°C. The HGMF process solves the problems of loading and seal in the existing flexible mould forming process and provides a novel technology for thermoforming of light alloy plate, such as magnesium alloy, aluminium alloy and titanium alloy.

  13. Self-consistent descriptions of vector mesons in hot matter reexamined

    International Nuclear Information System (INIS)

    Riek, Felix; Knoll, Joern

    2010-01-01

    Technical concepts are presented that improve the self-consistent treatment of vector mesons in a hot and dense medium. First applications concern an interacting gas of pions and ρ mesons. As an extension of earlier studies, we thereby include random-phase-approximation-type vertex corrections and further use dispersion relations to calculate the real part of the vector-meson self-energy. An improved projection method preserves the four transversality of the vector-meson polarization tensor throughout the self-consistent calculations, thereby keeping the scheme void of kinematical singularities.

  14. POLARIZATION MEASUREMENTS OF HOT DUST STARS AND THE LOCAL INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J. P.; Cotton, D. V.; Bott, K.; Bailey, J.; Kedziora-Chudczer, L. [School of Physics, UNSW Australia, High Street, Kensington, NSW 2052 (Australia); Ertel, S. [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Kennedy, G. M.; Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Burgo, C. del [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); Absil, O. [Institut d’Astrophysique et de Géophysique, University of Liège, 19c allée du Six Août, B-4000 Liège (Belgium)

    2016-07-10

    Debris discs are typically revealed through the presence of excess emission at infrared wavelengths. Most discs exhibit excess at mid- and far-infrared wavelengths, analogous to the solar system’s Asteroid and Edgeworth-Kuiper belts. Recently, stars with strong (∼1%) excess at near-infrared wavelengths were identified through interferometric measurements. Using the HIgh Precision Polarimetric Instrument, we examined a sub-sample of these hot dust stars (and appropriate controls) at parts-per-million sensitivity in SDSS g ′ (green) and r ′ (red) filters for evidence of scattered light. No detection of strongly polarized emission from the hot dust stars is seen. We, therefore, rule out scattered light from a normal debris disk as the origin of this emission. A wavelength-dependent contribution from multiple dust components for hot dust stars is inferred from the dispersion (the difference in polarization angle in red and green) of southern stars. Contributions of 17 ppm (green) and 30 ppm (red) are calculated, with strict 3- σ upper limits of 76 and 68 ppm, respectively. This suggests weak hot dust excesses consistent with thermal emission, although we cannot rule out contrived scenarios, e.g., dust in a spherical shell or face-on discs. We also report on the nature of the local interstellar medium (ISM), obtained as a byproduct of the control measurements. Highlights include the first measurements of the polarimetric color of the local ISM and the discovery of a southern sky region with a polarization per distance thrice the previous maximum. The data suggest that λ {sub max}, the wavelength of maximum polarization, is bluer than typical.

  15. A multiple scattering theory for EM wave propagation in a dense random medium

    Science.gov (United States)

    Karam, M. A.; Fung, A. K.; Wong, K. W.

    1985-01-01

    For a dense medium of randomly distributed scatterers an integral formulation for the total coherent field has been developed. This formulation accounts for the multiple scattering of electromagnetic waves including both the twoand three-particle terms. It is shown that under the Markovian assumption the total coherent field and the effective field have the same effective wave number. As an illustration of this theory, the effective wave number and the extinction coefficient are derived in terms of the polarizability tensor and the pair distribution function for randomly distributed small spherical scatterers. It is found that the contribution of the three-particle term increases with the particle size, the volume fraction, the frequency and the permittivity of the particle. This increase is more significant with frequency and particle size than with other parameters.

  16. Neutrino reactions in hot and dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lohs, Andreas

    2015-04-13

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  17. Neutrino reactions in hot and dense matter

    International Nuclear Information System (INIS)

    Lohs, Andreas

    2015-01-01

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  18. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    Science.gov (United States)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  19. ICE AND DUST IN THE QUIESCENT MEDIUM OF ISOLATED DENSE CORES

    International Nuclear Information System (INIS)

    Boogert, A. C. A.; Huard, T. L.; Knez, C.; Cook, A. M.; Chiar, J. E.; Decin, L.; Blake, G. A.; Tielens, A. G. G. M.; Van Dishoeck, E. F.

    2011-01-01

    The relation between ices in the envelopes and disks surrounding young stellar objects (YSOs) and those in the quiescent interstellar medium (ISM) is investigated. For a sample of 31 stars behind isolated dense cores, ground-based and Spitzer spectra and photometry in the 1-25 μm wavelength range are combined. The baseline for the broad and overlapping ice features is modeled, using calculated spectra of giants, H 2 O ice and silicates. The adopted extinction curve is derived empirically. Its high resolution allows for the separation of continuum and feature extinction. The extinction between 13 and 25 μm is ∼50% relative to that at 2.2 μm. The strengths of the 6.0 and 6.85 μm absorption bands are in line with those of YSOs. Thus, their carriers, which, besides H 2 O and CH 3 OH, may include NH + 4 , HCOOH, H 2 CO, and NH 3 , are readily formed in the dense core phase, before stars form. The 3.53 μm C-H stretching mode of solid CH 3 OH was discovered. The CH 3 OH/H 2 O abundance ratios of 5%-12% are larger than upper limits in the Taurus molecular cloud. The initial ice composition, before star formation occurs, therefore depends on the environment. Signs of thermal and energetic processing that were found toward some YSOs are absent in the ices toward background stars. Finally, the peak optical depth of the 9.7 μm band of silicates relative to the continuum extinction at 2.2 μm is significantly shallower than in the diffuse ISM. This extends the results of Chiar et al. to a larger sample and higher extinctions.

  20. Directly calculated electrical conductivity of hot dense hydrogen from molecular dynamics simulation beyond Kubo-Greenwood formula

    Science.gov (United States)

    Ma, Qian; Kang, Dongdong; Zhao, Zengxiu; Dai, Jiayu

    2018-01-01

    Electrical conductivity of hot dense hydrogen is directly calculated by molecular dynamics simulation with a reduced electron force field method, in which the electrons are represented as Gaussian wave packets with fixed sizes. Here, the temperature is higher than electron Fermi temperature ( T > 300 eV , ρ = 40 g / cc ). The present method can avoid the Coulomb catastrophe and give the limit of electrical conductivity based on the Coulomb interaction. We investigate the effect of ion-electron coupled movements, which is lost in the static method such as density functional theory based Kubo-Greenwood framework. It is found that the ionic dynamics, which contributes to the dynamical electrical microfield and electron-ion collisions, will reduce the conductivity significantly compared with the fixed ion configuration calculations.

  1. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    International Nuclear Information System (INIS)

    Zhang, Shen; Kang, Wei; Wang, Hongwei; Zhang, Ping; He, X. T.

    2016-01-01

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  2. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shen; Kang, Wei, E-mail: weikang@pku.edu.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Wang, Hongwei [College of Engineering, Peking University, Beijing 100871 (China); Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); He, X. T., E-mail: xthe@iapcm.ac.cn [Center for Applied Physics and Technology, HEDPS, and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2016-04-15

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of electronic structures. This gives an edge to the extended method in the calculation of mixtures of plasmas composed of heterogeneous ions, high-Z dense plasmas, lowering of ionization potentials, X-ray absorption/emission spectra, and opacities, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  3. Dense ceramic articles

    International Nuclear Information System (INIS)

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  4. Numerical simulation of springback of medium-thick plates in local hot rolling

    Directory of Open Access Journals (Sweden)

    XIE Dong

    2017-10-01

    Full Text Available [Objectives] In order to understand the factors of springback in the local hot rolling of medium-thick steel plates,[Methods] a 3D thermal-elastic-plastic analysis is conducted to investigate the factors affecting the amount of springback. Through a series of numerical analyses,the influence of deformation temperature,temperature field distribution,plate size and local loading are examined. [Results] The results show that when the deformation temperature exceeds a certain level at which material yield stress begins to decrease significantly,the springback will reduce markedly with the increase in temperature. Due to the distribution characteristics of the deformation area,the influence of temperature distribution on springback where the local deformation scale is larger is dominated by the three dimensions of temperature field distribution. Changes in the length and width of the plate have a certain influence on the springback,in which changes to the length of a plate where the local deformation scale is larger have a more obvious influence on springback. The springback of the plate decreases with the increase of local loading. [Conclusions] The results of this study can assist in the optimization of parameters in the automatic hot rolling of thick plates,while also having a basic guiding effect on the further study of springback in the local hot rolling of thick plates.

  5. High-harmonic generation in a dense medium

    International Nuclear Information System (INIS)

    Strelkov, V.V.; Platonenko, V.T.; Becker, A.

    2005-01-01

    The high-harmonic generation in a plasma or gas under conditions when the single-atom response is affected by neighboring ions or atoms of the medium is studied theoretically. We solve numerically the three-dimensional Schroedinger equation for a single-electron atom in the combined fields of the neighboring particles and the laser, and average the results over different random positions of the particles using the Monte Carlo method. Harmonic spectra are calculated for different medium densities and laser intensities. We observe a change of the harmonic properties due to a random variation of the harmonic phase induced by the field of the medium, when the medium density exceeds a certain transition density. The transition density is found to depend on the harmonic order, but it is almost independent of the fundamental intensity. It also differs for the two (shorter and longer) quantum paths. The latter effect leads for ionic densities in the transition regime to a narrowing of the harmonic lines and a shortening of the attosecond pulses generated using a group of harmonics

  6. Hot and dense matter in compact stars - from nuclei to quarks

    International Nuclear Information System (INIS)

    Hempel, Matthias

    2010-01-01

    This dissertation deals with the equation of state of hot and dense matter in compact stars, with special focus on first order phase transitions. A general classification of first order phase transitions is given and the properties of mixed phases are discussed. Aspects of nucleation and the role of local constraints are investigated. The derived theoretical concepts are applied to matter in neutron stars and supernovae, in the hadron-quark and the liquid-gas phase transition. For the detailed description of the liquid-gas phase transition a new nuclear statistical equilibrium model is developed. It is based on a thermodynamic consistent implementation of relativistic mean-field interactions and excluded volume effects. With this model different equation of state tables are calculated and the composition and thermodynamic properties of supernova matter are analyzed. As a first application numerical simulations of core-collapse supernovae are presented. For the hadron-quark phase transition two possible scenarios are studied in more detail. First the appearance of a new mixed phase in a proto neutron star and the implications on its evolution. In the second scenario the consequences of the hadron-quark transition in corecollapse supernovae are investigated. Simulations show that the appearance of quark matter has clear observable signatures and can even lead to the generation of an explosion. (orig.)

  7. Hot and dense matter in compact stars - from nuclei to quarks

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Matthias

    2010-10-19

    This dissertation deals with the equation of state of hot and dense matter in compact stars, with special focus on first order phase transitions. A general classification of first order phase transitions is given and the properties of mixed phases are discussed. Aspects of nucleation and the role of local constraints are investigated. The derived theoretical concepts are applied to matter in neutron stars and supernovae, in the hadron-quark and the liquid-gas phase transition. For the detailed description of the liquid-gas phase transition a new nuclear statistical equilibrium model is developed. It is based on a thermodynamic consistent implementation of relativistic mean-field interactions and excluded volume effects. With this model different equation of state tables are calculated and the composition and thermodynamic properties of supernova matter are analyzed. As a first application numerical simulations of core-collapse supernovae are presented. For the hadron-quark phase transition two possible scenarios are studied in more detail. First the appearance of a new mixed phase in a proto neutron star and the implications on its evolution. In the second scenario the consequences of the hadron-quark transition in corecollapse supernovae are investigated. Simulations show that the appearance of quark matter has clear observable signatures and can even lead to the generation of an explosion. (orig.)

  8. Fabrication of dense yttrium oxyfluoride ceramics by hot pressing and their mechanical, thermal, and electrical properties

    Science.gov (United States)

    Tahara, Ryuki; Tsunoura, Toru; Yoshida, Katsumi; Yano, Toyohiko; Kishi, Yukio

    2018-06-01

    Excellent corrosion-resistant materials have been strongly required to reduce particle contamination during the plasma process in semiconductor production. Yttrium oxyfluoride can be a candidate as highly corrosion-resistant material. In this study, three types of dense yttrium oxyfluoride ceramics with different oxygen contents, namely, YOF, Y5O4F7 and Y5O4F7 + YF3, were fabricated by hot pressing, and their mechanical, thermal, and electrical properties were evaluated. Y5O4F7 ceramics showed an excellent thermal stability up to 800 °C, a low loss factor, and volume resistivity comparable to conventional plasma-resistant oxides, such as Y2O3. From these results, yttrium oxyfluoride ceramics are strongly suggested to be used as electrostatic chucks in semiconductor production.

  9. Laser-assisted electron scattering in strong-field ionization of dense water vapor by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Wilke, M; Al-Obaidi, R; Moguilevski, A; Kothe, A; Engel, N; Metje, J; Kiyan, I Yu; Aziz, E F

    2014-01-01

    We report on strong-field ionization of dense water gas in a short infrared laser pulse. By employing a unique combination of photoelectron spectroscopy with a liquid micro-jet technique, we observe how the character of electron emission at high kinetic energies changes with the increase of the medium density. This change is associated with the process of laser-assisted electron scattering (LAES) on neighboring particles, which becomes a dominant mechanism of hot electron emission at higher medium densities. The manifestation of this mechanism is found to require densities that are orders of magnitude lower than those considered for heating the laser-generated plasmas via the LAES process. The experimental results are supported by simulations of the LAES yield with the use of the Kroll–Watson theory. (paper)

  10. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  11. Unified approach to dense matter

    International Nuclear Information System (INIS)

    Park, Byung-Yoon; Lee, Hee-Jung; Vento, Vicente; Kim, Joon-Il; Min, Dong-Pil; Rho, Mannque

    2005-01-01

    We apply the Skyrme model to dense hadronic matter, which provides a unified approach to high density, valid in the large N c limit. In our picture, dense hadronic matter is described by the classical soliton configuration with minimum energy for the given baryon number density. By incorporating the meson fluctuations on such ground state we obtain an effective Lagrangian for meson dynamics in a dense medium. Our starting point has been the Skyrme model defined in terms of pions, thereafter we have extended and improved the model by incorporating other degrees of freedom such as dilaton, kaons and vector mesons

  12. Time-resolved Thomson scattering on high-intensity laser-produced hot dense helium plasmas

    International Nuclear Information System (INIS)

    Sperling, P; Liseykina, T; Bauer, D; Redmer, R

    2013-01-01

    The introduction of brilliant free-electron lasers enables new pump–probe experiments to characterize warm and hot dense matter states, i.e. systems at solid-like densities and temperatures of one to several hundred eV. Such extreme conditions are relevant for high-energy density studies such as, e.g., in planetary physics and inertial confinement fusion. We consider here a liquid helium jet pumped with a high-intensity optical short-pulse laser that is subsequently probed with brilliant soft x-ray radiation. The optical short-pulse laser generates a strongly inhomogeneous helium plasma which is characterized with particle-in-cell simulations. We derive the respective Thomson scattering spectrum based on the Born–Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We observe plasmon modes that are generated in the interior of the target and study their temporal evolution. Such pump–probe experiments are promising tools to measure the important plasma parameters density and temperature. The method described here can be applied to various pump–probe scenarios by combining optical lasers, soft x-rays and hard x-ray sources. (paper)

  13. In-medium properties of pseudoscalar D_s and B_s mesons

    Science.gov (United States)

    Chhabra, Rahul; Kumar, Arvind

    2017-11-01

    We calculate the shift in the masses and decay constants of D_s(1968) and B_s(5370) mesons in hot and dense asymmetric strange hadronic matter using QCD sum rules and chiral SU(3) model. In-medium strange quark condensates _{ρ _B}, and gluon condensates _{ρ _B}, to be used in the QCD sum rules for pseudoscalar D_s and B_s mesons, are calculated using a chiral SU(3) model. As an application of our present work, we calculate the in-medium decay widths of the excited (c\\bar{s}) states D_s^*(2715) and D_s^*(2860) decaying to (D_s(1968),η ) mesons. The medium effects in their decay widths are incorporated through the mass modification of the D_s(1968) and η mesons. The results of the present investigation may be helpful in understanding the possible outcomes of the future experiments like CBM and PANDA under the FAIR facility.

  14. On the stability of the interface between dense plasma and liquid under electrical pulse discharge in liquid medium

    International Nuclear Information System (INIS)

    Starchyk, P.D.; Porytskyy, P.V.

    2005-01-01

    It is shown that the most important influence on the plasma of electrical pulse discharges in liquid have the processes in a zone of its contact with condensed medium. The investigations of growth of corrugations are conducted which arise on an interface between both the plasma channels of electrical pulse discharges and limiting it liquid. It is shown that the growth of perturbations caused by Rayleigh-Taylor instability are nonlinearly saturated. It is established the interconnection between both the pointed perturbations and the parameters of a dense plasma of discharge channel

  15. Study on the behavior of medium carbon vanadium microalloyed steel by hot compression test

    International Nuclear Information System (INIS)

    Meysami, Majid; Mousavi, Seyed Ali Asghar Akbari

    2011-01-01

    Research highlights: → At low Z parameter, the multi peak dynamic recrystallization behavior was observed. → At high Z, the stress-strain curves were exhibited with a single peak stress. → The hyperbolic sine law was found to provide the best fit for calculation of Q. → The average value of n was obtained as 4.687. → The peak stress and of the studied material was obtained. - Abstract: This article investigates the hot working behavior of medium carbon vanadium microalloyed steel by hot compression tests over the temperature range of 850-1100 deg. C and strain rate range of 0.001-0.5 s -1 to strain of 0.8. In this study, the general constitutive equations were used to determine the hot working constants. The peak stress (σ P ) and strain (ε P ) for initiation of dynamic recrystallization (DRX) at different temperatures and strain rates were calculated. The power law, exponential and hyperbolic sinusoidal types of Zener-Hollomon equations were used to determine the hot deformation activation energy (Q). The results suggested that the highest correlation coefficient was achieved for the hyperbolic sine law for the studied material. The magnitude of hot deformation activation energy (Q) was obtained as 319.910 kJ/mol. The classical single peak DRX was observed in most of temperatures and strain rates. However, for temperature of 1100 deg. C and strain rates of 0.001 s -1 , 0.01 s -1 , and also for temperature of 950 deg. C and strain rate of 0.001 s -1 the multiple peak dynamic recrystallization (MDRX) was observed, which showed that the 'recrystallization' was an observed strain rate behavior.

  16. Fine coal processing with dense-medium cyclones

    CSIR Research Space (South Africa)

    De Korte, GJ

    2012-10-01

    Full Text Available Institute of Mining and Metallurgy. October 1980, pp. 357-361. 24 Horsfall, D.W. 1976. The treatment of fine coal: Upgrading ?0.5 mm coal to obtain a low-ash product. ChemSA, July. 124-129. Kempnich, R.J., van Barneveld, S. and Lusan, A. 1993. Dense... was good and the results were reported by Mengelers and Absil (1976) (see Table 2). The magnetite consumption for the operation at Tertre was approximately 1 kg per feed ton. In 1965, a similar plant was constructed at Winterslag in Belgium. This plant...

  17. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Li, Xiaodong; Chang, Ying; Wang, Cunyu; Hu, Ping; Dong, Han

    2017-01-01

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M s temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  18. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaodong [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Chang, Ying, E-mail: yingc@dlut.edu.cn [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Wang, Cunyu [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China); Hu, Ping [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Dong, Han [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China)

    2017-01-02

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M{sub s} temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  19. Study on the behavior of medium carbon vanadium microalloyed steel by hot compression test

    Energy Technology Data Exchange (ETDEWEB)

    Meysami, Majid [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, P.O. Box 11155-4653, Tehran (Iran, Islamic Republic of); Mousavi, Seyed Ali Asghar Akbari, E-mail: akbarimusavi@ut.ac.ir [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, P.O. Box 11155-4653, Tehran (Iran, Islamic Republic of)

    2011-03-25

    Research highlights: {yields} At low Z parameter, the multi peak dynamic recrystallization behavior was observed. {yields} At high Z, the stress-strain curves were exhibited with a single peak stress. {yields} The hyperbolic sine law was found to provide the best fit for calculation of Q. {yields} The average value of n was obtained as 4.687. {yields} The peak stress and of the studied material was obtained. - Abstract: This article investigates the hot working behavior of medium carbon vanadium microalloyed steel by hot compression tests over the temperature range of 850-1100 deg. C and strain rate range of 0.001-0.5 s{sup -1} to strain of 0.8. In this study, the general constitutive equations were used to determine the hot working constants. The peak stress ({sigma}{sub P}) and strain ({epsilon}{sub P}) for initiation of dynamic recrystallization (DRX) at different temperatures and strain rates were calculated. The power law, exponential and hyperbolic sinusoidal types of Zener-Hollomon equations were used to determine the hot deformation activation energy (Q). The results suggested that the highest correlation coefficient was achieved for the hyperbolic sine law for the studied material. The magnitude of hot deformation activation energy (Q) was obtained as 319.910 kJ/mol. The classical single peak DRX was observed in most of temperatures and strain rates. However, for temperature of 1100 deg. C and strain rates of 0.001 s{sup -1}, 0.01 s{sup -1}, and also for temperature of 950 deg. C and strain rate of 0.001 s{sup -1} the multiple peak dynamic recrystallization (MDRX) was observed, which showed that the 'recrystallization' was an observed strain rate behavior.

  20. Non-equilibrium ionization around clouds evaporating in the interstellar medium

    International Nuclear Information System (INIS)

    Ballet, J.; Luciani, J.F.; Mora, P.

    1986-01-01

    It is of prime importance for global models of the interstellar medium to know whether dense clouds do or do not evaporate in the hot coronal gas. The rate of mass exchanges between phases depends very much on that. McKee and Ostriker's model, for instance, assumes that evaporation is important enough to control the expansion of supernova remnants, and that mass loss obeys the law derived by Cowie and McKee. In fact, the geometry of the magnetic field is nearly unknown, and it might totally inhibit evaporation, if the clouds are not regularly connected to the hot gas. Up to now, the only test of the theory is the U.V. observation (by the Copernicus and IUE satellites) of absorption lines of ions such as OVI or NV, that exist at temperatures of a few 100,000 K typical of transition layers around evaporating clouds. Other means of testing the theory are discussed

  1. Parton fragmentation in the vacuum and in the medium

    CERN Document Server

    Albino, S.; Arleo, F.; Besson, Dave Z.; Brooks, William K.; Buschbeck, B.; Cacciari, M.; Christova, E.; Corcella, G.; D'Enterria, David G.; Dolejsi, Jiri; Domdey, S.; Estienne, M.; Hamacher, Klaus; Heinz, M.; Hicks, K.; Kettler, D.; Kumano, S.; Moch, S.O.; Muccifora, V.; Pacetti, S.; Perez-Ramos, R.; Pirner, H.J.; Pronko, Alexandre Pavlovich; Radici, M.; Rak, J.; Roland, C.; Rudolph, Gerald; Rurikova, Z.; Salgado, C.A.; Sapeta, S.; Saxon, David H.; Seidl, Ralf-Christian; Seuster, R.; Stratmann, M.; Tannenbaum, Michael J.; Tasevsky, M.; Trainor, T.; Traynor, D.; Werlen, M.; Zhou, C.

    2008-01-01

    We present the mini-proceedings of the workshop on ``Parton fragmentation in the vacuum and in the medium'' held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) in February 2008. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of quark and gluon fragmentation into hadrons at different accelerator facilities (LEP, B-factories, JLab, HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) light-quark and gluon fragmentation in the vacuum including theoretical (global fits analyses and MLLA) and experimental (data from e+e-, p-p, e-p collisions) aspects, (ii) strange and heavy-quark fragmentation, (iii) parton fragmentation in cold QCD matter (nuclear DIS), and (iv) medium-modified fragmentation in hot and dense QCD matter (high-energy nucleus-nucleus collisions). These mini-proceedings consist of an introduction and short summ...

  2. Retrieval of Dry Snow Parameters from Radiometric Data Using a Dense Medium Model and Genetic Algorithms

    Science.gov (United States)

    Tedesco, Marco; Kim, Edward J.

    2005-01-01

    In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.

  3. {pi}{pi}-correlations in hot and dense matter; {pi}{pi}-Korrelationen in heisser und dichter Materie

    Energy Technology Data Exchange (ETDEWEB)

    Isselhorst, C.

    2006-07-01

    Properties of the {pi}{pi}-interactions in hot and dense matter are studied within a nonperturbative and symmetry conserving approach. The pion and its chiral partner, the {sigma}-meson, are described within the linear {sigma} model and special attention is given to the conservation of the underlying chiral symmetry. The first part deals with the properties of pion and {sigma} in the vacuum, the further being the ''Goldstone''-boson of the theory, while the latter is a broad resonance. The results in the vacuum are tested against experimental results like {pi}{pi}-phase shifts as well as the mass and the width of the {sigma}-meson. Besides the propagator of the {sigma}-meson, the preservation of the chiral symmetry is explicitly examined and chiral Ward identities for the n-point functions of the theory are fulfilled. Furthermore the {pi}{pi}-scattering matrix is calculated and shown to be consistent with predictions from chiral perturbation theory. In the second part of this work the model is extended to finite temperature with special emphasis on the chiral phase transition. The transition temperature and the critical exponent {beta} are determined, and the influence of the temperature on the propagator of the s-meson as well as on the {pi}{pi}-scattering matrix is examined. The third part deals with the properties of pion and {sigma} in dense matter. Additional couplings like the ones to particle-hole excitations and short range repulsion have to be included to ensure stability at nuclear matter density. At zero three momentum one observes a strong downward shift of the {sigma}-mass accompanied by an accumulation of strength near the two-pion threshhold in the spectral function. Taking into account a finite three momentum for the {pi}{pi}-pair, respectively the {sigma}-meson, one observes a weakening of the aforementioned effect. Having thus developed a model for the {pi}{pi}-interaction at finite temperature and density, we try to describe

  4. Hot interstellar tunnels. I. Simulation of interacting supernova remnants

    International Nuclear Information System (INIS)

    Smith, B.W.

    1977-01-01

    Reexamining a suggestion of Cox and Smith, we find that intersecting supernova remnants can indeed generate and maintain hot interstellar regions with napproximately-less-than10 -2 cm -3 and Tapprox.10 6 K. These regions are likely to occupy at least 30% of the volume of a spiral arm near the midplane of the gaseous disk if the local supernova rate there is greater than 1.5 x 10 -7 Myr -1 pc -3 . Their presence in the interstellar medium is supported by observations of the soft X-ray background. The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected for a variety of assumed conditions in the outer shells of old remnants. Extensive hot cavity regions or tunnels are built and enlarged by supernovae occurring in relatively dense gas which produce connections, but tunnels are kept hot primarily by supernovae occurring within the tunnels. The latter supernovae initiate fast shock waves which apparently reheat tunnels faster than they are destroyed by thermal conduction in a galactic magnetic field or by radiative cooling. However, the dispersal of these rejuvenating shocks over a wide volume is inhibited by motions of cooler interstellar gas in the interval between shocks. These motions disrupt the contiguity of the component cavities of a tunnel and may cause its death.The Monte Carlo simulations indicate that a quasi-equilibrium is reached within 10 7 years of the first supernova in a spiral arm. This equilibrium is characterized by a constant average filling fraction for cavities in the interstellar volume. Aspects of the equilibrium are discussed for a range of supernova rates. Two predictions of Cox and Smith are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities

  5. Fermi-degeneracy and discrete-ion effects in the spherical-cell model and electron-electron correlation effects in hot dense plasmas

    International Nuclear Information System (INIS)

    Furukawa, H.; Nishihara, K.

    1992-01-01

    The spherical-cell model [F. Perrot, Phys. Rev. A 25, 489 (1982); M. W. C. Dharma-wardana and F. Perrot, ibid. 26, 2096 (1982)] is improved to investigate laser-produced hot, dense plasmas. The free-electron distribution function around a test free electron is calculated by using the Fermi integral in order that the free-electron--free-electron correlation function includes Fermi-degeneracy effects, and also that the calculation includes the discrete-ion effect. The free-electron--free-electron, free-electron--ion, and ion-ion correlation effects are coupled, within the framework of the hypernetted-chain approximation, through the Ornstein-Zernike relation. The effective ion-ion potential includes the effect of a spatial distribution of bound electrons. The interparticle correlation functions and the effective potential acting on either an electron or an ion in hot, dense plasmas are calculated numerically. The Fermi-degeneracy effect on the correlation functions between free electrons becomes clear for the degeneracy parameter θ approx-lt 1. The discrete-ion effect in the calculation of the correlation functions between free electrons affects the electron-ion pair distribution functions for r s approx-gt 3. As an application of the proposed model, the strong-coupling effect on the stopping power of charged particles [Xin-Zhong Yan, S. Tanaka, S. Mitake, and S. Ichimaru, Phys. Rev. A 32, 1785 (1985)] is estimated. While the free-electron--ion strong-coupling effect and the Fermi-degeneracy effect incorporated in the calculation of the free-electron distribution function around a test free electron enhance the stopping number, the quantum-diffraction effect incorporated in the quantal hypernetted-chain equations [J. Chihara, Prog. Theor. Phys. 72, 940 (1984); Phys. Rev. A 44, 1247 (1991); J. Phys. Condens. Matter 3, 8715 (1991)] reduces the stopping number substantially

  6. Hyperons in dense matter

    International Nuclear Information System (INIS)

    Dapo, Haris

    2009-01-01

    The hyperon-nucleon YN low momentum effective interaction (V low k ) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V low k can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V low k one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V low k potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three-body force with a density-dependent interaction. This

  7. Monitoring of oil palm plantations and growth variations with a dense vegetation model

    DEFF Research Database (Denmark)

    Teng, Khar Chun; Koay, Jun Yi; Tey, Seng Heng

    2014-01-01

    The development of microwave remote sensing models for the monitoring of vegetation has received wide attention in recent years. For vegetation in the tropics, it is necessary to consider a dense medium model for the theoretical modelling of the microwave interaction with the vegetation medium....... In this paper, a multilayer model based on the radiative transfer theory for a dense vegetation medium is developed where the coherence effects and near field interaction effects of closely spaced leaves and branches are considered by incorporating the Dense Medium Phase and Amplitude Correction Theory (DM......-PACT) and Fresnel Phase Corrections. The iterative solutions of the radiative transfer model are computed with input based on ground truth measurements of physical parameters of oil palm plantations in the state of Perak, Malaysia, and compared with the SAR images obtained from RADARSAT2. Preliminary results...

  8. Fluidized bed dry dense medium coal beneficiation

    CSIR Research Space (South Africa)

    North, Brian C

    2017-10-01

    Full Text Available medium beneficiation using a fluidized bed was investigated. Bed materials of sand, magnetite and ilmenite were used in a laboratory sized cylindrical fluidized bed. The materials were individually tested, as were mixes of sand and heavy minerals. Coal...

  9. UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.

    Science.gov (United States)

    Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas

    2018-01-01

    The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.

  10. HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES

    International Nuclear Information System (INIS)

    Mulchaey, John S.; Jeltema, Tesla E.

    2010-01-01

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L X -L K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L K ∼ * suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L K ∼ * galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  11. Hot super-dense compact object with particular EoS

    Science.gov (United States)

    Tito, E. P.; Pavlov, V. I.

    2018-03-01

    We show the possibility of existence of a self-gravitating spherically-symmetric equilibrium configuration for a neutral matter with neutron-like density, small mass M ≪ M_{⊙}, and small radius R ≪ R_{⊙}. We incorporate the effects of both the special and general theories of relativity. Such object may be formed in a cosmic cataclysm, perhaps an exotic one. Since the base equations of hydrostatic equilibrium are completed by the equation of state (EoS) for the matter of the object, we offer a novel, interpolating experimental data from high-energy physics, EoS which permits the existence of such compact system of finite radius. This EoS model possesses a critical state characterized by density ρc and temperature Tc. For such an object, we derive a radial distribution for the super-dense matter in "liquid" phase using Tolman-Oppenheimer-Volkoff equations for hydrostatic equilibrium. We demonstrate that a stable configuration is indeed possible (only) for temperatures smaller than the critical one. We derive the mass-radius relation (adjusted for relativistic corrections) for such small (M ≪ M_{⊙}) super-dense compact objects. The results are within the constraints established by both heavy-ion collision experiments and theoretical studies of neutron-rich matter.

  12. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  13. Widespread rotationally hot hydronium ion in the galactic interstellar medium

    International Nuclear Information System (INIS)

    Lis, D. C.; Phillips, T. G.; Schilke, P.; Comito, C.; Higgins, R.

    2014-01-01

    We present new Herschel observations of the (6,6) and (9,9) inversion transitions of the hydronium ion toward Sagittarius B2(N) and W31C. Sensitive observations toward Sagittarius B2(N) show that the high, ∼500 K, rotational temperatures characterizing the population of the highly excited metastable H 3 O + rotational levels are present over a wide range of velocities corresponding to the Sagittarius B2 envelope, as well as the foreground gas clouds between the Sun and the source. Observations of the same lines toward W31C, a line of sight that does not intersect the Central Molecular Zone but instead traces quiescent gas in the Galactic disk, also imply a high rotational temperature of ∼380 K, well in excess of the kinetic temperature of the diffuse Galactic interstellar medium. While it is plausible that some fraction of the molecular gas may be heated to such high temperatures in the active environment of the Galactic center, characterized by high X-ray and cosmic-ray fluxes, shocks, and high degree of turbulence, this is unlikely in the largely quiescent environment of the Galactic disk clouds. We suggest instead that the highly excited states of the hydronium ion are populated mainly by exoergic chemical formation processes and the temperature describing the rotational level population does not represent the physical temperature of the medium. The same arguments may be applicable to other symmetric top rotors, such as ammonia. This offers a simple explanation of the long-standing puzzle of the presence of a pervasive, hot molecular gas component in the central region of the Milky Way. Moreover, our observations suggest that this is a universal process not limited to the active environments associated with galactic nuclei.

  14. Hadrons in dense and/or hot hadronic matter

    International Nuclear Information System (INIS)

    Bertrand, T.; Chanfray, G.; Davesne, D.; Delorme, J.; Ericson, M.; Marteau, J.

    1998-01-01

    Medium effects on various properties of hadrons have been considered. We have studied the mixing between axial and vector currents which accompanies the partial restoration of chiral symmetry. We have improved in several ways our interpretation of the modifications of the ρ mass spectrum in the CERN heavy ion experiment CERES. Still in the domain of relativistic heavy ion collisions, a Boltzmann transport equation has been solved with the aim of incorporating medium effects on the pion spectra. More formally, studies have been conducted with promising results on non perturbative methods in field theory. Other topics cover nuclear effects in the atmospheric neutrino problem and a semi-classical approach to exclusive (e,e'p) reactions. (authors)

  15. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture

    International Nuclear Information System (INIS)

    Yuan Jianmin

    2002-01-01

    An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H 2 O), and CO 2 at a few temperatures and densities are presented

  16. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.

    Science.gov (United States)

    Yuan, Jianmin

    2002-10-01

    An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.

  17. Bending transition in the penetration of a flexible intruder in a two-dimensional dense granular medium.

    Science.gov (United States)

    Algarra, Nicolas; Karagiannopoulos, Panagiotis G; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne

    2018-02-01

    We study the quasistatic penetration of a flexible beam into a two-dimensional dense granular medium lying on a horizontal plate. Rather than a buckling-like behavior we observe a transition between a regime of crack-like penetration in which the fiber only shows small fluctuations around a stable straight geometry and a bending regime in which the fiber fully bends and advances through series of loading and unloading steps. We show that the shape reconfiguration of the fiber is controlled by a single nondimensional parameter L/L_{c}, which is the ratio of the length of the flexible beam L to L_{c}, a bending elastogranular length scale that depends on the rigidity of the fiber and on the departure from the jamming packing fraction of the granular medium. We show, moreover, that the dynamics of the bending transition in the course of the penetration experiment is gradual and is accompanied by a symmetry breaking of the granular packing fraction in the vicinity of the fiber. Together with the progressive bending of the fiber, a cavity grows downstream of the fiber and the accumulation of grains upstream of the fiber leads to the development of a jammed cluster of grains. We discuss our experimental results in the framework of a simple model of bending-induced compaction and we show that the rate of the bending transition only depends on the control parameter L/L_{c}.

  18. Bending transition in the penetration of a flexible intruder in a two-dimensional dense granular medium

    Science.gov (United States)

    Algarra, Nicolas; Karagiannopoulos, Panagiotis G.; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne

    2018-02-01

    We study the quasistatic penetration of a flexible beam into a two-dimensional dense granular medium lying on a horizontal plate. Rather than a buckling-like behavior we observe a transition between a regime of crack-like penetration in which the fiber only shows small fluctuations around a stable straight geometry and a bending regime in which the fiber fully bends and advances through series of loading and unloading steps. We show that the shape reconfiguration of the fiber is controlled by a single nondimensional parameter L /Lc , which is the ratio of the length of the flexible beam L to Lc, a bending elastogranular length scale that depends on the rigidity of the fiber and on the departure from the jamming packing fraction of the granular medium. We show, moreover, that the dynamics of the bending transition in the course of the penetration experiment is gradual and is accompanied by a symmetry breaking of the granular packing fraction in the vicinity of the fiber. Together with the progressive bending of the fiber, a cavity grows downstream of the fiber and the accumulation of grains upstream of the fiber leads to the development of a jammed cluster of grains. We discuss our experimental results in the framework of a simple model of bending-induced compaction and we show that the rate of the bending transition only depends on the control parameter L /Lc .

  19. Strange hadrons and antiprotons as probes of hot and dense nuclear matter in relativistic heavy-ion collisions; Seltsame Hadronen und Antiprotonen als Proben heisser und dichter Kernmaterie in relativistischen Schwerionenkollisionen

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Henry

    2010-09-15

    Strange particles play an important role as probes of relativistic heavy-ion collisions where hot and dense matter is studied. The focus of this thesis is on the production of strange particles within a transport model of Boltzmann-Uehling-Uhlenbeck (BUU) type. Current data of the HADES Collaboration concerning K{sup {+-}} and {phi} spectra provide the appropriate experimental framework. Moreover, the double-strange hyperon {xi}{sup -} is analyzed below the free NN production threshold. Hadron multiplicities, transversemomentum and rapidity spectra are compared with recent experimental data. Further important issues are in-medium mass shifts, the nuclear equation of state as well as the mean field of nucleons. Besides the study of AA collisions a comparison with recent ANKE data regarding the {phi} yield in pA collisions is done. Transparency ratios are determined and primarily investigated for absorption of {phi} mesons by means of the BUU transport code. Thereby, secondary {phi} production channels, isospin asymmetry and detector acceptance are important issues. A systematic analysis is presented for different system sizes. The momentum integrated Boltzmann equations describe dense nuclear matter on a hadronic level appearing in the Big Bang as well as in little bangs, in the context of kinetic off-equilibrium dynamics. This theory is applied to antiprotons and numerically calculated under consideration of various expansion models. Here, the evolution of proton- and antiproton densities till freeze-out is analyzed for ultra-relativistic heavy-ion collisions within a hadrochemic resonance gas model acting as a possible ansatz for solving the ''antiproton puzzle''. Furthermore, baryonic matter and antimatter is investigated in the early universe and the adiabatic path of cosmic matter is sketched in the QCD phase diagram. (orig.)

  20. AN IN-DEPTH STUDY OF THE ABUNDANCE PATTERN IN THE HOT INTERSTELLAR MEDIUM IN NGC 4649

    International Nuclear Information System (INIS)

    Loewenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzaku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of O. We construct steady-state solutions to the chemical evolution equations that include infall in addition to stellar mass return and Type Ia supernova (SNIa) enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649, we infer that introduction of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern toward low α/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly introduced gas is heated as it is integrated into, and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an Appendix, we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  1. In-medium properties of pseudoscalar D{sub s} and B{sub s} mesons

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Rahul; Kumar, Arvind [Dr. B R Ambedkar National Institute of Technology Jalandhar, Department of Physics, Jalandhar, Punjab (India)

    2017-11-15

    We calculate the shift in the masses and decay constants of D{sub s}(1968) and B{sub s}(5370) mesons in hot and dense asymmetric strange hadronic matter using QCD sum rules and chiral SU(3) model. In-medium strange quark condensates left angle anti ss right angle {sub ρB}, and gluon condensates left angle (α{sub s})/(π)G{sup a}{sub μν}G{sup aμν} right angle {sub ρB}, to be used in the QCD sum rules for pseudoscalar D{sub s} and B{sub s} mesons, are calculated using a chiral SU(3) model. As an application of our present work, we calculate the in-medium decay widths of the excited (c anti s) states D{sub s}{sup *}(2715) and D{sub s}{sup *}(2860) decaying to (D{sub s}(1968), η) mesons. The medium effects in their decay widths are incorporated through the mass modification of the D{sub s}(1968) and η mesons. The results of the present investigation may be helpful in understanding the possible outcomes of the future experiments like CBM and PANDA under the FAIR facility. (orig.)

  2. Polarization of X rays of multiply charged ions in dense high-temperature plasma

    NARCIS (Netherlands)

    Baronova, EO; Dolgov, AN; Yakubovskii, LK

    2004-01-01

    The development of a method for studying the features of X-ray emission by multiply charged ions in a dense hot plasma is considered. These features are determined by the radiation polarization phenomenon.

  3. Interaction of powerful hot plasma and fast ion streams with materials in dense plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshova, M., E-mail: maryna.chernyshova@ipplm.pl [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gribkov, V.A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Kowalska-Strzeciwilk, E.; Kubkowska, M.; Miklaszewski, R.; Paduch, M.; Pisarczyk, T.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Demina, E.V.; Pimenov, V.N.; Maslyaev, S.A. [Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Moscow (Russian Federation); Bondarenko, G.G. [National Research University Higher School of Economics (HSE), Moscow (Russian Federation); Vilemova, M.; Matejicek, J. [Institute of Plasma Physics of the CAS, Prague (Czech Republic)

    2016-12-15

    Highlights: • Materials perspective for use in mainstream nuclear fusion facilities were studied. • Powerful streams of hot plasma and fast ions were used to induce irradiation. • High temporal, spatial, angular and spectral resolution available in experiments. • Results of irradiation were investigated by number of analysis techniques. - Abstract: A process of irradiating and ablating solid-state targets with hot plasma and fast ion streams in two Dense Plasma Focus (DPF) devices – PF-6 and PF-1000 was examined by applying a number of diagnostics of nanosecond time resolution. Materials perspective for use in chambers of the mainstream nuclear fusion facilities (mainly with inertial plasma confinement like NIF and Z-machine), intended both for the first wall and for constructions, have been irradiated in these simulators. Optical microscopy, SEM, Atomic Emission Spectroscopy, images in secondary electrons and in characteristic X-ray luminescence of different elements, and X-ray elemental analysis, gave results on damageability for a number of materials including low-activated ferritic and austenitic stainless steels, β-alloy of Ti, as well as two types of W and a composite on its base. With an increase of the number of shots irradiating the surface, its morphology changes from weakly pronounced wave-like structures or ridges to strongly developed ones. At later stages, due to the action of the secondary plasma produced near the target materials they melted, yielding both blisters and a fracturing pattern: first along the grain and then “in-between” the grains creating an intergranular net of microcracks. At the highest values of power flux densities multiple bubbles appeared. Furthermore, in this last case the cracks were developed because of microstresses at the solidification of melt. Presence of deuterium within the irradiated ferritic steel surface nanolayers is explained by capture of deuterons in lattice defects of the types of impurity atoms

  4. Ion distribution in the hot spot of an inertial confinement fusion plasma

    Science.gov (United States)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  5. Factorization of in-medium parton branching beyond the eikonal approximation

    Science.gov (United States)

    Apolinário, Liliana; Armesto, Néstor; Milhano, José Guilherme; Salgado, Carlos A.

    2017-08-01

    The description of the in-medium modifications of partonic showers is at the forefront of current theoretical and experimental efforts in heavy-ion physics. The theory of jet quenching, a commonly used alias for the modifications of the parton branching resulting from the interactions with the QGP, has been significantly developed over the last years. Within a weak coupling approach, several elementary processes that build up the parton shower evolution, such as single gluon emissions, interference effects between successive emissions and corrections to radiative energy loss off massive quarks, have been addressed both at eikonal accuracy and beyond by taking into account the Brownian motion that high-energy particles experience when traversing a hot and dense medium. In this work, by using the setup of single gluon emission from a color correlated quark-antiquark pair in a singlet state (q- q ‾ antenna), we calculate the in-medium gluon radiation spectrum beyond the eikonal approximation. This allows to fully explore the physical interplay between broadening and coherence/decoherence effects. The results show that we are able to factorize broadening effects from the modifications of the radiation process itself. This provides a very strong indication that a probabilistic picture of parton shower evolution holds even in the presence of a QGP, a feature that is of the utmost importance for a successful future generation of Jet quenching Monte Carlos.

  6. DETECTING THE WARM-HOT INTERGALACTIC MEDIUM THROUGH X-RAY ABSORPTION LINES

    International Nuclear Information System (INIS)

    Yao Yangsen; Shull, J. Michael; Cash, Webster; Wang, Q. Daniel

    2012-01-01

    The warm-hot intergalactic medium (WHIM) at temperatures 10 5 -10 7 K is believed to contain 30%-50% of the baryons in the local universe. However, all current X-ray detections of the WHIM at redshifts z > 0 are of low statistical significance (∼ Ovii ∼10 15 cm -2 (corresponding to an equivalent width of 2.5 mÅ for a Doppler velocity of 50 km s –1 ) at ∼> 3σ significance level. The simulation results also suggest that it would take >60 Ms for Chandra and 140 Ms for XMM-Newton to measure the N Ovii at ≥4σ from a spectrum of a background QSO with flux of ∼0.2 mCrab (1 Crab = 2 × 10 –8 erg s –1 cm –2 at 0.5-2 keV). Future X-ray spectrographs need to be equipped with spectral resolution R ∼ 4000 and effective area A ≥ 100 cm 2 to accomplish the similar constraints with an exposure time of ∼2 Ms and would require ∼11 Ms to survey the 15 QSOs with flux ∼> 0.2 mCrab along which clear intergalactic O VI absorbers have been detected.

  7. Structure of a Wear-Resistant Medium-Carbon Steel After Hot Deformation in Hammer Dies and Heat Treatment

    Science.gov (United States)

    Knyazyuk, T. V.; Petrov, S. N.; Ryabov, V. V.; Khlusova, E. I.

    2018-01-01

    The structure of model specimens and articles fabricated from medium-carbon high-strength steels is studied for developing modes of forming of working members of tilling machines with cutting edges thinned without the expensive operation of electromachining. The effect of the temperature of heating of billets on the grain size of austenite is determined. The kinetics of recrystallization is studied in the temperature, rate and strain ranges typical for hot forming. A quantitative crystallographic analysis of the microstructure is performed by the EBSD technique. The degrees of distortion of the crystal lattices of structural components and the mean sizes of martensite blocks are determined.

  8. Low mass dilepton production at the SPS probing hot and dense nuclear matter

    CERN Document Server

    Pérez de los Heros, C; Baur, R; Breskin, Amos; Chechik, R; Drees, A; Jacob, C; Faschingbauer, U; Fisher, P H; Fraenkel, Zeev; Fuchs, C; Gatti, E; Glässel, P; Günzel, T F; Hess, F; Irmscher, D; Lenkeit, B C; Olsen, L H; Panebratsev, Yu A; Pfeiffer, A; Ravinovich, I; Rehak, P; Schön, A; Schükraft, Jürgen; Sampietro, M; Shimansky, S S; Shor, A; Specht, H J; Steiner, V; Tapprogge, Stefan; Tel-Zur, G; Tserruya, Itzhak; Ullrich, T S; Wurm, J P; Yurevich, V I

    1996-01-01

    CERES and HELIOS-3 have detected a significant enhancement of low--mass dileptons in nuclear collisions at 200 GeV/nucleon with respect to the expected ``conventional'' sources. The onset of the excess, starting at a mass of $\\sim2m_{\\pi}$, and the possibility of a quadratic dependence on the event multiplicity suggest the opening of the $\\pi^+\\pi^-\\rightarrow e^+e^-(\\mu^+\\mu^-)$ annihilation channel. This would be the first observation of thermal radiation from dense hadronic matter. Possible interpretations of these results are presented, including the reduction of the $\\rho$ mass due to partial restoration of chiral symmetry in the dense fireball formed in the collision.

  9. Charmed hadrons in nuclear medium

    International Nuclear Information System (INIS)

    Tolos, L.; Gamermann, D.; Molina, R.; Nieves, J.; Oset, E.; Garcia-Recio, C.; Ramos, A.

    2010-01-01

    We study the properties of charmed hadrons in dense matter within a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner. We analyze the behaviour in this dense environment of dynamically-generated baryonic resonances as well as the open-charm meson spectral functions. We discuss the implications of the in-medium properties of open-charm mesons on the D s0 (2317) and the predicted X(3700) scalar resonances. (authors)

  10. How Does the Medium Affect the Message?

    Science.gov (United States)

    Dommermuth, William P.

    1974-01-01

    This experimental comparison of the advertising effectiveness of television, movies, radio, and print finds no support for McLuhan's idea that television is a "cool" medium and movies are a "hot" medium. (RB)

  11. Saphenous Venous Ablation with Hot Contrast in a Canine Model

    International Nuclear Information System (INIS)

    Prasad, Amit; Qian Zhong; Kirsch, David; Eissa, Marna; Narra, Pavan; Lopera, Jorge; Espinoza, Carmen G.; Castaneda, Wifrido

    2008-01-01

    Purpose. To determine the feasibility, efficacy, and safety of thermal ablation of the saphenous vein with hot contrast medium. Methods. Twelve saphenous veins of 6 dogs were percutaneously ablated with hot contrast medium. In all animals, ablation was performed in the vein of one leg, followed by ablation in the contralateral side 1 month later. An occlusion balloon catheter was placed in the infragenicular segment of the saphenous vein via a jugular access to prevent unwanted thermal effects on the non-target segment of the saphenous vein. After inflation of the balloon, 10 ml of hot contrast medium was injected under fluoroscopic control through a sheath placed in the saphenous vein above the ankle. A second 10 ml injection of hot contrast medium was made after 5 min in each vessel. Venographic follow-up of the ablated veins was performed at 1 month (n = 12) and 2 months (n = 6). Results. Follow-up venograms showed that all ablated venous segments were occluded at 1 month. In 6 veins which were followed up to 2 months, 4 (66%) remained occluded, 1 (16%) was partially patent, and the remaining vein (16%) was completely patent. In these latter 2 cases, an inadequate amount of hot contrast was delivered to the lumen due to a closed balloon catheter downstream which did not allow contrast to displace blood within the vessel. Discussion. Hot contrast medium thermal ablation of the saphenous vein appears feasible, safe, and effective in the canine model, provided an adequate amount of embolization agent is used

  12. Orbital free molecular dynamics; Approche sans orbitale des plasmas denses

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, F

    2007-08-15

    The microscopic properties of hot and dense plasmas stay a field essentially studied thanks to classical theories like the One Component Plasma, models which rely on free parameters, particularly ionization. In order to investigate these systems, we have used, in this PhD work, a semi-classical model, without free parameters, that is based on coupling consistently classical molecular dynamics for the nuclei and orbital free density functional theory for the electrons. The electronic fluid is represented by a free energy entirely determined by the local density. This approximation was validated by a comparison with an ab initio technique, quantum molecular dynamics. This one is identical to the previous except for the description of the free energy that depends on a quantum-independent-particle model. Orbital free molecular dynamics was then used to compute equation of state of boron and iron plasmas in the hot and dense regime. Furthermore, comparisons with classical theories were performed on structural and dynamical properties. Finally, equation of state and transport coefficients mixing laws were studied by direct simulation of a plasma composed of deuterium and copper. (author)

  13. Colour deconfinement in hot and dense matter

    CERN Document Server

    Satz, Helmut

    1996-01-01

    We first introduce the conceptual basis of critical behaviour in strongly interacting matter, with colour deconfinement as QCD analog of the insulator-conductor transition and chiral symmetry restoration as special case of the associated shift in the mass of the constituents. Next we summarize quark-gluon plasma formation in finite temperature lattice QCD. We consider the underlying symmetries and their spontaneous breaking/restoration in the transition, as well as the resulting changes in thermodynamic behaviour. Finally, we turn to the experimental study of strongly interacting matter by high energy nuclear collisions, using charmonium production to probe the confinement status of the produced primordial medium. Recent results from Pb-Pb collisions at CERN may provide first evidence for colour deconfinement.

  14. Time resolved x-ray photography of a dense plasma focus

    International Nuclear Information System (INIS)

    Burnett, J.C.; Meyer, J.; Rankin, G.

    1977-01-01

    The temporal development of the hot plasma in a dense plasma focus is studied by x-ray streak photography of approximately 2 ns resolution time. It is shown that initially a uniform x-ray emitting pinch plasma is formed which subsequently cools down until x-ray emission stops after approximately 50 ns. At a time of around 100 ns after initial x-ray emission coinciding with the break-up time of the pinch a second burst of x-rays is observed coming from small localized regions. The observations are compared with results obtained from time-resolved shadow and schlieren photography of a similar dense focus discharge. (author)

  15. Dense strongly non-ideal plasma generation by laser isobaric heating

    International Nuclear Information System (INIS)

    Kulik, P.P.; Rozanov, E.K.; Riabii, V.A.; Titov, M.A.

    1975-01-01

    A method of generation of a dense strongly non-ideal plasma by slow isobaric heating of a small target in a high inert gas medium is discussed. The characteristic life-time of dense plasma is 10 -3 sec. Estimations show that such a plasma is homogeneous. Conditions are found for temperature uniformity. The experimental results of the isobaric heating of a thin potassium foil target by a ruby laser beam at 500 atm are described. (Auth.)

  16. Extended H I regions around spiral galaxies: a probe for galactic structure and the intergalactic medium

    International Nuclear Information System (INIS)

    Bergeron, J.

    1977-01-01

    The H I disks observed at large radii around nearby spiral galaxies provide sensitive probes for the mass distributions in these galaxies and of their environments. We show, for a few well-observed systems, that there is an unseen component which dominates the mass at large radii. This additional matter cannot be gas, either neutral or ionized. The data do not distinguish strongly between flat and spherical spatial distributions for this mass, though they suggest that the distribution is spherical. An observational test is proposed to differentiate the two. We investigate the thermal interaction between a hot intergalactic medium near the closure density and these extended H I regions in the assumption of magnetic field lines extended outward into the intergalactic medium (IGM). We show that, with plausible initial conditions, the intergalactic temperature at present cannot exceed 1 x 10 7 K if the H I is to have survived until now. Consideration of conditions in the past places even more stringent limits on the temperature and density of the IGM. Survival of the H I disk also implies that these galaxies cannot have persistent hot, dense halos. The X-ray observations of M31, in particular, cannot be interpreted in terms of a thermal bremsstrahlung halo model, unless this halo is younger than about 10 7 yr

  17. Radioactive Mapping Contaminant of Alpha on The Air in Space of Repair of Hot Cell and Medium Radioactivity Laboratory in Radio metallurgy Installation

    International Nuclear Information System (INIS)

    Yusuf-Nampira; Endang-Sukesi; S-Wahyuningsih; R-Budi-Santoso

    2007-01-01

    Hot cell and space of acid laboratory medium activity in Radio metallurgy Installation are used for the examination preparation of fuel nuclear post irradiation. The sample examined is dangerous radioactive material representing which can disseminate passing air stream. The dangerous material spreading can be pursued by arranging air stream from laboratory space to examination space. To know the performance the air stream arrangement is hence conducted by radioactive mapping contaminant of alpha in laboratory / space of activity place, for example, medium activity laboratory and repair space. This mapping radioactivity contaminant is executed with the measurement level of the radioactivity from sample air taken at various height with the distance of 1 m, various distance and from potential source as contaminant spreading access. The mapping result indicate that a little spreading of radioactive material happened from acid cupboard locker to laboratory activity up to distance of 3 m from acid cupboard locker and spreading of radioactive contaminant from goods access door of the hot cell 104 to repair space reach the distance of 2 m from goods door access. Level of the radioactive contamination in the space was far under maximum limitation allowed (20 Bq / m 3 ). (author)

  18. Vector boson and quarkonia production in lead-lead collisions with ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00015179; The ATLAS collaboration

    2017-01-01

    Photons and weak bosons do not interact strongly with the dense and hot medium formed in the nuclear collisions, thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy quarkonium states plays an important role in studying the hot and dense medium formed in the larger collision systems. The ATLAS detector at the LHC, optimized for searching for new physics in proton-proton collisions, is especially well equipped to measure photons, Z, W bosons and quarkonia in the high occupancy environment produced in heavy-ion collisions. We present recent results on Z boson and charmonia yields as a functions of centrality, transverse momentum, and rapidity, from the ATLAS experiment.

  19. Vector boson and Charmonium production in p+Pb and Pb+Pb collisions with ATLAS at the LHC

    CERN Document Server

    K\\"{o}hler, Markus Konrad; The ATLAS collaboration

    2016-01-01

    Photons and weak bosons do not interact strongly with the dense and hot medium formed in the nuclei collisions, thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy Charmonium states plays an important role in studying the hot and dense medium formed in the larger collision systems. The ATLAS detector, optimized for searching new physics in proton-proton collisions, is especially well equipped to measure photons, Z, W bosons and quakonium in the high occupancy environment produced in heavy ion collisions. We will present recent results on the prompt photon, Z and W boson yields as a function of centrality, transverse momentum and rapidity, from the ATLAS experiment.

  20. New results on initial state & quarkonia with ATLAS

    CERN Document Server

    Tapia Araya, Sebastian; The ATLAS collaboration

    2017-01-01

    Weak bosons do not interact strongly with the dense and hot medium formed in the nuclear collisions, thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy quarkonium states plays an important role in studying the hot and dense medium formed in the larger collision systems. The ATLAS detector, optimized for searching new physics in proton-proton collisions, is especially well equipped to measure Z, W bosons and quakonium in the high occupancy environment produced in heavy-ion collisions. We will present recent results on the Z boson and quarkonia yields as a function of centrality, transverse momentum and rapidity, from the ATLAS experiment.

  1. Vector Boson and Charmonium Production in pPb and PbPb Collisions with ATLAS at the LHC

    CERN Document Server

    Citron, Zvi Hirsh; The ATLAS collaboration

    2016-01-01

    Photons and weak bosons do not interact strongly with the dense and hot medium formed in the nuclei collisions, thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy Charmonium states plays an important role in studying the hot and dense medium formed in the larger collision systems. The ATLAS detector, optimized for searching new physics in proton-proton collisions, is especially well equipped to measure photons, Z, W bosons and quakonium in the high occupancy environment produced in heavy ion collisions. We will present recent results on the prompt photon, Z and W boson yields as a function of centrality, transverse momentum and rapidity, from the ATLAS experiment.

  2. The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma

    Science.gov (United States)

    Huppert, Herbert E.; Sparks, R. Stephen J.

    1981-09-01

    This paper describes a fluid dynamical investigation of the influx of hot, dense ultrabasic magma into a reservoir containing lighter, fractionated basaltic magma. This situation is compared with that which develops when hot salty water is introduced under cold fresh water. Theoretical and empirical models for salt/water systems are adapted to develop a model for magmatic systems. A feature of the model is that the ultrabasic melt does not immediately mix with the basalt, but spreads out over the floor of the chamber, forming an independent layer. A non-turbulent interface forms between this layer and the overlying magma layer across which heat and mass are transferred by the process of molecular diffusion. Both layers convect vigorously as heat is transferred to the upper layer at a rate which greatly exceeds the heat lost to the surrounding country rock. The convection continues until the two layers have almost the same temperature. The compositions of the layers remain distinct due to the low diffusivity of mass compared to heat. The temperatures of the layers as functions of time and their cooling rate depend on their viscosities, their thermal properties, the density difference between the layers and their thicknesses. For a layer of ultrabasic melt (18% MgO) a few tens of metres thick at the base of a basaltic (10% MgO) magma chamber a few kilometres thick, the temperature of the layers will become nearly identical over a period of between a few months and a few years. During this time the turbulent convective velocities in the ultrabasic layer are far larger than the settling velocity of olivines which crystallise within the layer during cooling. Olivines only settle after the two layers have nearly reached thermal equilibrium. At this stage residual basaltic melt segregates as the olivines sediment in the lower layer. Depending on its density, the released basalt can either mix convectively with the overlying basalt layer, or can continue as a separate

  3. Hot electron spatial distribution under presence of laser light self-focusing in over-dense plasmas

    International Nuclear Information System (INIS)

    Tanimoto, T; Yabuuchi, T; Habara, H; Kondo, K; Kodama, R; Mima, K; Tanaka, K A; Lei, A L

    2008-01-01

    In fast ignition for laser thermonuclear fusion, an ultra intense laser (UIL) pulse irradiates an imploded plasma in order to fast-heat a high-density core with hot electrons generated in laser-plasma interactions. An UIL pulse needs to make plasma channel via laser self-focusing and to propagate through the corona plasma to reach close enough to the core. Hot electrons are used for heating the core. Therefore the propagation of laser light in the high-density plasma region and spatial distribution of hot electron are important in issues in order to study the feasibility of this scheme. We measure the spatial distribution of hot electron when the laser light propagates into the high-density plasma region by self-focusing

  4. Simulating the formation and evolution of galaxies: multi-phase description of the interstellar medium, star formation, and energy feedback

    Science.gov (United States)

    Merlin, E.; Chiosi, C.

    2007-10-01

    Context: Modelling the gaseous component of the interstellar medium (ISM) by Smoothed Particles Hydrodynamics in N-Body simulations (NB-TSPH) is still very crude when compared to the complex real situation. In the real ISM, many different and almost physically decoupled components (phases) coexist for long periods of time, and since they spread over wide ranges of density and temperature, they cannot be correctly represented by a unique continuous fluid. This would influence star formation which is thought to take place in clumps of cold, dense, molecular clouds, embedded in a warmer, neutral medium, that are almost freely moving throughout the tenuous hot ISM. Therefore, assuming that star formation is simply related to the gas content without specifying the component in which this is both observed and expected to occur may not be physically sound. Aims: We consider a multi-phase representation of the ISM in NB-TSPH simulations of galaxy formation and evolution with particular attention to the case of early-type galaxies. Methods: Cold gas clouds are described by the so-called sticky particles algorithm. They can freely move throughout the hot ISM medium; stars form within these clouds and the mass exchange among the three baryonic phases (hot gas, cold clouds, stars) is governed by radiative and Compton cooling and energy feedback by supernova (SN) explosions, stellar winds, and UV radiation. We also consider thermal conduction, cloud-cloud collisions, and chemical enrichment. Results: Our model agrees with and improves upon previous studies on the same subject. The results for the star formation rate agree with recent observational data on early-type galaxies. Conclusions: These models lend further support to the revised monolithic scheme of galaxy formation, which has recently been strengthened by high redshift data leading to the so-called downsizing and top-down scenarios.

  5. Simulation of the hot flow behaviour of a medium carbon microalloyed steel. Part 2. Dynamic recrystallization: onset and kinetics

    International Nuclear Information System (INIS)

    Cabrera, J.M.; Al Omar, A.; Prado, J.M.

    1997-01-01

    According to the part 1 of this work, in this second part the dynamic recrystallization of a commercial medium carbon microalloyed steel is characterized from the point of view of its onset and kinetics. For this purpose uniaxial hot compression tests were carried out over a range of five orders of magnitude in strain rate and 300 degree centigree of temperature. Experimental results are compared with those reported in the literature and the possible effect of dynamic precipitation is also analyzed. It is verified that the kinetics of dynamics recrystallization can balefully be described by the classical Avrami equation. (Author) 42 refs

  6. Nucleation of strange matter in dense stellar cores

    International Nuclear Information System (INIS)

    Horvath, J.E.; Benvenuto, O.G.; Vucetich, H.

    1992-01-01

    We investigate the nucleation of strange quark matter inside hot, dense nuclear matter. Applying Zel'dovich's kinetic theory of nucleation we find a lower limit of the temperature T for strange-matter bubbles to appear, which happens to be satisfied inside the Kelvin-Helmholtz cooling era of a compact star life but not much after it. Our bounds thus suggest that a prompt conversion could be achieved, giving support to earlier expectations for nonstandard type-II supernova scenarios

  7. Density measurement verification for hot mix asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  8. Density measurement verification for hot mixed asphalt concrete pavement construction.

    Science.gov (United States)

    2010-06-01

    Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...

  9. Degenerate stars. XII - Recognition of hot nondegenerates

    Science.gov (United States)

    Greenstein, J. L.

    1980-12-01

    Fifty-one newly observed degenerate stars and 14 nondegenerates include 13 faint red stars, most of which do not show any lines except DF, Gr 554. Hot subdwarfs and an X-ray source are discussed along with the problem of low-resolution spectroscopic classification of dense hot stars. The multichannel spectrum of the carbon-rich magnetic star LP 790-29 is examined by fitting the undisturbed parts of the spectrum to a black body of 7625 K by the least squares method; the Swan bands absorb 600 A of the spectrum assuming that the blocked radiation is redistributed in the observed region.

  10. Comparison of anti-corrosive properties between hot alkaline nitrate blackening and hydrothermal blackening routes

    Energy Technology Data Exchange (ETDEWEB)

    Fattah-alhosseini, A. [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Yazdani Khan, H., E-mail: hamid.yazdanikhan@gmail.com [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Heidarpour, A. [Department of Metallurgy and Materials Engineering, Hamedan University of Technology, Hamedan, 65155-579 (Iran, Islamic Republic of)

    2016-08-15

    In this study, the oxide films were formed on carbon steel by using hot alkaline nitrate and hydrothermal treatments. A dense and protective oxide film was obtained by hydrothermal method due to application of high pressure and by increasing solution temperature from boiling temperature (155 °C) to 250 °C. Oxide films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical tests including potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). These analyses showed that the magnetite film which was formed on carbon steel surface by hydrothermal treatment offers the best resistance in 3.5 wt.% NaCl solution. Although thicker oxide film could be obtained via hot alkaline nitrate black oxidizing, corrosion resistance was lower as a result of being highly porous and the presence of hematite. - Highlights: • Oxide films have been formed on steel by using of hot alkaline nitrate and hydrothermal treatments. • A dense and protective oxide film was obtained by hydrothermal treatment. • SEM micrographs showed that a dense and protective oxide film was obtained by hydrothermal treatment. • Film formed by hydrothermal treatment could have the best resistance in 3.5 wt.% NaCl solution.

  11. Vector boson and Charmonium production in proton-lead and lead-lead collisions with ATLAS at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00241320; The ATLAS collaboration

    2016-01-01

    Electroweak bosons do not interact strongly with the dense and hot medium formed in nuclear collisions, and thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy charmonium states plays an important role in studying the hot and dense medium. The ATLAS detector, optimized to search for new physics in proton-proton collisions, is well equipped to measure Z and W bosons as well as quarkonium in the high occupancy environment produced in heavy ion collisions. Results from the ATLAS experiment on W and Z boson yields as a function of centrality, transverse momentum and rapidity, in lead-lead and proton-lead collisions are presented. Quarkonium results from proton-lead collisions are also presented.

  12. Vector boson and quarkonia production in p+Pb and Pb+Pb collisions with ATLAS at the LHC

    CERN Document Server

    Gallus, Petr; The ATLAS collaboration

    2017-01-01

    Photons and weak bosons do not interact strongly with the dense and hot medium formed in the nuclear collisions, thus should be sensitive to the nuclear modification of parton distribution functions (nPDFs). The in-medium modification of heavy quarkonium states plays an important role in studying the hot and dense medium formed in the larger collision systems. The ATLAS detector, optimized for searching new physics in proton-proton collisions, is especially well equipped to measure photons, Z, W bosons and quarkonium in the high occupancy environment produced in heavy-ion collisions. We will present recent results on the Z boson and quarkonia yields as a function of centrality, transverse momentum, and rapidity, from the ATLAS experiment in heavy ion environment.

  13. INFRARED SPECTROSCOPIC SURVEY OF THE QUIESCENT MEDIUM OF NEARBY CLOUDS. I. ICE FORMATION AND GRAIN GROWTH IN LUPUS

    International Nuclear Information System (INIS)

    Boogert, A. C. A.; Chiar, J. E.; Knez, C.; Mundy, L. G.; Öberg, K. I.; Pendleton, Y. J.; Tielens, A. G. G. M.; Van Dishoeck, E. F.

    2013-01-01

    Infrared photometry and spectroscopy (1-25 μm) of background stars reddened by the Lupus molecular cloud complex are used to determine the properties of grains and the composition of ices before they are incorporated into circumstellar envelopes and disks. H 2 O ices form at extinctions of A K = 0.25 ± 0.07 mag (A V = 2.1 ± 0.6). Such a low ice formation threshold is consistent with the absence of nearby hot stars. Overall, the Lupus clouds are in an early chemical phase. The abundance of H 2 O ice (2.3 ± 0.1 × 10 –5 relative to N H ) is typical for quiescent regions, but lower by a factor of three to four compared to dense envelopes of young stellar objects. The low solid CH 3 OH abundance ( 2 O) indicates a low gas phase H/CO ratio, which is consistent with the observed incomplete CO freeze out. Furthermore it is found that the grains in Lupus experienced growth by coagulation. The mid-infrared (>5 μm) continuum extinction relative to A K increases as a function of A K . Most Lupus lines of sight are well fitted with empirically derived extinction curves corresponding to R V ∼ 3.5 (A K = 0.71) and R V ∼ 5.0 (A K = 1.47). For lines of sight with A K > 1.0 mag, the τ 9.7 /A K ratio is a factor of two lower compared to the diffuse medium. Below 1.0 mag, values scatter between the dense and diffuse medium ratios. The absence of a gradual transition between diffuse and dense medium-type dust indicates that local conditions matter in the process that sets the τ 9.7 /A K ratio. This process is likely related to grain growth by coagulation, as traced by the A 7.4 /A K continuum extinction ratio, but not to ice mantle formation. Conversely, grains acquire ice mantles before the process of coagulation starts

  14. In-medium reduction of the η' mass √sNN = 200 GeV Au+Au collisions

    Directory of Open Access Journals (Sweden)

    Sziklai J.

    2011-04-01

    Full Text Available A reduction of the mass of the η' (958 meson may indicate the restoration of the UA(1 symmetry in a hot and dense hadronic matter, corresponding to the return of the 9th, "prodigal" Goldstone boson. We report on an analysis of a combined PHENIX and STAR data set on the intercept parameter of the two-pion Bose-Einstein correlation functions, as measuremed in √sNN = 200 GeV Au+Au collisions at RHIC. To describe this combined PHENIX and STAR dataset, an in-medium η' mass reduction of at least 200 MeV is needed, at the 99.9 % confidence level in a broad model class of resonance multiplicities. Energy, system size and centrality dependence of the observed effect is also discussed.

  15. Warm Dense Matter: An Overview

    International Nuclear Information System (INIS)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-01-01

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities. The conclusion of this

  16. Dense Plasma Focus-Based Nanofabrication of III-V Semiconductors: Unique Features and Recent Advances.

    Science.gov (United States)

    Mangla, Onkar; Roy, Savita; Ostrikov, Kostya Ken

    2015-12-29

    The hot and dense plasma formed in modified dense plasma focus (DPF) device has been used worldwide for the nanofabrication of several materials. In this paper, we summarize the fabrication of III-V semiconductor nanostructures using the high fluence material ions produced by hot, dense and extremely non-equilibrium plasma generated in a modified DPF device. In addition, we present the recent results on the fabrication of porous nano-gallium arsenide (GaAs). The details of morphological, structural and optical properties of the fabricated nano-GaAs are provided. The effect of rapid thermal annealing on the above properties of porous nano-GaAs is studied. The study reveals that it is possible to tailor the size of pores with annealing temperature. The optical properties of these porous nano-GaAs also confirm the possibility to tailor the pore sizes upon annealing. Possible applications of the fabricated and subsequently annealed porous nano-GaAs in transmission-type photo-cathodes and visible optoelectronic devices are discussed. These results suggest that the modified DPF is an effective tool for nanofabrication of continuous and porous III-V semiconductor nanomaterials. Further opportunities for using the modified DPF device for the fabrication of novel nanostructures are discussed as well.

  17. Universal medium-range order of amorphous metal oxides.

    Science.gov (United States)

    Nishio, Kengo; Miyazaki, Takehide; Nakamura, Hisao

    2013-10-11

    We propose that the structure of amorphous metal oxides can be regarded as a dual-dense-random-packing structure, which is a superposition of the dense random packing of metal atoms and that of oxygen atoms. Our ab initio molecular dynamics simulations show that the medium-range order of amorphous HfO2, ZrO2, TiO2, In2O3, Ga2O3, Al2O3, and Cu2O is characterized by the pentagonal-bipyramid arrangement of metal atoms and that of oxygen atoms, and prove the validity of our dual-random-sphere-packing model. In other words, we find that the pentagonal medium-range order is universal independent of type of metal oxide.

  18. Vacuum hot pressing of titanium-alloy powders

    International Nuclear Information System (INIS)

    Malik, R.K.

    1975-01-01

    Full or nearly full dense products of wrought-metal properties have been obtained by vacuum hot pressing (VHP) of several prealloyed Ti--6Al--4V powders including hydride, hydride/dehydride, and rotating electrode process (REP) spherical powder. The properties of billets VHP from Ti--6Al--4V hydride powder and from hydride/dehydride powders have been shown to be equivalent. The REP spherical powder billets processed by VHP or by hot isostatic pressing (HIP) resulted in equivalent tensile properties. The potential of VHP for fabrication of near net aircraft parts such as complex fittings and engine disks offers considerable cost savings due to reduced material and machining requirements

  19. Atomic physics in dense plasmas. Recent advances

    International Nuclear Information System (INIS)

    Leboucher-Dalimier, E.; Angelo, P.; Ceccotti, T.; Derfoul, H.; Poquerusse, A.; Sauvan, P.; Oks, E.

    2000-01-01

    This paper presents observations and simulations of novel density-dependent spectroscopic features in hot and dense plasmas. Both time-integrated and time-resolved results using ultra-high resolutions spectrometers are presented; they are justified within the standard spectral line shape theory or the quasi-molecular alternative treatment. A particular attention is paid to the impact of the spatio-temporal evolution of the plasma on the experimental spectra. Satellite-like features and molecular lines in the cases of Flyβ, Heβ are discussed emphasizing their importance for the density diagnostics when ion-ion correlations are significant. (authors)

  20. Scale-chiral symmetry, ω meson, and dense baryonic matter

    Science.gov (United States)

    Ma, Yong-Liang; Rho, Mannque

    2018-05-01

    It is shown that explicitly broken scale symmetry is essential for dense skyrmion matter in hidden local symmetry theory. Consistency with the vector manifestation fixed point for the hidden local symmetry of the lowest-lying vector mesons and the dilaton limit fixed point for scale symmetry in dense matter is found to require that the anomalous dimension (|γG2| ) of the gluon field strength tensor squared (G2 ) that represents the quantum trace anomaly should be 1.0 ≲|γG2|≲3.5 . The magnitude of |γG2| estimated here will be useful for studying hadron and nuclear physics based on the scale-chiral effective theory. More significantly, that the dilaton limit fixed point can be arrived at with γG2≠0 at some high density signals that scale symmetry can arise in dense medium as an "emergent" symmetry.

  1. Effect of hot pressing additives on the leachability of hot pressed sodium hydrous titanium oxide

    International Nuclear Information System (INIS)

    Valentine, T.M.; Sambell, R.A.J.

    1980-01-01

    Sodium hydrous titanium oxide is an ion exchange resin which can be used for immobilizing medium level waste (MLW) liquors. When hot pressed, it undergoes conversion to a ceramic. Three low melting point materials (borax, bismuth trioxide, and a mixture of PbO/CuO) were added to the (Na)HTiO and the effect that each of these had on aiding densification was assessed. Hot pressing temperature, applied pressure, and percentage addition of hot pressing aid were varied. Percentage open porosity, flexural strength, and leachability were measured. There was a linear relationship between the percentage open porosity and the logarithm of the leach rate for a constant percentage addition of each additive

  2. Synthesis of novel complexing macromolecular surfactants and study of their interactions with cobalt for the development of a decontamination process of textiles in dense CO2 medium

    International Nuclear Information System (INIS)

    Chirat, M.

    2012-01-01

    This study is about textile decontamination in dense CO 2 (liquid CO 2 or supercritical CO 2 ). The study is carried out in the framework of decontamination of textile used in the nuclear industry. The dense CO 2 offers an alternative to aqueous medium used in the current process which generates a huge quantity of contaminated aqueous effluent requiring a post-treatment. Cobalt is the targeted contamination and can be found as ionic species or particles. The cobalt extraction in dense CO 2 is achieved with an additive: a complexing CO 2 -philic/CO 2 -phobic macromolecular surfactant. Several types of additives were synthesized by controlled free radical polymerization: gradient copolymers made with CO 2 -philic groups (silicone-based or fluorinated moieties) and CO 2 -phobic complexing groups (aceto acetoxy, di-ethylphosphonate or phosphonic acid moieties). The copolymer behavior in dense CO 2 was determined by phase diagram measurements (cloud point method) and their self-assembly in dense CO 2 was investigated by small angle neutron scattering. The fluorinated copolymers were found advantageous in terms of solubility. Nevertheless, the silicone-based copolymers showed solubilities which are compatible with the process, therefore they are a good alternative to avoid fluorinated compounds which are unwanted in the conditioning of nuclear wastes. The study of cobalt complexation by the copolymers (UV-vis spectroscopy and inductively coupled plasma-mass spectroscopy) established relations between the type of complexing group and the affinity with the cobalt. The solubility of copolymer-cobalt complexes in dense CO 2 is similar to those of copolymers. Moreover, the self-assembly study of the complex revealed a low aggregation. Finally, the synthesized copolymers were used in particle or ionic decontamination processes. In the case of ionic decontamination process, a rate of 70% of decontamination was reached with the use of gradient copolymer poly(1

  3. OT1_ebergin_5: A Systematic Survery of the Water D to H Ratio in Hot Molecular Cores

    Science.gov (United States)

    Bergin, E.

    2010-07-01

    The D/H ratio of water and the enrichment of HDO relative to H2O in comets, oceans, and interstellar water vapor, has been posited as one of the primary links between chemistry in the cold (T = 10-20 K) dense interstellar medium (ISM) and chemistry in the Solar Nebula. However, there are only ~10 measurements of HDO/H2O, even in hot (T > 100 K) molecular cores, which have the most favorable chemistry (due to fossil evaporation of D-enriched ices) and excitation. In addition the existing measurements have a wide range of uncertainty, making it impossible to discern the presence of source-to-source variations, which could hint at the origin of deuterium enrichments in the dense ISM. We propose here to change this statistic with a systematic survey of HDO and H2O in a sample of 20 hot molecular cores spanning a two order of magnitude range in mass and luminosity. This will increase the number of known water D/H ratios by ~200%. This program is unique in scope for Herschel and requires the uniformity in calibration and high spectral resolution offered by the HIFI instrument. With the stability of HIFI we will be able to derive D/H ratios with significantly less uncertainty. Our observations will be combined with theoretical chemical models to explore the statistics offered by this sample. By looking at a large number of objects with a range of conditions we aim to unlock the secrets of water deuteration in the interstellar space.

  4. Effect of external hot EGR dilution on combustion, performance and particulate emissions of a GDI engine

    International Nuclear Information System (INIS)

    Xie, Fangxi; Hong, Wei; Su, Yan; Zhang, Miaomiao; Jiang, Beiping

    2017-01-01

    Highlights: • Effect of hot EGR on combustion and PN emission is investigated on a GDI engine. • Appropriate addition of hot EGR can reduce fuel consumption, NO_x and PN emission. • Relationship between BSFC and emissions of hot EGR is better than cooled EGR. • Condition with low-medium speeds and medium loads are more suitable for hot EGR. - Abstract: In this paper, an experimental investigation about the influence of hot EGR addition on the engine combustion, performance and particulate number emission was conducted at a spark-ignition gasoline direct injection (GDI) engine. Meanwhile, the different effects between cooled and hot EGR addition methods were compared and the variations of fuel consumption and particle number emissions under six engine operating conditions with different speeds and loads were analyzed. The research result indicated that increasing hot EGR ratio properly with adjustment of ignition timing could effectively improve the relationship among brake-specific fuel consumption (BSFC), NO_x and particle number emissions. When hot EGR ratio increased to 20%, not only BSFC but also the NO_x and particle number emissions were reduced, which were about 7%, 87% and 36% respectively. Compared with cooled EGR, the flame development and propagation speeds were accelerated, and cycle-by-cycle combustion variation decreased with hot EGR. Meanwhile, using hot EGR made the engine realize a better relationship among fuel consumption, NO_x and particle number emissions. The biggest improvements of BSFC, NO_x and particle number emissions were obtained at low-medium speed and medium load engine conditions by hot EGR addition method. While engine speed increased and load decreased, the improvement of engine fuel consumption and emission reduced with hot EGR method.

  5. Observations of dense plasma formation in the vacuum spark

    International Nuclear Information System (INIS)

    Chuaqui, H.; Favre, M.; Wyndham, E.; Aliaga R, R.; Choi, P.; Dumitrescu-Zoita, C.

    1994-01-01

    A series of experimental observations have been performed on the dense plasma formations or Hot Spots generated in the Vacuum Spark. The plasma discharges are driven by a 1.5 Ohm, 120 ns line at currents up to 100 KA. The line may be used to deliver a rectangular current pulse when the line gap is used. Alternatively when the line gap is shorted, the Vacuum Spark itself switches the line. A Nd: Yag Laser, with an energy of 0.5 J in an 8 ns pulse, is used to pre ionizing the discharge. The formation of Hot Spots is studied under a range of different conditions. These include the pre ionizing conditions, as well as the Anode shape and the Anode Cathode separation. The optimization of these parameters permit very reproducible shot to shot behaviour. Of particular interest is the Hot Spot size dependence as a function of its temperature and of time. The use of a new variant on the Pin Hole Camera, the Slit Wire Camera provides a new method of measuring with precision the Hot Spot dimensions in different X-ray emission energy ranges. A quadruple hole Camera is used to measure the temperature of the Hot Spots. The temporal and spatial evolution of the X-ray emission is measured using using a Slit Wire, Scintillator, Fibre Optic, Photomultiplier array. The temporal emission of the X-rays is also observed using an array of PIN X-ray diodes. (author). 5 refs, 6 figs

  6. Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V

    International Nuclear Information System (INIS)

    Juárez, Carmen; Girart, Josep M.; Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier; Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab; Zhang, Qizhou; Qiu, Keping

    2017-01-01

    We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s −1 , converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.

  7. Electrical and thermal conductivities in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  8. Processes in a dense long-pulse electron beam focused on a solid target

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, A V; Sominskij, G G [St. Petersburg Technical Univ. (Russian Federation)

    1997-12-31

    The results obtained in beam-target experiments with dense medium-energy electron beam in the regime of long single pulses are presented. The measured power density of the focused beam at the target reached 20 MW/cm{sup 2} in these experiments. The processes caused by dense flows of secondary particles and by a dense target ablation plasma were studied in detail. Substantial target shielding occurs when the energy density at the target exceeds the value of about 1 kJ/cm{sup 2}. The target plasma and the sputtered matter that is responsible for shielding affects also the beam structure, as well as the target etching rates. (J.U.). 3 figs., 5 refs.

  9. Processes in a dense long-pulse electron beam focused on a solid target

    International Nuclear Information System (INIS)

    Arkhipov, A.V.; Sominskij, G.G.

    1996-01-01

    The results obtained in beam-target experiments with dense medium-energy electron beam in the regime of long single pulses are presented. The measured power density of the focused beam at the target reached 20 MW/cm 2 in these experiments. The processes caused by dense flows of secondary particles and by a dense target ablation plasma were studied in detail. Substantial target shielding occurs when the energy density at the target exceeds the value of about 1 kJ/cm 2 . The target plasma and the sputtered matter that is responsible for shielding affects also the beam structure, as well as the target etching rates. (J.U.). 3 figs., 5 refs

  10. Hot isostatic pressing of nanosized WC-Co hardmetals

    International Nuclear Information System (INIS)

    Azcona, I.; Ordonez, A.; Sanchez, J.M.; Castro, F.; Dominguez, L.

    2001-01-01

    A new technique based on hot isostatic pressing (HIP) has been developed to produce dense nanosized WC-Co hardmetals without the addition of grain growth inhibitors. The glass encapsulation process is the key for the effective application of isostatic pressure at temperatures well below those usually required for reaching the closed porosity state in the WC-Co system. Fully dense WC-Co samples with cobalt contents ranging from 10 to 12 wt. % have been obtained by this technique at temperatures between 1000 o C and 1200 o C with 150 MPa of applied isostatic pressure for 30 minutes. The role of isostatic pressure on the activation of densification mechanisms is discussed. (author)

  11. Investigation on the intense fringe formation phenomenon downstream hot-image plane.

    Science.gov (United States)

    Hu, Yonghua; Li, Guohui; Zhang, Lifu; Huang, Wenti; Chen, Shuming

    2015-11-30

    The propagation of a high-power flat-topped Gaussian beam, which is modulated by three parallel wirelike scatterers, passing through a downstream Kerr medium slab and free spaces is investigated. A new phenomenon is found that a kind of intense fringe with intensity several times that of the incident beam can be formed in a plane downstream the Kerr medium. This kind of intense fringe is another result in the propagation process of nonlinear imaging and it locates scores of centimeters downstream the predicted hot image plane. Moreover, the intensity of this fringe can achieve the magnitude of that of hot image in corresponding single-scatterer case, and this phenomenon can arise only under certain conditions. As for the corresponding hot images, they are also formed but largely suppressed. The cause of the formation of such an intense fringe is analyzed and found related to interference in the free space downstream the Kerr medium. Moreover, the ways it is influenced by some important factors such as the wavelength of incident beam and the properties of scatterers and Kerr medium are discussed, and some important properties and relations are revealed.

  12. INFRARED SPECTROSCOPIC SURVEY OF THE QUIESCENT MEDIUM OF NEARBY CLOUDS. I. ICE FORMATION AND GRAIN GROWTH IN LUPUS

    Energy Technology Data Exchange (ETDEWEB)

    Boogert, A. C. A. [IPAC, NASA Herschel Science Center, Mail Code 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Chiar, J. E. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Knez, C.; Mundy, L. G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Öberg, K. I. [Departments of Chemistry and Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Pendleton, Y. J. [Solar System Exploration Research Virtual Institute, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Tielens, A. G. G. M.; Van Dishoeck, E. F., E-mail: aboogert@ipac.caltech.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-11-01

    Infrared photometry and spectroscopy (1-25 μm) of background stars reddened by the Lupus molecular cloud complex are used to determine the properties of grains and the composition of ices before they are incorporated into circumstellar envelopes and disks. H{sub 2}O ices form at extinctions of A{sub K} = 0.25 ± 0.07 mag (A{sub V} = 2.1 ± 0.6). Such a low ice formation threshold is consistent with the absence of nearby hot stars. Overall, the Lupus clouds are in an early chemical phase. The abundance of H{sub 2}O ice (2.3 ± 0.1 × 10{sup –5} relative to N{sub H}) is typical for quiescent regions, but lower by a factor of three to four compared to dense envelopes of young stellar objects. The low solid CH{sub 3}OH abundance (<3%-8% relative to H{sub 2}O) indicates a low gas phase H/CO ratio, which is consistent with the observed incomplete CO freeze out. Furthermore it is found that the grains in Lupus experienced growth by coagulation. The mid-infrared (>5 μm) continuum extinction relative to A{sub K} increases as a function of A{sub K}. Most Lupus lines of sight are well fitted with empirically derived extinction curves corresponding to R{sub V} ∼ 3.5 (A{sub K} = 0.71) and R{sub V} ∼ 5.0 (A{sub K} = 1.47). For lines of sight with A{sub K} > 1.0 mag, the τ{sub 9.7}/A{sub K} ratio is a factor of two lower compared to the diffuse medium. Below 1.0 mag, values scatter between the dense and diffuse medium ratios. The absence of a gradual transition between diffuse and dense medium-type dust indicates that local conditions matter in the process that sets the τ{sub 9.7}/A{sub K} ratio. This process is likely related to grain growth by coagulation, as traced by the A{sub 7.4}/A{sub K} continuum extinction ratio, but not to ice mantle formation. Conversely, grains acquire ice mantles before the process of coagulation starts.

  13. Experiments on two-step heating of a dense plasma in the GOL-3 facility

    International Nuclear Information System (INIS)

    Astrelin, V.T.; Burdakov, A.V.; Koidan, V.S.; Mekler, K.I.; Mel'nikov, P.I.; Postupaev, V.V.; Shcheglov, M.A.

    1998-01-01

    This paper presents the results of experiments on two-stage heating of a dense plasma by a relativistic electron beam in the GOL-3 facility. A dense plasma with a length of about a meter and a hydrogen density up to 10 17 cm -3 was created in the main plasma, whose density was 10 15 cm -3 . In the process of interacting with the plasma, the electron beam (1 MeV, 40 kA, 4 μs) imparts its energy to the electrons of the main plasma through collective effects. The heated electrons, as they disperse along the magnetic field lines, in turn reach the region of dense plasma and impart their energy to it by pairwise collisions. Estimates based on experimental data are given for the parameters of the flux of hot plasma electrons, the energy released in the dense plasma, and the energy balance of the beam-plasma system. The paper discusses the dynamics of the plasma, which is inhomogeneous in density and temperature, including the appearance of pressure waves

  14. Coherent scattering of neutrinos by 'nuclear pasta' in dense matter

    International Nuclear Information System (INIS)

    Sonoda, Hidetaka

    2007-01-01

    We examine coherent scattering cross section of neutrino and nucleon systems via weak-neutral current at subnuclear densities, which will be important in supernova cores. Below melting density and temparature of nuclei, nuclear shape becomes rodlike and slablike; this is called nuclear 'pasta'. Transition of structure will greatly influence coherent effects which can not easily be predicted. We calculate static structure factor of nuclear matter using data of several nuclear models, and discuss the effects of existence of nuclear pasta on neutrino opacity in hot dense matter

  15. Medium effects in strange quark matter and strange stars

    International Nuclear Information System (INIS)

    Schertler, K.; Greiner, C.; Thoma, M.H.

    1997-01-01

    We investigate the properties of strange quark matter at zero temperature including medium effects. The quarks are considered as quasiparticles which acquire an effective mass generated by the interaction with the other quarks of the dense system. The effective quark masses are derived from the zero momentum limit of the dispersion relations following from an effective quark propagator obtained from resumming one-loop self-energy diagrams in the hard dense loop approximation. This leads to a thermodynamic self-consistent description of strange quark matter as an ideal Fermi gas of quasiparticles. Within this approach we find that medium effects reduce the overall binding energy with respect to 56 Fe of strange quark matter. For typical values of the strong coupling constant (α s >or∼1) strange quark matter is not absolutely stable. The application to pure strange quark matter stars shows that medium effects have, nevertheless, no impact on the mass-radius relation of the stars. However, a phase transition to hadronic matter at the surface of the stars becomes more likely. (orig.)

  16. Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Carmen; Girart, Josep M. [Institut de Ciències de l’Espai, (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193 Cerdanyola del Vallès, Catalonia (Spain); Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090, Morelia, Michoacán (Mexico); Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, 10617, Taiwan (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping, E-mail: juarez@ice.cat [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China)

    2017-07-20

    We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s{sup −1}, converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.

  17. Effect of hot isostatic pressing on the properties of sintered alpha silicon carbide

    Science.gov (United States)

    Watson, G. K.; Moore, T. J.; Millard, M. L.

    1985-01-01

    Two lots of alpha silicon carbide were isostatically hot-pressed under 138 MPa for 2 h in Ar at temperatures up to 2200 C. Nearly theoretically dense specimens resulted. Hot isostatic pressing increased both room-temperature strength and 1200 C strength, and resulted in improved reliability. One lot of material which was pressed at 2200 C showed increases of about 20 percent in room-temperature strength and about 50 percent in 1200 C flexural strength; the Weibull modulus improved about 100 percent.

  18. KINETIC TEMPERATURES OF THE DENSE GAS CLUMPS IN THE ORION KL MOLECULAR CORE

    International Nuclear Information System (INIS)

    Wang, K.-S.; Kuan, Y.-J.; Liu, S.-Y.; Charnley, Steven B.

    2010-01-01

    High angular-resolution images of the J = 18 K -17 K emission of CH 3 CN in the Orion KL molecular core were observed with the Submillimeter Array (SMA). Our high-resolution observations clearly reveal that CH 3 CN emission originates mainly from the Orion Hot Core and the Compact Ridge, both within ∼15'' of the warm and dense part of Orion KL. The clumpy nature of the molecular gas in Orion KL can also be readily seen from our high-resolution SMA images. In addition, a semi-open cavity-like kinematic structure is evident at the location between the Hot Core and the Compact Ridge. We performed excitation analysis with the 'population diagram' method toward the Hot Core, IRc7, and the northern part of the Compact Ridge. Our results disclose a non-uniform temperature structure on small scales in Orion KL, with a range of temperatures from 190-620 K in the Hot Core. Near the Compact Ridge, the temperatures are found to be 170-280 K. Comparable CH 3 CN fractional abundances of 10 -8 to 10 -7 are found around both in the Hot Core and the Compact Ridge. Such high abundances require that a hot gas phase chemistry, probably involving ammonia released from grain mantles, plays an important role in forming these CH 3 CN molecules.

  19. Strange mesons in dense nuclear matter

    International Nuclear Information System (INIS)

    Senger, P.

    2000-10-01

    Experimental data on the production of kaons and antikaons in heavy ion collisions at relativistic energies are reviewed with respect to in-medium effects. The K - /K + ratios measured in nucleus-nucleus collisions are 1-2 orders of magnitude larger than in proton-proton collisions. The azimuthal angle distributions of K + mesons indicate a repulsive kaon-nucleon potential. Microscopic transport calculations consistently explain both the yields and the emission patterns of kaons and antikaons when assuming that their properties are modified in dense nuclear matter. The K + production excitation functions measured in light and heavy collision systems provide evidence for a soft nuclear equation-of-state. (orig.)

  20. Jumping-droplet electronics hot-spot cooling

    Science.gov (United States)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle; Neely, Jason; Pilawa-Podgurski, Robert C. N.; Miljkovic, Nenad

    2017-03-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm × 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25 °C air temperature, 20%-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm) and applied heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. This work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  1. Jumping-droplet electronics hot-spot cooling

    International Nuclear Information System (INIS)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle

    2017-01-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm"2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm"2. Finally, this work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  2. Fully dense anisotropic nanocomposite Sm(Co,Fe,Zr,Cu,B)z (z=7.5-12) magnets

    International Nuclear Information System (INIS)

    Huang, M.Q.; Turgut, Z.; Wheeler, B.; Lee, D.; Liu, S.; Ma, B.M.; Peng, Y.G.; Chu, S.Y.; Laughlin, D.E.; Horwath, J.C.; Fingers, R.T.

    2005-01-01

    Fully dense anisotropic nanocomposite Sm(Co 0.58 Fe 0.31 Zr 0.05 Cu 0.04 B 0.02 ) z (z=7.5-12) magnets have been synthesized via rapid hot pressing and hot deformation processes. The highest (BH) max ∼10.6 MGOe was observed for a magnet with z=10. X-ray diffraction and M-H measurements indicated that the easy magnetization direction of magnets prefers to be in the hot pressing direction. Transmission electron microscopy investigation confirmed that plastic deformation is an important route for forming magnetic anisotropy in the Sm-Co-type nanocomposite magnets. Some stripe and/or platelike patterns have been observed inside the nanograins (50-200 nm), which may present as twins, and stacking faults. The (0001) twins have been observed in the 2:17R phase

  3. Geometrical optics of dense aerosols: forming dense plasma slabs.

    Science.gov (United States)

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  4. Strangeness in hot and dense nuclear matter

    International Nuclear Information System (INIS)

    Nappi, E.

    2009-01-01

    Ultra-relativistic heavy-ion collisions are believed to provide the extreme conditions of energy densities able to lead to a transition to a short-lived state, called Quark-Gluon Plasma (QGP), where the quarks are no longer bound inside hadrons. The studies performed so far, formerly at SPS (CERN) and later at RHIC (BNL) allowed to achieve a multitude of crucial results consistent with the hypothesis that a new phase of the QCD matter has been indeed created. However, the emerging picture is that of the formation of a strongly interacting medium with negligibly small viscosity, a perfect liquid, rather than the ideal perturbative QCD parton-gas predicted by most theorists. The head-on collision between lead nuclei at the unprecedented energies of the forthcoming Large Hadron Collider (LHC) at CERN, due to start in 2008, will allow to measure the properties of compressed and excited nuclear matter at even higher initial densities and temperatures, far above the predicted QCD phase transition point. The longer duration of the quark-gluon plasma phase and the much more abundant production of hard probes, which depend much less on details of the later hadronic phase, will likely provide a consistent and uncontroversial experimental evidence of the QGP formation. Among the signals what witness the charge in the nature of the state of nuclear matter, the chemical equilibrium value of the strangeness plays a key role since it is directly sensitive to the matter properties and provides information on the link between the partonic and the hadronic phases. The aim of this course is to overview the underlying goals, the current status and the prospect of the physics of the nucleus-nucleus collisions at ultrarelativistic energies. Among the experimental methods adopted to investigate the challenging signatures of the QGP formation, emphasis on those related to the strangeness flavour will be given.

  5. DETECTING THE WARM-HOT INTERGALACTIC MEDIUM THROUGH X-RAY ABSORPTION LINES

    Energy Technology Data Exchange (ETDEWEB)

    Yao Yangsen; Shull, J. Michael; Cash, Webster [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Wang, Q. Daniel, E-mail: yaoys@colorado.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2012-02-20

    The warm-hot intergalactic medium (WHIM) at temperatures 10{sup 5}-10{sup 7} K is believed to contain 30%-50% of the baryons in the local universe. However, all current X-ray detections of the WHIM at redshifts z > 0 are of low statistical significance ({approx}< 3{sigma}) and/or controversial. In this work, we aim to establish the detection limits of current X-ray observatories and explore requirements for next-generation X-ray telescopes for studying the WHIM through X-ray absorption lines. We analyze all available grating observations of Mrk 421 and obtain spectra with signal-to-noise ratios (S/Ns) of {approx}90 and 190 per 50 mA spectral bin from Chandra and XMM-Newton observations, respectively. Although these spectra are two of the best ever collected with Chandra and XMM-Newton, we cannot confirm the two WHIM systems reported by Nicastro et al. in 2005. Our bootstrap simulations indicate that spectra with such high S/N cannot constrain the WHIM with O VII column densities N{sub Ovii}{approx}10{sup 15} cm{sup -2} (corresponding to an equivalent width of 2.5 mA for a Doppler velocity of 50 km s{sup -1}) at {approx}> 3{sigma} significance level. The simulation results also suggest that it would take >60 Ms for Chandra and 140 Ms for XMM-Newton to measure the N{sub Ovii} at {>=}4{sigma} from a spectrum of a background QSO with flux of {approx}0.2 mCrab (1 Crab = 2 Multiplication-Sign 10{sup -8} erg s{sup -1} cm{sup -2} at 0.5-2 keV). Future X-ray spectrographs need to be equipped with spectral resolution R {approx} 4000 and effective area A {>=} 100 cm{sup 2} to accomplish the similar constraints with an exposure time of {approx}2 Ms and would require {approx}11 Ms to survey the 15 QSOs with flux {approx}> 0.2 mCrab along which clear intergalactic O VI absorbers have been detected.

  6. X-ray investigations of the hot ISM

    Science.gov (United States)

    Sanders, W. T.

    1993-01-01

    At energies less than one keV, the intensity of the galactic x-ray background dominates that of the extragalactic background in almost every direction on the sky. Below 1/4 keV, the galactic x-ray background has a galactic stellar component, but the dominant emitter seems to be hot interstellar matter. The origin of the general 3/4 keV x-ray background remains uncertain, but one component must also be the contribution from hot interstellar matter. An overview is given of recent x-ray investigations of the hot interstellar medium using data from the ROSAT X-ray Telescope/Position-Sensitive Proportional Counter (XRT/PSPC) instrument. Several prominent features in the low energy x-ray background that are interpreted as fossil supernova remnants are discussed.

  7. B production in pPb at 5.02 TeV from CMS

    CERN Document Server

    Lee, Kisoo

    2016-01-01

    Hadrons with heavy quarks are promising probes to investigate the detailed properties of hot and dense medium generated by heavy-ion collisions at collider energies. Since heavy quarks are sensitive to the transport properties of the medium, the energy-loss pattern of them is expected to be quite different from that of light quarks in a strongly-interacting matter. On the other hand, in order to elicit the actual effects caused by the hot and dense medium, it is necessary to understand the cold nuclear mattereffect in pA collisions. For example, the pPb data is expected to provide a baseline for the study of the b-quark energy loss in medium produced by PbPb collisions. Therefore, the CMS Collaboration at the Large Hadron Collider (LHC) has analyzed the production cross sections of $B^{+}$, $B^{0}$, $B^{0}_{s}$ mesons in pPb collisions as a function of rapidity and the transverse momentum at the nucleon-nucleon center-of-mass energy of 5.02 TeV. In addition, the nuclear modification factors of the B mesons ha...

  8. Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory

    International Nuclear Information System (INIS)

    Ma, L.X.; Tan, J.Y.; Zhao, J.M.; Wang, F.Q.; Wang, C.A.

    2017-01-01

    The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus–Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus–Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied. - Highlights: • The Muller matrix of randomly distributed, densely packed spheres are investigated. • The effects of multiple scattering and dependent scattering are analyzed. • The accuracy of radiative transfer theory for densely packed spheres is discussed. • Dependent scattering correction takes effect at medium size parameter or smaller. • Performance of dependent scattering correction

  9. Jet multiplicity distributions: medium dependence in MLLA

    International Nuclear Information System (INIS)

    Armesto, Nestor; Pajares, Carlos; Quiroga-Arias, Paloma

    2009-01-01

    We study the medium dependence of the multiplicity distributions in the modified leading logarithmic approximation. We focus in the enhancement in the number of branchings as the partons travel trough a dense medium created in a heavy-ion collision. We study the effect of a higher number of splittings in some jet observables by introducing the medium as a constant (f med ) in the splitting functions. Having as our ansatz for the quark and gluon jets mean multiplicities left angle n G right angle =e γy and left angle n Q right angle =r -1 e γy , we study in an analytic approach the dependence with the medium (f med ) of the anomalous dimension (γ), the multiplicity ratio (r), and so the mean multiplicities. We also obtain the higher-order moments of the multiplicity distribution, what allows us to study its dispersion. (orig.)

  10. Electron transport phenomena and dense plasmas produced by ultra-short pulse laser interaction

    International Nuclear Information System (INIS)

    More, R.M.

    1994-01-01

    Recent experiments with femtosecond lasers provide a test bed for theoretical ideas about electron processes in hot dense plasmas. We briefly review aspects of electron conduction theory likely to prove relevant to femtosecond laser absorption. We show that the Mott-Ioffe-Regel limit implies a maximum inverse bremsstrahlung absorption of about 50% at temperatures near the Fermi temperature. We also propose that sheath inverse bremsstrahlung leads to a minimum absorption of 7-10% at high laser intensity

  11. Phonon-mediated distributed transition-edge-sensor X-ray detectors for surveys of galaxy clusters and the warm-hot interstellar medium

    International Nuclear Information System (INIS)

    Leman, Steven W.; Brink, Paul L.; Cabrera, Blas; Castle, Joseph P.; Chakraborty, Sudeepto; Deiker, Steve; Kahn, Steve; Martinez-Galarce, Dennis S.; Stern, Robert A.; Tomada, Astrid

    2006-01-01

    We are developing a novel phonon-mediated distributed-TES X-ray detector in which X-rays are absorbed in a large germanium or silicon crystal, and the energy is read out by four distributed TESs. This design takes advantage of existing TES technology while overcoming the difficulties of designing spatially large arrays. The sum of the four TES signals will yield energy resolution of E/δE∼1000 and the partitioning of energy between the four will yield position resolution of X/δX and Y/δY∼100. These macropixels, with advances in multiplexing, could be close-packed into 30x30 arrays equivalent to imaging instruments of 10 megapixels or more. We report on our progress to date and discuss its application to galaxy cluster searches and studies of the Warm-Hot Interstellar Medium

  12. The Interaction of Hot and Cold Gas in the Disk and Halo of Galaxies

    Science.gov (United States)

    Slavin, Jonathan; Salamon, Michael (Technical Monitor)

    2004-01-01

    Most of the thermal energy in the Galaxy and perhaps most of the baryons in the Universe are found in hot (log T approximately 5.5 - 7) gas. Hot gas is detected in the local interstellar medium, in supernova remnants (SNR), the Galactic halo, galaxy clusters and the intergalactic medium (IGM). In our own Galaxy, hot gas exists in large superbubbles up to several hundred pc in diameter that locally dominate the interstellar medium (ISM) and determine its thermal and dynamic evolution. While X-ray observations using ROSAT, Chandra and XMM have allowed us to make dramatic progress in mapping out the morphology of the hot gas and in understanding some of its spectral characteristics, there remain fundamental questions that are unanswered. Chief among these questions is the way that hot gas interacts with cooler phase gas and the effects these interactions have on hot gas energetics. The theoretical investigations we proposed in this grant aim to explore these interactions and to develop observational diagnostics that will allow us to gain much improved information on the evolution of hot gas in the disk and halo of galaxies. The first of the series of investigations that we proposed was a thorough exploration of turbulent mixing layers and cloud evaporation. We proposed to employ a multi-dimensional hydrodynamical code that includes non-equilibrium ionization (NEI), radiative cooling and thermal conduction. These models are to be applied to high velocity clouds in our galactic halo that are seen to have O VI by FUSE (Sembach et ai. 2000) and other clouds for which sufficient constraining observations exist.

  13. AN EXPLANATION FOR THE DIFFERENT X-RAY TO OPTICAL COLUMN DENSITIES IN THE ENVIRONMENTS OF GAMMA RAY BURSTS: A PROGENITOR EMBEDDED IN A DENSE MEDIUM

    International Nuclear Information System (INIS)

    Krongold, Yair; Prochaska, J. Xavier

    2013-01-01

    We study the ∼> 10 ratios in the X-ray to optical column densities inferred from afterglow spectra of gamma ray bursts (GRBs) due to gas surrounding their progenitors. We present time-evolving photoionization calculations for these afterglows and explore different conditions of their environment. We find that homogenous models of the environment (constant density) predict X-ray columns similar to those found in the optical spectra, with the bulk of the opacity being produced by neutral material at large distances from the burst. This result is independent of gas density or metallicity. Only models assuming a progenitor immersed in a dense (∼10 2-4 cm –3 ) cloud of gas (with radius ∼10 pc), with a strong, declining gradient of density for the surrounding interstellar medium (ISM) are able to account for the large X-ray to optical column density ratios. However, to avoid an unphysical correlation between the size of this cloud and the size of the ionization front produced by the GRB, the models also require that the circumburst medium is already ionized prior to the burst. The inferred cloud masses are ∼ 6 M ☉ , even if low metallicities in the medium are assumed (Z ∼ 0.1 Z ☉ ). These cloud properties are consistent with those found in giant molecular clouds and our results support a scenario in which the progenitors reside within intense star formation regions of galaxies. Finally, we show that modeling over large samples of GRB afterglows may offer strong constraints on the range of properties in these clouds, and the host galaxy ISM

  14. Jet evolution in a dense medium: event-by-event fluctuations and multi-particle correlations

    Science.gov (United States)

    Escobedo, Miguel A.; Iancu, Edmond

    2017-11-01

    We study the gluon distribution produced via successive medium-induced branchings by an energetic jet propagating through a weakly-coupled quark-gluon plasma. We show that under suitable approximations, the jet evolution is a Markovian stochastic process, which is exactly solvable. For this process, we construct exact analytic solutions for all the n-point correlation functions describing the gluon distribution in the space of energy [M. A. Escobedo, E. Iancu, Event-by-event fluctuations in the medium-induced jet evolution, JHEP 05 (2016) 008. arXiv:arxiv:arXiv:1601.03629, doi:http://dx.doi.org/10.1007/JHEP05(2016)008, M. A. Escobedo, E. Iancu, Multi-particle correlations and KNO scaling in the medium-induced jet evolution, JHEP 12 (2016) 104. arXiv:arxiv:arXiv:1609.06104, doi:http://dx.doi.org/10.1007/JHEP12(2016)104]. Using these results, we study the event-by-event distribution of the energy lost by the jet at large angles and of the multiplicities of the soft particles which carry this energy. We find that the event-by-event fluctuations are huge: the standard deviation in the energy loss is parametrically as large as its mean value [M. A. Escobedo, E. Iancu, Event-by-event fluctuations in the medium-induced jet evolution, JHEP 05 (2016) 008. arXiv:arxiv:arXiv:1601.03629, doi:http://dx.doi.org/10.1007/JHEP05(2016)008]. This has important consequences for the phenomenology of di-jet asymmetry in Pb+Pb collisions at the LHC: it implies that the fluctuations in the branching process can contribute to the measured asymmetry on an equal footing with the geometry of the di-jet event (i.e. as the difference between the in-medium path lengths of the two jets). We compute the higher moments of the multiplicity distribution and identify a remarkable regularity known as Koba-Nielsen-Olesen (KNO) scaling [M. A. Escobedo, E. Iancu, Multi-particle correlations and KNO scaling in the medium-induced jet evolution, JHEP 12 (2016) 104. arXiv:arxiv:arXiv:1609.06104, doi

  15. Jet evolution in a dense medium: event-by-event fluctuations and multi-particle correlations

    International Nuclear Information System (INIS)

    Escobedo, Miguel A.; Iancu, Edmond

    2017-01-01

    We study the gluon distribution produced via successive medium-induced branchings by an energetic jet propagating through a weakly-coupled quark-gluon plasma. We show that under suitable approximations, the jet evolution is a Markovian stochastic process, which is exactly solvable. For this process, we construct exact analytic solutions for all the n-point correlation functions describing the gluon distribution in the space of energy [M. A. Escobedo, E. Iancu, Event-by-event fluctuations in the medium-induced jet evolution, JHEP 05 (2016) 008. arXiv: (arXiv:1601.03629), doi: (http://dx.doi.org/10.1007/JHEP05(2016)008), M. A. Escobedo, E. Iancu, Multi-particle correlations and KNO scaling in the medium-induced jet evolution, JHEP 12 (2016) 104. arXiv: (arXiv:1609.06104), doi: (http://dx.doi.org/10.1007/JHEP12(2016)104)]. Using these results, we study the event-by-event distribution of the energy lost by the jet at large angles and of the multiplicities of the soft particles which carry this energy. We find that the event-by-event fluctuations are huge: the standard deviation in the energy loss is parametrically as large as its mean value [M. A. Escobedo, E. Iancu, Event-by-event fluctuations in the medium-induced jet evolution, JHEP 05 (2016) 008. arXiv: (arXiv:1601.03629), doi: (http://dx.doi.org/10.1007/JHEP05(2016)008)]. This has important consequences for the phenomenology of di-jet asymmetry in Pb+Pb collisions at the LHC: it implies that the fluctuations in the branching process can contribute to the measured asymmetry on an equal footing with the geometry of the di-jet event (i.e. as the difference between the in-medium path lengths of the two jets). We compute the higher moments of the multiplicity distribution and identify a remarkable regularity known as Koba-Nielsen-Olesen (KNO) scaling [M. A. Escobedo, E. Iancu, Multi-particle correlations and KNO scaling in the medium-induced jet evolution, JHEP 12 (2016) 104. arXiv: (arXiv:1609.06104), doi: (http

  16. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    Energy Technology Data Exchange (ETDEWEB)

    Buchheim, Thomas

    2017-04-11

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  17. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    International Nuclear Information System (INIS)

    Buchheim, Thomas

    2017-01-01

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  18. Experimental study of hot electrons propagation and energy deposition in solid or laser-shock compressed targets: applications to fast igniter

    International Nuclear Information System (INIS)

    Pisani, F.

    2000-02-01

    In the fast igniter scheme, a recent approach proposed for the inertial confinement fusion, the idea is to dissociate the fuel ignition phase from its compression. The ignition phase would be then achieved by means of an external energy source: a fast electron beam generated by the interaction with an ultra-intense laser. The main goal of this work is to study the mechanisms of the hot electron energy transfer to the compressed fuel. We intent in particular to study the role of the electric and collisional effects involved in the hot electron propagation in a medium with properties similar to the compressed fuel. We carried out two experiments, one at the Vulcan laser facility (England) and the second one at the new LULI 100 TW laser (France). During the first experiment, we obtained the first results on the hot electron propagation in a dense and hot plasma. The innovating aspect of this work was in particular the use of the laser-shock technique to generate high pressures, allowing the strongly correlated and degenerated plasma to be created. The role of the electric and magnetic effects due to the space charge associated with the fast electron beam has been investigated in the second experiment. Here we studied the propagation in materials with different electrical characteristics: an insulator and a conductor. The analysis of the results showed that only by taking into account simultaneously the two propagation mechanisms (collisions and electric effects) a correct treatment of the energy deposition is possible. We also showed the importance of taking into account the induced modifications due to the electrons beam crossing the target, especially the induced heating. (author)

  19. The hot-deformability and quantitative description of the microstructure of hot-deformed Fe-Ni superalloy

    International Nuclear Information System (INIS)

    Ducki, K J; Rodak, K

    2011-01-01

    The paper presents the results of research concerning the influence of hot plastic forming parameters on the deformability and structure of a Fe-Ni austenitic alloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150 deg. C, at a strain rate 0.1 and 1.0 s -1 . Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so called f reezing . The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the peak stress and the mean grain size have been developed and the activation energy of the hot plastic deformation has been estimated. The examination of substructure on TEM allowed the calculation of structural parameters: the average subgrain area and the mean dislocation density. A detailed investigation has shown that the substructure is inhomogeneous, consists of dense dislocation walls, subgrains and recrystallized regions.

  20. The hot-deformability and quantitative description of the microstructure of hot-deformed Fe-Ni superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ducki, K J; Rodak, K, E-mail: kazimierz.ducki@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The paper presents the results of research concerning the influence of hot plastic forming parameters on the deformability and structure of a Fe-Ni austenitic alloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150 deg. C, at a strain rate 0.1 and 1.0 s{sup -1}. Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so called {sup f}reezing{sup .} The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the peak stress and the mean grain size have been developed and the activation energy of the hot plastic deformation has been estimated. The examination of substructure on TEM allowed the calculation of structural parameters: the average subgrain area and the mean dislocation density. A detailed investigation has shown that the substructure is inhomogeneous, consists of dense dislocation walls, subgrains and recrystallized regions.

  1. The hot-deformability and quantitative description of the microstructure of hot-deformed Fe-Ni superalloy

    Science.gov (United States)

    Ducki, K. J.; Rodak, K.

    2011-05-01

    The paper presents the results of research concerning the influence of hot plastic forming parameters on the deformability and structure of a Fe-Ni austenitic alloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150 °C, at a strain rate 0.1 and 1.0 s-1. Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so called "freezing". The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the peak stress and the mean grain size have been developed and the activation energy of the hot plastic deformation has been estimated. The examination of substructure on TEM allowed the calculation of structural parameters: the average subgrain area and the mean dislocation density. A detailed investigation has shown that the substructure is inhomogeneous, consists of dense dislocation walls, subgrains and recrystallized regions.

  2. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array

  3. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550 (Japan); Spiegel, David S. [Analytics and Algorithms, Stitch Fix, San Francisco, CA 94103 (United States); Mroczkowski, Tony [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Nordhaus, Jason [Department of Science and Mathematics, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Zimmerman, Neil T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Parsons, Aaron R. [Astronomy Department, University of California, Berkeley, CA (United States); Mirbabayi, Mehrdad [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Madhusudhan, Nikku, E-mail: yuka.fujii@elsi.jp [Astronomy Department, University of Cambridge (United Kingdom)

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  4. Radio Emission from Red-Giant Hot Jupiters

    Science.gov (United States)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  5. Locating sources within a dense sensor array using graph clustering

    Science.gov (United States)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  6. Jet multiplicity distributions: medium dependence in MLLA

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, Nestor; Pajares, Carlos; Quiroga-Arias, Paloma [Universidade de Santiago de Compostela, Departamento de Fisica de Particulas and IGFAE, Santiago de Compostela (Spain)

    2009-07-15

    We study the medium dependence of the multiplicity distributions in the modified leading logarithmic approximation. We focus in the enhancement in the number of branchings as the partons travel trough a dense medium created in a heavy-ion collision. We study the effect of a higher number of splittings in some jet observables by introducing the medium as a constant (f{sub med}) in the splitting functions. Having as our ansatz for the quark and gluon jets mean multiplicities left angle n{sub G} right angle =e{sup {gamma}}{sup y} and left angle n{sub Q} right angle =r{sup -1}e{sup {gamma}}{sup y}, we study in an analytic approach the dependence with the medium (f{sub med}) of the anomalous dimension ({gamma}), the multiplicity ratio (r), and so the mean multiplicities. We also obtain the higher-order moments of the multiplicity distribution, what allows us to study its dispersion. (orig.)

  7. Three-phase flow analysis of dense nonaqueous phase liquid infiltration in horizontally layered porous media

    NARCIS (Netherlands)

    Wipfler, E.L.; Dijke, van M.I.J.; Zee, van der S.E.A.T.M.

    2004-01-01

    We considered dense nonaqueous phase liquid (DNAPL) infiltration into a water-unsaturated porous medium that consists of two horizontal layers, of which the top layer has a lower intrinsic permeability than the bottom layer. DNAPL is the intermediate-wetting fluid with respect to the wetting water

  8. Controlled Fusion with Hot-ion Mode in a Degenerate Plasma

    International Nuclear Information System (INIS)

    S. Son and N.J. Fisch

    2005-01-01

    In a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from the classical prediction, possibly enabling new regimes for controlled nuclear fusion, including the hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Previous calculations of these processes in dense plasmas are now corrected for partial degeneracy and relativistic effects, leading to an expanded regime of self-sustained fusion

  9. Simulation of the hot flow behaviour of a medium carbon microalloyed steel

    International Nuclear Information System (INIS)

    Cabrera, J.M.; Al Omar, A.; Prado, J.M.

    1997-01-01

    According to the part 1 of this work the constitutive equations of the hot flow behaviour of a commercial microalloyed steel have been obtained. For this purpose, the uniaxial hot compression tests described in the part 2 were employed. Tests were carried out over a range of 5 orders of magnitude in strain rate and 300 degree centigree of temperature. Experimental results are compared with the theoretical model introduced in the first part of this study. It is concluded that deviations between experimental and theoretical curves are lower than 10%. It is shown that the classical hyperbolic sine constitutive equation described accurately the experimental behaviour provided that stresses are normalized by the Young's modulus and strain rates by the self-diffusion coefficient. An internal stress must also be introduced in the latter equation when the initial grain size is fine enough. (Author) 24 refs

  10. THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82

    International Nuclear Information System (INIS)

    Kepley, Amanda A.; Frayer, David; Leroy, Adam K.; Usero, Antonio; Marvil, Josh; Walter, Fabian

    2014-01-01

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO + . Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxies by presenting the most sensitive maps yet of HCN and HCO + in the starburst galaxy M82. The HCN and HCO + in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO + emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction

  11. Effects of delta degrees of freedom on quark condensate in hot and dense matter

    International Nuclear Information System (INIS)

    Li Lei; Ning Pingzhi

    1996-01-01

    The relativistic mean-field theory is applied to study the quark condensate systematically in nuclear matter at zero and finite temperature in terms of the relative importance of delta degrees of freedom. Calculations have included the high-order contributions to quark condensate in nuclear medium due to the baryon-baryon interactions. Numerical results are presented for the nuclear density up to five times larger than the normal density and temperature up to 120 MeV. It is found that the delta resonance in nuclear matter can cause substantial decreases to in-medium quark condensate

  12. On unique parameters and unified formal form of hot-wire anemometric sensor model

    International Nuclear Information System (INIS)

    LigePza, P.

    2005-01-01

    This note reviews the extensively adopted equations used as models of hot-wire anemometric sensors. An unified formal form of the mathematical model of a hot-wire anemometric sensor with otherwise defined parameters is proposed. Those parameters, static and dynamic, have simple physical interpretation and can be easily determined. They show directly the range of sensor application. They determine the metrological properties of the given sensor in the actual medium. Hence, the parameters' values might be ascribed to each sensor in the given medium and be quoted in manufacturers' catalogues, supplementing the sensor specifications. Because of their simple physical interpretation, those parameters allow the direct comparison of the fundamental metrological properties of various sensors and selection of the optimal sensor for the given research measurement application. The parameters are also useful in modeling complex hot-wire systems

  13. Towards Dense Nuclear Matter in A Modified Sakai-Sugimoto Model

    Directory of Open Access Journals (Sweden)

    Rho Mannque

    2012-02-01

    Full Text Available As a part of the attempt to address dense baryonic matter, we first review holographic approaches to QCD. The big advantage of the holographic approaches is that they render strongly coupled 4D gauge theories as duals of certain weakly coupled string/supergravity that are well understood. Its relevance to real QCD is one of the central problems in hadron/nuclear physics as well as in the context of applied string theory. None of the models based on these holographic approaches presently available can adequately describe the system we are interested in, namely dense baryonic matter. Nevertheless, some aspects of the holographic approach are found to describe certain processes both in vacuum and in medium. In this talk we only present the structure of a model that appears to be closest to QCD, and has the potential to address the problem.

  14. Wave propagation through a dielectric layer containing densely packed fibers

    International Nuclear Information System (INIS)

    Lee, Siu-Chun

    2011-01-01

    This paper presents the theoretical formulation for the propagation of electromagnetic wave through a dielectric layer containing a random dense distribution of fibers. The diameter of the fibers is comparable to the inter-fiber spacing and wavelength of the incident radiation, but is much smaller than the thickness of the layer. Discontinuity of refractive index across the boundaries of the dielectric layer resulted in multiple internal reflection of both the primary source wave and the scattered waves. As a result the incident waves on the fibers consist of the multiply-reflected primary waves, scattered waves from other fibers, and scattered-reflected waves from the boundaries. The effective propagation constant of the dielectric fiber layer was developed by utilizing the Effective field-Quasicrystalline approximation. The influence of the refractive index of the dielectric medium on the radiative properties of a dense fiber layer was examined by means of numerical analyses.

  15. Fine focusing of intense heavy ions for the production of hot dense matter

    International Nuclear Information System (INIS)

    Heimrich, B.

    1989-02-01

    In order to perform the first experimental studies on the interaction of intense ion beams with matter an electrostatic quadrupole doublet was developed which focuses the space-charge carrying ion beam of the RFQ accelerator at the GSI Darmstadt on an area of 1 mm 2 . By an especially manufactured target holder this intense ion beam was stopped in tungsten targets and the first plasma induced by heavy ions was produced. Electrons and ions which are emitted from the plasmas have been spectroscoped by an especially for this fabricated spectrometer in their energy and time distribution in the eV region by which first comparisons between theory and praxis on the heating of dense matter by intense ion beams could be made. (orig./HSI) [de

  16. THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82

    Energy Technology Data Exchange (ETDEWEB)

    Kepley, Amanda A.; Frayer, David [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944-0002 (United States); Leroy, Adam K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Usero, Antonio [Observatorio Astronómico Nacional, C/Alfonso XII, 3, E-28014 Madrid (Spain); Marvil, Josh [Department of Physics, New Mexico Tech., 801 Leroy Place, Socorro, NM 87801 (United States); Walter, Fabian, E-mail: akepley@nrao.edu [Max Planck Institute fur Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-01

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO{sup +}. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxies by presenting the most sensitive maps yet of HCN and HCO{sup +} in the starburst galaxy M82. The HCN and HCO{sup +} in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO{sup +} emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.

  17. b-jet tagged nuclear modification factors in heavy ion collisions with CMS

    CERN Document Server

    Jung, Kurt

    2014-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the flavor of the fragmenting parton. Thus, measurements of jet quenching as a function of flavor place powerful constraints on the thermodynamical and transport properties of the hot and dense medium. Measurements of the nuclear modification factors of the heavy-flavor-tagged jets in both PbPb and pPb collisions can quantify such energy loss effects. Specifically, pPb measurements provide crucial insights into the behavior of the cold nuclear matter effect, which is required to fully understand the hot and dense medium effects on jets in PbPb collisions. In this talk, we present the b-jet spectra and the first measurement of the nuclear modification factors as a function of transverse momentum and pseudorapidity, using the high statistics pp, pPb and PbPb data taken in 2011 and 2013.

  18. Heterogeneously Catalysed Chemical Reactions in Carbon Dioxide Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai E.

    In this PhD-study the different areas of chemical engineering, heterogeneous catalysis, supercritical fluids, and phase equilibrium thermodynamics have been brought together for selected reactions. To exploit the beneficial properties of supercritical fluids in heterogeneous catalysis, experimental...... studies of catalytic chemical reactions in dense and supercritical carbon dioxide have been complemented by the theoretical calculations of phase equilibria using advanced thermodynamic models. In the recent years, the use of compressed carbon dioxide as innovative, non-toxic and non-flammable, cheap......, and widely available reaction medium for many practical and industrial applications has drastically increased. Particularly attractive are heterogeneously catalysed chemical reactions. The beneficial use of CO2 is attributed to its unique properties at dense and supercritical states (at temperatures...

  19. Preparation and characterization of dense nanohydroxyapatite/PLLA composites

    International Nuclear Information System (INIS)

    Gay, Sandrine; Arostegui, Saioa; Lemaitre, Jacques

    2009-01-01

    Synthetic bone graft substitutes based on PLLA have been largely studied during the past decade. PLLA/hydroxyapatite composites appear as promising materials for large bone defect healing. In this study dense PLLA/nano-hydroxyapatite composites were prepared by hot pressing. Dense samples were investigated rather than porous scaffolds, in order to shed light on possible correlations between intrinsic mechanical properties and nano-hydroxyapatite concentration. Hydroxyapatite deagglomerated by wet attrition milling, and further dispersed into chloroform was used (median diameter = 80 nm). Particle size distribution measurements and transmission electron microscopy show evidence that particle size and dispersion are maintained throughout the successive steps of composite processing. Mechanical properties were tested (uni-axial and diametral compression tests) as a function of nano-hydroxyapatite content. Increasing concentrations of nano-hydroxyapatite (0, 25 and 50 wt.%) increase the Young's modulus and the mechanical strength of the composite; at the same time, the failure mechanism of the material changes from plastic to brittle. Young's modulus over 6 GPa and uniaxial compressive strength over 100 MPa have been achieved. These values expressed in terms of intrinsic tensile and shear strengths indicate that 50 wt.% nano-hydroxyapatite containing samples develop properties comparable to those of cortical bone. PLLA/nano-hydroxyapatite composites are thus promising candidates to develop bioresorbable porous bone substitutes showing superior mechanical performance

  20. Flexible fiber in interaction with a dense granular flow close to the jamming transition

    Science.gov (United States)

    Algarra, Nicolas; Leang, Marguerite; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne

    2017-06-01

    We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fiber acting as a flexible intruder. We study experimentally the reconfiguration and the forces exerted on the flexible fiber produced by the flow at a constant and low velocity of a two-dimensional disordered packing of grains close but below the jamming transition.

  1. Coercivity enhancement of HDDR-processed Nd-Fe-B permanent magnet with the rapid hot-press consolidation process

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, N. [Magnetic Materials Research Laboratory, NEOMAX Company, Hitachi Metals Ltd., Osaka 618-0013 (Japan); Sepehri-Amin, H. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Magnetic Materials Center, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Ohkubo, T. [Magnetic Materials Center, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Hono, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Magnetic Materials Center, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Nishiuchi, T. [Magnetic Materials Research Laboratory, NEOMAX Company, Hitachi Metals Ltd., Osaka 618-0013 (Japan); Hirosawa, S., E-mail: Satoshi_Hirosawa@hitachi-metals.co.j [Magnetic Materials Research Laboratory, NEOMAX Company, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2011-01-15

    High coercivity, fully dense anisotropic permanent magnets of submicron grain sizes were produced by rapid hot-press consolidation of hydrogenation-disproportionation-desorption-recombination (HDDR) processed Nd-Fe-Co-B powders. In the hot-press process, the coercivity of the consolidated material showed a sharp minimum prior to full densification. Thereafter, it reached a value 25% higher than that of the initial powder. Scanning electron microscopy and transmission electron microscopy observations revealed that the variation in H{sub cJ} was caused by a redistribution of Nd along the grain boundaries during hot pressing and that the high coercivity was attributable to the formation of thin, continuous Nd-rich phase along the grain boundaries.

  2. Confinement-deconfinement phase transition in hot and dense QCD at large N

    International Nuclear Information System (INIS)

    Zhitnitsky, Ariel R.

    2008-01-01

    We conjecture that the confinement-deconfinement phase transition in QCD at large number of colors N and N f c where θ dependence experiences a sudden change in behavior [A. Parnachev, A. Zhitnitsky, (arXiv: 0806.1736 [hep-ph])]. The conjecture is also supported by quantum field theory arguments when the instanton calculations (which trigger the θ dependence) are under complete theoretical control for T>T c , suddenly break down immediately below T c with sharp changes in the θ dependence. Finally, the conjecture is supported by a number of numerical lattice results. We employ this conjecture to study confinement-deconfinement phase transition of dense QCD at large μ in large N limit by analyzing the θ dependence. We find that the confinement-deconfinement phase transition at N f c ∼√(N)Λ QCD . This result agrees with recent findings by McLerran and Pisarski [L. McLerran, R.D. Pisarski, Nucl. Phys. A 796 (2007) 83]. We also speculate on case when N f ∼N

  3. COINCIDENCES BETWEEN O VI AND O VII LINES: INSIGHTS FROM HIGH-RESOLUTION SIMULATIONS OF THE WARM-HOT INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Cen Renyue

    2012-01-01

    With high-resolution (0.46 h –1 kpc), large-scale, adaptive mesh-refinement Eulerian cosmological hydrodynamic simulations we compute properties of O VI and O VII absorbers from the warm-hot intergalactic medium (WHIM) at z = 0. Our new simulations are in broad agreement with previous simulations with ∼40% of the intergalactic medium being in the WHIM. Our simulations are in agreement with observed properties of O VI absorbers with respect to the line incidence rate and Doppler-width-column-density relation. It is found that the amount of gas in the WHIM below and above 10 6 K is roughly equal. Strong O VI absorbers are found to be predominantly collisionally ionized. It is found that (61%, 57%, 39%) of O VI absorbers of log N(O VI) cm 2 = (12.5-13, 13-14, > 14) have T 5 K. Cross correlations between galaxies and strong [N(O VI) > 10 14 cm –2 ] O VI absorbers on ∼100-300 kpc scales are suggested as a potential differentiator between collisional ionization and photoionization models. Quantitative prediction is made for the presence of broad and shallow O VI lines that are largely missed by current observations but will be detectable by Cosmic Origins Spectrograph observations. The reported 3σ upper limit on the mean column density of coincidental O VII lines at the location of detected O VI lines by Yao et al. is above our predicted value by a factor of 2.5-4. The claimed observational detection of O VII lines by Nicastro et al., if true, is 2σ above what our simulations predict.

  4. WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE

    International Nuclear Information System (INIS)

    Shinnaga, Hiroko; Phillips, Thomas G.; Furuya, Ray S.; Kitamura, Yoshimi

    2009-01-01

    In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (∼30-70 K), extended (radius of ∼2400 AU), dense (a few times 10 5 cm -3 ) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, 'warm-in-cold core stage (WICCS)', i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.

  5. Measurements of hot spots and electron beams in Z-pinch devices

    International Nuclear Information System (INIS)

    Deeney, C.

    1988-04-01

    Hot spots and Electron Beams have been observed in different types of Z-pinches. There is, however, no conclusive evidence on how either are formed although there has been much theoretical interest in both these phenomena. In this thesis, nanosecond time resolved and time correlated, X-ray and optical diagnostics, are performed on two different types of Z-pinch: a 4 kJ, 30 kV Gas Puff Z-pinch and a 28 kJ, 60 kV Plasma Focus. The aim being to study hot spots and electron beams, as well as characterise the plasma, two different Z-pinch devices. Computer codes are developed to analyse the energy and time resolved data obtained in this work. These codes model both, X-ray emission from a plasma and X-ray emission due to electron beam bombardment of a metal surface. The hot spot and electron beam parameters are measured, from the time correlated X-ray data using these computer codes. The electron beams and the hot spots are also correlated to the plasma behaviour and to each other. The results from both devices are compared with each other and with the theoretical work on hot spot and electron beam formation. A previously unreported 3-5 keV electron temperature plasma is identified, in the gas puff Z-pinch plasma, prior to the formation of the hot spots. it is shown, therefore, that the hot spots are more dense but not hotter than the surrounding plasma. Two distinct periods of electron beam generation are identified in both devices. (author)

  6. Radiation-pressure-driven dust waves inside bursting interstellar bubbles

    NARCIS (Netherlands)

    Ochsendorf, B.B.; Verdolini, S.; Cox, N.L.J.; Berné, O.; Kaper, L.; Tielens, A.G.G.M.

    2014-01-01

    Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even

  7. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    Science.gov (United States)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  8. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A. Y.; Umemura, M. [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  9. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    International Nuclear Information System (INIS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  10. Onset of color decoherence for soft gluon radiation in a medium

    Science.gov (United States)

    Mehtar-Tani, Y.; Salgado, C. A.; Tywoniuk, K.

    2011-12-01

    We report on recent studies of the phenomenon of color decoherence in jets in QCD media. The effect is most clearly observed in the radiation pattern of a quark-antiquark antenna, created in the same quantum state, traversing a dense color deconfined plasma. Multiple scattering with the medium color charges gradually destroys the coherence of the antenna. In the limit of opaque media, this ultimately leads to independent radiation off the antenna constituents. Accordingly, radiation off the total charge vanishes implying a memory loss effect induced by the medium.

  11. Flexible fiber in interaction with a dense granular flow close to the jamming transition

    Directory of Open Access Journals (Sweden)

    Algarra Nicolas

    2017-01-01

    Full Text Available We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fiber acting as a flexible intruder. We study experimentally the reconfiguration and the forces exerted on the flexible fiber produced by the flow at a constant and low velocity of a two-dimensional disordered packing of grains close but below the jamming transition.

  12. Dense understory dwarf bamboo alters the retention of canopy tree seeds

    Science.gov (United States)

    Qian, Feng; Zhang, Tengda; Guo, Qinxue; Tao, Jianping

    2016-05-01

    Tree seed retention is thought to be an important factor in the process of forest community regeneration. Although dense understory dwarf bamboo has been considered to have serious negative effects on the regeneration of forest community species, little attention has been paid to the relationship between dwarf bamboo and seed retention. In a field experiment we manipulated the density of Fargesia decurvata, a common understory dwarf bamboo, to investigate the retention of seeds from five canopy tree species in an evergreen and deciduous broad-leaved mixed forest in Jinfoshan National Nature Reserve, SW China. We found that the median survival time and retention ratio of seeds increased with the increase in bamboo density. Fauna discriminately altered seed retention in bamboo groves of different densities. Arthropods reduced seed survival the most, and seeds removed decreased with increasing bamboo density. Birds removed or ate more seeds in groves of medium bamboo density and consumed fewer seeds in dense or sparse bamboo habitats. Rodents removed a greater number of large and highly profitable seeds in dense bamboo groves but more small and thin-husked seeds in sparse bamboo groves. Seed characteristics, including seed size, seed mass and seed profitability, were important factors affecting seed retention. The results suggested that dense understory dwarf bamboo not only increased seeds concealment and reduced the probability and speed of seed removal but also influenced the trade-off between predation and risk of animal predatory strategies, thereby impacting the quantity and composition of surviving seeds. Our results also indicated that dense understory dwarf bamboo and various seed characteristics can provide good opportunities for seed storage and seed germination and has a potential positive effect on canopy tree regeneration.

  13. Researches concerning the use of mixed Hydrogen in the combustion of dense biomass

    International Nuclear Information System (INIS)

    Negreanu, Gabriel-Paul; Mihaescu, Lucian; Pisa, Ionel; Berbece, Viorel; Lazaroiu, Gheorghe

    2014-01-01

    The paper deals with theoretical basis and experimental tests of mixed hydrogen diffusion in the dense system of biomass. Research regarding hydrogen diffusion in the porous system of biomass is part of wider research focusing on using hydrogen as an active medium for solid biomass combustion. In parallel with hydrogen diffusion in solid biomass, tests regarding biomass combustion previously subjected to a hydrogen flux will be carried out. Keywords: biomass, hydrogen diffusion, combustion, experimental tests

  14. [The interaction of soil micromycetes with "hot" particles in a model system].

    Science.gov (United States)

    Zhdanova, N N; Lashko, T N; Redchits, T I; Vasilevskaia, A I; Borisiuk, L G; Siniavskaia, O I; Gavriliuk, V I; Muzalev, P N

    1991-01-01

    A model system which permits observing for a long time and fixing interaction of fungi with a radiation source has been created on the basis of an isolated "hot" particle, deficient mineral medium (saccharose content 60 mg/l) and suspension of fungal conidia. Five species (six strains) of micromycetes isolated from radionuclide-contaminated soils and fifteen "hot" particles have been tested. It has been found out for the first time that Cladosporium cladosporioides and Penicillium roseo-purpureum are able actively overgrow "hot" particles whose radioactivity did not exceed 3.1-1.0(-7) Ci by gamma-spectrum and to destroy them 50-150 days later. Certain changes in morphology of fungi-destructors of "hot" particles are revealed. A problem on ecological significance of the found phenomenon is discussed.

  15. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  16. Study of the microstructure evolution of ferritic stainless ODS steels during hot working

    International Nuclear Information System (INIS)

    Karch, Abdellatif

    2014-01-01

    The production of ODS steels involves a powder consolidation step usually using the hot extrusion (HE) process. The anisotropic properties of extruded materials, especially in the ODS ferritic grades (≥wt%12Cr), need a better understanding of the metallurgical phenomena which may occur during HE and lead to the observed microstructure. The hot working behavior of these materials is of particular interest. The methodology of this work includes the microstructure analysis after interrupted hot extrusion, hot torsion and hot compression (1000-1200 C) tests of ferritic steels with 14%Cr and different amounts in Ti and Y 2 O 3 . The microstructure evolution during hot extrusion process is associated with continuous dynamic recrystallization (CDRX). It leads to the creation of new grains by the formation of low angle boundaries, and then the increase of their misorientation under plastic deformation. The investigations highlight also the role of precipitation on the kinetics of this mechanism; it remains incomplete in the presence of fine and dense nano-precipitates. After hot deformation in torsion and compression, it is noticed that both precipitates and temperature deformation have a significant impact on the deformation mechanisms and microstructure evolution. Indeed, the CDRX is dominant when temperature and amount of reinforcement are limited. However, when they are increased, limited microstructure evolution is observed. In this case, the results are interpreted through a mechanism of strain accommodation at grain boundaries, with low dislocation activity in the bulk of the grains. (author) [fr

  17. Toward Measuring Galactic Dense Molecular Gas Properties and 3D Distribution with Hi-GAL

    Science.gov (United States)

    Zetterlund, Erika; Glenn, Jason; Maloney, Phil

    2016-01-01

    The Herschel Space Observatory's submillimeter dust continuum survey Hi-GAL provides a powerful new dataset for characterizing the structure of the dense interstellar medium of the Milky Way. Hi-GAL observed a 2° wide strip covering the entire 360° of the Galactic plane in broad bands centered at 70, 160, 250, 350, and 500 μm, with angular resolution ranging from 10 to 40 arcseconds. We are adapting a molecular cloud clump-finding algorithm and a distance probability density function distance-determination method developed for the Bolocam Galactic Plane Survey (BGPS) to the Hi-GAL data. Using these methods we expect to generate a database of 105 cloud clumps, derive distance information for roughly half the clumps, and derive precise distances for approximately 20% of them. With five-color photometry and distances, we will measure the cloud clump properties, such as luminosities, physical sizes, and masses, and construct a three-dimensional map of the Milky Way's dense molecular gas distribution.The cloud clump properties and the dense gas distribution will provide critical ground truths for comparison to theoretical models of molecular cloud structure formation and galaxy evolution models that seek to emulate spiral galaxies. For example, such models cannot resolve star formation and use prescriptive recipes, such as converting a fixed fraction of interstellar gas to stars at a specified interstellar medium density threshold. The models should be compared to observed dense molecular gas properties and galactic distributions.As a pilot survey to refine the clump-finding and distance measurement algorithms developed for BGPS, we have identified molecular cloud clumps in six 2° × 2° patches of the Galactic plane, including one in the inner Galaxy along the line of sight through the Molecular Ring and the termination of the Galactic bar and one toward the outer Galaxy. Distances have been derived for the inner Galaxy clumps and compared to Bolocam Galactic Plane

  18. Characterization of hot isostatically pressed Bi-Sr-Ca-Cu-O as a function of consolidation variables

    International Nuclear Information System (INIS)

    Goretta, K.C.; Miller, D.J.; Poeppel, R.B.; Nash, A.S.

    1992-01-01

    This paper reports that fully dense, bulk Bi 2 Sr 1.7 CaCu 2 O x superconductor pellets were made by hot isostatic pressing in an inert atmosphere. Electron microscopy revealed that rotation and bending of the platelike 2212 grains were responsible for much of the densification. Under processing conditions of 825 degrees C and 105 MPa, dense pellets were obtained in 15 min. Many dislocations, planar faults, and, perhaps, intergrowths of the Bi 2 Cr 2 CuO x phase were produced during pressing. The dislocations were largely present in subgrain boundaries when the pressing times were increased to 45-120 min

  19. Hot-melt extrusion microencapsulation of quercetin for taste-masking.

    Science.gov (United States)

    Khor, Chia Miang; Ng, Wai Kiong; Kanaujia, Parijat; Chan, Kok Ping; Dong, Yuancai

    2017-02-01

    Besides its poor dissolution rate, the bitterness of quercetin also poses a challenge for further development. Using carnauba wax, shellac or zein as the shell-forming excipient, this work aimed to microencapsulate quercetin by hot-melt extrusion for taste-masking. In comparison with non-encapsulated quercetin, the microencapsulated powders exhibited significantly reduced dissolution in the simulated salivary pH 6.8 medium indicative of their potentially good taste-masking efficiency in the order of zein > carnauba wax > shellac. In vitro bitterness analysis by electronic tongue confirmed the good taste-masking efficiency of the microencapsulated powders. In vitro digestion results showed that carnauba wax and shellac-microencapsulated powders presented comparable dissolution rate with the pure quercetin in pH 1.0 (gastric) and 6.8 (intestine) medium; while zein-microencapsulated powders exhibited a remarkably slower dissolution rate. Crystallinity of quercetin was slightly reduced after microencapsulation while its chemical structure remained unchanged. Hot-melt extrusion microencapsulation could thus be an attractive technique to produce taste-masked bioactive powders.

  20. Nuclear medium effects on the K{sup Macron Low-Asterisk} meson

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura, E-mail: tolos@ice.csic.es [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autonoma de Barcelona, Facultat de Ciencies, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Molina, Raquel; Oset, Eulogio [Instituto de Fisica Corpuscular (centro mixto CSIC-UV), Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Ramos, Angels [Departament d' Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)

    2012-05-01

    The K{sup Macron Low-Asterisk} meson in dense matter is analyzed by means of a unitary approach in coupled channels based on the local hidden gauge formalism. The K{sup Macron Low-Asterisk} self-energy and the corresponding K{sup Macron Low-Asterisk} spectral function in the nuclear medium are obtained. We observe that the K{sup Macron Low-Asterisk} develops a width in matter up to five times bigger than in free space. We also estimate the transparency ratio of the {gamma}A{yields}K{sup +}K{sup Low-Asterisk -}A{sup Prime} reaction. This ratio is an excellent tool to detect experimentally modifications of the K{sup Macron Low-Asterisk} meson in dense matter.

  1. STIS observations of five hot white dwarfs

    OpenAIRE

    Bannister, N. P.; Barstow, M. A.; Holberg, J. B.; Bruhweiler, F. C.

    2000-01-01

    We present some early results from a study of five hot DA white dwarf stars, based on spectra obtained using STIS. All show multiple components in one or more of the strong resonance absorption lines typically associated with the stellar photosphere (e.g. C IV, Si IV, N V and O V). Possible relationships between the non-photospheric velocity components and the interstellar medium or local stellar environment, are investigated, including contributions from gravitational redshifting.

  2. X-ray and SZ constraints on the properties of hot CGM

    Science.gov (United States)

    Singh, Priyanka; Majumdar, Subhabrata; Nath, Biman B.; Silk, Joseph

    2018-05-01

    We use observations of stacked X-ray luminosity and Sunyaev-Zel'dovich (SZ) signal from a cosmological sample of ˜80, 000 and 104,000 massive galaxies, respectively, with 1012.6 ≲ M500 ≲ 1013M⊙ and mean redshift, z¯ ˜ 0.1 - 0.14 to constrain the hot Circumgalactic Medium (CGM) density and temperature. The X-ray luminosities constrain the density and hot CGM mass, while the SZ signal helps in breaking the density-temperature degeneracy. We consider a simple power-law density distribution (ne∝r-3β) as well as a hydrostatic hot halo model, with the gas assumed to be isothermal in both cases. The datasets are best described by the mean hot CGM profile ∝r-1.2, which is shallower than an NFW profile. For halo virial mass ˜1012 - 1013M⊙, the hot CGM contains ˜ 20 - 30% of galactic baryonic mass for the power-law model and 4 - 11% for the hydrostatic halo model, within the virial radii. For the power-law model, the hot CGM profile broadly agrees with observations of the Milky Way. The mean hot CGM mass is comparable to or larger than the mass contained in other phases of the CGM for L* galaxies.

  3. Ceramic nuclear waste forms. II. A ceramic-waste composite prepared by hot pressing. Progress report and preprint

    International Nuclear Information System (INIS)

    McCarthy, G.J.

    1975-01-01

    A feasibility study was conducted to determine whether nuclear waste calcine and a crystalline ceramic matrix can be fabricated by hot pressing into a composite waste form with suitable leaching resistance and thermal stability. It was found that a hard, dense composite could be formed using the typical commercial waste formulation PW-4b and a matrix of α-quartz with a small amount of a lead borosilicate glass added as a consolidation aide. Its density, waste loading, and leaching resistance are comparable to the glasses currently being considered for fixation of nuclear wastes. The hot pressed composite offers a closer approach to thermodynamic stability and improved thermal stability (in monolithic form) compared to glass waste forms. Recommendations for further optimization of the hot pressed waste form are given. (U.S.)

  4. Interaction of heavy ions beams with hot and dense plasmas. Application to inertial fusion

    International Nuclear Information System (INIS)

    Maynard, Gilles

    1987-01-01

    The subject of this work is the variation with time, on one of the energy and charge state of an heavy ion beam which through a plasma, and on another side, of a target used in ion inertial confinement fusion. We take in account projectile excitation, and higher order corrections to the Born stopping power formula are calculated. Comparison with experimental results in gas and solid are good. In hot plasma case, non-equilibrium charge states are described. We present an hydrodynamic simulation code of one dimension and three temperatures. We show that the shortening of the heavy ions beams with temperature reinforces the radiative transfer importance. (author) [fr

  5. Fluidized combustion of beds of large, dense particles in reprocessing HTGR fuel

    International Nuclear Information System (INIS)

    Young, D.T.

    1977-03-01

    Fluidized bed combustion of graphite fuel elements and carbon external to fuel particles is required in reprocessing high-temperature gas-cooled reactor (HTGR) cores for recovery of uranium. This burning process requires combustion of beds containing both large particles and very dense particles as well as combustion of fine graphite particles which elutriate from the bed. Equipment must be designed for optimum simplicity and reliability as ultimate operation will occur in a limited access ''hot cell'' environment. Results reported in this paper indicate that successful long-term operation of fuel element burning with complete combustion of all graphite fines leading to a fuel particle product containing <1% external carbon can be performed on equipment developed in this program

  6. Final Technical Report for Year 5 Early Career Research Project "Viscosity and equation of state of hot and dense QCD matter"

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Denes [Purdue Univ., West Lafayette, IN (United States)

    2016-05-25

    The Section below summarizes research activities and achievements during the fifth (last) year of the PI’s Early Career Research Project (ECRP). Unlike the first four years of the project, the last year was not funded under the American Recovery and Reinvestment Act (ARRA). The ECRP advanced two main areas: i) radiative 3 ↔ 2 radiative transport, via development of a new computer code MPC/Grid that solves the Boltzmann transport equation in full 6+1D (3X+3V+time); and ii) application of relativistic hydrodynamics, via development of a self-consistent framework to convert viscous fluids to particles. In Year 5 we finalized thermalization studies with radiative gg ↔ ggg transport (Sec. 1.1.1) and used nonlinear covariant transport to assess the accuracy of fluid-to-particle conversion models (Sec. 1.1.2), calculated observables with self-consistent fluid-to-particle conversion from realistic viscous hydrodynamic evolution (Secs. 1.2.1 and 1.2.2), extended the covariant energy loss formulation to heavy quarks (Sec. 1.4.1) and studied energy loss in small systems (Sec. 1.4.2), and also investigated how much of the elliptic flow could have non-hydrodynamic origin (Sec 1.3). Years 1-4 of the ECRP were ARRA-funded and, therefore, they have their own report document ’Final Technical Report for Years 1-4 of the Early Career Research Project “Viscosity and equation of state of hot and dense QCD matter”’ (same award number DE-SC0004035). The PI’s group was also part of the DOE JET Topical Collaboration, a multi-institution project that overlapped in time significantly with the ECRP. Purdue achievements as part of the JET Top- ical Collaboration are in a separate report “Final Technical Report summarizing Purdue research activities as part of the DOE JET Topical Collaboration” (award DE-SC0004077).

  7. First exploration of a single thermal interface between the two dominant phases of the interstellar medium

    Science.gov (United States)

    Gry, Cecile

    2017-08-01

    Two phases of the interstellar medium, the Warm Neutral Medium (WNM) and the Hot Ionized Medium (HIM) occupy most the volume of space in the plane of our Galaxy. Because the boundaries between these phases are important sources of energy loss for the hot gas, they are supposed to play an important role in the thermal structure and evolution of the ISM and of galaxies.Many theorists have created descriptions of the nature of such boundaries and have derived two fundamental concepts: (1) a conductive interface and (2) a turbulent mixing layer.We have yet to observe in detail either kind of boundary. This is achieved by using UV absorption lines of moderately high ionization stages of heavy elements. Yet, over most lines of sight the diagnostics are blurred out by the superposition of different regions with vastly different physical conditions, making them difficult to interpret. To characterize the nature of the physical processes at a boundary one must observe along a sight line that penetrates just one such region. The simplest configuration is the outer boundary of the Local Cloud, the WNM ((T 7000 K) that surrounds the Sun and which is embedded in a very low density, soft X-ray emitting hot medium ( 10^6 K) that fills a cavity ( 200 pc in diameter) called the Local Bubble.We propose to observe an ideal target: a nearby, bright B9V star (i.e. hot enough to provide a high-SNR continuum, but not enough to contaminate it with absorptions from circumstellar high-ionization species), located in a direction where the relative orientation of the magnetic field and the cloud boundary does not quench thermal conduction and thus favors a full extent of the interface.

  8. Physicochemical and phytochemical properties of cold and hot water extraction from Hibiscus sabdariffa.

    Science.gov (United States)

    Ramirez-Rodrigues, Milena M; Plaza, Maria L; Azeredo, Alberto; Balaban, Murat O; Marshall, Maurice R

    2011-04-01

    Hibiscus cold (25 °C) and hot (90 °C) water extracts were prepared in various time-temperature combinations to determine equivalent extraction conditions regarding their physicochemical and phytochemical properties. Equivalent anthocyanins concentration was obtained at 25 °C for 240 min and 90 °C for 16 min. Total phenolics were better extracted with hot water that also resulted in a higher antioxidant capacity in these extracts. Similar polyphenolic profiles were observed between fresh and dried hibiscus extracts. Hibiscus acid and 2 derivatives were found in all extracts. Hydroxybenzoic acids, caffeoylquinic acids, flavonols, and anthocyanins constituted the polyphenolic compounds identified in hibiscus extracts. Two major anthocyanins were found in both cold and hot extracts: delphynidin-3-sambubioside and cyanidin-3-sambubioside. In general, both cold and hot extractions yielded similar phytochemical properties; however, under cold extraction, color degradation was significantly lower and extraction times were 15-fold longer. Hibiscus beverages are prepared from fresh or dried calyces by a hot extraction and pasteurized, which can change organoleptic, nutritional, and color attributes. Nonthermal technologies such as dense phase carbon dioxide may maintain their fresh-like color, flavor, and nutrients. This research compares the physicochemical and phytochemical changes resulting from a cold and hot extraction of fresh and dried hibiscus calyces and adds to the knowledge of work done on color, quality attributes, and antioxidant capacity of unique tropical products. In addition, the research shows how these changes could lead to alternative nonthermal processes for hibiscus.

  9. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    International Nuclear Information System (INIS)

    Xu, Yun-bo; Hu, Zhi-ping; Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing; Ma, De-gang; Misra, R.D.K.

    2017-01-01

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  10. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yun-bo [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Hu, Zhi-ping, E-mail: huzhiping900401@126.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Ma, De-gang [Tangshan Iron and Steel Company, Tangshan 063000, People' s Republic China (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States)

    2017-03-14

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  11. Transfer flask for hot active fuel elements

    International Nuclear Information System (INIS)

    Aubert, Roger; Moutard, Daniel.

    1980-01-01

    This invention concerns a flask for transporting active fuel elements removed from a nuclear reactor vessel, after only a few days storage and hence cooling, either within a nuclear power station itself or between such a station and a near-by storage area. This containment system is not a flask for conveyance over long and medium distances. Specifically, the invention concerns a transport flask that enables hot fuel elements to be cooled, even in the event of accidents [fr

  12. Two-Particle Correlations with Neutral Pion and Direct Photon Triggers in pp and Pb+Pb Collisions with ALICE at the LHC

    CERN Document Server

    Zhu, Xiangrong; Constantinos, Loizides; Zhongbao, Yin; Loizides, Constantinos; Zhongbao, Yin

    Two-particle correlations is considered as a powerful probe for understanding the properties of the strongly interacting hot and dense medium. In such an analysis, a particle is chosen from higher $p_{\\rm T}$ region and called the trigger particle, which is presumably from jet fragmentations. The so called associated particles from lower $p_{\\rm T}$ region are always from the other fragmentation of the jet, or another production, such as collective flow. At RHIC and LHC, the measurements of the azimuthal angle distribution from two-particle correlations in A+A collisions show a strong suppression even disappeared at the high $p_{\\rm T}$ and enhancement with double-peak at the low $p_{\\rm T}$ on the away side, and ``ridge'' structure in pseudo-rapidity direction at the low $p_{\\rm T}$ on the near side compared to pp collisions. All the measurements can be explained as the effects of the hot and dense medium, and imply the Quark-Gluon Plasma is indeed formed in the heavy-ion collisions. When the direct ph...

  13. Heavy flavored jet modification in CMS

    CERN Document Server

    AUTHOR|(CDS)2084335

    2016-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the flavor of the fragmenting parton. Thus, measurements of jet quenching as a function of flavor place powerful constraints on the thermodynamical and transport properties of the hot and dense medium. Measurements of the nuclear modification factors of the heavy-flavor-tagged jets (from charm and bottom quarks) in both PbPb and pPb collisions can quantify such energy loss effects. Specifically, pPb measurements provide crucial insights into the behavior of the cold nuclear matter effect, which is required to fully understand the hot and dense medium effects on jets in PbPb collisions. In this talk, we present the heavy flavor jet spectra and measurements of the nuclear modification factors in both PbPb and pPb as a function of transverse momentum and pseudorapidity, using the high statistics pp, pPb and PbPb data taken in 2011 and 2013. Finally, we also will present a proposal for c-jet tagging methodology to be used for the upcoming hi...

  14. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs

  15. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  16. Mechanical and thermal expansion properties of β-eucryptite prepared by sol-gel methods and hot pressing

    International Nuclear Information System (INIS)

    Xia, L.; Wen, G.W.; Qin, C.L.; Wang, X.Y.; Song, L.

    2011-01-01

    Research highlights: → Dense LAS glass-ceramics were fabricated by sol-gel and hot pressing technique. → The LAS glass-ceramics have relative good mechanical properties. → The negative thermal expansion behavior of LAS glass-ceramics was investigated. -- Abstract: The microstructures, mechanical properties and thermal expansion behavior of monolithic lithium aluminosilicate glass-ceramics, prepared by sol-gel method and hot pressing, were investigated by using X-ray diffraction, scanning and transmission electron microscopies, three-point bend tests and dilatometry. β-eucryptite appeared as main phase in the monolithic lithium aluminosilicate glass-ceramics. The glass ceramics exhibited high relative densities and the average flexural strength and fracture toughness values were 154 MPa and 2.46 MPa m 1/2 , respectively. The lithium aluminosilicate glass-ceramics hot pressed 1300 and 1350 o C demonstrated negative coefficient of thermal expansion, which was affected by amount and type of crystalline phases.

  17. Analysis of Medium-Scale Solar Thermal Systems and Their Potential in Lithuania

    Directory of Open Access Journals (Sweden)

    Rokas Valančius

    2015-06-01

    Full Text Available Medium-scale solar hot water systems with a total solar panel area varying from 60 to 166 m2 have been installed in Lithuania since 2002. However, the performance of these systems varies depending on the type of energy users, equipment and design of the systems, as well as their maintenance. The aim of this paper was to analyse operational SHW systems from the perspective of energy production and economic benefit as well as to outline the differences of their actual performance compared to the numerical simulation results. Three different medium-scale solar thermal systems in Lithuania were selected for the analysis varying in both equipment used (flat type solar collectors, evacuated tube collectors and type of energy user (swimming pool building, domestic hot water heating, district heating. The results of the analysis showed that in the analysed cases the gap between measured and modelled data of heat energy produced by SHW systems was approx. 11%. From the economical perspective, the system with flat type solar collectors used for domestic hot water production was proved to be most efficient. However, calculation of Internal Rate of Return showed that a grant of 35% is required for this project to be fully profitable.

  18. Dense-gas dispersion advection-diffusion model

    International Nuclear Information System (INIS)

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments

  19. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  20. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  1. 16S RRNA Gene Analysis of Chlorate Reducing Thermophilic Bacteria From Local Hot Spring

    OpenAIRE

    Aminin, Agustina L. N; Katulistiwasari, Puri; Mulyani, Nies Suci

    2011-01-01

    Chlorates waste remediation by biological processes has been the object of current research. Strain CR, the chlorate reducing bacteria was isolated from Gedongsongo hot spring using minimal medium broth containing chlorates and acetate at 55oC. The determination of chlorate reduction from medium was carried out using turbidimetric method. CR isolate showed reducing ability 18% after four days of incubation. The phenotypic character of CR isolate including rod-shaped cells, gram-positive bacte...

  2. Deposition and surface characterization of nanoparticles of zinc oxide using dense plasma focus device in nitrogen atmosphere

    International Nuclear Information System (INIS)

    Malhotra, Yashi; Srivastava, M P; Roy, Savita

    2010-01-01

    Nanoparticles of zinc oxide from zinc oxide pellets in the nitrogen plasma atmosphere are deposited on n and p type silicon substrates using Dense Plasma Focus device. The hot and dense nitrogen plasma formed during the focus phase ionizes the ZnO pellet, which then move upward in a fountain like shape and gets deposited on substrates which are placed above the top of the anode. Structural and surface properties of the deposited ZnO are investigated using X-ray diffraction and Atomic force microscope (AFM). X-ray spectra shows the diffraction plane (002) of ZnO nanoparticles deposited on Si with few shots in nitrogen atmosphere. AFM investigations revealed that there are nanoparticles of size between 15-80 nm on n-Si and p-Si substrates. The deposition on n-type Si is better than the p-type Si can be seen from AFM images, this may be due to different orientation of silicon.

  3. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  4. Cavola experiment site: geophysical investigations and deployment of a dense seismic array on a landslide

    OpenAIRE

    L. Martelli; M. Cercato; P. Augliera; G. Di Giulio; G. Milana; J. Haines; P. Bordoni; F. Cara; undefined Cavola Experiment Team

    2007-01-01

    Geophysical site investigations have been performed in association with deployment of a dense array of 95 3-component seismometers on the Cavola landslide in the Northern Apennines. The aim of the array is to study propagation of seismic waves in the heterogeneous medium through comparison of observation and modelling. The small-aperture array (130 m×56 m) operated continuously for three months in 2004. Cavola landslide consists of a clay body sliding over mudstone-shale b...

  5. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  6. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2

    NARCIS (Netherlands)

    Reiche, Johannes; Hamunyela, Eliakim; Verbesselt, Jan; Hoekman, Dirk; Herold, Martin

    2018-01-01

    Combining observations from multiple optical and synthetic aperture radar (SAR) satellites can provide temporally dense and regular information at medium resolution scale, independently of weather, season, and location. This has the potential to improve near real-time deforestation monitoring in dry

  7. FttC-Based Fronthaul for 5G Dense/Ultra-Dense Access Network: Performance and Costs in Realistic Scenarios

    Directory of Open Access Journals (Sweden)

    Franco Mazzenga

    2017-10-01

    Full Text Available One distinctive feature of the next 5G systems is the presence of a dense/ultra-dense wireless access network with a large number of access points (or nodes at short distances from each other. Dense/ultra-dense access networks allow for providing very high transmission capacity to terminals. However, the deployment of dense/ultra-dense networks is slowed down by the cost of the fiber-based infrastructure required to connect radio nodes to the central processing units and then to the core network. In this paper, we investigate the possibility for existing FttC access networks to provide fronthaul capabilities for dense/ultra-dense 5G wireless networks. The analysis is realistic in that it is carried out considering an actual access network scenario, i.e., the Italian FttC deployment. It is assumed that access nodes are connected to the Cabinets and to the corresponding distributors by a number of copper pairs. Different types of cities grouped in terms of population have been considered. Results focus on fronthaul transport capacity provided by the FttC network and have been expressed in terms of the available fronthaul bit rate per node and of the achievable coverage.

  8. OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS

    International Nuclear Information System (INIS)

    Wang, Huiyuan; Xing, Feijun; Wang, Tinggui; Zhou, Hongyan; Zhang, Kai; Zhang, Shaohua

    2013-01-01

    Correlations of hot dust emission with outflow properties are investigated, based on a large z ∼ 2 non-broad absorption line quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near-infrared slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from the accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of C IV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, C IV regions are dominated by outflows so the BAI and FWHM (C IV) can reliably reflect the general properties and velocity of outflows, respectively. In low Eddington ratio quasars, on the other hand, C IV lines are primarily emitted by virialized gas so the BAI and FWHM (C IV) become less sensitive to outflows. Therefore, the correlations for the highest Eddington ratio quasars are more likely to represent the true dependence of hot dust emission on outflows and the correlations for the entire sample are significantly diluted by the low Eddington ratio quasars. Our results show that an outflow with a large BAI or velocity can double the hot dust emission on average. We suggest that outflows either contain hot dust in themselves or interact with the dusty interstellar medium or torus

  9. Performance of Recycled Porous Hot Mix Asphalt with Gilsonite Additive

    Directory of Open Access Journals (Sweden)

    Ludfi Djakfar

    2015-01-01

    Full Text Available The objective of the study is to evaluate the performance of porous asphalt using waste recycled concrete material and explore the effect of adding Gilsonite to the mixture. As many as 90 Marshall specimens were prepared with varied asphalt content, percentage of Gilsonite as an additive, and proportioned recycled and virgin coarse aggregate. The test includes permeability capability and Marshall characteristics. The results showed that recycled concrete materials seem to have a potential use as aggregate in the hot mix asphalt, particularly on porous hot mix asphalt. Adding Gilsonite at ranges 8–10% improves the Marshall characteristic of the mix, particularly its stability, without decreasing significantly the permeability capability of the mix. The use of recycled materials tends to increase the asphalt content of the mix at about 1 to 2% higher. With stability reaching 750 kg, the hot mix recycled porous asphalt may be suitable for use in the local roads with medium vehicle load.

  10. Study of the zirconium passive layer in nitric medium, by the means of electrochemical impedance spectrometry

    International Nuclear Information System (INIS)

    Musy, C.

    1996-01-01

    Although zirconium exhibits a very low corrosion rate in nitric medium at 100 C, electrochemical impedance spectrometry enabled the in-situ monitoring of the zirconium oxide growth in theses conditions. The growth curve shows a very clear deceleration of the oxide growth kinetics after the first hundred hours of immersion in hot nitric medium. The initial thickness of the native oxide film is also examined

  11. HotRegion: a database of predicted hot spot clusters.

    Science.gov (United States)

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  12. Quantum dense key distribution

    International Nuclear Information System (INIS)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2004-01-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility

  13. A modeling and experimental study of flue gas desulfurization in a dense phase tower

    International Nuclear Information System (INIS)

    Chang, Guanqin; Song, Cunyi; Wang, Li

    2011-01-01

    We used a dense phase tower as the reactor in a novel semi-dry flue gas desulfurization process to achieve a high desulfurization efficiency of over 95% when the Ca/S molar ratio reaches 1.3. Pilot-scale experiments were conducted for choosing the parameters of the full-scale reactor. Results show that with an increase in the flue gas flow rate the rate of the pressure drop in the dense phase tower also increases, however, the rate of the temperature drop decreases in the non-load hot gas. We chose a water flow rate of 0.6 kg/min to minimize the approach to adiabatic saturation temperature difference and maximize the desulfurization efficiency. To study the flue gas characteristics under different processing parameters, we simulated the desulfurization process in the reactor. The simulated data matched very well with the experimental data. We also found that with an increase in the Ca/S molar ratio, the differences between the simulation and experimental data tend to decrease; conversely, an increase in the flue gas flow rate increases the difference; this may be associated with the surface reactions caused by collision, coalescence and fragmentation between the dispersed phases.

  14. Dense image correspondences for computer vision

    CERN Document Server

    Liu, Ce

    2016-01-01

    This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems.   ·         Provides i...

  15. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    Science.gov (United States)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  16. Electron acoustic solitary waves in unmagnetized two electron population dense plasmas

    International Nuclear Information System (INIS)

    Mahmood, S.; Masood, W.

    2008-01-01

    The electron acoustic solitary waves are studied in unmagnetized two population electron quantum plasmas. The quantum hydrodynamic model is employed with the Sagdeev potential approach to describe the arbitrary amplitude electron acoustic waves in a two electron population dense Fermi plasma. It is found that hot electron density hump structures are formed in the subsonic region in such type of quantum plasmas. The wave amplitude as well as the width of the soliton are increased with the increase of percentage presence of cold (thinly populated) electrons in a multicomponent quantum plasma. It is found that an increase in quantum diffraction parameter broadens the nonlinear structure. Furthermore, the amplitude of the nonlinear electron acoustic wave is found to increase with the decrease in Mach number. The numerical results are also presented to understand the formation of solitons in two electron population Fermi plasmas.

  17. Dense module enumeration in biological networks

    Science.gov (United States)

    Tsuda, Koji; Georgii, Elisabeth

    2009-12-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  18. Dense module enumeration in biological networks

    International Nuclear Information System (INIS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-01-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  19. A hot air driven thermoacoustic-Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-09-15

    Significant energy savings can be obtained by implementing a thermally driven heat pump into industrial or domestic applications. Such a thermally driven heat pump uses heat from a high-temperature source to drive the system which upgrades an abundantly available heat source (industrial waste heat, air, water, geothermal). A way to do this is by coupling a thermoacoustic engine with a thermoacoustic heat pump. The engine is driven by a burner and produces acoustic power and heat at the required temperature. The acoustic power is used to pump heat in the heat pump to the required temperature. This system is attractive since it uses a noble gas as working medium and has no moving mechanical parts. This paper deals with the first part of this system: the engine. In this study, hot air is used to simulate the flue gases originating from a gas burner. This is in contrast with a lot of other studies of thermoacoustic engines that use an electrical heater as heat source. Using hot air resembles to a larger extent the real world application. The engine produces about 300W of acoustic power with a performance of 41% of the Carnot efficiency at a hot air temperature of 620C.

  20. Improvement of microstructure and mechanical properties of high dense SiC ceramics manufactured by high-speed hot pressing

    International Nuclear Information System (INIS)

    Voyevodin, V.; Sayenko, S.; Lobach, K.; Tarasov, R.; Zykova, A.; Svitlychnyi, Ye.; Surkov, A.; Abelentsev, V.; Ghaemi, H.; Szkodo, M.; Gajowiec, G.; Kmiec, M.; Antoszkiewicz, M.

    2017-01-01

    Non-oxide ceramics possess high physical-mechanical properties, corrosion and radiation resistance, which can be used as a protective materials for radioactive wastes disposal. The aim of the present study was the manufacturing of high density SiC ceramics with advanced physical and mechanical parameters. The high performance on the properties of produced ceramics was determined by the dense and monolithic structure. The densified silicon carbide samples possessed good mechanical strength, with a high Vickers micro hardness up to 28.5 GPa.

  1. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  2. Open heavy-flavor measurements in ultra-relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, Ralf

    2016-12-15

    Recent results from open heavy-flavor measurements in proton-proton (pp), proton/deuteron-nucleus (p/d-A), and nucleus-nucleus collisions (A-A) at RHIC and at the LHC are presented. Predictions from theoretical models are compared with the data, and implications for the properties of the hot and dense medium produced in ultra-relativistic heavy-ion collisions are discussed.

  3. Heavy-flavour hadrons as probes of strongly-interacting matter: highlights from ALICE

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    In Pb-Pb collisions the heavy-flavour nuclear modification factor together with the elliptic-flow measurements allow one to study the heavy-quark transport properties in the hot and dense medium. The production of heavy quarks in heavy-ion collisions is furthermore also affected by the presence of cold nuclear matter in the initial state. The study of p-Pb collisions is instrument...

  4. Fiscal 1999 report on result of the model project for waste heat recovery in hot blast stove; 1999 nendo netsufuro hainetsu kaishu model jigyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purpose of curtailing energy consumption of the steel industry, a heavy energy consuming industry in China, a model project was carried out for waste heat recovery in a hot blast stove, with the fiscal 1999 results reported. In the process of this project, a heat exchanger for recovering heat is installed in the exhaust gas flue of a hot blast stove in ironworks, with sensible heat recovered through a heating medium. The heat exchanger for recovering heat and the preheating heat exchanger, which was installed in the main pipe for blast furnace gas and for combustion air, were connected by pressure piping, with the blast furnace gas and the combustion air preheated. In addition, a heating medium circulating pump for transporting the heating medium is installed, as are an expansion tank for absorbing expansion/contraction due to change in temperature, a heating medium storage tank for accepting the entire heating medium in the system for the maintenance of the equipment, and heating medium feeding pump, for example. This year, on the basis of the 'Agreement Annex', basic designs and detailed designs were performed for each equipment in the waste heat recovering equipment for the hot blast stove. Further, procurement and manufacturing were implemented for various component parts and devices of the waste heat recovering equipment. (NEDO)

  5. Effects of strong and electromagnetic correlations on neutrino interactions in dense matter

    International Nuclear Information System (INIS)

    Reddy, S.; Prakash, M.; Lattimer, J.M.; Reddy, S.; Pons, J.A.

    1999-01-01

    An extensive study of the effects of correlations on both charged and neutral current weak interaction rates in dense matter is performed. Both strong and electromagnetic correlations are considered. The propagation of particle-hole interactions in the medium plays an important role in determining the neutrino mean free paths. The effects due to Pauli blocking and density, spin, and isospin correlations in the medium significantly reduce the neutrino cross sections. As a result of the lack of experimental information at high density, these correlations are necessarily model dependent. For example, spin correlations in nonrelativistic models are found to lead to larger suppressions of neutrino cross sections compared to those of relativistic models. This is due to the tendency of the nonrelativistic models to develop spin instabilities. Notwithstanding the above caveats, and the differences between nonrelativistic and relativistic approaches such as the spin- and isospin-dependent interactions and the nucleon effective masses, suppressions of order 2 - 3, relative to the case in which correlations are ignored, are obtained. Neutrino interactions in dense matter are especially important for supernova and early neutron star evolution calculations. The effects of correlations for protoneutron star evolution are calculated. Large effects on the internal thermodynamic properties of protoneutron stars, such as the temperature, are found. These translate into significant early enhancements in the emitted neutrino energies and fluxes, especially after a few seconds. At late times, beyond about 10 s, the emitted neutrino fluxes decrease more rapidly compared to simulations without the effects of correlations, due to the more rapid onset of neutrino transparency in the protoneutron star. copyright 1999 The American Physical Society

  6. Physics and Chemistry of the Interstellar Medium. General Colloquium, 19-21 November 2012, Paris

    International Nuclear Information System (INIS)

    Aguillon, Francois; Alata, Ivan; Alcaraz, Christian; Alves, Marta; Andre, Philippe; Bachiller, Rafael; Bacmann, Aurore; Baklouti, Donia; Bernard, Jean-Philippe; Berne, Olivier; Beroff, Karine; Bertin, Mathieu; Biennier, Ludovic; Bocchio, Marco; Bonal, Lydie; Bontemps, Sylvain; Bouchez Giret, Aurelia; Boulanger, Francois; Bracco, Andrea; Bron, Emeric; Brunetto, Rosario; Cabrit, Sylvie; Canosa, Andre; Capron, Michael; Ceccarelli, Cecilia; Cernicharo, Jose; Chaabouni, Henda; Chabot, Marin; Chen, Hui-Chen; Chiavassa, Thierry; Cobut, Vincent; Commercon, Benoit; Congiu, Emanuele; Coutens, Audrey; Danger, Gregoire; Daniel, Fabien; Dartois, Emmanuel; Demyk, Karine; Denis, Alpizar; Despois, Didier; D'hendecourt, Louis; Dontot, Leo; Doronin, Mikhail; Dubernet, Marie-Lise; Dulieu, Francois; Dumouchel, Fabien; Duvernay, Fabrice; Ellinger, Yves; Falgarone, Edith; Falvo, Cyril; Faure, Alexandre; Fayolle, Edith; Feautrier, Nicole; Feraud, Geraldine; Fillion, Jean-Hugues; Gamboa, Antonio; Gardez, Aline; Gavilan, Lisseth; Gerin, Maryvonne; Ghesquiere, Pierre; Godard, Benjamin; Godard, Marie; Gounelle, Matthieu; Gratier, Pierre; Grenier, Isabelle; Gruet, Sebastien; Gry, Cecile; Guillemin, Jean-Claude; Guilloteau, Stephane; Gusdorf, Antoine; Guzman, Viviana; Habart, Emilie; Hennebelle, Patrick; Herrera, Cinthya; Hily-Blant, Pierre; Hincelin, Ugo; Hochlaf, Majdi; Huet, Therese; Iftner, Christophe; Jallat, Aurelie; Joblin, Christine; Kahane, Claudine; Kalugina, Yulia; Kleiner, Isabelle; Koehler, Melanie; Kokkin, Damian; Koutroumpa, Dimitra; Krim, Lahouari; Lallement, Rosine; Lanza, Mathieu; Lattelais, Marie; Le Bertre, Thibaut; Le Gal, Romane; Le Petit, Franck; Le Picard, Sebastien; Lefloch, Bertrand; Lemaire, Jean Louis; Lesaffre, Pierre; Lique, Francois; Loison, Jean-Christophe; Lopez Sepulcre, Ana; Maillard, Jean-Pierre; Margules, Laurent; Martin, Celine; Mascetti, Joelle; Michaut, Xavier; Minissale, Marco; Miville-Deschenes, Marc-Antoine; Mokrane, Hakima; Momferratos, Georgios; Montillaud, Julien; Montmerle, Thierry; Moret-Bailly, Jacques; Motiyenko, Roman; Moudens, Audrey; Noble, Jennifer; Padovani, Marco; Pagani, Laurent; Pardanaud, Cedric; Parisel, Olivier; Pauzat, Francoise; Pernet, Amelie; Pety, Jerome; Philippe, Laurent; Piergiorgio, Casavecchia; Pilme, Julien; Pinto, Cecilia; Pirali, Olivier; Pirim, Claire; Puspitarini, Lucky; Rist, Claire; Ristorcelli, Isabelle; Romanzin, Claire; Roueff, Evelyne; Rousseau, Patrick; Sabbah, Hassan; Saury, Eleonore; Schneider, Ioan; Schwell, Martin; Sims, Ian; Spielfiedel, Annie; Stoecklin, Thierry; Talbi, Dahbia; Taquet, Vianney; Teillet-Billy, Dominique; Theule, Patrice; Thi, Wing-Fai; Trolez, Yann; Valdivia, Valeska; Van Dishoeck, Ewine; Verstraete, Laurent; Vinogradoff, Vassilissa; Wiesenfeld, Laurent; Ysard, Nathalie; Yvart, Walter; Zicler Eleonore

    2012-11-01

    This document publishes the oral contributions and the 66 posters presented during a colloquium on physics and chemistry of interstellar medium. The following themes have been addressed: New views on the interstellar medium with Herschel, Planck and Alma, Cycle of interstellar dusts, Physics and Dynamics of the interstellar medium, Molecular complexifying and the link towards pre-biotic chemistry. More precisely, the oral contributions addressed the following topics: Interstellar medium with Herschel and Planck; The anomalous microwave emission: a new window on the physics of small grains; Sub-millimetre spectroscopy of complex molecules and of radicals for ALMA and Herschel missions; Analysing observations of molecules in the ISM: theoretical and experimental studies of energy transfer; Unravelling the labyrinth of star formation with Herschel; Star formation regions with Herschel and Alma: astro-chemistry in the Netherlands; Physical structure of gas and dust in photo-dissociation regions observed with Herschel; Photo-desorption of analogues of interstellar ices; Formation of structures in the interstellar medium: theoretical and numerical aspects; Towards a 3D mapping of the galactic ISM by inversion of absorption individual measurements; Low velocity shocks as signatures of turbulent dissipation in diffuse irradiated gas; Early phases of solar system formation: 3D physical and chemical modelling of the collapse of pre-stellar dense core; Cosmic-ray propagation in molecular clouds; Protostellar shocks in the time of Herschel; A new PDR model of the physics and chemistry of the interstellar gas; Molecular spectroscopy in the ALMA era and laboratory Astrophysics in Spain; Which molecules to be searched for in the interstellar medium; Physics and chemistry of UV illuminated neutral gas: the Horsehead case; Nitrogen fractionation in dark clouds; Molecular spectral surveys from millimetre range to far infrared; Mechanisms and synthesis at the surface of cold grains

  7. DETECTION OF WIDESPREAD HOT AMMONIA IN THE GALACTIC CENTER

    International Nuclear Information System (INIS)

    Mills, E. A. C.; Morris, M. R.

    2013-01-01

    We present the detection of metastable inversion lines of ammonia (NH 3 ) from energy levels high above the ground state. We detect these lines in both emission and absorption toward 15 of 17 positions in the central 300 pc of the Galaxy. In total, we observe seven metastable transitions of NH 3 : (8, 8), (9, 9), (10, 10), (11, 11), (12, 12), (13, 13) and (15, 15), with energies (in Kelvins) ranging from 680 to 2200 K. We also mapped emission from NH 3 (8, 8) and (9, 9) in two clouds in the Sgr A complex (M-0.02–0.07 and M-0.13–0.08), and we find that the line emission is concentrated toward the dense centers of these molecular clouds. The rotational temperatures derived from the metastable lines toward M-0.02–0.07 and M-0.13–0.08 and an additional cloud (M0.25+0.01) range from 350 to 450 K. Similarly highly-excited lines of NH 3 have previously been observed toward Sgr B2, where gas with kinetic temperatures of ∼600 K had been inferred. Our observations show that the existence of a hot molecular gas component is not unique to Sgr B2, but rather appears common to many Galactic center molecular clouds. In M-0.02–0.07, we find that the hot NH 3 contributes ∼10% of the cloud's total NH 3 column density, and further, that the hot NH 3 in this cloud arises in gas which is extended or uniformly distributed on ∼>10 arcsec scales. We discuss the implications of these constraints upon the nature of this hot gas component. In addition to the detection of hot metastable NH 3 line emission, we also detect for the first time emission from nonmetastable inversion transitions of NH 3 in both M-0.02–0.07 and M-0.13–0.08

  8. Density and field effect on electron-ion collision cross-sections in hot dense plasma

    International Nuclear Information System (INIS)

    Gaufridy de Dortan, F. de

    2003-03-01

    Collisional excitation cross-sections are essential for the modeling of the properties of non equilibrium plasmas. There has been a lot of work on electron impact excitation of isolated ions, but in dense plasmas, neighboring particles are expected to widely disturb these electron transitions in atoms. Plasma modeling through a radially perturbed potential has already been done but is not satisfactory as it does not account for levels degeneracy breaking and its consequences. Introduction of a quasistatic electric micro-field of neighboring ions allows us to break spherical symmetry. Our original theoretical study has given birth to a numerical code that accurately computes collisional strengths and rates (in the Distorted Waves approach) in atoms submitted to a realistic micro-field. Hydrogen- and helium-like aluminium is studied. Stark mixing widely increases rates of transitions from high l levels and forbidden transitions are field-enhanced by many orders of magnitude until they reach allowed ones. Eventually, we conduct an elementary stationary collisional radiative study to investigate field-enhancement effects on corresponding line shapes. In cases we study (aluminium, hydrogen- and helium-like) we find a relatively weak increase of K-shell line broadening

  9. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  10. Penetration of Cosmic Rays into Dense Molecular Clouds: Role of Diffuse Envelopes

    Science.gov (United States)

    Ivlev, A. V.; Dogiel, V. A.; Chernyshov, D. O.; Caselli, P.; Ko, C.-M.; Cheng, K. S.

    2018-03-01

    A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse envelopes, and identify the leading physical processes controlling their transport on the way from a highly ionized interstellar medium to the dense interior of the cloud. The model allows us to describe a transition between a free streaming of CRs and their diffusive propagation, determined by the scattering on the self-generated disturbances. A self-consistent set of equations, governing the diffusive transport regime in an envelope and the MHD turbulence generated by the modulated CR flux, is characterized by two dimensionless numbers. We demonstrate a remarkable mutual complementarity of different mechanisms leading to the onset of the diffusive regime, which results in a universal energy spectrum of the modulated CRs. In conclusion, we briefly discuss implications of our results for several fundamental astrophysical problems, such as the spatial distribution of CRs in the Galaxy as well as the ionization, heating, and chemistry in dense molecular clouds. This paper is dedicated to the memory of Prof. Vadim Tsytovich.

  11. Flavors in the Soup: An Overview of Heavy-Flavored Jet Energy Loss at CMS

    CERN Document Server

    Jung, Kurt

    2016-01-01

    Kurt E. Jung PhD, Purdue University, May 2016. Flavors in the Soup: An Overviewof Heavy-Flavored Jet Energy Loss at CMS. Major Professor: Wei Xie.The energy loss of jets in heavy-ion collisions is expected to depend on the flavorof the fragmenting parton. Thus, measurements of jet quenching as a function offlavor place powerful constraints on the thermodynamical and transport propertiesof the hot and dense medium. Measurements of the nuclear modification factorsof the heavy flavor tagged jets from charm and bottom quarks in both PbPb andpPb collisions can quantify such energy loss e↵ects. Specifically, pPb measurementsprovide crucial insights into the behavior of the cold nuclear matter e↵ect, whichis required to fully understand the hot and dense medium e↵ects on jets in PbPbcollisions. This dissertation presents the energy modification of b-jets in PbPb atppsN N = 2.76 TeV and pPb collisions at sN N = 5.02 TeV, along with the first everpmeasurements of charm jets in pPb collisions at sN N = 5.0...

  12. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  13. Heavy flavour production at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Innocenti Gian Michele

    2018-01-01

    Full Text Available In this proceedings, I present selected experimental results on heavy-flavour production at RHIC and at the LHC, which were presented at the Strangeness in Quark Matter 2017 conference. I will present a brief introduction to the heavy-flavour physics in heavy ion collisions and I will focus on recents measurements of in-medium energy loss and and collective properties of heavy-flavour particles, which provided important information on the mechanisms of heavy flavour interaction with the hot and dense medium created in ultra-relativistic heavy-ion collisions.

  14. Near-infrared detection of ammonium minerals at Ivanhoe Hot Springs, Nevada

    Science.gov (United States)

    Krohn, M. D.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data were collected over the fossil hot spring deposit at Ivanhoe, Nevada in order to determine the surface distribution of NH4-bearing minerals. Laboratory studies show that NH4-bearing minerals have characteristic absorption features in the near-infrared (NIR). Ammonium-bearing feldspars and alunites were observed at the surface of Ivanhoe using a hand-held radiometer. However, first look analysis of the AIS images showed that the line was about 500 m east of its intended mark, and the vegetation cover was sufficiently dense to inhibit preliminary attempts at making relative reflectance images for detection of ammonium minerals.

  15. Interference Coordination for Dense Wireless Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.; Jørgensen, Niels T.K.

    2015-01-01

    and dense deployment in Tokyo are compared. Evolution to DenseNets offers new opportunities for further development of downlink interference cooperation techniques. Various mechanisms in LTE and LTE-Advanced are revisited. Some techniques try to anticipate the future in a proactive way, whereas others......The promise of ubiquitous and super-fast connectivity for the upcoming years will be in large part fulfilled by the addition of base stations and spectral aggregation. The resulting very dense networks (DenseNets) will face a number of technical challenges. Among others, the interference emerges...... as an old acquaintance with new significance. As a matter of fact, the interference conditions and the role of aggressor and victim depend to a large extent on the density and the scenario. To illustrate this, downlink interference statistics for different 3GPP simulation scenarios and a more irregular...

  16. Two-dimensional particle-in-cell simulation of the expansion of a plasma into a rarefied medium

    Energy Technology Data Exchange (ETDEWEB)

    Sarri, G; Quinn, K; Kourakis, I; Borghesi, M [Centre for Plasma Physics, The Queens University of Belfast, Belfast BT7 1NN (United Kingdom); Murphy, G C; Drury, L O C [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Dieckmann, M E; Ynnerman, A [Department of Science and Technology (ITN), Linkoeping University, 60174 Norrkoping (Sweden); Bret, A, E-mail: gsarri01@qub.ac.uk [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2011-07-15

    The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.

  17. Two-dimensional particle-in-cell simulation of the expansion of a plasma into a rarefied medium

    International Nuclear Information System (INIS)

    Sarri, G; Quinn, K; Kourakis, I; Borghesi, M; Murphy, G C; Drury, L O C; Dieckmann, M E; Ynnerman, A; Bret, A

    2011-01-01

    The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.

  18. Wet skins tanning with chromium in dense CO{sub 2} under pressure; Tannage au chrome de peaux humides en CO{sub 2} dense sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Saldinari, L. [Tanneries Roux SA, 26 - Romans Sur Isere (France)]|[Tanneries du Puy (France)]|[Tanneries d' Annonay, 07 (France); Dutel, Ch. [Societe ATC (France); Perre, Ch. [CEA Centre de Pierrelatte (DCC/DTE/SLC), 26 (France)

    2000-07-01

    An ancestral gesture steadily improved through the centuries, the transformation of skins into leather includes several stages of which the principal one is tanning. Today, 90 % of the world's leather products are tanned with chromium. However, this stage is an environmental liability, and reducing the volume and chromium content of the waste has become a major issue. A first study on skin degreasing by dense CO{sub 2} helped sharply reduce the volume of the fatty effluents. To replace water by dense CO{sub 2} as the tanning medium was the logical next step. The present study was carried out in cooperation with three tanneries in the Rhone-Alpes-Auvergne area of France and a manufacturer of tanning materials. The difficulty of the study was the chemically opposed character of the two media involved. CO{sub 2} is a non-polar and lipophilic solvent while inorganic chromium is insoluble. The water present in the treated skin is a polar and ionic reaction medium and one of the reagents in tanning chemistry. The mixture of these two partially miscible compounds gives a pH 3 by carbonic acid formation. Tanning is based on the reactivity of collagen, the main component of the skin, with hydroxylated complexes of chromium. Collagen is a protein containing some chemical functions, amines (R-NH{sub 2}) and carboxylic (R-COOH) for example. These functions impart an amphoteric character to the compound. The WERNER theory of complex salts explains the formation of hydroxylated complexes of chromium and their fixing on the carboxylic functions of collagen by oxolation. pH is the key parameter in tanning. The success of the process demands chromium impregnation without fixing it at a pH lower than 5, and then to fix it by increasing the pH. This opened two alternatives for transferring chromium in the skin: solubilize chromium in CO{sub 2} via soluble organometallic complexes; or put the chromium salt into suspension without solubilizing it. The best results were obtained

  19. Improvement of tolerance of Saccharomyces cerevisiae to hot-compressed water-treated cellulose by expression of ADH1

    Energy Technology Data Exchange (ETDEWEB)

    Jayakody, Lahiru N.; Horie, Kenta; Kitagaki, Hiroshi [Saga Univ. (Japan). Dept. of Environmental Sciences; Hayashi, Nobuyuki [Saga Univ. (Japan). Dept. of Applied Biochemistry and Food Science

    2012-04-15

    Hot-compressed water treatment of cellulose and hemicellulose for subsequent bioethanol production is a novel, economically feasible, and nonhazardous method for recovering sugars. However, the hot-compressed water-treated cellulose and hemicellulose inhibit subsequent ethanol fermentation by the yeast Saccharomyces cerevisiae. To overcome this problem, we engineered a yeast strain with improved tolerance to hot-compressed water-treated cellulose. We first determined that glycolaldehyde has a greater inhibitory effect than 5-HMF and furfural and a combinational effect with them. On the basis of the hypothesis that the reduction of glycolaldehyde to ethylene glycol should detoxify glycolaldehyde, we developed a strain overexpressing the alcohol dehydrogenase gene ADH1. The ADH1-overexpressing strain exhibits an improved fermentation profile in a glycolaldehyde-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 30 {+-} 1.9% when the control strain is used; this ratio increases to 77 {+-} 3.6% in the case of the ADH1-overexpressing strain. A glycolaldehyde treatment and the overexpression of ADH1 cause changes in the fermentation products so as to balance the metabolic carbon flux and the redox status. Finally, the ADH1-overexpressing strain shows a statistically significantly improved fermentation profile in a hot-compressed water-treated cellulose-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 33 {+-} 0.85% when the control strain is used but increases to 72 {+-} 1.7% in the case of the ADH1-overexpressing strain. These results show that the reduction of glycolaldehyde to ethylene glycol is a promising strategy to decrease the toxicity of hot-compressed water-treated cellulose. This is the first report on the improvement of yeast tolerance to hot-compressed water-treated cellulose and glycolaldehyde.

  20. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  1. Radioactive spent resins conditioning by the hot super-compaction process

    International Nuclear Information System (INIS)

    Roth, Andreas; Centner, Baudouin; Lemmens, Alain

    2007-01-01

    Spent ion exchanger media are considered to be problematic waste that, in many cases, requires special approaches and precautions during its immobilization to meet the acceptance criteria for disposal. The waste acceptance criteria define, among others, the quality of waste forms for disposal, and therefore will sometimes define appropriate treatment options. The selection of treatment options for spent ion exchange materials must consider their physical and chemical characteristics. Basically, the main methods for the treatment of spent organic ion exchange materials, following to pretreatment methods are: - Direct immobilization, producing a stable end product by using Cement, Bitumen, Polymer or High Integrity Containers, - The destruction of the organic compounds by using Thermochemical processes or Oxidation to produce an inorganic intermediate product that may or may not be further conditioned for storage and/or disposal, - The complete removal of the resin inner structural water by a thermal process. After a thorough technical economical analysis, Tractebel Engineering selected the Resin Hot Compaction Process to be installed at Tihange Nuclear Power Plant. The Resin Hot Compaction Process is used to make dense homogenous organic blocks from a wide range of particulate waste. In this process spent resins are first dewatered and dried to remove the inner structural water content. The drying takes place in a drying vessel that holds the contents of two 200 L drums (Figure). In the oil heated drying and mixing unit, the resins are heated to the necessary process temperature for the hot pressing step and then placed into special metal drums, which are automatically lidded and immediately transferred to a high force compactor. After high force compaction the pellets are transferred to a measuring unit, where the dose rate, height and weight are automatically measured and recorded. A volume reduction factor of approximately up to four (depending on the type of

  2. Properties of hot and dense strongly interacting matter

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, Gabor Andras

    2017-06-19

    In this thesis we consider effective models of quantum chromodynamics to learn about the chiral- and deconfinement phase transitions. In Chapter 1 we review basic properties of strongly interacting matter and the foundations of finite temperature field theory. We review furthermore the nonperturbative functional renormalization group (FRG) approach. In Chapter 2 we introduce the quark-meson (QM) model and its extensions including the Polyakov-loop variables and repulsive vector interactions between quarks. We then discuss features of the model both in the mean-field approximation and in the renormalization group treatment. A novel method to solve the renormalization group equations based on the Chebyshev polynomials is presented at the end of the chapter. In Chapter 3 the scaling behavior of the order parameter at the chiral phase transition is studied within effective models. We explore universal and nonuniversal structures near the critical point. These include the scaling functions, the leading corrections to scaling and the corresponding size of the scaling window as well as their dependence on an external symmetry breaking field. We consider two models in the mean-field approximation, the QM and the Polyakov-loop-extended quark-meson (PQM) models, and compare their critical properties with a purely bosonic theory, the O(N) linear sigma model in the N → ∞ limit. In these models the order parameter scaling function is found analytically using the high temperature expansion of the thermodynamic potential. The effects of a gluonic background on the nonuniversal scaling parameters are studied within the PQM model. Furthermore, numerical calculations of the scaling function and the scaling window are performed in the QM model using the FRG. Chapter 4 contains a study of the critical properties of net-baryon-number fluctuations at the chiral restoration transition in a medium at finite temperature and net baryon density. The chiral dynamics of quantum

  3. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    Science.gov (United States)

    Hansen, Stephanie

    2017-10-01

    The burning core of an inertial confinement fusion (ICF) plasma at stagnation is surrounded by a shell of warm, dense matter whose properties are difficult both to model (due to a complex interplay of thermal, degeneracy, and strong coupling effects) and to diagnose (due to low emissivity and high opacity). We demonstrate a promising technique to study the warm dense shells of ICF plasmas based on the fluorescence emission of dopants or impurities in the shell material. This emission, which is driven by x-rays produced in the hot core, exhibits signature changes in response to compression and heating. High-resolution measurements of absorption and fluorescence features can refine our understanding of the electronic structure of material under high compression, improve our models of density-driven phenomena such as ionization potential depression and plasma polarization shifts, and help diagnose shell density, temperature, mass distribution, and residual motion in ICF plasmas at stagnation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This work was supported by the U.S. Department of Energy, Office of Science Early Career Research Program, Office of Fusion Energy Sciences under FWP-14-017426.

  4. Cosmic ray diffusion in a violent interstellar medium

    International Nuclear Information System (INIS)

    Bykov, A.M.; Toptygin, I.N.

    1985-01-01

    A variety of the avaiable observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM

  5. Dynamical theory of dense groups of galaxies

    Science.gov (United States)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  6. Transiting exoplanets from the CoRoT space mission . XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    DEFF Research Database (Denmark)

    Rouan, D.; Parviainen, H.; Moutou, C.

    2012-01-01

    We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 ± 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search...... to be 7 Gyr, not far from the transition to subgiant, in agreement with the rather large stellar radius. The two features of a significant eccentricity of the orbit and of a fairly high density are fairly uncommon for a hot Jupiter. The high density is, however, consistent with a model of contraction...... is more than a few 105, a value that is the lower bound of the usually expected range. Even if CoRoT-23b  features a density and an eccentricity that are atypical of a hot Jupiter, it is thus not an enigmatic object....

  7. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2016-12-10

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.

  8. Numerical investigation of influence on heat transfer characteristics to pneumatically conveyed dense phase flow by selecting models and boundary conditions

    Science.gov (United States)

    Zheng, Y.; Liu, Q.; Li, Y.

    2012-03-01

    Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with

  9. INTERMEDIATE-MASS HOT CORES AT ∼500 AU: DISKS OR OUTFLOWS?

    International Nuclear Information System (INIS)

    Palau, Aina; Girart, Josep M.; Fuente, Asunción; Alonso-Albi, Tomás; Fontani, Francesco; Sánchez-Monge, Álvaro; Boissier, Jérémie; Piétu, Vincent; Neri, Roberto; Busquet, Gemma; Estalella, Robert; Zapata, Luis A.; Zhang, Qizhou; Ho, Paul T. P.; Audard, Marc

    2011-01-01

    Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS 22198+6336 and AFGL 5142, reveal the presence of several complex organic molecules at ∼500 AU scales, confirming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH 3 CH 2 OH, (CH 2 OH) 2 , CH 3 COCH 3 , and CH 3 OH, with, additionally, CH 3 CHO, CH 3 OD, and HCOOD for IRAS 22198+6336, and C 6 H and O 13 CS for AFGL 5142. The emission of complex molecules is resolved down to sizes of ∼300 and ∼600 AU, for IRAS 22198+6336 and AFGL 5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as is usually found. This is especially clear for the case of IRAS 22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass ∼> 4 M ☉ . As for AFGL 5142, the hot core emission is resolved into two elongated cores separated ∼1800 AU. A detailed comparison of the complex molecule peaks to the new CO (2-1) data and H 2 O maser data from the literature suggests also that for AFGL 5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.

  10. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  11. Drag and diffusion of heavy quarks in a hot and anisotropic QCD medium

    International Nuclear Information System (INIS)

    Srivastava, P.K.; Patra, Binoy Krishna

    2017-01-01

    The propagation of heavy quarks (HQs) in a medium was quite often modeled by the Fokker-Planck (FP) equation. Since the transport coefficients, related to drag and diffusion processes, are the main ingredients in the FP equation, the evolution of HQs is thus effectively controlled by them. At the initial stage of the relativistic heavy-ion collisions, asymptotic weak-coupling causes the free-streaming motions of partons in the beam direction and the expansions in transverse directions are almost frozen, hence an anisotropy in the momentum space sets in. Since HQs are too produced in the same time, the study of the effect of momentum anisotropy on the drag and diffusion coefficients becomes highly desirable. In this article we have thus studied the drag and diffusion of HQs in the anisotropic medium and found that the presence of the anisotropy reduces both drag and diffusion coefficients. In addition, the anisotropy introduces an angular dependence to both the drag and diffusion coefficients, as a result both coefficients get more inflated when the partons are moving transversely to the direction of anisotropy than when moving parallel to the direction of anisotropy. (orig.)

  12. Drag and diffusion of heavy quarks in a hot and anisotropic QCD medium

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, P.K.; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)

    2017-06-15

    The propagation of heavy quarks (HQs) in a medium was quite often modeled by the Fokker-Planck (FP) equation. Since the transport coefficients, related to drag and diffusion processes, are the main ingredients in the FP equation, the evolution of HQs is thus effectively controlled by them. At the initial stage of the relativistic heavy-ion collisions, asymptotic weak-coupling causes the free-streaming motions of partons in the beam direction and the expansions in transverse directions are almost frozen, hence an anisotropy in the momentum space sets in. Since HQs are too produced in the same time, the study of the effect of momentum anisotropy on the drag and diffusion coefficients becomes highly desirable. In this article we have thus studied the drag and diffusion of HQs in the anisotropic medium and found that the presence of the anisotropy reduces both drag and diffusion coefficients. In addition, the anisotropy introduces an angular dependence to both the drag and diffusion coefficients, as a result both coefficients get more inflated when the partons are moving transversely to the direction of anisotropy than when moving parallel to the direction of anisotropy. (orig.)

  13. The effects of hot nights on mortality in Barcelona, Spain

    Science.gov (United States)

    Royé, D.

    2017-12-01

    Heat-related effects on mortality have been widely analyzed using maximum and minimum temperatures as exposure variables. Nevertheless, the main focus is usually on the former with the minimum temperature being limited in use as far as human health effects are concerned. Therefore, new thermal indices were used in this research to describe the duration of night hours with air temperatures higher than the 95% percentile of the minimum temperature (hot night hours) and intensity as the summation of these air temperatures in degrees (hot night degrees). An exposure-response relationship between mortality due to natural, respiratory, and cardiovascular causes and summer night temperatures was assessed using data from the Barcelona region between 2003 and 2013. The non-linear relationship between the exposure and response variables was modeled using a distributed lag non-linear model. The estimated associations for both exposure variables and mortality shows a relationship with high and medium values that persist significantly up to a lag of 1-2 days. In mortality due to natural causes, an increase of 1.1% per 10% (CI95% 0.6-1.5) for hot night hours and 5.8% per each 10° (CI95% 3.5-8.2%) for hot night degrees is observed. The effects of hot night hours reach their maximum with 100% and lead to an increase by 9.2% (CI95% 5.3-13.1%). The hourly description of night heat effects reduced to a single indicator in duration and intensity is a new approach and shows a different perspective and significant heat-related effects on human health.

  14. Optimal super dense coding over memory channels

    OpenAIRE

    Shadman, Zahra; Kampermann, Hermann; Macchiavello, Chiara; Bruß, Dagmar

    2011-01-01

    We study the super dense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and non-unitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The super dense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where non-unitary encoding leads to an improvement in the super dense coding capacity.

  15. Development of fully dense and high performance powder metallurgy HSLA steel using HIP method

    Science.gov (United States)

    Liu, Wensheng; Pang, Xinkuan; Ma, Yunzhu; Cai, Qingshan; Zhu, Wentan; Liang, Chaoping

    2018-05-01

    In order to solve the problem that the mechanical properties of powder metallurgy (P/M) steels are much lower than those of traditional cast steels with the same composition due to their porosity, a high–strength–low–alloy (HSLA) steel with fully dense and excellent mechanical properties was fabricated through hot isostatic pressing (HIP) using gas–atomized powders. The granular structure in the P/M HIPed steel composed of bainitic ferrite and martensite–austenite (M–A) islands is obtained without the need of any rapid cooling. The P/M HIPed steel exhibit a combination of tensile strength and ductility that surpasses that of conventional cast steel and P/M sintered steel, confirming the feasibility of fabricating high performance P/M steel through appropriate microstructural control and manufacture process.

  16. HOT AND COLD GALACTIC GAS IN THE NGC 2563 GALAXY GROUP

    International Nuclear Information System (INIS)

    Rasmussen, Jesper; Bai, Xue-Ning; Mulchaey, John S.; Van Gorkom, J. H.; Lee, Duane; Jeltema, Tesla E.; Zabludoff, Ann I.; Wilcots, Eric; Martini, Paul; Roberts, Timothy P.

    2012-01-01

    The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc (∼1.4 R vir ) of the group center, down to a limiting X-ray luminosity and H I mass of 3 × 10 39 erg s –1 and 2 × 10 8 M ☉ , respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The H I results suggest moderate H I mass loss from the group members when compared to similar field galaxies. Six of the 20 H I-detected group members show H I evidence of ongoing interactions with other galaxies or with the intragroup medium. Suggestive evidence is further seen for galaxies with close neighbors in position-velocity space to show relatively low H I content, consistent with tidal removal of H I. The results thus indicate removal of both hot and cold gas from the group members via a combination of ram pressure stripping and tidal interactions. We also find that 16 of the 20 H I detections occur on one side of the group, reflecting an unusual morphological segregation whose origin remains unclear.

  17. Effect of nano-ZrO2 addition on microstructure, mechanical property and thermal shock behaviour of dense chromic oxide refractory material

    International Nuclear Information System (INIS)

    Lu, Lixia; Ding, Chunhui; Zhanga, Chi; Yanga, De'an; Di, Lizhi

    2015-01-01

    To obtain a good performance hot-face lining material in gasifier, nano-ZrO 2 , up to 5 wt %, was added into chromic oxide powder with 3 wt % TiO 2 followed by sintering at 1500°C for 2.5 h. The effect of nano-ZrO 2 addition on microstructure, mechanical property and thermal shock behaviour was studied. ZrO 2 promoted densification at contents higher than 1 wt %. Microcracks and phase transformation toughened the dense chromic oxide refractory material. The main reason for decrease of strength was the existence microcracks in specimens and weakening of intergranular fracture. Dense chromic oxide refractory material with 2∼3 wt % nano-ZrO 2 possessed good densification, uniform microstructure, normal mechanical property and proper thermal shock resistance. The rupture strength retention ratio was nearly twice than that of chromic oxide material without ZrO 2 after three cycles of quenching test from 950°C to cold water. (author)

  18. Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch

    International Nuclear Information System (INIS)

    Ivanov, Vladimir V.

    2016-01-01

    Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications, but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics, magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution 20 MG, suggested in micropinches, Cotton-Mouton and cutoff diagnostics will be applied. A picosecond optical Kerr shutter will be tested to increase a sensitivity of UV methods for application at multi-MA Z pinches. The proposal is based on the experimental capability of NTF. The Zebra generator produces 1-1.7 MA Z-pinches with electron plasma density of 10"2"0-10"2"1cm"-"3, electron temperature of 0.5-1 keV, and magnetic fields >10 MG. The Leopard laser was upgraded to energy of 90-J at 0.8 ns. This regime will be used for laser initiation

  19. Circumstellar Interaction in Supernovae in Dense Environments—An Observational Perspective

    Science.gov (United States)

    Chandra, Poonam

    2018-02-01

    In a supernova explosion, the ejecta interacting with the surrounding circumstellar medium (CSM) give rise to variety of radiation. Since CSM is created from the mass loss from the progenitor, it carries footprints of the late time evolution of the star. This is one of the unique ways to get a handle on the nature of the progenitor system. Here, I will focus mainly on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe. Radio and X-ray emission from this class of SNe have revealed important modifications in their radiation properties, due to the presence of high density CSM. Forward shock dominance in the X-ray emission, internal free-free absorption of the radio emission, episodic or non-steady mass loss rate, and asymmetry in the explosion seem to be common properties of this class of SNe.

  20. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  1. Optical bistability induced by quantum coherence in a negative index atomic medium

    International Nuclear Information System (INIS)

    Zhang Hong-Jun; Sun Hui; Li Jin-Ping; Yin Bao-Yin; Guo Hong-Ju

    2013-01-01

    Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. The influence of alloying elements on the hot-dip aluminizing process and on the subsequent high-temperature oxidation

    International Nuclear Information System (INIS)

    Glasbrenner, H.; Nold, E.; Voss, Z.

    1997-01-01

    For hot dip aluminizing HDA an Al melt was doped with one of the elements Mo, W or Nb with a nominal composition of about 1 wt%. In case of W, the nominal composition was achieved, not so for Mo and Nb. The influence of these elements on the coating formed and on the following oxidation process was investigated. Hot dip aluminizing was carried out at 800 C for 5 min under dry Ar atmosphere. The oxidation experiments were performed at 950 C for 24 h in air. Compared to the HDA processes with pure Al, the addition of the alloying elements lead to thinner intermetallic layers. A change in the oxidation behavior was observed as well concerning the suppression of internal oxidation and the formation of dense and close oxide scales. (orig.)

  3. Resonance production in p+p, p+A and A+A collisions measured with HADES

    Directory of Open Access Journals (Sweden)

    Reshetin A.

    2012-11-01

    Full Text Available The knowledge of baryonic resonance properties and production cross sections plays an important role for the extraction and understanding of medium modifications of mesons in hot and/or dense nuclear matter. We present and discuss systematics on dielectron and strangeness production obtained with HADES on p+p, p+A and A+A collisions in the few GeV energy regime with respect to these resonances.

  4. Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir V. [Univ. of Nevada, Reno, NV (United States)

    2016-08-17

    Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications, but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics, magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution <5 μm to study the small-scale plasma structures, implement two-frame shadowgraphy/interferometry, and develop methods for investigation of strong magnetic fields. New diagnostics will help to understand better basic physical processes in Z pinches. A 3D internal structure of the pinch and characteristic instabilities will be studied in wire arrays with different configurations and compared with 3D MHD simulations and analytical models. Mechanisms of “enhanced heating” of Z-pinch plasma will be studied. Fast dynamics of stagnated

  5. Xylanases of thermophilic bacteria from Icelandic hot springs

    Energy Technology Data Exchange (ETDEWEB)

    Pertulla, M; Raettoe, M; Viikari, L [VTT, Biotechnical Lab., Espoo (Finland); Kondradsdottir, M [Dept. of Biotechnology, Technological Inst. of Iceland, Reykjavik (Iceland); Kristjansson, J K [Dept. of Biotechnology, Technological Inst. of Iceland, Reykjavik (Iceland) Inst. of Biotechnology, Iceland Univ., Reykjavik (Iceland)

    1993-02-01

    Thermophilic, aerobic bacteria isolated from Icelandic hot springs were screened for xylanase activity. Of 97 strains tested, 14 were found to be xylanase positive. Xylanase activities up to 12 nkat/ml were produced by these strains in shake flasks on xylan medium. The xylanases of the two strains producing the highest activities (ITI 36 and ITI 283) were similar with respect to temperature and pH optima (80deg C and pH 8.0). Xylanase production of strain ITI 36 was found to be induced by xylan and xylose. Xylanase activity of 24 nkat/ml was obtained with this strain in a laboratory-scale-fermentor cultivation on xylose medium. [beta]-Xylosidase activity was also detected in the culture filtrate. The thermal half-life of ITI 36 xylanase was 24 h at 70deg C. The highest production of sugars from hydrolysis of beech xylan was obtained at 70deg C, although xylan depolymerization was detected even up to 90deg C. (orig.).

  6. Subgrain and dislocation structure changes in hot-deformed high-temperature Fe-Ni austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ducki, K.J.; Rodak, K.; Hetmanczyk, M.; Kuc, D

    2003-08-28

    The influence of plastic deformation on the substructure of a high-temperature austenitic Fe-Ni alloy has been presented. Hot-torsion tests were executed at constant strain rates of 0.1 and 1.0 s{sup -1}, at testing temperatures in the range 900-1150 deg. C. The examination of the microstructure was carried out, using transmission electron microscopy. Direct measurements on the micrographs allowed the calculation of structural parameters: the average subgrain area, and the mean dislocation density. A detailed investigation has shown that the microstructure is inhomogeneous, consisting of dense dislocation walls, subgrains and recrystallized regions.

  7. Subgrain and dislocation structure changes in hot-deformed high-temperature Fe-Ni austenitic alloy

    International Nuclear Information System (INIS)

    Ducki, K.J.; Rodak, K.; Hetmanczyk, M.; Kuc, D.

    2003-01-01

    The influence of plastic deformation on the substructure of a high-temperature austenitic Fe-Ni alloy has been presented. Hot-torsion tests were executed at constant strain rates of 0.1 and 1.0 s -1 , at testing temperatures in the range 900-1150 deg. C. The examination of the microstructure was carried out, using transmission electron microscopy. Direct measurements on the micrographs allowed the calculation of structural parameters: the average subgrain area, and the mean dislocation density. A detailed investigation has shown that the microstructure is inhomogeneous, consisting of dense dislocation walls, subgrains and recrystallized regions

  8. Mining connected global and local dense subgraphs for bigdata

    Science.gov (United States)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  9. Transport properties of dense matter

    International Nuclear Information System (INIS)

    Itoh, Naoki; Mitake, Shinichi; Iyetomi, Hiroshi; Ichimaru, Setsuo

    1983-01-01

    Transport coefficients, electrical and thermal conductivities in particular, are essential physical quantities for the theories of stellar structure. Since the discoveries of pulsars and X-ray stars, an accurate evaluation of the transport coefficients in the dense matter has become indispensable to the quantitative understanding of the observed neutron stars. The authors present improved calculations of the electrical and thermal conductivities of the dense matter in the liquid metal phase, appropriate to white dwarfs and neutron stars. (Auth.)

  10. Wet skins tanning with chromium in dense CO2 under pressure

    International Nuclear Information System (INIS)

    Saldinari, L.; Dutel, Ch.; Perre, Ch.

    2000-01-01

    An ancestral gesture steadily improved through the centuries, the transformation of skins into leather includes several stages of which the principal one is tanning. Today, 90 % of the world's leather products are tanned with chromium. However, this stage is an environmental liability, and reducing the volume and chromium content of the waste has become a major issue. A first study on skin degreasing by dense CO 2 helped sharply reduce the volume of the fatty effluents. To replace water by dense CO 2 as the tanning medium was the logical next step. The present study was carried out in cooperation with three tanneries in the Rhone-Alpes-Auvergne area of France and a manufacturer of tanning materials. The difficulty of the study was the chemically opposed character of the two media involved. CO 2 is a non-polar and lipophilic solvent while inorganic chromium is insoluble. The water present in the treated skin is a polar and ionic reaction medium and one of the reagents in tanning chemistry. The mixture of these two partially miscible compounds gives a pH 3 by carbonic acid formation. Tanning is based on the reactivity of collagen, the main component of the skin, with hydroxylated complexes of chromium. Collagen is a protein containing some chemical functions, amines (R-NH 2 ) and carboxylic (R-COOH) for example. These functions impart an amphoteric character to the compound. The WERNER theory of complex salts explains the formation of hydroxylated complexes of chromium and their fixing on the carboxylic functions of collagen by oxolation. pH is the key parameter in tanning. The success of the process demands chromium impregnation without fixing it at a pH lower than 5, and then to fix it by increasing the pH. This opened two alternatives for transferring chromium in the skin: solubilize chromium in CO 2 via soluble organometallic complexes; or put the chromium salt into suspension without solubilizing it. The best results were obtained with the second option, which

  11. Nuclear applications for steam and hot water supply

    International Nuclear Information System (INIS)

    1991-07-01

    An increase in the heat energy needs underlined by the potential increase in fossil fuel prices, particularly in oil supplies, and by the necessity for an improvement of the environment worldwide, as signalized by the IAEA Member States, prompted the decision to start a programme leading to this report. This document is intended to help to identify the experience of Member States where nuclear power plants or specialized nuclear heat plants are employed or envisaged to be used for distribution of steam or hot water to industrial or residential consumers, covering low and medium temperature ranges. 25 refs, 33 figs, 15 tabs

  12. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    Science.gov (United States)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  13. Finding dense locations in indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2014-01-01

    for semi-constrained indoor movement, and then uses this to map raw tracking records into mapping records representing object entry and exit times in particular locations. Then, an efficient indexing structure, the Dense Location Time Index (DLT-Index) is proposed for indexing the time intervals...... of the mapping table, along with associated construction, query processing, and pruning techniques. The DLT-Index supports very efficient aggregate point queries, interval queries, and dense location queries. A comprehensive experimental study with real data shows that the proposed techniques can efficiently......Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based model...

  14. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  15. Studies of nuclei under the extreme conditions of density, temperature, isospin asymmetry and the phase diagram of hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    Mekjian, Aram [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy

    2016-10-18

    The main emphasis of the entire project is on issues having to do with medium energy and ultra-relativistic energy and heavy ion collisions. A major goal of both theory and experiment is to study properties of hot dense nuclear matter under various extreme conditions and to map out the phase diagram in density or chemical potential and temperature. My studies in medium energy nuclear collisions focused on the liquid-gas phase transition and cluster yields from such transitions. Here I developed both the statistical model of nuclear multi-fragmentation and also a mean field theory.

  16. How expanded ionospheres of Hot Jupiters can prevent escape of radio emission generated by the cyclotron maser instability

    Science.gov (United States)

    Weber, C.; Lammer, H.; Shaikhislamov, I. F.; Chadney, J. M.; Khodachenko, M. L.; Grießmeier, J.-M.; Rucker, H. O.; Vocks, C.; Macher, W.; Odert, P.; Kislyakova, K. G.

    2017-08-01

    We present a study of plasma conditions in the atmospheres of the Hot Jupiters HD 209458b and HD 189733b and for an HD 209458b like planet at orbit locations between 0.2 and 1 au around a Sun-like star. We discuss how these conditions influence the radio emission we expect from their magnetospheres. We find that the environmental conditions are such that the cyclotron maser instability (CMI), the process responsible for the generation of radio waves at magnetic planets in the Solar system, most likely will not operate at Hot Jupiters. Hydrodynamically expanding atmospheres possess extended ionospheres whose plasma densities within the magnetosphere are so large that the plasma frequency is much higher than the cyclotron frequency, which contradicts the condition for the production of radio emission and prevents the escape of radio waves from close-in exoplanets at distances produce radio emission. However, even if the CMI could operate, the extended ionospheres of Hot Jupiters are too dense to allow the radio emission to escape from the planets.

  17. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  18. Dense Breasts: Answers to Commonly Asked Questions

    Science.gov (United States)

    ... Cancer Prevention Genetics of Breast & Gynecologic Cancers Breast Cancer Screening Research Dense Breasts: Answers to Commonly Asked Questions What are dense breasts? Breasts contain glandular, connective, and fat tissue. Breast density is a term that describes the ...

  19. Stochastic motion of a particle in a model fluctuating medium

    International Nuclear Information System (INIS)

    Moreau, M.; Gaveau, B.; Perera, A.; Frankowicz, M.

    1993-01-01

    We present several models of time fluctuating media with finite memory, consisting in one and two-dimensional lattices, the Modes of which fluctuate between two internal states according to a Poisson process. A particle moves on the lattice, the diffusion by the Modes depending on their internal state. Such models can be used for the microscopic theory of reaction constants in a dense phase, or for the study of diffusion or reactivity in a complex medium. In a number of cases, the transmission probability of the medium is computed exactly; it is shown that stochastic resonances can occur, an optimal transmission being obtained for a convenient choice of parameters. In more general situations, approximate solutions are given in the case of short and moderate memory of the obstacles. The diffusion in an infinite two-dimensional lattice is studied, and the memory is shown to affect the distribution of the particles rather than the diffusion law. (author). 25 refs, 5 figs

  20. INTERMEDIATE-MASS HOT CORES AT {approx}500 AU: DISKS OR OUTFLOWS?

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Aina; Girart, Josep M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciencies, Torre C5-parell 2, 08193 Bellaterra, Catalunya (Spain); Fuente, Asuncion; Alonso-Albi, Tomas [Observatorio Astronomico Nacional, P.O. Box 112, 28803 Alcala de Henares, Madrid (Spain); Fontani, Francesco; Sanchez-Monge, Alvaro [Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, 50125 Firenze (Italy); Boissier, Jeremie [Istituto di Radioastronomia, INAF, Via Gobetti 101, Bologna (Italy); Pietu, Vincent; Neri, Roberto [IRAM, 300 Rue de la piscine, 38406 Saint Martin d' Heres (France); Busquet, Gemma [Istituto di Fisica dello Spazio Interplanetario, INAF, Area di Recerca di Tor Vergata, Via Fosso Cavaliere 100, 00133 Roma (Italy); Estalella, Robert [Departament d' Astronomia i Meteorologia (IEEC-UB), Institut Ciencies Cosmos, Universitat Barcelona, Marti Franques 1, 08028 Barcelona (Spain); Zapata, Luis A. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, P.O. Box 3-72, 58090 Morelia, Michoacan (Mexico); Zhang, Qizhou; Ho, Paul T. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Audard, Marc, E-mail: palau@ieec.uab.es [Geneva Observatory, University of Geneva, Ch. des Maillettes 51, 1290 Versoix (Switzerland)

    2011-12-20

    Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS 22198+6336 and AFGL 5142, reveal the presence of several complex organic molecules at {approx}500 AU scales, confirming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH{sub 3}CH{sub 2}OH, (CH{sub 2}OH){sub 2}, CH{sub 3}COCH{sub 3}, and CH{sub 3}OH, with, additionally, CH{sub 3}CHO, CH{sub 3}OD, and HCOOD for IRAS 22198+6336, and C{sub 6}H and O{sup 13}CS for AFGL 5142. The emission of complex molecules is resolved down to sizes of {approx}300 and {approx}600 AU, for IRAS 22198+6336 and AFGL 5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as is usually found. This is especially clear for the case of IRAS 22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass {approx}> 4 M{sub Sun }. As for AFGL 5142, the hot core emission is resolved into two elongated cores separated {approx}1800 AU. A detailed comparison of the complex molecule peaks to the new CO (2-1) data and H{sub 2}O maser data from the literature suggests also that for AFGL 5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.

  1. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  2. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  3. Neutrino ground state in a dense star

    International Nuclear Information System (INIS)

    Kiers, K.; Tytgat, M.H.

    1998-01-01

    It has recently been argued that long range forces due to the exchange of massless neutrinos give rise to a very large self-energy in a dense, finite-ranged, weakly charged medium. Such an effect, if real, would destabilize a neutron star. To address this issue we have studied the related problem of a massless neutrino field in the presence of an external, static electroweak potential of finite range. To be precise, we have computed to one loop the exact vacuum energy for the case of a spherical square well potential of depth α and radius R. For small wells, the vacuum energy is reliably determined by a perturbative expansion in the external potential. For large wells, however, the perturbative expansion breaks down. A manifestation of this breakdown is that the vacuum carries a non-zero neutrino charge. The energy and neutrino charge of the ground state are, to a good approximation for large wells, those of a neutrino condensate with chemical potential μ=α. Our results demonstrate explicitly that long-range forces due to the exchange of massless neutrinos do not threaten the stability of neutron stars. copyright 1998 The American Physical Society

  4. Suppression of sawtooth oscillations due to hot electrons and hot ions

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Berk, H.L.

    1989-01-01

    The theory of m = 1 kink mode stabilization is discussed in the presence of either magnetically trapped hot electrons or hot ions. For instability hot ion requires particles peaked inside the q = 1 surface, while hot electrons require that its pressure profile be increasing at the q = 1 surface. Experimentally observed sawtooth stabilization usually occurs with off-axis heating with ECRH and near axis heating with ICRH. Such heating may produce the magnetically trapped hot particle pressure profiles that are consistent with theory. 17 refs., 2 figs

  5. Constraining the Physical State of the Hot Gas Halos in NGC 4649 and NGC 5846

    Science.gov (United States)

    Paggi, Alessandro; Kim, Dong-Woo; Anderson, Craig; Burke, Doug; D'Abrusco, Raffaele; Fabbiano, Giuseppina; Fruscione, Antonella; Gokas, Tara; Lauer, Jen; McCollough, Michael; Morgan, Doug; Mossman, Amy; O'Sullivan, Ewan; Trinchieri, Ginevra; Vrtilek, Saeqa; Pellegrini, Silvia; Romanowsky, Aaron J.; Brodie, Jean

    2017-07-01

    We present results of a joint Chandra/XMM-Newton analysis of the early-type galaxies NGC 4649 and NGC 5846 aimed at investigating differences between mass profiles derived from X-ray data and those from optical data, to probe the state of the hot interstellar medium (ISM) in these galaxies. If the hot ISM is at a given radius in hydrostatic equilibrium (HE), the X-ray data can be used to measure the total enclosed mass of the galaxy. Differences from optically derived mass distributions therefore yield information about departures from HE in the hot halos. The X-ray mass profiles in different angular sectors of NGC 4649 are generally smooth with no significant azimuthal asymmetries within 12 kpc. Extrapolation of these profiles beyond this scale yields results consistent with the optical estimate. However, in the central region (rdisappears in the NW direction, where the emission is smooth and extended. In this sector we find consistent X-ray and optical mass profiles, suggesting that the hot halo is not responding to strong nongravitational forces.

  6. Working group report on hadrons in the nuclear medium

    Energy Technology Data Exchange (ETDEWEB)

    Ent, R. [CEBAF, Newport News, VA (United States); Milner, R.G. [Masachusetts Inst. of Technology, Cambridge, MA (United States)

    1994-04-01

    This working group focussed on the subject of hadrons in the nuclear medium. It encompassed both the understanding of the nucleus itself in terms of its binding and its structure, and the use of the nucleus as a medium to probe QCD and the structure of hadrons. Both aspects were addressed during the workshop, though the emphasis tended towards the latter. Almost inescapably this working group had some overlap with the other working groups, as the nucleus can also be used as a medium to probe the production and structure of vector mesons. Also, inclusive and semi-inclusive processes can be used as a probe of nuclear effects, for instance in the case of deep-inelastic scattering for x > 1. In this summary report the authors will try to restrict themselves to only those issues where the nuclear medium is important. To increase their understanding of the nucleus in terms of its binding and structure, they would like to know the effect of a dense nuclear medium on a nucleon, to know the non-nucleonic degrees of freedom needed to describe a nuclear system, and to understand the implications of the fact that a bound nucleon is necessarily off its mass-shell. The results of many lepton scattering experiments during the last two decades have raised these questions, but at this moment there are no definitive answers. The hope is that the well-known electron probe, with sufficient energy to probe the short-range properties of nuclei, can provide insight. Especially, the authors would like a conclusive answer to the question if, and to what extent, quark degrees of freedom are necessary to describe a nuclear system.

  7. Working group report on hadrons in the nuclear medium

    International Nuclear Information System (INIS)

    Ent, R.; Milner, R.G.

    1994-01-01

    This working group focussed on the subject of hadrons in the nuclear medium. It encompassed both the understanding of the nucleus itself in terms of its binding and its structure, and the use of the nucleus as a medium to probe QCD and the structure of hadrons. Both aspects were addressed during the workshop, though the emphasis tended towards the latter. Almost inescapably this working group had some overlap with the other working groups, as the nucleus can also be used as a medium to probe the production and structure of vector mesons. Also, inclusive and semi-inclusive processes can be used as a probe of nuclear effects, for instance in the case of deep-inelastic scattering for x > 1. In this summary report the authors will try to restrict themselves to only those issues where the nuclear medium is important. To increase their understanding of the nucleus in terms of its binding and structure, they would like to know the effect of a dense nuclear medium on a nucleon, to know the non-nucleonic degrees of freedom needed to describe a nuclear system, and to understand the implications of the fact that a bound nucleon is necessarily off its mass-shell. The results of many lepton scattering experiments during the last two decades have raised these questions, but at this moment there are no definitive answers. The hope is that the well-known electron probe, with sufficient energy to probe the short-range properties of nuclei, can provide insight. Especially, the authors would like a conclusive answer to the question if, and to what extent, quark degrees of freedom are necessary to describe a nuclear system

  8. Hot spot analysis for driving the development of hits into leads in fragment based drug discovery

    Science.gov (United States)

    Hall, David R.; Ngan, Chi Ho; Zerbe, Brandon S.; Kozakov, Dima; Vajda, Sandor

    2011-01-01

    Fragment based drug design (FBDD) starts with finding fragment-sized compounds that are highly ligand efficient and can serve as a core moiety for developing high affinity leads. Although the core-bound structure of a protein facilitates the construction of leads, effective design is far from straightforward. We show that protein mapping, a computational method developed to find binding hot spots and implemented as the FTMap server, provides information that complements the fragment screening results and can drive the evolution of core fragments into larger leads with a minimal loss or, in some cases, even a gain in ligand efficiency. The method places small molecular probes, the size of organic solvents, on a dense grid around the protein, and identifies the hot spots as consensus clusters formed by clusters of several probes. The hot spots are ranked based on the number of probe clusters, which predicts the binding propensity of the subsites and hence their importance for drug design. Accordingly, with a single exception the main hot spot identified by FTMap binds the core compound found by fragment screening. The most useful information is provided by the neighboring secondary hot spots, indicating the regions where the core can be extended to increase its affinity. To quantify this information, we calculate the density of probes from mapping, which describes the binding propensity at each point, and show that the change in the correlation between a ligand position and the probe density upon extending or repositioning the core moiety predicts the expected change in ligand efficiency. PMID:22145575

  9. HOT AND COLD GALACTIC GAS IN THE NGC 2563 GALAXY GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Jesper [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Bai, Xue-Ning [Department of Astrophysical Sciences, Peyton Hall, Princeton University, NJ 08544 (United States); Mulchaey, John S. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Van Gorkom, J. H.; Lee, Duane [Department of Astronomy, Columbia University, Mail Code 5246, 550 West 120th Street, New York, NY 10027 (United States); Jeltema, Tesla E. [UCO/Lick Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Zabludoff, Ann I. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Wilcots, Eric [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St., Madison, WI 53706 (United States); Martini, Paul [Department of Astronomy, 4055 McPherson Laboratory, Ohio State University, 140 West 18th Avenue, Columbus, OH (United States); Roberts, Timothy P., E-mail: jr@dark-cosmology.dk [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-03-01

    The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc ({approx}1.4 R{sub vir}) of the group center, down to a limiting X-ray luminosity and H I mass of 3 Multiplication-Sign 10{sup 39} erg s{sup -1} and 2 Multiplication-Sign 10{sup 8} M{sub Sun }, respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The H I results suggest moderate H I mass loss from the group members when compared to similar field galaxies. Six of the 20 H I-detected group members show H I evidence of ongoing interactions with other galaxies or with the intragroup medium. Suggestive evidence is further seen for galaxies with close neighbors in position-velocity space to show relatively low H I content, consistent with tidal removal of H I. The results thus indicate removal of both hot and cold gas from the group members via a combination of ram pressure stripping and tidal interactions. We also find that 16 of the 20 H I detections occur on one side of the group, reflecting an unusual morphological segregation whose origin remains unclear.

  10. THE SOCIAL MEDIA IMPACT ON SMALL AND MEDIUM SIZED BUSINESSES

    OpenAIRE

    Mihai Alexandru Constantin Logofatu

    2012-01-01

    This paper aims to be a short introduction to social media and discusses on few ways in which small and medium sized businesses in Romania can take advantage of this hot topic. Through the use of social media every company can reach a global audience with less effort, time and money. In a world shaped more and more around social platforms the customer behaviour has completely and forever changed and those leaders and organizations that understand and embrace this new type of communication, co...

  11. Survival of density subpopulations of rabbit platelets: use of 51Cr-or 111In-labeled platelets to measure survival of least dense and most dense platelets concurrently

    International Nuclear Information System (INIS)

    Rand, M.L.; Packham, M.A.; Mustard, J.F.

    1983-01-01

    The origin of the density heterogeneity of platelets was studied by measuring the survival of density subpopulations of rabbit platelets separated by discontinuous Stractan density gradient centrifugation. When a total population of 51 Cr-labelled platelets was injected into recipient rabbits, the relative specific radioactivity of the most dense platelets decreased rapidly. In contrast, that of the least dense platelets had not changed 24 hr after injection, and then decreased slowly. To distinguish between the possibilities that most dense platelets are cleared from the circulation more quickly than least dense platelets or that platelets decrease in density as they age in the circulation, the concurrent survival of least dense and most dense platelets, labelled with either 51 Cr or 111 In-labelled total platelet populations, determined concurrently in the same rabbits, are identical, calculated from 1 hr values as 100%. However, the 1-hr recovery of 111 In-labelled platelets was slightly but significantly less than that of 51 Cr-labelled platelets. Therefore, researchers studied the survival of 51 Cr-labelled least dense and 111 In-labelled most dense platelets as well as that of 111 In-labelled least dense and 51 Cr-labelled most dense platelets. Mean 1-hr recovery of least dense platelets, labelled with either isotope (78% +/- 7%, SD) was similar to that of most dense platelets, labelled with either isotope (77% +/- 8%; SD). Mean survival of least dense platelets was 47.3 +/- 18.7 hr (SD), which was significantly less than that of most dense platelets (76.1 +/- 21.6 hr; SD) (p less than 0.0025). These results indicate that platelets decrease in buoyant density as they age in the circulation and that most dense platelets are enriched in young platelets, and least dense in old

  12. Dense Deposit Disease Mimicking a Renal Small Vessel Vasculitis

    Science.gov (United States)

    Singh, Lavleen; Bhardwaj, Swati; Sinha, Aditi; Bagga, Arvind; Dinda, Amit

    2016-01-01

    Dense deposit disease is caused by fluid-phase dysregulation of the alternative complement pathway and frequently deviates from the classic membranoproliferative pattern of injury on light microscopy. Other patterns of injury described for dense deposit disease include mesangioproliferative, acute proliferative/exudative, and crescentic GN. Regardless of the histologic pattern, C3 glomerulopathy, which includes dense deposit disease and C3 GN, is defined by immunofluorescence intensity of C3c two or more orders of magnitude greater than any other immune reactant (on a 0–3 scale). Ultrastructural appearances distinguish dense deposit disease and C3 GN. Focal and segmental necrotizing glomerular lesions with crescents, mimicking a small vessel vasculitis such as ANCA-associated GN, are a very rare manifestation of dense deposit disease. We describe our experience with this unusual histologic presentation and distinct clinical course of dense deposit disease, discuss the pitfalls in diagnosis, examine differential diagnoses, and review the relevant literature. PMID:26361799

  13. Frequency-dependent absorbance of broadband terahertz wave in dense plasma sheet

    Science.gov (United States)

    Peng, Yan; Qi, Binbin; Jiang, Xiankai; Zhu, Zhi; Zhao, Hongwei; Zhu, Yiming

    2018-05-01

    Due to the ability of accurate fingerprinting and low-ionization for different substances, terahertz (THz) technology has a lot of crucial applications in material analysis, information transfer, and safety inspection, etc. However, the spectral characteristic of atmospheric gas and ionized gas has not been widely investigated, which is important for the remote sensing application. Here, in this paper, we investigate the absorbance of broadband terahertz wave in dense plasma sheet generated by femtosecond laser pulses. It was found that as the terahertz wave transmits through the plasma sheet formed, respectively, in carbon dioxide, oxygen, argon and nitrogen, spectrum presents completely different and frequency-dependent absorbance. The reasons for these absorption peaks are related to the molecular polarity, electric charge, intermolecular and intramolecular interactions, and collisional absorption of gas molecules. These results have significant implications for the remote sensing of gas medium.

  14. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-01-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T eff > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  15. Solar heating and hot water system installed at Listerhill, Alabama

    Science.gov (United States)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  16. Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard

    Science.gov (United States)

    Nadir Ayrilimis; Jerrold E. Winandy

    2009-01-01

    A series of commercially manufactured medium density fiberboard (MDF) panels were exposed to a post-manufacture heat-treatment at various temperatures and durations using a hot press and just enough pressure to ensure firm contact between the panel and the press platens. Post-manufacture heat-treatment improved surface roughness of the exterior MDF panels. Panels...

  17. Event-by-event fluctuations in the medium-induced jet evolution

    International Nuclear Information System (INIS)

    Escobedo, Miguel A.; Iancu, Edmond

    2016-01-01

    We develop the event-by-event picture of the gluon distribution produced via medium-induced gluon branching by an energetic jet which propagates through a dense QCD medium. A typical event is characterized by the production of a large number of soft gluons which propagate at large angles with respect to the jet axis and which collectively carry a substantial amount of energy. By explicitly computing 2-gluon correlations, we demonstrate the existence of large event-by-event fluctuations, which reflect the stochastic nature of the branching process. For the two quantities that we have investigated — the energy loss at large angles and the soft gluon multiplicity —, the dispersion is parametrically as large as the respective expectation value. We identify interesting scaling laws, which suggest that the multiplicity distribution should exhibit KNO (Koba-Nielsen-Olesen) scaling. A similar scaling is known to hold for a jet branching in the vacuum, but the medium-induced distribution is found to be considerably broader. We predict that event-by-event measurements of the di-jet asymmetry in Pb+Pb collisions at the LHC should observe large fluctuations in the number of soft hadrons propagating at large angles and also in the total energy carried by these hadrons.

  18. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    Science.gov (United States)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  19. Composite systems of dilute and dense couplings

    International Nuclear Information System (INIS)

    Raymond, J R; Saad, D

    2008-01-01

    Composite systems, where couplings are of two types, a combination of strong dilute and weak dense couplings of Ising spins, are examined through the replica method. The dilute and dense parts are considered to have independent canonical disordered or uniform bond distributions; mixing the models by variation of a parameter γ alongside inverse temperature β we analyse the respective thermodynamic solutions. We describe the variation in high temperature transitions as mixing occurs; in the vicinity of these transitions we exactly analyse the competing effects of the dense and sparse models. By using the replica symmetric ansatz and population dynamics we described the low temperature behaviour of mixed systems

  20. Polarimetric and angular light-scattering from dense media: Comparison of a vectorial radiative transfer model with analytical, stochastic and experimental approaches

    International Nuclear Information System (INIS)

    Riviere, Nicolas; Ceolato, Romain; Hespel, Laurent

    2013-01-01

    Our work presents computations via a vectorial radiative transfer model of the polarimetric and angular light scattered by a stratified dense medium with small and intermediate optical thickness. We report the validation of this model using analytical results and different computational methods like stochastic algorithms. Moreover, we check the model with experimental data from a specific scatterometer developed at the Onera. The advantages and disadvantages of a radiative approach are discussed. This paper represents a step toward the characterization of particles in dense media involving multiple scattering. -- Highlights: • A vectorial radiative transfer model to simulate the light scattered by stratified layers is developed. • The vectorial radiative transfer equation is solved using an adding–doubling technique. • The results are compared to analytical and stochastic data. • Validation with experimental data from a scatterometer developed at Onera is presented

  1. Constitutive law of dense granular matter

    International Nuclear Information System (INIS)

    Hatano, Takahiro

    2010-01-01

    The frictional properties of dense granular matter under steady shear flow are investigated using numerical simulation. Shear flow tends to localize near the driving boundary unless the coefficient of restitution is close to zero and the driving velocity is small. The bulk friction coefficient is independent of shear rate in dense and slow flow, whereas it is an increasing function of shear rate in rapid flow. The coefficient of restitution affects the friction coefficient only in such rapid flow. Contrastingly, in dense and slow regime, the friction coefficient is independent of the coefficient of restitution and mainly determined by the elementary friction coefficient and the rotation of grains. It is found that the mismatch between the vorticity of flow and the angular frequency of grains plays a key role to the frictional properties of sheared granular matter.

  2. Dynamics of dense particle disks

    International Nuclear Information System (INIS)

    Araki, S.; Tremaine, S.; Toronto Univ., Canada)

    1986-01-01

    The present investigation of mechanical equilibrium and collisional transport processes in dense, differentially rotating particle disks is based on the Enskog (1922) theory of dense, hard sphere gases, with the single exception that the spheres are inelastic. The viscous instability suggested as a source of Saturn B ring structure does not arise in the models presented, although the ring may be subject to a phase transition analogous to the liquid-solid transition observed in molecular dynamics simulations of elastic hard spheres. In such a case, the ring would alternately exhibit zero-shear, or solid, and high shear, or liquid, zones. 29 references

  3. Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering

    International Nuclear Information System (INIS)

    Mussi, A.; Granger, G. Bernard; Addad, A.; Benameur, N.; Beclin, F.; Bataille, A.

    2009-01-01

    The distribution of inversion defects of Al was investigated in dense magnesium-aluminate spinel elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering. This study was conducted by energy electron loss spectroscopy analyses and more particularly by energy loss near edge structure investigations of the Al-L 2,3 edge. Several aspects are discussed with the purpose of understanding why charged defects dispersal reveals a special configuration.

  4. The electric conductivity of a pion gas

    International Nuclear Information System (INIS)

    Atchison, J.; Rapp, R.

    2017-01-01

    The determination of transport coefficients plays a central role in characterizing hot and dense nuclear matter. In the present work we calculate the electric conductivity of hot hadronic matter by extracting it from the ρ meson spectral function, as its zero-energy limit at vanishing momentum. Using hadronic many-body theory, we calculate the ρ meson self-energy in a pion gas. This requires the dressing of the pion propagators in the ρ self-energy with π - ρ loops, and the inclusion of vertex corrections to maintain gauge invariance. The resulting spectral function is used to calculate the electric conductivity of hot hadronic matter. In particular, we analyze the transport peak of the spectral function and extract its behavior with temperature and coupling strength. Our results suggest that, while obeying lower bounds proposed by conformal field theories in the strong-coupling limit, hot pion matter is a strongly-coupled medium. (paper)

  5. Two particle correlations with photon triggers to study hot QCD medium in ALICE at LHC

    CERN Document Server

    Yaxian, Mao; Shou, Daicui; Schutz, Yves

    2011-01-01

    With the advent of the Large Hadron Collider (LHC)at the end of 2009, the new accelerator at CERN collides protons and heavy-ions at unprecedented high energies. ALICE , one of the major experiment installed at LHC, is dedicated to the study of nuclear matter under extreme conditions of energy density with the opportunity of creating a partonic medium called the Quark- Gluon-Plasma (QGP). This new experimental facility opens new avenues for the understanding of fundamental properties of the strong interaction and its vacuum. To reach the objectives of this scientific program, it is required to select a set of appropriate probes carrying relevant information on the properties of the medium created in ultra-relativistic heavy-ion collisions. Based on the information delivered by all the observables and guided by modelization of the fundamental principles in action, a coherent picture will emerge to interpret the observed phenomena. In the first part of the present document I describe the context of the scientif...

  6. Finding dense locations in symbolic indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2017-01-01

    presents two graph-based models for constrained and semi-constrained indoor movement, respectively, and then uses the models to map raw tracking records into mapping records that represent object entry and exit times in particular locations. Subsequently, an efficient indexing structure called Hierarchical...... Dense Location Time Index (HDLT-Index) is proposed for indexing the time intervals of the mapping table, along with index construction, query processing, and pruning techniques. The HDLT-Index supports very efficient aggregate point, interval, and duration queries as well as dense location queries......Finding the dense locations in large indoor spaces is very useful for many applications such as overloaded area detection, security control, crowd management, indoor navigation, and so on. Indoor tracking data can be enormous and are not immediately ready for finding dense locations. This paper...

  7. A simulation assessment of the thermodynamics of dense ion-dipole mixtures with polarization

    International Nuclear Information System (INIS)

    Bastea, Sorin

    2014-01-01

    Molecular dynamics (MD) simulations are employed to ascertain the relative importance of various electrostatic interaction contributions, including induction interactions, to the thermodynamics of dense, hot ion-dipole mixtures. In the absence of polarization, we find that an MD-constrained free energy term accounting for the ion-dipole interactions, combined with well tested ionic and dipolar contributions, yields a simple, fairly accurate free energy form that may be a better option for describing the thermodynamics of such mixtures than the mean spherical approximation (MSA). Polarization contributions induced by the presence of permanent dipoles and ions are found to be additive to a good approximation, simplifying the thermodynamic modeling. We suggest simple free energy corrections that account for these two effects, based in part on standard perturbative treatments and partly on comparisons with MD simulation. Even though the proposed approximations likely need further study, they provide a first quantitative assessment of polarization contributions at high densities and temperatures and may serve as a guide for future modeling efforts

  8. What we need to know about dense breasts: implications for breast cancer screening.

    Science.gov (United States)

    Carreira Gómez, M C; Estrada Blan, M C

    High breast density and its relationship to the risk of breast cancer has become a hot topic in the medical literature and in the lay press, especially in the United States, where it has brought about changes in the legal framework that require radiologists to inform clinicians and patients about breast density. Radiologists, who are mainly responsible for this information, need to know the scientific evidence and controversies regarding this subject. The discussion is centered on the real importance of the risk, the limitation that not having standardized methods of measurement represents, and the possible application of complementary screening techniques (ultrasound, magnetic resonance imaging, or tomosynthesis) for which clear recommendations have yet to be established. We need controlled studies that evaluate the application of these techniques in women with dense breasts, including the possibility that they can lead to overdiagnosis. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Nonlinear dynamo in the intracluster medium

    Science.gov (United States)

    Beresnyak, Andrey; Miniati, Francesco

    2018-05-01

    Hot plasma in galaxy clusters, the intracluster medium is observed to be magnetized with magnetic fields of around a μG and the correlation scales of tens of kiloparsecs, the largest scales of the magnetic field so far observed in the Universe. Can this magnetic field be used as a test of the primordial magnetic field in the early Universe? In this paper, we argue that if the cluster field was created by the nonlinear dynamo, the process would be insensitive to the value of the initial field. Our model combines state of the art hydrodynamic simulations of galaxy cluster formation in a fully cosmological context with nonlinear dynamo theory. Initial field is not a parameter in this model, yet it predicts magnetic scale and strength compatible with observations.

  10. Fractographical characterization of hot pressed and pressureless sintered AlN-doped ZrB{sub 2}–SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Zohre [Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Nayebi, Behzad [School of Materials and Metallurgy Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Young Researchers and Elite Club, Khorramabad Branch, Islamic Azad University, Khorramabad (Iran, Islamic Republic of); Shahedi Asl, Mehdi [Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Ghassemi Kakroudi, Mahdi, E-mail: mg_kakroudi@tabrizu.ac.ir [Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-12-15

    In this paper, ZrB{sub 2}–SiC composites doped with 0–5 wt.% AlN were prepared by a low pressure hot pressing as well as a pressureless sintering methods at 1900 °C for 2 h. The influence of aluminum nitride addition on the sinterability and microstructure development of such ceramic composites was studied by a fractographical approach. The results revealed that only 1 wt.% AlN can aid the densification process of the hot pressed ceramic composite via the liquid phase sintering mechanism due to the formation of nano-scale metakaolinite spinel layers. In the pressureless sintering method, adding more AlN can increase the formation of gaseous products which raised the amount of porosities in the final microstructure. The formation of nano-graphite phase in the hot pressing process, the formation of Al{sub 2}OC in the pressureless sintering process, and the formation of BN in the both processes were disclosed by X-ray diffraction, SEM and TEM analyses. - Highlights: • The effect of AlN addition on densification of ZrB{sub 2}–SiC composites was studied. • AlN promotes the densification in hot pressed samples by liquid phase formation. • A fully dense composite was obtained by adding 1 wt.% AlN in hot pressing process. • In pressureless sintering, more AlN content intensifies the formation of porosities.

  11. The release of organic compounds during biomass drying depends upon the feedstock and/or altering drying heating medium

    International Nuclear Information System (INIS)

    Rupar, K.; Sanati, M.

    2003-01-01

    The release of organic compounds during the drying of biomass is a potential environmental problem, it may contribute to air pollution or eutrophication. In many countries there are legal restrictions on the amounts of terpenes that may be released into the atmosphere. When considering bioenergy in future energy systems, it is important that information on the environmental effects is available. The emissions of organic compounds from different green and dried biofuels that have been dried in hot air and steam medium, were analyzed by using different techniques. Gas chromatography and gas chromatography mass spectrometry have been used to identify the organic matter. The terpene content was significantly affected by the following factors: changing of the drying medium and the way the same biomass was handled from different localities in Sweden. Comparison between spectra from dried and green fuels reveal that the main compounds emitted during drying are monoterpene and sesquiterpene hydrocarbons, while the emissions of diterpene hydrocarbons seem to be negligible. The relative proportionality between emitted monoterpene, diterpene and sesquiterpene change when the drying medium shifts from steam to hot air. The obtained result of this work implies a parameter optimization study of the dryer with regard to environmental impact. With assistance of this result it might be foreseen that choice of special drying medium, diversity of biomass and low temperature reduce the emissions. A thermo-gravimetric analyzer was used for investigating the biomass drying rate. (author)

  12. Simulation of the hot flow behaviour of a medium carbon microalloyed steel. Part 1. Theoretical approach

    International Nuclear Information System (INIS)

    Cabrera, J.M.; Prado, J.M.

    1997-01-01

    The constitutive equations to model the hot flow behaviour of metallic materials in general, and of microalloyed steels in particular (see part 2 of this work) are established in this work. Special emphasis is done on the dynamic softening mechanisms, i.e., dynamic recovery and recrystallization phenomena. The equations developed are physic-based, not empirical, and the modelling allows an easy implementation in an analysis by numerical methods. The resulting equations are even able to predict the final grain size. (Author) 39 refs

  13. Kinetic chemistry of dense interstellar clouds

    International Nuclear Information System (INIS)

    Graedel, T.E.; Langer, W.D.; Frerking, M.A.

    1982-01-01

    A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded

  14. Persistent X-Ray Emission from ASASSN-15lh: Massive Ejecta and Pre-SLSN Dense Wind?

    Science.gov (United States)

    Huang, Yan; Li, Zhuo

    2018-06-01

    The persistent soft X-ray emission from the location of the most luminous supernova (SN) so far, ASASSN-15lh (or SN 2015L), with L∼ {10}42 {erg} {{{s}}}-1, is puzzling. We show that it can be explained by radiation from electrons accelerated by the SN shock inverse-Compton scattering the intense UV photons. The non-detection in radio requires strong free–free absorption in the dense medium. In these interpretations, the circumstellar medium is derived to be a wind (n ∝ R ‑2) with mass-loss rate of \\dot{{M}}≳ 3× {10}-3{{M}}ȯ ({{v}}{{w}}/{10}3 {{k}}{{m}} {{{s}}}-1) {{{y}}{{r}}}-1, and the initial velocity of the bulk SN ejecta is ≲ 0.02c. These constraints imply a massive ejecta mass of ≳ 60({E}0/2× {10}52 {erg}){M}ȯ in ASASSN-15lh, and a strong wind ejected by the progenitor star within ∼ 8{({v}{{w}}/{10}3{km}{{{s}}}-1)}-1 yr before explosion.

  15. The heavy-ion physics programme with the ATLAS detector

    International Nuclear Information System (INIS)

    Rosselet, L

    2008-01-01

    The CERN LHC will collide lead ions at s√ = 5.5 TeV per nucleon pair and will provide crucial information about the formation of a quark-gluon plasma at the highest temperatures and densities ever created in the laboratory. We report on an updated evaluation of the ATLAS potential to study heavy-ion physics. The ATLAS detector will perform especially well for high pT phenomena even in the presence of the high-multiplicity soft background expected from lead-lead collisions, and most of the detector subsystems retain their nearly full capability. ATLAS will study a full range of observables which characterize the hot and dense medium formed in heavy-ion collisions. In addition to global measurements such as particle multiplicities and collective flow, heavy-quarkonia suppression, jet quenching and the modification of jets passing in the dense medium will be accessible. ATLAS will also study forward physics and ultraperipheral collisions using Zero Degree Calorimeters

  16. Experimental study of hot electrons propagation and energy deposition in solid or laser-shock compressed targets: applications to fast igniter; Etude experimentale de la propagation et du depot d'energie d'electrons rapides dans une cible solide ou comprimee par choc laser: application a l'allumeur rapide

    Energy Technology Data Exchange (ETDEWEB)

    Pisani, F

    2000-02-15

    In the fast igniter scheme, a recent approach proposed for the inertial confinement fusion, the idea is to dissociate the fuel ignition phase from its compression. The ignition phase would be then achieved by means of an external energy source: a fast electron beam generated by the interaction with an ultra-intense laser. The main goal of this work is to study the mechanisms of the hot electron energy transfer to the compressed fuel. We intent in particular to study the role of the electric and collisional effects involved in the hot electron propagation in a medium with properties similar to the compressed fuel. We carried out two experiments, one at the Vulcan laser facility (England) and the second one at the new LULI 100 TW laser (France). During the first experiment, we obtained the first results on the hot electron propagation in a dense and hot plasma. The innovating aspect of this work was in particular the use of the laser-shock technique to generate high pressures, allowing the strongly correlated and degenerated plasma to be created. The role of the electric and magnetic effects due to the space charge associated with the fast electron beam has been investigated in the second experiment. Here we studied the propagation in materials with different electrical characteristics: an insulator and a conductor. The analysis of the results showed that only by taking into account simultaneously the two propagation mechanisms (collisions and electric effects) a correct treatment of the energy deposition is possible. We also showed the importance of taking into account the induced modifications due to the electrons beam crossing the target, especially the induced heating. (author)

  17. α-particle radioactivity of hot particles from the Esk estuary

    International Nuclear Information System (INIS)

    Hamilton, E.I.

    1981-01-01

    Transuranium radionuclides (Pu, Am and Cm) present in effluents discharged into the north-east Irish Sea by British Nuclear Fuels Limited, Windscale, Cumbria, UK, are found in sediment and biota of the Esk estuary approximately 10 km to the south. The site of the present investigation was at Newbiggin and the materials examined were suspended particulate debris samples at the sea surface, bottom sediments and some forms of biota collected in September 1977. It is shown here that hot particles (defined as small volumes of material emitting α particles recorded in a dielectric detector as dense clusters of tracks from a common origin) found in the estuary are likely to be original effluent debris derived from the processing of Magnox uranium fuel elements and not formed in situ as a result of natural processes common to the estuary. (author)

  18. High frequency flow-structural interaction in dense subsonic fluids

    Science.gov (United States)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  19. The COS-Halos survey: physical conditions and baryonic mass in the low-redshift circumgalactic medium

    International Nuclear Information System (INIS)

    Werk, Jessica K.; Prochaska, J. Xavier; Tejos, Nicolas; Tumlinson, Jason; Peeples, Molly S.; Fox, Andrew J.; Thom, Christopher; Bordoloi, Rongmon; Tripp, Todd M.; Katz, Neal; Lehner, Nicolas; O'Meara, John M.; Ford, Amanda Brady; Oppenheimer, Benjamin D.; Davé, Romeel; Weinberg, David H.

    2014-01-01

    We analyze the physical conditions of the cool, photoionized (T ∼10 4 K) circumgalactic medium (CGM) using the COS-Halos suite of gas column density measurements for 44 gaseous halos within 160 kpc of L ∼ L* galaxies at z ∼ 0.2. These data are well described by simple photoionization models, with the gas highly ionized (n H II /n H ≳ 99%) by the extragalactic ultraviolet background. Scaling by estimates for the virial radius, R vir , we show that the ionization state (tracked by the dimensionless ionization parameter, U) increases with distance from the host galaxy. The ionization parameters imply a decreasing volume density profile n H = (10 –4.2±0.25 )(R/R vir ) –0.8±0.3 . Our derived gas volume densities are several orders of magnitude lower than predictions from standard two-phase models with a cool medium in pressure equilibrium with a hot, coronal medium expected in virialized halos at this mass scale. Applying the ionization corrections to the H I column densities, we estimate a lower limit to the cool gas mass M CGM cool >6.5×10 10 M ☉ for the volume within R < R vir . Allowing for an additional warm-hot, O VI-traced phase, the CGM accounts for at least half of the baryons purported to be missing from dark matter halos at the 10 12 M ☉ scale.

  20. Dynamics of a hot (T∼107 K) gas cloud with volume energy losses

    International Nuclear Information System (INIS)

    Suchkov, A.A.; Berman, V.G.; Mishurov, Yu.N.

    1987-01-01

    The dynamics of a hot (T=10 6 -5x10 7 K) gas cloud with volume energy losses is investigated by numerical integration of gas dynamics equations. The dynamics is governed by a spherically symmetric gravitational field of the cloud and additional ''hidden'' mass. The cloud mass is taken in the range M 0 =10 10 -10 12 M sun , its radius R 0 =50-200 kpc, the ''hidden'' mass M ν =10 11 -3x10 13 M sun . The results show that in such sytems a structure can develop in the form of a dense compact nucleus with a radius R s 0 , and an extended rarefied hot envelope with a radius R X ∼ R 0 . Among the models involved are those where the gas cloud is either entirely blown up or entirely collapses; in some models, after the phase of initial expansion, part of the gas mass returns back into the system to form a nucleus and an envelope, and the other part leaves the system. The results are discussed in connection with the formation and early evolution of galaxies, the history of star formation and chemical evolution of galaxies, the origin of hot gas in galaxies and clusters of galaxies. It is suggested that in the real history of galaxies, formation of the nucleus and envelope corresponds to formation of galactic stellar component and X-ray halo

  1. Effect of Strain Rate on Hot Ductility Behavior of a High Nitrogen Cr-Mn Austenitic Steel

    Science.gov (United States)

    Wang, Zhenhua; Meng, Qing; Qu, Minggui; Zhou, Zean; Wang, Bo; Fu, Wantang

    2016-03-01

    18Mn18Cr0.6N steel specimens were tensile tested between 1173 K and 1473 K (900 °C and 1200 °C) at 9 strain rates ranging from 0.001 to 10 s-1. The tensile strained microstructures were analyzed through electron backscatter diffraction analysis. The strain rate was found to affect hot ductility by influencing the strain distribution, the extent of dynamic recrystallization and the resulting grain size, and dynamic recovery. The crack nucleation sites were primarily located at grain boundaries and were not influenced by the strain rate. At 1473 K (1200 °C), a higher strain rate was beneficial for grain refinement and preventing hot cracking; however, dynamic recovery appreciably occurred at 0.001 s-1 and induced transgranular crack propagation. At 1373 K (1100 °C), a high extent of dynamic recrystallization and fine new grains at medium strain rates led to good hot ductility. The strain gradient from the interior of the grain to the grain boundary increased with decreasing strain rate at 1173 K and 1273 K (900 °C and 1000 °C), which promoted hot cracking. Grain boundary sliding accompanied grain rotation and did not contribute to hot cracking.

  2. Urban heat island and bioclimatological conditions in a hot-humid tropical city: the example of Akure, Nigeria

    Directory of Open Access Journals (Sweden)

    Balogun, Ifeoluwa A.

    2014-09-01

    Full Text Available The impact of weather on human health has become an issue of increased significance in recent times, considering the increasing rate of urbanisation and the much associated heat island phenomenon. This study examines the urbanisation influence on human bioclimatic conditions in Akure, a medium sized hot-humid tropical city in Nigeria, utilising data from measurements at urban and rural sites in the city. Differences in the diurnal, monthly and seasonal variation of human bioclimatic characteristics between both environments were evaluated and tested for statistical significance. Higher frequencies of high temperatures observed in the city centre suggest a significant heat stress and health risk in this hot-humid city.

  3. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    Science.gov (United States)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  4. ALMA Images of the Orion Hot Core at 349 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M. C. H.; Plambeck, R. L., E-mail: wright@astro.berkeley.edu [Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 (United States)

    2017-07-10

    We present ALMA images of the dust and molecular line emission in the Orion Hot Core at 349 GHz. At 0.″2 angular resolution the images reveal multiple clumps in an arc ∼1″ east of Orion Source I, the protostar at the center of the Kleinmann–Low Nebula, and another chain of peaks from IRc7 toward the southwest. The molecular line images show narrow filamentary structures at velocities >10 km s{sup −1} away from the heavily resolved ambient cloud velocity ∼5 km s{sup −1}. Many of these filaments trace the SiO outflow from Source I, and lie along the edges of the dust emission. Molecular line emission at excitation temperatures 300–2000 K, and velocities >10 km s{sup −1} from the ambient cloud, suggest that the Hot Core may be heated in shocks by the outflow from Source I or from the Becklin–Neugebauer (BN)/SrcI explosion. The spectral line observations also reveal a remarkable molecular ring, ∼2″ south of SrcI, with a diameter ∼600 au. The ring is seen in high-excitation transitions of HC{sub 3}N, HCN v 2 = 1, and SO{sub 2}. An impact of ejecta from the BN/SrcI explosion with a dense dust clump could result in the observed ring of shocked material.

  5. Ultra High Intensity laser produced fast electron transport in under-dense and over-dense matter

    International Nuclear Information System (INIS)

    Manclossi, Mauro

    2006-01-01

    This thesis is related to inertial fusion research, and particularly concerns the approach to fast ignition, which is based on the use of ultra-intense laser pulses to ignite the thermonuclear fuel. Until now, the feasibility of this scheme has not been proven and depends on many fundamental aspects of the underlying physics, which are not yet fully understood and which are also very far from controls. The main purpose of this thesis is the experimental study of transport processes in the material over-dense (solid) and under-dense (gas jet) of a beam of fast electrons produced by pulse laser at a intensity of some 10 19 Wcm -2 . (author)

  6. Herschel Observations of EXtra-Ordinary Sources: H2S as a Probe of Dense Gas and Possibly Hidden Luminosity Toward the Orion KL Hot Core

    Science.gov (United States)

    Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Black, J. H.; Blake, G. A.; Kleshcheva, M.

    2014-02-01

    We present Herschel/HIFI observations of the light hydride H2S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the Herschel Observations of EXtra-Ordinary Sources GT (guaranteed time) key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H2 32S, H2 34S, and H2 33S, respectively. We only analyze emission from the so-called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H2S follow straight lines given the uncertainties and yield T rot = 141 ± 12 K. This indicates H2S is in local thermodynamic equilibrium and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E up >~ 1000 K) are likely populated primarily by radiation pumping. We derive a column density, N tot(H2 32S) = 9.5 ± 1.9 × 1017 cm-2, gas kinetic temperature, T kin = 120+/- ^{13}_{10} K, and constrain the H2 volume density, n_H_2 >~ 9 × 10 7 cm-3, for the H2S emitting gas. These results point to an H2S origin in markedly dense, heavily embedded gas, possibly in close proximity to a hidden self-luminous source (or sources), which are conceivably responsible for Orion KL's high luminosity. We also derive an H2S ortho/para ratio of 1.7 ± 0.8 and set an upper limit for HDS/H2S of <4.9 × 10 -3. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures.

    Science.gov (United States)

    Wadowsky, R M; Yee, R B; Mezmar, L; Wing, E J; Dowling, J N

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pneumophila serogroups 1, 5, and 6 were recovered from plumbing fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54 degrees C, but not in those maintained at 71 and 77 degrees C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated.

  8. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wadowsky, R.M.; Yee, R.B.; Mezmar, L.; Wing, E.J.; Dowling, J.N.

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions, and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pnenumophila serogroups 1.5, and 6 were recovered from plubming fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54/sup 0/C, but not in those maintained at 71 and 77/sup 0/C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated.

  9. Jets and high pT hadrons in dense matter: recent results from STAR

    International Nuclear Information System (INIS)

    Jacobs, Peter; Klay, Jennifer

    2004-01-01

    We review recent measurements of high transverse momentum (high pT) hadron production in nuclear collisions by the STAR Collaboration at RHIC. The previously observed suppression in central Au+Au collisions has been extended to much higher pT. New measurements from d+Au collisions are presented which help disentangle the mechanisms responsible for the suppression. Inclusive single hadron spectra are enhanced in d+Au relative to p+p, while two-particle azimuthal distributions are observed to be similar in p+p, d+Au and peripheral Au+Au collisions. The large suppression of inclusive hadron production and absence of the away-side jet-like correlations in central Au+Au collisions are shown to be due to interactions of the jets with the very dense medium produced in these collisions

  10. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Science.gov (United States)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  11. Densification and Grain Growth in Polycrystalline Olivine Rocks Synthesized By Evacuated Hot-Pressing

    Science.gov (United States)

    Meyers, C. D.; Kohlstedt, D. L.; Zimmerman, M. E.

    2017-12-01

    Experiments on laboratory-synthesized olivine-rich rocks form the starting material for many investigations of physical processes in the Earth's upper mantle (e.g., creep behavior, ionic diffusion, and grain growth). Typically, a fit of a constitutive law to experimental data provides a description of the kinetics of a process needed to extrapolate across several orders of magnitude from laboratory to geological timescales. Although grain-size is a critical parameter in determining physical properties such as viscosity, broad disagreement persists amongst the results of various studies of grain growth kinetics in olivine-rich rocks. Small amounts of impurities or porosity dramatically affect the kinetics of grain growth. In this study, we developed an improved method for densifying olivine-rich rocks fabricated from powdered, gem-quality single crystals that involves evacuating the pore space, with the aim of refining measurements of the kinetics of mantle materials. In previous studies, olivine powders were sealed in a metal can and hydrostatically annealed at roughly 300 MPa and 1250 °C. These samples, which appear opaque and milky-green, typically retain a small amount of porosity. Consequently, when annealed at 1 atm, extensive pore growth occurs, inhibiting grain growth. In addition, Fourier-transform infrared and confocal Raman spectroscopy reveal absorption peaks characteristic of CO2 in the pores of conventionally hot-pressed material. To avoid trapping of adsorbed contaminants, we developed an evacuated hot-pressing method, wherein the pore space of powder compacts is vented to vacuum during heating and pressurization. This method produces a highly dense, green-tinted, transparent material. No CO2 absorptions peaks exist in evacuated hot-pressed material. When reheated to annealing temperatures at 1 atm, the evacuated hot-pressed material undergoes limited pore growth and dramatically enhanced grain-growth rates. High-strain deformation experiments on

  12. Dense chlorinated solvents and other DNAPLs in groundwater

    DEFF Research Database (Denmark)

    Broholm, K.

    1996-01-01

    Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996......Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996...

  13. Is dense codeswitching complex?

    NARCIS (Netherlands)

    Dorleijn, M.

    In this paper the question is raised to what extent dense code switching can be considered complex. Psycholinguistic experiments indicate that code switching involves cognitive costs, both in production and comprehension, a conclusion that could indicate that code switching is indeed complex. In

  14. Transverse momentum distributions of primary charged particles in pp, p–Pb and Pb–Pb collisions measured with ALICE at the LHC

    CERN Document Server

    Knichel, Michael Linus

    According to the standard model of Big Bang cosmology the earliest universe contained an extremely hot and dense medium that subsequently expanded and cooled. The evolution of the early universe happened through a phase with of deconfined quarks and gluons: the quark-gluon plasma (QGP). This phase ended about ten microseconds after the Big Bang when the temperature dropped below the critical temperature Tc and quarks and gluons became confined into hadrons. The existence of a QGP phase at high temperature is also predicted by Quantum Chromodynamics (QCD), the fundamental field theory describing the strong interaction of quarks and gluons. In high-energy collisions of heavy nuclei a QGP can be created and studied experimentally. The energy loss of high energy partons in the hot QCD medium results in a suppression of particle production at large transverse momenta. Measurements of the parton energy loss can be used to characterize the QGP properties. The Large Hadron Collider (LHC) at CERN provides hadron-hadro...

  15. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas

    International Nuclear Information System (INIS)

    Ichimaru, S.; Tajima, T.

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas

  16. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Seshadhri, Comandur [The Ohio State Univ., Columbus, OH (United States); Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sariyuce, Ahmet Erdem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Catalyurek, Umit [The Ohio State Univ., Columbus, OH (United States)

    2014-11-01

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account for overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.

  17. Microstructure, mechanical properties, and thermoelectric properties of hot-extruded p-type Te-doped Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Park, K; Seo, J; Lee, C

    1997-07-01

    The p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} compounds with Te dopant (4.0 and 6.0 wt%) and without dopant were fabricated by hot extrusion in the temperature range of 300 to 510 C under an extrusion ratio of 20:1. The undoped and Te doped compounds were highly dense and showed high crystalline quality. The grains contained many dislocations and were fine equiaxed ({approximately}1.0 {micro}m) owing to the dynamic recrystallization during the extrusion. The hot extrusion gave rise to the preferred orientation of grains. The bending strength and the figure of merit of the undoped and Te doped compounds were increased with increasing the extrusion temperature. The Te dopant significantly increased the figure of merit. The values of the figure of merit of the undoped and 4.0 wt% Te-doped compounds hot extruded at 440 C were 2.11 x 10{sup {minus}3}/K and 2.94 x 10{sup {minus}3}/K, respectively.

  18. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S., E-mail: shahid.ali@ncp.edu.p [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); IPFN, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ahmed, Z. [COMSATS Institute of Information Technology, Department of Physics, Wah Campus (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, I. [COMSATS Institute of Information Technology, Department of Physics, Islamabad Campus (Pakistan)

    2009-08-10

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  19. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    International Nuclear Information System (INIS)

    Ali, S.; Ahmed, Z.; Mirza, Arshad M.; Ahmad, I.

    2009-01-01

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  20. Fast Solvers for Dense Linear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kauers, Manuel [Research Institute for Symbolic Computation (RISC), Altenbergerstrasse 69, A4040 Linz (Austria)

    2008-10-15

    It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination over the rationals.

  1. Wave and transport studies utilizing dense plasma filaments generated with a lanthanum hexaboride cathode

    International Nuclear Information System (INIS)

    Van Compernolle, B.; Gekelman, W.; Pribyl, P.; Cooper, C. M.

    2011-01-01

    A portable lanthanum hexaboride (LaB 6 ) cathode has been developed for use in the LArge Plasma Device (LAPD) at UCLA. The LaB 6 cathode can be used as a tool for many different studies in experimental plasma physics. To date, the cathode has been used as a source of a plasma with a hot dense core for transport studies and diagnostics development, as a source of gradient driven modes, as a source of shear Alfven waves, and as a source of interacting current channels in reconnection experiments. The LaB 6 cathode is capable of higher discharge current densities than the main barium oxide coated LAPD cathode and is therefore able to produce plasmas of higher densities and higher electron temperatures. The 8.25 cm diameter cathode can be introduced into the LAPD at different axial locations without the need to break vacuum. The cathode can be scaled up or down for use as a portable secondary plasma source in other machines.

  2. OH megamasers: dense gas & the infrared radiation field

    Science.gov (United States)

    Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie

    2018-06-01

    To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.

  3. Automated Motion Estimation for 2D Cine DENSE MRI

    Science.gov (United States)

    Gilliam, Andrew D.; Epstein, Frederick H.

    2013-01-01

    Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this article, we present the first fully automated solution for the estimation of tissue motion and strain from 2D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method. PMID:22575669

  4. Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model

    Science.gov (United States)

    Xu, Hui-Yun; Yang, Guo-Hui

    2017-09-01

    By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.

  5. Analysis of Medium-Scale Solar Thermal Systems and Their Potential in Lithuania

    OpenAIRE

    Valančius, Rokas; Jurelionis, Andrius; Jonynas, Rolandas; Katinas, Vladislovas; Perednis, Eugenijus

    2015-01-01

    Medium-scale solar hot water systems with a total solar panel area varying from 60 to 166 m 2 have been installed in Lithuania since 2002. However, the performance of these systems varies depending on the type of energy users, equipment and design of the systems, as well as their maintenance. The aim of this paper was to analyse operational SHW systems from the perspective of energy production and economic benefit as well as to outline the differences of their actual performance compared to t...

  6. Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Socolowski, O. Jr.

    2010-01-01

    Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated φφ pairs at the Relativistic Heavy Ion Collider (RHIC) energies.

  7. Diffuse cosmic x-rays below 1 keV

    International Nuclear Information System (INIS)

    Kraushaar, W.L.

    1973-01-01

    A description of those features of the low energy diffuse x-ray flux on which there is general observational agreement is given. Most of the discussion is restricted to the energy region below 280 eV, the carbon K edge. Topics include intensity, spatial structure, nature of the local emission, and the extragalactic component. It is concluded that the diffuse soft x-ray measurements cannot, taken alone, be said to provide positive evidence for a hot dense intergalactic medium. (U.S.)

  8. Photons in dense nuclear matter: Random-phase approximation

    Science.gov (United States)

    Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay

    2018-04-01

    We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.

  9. Collective dynamics in dense fluid mixtures

    International Nuclear Information System (INIS)

    Sinha, S.

    1992-01-01

    This thesis deals with the short wavelength collective dynamics of dense binary fluid mixtures. The analysis shows that at the level of linearized generalized hydrodynamics, the longitudinal modes of the system separates essentially into two parts - one involves the coupling of partial density fluctuations of the two species and the other involves coupling of longitudinal momentum and temperature fluctuations. The authors have shown that the coupling of longitudinal momentum and temperature fluctuations leads to an adequate description of sound propagation in such systems. In particular, they show that structural disorder controls the trapping of sound waves in dense mixtures. The coupling of the partial density fluctuations of the two species leads to a simple description of the partial dynamic structure factors. The results are in agreement with the molecular dynamics simulations of soft sphere mixtures. The partial density fluctuations are the slowest decaying fluctuations on molecular length scales and it turns out that nonlinear coupling of these slow modes leads to important corrections to the long time behavior of the time correlation functions determining the shear viscosity in dense mixtures

  10. Simulation of dense colloids

    NARCIS (Netherlands)

    Herrmann, H.J.; Harting, J.D.R.; Hecht, M.; Ben-Naim, E.

    2008-01-01

    We present in this proceeding recent large scale simulations of dense colloids. On one hand we simulate model clay consisting of nanometric aluminum oxide spheres in water using realistic DLVO potentials and a combination of MD and SRD. We find pronounced cluster formation and retrieve the shear

  11. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  12. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1987-01-01

    This paper covers some aspects of the theory of atomic processes in dense plasmas. Because the topic is very broad, a few general rules which give useful guidance about the typical behavior of dense plasmas have been selected. These rules are illustrated by semiclassical estimates, scaling laws and appeals to more elaborate calculations. Included in the paper are several previously unpublished results including a new mechanism for electron-ion heat exchange (section II), and an approximate expression for oscillator-strengths of highly charged ions (section V). However the main emphasis is not upon practical formulas but rather on questions of fundamental theory, the structural ingredients which must be used in building a model for plasma events. What are the density effects and how does one represent them? Which are most important? How does one identify an incorrect theory? The general rules help to answer these questions. 106 references, 23 figures, 2 tables

  13. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  14. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  15. Suprathermal viscosity of dense matter

    International Nuclear Information System (INIS)

    Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai

    2010-01-01

    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.

  16. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  17. Coalescence preference in dense packing of bubbles

    Science.gov (United States)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  18. The COS-Halos survey: physical conditions and baryonic mass in the low-redshift circumgalactic medium

    Energy Technology Data Exchange (ETDEWEB)

    Werk, Jessica K.; Prochaska, J. Xavier; Tejos, Nicolas [UCO/Lick Observatory, University of California, Santa Cruz, CA (United States); Tumlinson, Jason; Peeples, Molly S.; Fox, Andrew J.; Thom, Christopher; Bordoloi, Rongmon [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD (United States); Tripp, Todd M.; Katz, Neal [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Lehner, Nicolas [Department of Physics and Astronomy, University of Notre Dame, South Bend, IN (United States); O' Meara, John M. [Department of Chemistry and Physics, Saint Michael' s College, Colchester, VT (United States); Ford, Amanda Brady [Astronomy Department, University of Arizona, Tucson, AZ 85721 (United States); Oppenheimer, Benjamin D. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Weinberg, David H., E-mail: jwerk@ucolick.org [Department of Astronomy, The Ohio State University, Columbus, OH (United States)

    2014-09-01

    We analyze the physical conditions of the cool, photoionized (T ∼10{sup 4} K) circumgalactic medium (CGM) using the COS-Halos suite of gas column density measurements for 44 gaseous halos within 160 kpc of L ∼ L* galaxies at z ∼ 0.2. These data are well described by simple photoionization models, with the gas highly ionized (n {sub H} {sub II}/n {sub H} ≳ 99%) by the extragalactic ultraviolet background. Scaling by estimates for the virial radius, R {sub vir}, we show that the ionization state (tracked by the dimensionless ionization parameter, U) increases with distance from the host galaxy. The ionization parameters imply a decreasing volume density profile n {sub H} = (10{sup –4.2±0.25})(R/R {sub vir}){sup –0.8±0.3}. Our derived gas volume densities are several orders of magnitude lower than predictions from standard two-phase models with a cool medium in pressure equilibrium with a hot, coronal medium expected in virialized halos at this mass scale. Applying the ionization corrections to the H I column densities, we estimate a lower limit to the cool gas mass M{sub CGM}{sup cool}>6.5×10{sup 10} M {sub ☉} for the volume within R < R {sub vir}. Allowing for an additional warm-hot, O VI-traced phase, the CGM accounts for at least half of the baryons purported to be missing from dark matter halos at the 10{sup 12} M {sub ☉} scale.

  19. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.; Loczi, Lajos; Jangabylova, Aliya; Kusmanov, Adil

    2016-01-01

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step

  20. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  1. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  2. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  3. The Klinger hot gas double axial valve

    International Nuclear Information System (INIS)

    Kruschik, J.; Hiltgen, H.

    1984-01-01

    The Klinger hot gas valve is a medium controlled double axial valve with advanced design features and safety function. It was first proposed by Klinger early in 1976 for the PNP-Project as a containment shut-off for hot helium (918 deg. C and 42 bar), because a market research has shown that such a valve is not state of present techniques. In the first stage of development a feasibility study had to be made by detailed design, calculation and by basic experiments for key components in close collaboration with Interatom/GHT. This was the basis for further design, calculation, construction and experimental work for such a valve prototype within the new development contract. The stage of knowledge to that time revealed the following key priority development areas: Finite element stress analysis for the highly stressed high temperature main components; development of an insulation layout; Detailed experimental tests of functionally important structural components or units of the valve, partly at Klingers (gasstatic bearings, flexible metallic sealing element, aerodynamic and thermohydraulic tests), partly at Interatom (actuator unit and also gasstatic bearings), partly at HRB in Juelich (flexible metallic sealing system, aerodynamic and thermohydraulic tests); Design of a test valve for experimental work in the KVK (test circuit at Interatom) for evaluation of temperature distribution and reliability of operation; Design of a prototype and extensive testing in the KVK

  4. Jet evolution in hot and cold QCD matter

    Energy Technology Data Exchange (ETDEWEB)

    Domdey, Svend Oliver

    2010-07-23

    In this thesis, we study the evolution of energetic partons in hot and cold QCD matter. In both cases, interactions with the medium lead to energy loss of the parton and its transverse momentum broadens. The propagation of partons in cold nuclear matter can be investigated experimentally in deep-inelastic scattering (DIS) on nuclei. We use the dipole model to calculate transverse momentum broadening in DIS on nuclei and compare to experimental data from HERMES. In hot matter, the evolution of the parton shower is strongly modified. To calculate this modification, we construct an additional scattering term in the QCD evolution equations which accounts for scattering of partons in the quark-gluon plasma. With this scattering term, we compute the modified gluon distribution in the shower at small momentum fractions. Furthermore, we calculate the modified fragmentation function of gluons into pions. The scattering term causes energy loss of the parton shower which leads to a suppression of hadrons with large transverse momentum. In the third part of this thesis, we study double dijet production in hadron collisions. This process contains information about the transverse parton distribution of hadrons. As main result, we find that double dijet production will allow for a study of the transverse growth of hadronic wave functions at the LHC. (orig.)

  5. Hybrid-Based Dense Stereo Matching

    Science.gov (United States)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  6. Software Simulation of Hot Tearing

    DEFF Research Database (Denmark)

    Andersen, S.; Hansen, P.N.; Hattel, Jesper Henri

    1999-01-01

    The brittleness of a solidifying alloy in a temperature range near the solidus temperature has been recognised since the fifties as the mechanism responsible for hot tearing. Due to this brittlenes, the metal will crack under even small amounts of strain in that temperature range. We see these hot...... tears in castings close to hot centres, where the level of strain is often too high.Although the hot tearing mechanism is well understood, until now it has been difficult to do much to reduce the hot tearing tendency in a casting. In the seventies, good hot tearing criteria were developed by considering...... the solidification rate and the strain rate of the hot tear prone areas. But, until recently it was only possible to simulate the solidification rate, so that the criteria could not be used effectively.Today, with new software developments, it is possible to also simulate the strain rate in the hot tear prone areas...

  7. Breast cancer screening in Korean woman with dense breast tissue

    International Nuclear Information System (INIS)

    Shin, Hee Jung; Ko, Eun Sook; Yi, Ann

    2015-01-01

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results

  8. Breast cancer screening in Korean woman with dense breast tissue

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Jung [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ko, Eun Sook [Dept. of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Yi, Ann [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-11-15

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results.

  9. Arbitrary electron acoustic waves in degenerate dense plasmas

    Science.gov (United States)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  10. Hot tub folliculitis

    Science.gov (United States)

    ... survives in hot tubs, especially tubs made of wood. Symptoms The first symptom of hot tub folliculitis ... may help prevent the problem. Images Hair follicle anatomy References D'Agata E. Pseudomonas aeruginosa and other ...

  11. Hard Probes in Heavy-Ion Physics

    CERN Document Server

    Renk, Thorsten

    2012-01-01

    The aim of ultrarelativistic heavy ion physics is to study collectivity and thermodynamics of Quantum Chromodynamics (QCD) by creating a transient small volume of matter with extreme density and temperature. There is experimental evidence that most of the particles created in such a collision form indeed a thermalized system characterized by collective response to pressure gradients. However, a numerically small subset of high transverse momentum ($P_T$) processes takes place independent of the bulk, with the outgoing partons subsequently propagating through the bulk medium. Understanding the modification of such 'hard probes' by the bulk medium is an important part of the efforts to determine the properties of hot and dense QCD matter. In this paper, current developments are reviewed.

  12. Relation Between Bitumen Content and Percentage Air Voids in Semi Dense Bituminous Concrete

    Science.gov (United States)

    Panda, R. P.; Das, Sudhanshu Sekhar; Sahoo, P. K.

    2018-06-01

    Hot mix asphalt (HMA) is a heterogeneous mix of aggregate, mineral filler, bitumen, additives and air voids. Researchers have indicated that the durability of the HMA is sensitive on the actual bitumen content and percentage air void. This paper aims at establishing the relationship between the bitumen content and the percentage air voids in Semi Dense Bituminous Concrete (SDBC) using Viscosity Grade-30 (VG-30) bitumen. Total 54 samples have been collected, for formulation and validation of relationship and observed that the percentage air voids increases with decrease in actual bitumen content and vice versa. A minor increase in percentage air voids beyond practice of designed air voids in Marshall Method of design is required for better performance, indicating a need for reducing the codal provision of minimum bitumen content for SDBC as specified in Specification for Road & Bridges (Fourth Revision) published by Indian Road Congress, 2001. The study shows a possibility of reducing designed minimum bitumen content from codal provision for SDBC by 0.2% of weight with VG-30 grade of Bitumen.

  13. Relation Between Bitumen Content and Percentage Air Voids in Semi Dense Bituminous Concrete

    Science.gov (United States)

    Panda, R. P.; Das, Sudhanshu Sekhar; Sahoo, P. K.

    2018-02-01

    Hot mix asphalt (HMA) is a heterogeneous mix of aggregate, mineral filler, bitumen, additives and air voids. Researchers have indicated that the durability of the HMA is sensitive on the actual bitumen content and percentage air void. This paper aims at establishing the relationship between the bitumen content and the percentage air voids in Semi Dense Bituminous Concrete (SDBC) using Viscosity Grade-30 (VG-30) bitumen. Total 54 samples have been collected, for formulation and validation of relationship and observed that the percentage air voids increases with decrease in actual bitumen content and vice versa. A minor increase in percentage air voids beyond practice of designed air voids in Marshall Method of design is required for better performance, indicating a need for reducing the codal provision of minimum bitumen content for SDBC as specified in Specification for Road & Bridges (Fourth Revision) published by Indian Road Congress, 2001. The study shows a possibility of reducing designed minimum bitumen content from codal provision for SDBC by 0.2% of weight with VG-30 grade of Bitumen.

  14. The Effects of Viscous Dissipation on Convection in a Porus Medium

    Directory of Open Access Journals (Sweden)

    T Raja Rani

    2017-05-01

    Full Text Available The aim of this paper is to study of the effects of variable physical properties and viscous dissipation on a free convective flow over a vertical plate with a variable temperature embedded in a porous medium. We study the effects of varying physical properties on heat transfer and on flow when the medium is filled with some commonly used experimental fluids, in particular, Glycerin, Water and Methyl chloride (a commonly refrigerant. A similarity transformation technique is used to reduce the partial differential equations governing the flow. The resulting system of non-linear coupled ordinary differential equations is solved numerically with appropriate boundary conditions using the Runge-Kutta-Gill method coupled with a shooting technique. Using this approach, a study is conducted on both hot and cold plates and results presented using a combination of graphical illustrations and tables of the effect of changing a variety of physical parameters, in particular, the temperature and viscosity of the fluid.

  15. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    Bradshaw, F.W.

    1996-01-01

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  16. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  17. Two Novel Rab2 Interactors Regulate Dense-core Vesicle Maturation

    Science.gov (United States)

    Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q.; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M.

    2014-01-01

    Summary Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi, and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1 and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a new pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274

  18. Dense power-law networks and simplicial complexes

    Science.gov (United States)

    Courtney, Owen T.; Bianconi, Ginestra

    2018-05-01

    There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.

  19. Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter

    Science.gov (United States)

    Kang, Dongdong; Dai, Jiayu

    2018-02-01

    The structural, thermodynamic and transport properties of warm dense matter (WDM) are crucial to the fields of astrophysics and planet science, as well as inertial confinement fusion. WDM refers to the states of matter in a regime of temperature and density between cold condensed matter and hot ideal plasmas, where the density is from near-solid up to ten times solid density, and the temperature between 0.1 and 100 eV. In the WDM regime, matter exhibits moderately or strongly coupled, partially degenerate properties. Therefore, the methods used to deal with condensed matter and isolated atoms need to be properly validated for WDM. It is therefore a big challenge to understand WDM within a unified theoretical description with reliable accuracy. Here, we review the progress in the theoretical study of WDM with state-of-the-art simulations, i.e. quantum Langevin molecular dynamics and first principles path integral molecular dynamics. The related applications for WDM are also included.

  20. Thermostable 𝜶-Amylase Activity from Thermophilic Bacteria Isolated from Bora Hot Spring, Central Sulawesi

    Science.gov (United States)

    Gazali, F. M.; Suwastika, I. N.

    2018-03-01

    α-Amylase is one of the most important enzyme in biotechnology field, especially in industrial application. Thermostability of α-Amylase produced by thermophilic bacteria improves industrial process of starch degradation in starch industry. The present study were concerned to the characterization of α-Amylase activity from indigenous thermophilic bacteria isolated from Bora hot spring, Central Sulawesi. There were 18 isolates which had successfully isolated from 90°C sediment samples of Bora hot spring and 13 of them showed amylolytic activity. The α-Amylase activity was measured qualitatively at starch agar and quantitatively based on DNS (3,5-Dinitrosalicylic acid) methods, using maltose as standard solution. Two isolates (out of 13 amylolytic bacteria), BR 002 and BR 015 showed amylolytic index of 0.8 mm and 0.5 mm respectively, after being incubated at 55°C in the 0.002% Starch Agar Medium. The α-Amylase activity was further characterized quantitatively which includes the optimum condition of pH and temperature of α-Amylase crude enzyme from each isolate. To our knowledge, this is the first report on isolation and characterization of a thermostable α-Amylase from thermophilic bacteria isolated from Central Sulawesi particularly from Bora hot spring.

  1. Brine migration in hot-pressed polycrystalline sodium chloride

    International Nuclear Information System (INIS)

    Biggers, J.V.; Dayton, G.O.

    1982-12-01

    This report describes experiments designed to provide data on brine migration in polycrystalline salt. Polycrystalling samples of various grain sizes, density, and purity were prepared from several commercial-grade salts by hot-pressing. Three distinct experimental set-ups were used to place salt billets in an induced thermal gradient in contact with brine source. The test designs varied primarily in the way in which the thermal gradient was applied and monitored and the way in which brine migration was determined. All migration was in enclosed vessels which precluded visual observation of brine movement through the microstructure. Migration velocities were estimated either by the timed appearance of brine at the hot face of the sample, or by determination of the penetration distance of migration artifacts in the microstructure after tests of fixed duration. For various reasons both of these methods were subject to a large degree of error. Our results suggest, however, that the migration velocity in dense polycrystalline salt may be at least an order of magnitude greater than that suggested by single-crystal experiments. Microstructural analysis shows that brine prefers to migrate along paths of high crystalline activity such as grain and subgrain boundaries and is dispersed rather quickly in the microstructure. A series of tests were performed using various types of tracers in brine in order to flag migration paths and locate brine in the microstructure more decisively. These attempts failed and it appears that only the aqueous portion of the brine moves through the microstructure with the dissolved ions being lost and replaced rather quickly. This suggests the use of deuterium as a tracer in future work

  2. Cyclic Oxidation and Hot Corrosion Behavior of Nickel-Iron-Based Superalloy

    Science.gov (United States)

    Chellaganesh, D.; Adam Khan, M.; Winowlin Jappes, J. T.; Sathiyanarayanan, S.

    2018-01-01

    The high temperature oxidation and hot corrosion behavior of nickel-iron-based superalloy are studied at 900 ° and 1000 °C. The significant role of alloying elements with respect to the exposed medium is studied in detail. The mass change per unit area was catastrophic for the samples exposed at 1000 °C and gradual increase in mass change was observed at 900 °C for both the environments. The exposed samples were further investigated with SEM, EDS and XRD analysis to study the metallurgical characteristics. The surface morphology has expressed the in situ nature of the alloy and its affinity toward the environment. The EDS and XRD analysis has evidently proved the presence of protective oxides formation on prolonged exposure at elevated temperature. The predominant oxide formed during the exposure at high temperature has a major contribution toward the protection of the samples. The nickel-iron-based superalloy is less prone to oxidation and hot corrosion when compared to the existing alloy in gas turbine engine simulating marine environment.

  3. Eculizumab for dense deposit disease and C3 glomerulonephritis.

    Science.gov (United States)

    Bomback, Andrew S; Smith, Richard J; Barile, Gaetano R; Zhang, Yuzhou; Heher, Eliot C; Herlitz, Leal; Stokes, M Barry; Markowitz, Glen S; D'Agati, Vivette D; Canetta, Pietro A; Radhakrishnan, Jai; Appel, Gerald B

    2012-05-01

    The principle defect in dense deposit disease and C3 glomerulonephritis is hyperactivity of the alternative complement pathway. Eculizumab, a monoclonal antibody that binds to C5 to prevent formation of the membrane attack complex, may prove beneficial. In this open-label, proof of concept efficacy and safety study, six subjects with dense deposit disease or C3 glomerulonephritis were treated with eculizumab every other week for 1 year. All had proteinuria >1 g/d and/or AKI at enrollment. Subjects underwent biopsy before enrollment and repeat biopsy at the 1-year mark. The subjects included three patients with dense deposit disease (including one patient with recurrent dense deposit disease in allograft) and three patients with C3 glomerulonephritis (including two patients with recurrent C3 glomerulonephritis in allograft). Genetic and complement function testing revealed a mutation in CFH and MCP in one subject each, C3 nephritic factor in three subjects, and elevated levels of serum membrane attack complex in three subjects. After 12 months, two subjects showed significantly reduced serum creatinine, one subject achieved marked reduction in proteinuria, and one subject had stable laboratory parameters but histopathologic improvements. Elevated serum membrane attack complex levels normalized on therapy and paralleled improvements in creatinine and proteinuria. Clinical and histopathologic data suggest a response to eculizumab in some but not all subjects with dense deposit disease and C3 glomerulonephritis. Elevation of serum membrane attack complex before treatment may predict response. Additional research is needed to define the subgroup of dense deposit disease/C3 glomerulonephritis patients in whom eculizumab therapy can be considered.

  4. Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells

    Science.gov (United States)

    Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho

    2018-03-01

    Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.

  5. Combustion synthesis of TiB2-based cermets: modeling and experimental results

    International Nuclear Information System (INIS)

    Martinez Pacheco, M.; Bouma, R.H.B.; Katgerman, L.

    2008-01-01

    TiB 2 -based cermets are prepared by combustion synthesis followed by a pressing stage in a granulate medium. Products obtained by combustion synthesis are characterized by a large remaining porosity (typically 50%). To produce dense cermets, a subsequent densification step is performed after the combustion process and when the reacted material is still hot. To design the process, numerical simulations are carried out and compared to experimental results. In addition, physical and electrical properties of the products related to electrical contact applications are evaluated. (orig.)

  6. High p$\\perp$ inclusive charged hadron distributions in Au+Au collisions at √sNN = 130 GeV at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bum Jin [Univ. of Texas, Austin, TX (United States)

    2003-08-01

    This thesis reports the measurement of the inclusive charged particle (h+ + h-) p$\\perp$ spectra for 1.7 < p$\\perp$ < 6 GeV/c at midrapidity (|η| < 0.5) as a function of various centrality classes in Au+Au collisions at √sNN = 130 GeV. Hadron suppression is observed relative to both scaled NN and peripheral Au+Au reference data, possibly indicating non-Abelian radiative energy loss in a hot, dense medium.

  7. A path integral for heavy-quarks in a hot plasma

    CERN Document Server

    Beraudo, A.; Faccioli, P.; Garberoglio, G.; 10.1016/j.nuclphysa.2010.06.007

    2010-01-01

    We propose a model for the propagation of a heavy-quark in a hot plasma, to be viewed as a first step towards a full description of the dynamics of heavy quark systems in a quark-gluon plasma, including bound state formation. The heavy quark is treated as a non relativistic particle interacting with a fluctuating field, whose correlator is determined by a hard thermal loop approximation. This approximation, which concerns only the medium in which the heavy quark propagates, is the only one that is made, and it can be improved. The dynamics of the heavy quark is given exactly by a quantum mechanical path integral that is calculated in this paper in the Euclidean space-time using numerical Monte Carlo techniques. The spectral function of the heavy quark in the medium is then reconstructed using a Maximum Entropy Method. The path integral is also evaluated exactly in the case where the mass of the heavy quark is infinite; one then recovers known results concerning the complex optical potential that controls the ...

  8. Yb:Y2O3 transparent ceramics processed with hot isostatic pressing

    Science.gov (United States)

    Wang, Jun; Ma, Jie; Zhang, Jian; Liu, Peng; Luo, Dewei; Yin, Danlei; Tang, Dingyuan; Kong, Ling Bing

    2017-09-01

    Highly transparent 5 at.% Yb:Y2O3 ceramics were fabricated by using a combination method of vacuum sintering and hot isostatic pressing (HIP). Co-precipitated Yb:Y2O3 powders, with 1 at.% ZrO2 as the sintering aid, were used as the starting material. The Yb:Y2O3 ceramics, vacuum sintered at 1700 °C for 2 h and HIPed at 1775 °C for 4 h, exhibited small grain size of 1.9 μm and highly dense microstructure. In-line optical transmittance of the ceramics reached 83.4% and 78.9% at 2000 and 600 nm, respectively. As the ceramic slab was pumped by a fiber-coupled laser diode at about 940 nm, a maximum output power of 0.77 W at 1076 nm was achieved, with a corresponding slope efficiency of 10.6%.

  9. Dilute and dense axion stars

    Science.gov (United States)

    Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank

    2018-02-01

    Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.

  10. Couches minces electrochromiques d'oxyde de tungstene dense et poreux pour des applications de controle energetique

    Science.gov (United States)

    Camirand, Hubert

    Nanotechnology has modified the landscape of energy generation, energy storage and energy saving devices. Architectural fenestration can extensively benefit from green nanotechnologies. Amongst them, active fenestration or "smart" windows are able to modify their coloration state upon the application of a small electrical voltage, when based on electrochromic materials. In fact, the amount of visible and near-infrared light that can penetrate through the window can be altered. Therefore, their implementation can allow for a significant reduction in energy consumption in buildings. Furthermore, the capability of optimizing indoor comfort is user-controlled, thus an additional degree of freedom is given by electrochromic-based technology. It is worth mentioning that such devices can be largely advantageous in countries with variable seasons, such as here in Canada. As a matter of fact, the large temperature difference between the hot and cold season influences the requirement of impeding or enabling visible and thermal radiation to pass through. This master's thesis is entirely devoted to tungsten trioxide (WO 3), which is the most widely studied electrochromic material. In the present case, WO3 thin films are synthesized by radiofrequency magnetron sputtering. By varying the deposition pressure and power, the porosity content/packing density of the films is modified. This work's main topic is the characterization of electrochromic samples by in situ spectroscopic ellipsometry simultaneously with the application of an electrical voltage in an aqueous electrolytic medium made of sulfuric acid (H2SO 4). The methodology developed here allows for an in-depth study of electro-active materials. To corroborate this, optical properties of WO3 are obtained for a wide range of coloration levels, and these are subsequently used to model the resulting coloration of electrochromic multilayer systems. However, the interface between the dense and porous films affects the coloration

  11. Dense magnetized plasma associated with a fast radio burst.

    Science.gov (United States)

    Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Timbie, Peter T; Voytek, Tabitha; Yadav, Jaswant K

    2015-12-24

    Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.

  12. WESF hot cells waste minimization criteria hot cells window seals evaluation

    International Nuclear Information System (INIS)

    Walterskirchen, K.M.

    1997-01-01

    WESF will decouple from B Plant in the near future. WESF is attempting to minimize the contaminated solid waste in their hot cells and utilize B Plant to receive the waste before decoupling. WESF wishes to determine the minimum amount of contaminated waste that must be removed in order to allow minimum maintenance of the hot cells when they are placed in ''laid-up'' configuration. The remaining waste should not cause unacceptable window seal deterioration for the remaining life of the hot cells. This report investigates and analyzes the seal conditions and hot cell history and concludes that WESF should remove existing point sources, replace cerium window seals in F-Cell and refurbish all leaded windows (except for A-Cell). Work should be accomplished as soon as possible and at least within the next three years

  13. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  14. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    Science.gov (United States)

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2015-01-01

    In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes. PMID:26703750

  15. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    Directory of Open Access Journals (Sweden)

    Mythili Prakasam

    2015-12-01

    Full Text Available In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes.

  16. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    Science.gov (United States)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  17. Dynamic and Geological-Ecological Spatial Planning Approach in Hot Mud Volcano Affected Area in Porong-Sidoarjo

    Directory of Open Access Journals (Sweden)

    Haryo Sulistyarso

    2010-08-01

    Full Text Available By May 29t h 2006 with an average hot mud volcano volume of 100,000 m3 /per day, disasters on well kick (i.e. Lapindo Brantas Ltd. in Banjar Panji 1 drilling well have deviated the Spatial Planning of Sidoarjo’s Regency for 2003- 2013. Regional Development Concept that is aimed at developing triangle growth pole model on SIBORIAN (SIdoarjo-JaBOn-KRIaAN could not be implemented. This planning cannot be applied due to environmental imbalance to sub district of Porong that was damaged by hot mud volcano. In order to anticipate deviations of the Regional and Spatial Planning of Sidoarjo Regency for 2003-2013, a review on regional planning and dynamic implementation as well as Spatial Planning Concept based on geologicalecological condition are required, especially the regions affected by well kick disaster. The spatial analysis is based on the geological and ecological condition by using an overlay technique using several maps of hot mud volcano affected areas. In this case, dynamic implementation is formulated to the responsiblity plan that can happen at any time because of uncertain ending of the hot mud volcano eruption disaster in Porong. The hot mud volcano affected areas in the Sidoarjo’s Spatial Planning 2009-2029 have been decided as a geologic protected zone. The result of this research is scenarios of spatial planning for the affected area (short term, medium term and long term spatial planning scenarios.

  18. The turbulent life of dust grains in the supernova-driven, multiphase interstellar medium

    Science.gov (United States)

    Peters, Thomas; Zhukovska, Svitlana; Naab, Thorsten; Girichidis, Philipp; Walch, Stefanie; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Seifried, Daniel

    2017-06-01

    Dust grains are an important component of the interstellar medium (ISM) of galaxies. We present the first direct measurement of the residence times of interstellar dust in the different ISM phases, and of the transition rates between these phases, in realistic hydrodynamical simulations of the multiphase ISM. Our simulations include a time-dependent chemical network that follows the abundances of H+, H, H2, C+ and CO and take into account self-shielding by gas and dust using a tree-based radiation transfer method. Supernova explosions are injected either at random locations, at density peaks, or as a mixture of the two. For each simulation, we investigate how matter circulates between the ISM phases and find more sizeable transitions than considered in simple mass exchange schemes in the literature. The derived residence times in the ISM phases are characterized by broad distributions, in particular for the molecular, warm and hot medium. The most realistic simulations with random and mixed driving have median residence times in the molecular, cold, warm and hot phase around 17, 7, 44 and 1 Myr, respectively. The transition rates measured in the random driving run are in good agreement with observations of Ti gas-phase depletion in the warm and cold phases in a simple depletion model. ISM phase definitions based on chemical abundance rather than temperature cuts are physically more meaningful, but lead to significantly different transition rates and residence times because there is no direct correspondence between the two definitions.

  19. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  20. Dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel

    International Nuclear Information System (INIS)

    Wei, Hai-lian; Liu, Guo-quan; Xiao, Xiang; Zhang, Ming-he

    2013-01-01

    The dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel was systematically investigated at the temperatures from 900 °C to 1100 °C and strain rates from 0.01 s −1 to 10 s −1 on a Gleeble-1500 thermo-simulation machine. The flow stress constitutive equation of hot deformation for this steel was developed with the activation energy Q being about 273 kJ/mol, which is in reasonable agreement with those reported before. Activation energy analysis showed that vanadium addition in microalloyed steels seemed not to affect the activation energy much. The effect of Zener–Hollomon parameter on the characteristic points of flow curves was studied using the power law relation, and the dependence of critical strain (stress) on peak strain (stress) obeyed a linear equation. Dynamic recrystallization is the most important softening mechanism for the experimental steel during hot compression. The dynamic recrystallization kinetics model of this steel was established based on flow stress and a frequently-used dynamic recrystallization kinetics equation. Dynamic recrystallization microstructure under different deformation conditions was also observed and the dependence of steady-state grain size on the Zener–Hollomon parameter was plotted

  1. Dense sampled transmission matrix for high resolution angular spectrum imaging through turbid media via compressed sensing (Conference Presentation)

    Science.gov (United States)

    Jang, Hwanchol; Yoon, Changhyeong; Choi, Wonshik; Eom, Tae Joong; Lee, Heung-No

    2016-03-01

    We provide an approach to improve the quality of image reconstruction in wide-field imaging through turbid media (WITM). In WITM, a calibration stage which measures the transmission matrix (TM), the set of responses of turbid medium to a set of plane waves with different incident angles, is preceded to the image recovery. Then, the TM is used for estimation of object image in image recovery stage. In this work, we aim to estimate highly resolved angular spectrum and use it for high quality image reconstruction. To this end, we propose to perform a dense sampling for TM measurement in calibration stage with finer incident angle spacing. In conventional approaches, incident angle spacing is made to be large enough so that the columns in TM are out of memory effect of turbid media. Otherwise, the columns in TM are correlated and the inversion becomes difficult. We employ compressed sensing (CS) for a successful high resolution angular spectrum recovery with dense sampled TM. CS is a relatively new information acquisition and reconstruction framework and has shown to provide superb performance in ill-conditioned inverse problems. We observe that the image quality metrics such as contrast-to-noise ratio and mean squared error are improved and the perceptual image quality is improved with reduced speckle noise in the reconstructed image. This results shows that the WITM performance can be improved only by executing dense sampling in the calibration stage and with an efficient signal reconstruction framework without elaborating the overall optical imaging systems.

  2. Seeing the Forest Through the Trees: The Distribution and Properties of Dense Molecular Gas in the Milky Way Galaxy

    Science.gov (United States)

    Ellsworth-Bowers, Timothy P.

    The Milky Way Galaxy serves as a vast laboratory for studying the dynamics and evolution of the dense interstellar medium and the processes of and surrounding massive star formation. From our vantage point within the Galactic plane, however, it has been extremely difficult to construct a coherent picture of Galactic structure; we cannot see the forest for the trees. The principal difficulties in studying the structure of the Galactic disk have been obscuration by the ubiquitous dust and molecular gas and confusion between objects along a line of sight. Recent technological advances have led to large-scale blind surveys of the Galactic plane at (sub-)millimeter wavelengths, where Galactic dust is generally optically thin, and have opened a new avenue for studying the forest. The Bolocam Galactic Plane Survey (BGPS) observed over 190 deg 2 of the Galactic plane in dust continuum emission near lambda = 1.1 mm, producing a catalog of over 8,000 dense molecular cloud structures across a wide swath of the Galactic disk. Deriving the spatial distribution and physical properties of these objects requires knowledge of distance, a component lacking in the data themselves. This thesis presents a generalized Bayesian probabilistic distance estimation method for dense molecular cloud structures, and demonstrates it with the BGPS data set. Distance probability density functions (DPDFs) are computed from kinematic distance likelihoods (which may be double- peaked for objects in the inner Galaxy) and an expandable suite of prior information to produce a comprehensive tally of our knowledge (and ignorance) of the distances to dense molecular cloud structures. As part of the DPDF formalism, this thesis derives several prior DPDFs for resolving the kinematic distance ambiguity in the inner Galaxy. From the collection of posterior DPDFs, a set of objects with well-constrained distance estimates is produced for deriving Galactic structure and the physical properties of dense molecular

  3. Dense time discretization technique for verification of real time systems

    International Nuclear Information System (INIS)

    Makackas, Dalius; Miseviciene, Regina

    2016-01-01

    Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate

  4. About chiral models of dense matter and its magnetic properties

    International Nuclear Information System (INIS)

    Kutschera, M.

    1990-12-01

    The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)

  5. Rheology of dense suspensions of non colloidal particles

    OpenAIRE

    Guazzelli , Elisabeth

    2017-01-01

    International audience; Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liq...

  6. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.

    Science.gov (United States)

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-12-03

    Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.

  7. Hot springs in Hokuriku District

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K. (Hot Springs Research Center, Japan)

    1971-01-01

    In the Hokuriku district including Toyama, Ishikawa, and Fukui Prefectures, hot springs of more than 25/sup 0/C were investigated. In the Toyama Prefecture, there are 14 hot springs which are located in an area from the Kurobe River to the Tateyama volcano and in the mountainous area in the southwest. In Ishikawa Prefecture there are 16 hot springs scattered in Hakusan and its vicinity, the Kaga mountains, and in the Noto peninsula. In northern Fukui Prefecture there are seven hot springs. The hot springs in Shirakawa in Gifu Prefecture are characterized as acid springs producing exhalations and H/sub 2/S. These are attributed to the Quaternary volcanoes. The hot springs of Wakura, Katayamazu, and Awara in Ishikawa Prefecture are characterized by a high Cl content which is related to Tertiary andesite. The hot springs of Daishoji, Yamanaka, Yamashiro, Kuritsu, Tatsunokuchi, Yuwaku, and Yunotani are characterized by a low HCO/sub 3/ content. The Ca and SO/sub 4/ content decreases from east to west, and the Na and Cl content increases from west to east. These fluctuations are related to the Tertiary tuff and rhyolite. The hot springs of Kuronagi, Kinshu, and Babadani, located along the Kurobe River are characterized by low levels of dissolved components and high CO/sub 2/ and HCO/sub 3/ content. These trends are related to late Paleozoic granite. Hot springs resources are considered to be connected to geothermal resources. Ten tables, graphs, and maps are provided.

  8. Flavors in the soup: An overview of heavy-flavored jet energy loss at CMS

    Science.gov (United States)

    Jung, Kurt E.

    The energy loss of jets in heavy-ion collisions is expected to depend on the flavor of the fragmenting parton. Thus, measurements of jet quenching as a function of flavor place powerful constraints on the thermodynamical and transport properties of the hot and dense medium. Measurements of the nuclear modification factors of the heavy flavor tagged jets from charm and bottom quarks in both PbPb and pPb collisions can quantify such energy loss effects. Specifically, pPb measurements provide crucial insights into the behavior of the cold nuclear matter effect, which is required to fully understand the hot and dense medium effects on jets in PbPb collisions. This dissertation presents the energy modification of b-jets in PbPb at √sNN = 2.76 TeV and pPb collisions at √sNN = 5.02 TeV, along with the first ever measurements of charm jets in pPb collisions at √s NN =5.02 TeV and in pp collisions at √s = 2.76 TeV. Measurements of b-jet and c-jet spectra are compared to pp data at √s = 2.76 TeV and to PYTHIA predictions at both 2.76 and 5.02 TeV. We observe a centrality-dependent suppression for b-jets in PbPb and a result that is consistent with PYTHIA for both charm and bottom jets in pPb collisions.

  9. Research on thermal insulation for hot gas ducts

    International Nuclear Information System (INIS)

    Broeckerhoff, P.

    1984-01-01

    The inner surfaces of prestressed reactor vessels and hot gas ducts of Gas Cooled High Temperature Reactors need internal thermal insulation to protect the pressure bearing walls from high temperatures. The design parameters of the insulation depend on the reactor type. In a PNP-plant temperature and pressure of the cooling medium helium are proposed to be 950 deg. C and 40 bars, respectively. The experimental work was started at KFA in 1971 for the HHT-project using three test facilities. At first metallic foil insulation and stuffed fibre insulating systems, the hot gas ducting shrouds of which were made of metal, have been tested. Because of the elevated helium temperature in case of PNP and the resulting lower strength of the metallic parts the interest was directed to rigid ceramic materials for the spacers and the inner shrouds. This led to modified structures designed by the INTERATOM company. Tests were performed at KFA. The main object of the investigations was to study the influence of temperature, pressure and axial pressure gradients on the thermal efficiency of the structures. Moreover, the temperatures within the insulation, at the pressure tube, and at the elements which bear the inner shrouds were measured. Thermal fluxes and effective thermal conductivities in axial and circumferential direction of the pressure tube are given, mainly for the INTERATOM-design with spherical spacers. (author)

  10. The interstellar medium in galaxies

    CERN Document Server

    1997-01-01

    It has been more than five decades ago that Henk van de Hulst predicted the observability of the 21-cm line of neutral hydrogen (HI ). Since then use of the 21-cm line has greatly improved our knowledge in many fields and has been used for galactic structure studies, studies of the interstellar medium (ISM) in the Milky Way and other galaxies, studies of the mass distribution of the Milky Way and other galaxies, studies of spiral struc­ ture, studies of high velocity gas in the Milky Way and other galaxies, for measuring distances using the Tully-Fisher relation etc. Regarding studies of the ISM, there have been a number of instrumen­ tal developments over the past decade: large CCD's became available on optical telescopes, radio synthesis offered sensitive imaging capabilities, not only in the classical 21-cm HI line but also in the mm-transitions of CO and other molecules, and X-ray imaging capabilities became available to measure the hot component of the ISM. These developments meant that Milky Way was n...

  11. A dense cell retention culture system using stirred ceramic membrane reactor.

    Science.gov (United States)

    Suzuki, T; Sato, T; Kominami, M

    1994-11-20

    A novel reactor design incorporating porous ceramic tubes into a stirred jar fermentor was developed. The stirred ceramic membrane reactor has two ceramic tubular membrane units inside the vessel and maintains high filtration flux by alternating use for filtering and recovering from clogging. Each filter unit was linked for both extraction of culture broth and gas sparging. High permeability was maintained for long periods by applying the periodical control between filtering and air sparging during the stirred retention culture of Saccharomyces cerevisiae. The ceramic filter aeration system increased the k(L)a to about five times that of ordinary gas sparing. Using the automatic feeding and filtering system, cell mass concentration reached 207 g/L in a short time, while it was 64 g/L in a fed-batch culture. More than 99% of the growing cells were retained in the fermentor by the filtering culture. Both yield and productivity of cells were also increased by controlling the feeding of fresh medium and filtering the supernatant of the dense cells culture. (c) 1994 John Wiley & Sons, Inc.

  12. The numerical simulation study of hemodynamics of the new dense-mesh stent

    Science.gov (United States)

    Ma, Jiali; Yuan, Zhishan; Yu, Xuebao; Feng, Zhaowei; Miao, Weidong; Xu, Xueli; Li, Juntao

    2017-09-01

    The treatment of aortic aneurysm in new dense mesh stent is based on the principle of hemodynamic changes. But the mechanism is not yet very clear. This paper analyzed and calculated the hemodynamic situation before and after the new dense mesh stent implanting by the method of numerical simulation. The results show the dense mesh stent changed and impacted the blood flow in the aortic aneurysm. The changes include significant decrement of blood velocity, pressure and shear forces, while ensuring blood can supply branches, which means the new dense mesh stent's hemodynamic mechanism in the treatment of aortic aneurysm is clearer. It has very important significance in developing new dense mesh stent in order to cure aortic aneurysm.

  13. Inhibition of the electron cyclotron maser instability in the dense magnetosphere of a hot Jupiter

    Science.gov (United States)

    Daley-Yates, S.; Stevens, I. R.

    2018-06-01

    Hot Jupiter (HJ) type exoplanets are expected to produce strong radio emission in the MHz range via the Electron Cyclotron Maser Instability (ECMI). To date, no repeatable detections have been made. To explain the absence of observational results, we conduct 3D adaptive mess refinement (AMR) magnetohydrodynamic (MHD) simulations of the magnetic interactions between a solar type star and HJ using the publicly available code PLUTO. The results are used to calculate the efficiency of the ECMI at producing detectable radio emission from the planets magnetosphere. We also calculate the frequency of the ECMI emission, providing an upper and lower bounds, placing it at the limits of detectability due to Earth's ionospheric cutoff of ˜10 MHz. The incident kinetic and magnetic power available to the ECMI is also determined and a flux of 0.075 mJy for an observer at 10 pc is calculated. The magnetosphere is also characterized and an analysis of the bow shock which forms upstream of the planet is conducted. This shock corresponds to the thin shell model for a colliding wind system. A result consistent with a colliding wind system. The simulation results show that the ECMI process is completely inhibited by the planets expanding atmosphere, due to absorption of UV radiation form the host star. The density, velocity, temperature and magnetic field of the planetary wind are found to result in a magnetosphere where the plasma frequency is raised above that due to the ECMI process making the planet undetectable at radio MHz frequencies.

  14. Ferrocyanide Safety Program: Waste tank sludge rheology within a hot spot or during draining

    International Nuclear Information System (INIS)

    Fauske, H.K.; Cash, R.J.

    1993-11-01

    The conditions under which ferrocyanide waste sludge flows as a homogeneous non-Newtonian two-phase (solid precipitate-liquid) mixture rather than as a liquid through a porous medium (of stationary precipitate) are examined theoretically, based on the notion that the preferred rheological behavior of the sludge is the one which imposes the least resistance to the sludge flow. The homogeneous two-phase mixture is modeled as a power-law fluid and simple criteria are derived that show that the homogeneous power-law sludge-flow is a much more likely flow situation than the porous medium model of sludge flow. The implication of this finding is that the formation of a hot spot or the drainage of sludge from a waste tank are not likely to result in the uncovering (drying) and subsequent potential overheating of the reactive-solid component of the sludge

  15. Study of the thermo-mechanical behavior of medium carbon microalloyed steel during hot forming process using an artificial neural network; Estudio del comportamiento termo-mecanico de un acero microaleado de medio carbono durante un proceso de conformado en caliente usando una red neuronal artificial

    Energy Technology Data Exchange (ETDEWEB)

    Alcelay, I.; Pena, E.; Al Omar, A.

    2016-10-01

    The thermo-mechanical behavior of medium carbon microalloyed steel has been analyzed by an Artificial Neural Network (ANN). The flow curves for training the ANN have been obtained from the hot compression tests, carried out over a temperature range varying from 900 to 1150 degree centigrade and at different true strain rates ranging from 10{sup -}4 to 10 s{sup -}1. It has been found that the ANN model developed in this study is capable to predict accurately and efficiently the flow behavior of the studied steel and there is a good agreement between the experimental results and the ANN results. To analyze the formability of the studied steel, processing maps have been constructed on the basis of the Dynamic Materials Model (DMM), using the ANN values of the flow stress. The study of maps reveals the different domains of the flow behavior of the studied steel and shows the great similarity between the experimental results and the theoretical results, so the use of the ANN can constitute an interesting alternative for design and study of hot forming processes. (Author)

  16. SEDIGISM: Structure, excitation, and dynamics of the inner Galactic interstellar medium

    Science.gov (United States)

    Schuller, F.; Csengeri, T.; Urquhart, J. S.; Duarte-Cabral, A.; Barnes, P. J.; Giannetti, A.; Hernandez, A. K.; Leurini, S.; Mattern, M.; Medina, S.-N. X.; Agurto, C.; Azagra, F.; Anderson, L. D.; Beltrán, M. T.; Beuther, H.; Bontemps, S.; Bronfman, L.; Dobbs, C. L.; Dumke, M.; Finger, R.; Ginsburg, A.; Gonzalez, E.; Henning, T.; Kauffmann, J.; Mac-Auliffe, F.; Menten, K. M.; Montenegro-Montes, F. M.; Moore, T. J. T.; Muller, E.; Parra, R.; Perez-Beaupuits, J.-P.; Pettitt, A.; Russeil, D.; Sánchez-Monge, Á.; Schilke, P.; Schisano, E.; Suri, S.; Testi, L.; Torstensson, K.; Venegas, P.; Wang, K.; Wienen, M.; Wyrowski, F.; Zavagno, A.

    2017-05-01

    Context. The origin and life-cycle of molecular clouds are still poorly constrained, despite their importance for understanding the evolution of the interstellar medium. Many large-scale surveys of the Galactic plane have been conducted recently, allowing for rapid progress in this field. Nevertheless, a sub-arcminute resolution global view of the large-scale distribution of molecular gas, from the diffuse medium to dense clouds and clumps, and of their relationshipto the spiral structure, is still missing. Aims: We have carried out a systematic, homogeneous, spectroscopic survey of the inner Galactic plane, in order to complement the many continuum Galactic surveys available with crucial distance and gas-kinematic information. Our aim is to combine this data set with recent infrared to sub-millimetre surveys at similar angular resolutions. Methods: The SEDIGISM survey covers 78 deg2 of the inner Galaxy (-60°≤ℓ≤ 18°, |b|≤ 0.5°) in the J = 2-1 rotational transition of 13CO. This isotopologue of CO is less abundant than 12CO by factors up to 100. Therefore, its emission has low to moderate optical depths, and higher critical density, making it an ideal tracer of the cold, dense interstellar medium. The data have been observed with the SHFI single-pixel instrument at APEX. The observational setup covers the 13CO(2-1) and C18O(2-1) lines, plus several transitions from other molecules. Results: The observations have been completed. Data reduction is in progress, and the final data products will be made available in the near future. Here we give a detailed description of the survey and the dedicated data reduction pipeline. To illustrate the scientific potential of this survey, preliminary results based on a science demonstration field covering -20°≤ℓ ≤ -18.5° are presented. Analysis of the 13CO(2-1) data in this field reveals compact clumps, diffuse clouds, and filamentary structures at a range of heliocentric distances. By combining our data with

  17. Warm dense matter and Thomson scattering at FLASH

    International Nuclear Information System (INIS)

    Faeustlin, Roland Rainer

    2010-05-01

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  18. Warm dense matter and Thomson scattering at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faeustlin, Roland Rainer

    2010-05-15

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  19. Effect of Water Clustering on the Activity of Candida antarctica Lipase B in Organic Medium

    DEFF Research Database (Denmark)

    Banik, Sindrila Dutta; Nordblad, Mathias; Woodley, John M.

    2017-01-01

    The effect of initial water activity of MTBE (methyl tert-butyl ether) medium on CALB (Candida antarctica lipase B) catalyzed esterification reaction is investigated using experimental methods and classical molecular dynamics (MD) simulations. The experimental kinetic studies show that the initial...... reaction rate of CALB-catalyzed esterification reaction between butyric acid and ethanol decreases with increasing initial water activity of the medium. The highest rate of esterification is observed at the lowest water activity studied. MD simulations were performed to gain a molecular insight...... on the effect of initial water activity on the rate of CALB-catalyzed reaction. Our results show that hydration has an insignificant effect on the structure and flexibility of CALB. Rather, it appears that water molecules bind to certain regions ("hot spots") on the CALB surface and form clusters. The size...

  20. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  1. Rocket and satellite observations of the local interstellar medium

    International Nuclear Information System (INIS)

    Jelinsky, P.N.

    1988-01-01

    The purpose of the study described in this thesis was to obtained new information on the structure of the local interstellar medium (ISM). Two separate experiments using different instruments were used in this study. The first experiment employed a spectrometer with a spectral bandpass from 350-1150 angstrom which was placed at the focus of a 95 cm, f/2.8 normal incidence telescope flown on an Aries sounding rocket. The purpose of this experiment was to measure the interstellar absorption edges, due to neutral helium and neutral hydrogen, in the spectrum of a hot white dwarf. The hot white dwarf G191-B2B was observed for 87 seconds during the flight. Unfortunately, due to high pressure in the rocket, no scientifically useful data was obtained during the flight. The second experiment utilized the high resolution spectrometer on the International Ultraviolet Explorer satellite. The purpose of the experiment was to observe interstellar absorption lines in the spectrum of hot white dwarfs. A new method of determining the equivalent widths of absorption lines and their uncertainties was developed. The neutral hydrogen column density is estimated from the N I, Si II, and C II columns. Unfortunately, the uncertainties in the neutral hydrogen columns are very large, only two are constrained to better than an order of magnitude. High ionization species (N V, Si IV, and C IV) are seen in five of the stars. Upper limits to the temperature of the ISM are determined from the velocity dispersions. The temperature of the low ionization gas toward four of the stars is constrained to be less than 50,000 K

  2. Rheology of dense suspensions of non colloidal particles

    OpenAIRE

    Guazzelli Élisabeth

    2017-01-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical co...

  3. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  4. Charmed hadrons in nuclear medium

    NARCIS (Netherlands)

    Tolos, L.; Gamermann, D.; Garcia-Recio, C.; Molina, R.; Nieves, J.; Oset, E.; Ramos, A.

    We study the properties of charmed hadrons in dense matter within a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner We analyze the behaviour in this dense environment of dynamically-generated baryonic resonances as well as the

  5. Dense Descriptors for Optical Flow Estimation: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ahmadreza Baghaie

    2017-02-01

    Full Text Available Estimating the displacements of intensity patterns between sequential frames is a very well-studied problem, which is usually referred to as optical flow estimation. The first assumption among many of the methods in the field is the brightness constancy during movements of pixels between frames. This assumption is proven to be not true in general, and therefore, the use of photometric invariant constraints has been studied in the past. One other solution can be sought by use of structural descriptors rather than pixels for estimating the optical flow. Unlike sparse feature detection/description techniques and since the problem of optical flow estimation tries to find a dense flow field, a dense structural representation of individual pixels and their neighbors is computed and then used for matching and optical flow estimation. Here, a comparative study is carried out by extending the framework of SIFT-flow to include more dense descriptors, and comprehensive comparisons are given. Overall, the work can be considered as a baseline for stimulating more interest in the use of dense descriptors for optical flow estimation.

  6. Hydrogeochemical Characteristics and Evolution of Hot Springs in Eastern Tibetan Plateau Geothermal Belt, Western China: Insight from Multivariate Statistical Analysis

    Directory of Open Access Journals (Sweden)

    Zheming Shi

    2017-01-01

    Full Text Available The eastern Tibetan Plateau geothermal belt is one of the important medium-high temperature geothermal belts in China. However, less work has been done on the hydrochemical characteristic and its geological origin. Understanding the chemical characteristics and the hydrochemical evolution processes is important in evaluating the geothermal energy potential in this area. In the present study, we discussed the hydrochemical properties and their origins of 39 hot springs located in the eastern Tibetan Plateau geothermal belt (Kangding-Litang-Batang geothermal belt. Cluster analysis and factor analysis are employed to character the hydrochemical properties of hot springs in different fault zones and the possible hydrochemical evolution processes of these hot springs. Our study shows that the hot springs can be divided into three groups based on their locations. The hot springs in the first group mainly originate from the volcanic rock and the springs in the second group originate from the metamorphic rock while the springs in the third group originate from the result of mixture of shallow water. Water-rock interaction, cation exchange, and the water environment are the three dominant factors that control the hydrochemical evolution process in the eastern Tibetan Plateau. These results are also in well agreement with the isotopic and chemical analysis.

  7. Jets and Jet-like Correlations in Heavy Ion and p+p Collisions at PHENIX

    International Nuclear Information System (INIS)

    2010-01-01

    Jets from heavy ion collisions provide a measurement of the medium-induced parton energy loss and the in-medium fragmentation properties. The medium modification effects are determined by comparing to a p+p baseline measurement, but the high multiplicity background in a heavy ion collision inhibits the direct application of traditional jet reconstruction techniques and novel approaches are needed to deal with this environment. Alternatively, angular correlations between the hadronic fragments of energetic partons can be used to understand the hot dense matter produced in relativistic heavy ion collisions. The yield and shape modifications of the away side peaks as function of transverse momentum compared to p+p has been interpreted as a medium response to parton energy loss. Direct photon-hadron correlations are another excellent channel to study jets from heavy ion collisions. Photons do not interact strongly with the medium and thus the photon approximately balances the momentum of the opposing jet, allowing the measurement of the effective modification to the fragmentation function through jet energy loss in the medium.

  8. Hot flashes and sleep in women.

    Science.gov (United States)

    Moe, Karen E

    2004-12-01

    Sleep disturbances during menopause are often attributed to nocturnal hot flashes and 'sweats' associated with changing hormone patterns. This paper is a comprehensive critical review of the research on the relationship between sleep disturbance and hot flashes in women. Numerous studies have found a relationship between self-reported hot flashes and sleep complaints. However, hot flash studies using objective sleep assessment techniques such as polysomnography, actigraphy, or quantitative analysis of the sleep EEG are surprisingly scarce and have yielded somewhat mixed results. Much of this limited evidence suggests that hot flashes are associated with objectively identified sleep disruption in at least some women. At least some of the negative data may be due to methodological issues such as reliance upon problematic self-reports of nocturnal hot flashes and a lack of concurrent measures of hot flashes and sleep. The recent development of a reliable and non-intrusive method for objectively identifying hot flashes during the night should help address the need for substantial additional research in this area. Several areas of clinical relevance are described, including the effects of discontinuing combined hormone therapy (estrogen plus progesterone) or estrogen-only therapy, the possibility of hot flashes continuing for many years after menopause, and the link between hot flashes and depression.

  9. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  10. Update on the KELT Transit Survey: Hot Planets around Hot Stars

    Science.gov (United States)

    Gaudi, B. Scott; Stassun, Keivan G.; Pepper, Joshua; KELT Collaboration

    2018-01-01

    The KELT Transit Survey consists of a pair of small-aperture, wide-angle automated telescopes located at Winer Observatory in Sonoita, Arizona and the South African Astronomical Observatory (SAAO) in Sutherland, South Africa. Together, they are surveying roughly 70% of the sky for transiting planets. By virtue of their small apertures (42 mm) and large fields-of-view (26 degrees x 26 degrees), KELT is most sensitive to hot Jupiters transiting relatively bright (V~8-11), and thus relatively hot stars. I will provide an update on the planets discovered by KELT, focusing in detail on our recent discoveries of very hot planets transiting several bright A and early F stars.

  11. Hot subluminous star: HDE 283048

    International Nuclear Information System (INIS)

    Laget, M.; Vuillemin, A.; Parsons, S.B.; Henize, K.G.; Wray, J.D.

    1978-01-01

    The star HDE 283048, located at α = 3/sup h/50/sup m/.3, delta = +25 0 36', shows a strong ultraviolet continuum. Ground-based observations indicate a hot-dominated composite spectrum. Several lines of evidence suggest that the hot component is a hot subdwarf. 2 figures

  12. On the effect of hot water vapor on MX-80 clay

    International Nuclear Information System (INIS)

    Pusch, Roland

    2000-10-01

    Earlier experiments with smectite clay exposed to hot water vapor have indicated that the expandability may be largely lost. If such conditions prevail in a HLW repository the buffer clay may deteriorate and lose its isolating potential. The present study aimed at checking this by hydrothermal treatment at 90 to 110 deg C of rather dense MX-80 clay with subsequent oedometer testing for determining the hydration rate, swelling pressure and hydraulic conductivity, which are all expected to be quite different from those of untreated clay if the expandability is actually reduced. The results show that the swelling pressure of MX-80 clay is not noticeably altered by exposing it to vapor with a temperature of up to 110 deg C for one month while the hydraulic conductivity is increased by about 10% due to some permanent microstructural alteration. The overall change in physical properties of MX-80 clay under the prevailing laboratory conditions is not very significant

  13. On the effect of hot water vapor on MX-80 clay

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Geodevelopment AB, Lund (Sweden)

    2000-10-01

    Earlier experiments with smectite clay exposed to hot water vapor have indicated that the expandability may be largely lost. If such conditions prevail in a HLW repository the buffer clay may deteriorate and lose its isolating potential. The present study aimed at checking this by hydrothermal treatment at 90 to 110 deg C of rather dense MX-80 clay with subsequent oedometer testing for determining the hydration rate, swelling pressure and hydraulic conductivity, which are all expected to be quite different from those of untreated clay if the expandability is actually reduced. The results show that the swelling pressure of MX-80 clay is not noticeably altered by exposing it to vapor with a temperature of up to 110 deg C for one month while the hydraulic conductivity is increased by about 10% due to some permanent microstructural alteration. The overall change in physical properties of MX-80 clay under the prevailing laboratory conditions is not very significant.

  14. Primary Cutaneous CD4-Positive Small/Medium Pleomorphic T-cell Lymphoma – A Case Report

    Directory of Open Access Journals (Sweden)

    Micković Milena

    2016-12-01

    Full Text Available Primary cutaneous CD4-positive small- to medium-sized pleomorphic T-cell lymphoma is a provisional entity in the 2005 WHO-EORTC classification for cutaneous lymphomas. It is a rare condition and, in most cases, it has a favorable clinical course and prognosis. Primary cutaneous CD4-positive small/medium pleomorphic T-cell lymphoma (PCSM-TCL is defined as a cutaneous T-cell lymphoma with predominantly small- to medium-sized CD4-positive pleomorphic T-cells without a history of patches and plaques typical of mycosis fungoides. PCSM-TCL usually presents as a solitary plaque or tumor on the head, neck, trunk or upper extremities and it is considered to have indolent clinical behavior. Histologically, it is characterized by a dense infiltration of small/medium-sized pleomorphic T-cells that involves the entire dermal thickness, often with nodular extension into the hypodermis. Using immunohistochemical staining, the majority of the reported cases proved to be CD3, CD4 positive and CD8, CD30 negative. However, due to the rarity and heterogeneity of the PCSM-TCL, precise clinicopathologic characteristics of PCSM-TCL have not been well characterized and the optimal treatment for this group of lymphomas is yet to be defined. Dermatologists and pathologists should be aware of this entity in order to avoid unnecessary aggressive treatments.

  15. Rabbit chondrocytes maintained in serum-free medium. I. Synthesis and secretion of hydrodynamically-small proteoglycans

    International Nuclear Information System (INIS)

    Malemud, C.J.; Papay, R.S.

    1986-01-01

    The biosynthesis of sulfated proteoglycan in vitro by rabbit articular chondrocytes in first passage monolayer culture maintained in fetal bovine serum (FBS) or in serum-free conditions was compared. Neosynthesized proteoglycan in the culture medium in the most dense fraction of an associative CsCl density gradient (fraction dAl) declined with increasing time under serum-free conditions, but not when cells were maintained in the presence of serum. After one day, the major peak of incorporated 35 SO 4 in medium fraction dAl eluted as a retarded peak on Sepharose CL-2B, whether cells were maintained under serum-free or serum-containing conditions. The hydrodynamic size of proteoglycan monomer fraction dAlDl obtained after one day of exposure to serum-free culture media was smaller than dAlDl from serum-containing cultures. The hydrodynamic size of dAlDl obtained from serum-free culture media became even progressively smaller after 2 and 3 days' exposure to these conditions. Hydrodynamically small sulfated proteoglycans were identified in the cell-associated dAlDl fraction as early as one day after switching chondrocytes from serum-containing to serum-free medium. Proteoglycan monomer from serum-containing medium reaggregated more efficiently under both conditions. No change in the size of glycosaminoglycan chains was seen in the smaller proteoglycan subpopulations, nor was there any indication of marked changes in the glycosaminoglycan types

  16. Radiative mixed convection over an isothermal cone embedded in a porous medium with variable permeability

    KAUST Repository

    El-Amin, Mohamed; Ebrahiem, N.A.; Salama, Amgad; Sun, S.

    2011-01-01

    The interaction of mixed convection with thermal radiation of an optical dense viscous fluid adjacent to an isothermal cone imbedded in a porous medium with Rosseland diffusion approximation incorporating the variation of permeability and thermal conductivity is numerically investigated. The transformed conservation laws are solved numerically for the case of variable surface temperature conditions. Numerical results are given for the dimensionless temperature profiles and the local Nusselt number for various values of the mixed convection parameter , the cone angle parameter ?, the radiation-conduction parameter R d, and the surface temperature parameter H. Copyright 2011 M. F. El-Amin et al.

  17. The influence of different vegetation patches on the spatial distribution of nests and the epigeic activity of ants (Lasius niger) on a spoil dump after brown coal mining (Czech Republic)

    Energy Technology Data Exchange (ETDEWEB)

    Holec, M.; Frouz, J.; Pokorny, R. [Academy of Science Czech Republic, Ceske Budejovice (Czech Republic). Inst. of Soil Biology

    2006-07-15

    A study was carried out during 2001 on mine tailings in NW Bohemia aimed at describing the spatial patterns of nests distribution and epigeic activity of ants in relation to the vegetation mosaic. Lasius niger was the most abundant species of ant and its nest mounds were significantly more numerous in patches with sparse vegetation than inside dense Calamagrostis epigejos vegetation; this was particularly true for small and medium-sized nests. Small and medium nests also occurred more frequently near the edges of a given patch than in the center. Large and medium nests were randomly distributed in the area, whereas small nests had an aggregated distribution. Pitfall trapping reveal significantly higher activity of L. niger workers in tall and dense vegetation stands in comparison with low and sparse vegetation. This pattern was particularly pronounced during the peak of foraging activity in summer and was not so significant in spring or autumn. We expect that ants preferentially forage in shaded habitats during the summer months when bare soil may be too hot. The results indicated that nesting and foraging may differ in their microclimatic requirements and the formation of vegetation mosaics may be important to changes in the ant population during succession.

  18. Jets with ALICE: from vacuum to high-temperature QCD

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    ALICE measures jets in pp, p-Pb and Pb-Pb collisions to study modifications of the jet fragmentation due to cold nuclear and hot QCD matter. In pp collisions ALICE has measured inclusive jet yields, the ratio of yields with different resolution R, a variety of jet shapes and the semi-inclusive rate of jets recoiling against a high transverse momentum hadron trigger. These measurements are compared to NLO calculations including hadronization corrections and to MC models. Jets in pp are primarily conceived as a vacuum reference for jet observables in p-Pb and Pb-Pb collisions. In p-Pb collisions ALICE explores cold nuclear matter effects on jet yields, jet fragmentation and dijet acoplanarity. The hot and dense medium created in heavy-ion collisions is expected to modify the fragmentation of high energy partonic projectiles leading to changes in the energy and structure of the reconstructed jets with respect to pp jets. The study of modified jets aims at understanding the detailed mechanisms of in-medium energy...

  19. Probing the Quark Gluon Plasma with Heavy Flavours: recent results from ALICE

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The study of open heavy-flavour physics allows us to investigate the key properties of the Quark-Gluon Plasma (QGP) and the microscopic processes ongoing in the medium produced in heavy-ion collisions at relativistic energies. Heavy quarks are produced in the early stages of heavy-ion collisions and their further production and annihilation rates in the medium are expected to be very small throughout the evolution of the system. Therefore, they serve as penetrating probes that traverse the hot and dense medium, interact with the partonic constituents of the plasma and lose energy. Understanding the interactions of heavy quarks with the medium requires precise measurements over a wide momentum range in heavy-ion collisions, but also in smaller systems like pp collisions, which also test next-to-leading order perturbative QCD calculations, and proton-nucleus collisions, which are sensitive to Cold Nuclear Matter effects (CNM), such as the modification of the parton distribution functions of nuclei, and parton ...

  20. Skyrmions, dense matter and nuclear forces

    International Nuclear Information System (INIS)

    Pethick, C.J.

    1984-12-01

    A simple introduction to a number of properties of Skyrme's chiral soliton model of baryons is given. Some implications of the model for dense matter and for nuclear interactions are discussed. (orig.)